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RÉSUMÉ 

Les contaminations dans le réseau de distribution d'eau potable, qu'elles soient intentionnelles ou 

accidentelles, peuvent avoir un impact négatif sur la santé publique. Cette thèse porte sur la 

simulation d’intrusions accidentelles dues à des pertes de pression prolongées dans les réseaux. Les 

distributeur d’eau doivent pouvoir prédire la distribution spatiale et temporelle des contaminants 

microbiens pendant et après les conditions de pression déficientes (PDC) afin d’identifier les 

actions correctives appropriées. Des modèles réalistes hydraulique et de qualité d'eau sous 

conditions PDC, associés à un cadre avancé d'évaluation quantitative du risque microbien 

(QMRA), peuvent aider les services publics à prendre les mesures appropriées au bon moment pour 

minimiser le risque d'infection associé à des intrusions accidentelles due à des événements de 

pression faible / négative. 

L'objectif principal de cette recherche est de développer et d'intégrer des concepts réalistes de 

modélisation de la qualité de l'eau et de l'hydraulique dans un modèle QMRA afin d'améliorer 

l'évaluation des risques pour la santé publique associés aux événements de pression continue faible 

ou négative dans les réseaux de distribution d'eau potable. Plus précisément, ce projet visait à: (1) 

évaluer l’utilisation de l’analyse par la pression (PDA) au lieu de l’analyse traditionnelle par la 

demande (DDA) pour définir les zones potentiellement à risque d’intrusion / rétro-contamination 

dans un réseau de distribution de grande taille; (2) développer une méthode combinant à la fois des 

résultats d'analyse déterminés par la pression et une analyse de la qualité de l'eau multi-espèces 

(MSWQA-PDA); (3) évaluer l'impact de deux relations pression-demande sur les paramètres 

hydrauliques et de qualité de l'eau; (4) réduire les incertitudes et améliorer les hypothèses dans la 

modélisation de l'intrusion, du devenir et du transport accidentels de contaminants; (5) comparer 

la distribution spatiale et temporelle d’E. coli et les zones de pression touchées, résultant de 

l’intrusion d'eaux usées en l'absence et la présence de divers résidus de désinfectant, et évaluer la 

possibilité d'émettre un avis sectoriel d'ébullition de l'eau (BWA); (6) étudier dans quelle mesure 

les conditions de pressions déficientes maintenues causées par la fermeture de stations de 

traitement de l’eau potable, affectent les résiduels de désinfectant avec et sans l'impact de la 

demande en oxydant de l’eau d'intrusion; (7) évaluer la probabilité spatiale de détecter E. coli à 

travers le réseau à différentes périodes et (8) évaluer le risque pour la santé publique associé aux 

événements d'intrusion accidentelle en améliorant un modèle d'évaluation du risque microbien 

quantitatif disponible. 
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Dans ce travail, une modélisation de la qualité de l'eau multi-espèces fondée sur la PDA (MSWQA-

PDA) est proposée pour prédire l’intrusion d'eau contaminée résultant de pertes de pression 

prolongées. L'outil développé simule également le devenir et le transport des contaminants et la 

perte de désinfectant résiduel dans le réseau pendant et après les PDC.  

Premièrement, pour vérifier la fiabilité de l'approche présentée (MSWQA-PDA), les conditions de 

pressions déficients continues sont modélisées en simulant des arrêts prolongés des stations de 

traitement dans un réseau de distribution d’eau potable de grande taille desservant une population 

d’environ 400 000 personnes via 1 600 km de conduites. À titre de preuve de concept, de multiples 

espèces de la qualité de l’eau, notamment l’âge de l’eau, le chlore et le THM, sont modélisées et 

comparées au scénario de conditions de pressions normales. Les résultats montrent que la 

simulation DDA surestime les zones exposées à des pressions faibles et négatives, ce qui pourrait 

donner lieu à des avis préventifs injustifiés. Ces conditions ont généralement causé une diminution 

des concentrations résiduelles de chlore et, par conséquent, une augmentation des concentrations 

de THM par rapport aux conditions de fonctionnement normales, et cela même sans prendre en 

compte l'impact de l'intrusion. Ces différences sont principalement dues aux augmentations de 

temps de séjour. Les variations sont les plus élevées aux nœuds avec des valeurs de pression plus 

basses. 

Le modèle couplé MSWQA-PDA est ensuite utilisé pour modéliser le devenir et le transport d’E. 

coli résultant de l'intrusion d'eaux usées non traitées suite à des pressions déficientes prolongées (5 

heures) en présence de différents types de désinfectant. Les volumes d’intrusion à chacun des 73 

sites de fuite ayant des pressions <1 m, sont estimés en tenant compte de l’état des conduites (c’est-

à-dire de l’âge et des matériaux) et de la pression résultante d’intrusion calculée à partir de la PDA. 

Les résultats montrent qu’environ 11% des nœuds sont positifs pour E. coli (≥ 1E-06 UFC / L) à 

tout moment au cours de la période de simulation de 4 jours et en absence de tout désinfectant. 

Cette valeur diminue à 10% et 1% en présence de 1 mg/L de chloramines et de chlore, 

respectivement. On constate qu’E. coli peut être transporté vers des zones où la pression est plus 

élevée (P > 10 m, sur la base des pressions sous PDC) en fonction de l'effet des résiduels de 

désinfectant sur les microorganismes. Pour le système chloré (1 mg / L), E. coli demeure présent 

(≥ 10-6 UFC / L) à 119 nœuds 4 heures après le début de l'intrusion, pour ensuite ne persister qu’à 

8 nœuds 9 heures après le début de l'intrusion. Cela indique qu'il est peu probable que les 

événements de contamination soient détectés à l'aide d'un échantillonnage d'E. coli à moins que 
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l'échantillonnage ne soit effectué rapidement sur les sites d'intrusion ou à proximité. En présence 

de chloramines, la probabilité nodale moyenne de détection était supérieure à 0,1 à 166 nœuds aux 

premier et deuxième intervalles de 5 heures, ce qui indique qu'un échantillonnage à réponse rapide 

dirigé vers les zones à risque pourrait confirmer efficacement la contamination. Faire correspondre 

les programmes d'échantillonnage des services publics avec les prévisions numériques 

correspondantes peut augmenter la probabilité de détecter la contamination. Selon les 

concentrations modélisées, des volumes d'échantillonnage plus importants peuvent être 

nécessaires. L’utilisation d’un volume d'échantillon plus important peut prolonger la fenêtre de 

temps pour effectuer l'échantillonnage après une intrusion, en raison des probabilités plus grandes 

de détection positive. 

Finalement, un nouveau modèle QMRA développé par Blokker et al. (2018) est couplé à un modèle 

de qualité de l'eau à base de PDA pour évaluer les risque d’infection de Cryptosporidium résultant 

d'une intrusion accidentelle des eaux usées. Pour ce faire, une distribution Poisson du nombre de 

verres par personne par jour et une distribution log-normale du volume ingéré par verre sont 

utilisés. Durant les périodes de pression déficiente, l'utilisation moyenne du robinet de cuisine est 

modifiée en fonction de la disponibilité de la demande calcule à partir des résultats du PDA. Pour 

tenir compte de l’incertitude des calculs liés à la variabilité comportementale des consommateurs, 

200 simulations de Monte Carlo sont réalisées. Le nombre simulé de personnes infectées augmente 

de 235 fois  en fonction des concentrations croissantes de Cryptosporidium dans les eaux usées 

brutes (1 à 560 oocystes/ L) pour une durée d'intrusion de 24 heures. Le nombre maximum de 

personnes infectées, au cours des 4 jours d'observation, diminue de 64% et 94% pour les scénarios 

de 10 heures et 1 heure, respectivement, par rapport à une intrusion de 24 heures. La distribution 

spatiale des risques nodaux pour différentes durées d'événements a montré que cette durée est un 

facteur clé dans la définition de la délinéation de zones assujetties à une avis préventif. Il est aussi 

démontré que le fait de ne pas boire de l’eau du robinet lorsque le débit au robinet est très faible 

(un temps de remplissage de plus de 20 fois plus long) pourrait réduire le nombre de personnes 

infectées jusqu’à 65% le jour de l’intrusion. 

Dans l’ensemble, ce projet de recherche modélise les variations de la qualité de l’eau dues aux 

pertes de charge prolongées dans les réseaux de distribution d’eau potable. Les résultats de cette 

étude peuvent être utilisés pour fournir des informations sur l'élaboration et l'amélioration de la 
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réglementation ou des recommandations pratiques pour la gestion du réseau d'eau potable dans des 

PDC prolongés et minimiser les effets néfastes sur la santé publique. 
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ABSTRACT 

Contamination events in drinking water distribution system, whether intentional or accidental, can 

adversely affect public health. This study is focused on simulating accidental intrusion events due 

to sustained pressure losses. Utilities need to understand the spatial and temporal distribution of 

microbial contaminants during and after pressure deficient conditions (PDCs) to determine 

adequate remediation actions. Realistic hydraulic and water quality models under PDCs coupled 

with advanced quantitative microbial risk assessment (QMRA) framework can help utilities to take 

timely and appropriate action to minimize the infection risk associated with accidental intrusion 

due to low/negative pressure events.  

The main objective of this research is to develop and integrate realistic hydraulic and water quality 

modeling concepts into a QMRA model in order to improve the assessment of public health risks 

associated with the occurrence of sustained low/negative pressure events in drinking water 

distribution systems. On a more detailed level, this project sought to: (1) evaluate the use of 

pressure-driven analysis (PDA), instead of traditional demand-driven analysis (DDA), to define 

the zones potentially at risk of intrusion/backflow in a full-scale distribution system; (2) develop a 

method that combines both pressure-driven analysis results and multi-species water quality 

analysis (MSWQA-PDA); (3) assess the impact of two pressure-demand relationships on hydraulic 

and water quality parameters; (4) reduce uncertainty and improve assumptions in modeling 

accidental intrusion and fate and transport of contaminants; (5) compare the spatial and temporal 

distribution of E. coli and the affected pressure zones, resulting from the ingress of sewage in the 

absence and presence of various disinfectant residuals and evaluate the possibility of issuing 

sectorial boil water advisory (BWA); (6) investigate how sustained PDCs, due to major WTPs 

shutdown, affect the disinfectant residuals with and without considering the ingress demand 

impact; (7) evaluate the spatial probability of detecting E. coli throughout the network at different 

periods and (8) evaluate the public health risk associated with accidental intrusion events by 

improving an available quantitative microbial risk assessment model. 

In this work, a multi-species water quality modeling based on PDA (MSWQA-PDA) is proposed 

to predict the ingress of contaminated water resulting from sustained PDCs. The developed tool 

simulates also the fate and transport of contaminant and the decay of disinfectant across the 

network during and after PDCs. First, to verify the reliability of the presented approach (MSWQA-
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PDA), continuous sustained PDCs are modeled by assuming some major WTP shutdowns in a full-

scale drinking water distribution system that serves a population of ~400,000 through 1,600 km of 

pipes. As a proof of concept, multiple water quality species including water age, chlorine and THM 

are modeled and compared with the scenario of normal operating conditions. Results show that, 

DDA overestimate the areas at risk of low and negative pressure, which may lead to unjustified 

advisories. The simulated continuous PDCs generally resulted in greater chlorine residual loss, and 

consequently THM augmentation compared to normal operating conditions even without 

considering the impact of intrusion. This is mainly because of longer residence time. The variations 

are shown to be higher at nodes with lower pressure values.  

As the next step, MSWQA-PDA is applied to model fate and transport of E. coli resulting from 

intrusion of raw sewage due to sustained PDCs of 5 hours in the presence of different types of 

disinfectant residuals. The intrusion volumes at each of the 73 leakage points, having pressures < 

1 m, are estimated by taking into account the state of pipes (i.e. age and materials) and the internal 

pressure head, calculated from PDA. Results show that, 11% of the nodes experienced positive E. 

coli (≥ 1E-06 CFU/L) at any time during the 4-day simulation period in the absence of any 

disinfectant. This value decreases to 10% and 1% in the presence of 1 mg/L of chloramine and 

chlorine, respectively. It is observed that E. coli can be transported to areas with higher pressure (P 

> 10 m, based on pressures under PDCs) according to the efficacy of disinfectant residuals on the 

intruded microorganisms. For chlorinated system (1 mg/L), positive E. coli (≥ 10-6 CFU/L) is 

found at 119 nodes 4 hours after the start of intrusion rapidly decreasing to 8 nodes 9 hours after 

the start of intrusion. This indicates that the contamination events are unlikely to be detected using 

E. coli sampling unless sampling is conducted rapidly at or close to intrusion sites. In the presence 

of chloramine, the nodal mean probability of detection was more than 0.1 in the first and second 

5-hour intervals at 166 nodes, indicating that a rapid response sampling directed at the areas at risk 

could be effective in confirming contamination.  Matching the utility sampling schedules with the 

corresponding numerical predictions can increase the probability of detecting the contamination. 

Depending on modeled concentrations, larger sampling volumes may be required. A larger sample 

volume can extend the post intrusion allowable sampling time during which sampling can be 

performed with a greater likelihood of positive detection. 

Finally, a novel QMRA model developed by Blokker et al. (2018) is coupled with water quality 

calculations based on PDA to assess Cryptosporidium infection risk from accidental intrusion of 
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sewage. Poisson and the lognormal distribution for the number of glasses per person per day and 

ingested volume per glass is used, respectively. For the time of consumption, the average kitchen 

tap use is modified based on the availability of demand using PDA results. To take into account 

the uncertainty of the calculations from consumers’ behavioral variability, 200 Monte Carlo 

simulations are performed. The simulated number of infected people increases by 235-fold with 

increasing concentrations of Cryptosporidium in raw sewage from 1 to 560 oocysts/L (fixed 

intrusion duration: 24 hours). The maximum number of infected people, during the 4 observation 

days, gets 64% and 94% lower for the scenarios of 10 hours and 1 h, respectively, compared to 24 

hour intrusion. Spatial distribution of nodal risks for different event durations illustrated that 

duration is a key factor in defining the boundaries of BWA. It is shown that, not drinking water 

from tap with very low-flow (i.e. filling time increase by more than 20 times) could decrease the 

number of infected people up to 65% on the day of intrusion.  

Overall, this research project models the water quality variations due to sustained pressure losses 

in drinking water distribution systems. Results from this study can be used to provide insight into 

the development and improvement of regulations or practical recommendations for managing 

drinking water network under sustained PDCs and minimize the adverse public health effects. 
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CHAPTER 1 INTRODUCTION – IMPROVING MODELING TOOLS 

TO PREDICT WATER QUALITY DUE TO SUSTAINED 

LOW/NEGATIVE PRESSURE EVENTS  

The integrity of the drinking water distribution systems is important not only to minimize leakage 

but also to minimize the risk of contaminants entering into the distribution systems. It is well 

established that distribution system deficiencies can be a source of waterborne disease outbreaks 

(Craun et al. 2010, Guzman-Herrador et al. 2015, Hunter et al. 2005, Kirmeyer et al. 2001a, Lindley 

and Buchberger 2002, Nygard et al. 2007, Payment et al. 1991, Payment et al. 1997). For the period 

1971 to 1998 in U.S., 113 outbreaks out of 619 investigated cases (18.1%) were caused by 

distribution system deficiencies (Lindley and Buchberger 2002). In Quebec, the two 

epidemiological studies of Payment et al. (1991) and Payment et al. (1997) suggested that 

deficiencies in the distribution network could lead to an increased burden of gastrointestinal 

diseases. Pathogen intrusion in water distribution system may result in a decrease of water quality 

if there is not an adequate disinfectant residual concentration to control the propagation of 

pathogens from the intrusion points. Three events must occur at the same time to cause pathogen 

intrusion in distribution system: low/negative pressure, the presence of a source of contamination 

and a pathway for entry of the contaminated volume. Submerged air valves, cross-connections, 

faulty seals, faulty joint or leakage points are at risk for entry of untreated water into the drinking 

water distribution system due to negative or low pressure. 

Water utilities need management plans in order to detect and respond to sustained low pressure 

conditions in order to limit the impact of pressure losses on their customer’s health. Realistic and 

accurate modeling methods under pressure deficient conditions can be a valuable tool for utility 

managers in decision-making. As mentioned by Besner et al. (2011), the occurrence of adverse 

pressure conditions can be represented by two types of events: transient low or negative pressure 

and sustained low or negative pressure events. Transient low/negative pressure events can occur in 

the network lasting from a few milliseconds to a few minutes. These events have been well 

documented and were studied through modeling and field investigations, and several guidelines are 

proposed to prevent these events (Besner et al. 2010b, Boulos et al. 2005, Ebacher et al. 2012, 

Ebacher et al. 2011a, Gullick et al. 2005, LeChevallier et al. 2011, Walski and Lutes 1994, Yang 

et al. 2011). Sustained low/negative pressure events have been recorded in the literature (Besner et 
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al. 2007, Besner et al. 2011, Douglas et al. 2018, Kirmeyer et al. 2014) and can become more 

frequent in decaying infrastructure. The volume of contaminated water ingress into the network is 

directly influenced by the duration of low/negative pressure events, and consequently adversely 

affects the level of public health. Therefore, the present work is aimed to concentrate on simulating 

extended duration low/negative pressure events lasting a few hours.  

The use of quantitative microbial risk analysis (QMRA) to assess the microbial risk associated with 

the intrusion of pathogens in distribution system is challenging. Different factors such as the 

location of ingress, the contaminant mass rate, the duration of contamination events, the 

interactions between microorganisms and disinfectant throughout the network, and finally the 

consumer's behavior all impact the likelihood of  contaminated water reaching the tap (Besner et 

al. 2011). In the last decade, QMRA associated with contamination events due to transient pressure 

drops, main repairs or intentional contamination has gained more attention (Blokker et al. 2014, 

Blokker et al. 2018, LeChevallier et al. 2011, Schijven et al. 2016, Teunis et al. 2010, Van Abel et 

al. 2014, Yang et al. 2011, Yang et al. 2015). However, no study has yet applied QMRA models 

integrated with realistic pressure-driven analysis (PDA) to assess the probability of infection 

associated to accidental intrusion due to sustained pressure drops. This can only be achieved by 

taking into account both the network’s response and consumer’s behavior during PDCs. 

Using PDA rather than demand-driven analysis (DDA) under pressure deficient conditions leads 

to more realistic hydraulic simulations (Cheung et al. 2005, Siew and Tanyimboh 2012). As water 

quality parameters depend on hydraulic conditions, a realistic hydraulic simulation (with PDA) is 

required to be linked with water quality model under pressure deficient conditions. In previous 

studies, the hydraulic engine for multi-species water quality analysis was based on DDA (Betanzo 

et al. 2008, Islam et al. 2017, Karamouz et al. 2017, Klosterman et al. 2009, Muray and Adachi 

2011, Propato and Uber 2004, Teunis et al. 2010, Tinelli and Juran 2017, Tinelli et al. 2018, Yang 

and Boccelli 2016). Although useful, these simulations are only valid under normal operating 

conditions. To the best of our knowledge, all water quality simulation studies under pressure 

deficient conditions, using PDA, are based on single-species water quality model (Afshar and 

Mariño 2014, Bashi-Azghadi et al. 2017a, Bashi-Azghadi et al. 2017b, Rasekh and Brumbelow 

2014, Seyoum and Tanyimboh 2014, Seyoum et al. 2011, Zafari et al. 2017), except the recent 

work by Seyoum and Tanyimboh (2017) that modeled chlorine residual, trihalomethanes and 

haloacetic acids under PDCs for a small network with 380 nodes. In addition, the contaminant mass 
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rate in ingress water was approximated randomly using the existing data or was considered as a 

fixed parameter for all the intrusion nodes (Besner et al. 2010c, Betanzo et al. 2008, Islam et al. 

2017, LeChevallier et al. 2011, Propato and Uber 2004, Teunis et al. 2010). In this study, we 

estimated node-specific intrusion volume by adjusting the volume for the state of pipes using nodal 

leakage demand, and the nodal internal pressure value using PDA. 

Prior work and this thesis emphasize the need to further develop QMRA models coupled with 

realistic numerical model calculations. An approach capable of integrating pressure-driven 

hydraulic simulation results into a multispecies water quality model is proposed. With this 

approach, the interaction between microorganism and disinfectant residuals under pressure 

deficient conditions can be considered. These improved models can provide a basis for reevaluating 

and enhancing statutory monitoring programs to increase the probability of contamination 

detection. They also offer insights to utility managers for appropriate preventive/corrective actions 

and timely response to sustained PDCs. Finally, this PhD project addresses several knowledge gaps 

on assessing the risk associated to accidental intrusion caused by sustained low-pressure conditions 

by performing several original improvements to various models (hydraulics, intrusion, quality and 

QMRA). 

This thesis is structured in 9 chapters. A review of the state of the literature is presented in Chapter 

2. It is followed by the objectives, hypotheses and methodology in Chapter 3. Chapters 4 through 

6 represent the research results in the form of published or submitted articles. A published paper in 

conference proceeding is presented in Chapter 7. Finally, a general discussion is presented in 

Chapter 8, followed by conclusions and recommendations in Chapter 9. 
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CHAPTER 2 LITERATURE REVIEW 

2.1. Distribution System Deficiencies     

Drinking water distribution system is the final barrier for providing safe drinking water to 

consumers. According to experience records in Canada (Canadian Council of Ministers of the 

Environment (CCME) 2004), water system infrastructure is subject to a variety of events or threats 

such as mechanical failures (e.g. pump breakdowns and valves jamming), environmental (e.g. 

forest fires), power outages, contamination, communication disruption (e.g. failure of automatic 

signal equipment), etc. Waterborne disease outbreaks are attributed to distribution system 

deficiencies and their portion has been increased in recent decades (Kirmeyer et al. 2001a, 

Kirmeyer et al. 2014). Between 1971 and 1998, 18 % of investigated waterborne disease outbreaks 

(113 out of 619) in the United States were the results of drinking water distribution system 

deficiencies (Craun and Calderon 2001). Contaminant intrusion or backflow as the result of low or 

negative pressure events in distribution system can cause water quality problems and consequently 

lead to adverse health effects (Guzman-Herrador et al. 2015, Lindley and Buchberger 2002). Under 

these circumstances, appropriate and timely response to contamination events by utilities can 

minimize public health risks. 

2.2. Pressure deficient conditions 

The occurrence of adverse pressure conditions in drinking distribution systems can appear in the 

form of transient or sustained low/negative pressure event. While transient events are short duration 

events (e.g. few milliseconds to a few minutes) the duration of sustained low or negative pressure 

is usually in the order of minutes to hours (Besner et al. 2011). Submerged air valves, cross-

connections, faulty seals, faulty joint or leakage points are the risk points where untreated water 

can intrude into the distribution system under pressure deficient conditions. The causes and 

consequences of each type of event are briefly described below. 

2.2.1. Transient low/negative pressure events  

Rapid changes in velocity occur when the operational status of flow control component varies (e.g. 

pump shut down or valve closure). Such rapid changes will impose a pressure wave movement 
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through the system. Different studies have investigated the possibility of ingress of contaminated 

water into the distribution systems under transient pressure drops using numerical modeling tools 

or through field studies and practical guidelines are proposed to control these events (Besner et al. 

2010b, Boulos et al. 2005, Ebacher et al. 2011a, Gullick et al. 2005, Gullick et al. 2004, 

LeChevallier et al. 2011, Walski and Lutes 1994). Details toward transient flow concept and the 

methods of controlling hydraulic transient can also be found in Walski et al. (2003). Some of the 

causes of transient flow conditions that may lead to pathogen intrusion in distribution systems are 

as follows (Kirmeyer et al. 2001b): altitude valve closure, opening and closing a fire hydrant, valve 

operation (opening and closing), air-valve slam, flushing operations, malfunctioning of air 

release/vacuum valves, malfunctioning of pressure relief valves, booster pump startup and shut 

down, sudden change in demand, check valve slam, resonance, breaking in a pipeline and losing 

an overhead storage tank. Isolation and disinfection process may be required at some distance away 

from the area of the main break as the contamination intrusion does not certainly occur at the point 

of the main break (LeChevallier 1999). Transient low/negative pressure events were measured by 

Besner et al. (2010a) installing high-speed pressure transient data loggers in full-scale water 

systems. Eleven negative pressure events were reported during phase 1 of this study. The cause of 

these negative pressures was due to power failures at the water treatment plant, repairs of isolated 

water mains and closure of a transmission main.  

2.2.2. Sustained low/negative pressure events  

While transient events are short duration events, the duration of sustained low/negative pressure is 

usually in the order of minutes to hours. The latter event was reported in some distribution systems  

(Besner et al. 2007, Besner et al. 2011, Douglas et al. 2018, Kirmeyer et al. 2014). With water 

infrastructure aging, sustained low/negative pressure events are likely to become more common 

and can be an important source of contaminant intrusion; thus the need for improvement of 

hydraulic and water quality models under such conditions. Immediately after a pressure drop is 

reported in the network, preventive/corrective actions are required to protect public health. When 

the duration of the pressure drop is longer, it is more likely that the utilities are informed about the 

pressure-deficient conditions through the complaints receive from customers and the pressure 

monitoring (Erickson et al. 2015). Planned or emergency construction/repair/replacement work, 

power failures, main break, large scale flushing or high fire-flow water demand by attaching a 
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pump to a hydrant may cause sustained low/negative pressure in distribution systems (Besner et al. 

2011, Erickson et al. 2015). During the field measurements done by Besner et al. (2007) and 

(2010a), the occurrence of sustained low/negative pressure is reported at different locations of the 

network. Negative pressure lasted between 1 and 37 minutes and pressure below 20 psi lasted up 

to 20 hours are reported during 3 closures of the transmission main (Besner et al. 2007).  

2.3. Quantitative microbial risk assessment 

Infection, illness and death can be modeled in microbial risk assessment. The risks of illness and 

death generally are calculated using infection risk by implementing morbidity or mortality ratios. 

Infection is the first symptom of exposure to a pathogen. However, in the lack of clinical sign it is 

difficult to assess infection in humans (United States Environmental Protection Agency USEPA 

2012). One common method for evaluation is quantitative microbial risk assessment (QMRA) that 

has become a useful tool for evaluating the drinking water safety (Smeets et al. 2010, World Health 

Organisation (WHO) 2006). QMRA consisted of the following steps (United States Environmental 

Protection Agency USEPA 2012): hazard identification (recognizing the proper microorganism); 

hazard characterization (the qualitative description of microorganisms’ ability or potential to cause 

harmful effects); exposure assessment and risk characterization.  

In spite of the evidence supporting the role of water network in infectious waterborne diseases 

(Craun et al. 2002, Guzman-Herrador et al. 2015, Lindley and Buchberger 2002), QMRA has been 

mostly used to only assess the risk of drinking water treatment failures (Schijven et al. 2011, Tfaily 

et al. 2015, World Health Organisation (WHO) 2016). Employing QMRA model to assess the risk 

of contamination in water distribution systems is complicated as different parameters such as 

location, duration and intensity of the event, propagation of contaminated water and the 

coincidence of a consumption event with passing of contaminants from the tap should be integrated 

into the model. These requirements are addressed in a conceptual model presented by Besner et al. 

(2011) to provide a guidance for quantifying  the risk from contamination intrusion in the 

distribution system.  

Reviews of the health risk from intrusion in water distribution systems exist (Besner et al. 2011, 

Hamouda et al. 2018, Islam et al. 2015, Viñas et al. 2019). Most of the current QMRA models have 

been used to predict the public health risk associated with intentional intrusion, transient events in 



7 

 

water distribution system or main breaks (Blokker et al. 2018, Schijven et al. 2016, Teunis et al. 

2010, Yang et al. 2011, Yang et al. 2015). Water quality, hydraulic and surge modeling were 

coupled with Monte Carlo simulations to estimate the average risk of infection and the number of 

people infected (LeChevallier et al. 2011). Teunis et al. (2010) and Yang et al. (2011) have used 

the same risk model. The public health risk associated to transient and sustained intrusion events 

was investigated by Besner et al. (2010c) for a duration of 1 min and 1 hour, respectively. These 

authors recommended to include pressure driven analysis in future studies to determine the 

low/negative pressure points instead of demand-driven analysis. The probability of infection 

resulting from intentional intrusion due to contaminated aerosol droplets inhalation or ingestion of 

contaminants is investigated, including the consumer behavior (Schijven et al. 2016). In the study 

done by Blokker et al. (2018), the number of infected people from 1E+4 ingress load of 

Cryptosporidium (1E4 per isolation section volume with average of 3.4 m3) due to breaks in the 

distribution system was between 1 to ~120 for a single event. In their study the scenarios had been 

simulated under different hydraulic/water quality conditions (different times of opening valves and 

contamination locations) in the Monte Carlo simulations.  

Usually, standard risk assessment models assume a fixed consumption volume, at a specific hour, 

per person per day (Besner et al. 2010c, Islam et al. 2017), at fixed times during the day or using  

randomize times of water consumptions at any time during the day (Besner et al. 2010c, Davis and 

Janke 2009, Yang et al. 2011), or only one consumption event per day (LeChevallier et al. 2011, 

Yang et al. 2011). However, there are several studies that used probabilistic models to more 

accurately simulate the behavior of consumers (Blokker et al. 2014, Blokker et al. 2018, Davis and 

Janke 2008, 2009, Schijven et al. 2016). Also, Blokker et al. (2018) and Davis and Janke (2009) 

showed that the time of water intake from the tap, for drinking water purpose, is not necessarily 

equal to the total consumption time. Blokker et al. (2018) used the kitchen tap use data to better 

identify realistic consumption times during the day. 
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2.4. Hydraulic simulations: demand-driven analysis vs pressure-driven 

analysis 

To simulate the hydraulic dynamics of a distribution network, two sets of equations are required. 

The first set of equations is the conservation of flows for each node in the network and the next is 

the nonlinear relationship between flow and head loss for each pipe. The energy conservation 

equation in a steady state condition along hydraulic pipe between node i and j is expressed as 

follows:  

 P1

ρ1g
+

V1
2

2g
+ z1 + hpump,u =

P2

ρ2g
+

V2
2

2g
+ z2 + hturbine,u + hL Eq. 2-1  

in which h𝑝𝑢𝑚𝑝,𝑢 is head delivered to the fluid by the pump, h𝑡𝑢𝑟𝑏𝑖𝑛𝑒,𝑢 is the head that is removed 

from fluid by turbine (it is equal to 0 if there is no turbine in the system), h𝐿 is head loss due to all 

components of the piping system between points 1 and 2. Hazen-Williams, Darcy-Weisbach, and 

Chezy-Manning are the most common head loss relationships due to friction that are used in 

network modeling (Mays 2004). 

Flow conservation equation that must be satisfied around all nodes in steady state condition is as 

follows: 

 ∑ Qij

j

− Di = 0      for i = 1, … , N Eq. 2-2 

in which 𝐷𝑖 is flow demand at node i, N is the number of junction nodes, 𝑄𝑖𝑗 is flow in pipe i-j 

where  j is set of nodes directly connected to the node i.  

The approaches for simulating the hydraulic behavior in water distribution systems can be 

classified into two groups: demand-driven analysis (DDA) and pressure driven analysis (PDA). 

Both of these methods are based on the solution of the energy equation and mass conservation 

equation. In the demand driven algorithm, while energy and mass conservation equations are solved 

to calculate nodal heads and link flows, the nodal demands are considered as a fixed parameter in 

continuity equation. Therefore, this approach lead to unrealistic results under PDCs as it considers 

that all the nodal demands are met regardless of the nodal pressure values. These results cannot be 
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physically acceptable and are only mathematical results, as in reality the nodal demands cannot be 

fully satisfied in the case of insufficient nodal pressure (Nyende-Byakika et al. 2012). Therefore, 

when nodal pressures are not sufficient to supply the full demand, a more realistic approach called 

PDA is preferred. However, in the majority of network solvers such as EPANET, the demand-

driven approach is used and is perfectly adequate to model network hydraulics under normal 

operating conditions. Pressure deficient condition occurs when the nodal pressure drops below its 

critical value (see section 2.4.2) due to a failure condition in the system. Examples of such 

conditions are unplanned pipe outage, insufficient water supply from water sources, pump stations 

failure, etc. 

Several algorithms maybe applied to solve the equations in DDA. Todini (2006) classified the 

existing solution algorithms presented by the researchers into four groups as: the global gradient 

algorithm, the linear theory algorithm, the simultaneous loop algorithm, the Newton-Raphson 

nodal algorithm. The Global Gradient method (GGM) has been established as a robust approach 

and as the most suitable for fast convergence. This algorithm has been applied in EPANET 2 

(Rossman 2000). Wu et al. (2009), Siew and Tanyimboh (2012), Siew and Tanyimboh (2009) and 

Siew and Tanyimboh (2010b) have applied the improved GGM to consider demands as function 

of pressures. 

2.4.1. Pressure-demand relationships 

In a conventional water distribution hydraulic simulation, the demand is assumed as a fixed value 

that usually comes from field data observations. Recently, by developing pressure driven approach, 

it has been attempted to compute the demand values in the system as function of nodal head during 

pressure deficient conditions in the system. Determining an accurate relationship between nodal 

pressure and demand for a network may require a huge amount of field data, which does not seem 

to be practical. However, many researchers have attempted to develop some relationships between 

nodal demand and pressure (Bhave 1981, Fujiwara and Li 1998, Gupta and Bhave 1996, Reddy 

and Elango 1989, Tanyimboh and Templeman 2004, 2010, Tucciarelli et al. 1999, Wagner et al. 

1988). Shirzad et al. (2013) conducted a set of laboratory and field experiments in three points of 

a real water distribution to measure the discharge from different faucets and their corresponding 

pressures. These authors were the first to compare different existing PDRs based on measured data. 
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These authors proposed a new relationship based on the measured data and orifice equation. 

However, this research reveals the need of more field and/or experimental data to define a suitable 

function between nodal pressures and demands. Recently, improvement to pressure-demand 

relationship (PDR) have been proposed by taking into account the impact of the number of orifices 

that are attached to the hydraulic model node, the number of open orifices and their elevation 

(Walski 2017, Walski et al. 2019). When demands related to several consumers are aggregated at a 

node of the hydraulic model, a parabolic relationship may not be applied anymore, because the 

relationship must be a function of different factors such as consumer location, consumption 

behavior, plumbing fixtures and headloss in the secondary network (Ciaponi et al. 2014, Gupta 

2015). A selection of the proposed relationships and their parameters are shown in Table 2.1. 
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Table 2.1: Summary of the relationships proposed by different researchers for estimating available flow.    

Head-Flow Equation Parameters to be known Reference 

qj
req

= qj
avl,            if Hj

avl ≥ Hj
min

0 < qj
avl < qj

req
,     if Hj

 = Hj
min

qj
avl = 0,                 if Hj

avl ≤ Hj
min

                                                 Hj
min 

Bhave (1981) 

Probably the first one who considered the 

nodal flows and heads at the same time, this 

method is named as node flow analysis. 

qj
avl = qj

req
[1 − 10

bj(
Hj

 –Hj
min

Hj
des−Hj

min)

]                                       bj , Hj
min, Hj

des 

Gupta and Bhave (1996) 

Modified Germanopoulos (1985) 

qj
avl = qj

req
,                               Hj

 ≥ Hj
req

                 

qj
avl = (

Hj−Hj
min

Hj
des−Hj

min)
1/2

qj
req

,    Hj
min < Hj

 < Hj
req

qj
avl = 0,                                     Hj

 ≤ Hj
min               

                            
Hj

min 

Hj
des 

Wagner et al. (1988)  

 

qj
avl = Scj(Hj

 − Hj
min)0.5                                                                  

Scj,  Hj
min Reddy and Elango (1989) 

qj
avl = qj

req
,                                                     Hj

 ≥ Hj
req

               

qj
avl =

(Hj−Hj
min)

2
(3Hj

des−2Hj−Hj
min)

(Hj
des−Hj

min)
3 qj

req
,   Hj

min < Hj
 < Hj

req
 

qj
avl = 0,                                                          Hj

 ≤ Hj
min               

      
Hj

min 

Hj
des 

Fujiwara and Li (1998) 

qj
avl = qj

req exp (αj+βjHj)

1+exp (αj+βjHj)
,      βj =

11.502 

Hj
des−Hj

min , αj =
−4..595Hj

des−6.907Hj
min 

Hj
des−Hj

min                                                       
αj , βj in the case of existence of field 

data, otherwise Hj
des and Hj

min 

Tanyimboh and Templeman (2004) 

Tanyimboh and Templeman (2010) (+) 

Q = 𝑎(Hj
 − emin

 )𝑏 𝑎, 𝑏, emin
   Walski (2017), Walski et al. (2019) 

𝑞𝑗
𝑎𝑣𝑙: available flow at node j, qj

req
: required design demand, Hj

min: minimum head at node j, Hj
 : available nodal head, Hj

des: minimum required head at node j, 

Scj
 and  bj are node constants, 𝑎: coefficient and is a function of the number of open orifices and their orifice coefficient values, b: coefficient and is a function of 

orifice elevations, emin
 : elevation of the lowest orifice.  

(+) The values of αj and βj are specified using field data for the node in equation. This relationship seems to be the only function that removes the need of extra 

conditions for Hj
 < Hj

min and  Hj
 > Hj

req
  (Tanyimboh 2008). In the case that no field data is available, these two parameters can be defined as the function of  Hj

min 

and Hj
des by assuming: qj

avl(Hj
des) = 0.999qj

req
 and qj

avl(Hj
min) = 0.01qj

req
.
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2.4.2. Critical Pressure in Water Distribution Systems 

Critical pressure is the nodal pressure value below which the nodal demand cannot be fully 

supplied. Actually, the critical pressure is a value that is unique for each node and each network 

and its exact value must be determined from field measurements. As this task is not often practical, 

this critical value is usually approximated for the system using existing guidelines. However, this 

may induce uncertainty in the results when performing PDA.  

Several criteria are used to estimate the critical pressure value. The terms threshold pressure, 

minimum required pressure, and critical pressure are used interchangeably this document. The 

pressure at any point in the distribution network should never fall below 20 psi across the street 

when the network is subjected to a maximum daily demand plus fire flow (Ministère de 

l'environnement du Québec 2002). A minimum pressure of 20 psi must be maintained at ground 

level at all points in the distribution system under all conditions of flow, while during normal 

operating condition, the pressure must be approximately 60 to 80 psi and not less than 35 psi (Great 

Lakes Upper Mississippi River Board of State Public Health and Environmental Managers 2007). 

Even though acceptable pressure may vary in different systems, they must usually be maintained 

between 30 psi and 100 psi during normal working conditions (Chase 2000). If the pressure values 

exceed 100 psi, it is likely to increase water loss through leaks and may also lead to main breaks 

or plumbing systems damage. Also it is mentioned that a pressure supply of 30 psi is enough for 

the top floors of multistory buildings. Depending on the characteristics of the water supply system, 

the minimum pressures may have to be kept higher than 30 psi at specific places in the network. 

As an example, facilities in some hospitals or industries may require a minimum pressure higher 

than 30 psi to operate correctly (Chase 2000). Operation of some devices in residential houses may 

also require specific minimum pressure. As an example most dishwashers require a minimum 

operating pressure anywhere from 20 to 40 psi (Mays 2004). During emergency cases such as fire 

flows, the entire system pressure should be kept above 20 psi. Also keeping the system pressure 

above 20 psi can help to avoid the potable supply being contaminated from cross-connections 

(Chase 2000).  

A survey on the state minimum pressure standards and the practical reaction of the utilities to 

low/negative pressure events shows that, even though a minimum pressure standard of 20 psi is 
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required for the majority of the states, the delay to issue boil-water advisories and notifying events 

to state primacy agencies follow different policies (Erickson et al. 2015). 

2.4.3. Approaches to Pressure-Driven Analysis: A General Literature Review 

Developed approaches to perform PDA can be categorized in (1) methods that involve DDA, (2) 

and methods that solve the mass and energy conservation equations and the selected PDR at the 

same time (Sayyed and Gupta 2013). In the following selected approach will be explained in more 

details. 

A semi-pressure-driven approach was developed by Ozger (2003). This method is based on 

demand-driven analysis using EPANET 2 software. This author was probably one of the first 

researchers to propose the use of artificial reservoir to model pressure deficient conditions in 

distribution systems. The strategy of this approach is that the nodal demands are considered as 

unknown parameters while the threshold pressure is imposed in the system. During semi-pressure-

driven analysis (SPDA), the first step is to run the network by demand-driven analysis in order to 

identify the nodes that cannot supply the full demand due to pressure deficiency. Next the amount 

of the available flow at these pressure deficient nodes is quantified by the following procedure: (i) 

new node elevation is set to the original node elevation plus threshold pressure head; (ii) non-zero 

demand is fixed to zero for all pressure deficient nodes; (iii) artificial reservoir is connected to 

each pressure deficient node; (iv) artificial tank elevation is set to new node elevation. It should be 

noted that the reservoir is connected to its junction by an infinitesimally short pipe to avoid head 

losses. This pipe is defined as a control valve that only allows flow from the junction into the tank. 

With the above modification, the hydraulics of the networks are solved for the second time. If, 

after the second simulation, any artificial reservoirs receive more water than the original demand 

assigned to the node then a new iteration is required. In this case, those artificial reservoirs are 

removed and the original nodal properties (e.g. nodal elevation and nodal base demand) are 

restored. While keeping the rest of conditions unchanged, the hydraulic model should be run again. 

The iteration procedure is continued until all the available flows into artificial reservoirs are less 

than the original demand. Ozger (2003) applied SPDA for both steady-state analysis and extended 

period simulation under pressure deficient conditions due to pipe failure. This approach has been 

used to perform reliability analysis of distribution systems (Ozger 2003, Yoo et al. 2005). The 
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semi pressure driven analysis of Ozger (2003) was then employed to model serious pressure 

shortfalls in a real network including one reservoir and 22 pipes (Nyende-Byakika et al. 2012).  

A methodology named pressure-deficient network algorithm (PDNA) is proposed and 

implemented into the EPANET hydraulic solver by using artificial reservoirs to model an 8-pipe 

single source and 14-pipe multiple-source network in the presence of firefighting demand and/or 

pipe breakage (Ang and Jowitt 2006). As an improvement of the algorithm provided by Ang and 

Jowitt (2006), a modified pressure deficient network algorithm (M-PDNA) is presented by Jinesh 

Babu and Mohan (2012) to overcome the drawback of PDNA from the standpoint of topology 

variation and consequently multiple runs of EPANET. The method was successfully validated to 

perform extended period simulation by modeling a multiple source pumped network assuming a 

diurnal change in demands and the performance of M-PDNA was shown by solving a network of 

124 pipes. However, Gorev and Kodzhespirova (2013) illustrated that the M-PDNA approaches 

of Jinesh Babu and Mohan (2012) failed to converge during an extended period simulation under 

pressure deficient condition using a network example in two different cases. Through a network 

example, Suribabu and Neelakantan (2011) illustrated that PDNA did not provide reasonable 

results for some specific pipe isolations and the reason is mentioned to be that in PDNA the 

pressure is brought to minimum value by obligating the demand to be reduced. While in the case 

of having no outflow in the critical nodes, this would not be possible. These authors presented a 

method termed complementary reservoir solution (CRS) that is simpler than PDNA as it requires 

fewer removals and additions of artificial reservoirs. However, CRS still had the problem of 

requiring multiple hydraulic run. With CRS, additional flow enters the network through the 

reservoir even if this is not the case in reality and may cause error, however, Mamizadeh and 

Sharoonizadeh (2016) proposed some modifications to CRS to overcome this problem. Later, 

another study proposed an improvement to original CRS to minimize the number of artificial 

reservoirs that are required to be attached to the nodes with negative pressure head (Suribabua et 

al. 2017).  

The methods that apply artificial reservoirs have some shortcomings such as high computational 

cost and modification to network topology. It is a tedious approach to apply for the analysis of 

large networks and for extended period simulation. Wu (2007) mentioned that the computational 

efficiency will significantly deteriorate during the application of PDNA to large networks due to 



15 

 

topology variation and the necessity of refreshing the data of hydraulic model and also reopening 

the EPANET solver. Non-iterative approaches have been proposed to perform PDA using 

EPANET 2, in which the artificial elements are attached to all the demand nodes without the need 

of modifying the topology iteratively (Gorev and Kodzhespirova 2013, Mahmoud et al. 2017, 

Pacchin et al. 2017, Paez et al. 2018, Sayyed et al. 2014, Sayyed et al. 2015). However, implication 

of these methods for EPS may still be difficult.  

A FORTRAN computer program that uses a globally convergent Newton-Raphson approach to 

treat PDA that is termed PRAAWDS (Program for the Realistic Analysis of the Availability of 

Water in Distribution Systems) was applied by Tanyimboh (2008). It was observed that different 

PDRs (Fujiwara and Li 1998, Gupta and Bhave 1996, Tanyimboh and Templeman 2004, Wagner 

et al. 1988) have a significant impact on final results. It was also demonstrated that computational 

time is not increased for PDA compared to DDA. Some researchers (e.g. Giustolisi and Walski 

(2012)) claimed that PDA is less efficient than DDA from numerical and mathematical point of 

view, because applying PDRs in PDA complicates the numerical and mathematical process. 

An approach for modeling PDA was introduced in which the PDR was integrated in the gradient 

method. It was shown that this approach can properly model the normal and pressure deficient 

conditions (Siew and Tanyimboh 2009, 2010a). In these studies, PRAAWDS software was used 

as a validation reference. Siew and Tanyimboh (2010b) presented an extension of EPANET 2 to 

model pressure deficient condition by applying Tanyimboh and Templeman (2004) head-flow 

function. They integrated this function into a gradient method and named it as EPANET-PDX 

(pressure dependent extension). A real life network was chosen and the pressure deficient 

condition was generated by causing a pressure shortage for each reservoir in a way that only 22% 

of the total demand was achieved. Similar results were achieved for EPANET-PDX, PRAAWDS 

and the feasibility check, so it was concluded that EPANET-PDX models pressure deficient 

condition accurately. Siew and Tanyimboh (2012) and Seyoum and Tanyimboh (2014) performed 

additional case studies applying EPANET-PDX. It is observed that EPANET-PDX was robust 

during the demand satisfaction between zero to 100%. Recently, EPANET-PMX has been 

developed to combine the advantages of EPANET, EPANET-MXS and EPANE-PDX (Seyoum 

and Tanyimboh 2017). 
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A pressure-driven analysis using the existing emitter component within EPANET was proposed 

by Rossman (2007) to model pressure dependent flows. In 2010, EPANET was modified for 

pressure-driven demand analysis by Pathirana (2010) who employed emitter modeling of 

demands. In the current version of EPANET-EMITTER, the user is allowed to define the critical 

pressure value in the software. However, it is not possible to define various emitter exponent or 

critical pressure values for different nodes. More details regarding pressure driven analysis, based 

on emitter formula for the networks with severe topography, can be found in Trifunovic and 

Vairavamoorthy (2012). OOTEN (Object Oriented Toolkit for EPANET), a code library 

developed in C and C++, can be applied to modify EPANET’s computational engine for specific 

uses. Cheung et al. (2005) modified the EPANET source code to include PDRs directly into 

OOTEN. As the values of the minimum and desired heads are required in pressure-driven analysis, 

the input file must be modified to specify these values. The proposed pressure driven method was 

applied on two networks to examine the performance of the method under abnormal conditions 

(fire flow).  

An efficient approach of pressure driven model (Wu and Walski 2006) was developed and 

integrated into the modeling framework WaterGEMS (Bentley 2006) by Wu et al. (2006). The 

integrated approach was implemented in a real distribution system. In addition, the application of 

this approach to criticality analysis is demonstrated through the examples. Extended global 

gradient methods used by Wu et al. (2009) to analyze pressure deficient scenarios can be applied 

to the case with consideration of different PDR at each node.  

2.5. Intrusion of pathogens into distribution systems  

Water quality regulations usually require that water entering into the distribution system maintain 

a predefined minimum disinfectant residual either at the entrance or at end points of the system 

(Government of Ontario 2003, Ministère du Développement Durable de l’Environnement et des 

Parcs du Québec (MDDEP) 2005, United States Environmental Protection Agency (USEPA) 

2006). Such a disinfectant residual is usually justified to protect from microbiological re-

contamination, reduce bacterial regrowth and control biofilm formation. However, depending 

upon the characteristics of the distributed water, the use of residual disinfection may lead to 

undesirable side effects such as the excessive formation of disinfection by-products. Therefore, 
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the concentration of disinfectant residual should be determined in consideration of the trade-off 

between these two issues. Concentrations of disinfectant residual needed to control microbial 

intrusion events can be determined by applying an accurate hydraulic/water quality model. 

2.5.1. Intrusion predictions  

Sustained or transient pressure losses can cause contaminant ingress into distribution systems if 

there is an external source of contamination and a pathway.  

Pathways: Submerged air vacuum valve (AVV), faulty joint, main repair sites, cross-connections 

and leakage points are the potential locations for intrusion during pressure losses. Cross-

connections are physical connections between potable and non-potable water source through 

which a contaminant may enter a drinking water supply. Backflow from buildings into the 

distribution system, contamination in water tanks, and low pressure in the network are causes of 

water quality failure reported by Hlavinek et al. (2008) in the networks. A list of backflow incidents 

can be found in United States Environmental Protection Agency (USEPA) (2001). Field testing 

done by Schneider et al. (2010) showed that backflow events took place in 1.6% of all meter reads, 

each month, and in 5% of the homes, affect each year, where backflow-sensing meters had been 

installed. Water in an air valve chamber presents a risk of contamination, since fecal contamination 

indicators and enteric viruses have been detected in flooded valve chambers (Besner et al. 2010a). 

In Canada, after the water is withdrawn by suppliers, ~13% of the water is lost before it arrives to 

the consumers, however, this value can be higher (20-30%) for other territories (Renzetti and 

Dupont 2013). This amount of water is mostly lost through pipe leaks, which are representative of 

the intrusion pathways during pressure losses.  

Contamination source outside the pipes: Microbial indicators concentrations in air vacuum valve 

chambers, groundwater, and runoff water or raw waters/wastewater were measured in previous 

studies (Besner et al. 2010a, Ebacher et al. 2013, Payment 2003), showing that the detected E. coli 

concentrations were much higher in local wastewater compared to groundwater and valve vault 

water samples.  

Intrusion volume: As field measuring of intrusion volumes is costly and impractical, simulating 

the potential intrusion volumes and defining the intrusion points, by numerical models is of great 
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importance. The orifice equation used by researchers for this purpose (Besner et al. 2010c, Ebacher 

et al. 2012, Ebacher et al. 2011b, Gibson et al. 2019, Kirmeyer et al. 2001a, LeChevallier et al. 

2011). In these studies the diameter in orifice equation was either directly defined or global leakage 

rate was applied to all nodes to estimate the intrusion flow rates. Using InfoSurge model, the total 

intrusion volume of 157 L through 1517 leakage orifices was reported versus the total intrusion 

volume of 766 L through 11 submerged air vacuum valves, for an intrusion event lasted for ~3 

minutes (Ebacher et al. 2010). Some researchers have proposed modifications to the orifice 

equation to take into account the impact of soil-leak interactions, leak-area variations due to 

pressure changes, and type of leaks (Clayton and van Zyl 2007, Kabaasha et al. 2018, van Zyl et 

al. 2017, van Zyl and Malde 2017, Yu et al. 2016). It is shown that variation of round hole area is 

negligible with pressure changes, while this was not the case for longitudinal slits. In the latter 

case, a modified orifice equation with leakage exponent varying between 0.5 to 1.5 was proposed 

(van Zyl et al. 2017). Not considering the impact of soil characteristics outside of pipelines can 

lead to a conservative intrusion flow rate estimation (Collins et al. 2010). 

2.5.2. Equation to model fate and transport of pathogens  

For a specific intrusion event, the estimation of the amount of pathogens that an individual may be 

exposed through drinking tap water requires the simulation of the fate and transport of the 

microorganisms into the system. The presence and type of disinfectant, the type of pathogen and 

the organic matter content of the intruded material, attachment/detachment of pathogens from 

biofilm, and hydraulic conditions are factors that will influence the transport and survival of the 

microorganisms into the system. Three mechanisms may be used to model water quality: 

advection, dispersion, and reaction.  The advection term describes the particles transport by the 

bulk motion of flow.  The dispersion term model the movement of particles due to molecular 

diffusion. The reaction term can define the decay, growth, death, adsorption, and consumption rate 

of the particles. Water quality modeling in water distribution system can be simulated using the 

advection-dispersion-reaction equation as follows: 

 ∂

∂t
c(x, t) +

∂

∂x
(v(x, t)c(x, t)) =

∂

∂x
(d(x, t)

∂

∂x
c(x, t)) + f(x, t, c(x, t)) Eq. 2-3 



19 

 

in which c(x, t) is the concentration of a certain species with spatial variable x and time t ≥ 0, 

v(x, t) is the flow velocity and f(x, t, u(x, t)) counts for reactions between various species. More 

details on derivation of this equation and numerical solutions for solving this equation can be found 

in Hundsdorfer and Verwer (2003).  

Most of the water quality models apply advection-reaction equation to simulate the concentration 

of a constituent in the distribution system (Walski et al. 2003). Longitudinal dispersion in pipes is 

usually neglected with the assumption of completely mixed flow. However, that is only acceptable 

under turbulent flow conditions. Blokker et al. (2008) reviewed the effect of dispersion on water 

quality modeling. They mention that the dispersion term cannot be neglected in the case of laminar 

flow and the contribution of this term in water quality model may be important. There are many 

other studies documenting the effect of the dispersion term (Lee and Buchberger 2000, Tzatchkov 

et al. 2002). Tzatchkov et al. (2002) observed that for high and medium velocities, the EPANET 

advection-reaction model and their proposed advection-dispersion-reaction model gave similar 

results. While for low velocity condition, their proposed model was more accurate. EPANET’s 

water quality simulator (Rossman 2000) doesn’t consider the dispersion phenomenon and models 

advection transport and reactions in the bulk flow and at the pipe wall.  

2.5.3. Water quality modeling   

Propato and Uber (2004) quantitatively investigated the vulnerability of distribution systems to 

microbial intrusions using DDA by assuming deliberate continuous intrusion of Giardia, a 

pathogen resistant to chlorine. These authors were the first who attempted to quantitatively predict 

the effect of disinfectant residual on microbial intrusion events. Simulation results were expressed 

as vulnerability curves which showed identical trends in both networks: consumer protection 

increased with increasing the disinfectant concentrations as well as with applying booster 

chlorination and free chlorine residual is more effective than combined chlorine.  Betanzo et al. 

(2008) later extended the work by investigating intrusion of E. coli, which is more easily 

inactivated by chlorine. In their simulations, intrusion occurred at a single node of the network and 

investigated three scenarios to model the fate and transport of pathogens from intrusion event: (i) 

constant intrusion flow at a specific node, no disinfectant decay, (ii) similar to the first scenario, 

with the exception for that the intrusion event at that specific node can only take place whenever 
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the pressure is lower or equal to 20 psi, (iii) disinfectant decay modeling was added. Some of the 

limitations of the simulations presented by Betanzo et al. (2008) are as follows: (i) the dilution of 

intrusion water is assumed to be less than 1 % to have a first order decay (ii) constant intrusion 

concentrations of Giardia/E. coli are assumed regardless of the system pressure, and (iii) as the 

pressure of the system at some points goes below 20 psi, the use of a demand driven hydraulic 

model may cause inaccuracies in simulation and consequently unrealistic estimations of residual 

disinfectant in the network. Betanzo et al. (2008) concluded that 0.5 mg/L of free chlorine residual 

in distributed drinking water may be insufficient to control intruded Giardia. However, E. coli can 

be inactivated during an intrusion event in the presence of 0.5 mg/L of free chlorine residual. 

Chloramines as a secondary disinfectant may have negligible benefits for the inactivation of 

microorganisms from intrusion events (Betanzo et al. 2008, Propato and Uber 2004). There is still 

debate regarding the protective action of disinfectant residual in the distribution system according 

to the existing regulations to mitigate the impact of intrusion events in the distribution systems. 

In some studies, the concentration of microorganisms is considered constant during the 

simulations. However this situation can only be accurate and efficient to simulate worst case 

scenarios where no inactivation of microorganisms occurs such as  for Cryptosporidium in contact 

with chlorine or chloramines (Betancourt and Rose 2004). However in other studies, the 

inactivation of microorganisms is modeled while the disinfectant residual is considered constant, 

i.e. no disinfectant decay (Betanzo et al. 2008). The interaction between microorganisms and 

disinfectant cannot be simulated using classical single-species water quality models such as 

EPANET. To overcome these problems multi-species models such as EPANET-MSX have been 

developed (Shang et al. 2011). For example, EPANET-MSX software can be used to simulate 

multi-species interactions such as attachment/detachment of pathogens to/from biofilm, interaction 

of disinfectant with organic and inorganic matter, and inactivation of microorganisms (Uber 2010). 

EPANET-MSX facilitated the simulation of multiple interacting species and 

has been used by a number of authors (Betanzo et al. 2008, Islam et al. 2017, Karamouz et al. 

2017, Klosterman et al. 2009, Muray and Adachi 2011, Propato and Uber 2004, Seyoum et al. 

2013, Tinelli and Juran 2017, Tinelli et al. 2018, Yang and Boccelli 2016). EPANET-MSX was 

used to assess the efficacy of disinfectants on virus intrusion associated with low/negative pressure 

transients by Teunis et al. (2010) and LeChevallier et al. (2011). It should be noted that the 

hydraulic engine of this software is based on DDA, as in EPANET 2. Recently, Seyoum and 
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Tanyimboh (2017) modified the source code of EPANET-MSX to provide PDA. Except this recent 

study, other studies that attempted to model water quality under pressure deficient conditions, 

using PDA, are based on single-species water quality model (Bashi-Azghadi et al. 2017a, Bashi-

Azghadi et al. 2017b, Rasekh and Brumbelow 2014, Seyoum and Tanyimboh 2014, Seyoum et al. 

2011, Zafari et al. 2017).  

Microbial inactivation model: Haas and Karra (1984a) compared 3 available kinetic models under 

disinfectant demand free conditions: Chick–Watson, Hom, and Monod model.  The equations of 

these models are as follows: 

 ln (
𝑁

𝑁0
) = −𝑘𝐶𝑛𝑡 (Chick–Watson model) 

ln (
𝑁

𝑁0
) = −𝑘′𝐶𝑛𝑡𝑚 (Hom model) 

ln (
𝑁

𝑁0
) =

−𝑘2𝐶

𝐶+𝑘𝐷
∗ [𝑡 +

𝑒𝑥𝑝−𝑘1𝑡(𝐶+𝑘𝐷)−1

𝑘1(𝐶+𝑘𝐷)
]  (Monod model) 

Eq. 2-4 

 

Eq. 2-5 

Eq. 2-6 

where C is disinfectant concentration, N/N0 is the ratio of microorganism concentration, and k, n 

and m are empirical constants. Computed combined chlorine and free chlorine were compared 

with experimental data sets. They observed that, in general, all three models fit the data properly. 

In a few cases, the Hom and Monod models fitted the data better.  However, the authors concluded 

that applying the simple Chick–Watson model to estimate the inactivation of microorganisms due 

to free or combined chlorine was generally adequate.  

Disinfectant decay model: Most decay model used in water distribution models are first order 

equations (Betanzo et al. 2008, Islam et al. 2017, Propato and Uber 2004, Teunis et al. 2010). 

Chlorine consumption is usually divided in two phases. The short term decay phase that usually 

occurs in the first 4 hours is followed by a much slower decay phase (Jadas-Hécart et al. 1992). 

As an improvement to first order model, the parallel first order decay model has been used by 

some researchers. This model assumes two kinetic terms: one for the initial rapid chlorine residual 

decay and one for the slow and long term chlorine decay. Other relations which proposed to model 

disinfectant decay are listed in Table 2.2. First and second order models were compared by 

Boccelli et al. (2003) and the differences between these two models for chlorine decay under re-

chlorination conditions were shown. They claimed that the second order model is always better 
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than or provides the same fit as the first order model. The second order model is capable to 

represent chlorination kinetics more accurately than the first order model. In many cases the 

parallel first order decay model provides a suitable fit to the existing experimental data (Haas and 

Karra 1984b, Helbling and Vanbriesen 2009, Warton et al. 2006).  



23 

 

Table 2.2. Disinfection decay model presented by different authors;  

*: No. of parameters required to be determined 

Type Model form and/or Analytical solution * Definition of parameters References 

Zero-Order 
dC

dt
= −k/r                                                     1 

r=Hydraulic radius of pipe section, k= 

coefficient rate, C=chlorine concentration 

Digiano and Zhang 

(2005) 

First order 

dC

dt
= −kC                                                             

C = C0 exp (−kt)        
1 

C0 =initial chlorine, C=chlorine concentration, 

k= coefficient rate 

Fisher et al. (2011); 

Haas and Karra 

(1984b) 

First-order decay with 

stable components 

dC

dt
= −k(C − C∗)                                       

C = C∗+(C0 − C∗)exp (−kt)                     
2 

C∗ =portion of the initial chlorine residual 

which is indefinitely persistent, C=chlorine 

concentration, k= coefficient rate 

Haas and Karra 

(1984b) 

Parallel first-order 

decay 

dC

dt
= −k1C x,     

dC

dt
= −k2C (1 − x),           

C = C0x exp(−k1t) + C0(1 − x )exp(−k2t)     
3 

K1 and k2= coefficient rate, x= chlorine 

fraction that react with rate of K1, C0 =initial 

chlorine, C=chlorine concentration, 

 

Haas and Karra 

(1984b)  

Ramos et al. (2010) 

Second order 

dC

dt
= −k. C. X                                                

2 
X= concentration of reactant, C=chlorine 

concentration, k= coefficient rate Kohpaei et al. (2011) 

Parallel second order 

model 

dXfast

dt
= −kfast. C. Xfast  

dXslow

dt
     = −kslow. C. Xslow                         

 
dC

dt
=

dXfast

dt
+

dXslow

dt
       

4 

Xfast and  Xslow = concentrations of fast and 

slow reactants with coefficient rate of 

kfast and kslow respectively 

 

Kohpaei et al. (2011) 

Power law decay  

(nth-order) 

dC

dt
= −kCn                                                 

 C = (kt(n − 1) + (
1

C0
)

n−1

)−
1

n−1
           

 

2 

K and n= adjustable constants, C0 =initial 

chlorine, C=chlorine concentration Haas and Karra 

1984c) 

Power law decay with 

stable components 

(nth-order) 

C = C∗ + (kt(n − 1) +
1

(C0 − C∗)n−1
)−

1
n−1       

 

3 

K and n= adjustable constants, C0 =initial 

chlorine, C∗ =portion of the initial chlorine 

residual which is indefinitely persistent 

Haas and Karra 

(1984b) 

Combined first and 

second order model 

dC

dt
= −k1C − k2C2                                          

1

C
+

k2

k1

= (
1

C0

+
k2

k1

)ek1t                   
2 

K1 and k2= coefficient rate, C0 =initial 

chlorine, C=chlorine concentration Hua et al. (1999) 
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A theoretical three-species E. coli inactivation model was presented by Uber (2010), using 

EPANET-MSX software. The three-species included in the model were: E. coli bacteria, free 

chlorine and an organic rich matrix (e.g. nutrient broth). They proposed the following second order 

model for three-component system (Table 2.3).  

Table 2.3: Second order three-component system and the simplified one (Uber 2010). 

Second order three-component system Simplified  second order three-component system 

𝑑𝐸

𝑑𝑡
= −𝑘𝑒1𝐶𝐸 + 𝑘𝑒2𝐵𝐸  

𝑑𝐸

𝑑𝑡
= −𝑘𝑒𝐶𝐸 

𝑑𝐶

𝑑𝑡
= −𝑘𝑐1𝐶𝐸 − 𝑘𝑐2𝐶𝐵 − 𝑘𝑐3𝐶 

𝑑𝐶

𝑑𝑡
= −𝑘𝑐𝐶𝐵 

𝑑𝐵

𝑑𝑡
= −𝑘𝑏1𝐵𝐶 + 𝑘𝑏2𝐵𝐸 𝑑𝐵

𝑑𝑡
= −𝑘𝑏𝐵𝐶 

Note: E= measure of coliform bacteria in CFU/L, B= organic matrix, in Uber (2010) modeled for an intentional 

contamination scenario as Tryptic Soy Broth (TSB), in mL TSB/L, C=chlorine concentration in mg/L 

The simplified three-species model (free chlorine, E. coli bacteria, and a nutrient broth) was applied 

by Klosterman et al. (2009) to model E. coli inactivation in a single pipe. The contaminant injected 

into the pipe was E. coli and Tryptic Soy Broth (TSB). The simulation was done for a single pipe. 

Later, Karamouz et al. (2017) applied the same equations and constants to model contamination 

events in a real network. EPANET-MSX was used by Muray and Adachi (2011) to model the 

inactivation of microorganisms and chlorine decay in the presence of Tryptic Soy Broth (TSB). 

Laboratory data was used to estimate the model parameters. Two microorganisms, E. coli and B. 

globigii spores were studied. Simplified second order model as in Table 2.3 was used in their 

studies. Estimation of pathogen concentrations may be more complicated than what is considered 

in most of the models. It should be considered that decay constants in the presence of TSB are not 

representative of decay in mixed ingress water during intrusion events. In the case of intrusion 

simulation, it would be more realistic to apply decay constants for the reaction of chlorine with 

background organics using a two species second-order model, as in Yang and Boccelli (2016). 

2.6.  Sampling strategies  

E. coli analysis is currently used for confirmation of contamination in the distribution system as 

well as for clearance sampling to confirm that the network is no more contaminated. E. coli is a 
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coliform bacteria and the most adopted indicator of contamination by human/animal waste in 

drinking water. Its presence in the water distribution system can indicate a potential for a serious 

threat to public health (Federation of Canadian Municipalities (FCM) and National Research 

Council (NRC-CNRC) 2004). Most coliform bacteria are not harmful, but they come from the same 

sources as other bacteria and organisms that can cause disease (Centers for Disease Control and 

Prevention (CDC) 2013). Sampling frequency, distribution of sampling sites and detection limit 

(volume of sample) are the parameters that can impact the probability of detection (van Lieverloo 

et al. 2007). Through laboratory studies, some studies showed that larger-volume samples can 

increase the probability of detecting E. coli or total coliform (Hambsch et al. 2007, Hanninen et al. 

2003, Hargy et al. 2010). 

The prescribed sampling frequency for total coliform monitoring can vary from 1 sample to 480 

samples per month for distribution systems serving 25 people and more than 3,960,000 people, 

respectively (Environmental Protection Agency (EPA) 2013, National Research Council of the 

National Academies 2006). The locations of sampling should represent various pressure zones and 

areas that are supplied by different sources and reservoirs (National Research Council of the 

National Academies 2006). Any total coliform positive sample needs repeat sampling within 24 

hours. In the case of  total coliform-positive, either for  routine or repeat sample, E. coli should be 

measured and if positive the State must be notified by the end of the day (Environmental Protection 

Agency (EPA) 2013). Any repeat sample with (i) fecal coliform positive, and (ii) total coliform 

positive following a fecal coliform or E.coli positive routine sample is part of an acute violation 

and a non-acute violation occurs when (National Research Council of the National Academies 

2006): 

1- > 5% of the samples are total coliform positive during the month, for a system serving > 33,000 

people and collecting > 40 samples per month. 

2- >1 sample is total coliform positive per month, for a system serving ≤ 33,000 people and 

collecting < 40 samples per month. 

The effectiveness of existing statutory sampling protocols had been investigated by hydraulic 

model simulations of contamination events (Blokker et al. 2018, van Lieverloo et al. 2007). Blokker 

et al. (2018) observed that if sampling was conducted 1-4 hours after the repair the at the optimal 
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location, the detection probability increased to 80% compared to ~25% under the statutory Dutch 

sampling protocol which necessitates a 100 mL sample for E. coli analysis to be taken the day after 

the maintenance. In agreement, van Lieverloo et al. (2007) reported mean detection probabilities 

of 55–65%, when large parts of the sewage reach reservoirs and 0-13% when contamination does 

not reach any of the reservoirs. Both studies considered no inactivation for E. coli during their 

simulations, therefore, in reality the detection probability would be even lower in the presence of 

disinfectant residuals. 

2.7. Critical literature review 

Events that may lead to sustained low/negative pressure conditions in a distribution system are 

usually controlled by the following strategies: boil water order, notices not to consume water until 

return to service, mitigation strategies (e.g. super-disinfection) and installation of temporary 

networks (Besner et al. 2011). However, some situations may lead to low pressure events of shorter 

but still significant durations (more than a few minutes), for example during maintenance activities, 

where the above-mentioned controlling strategies may not be applied. During this type of event, it 

is possible that intrusion will affect public health. In addition, a delayed response or the application 

of inadequate preventive/corrective actions can also cause adverse health effects associated with 

contamination of drinking water due to unplanned extended pressure losses. Most of the existing 

QMRA models used to evaluate the risk of infection due to intrusion events are related to short 

transient events, pipe breaks or intentional contamination (Blokker et al. 2018, LeChevallier et al. 

2011, Schijven et al. 2016, Teunis et al. 2010, Van Abel et al. 2014, Yang et al. 2011, Yang et al. 

2015). Also, the water quality modeling in existing QMRA models is based on demand driven 

hydraulic simulation. To the best of our knowledge, no studies have yet been conducted to derive 

a quantitative relationship between public health risk and sustained low/negative pressure events 

using water quality calculations based on pressure driven analysis and integrating the impact of 

consumers' behavior during pressure drop on the consumption event.  

The other drawback of applying the classical demand driven approach under pressure deficient 

conditions is that the intrusion flow rate, and consequently the contaminant mass rate cannot be 

modeled correctly. The reason is that the volume of untreated water that intrudes into the 
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distribution system depends on the internal pipe pressure, while the nodal pressures estimated by 

DDA are not realistic under PDCs. However, this fact is not considered in most of the studies 

estimating the contaminant mass rate resulting from intrusion events. Previous studies calculated 

the concentration of contaminants or the contaminant mass rate at intrusion nodes using random 

data, a probabilistic model or a fixed value for all the nodes (Besner et al. 2010c, Betanzo et al. 

2008, Islam et al. 2017, Propato and Uber 2004, Teunis et al. 2010). Previous researchers that 

estimated intrusion volume by orifice equation usually applied a fixed diameter to all the potential 

intrusion nodes or the intrusion volumes were estimated using a global leakage rate (Besner et al. 

2010c, Ebacher et al. 2012, Ebacher et al. 2011b, Kirmeyer et al. 2001a, LeChevallier et al. 2011). 

However, for more realistic simulation, it is recommended that the intrusion volume should reflect 

the state of pipes (Besner et al. 2011, Ebacher et al. 2012, Gibson et al. 2019). Without this 

adjustment, the potential intrusion volume would be overestimated at areas of low leakage, while 

underestimated risks at areas with decaying infrastructure that are more prone to intrusion. 

Furthermore, studies with calculation of intrusion volumes for extended duration of pressure drops 

are not available in the literature. The studies that modeled contamination events using 

EPANET/EPANET-MSX did not consider the impact of intrusion volume on the hydraulic 

conditions and vice versa. In this study, this simplification will also be addressed. 

Recently, Seyoum and Tanyimboh (2017) modified the source code of EPANET-MSX to include 

PDA and modeled THM and chlorine under continuous sustained PDCs in a small network with 

380 nodes. To the best of our knowledge, no study has yet simulated accidental intrusion event due 

to sustained pressure drops taking into account the interactions between multiple water quality 

species under sustained PDCs using PDA. Up to now, the studies that modeled contamination 

events are either based on a single-species water quality model (Blokker et al. 2018, Rasekh and 

Brumbelow 2015, van Lieverloo et al. 2007), single species water quality model is coupled with 

PDA (Afshar and Mariño 2014, Bashi-Azghadi et al. 2017a, Bashi-Azghadi et al. 2017b, Rasekh 

and Brumbelow 2014, Zafari et al. 2017), or multi-species water quality analysis was performed 

based on DDA (Betanzo et al. 2008, Islam et al. 2017, Karamouz et al. 2017, Klosterman et al. 

2009, Muray and Adachi 2011, Propato and Uber 2004, Teunis et al. 2010, Tinelli and Juran 2017, 

Tinelli et al. 2018, Yang and Boccelli 2016).  
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Standard hydraulic models based on demand-driven analysis (DDA) do not adequately represent 

the real hydraulic behavior of distribution networks under pressure deficient conditions. As it has 

been reported in many studies such as Lee et al. (2016), Siew and Tanyimboh (2012) and Cheung 

et al. (2005) applying a pressure-dependent analysis (PDA) rather than DDA under pressure 

deficient conditions lead to more realistic hydraulic simulations. To perform PDA, many studies 

have proposed some PDRs, compared different PDRs or attempted to improve the existing 

relationships (Bhave 1981, Cheung et al. 2005, Fujiwara and Li 1998, Gupta and Bhave 1996, Jun 

and Guoping 2013, Liu et al. 2011, Tanyimboh and Templeman 2004, 2010, Wagner et al. 1988, 

Walski 2017, Walski et al. 2019). However, finding an appropriate pressure-demand function is a 

challenging task in the absence of field data, which was the case in all the reported studies. Several 

studies showed that the choice of PDR affect the nodal pressures and nodal outflows (Cheung et 

al. 2005, Ciaponi and Creaco 2018, Liu et al. 2011, Yoo et al. 2012). There is no study that has 

investigated directly the impact of using different PDRs on the water quality in the case of intrusion. 

First-order decay model has been generally applied to simulate the decay of chlorine in the case of 

intrusion (Betanzo et al. 2008, Islam et al. 2017, LeChevallier et al. 2011, Propato and Uber 2004, 

Teunis et al. 2010). However, this equation does not directly depend on the contaminants 

concentration and employ a fixed decay constant to all contaminated or non-contaminated zones 

throughout the network during and after intrusion. 

Finally, van Lieverloo et al. (2007) and Blokker et al. (2018) assessed the probability of detecting 

E. coli based on standard monitoring program using the numerical model. However, a single water 

quality model was used and E. coli inactivation was not considered. To the best of our knowledge, 

there is no study yet that has evaluated the likelihood of detecting E. coli in the presence of chlorine 

residuals due to intrusion events under low-pressure events applying numerical models. 
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CHAPTER 3 RESEARCH OBJECTIVES, HYPOTHESIS AND 

METHODOLOGY 

3.1 Research objectives and hypotheses 

The main objective of this research is to develop and integrate realistic hydraulic and water quality 

modeling concepts into a QMRA type model in order to improve the assessment of public health 

risks associated with the occurrence of sustained low/negative pressure events in drinking water 

distribution systems.  

More specifically, the objectives of this project are: 

1. Evaluate the use of PDA, instead of traditional DDA, to determine the nodes with 

low/negative pressure values for defining the zones potentially at risk of intrusion/backflow 

in a full-scale distribution system; 

2. Develop a method to allow combination of both pressure-driven analysis results and multi-

species water quality analysis (MSWQA-PDA); 

3. Evaluate the impact of two pressure-demand relationships on hydraulic and water quality 

parameters; 

4. Reduce the uncertainty and improve assumptions in modeling accidental intrusion and fate 

and transport of contaminants under sustained low/negative pressure events of shorter 

duration lasting few hours; 

5. Compare the spatial and temporal distribution of E. coli and the affected pressure zone, 

resulting from the ingress of sewage in the absence and presence of various disinfectant 

residuals and evaluate the possibility of issuing sectorial BWA following sustained PDCs; 

6. Investigate how sustained PDCs due to major WTPs shutdown affect disinfectant residuals 

with and without considering the ingress demand impact; 

7. Evaluate the spatial probability of detecting E. coli throughout the network at different 

periods following an intrusion event resulted from sustained pressure loss  
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8. Estimate the public health risk associated with intrusion events of Cryptosporidium under 

sustained low/negative pressure by improving the existing quantitative microbial risk 

assessment model; 

The project objectives are derived from the following research hypotheses: 

1. DDA cannot correctly define areas prone to intrusion/backflow under pressure-deficient 

conditions and overestimates the zones potentially at risk of low-pressure. 

Originality: Even though there are several studies comparing PDA and DDA during 

pressure losses, an in-depth investigation is conducted to study how the differences in 

estimated nodal pressures between PDA and DDA can affect the delineation of the zones 

at risk of intrusion/backflow under different severity of PDCs in a large full-scale network. 

The extent of the pressure differences between DDA and PDA as a function of pressure 

values under PDCs is quantified. The use of PDA can avoid unjustified boil water 

advisories and open the possibility of issuing sectorial BWAs.  

The hypothesis will be discarded if the spatial distribution of zones at risk of 

intrusion/backflow does not change using PDA or if the nodal pressure difference is less 

than 1 m at every node under PDCs. 

2. A methodology is required to allow integration of pressure-driven hydraulic analysis and 

multi-species water quality model for intrusion modeling as the result of sustained 

low/negative pressure events. 

Originality: A methodology is proposed which enables to simulate the interactions between 

multiple water quality species under sustained PDCs using PDA. At the beginning of this 

project, there was no numerical tool capable of considering the both aspects at the same 

time. The source code does not require to be modified and the method can be used with any 

pressure-driven method.  

The hypothesis can be discarded if the interactions between water quality species can be 

neglected or if there is no sustained pressure drop in the network.  
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3. Even slight differences in pressure values (< 1 m) between using different PDRs when 

performing PDA lead to noticeable differences in potential intrusion volume through 

leakage points and consequently in the concentration of the intruded microorganisms. 

Originality: Even though several studies have investigated the impact of using different 

pressure-demand relationships on the pressure and total available demand, but there is no 

information about the impact on water quality. During modeling intrusion through leakage 

points resulted from sustained PDCs, the computed intrusion volume and contaminant 

concentration are compared using the Tanyimboh and the Wagner relationships while 

performing PDA. 

The hypothesis will be discarded if the nodal pressures are the same between using Wagner 

and Tanyimboh relationships or if the difference in total intrusion volumes is less than 10%.  

4. The effect of nodal pressure head inside the network and leak characteristic must be 

incorporated in the calculation of contamination mass rate at each intrusion node. 

Originality: In existing studies, some simplified assumptions are made when modeling 

intrusion. Improvements are proposed in the presented project to include (a) a systematic 

calculation of nodal intrusion volume, based on differentiation of pressure outside and 

inside of the water main under PDCs and leakage demand during normal condition at each 

node, and (b) the impact of intrusion volume on hydraulic behavior and vice versa and 

consequently its effect on nodal contaminants mass rate. 

The hypothesis may be refuted if the intrusion volume variations from different intrusion 

nodes are less than 10%. 

A secondary hypothesis should be also considered: the chlorine decay constant must be 

increased selectively based on the existence of contamination, in the case of using nth-order 

decay model. 

Originality: Improvement is proposed in the presented project to include the dependency of 

disinfectant decay at different locations on the presence of contamination when using first-

order decay model. 
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The hypothesis may be refuted if all the pipes are contaminated during and after intrusion 

events.  

5. Disinfectant residuals can prevent widespread propagation of contaminants throughout the

network and confine E. coli CFUs to lower-pressure areas compared with the scenario of

no disinfectant residual.

Originality: There is no study available modeling accidental intrusion considering 

interaction between microorganism and disinfectant residual as the results of sustained 

PDCs using pressure-driven hydraulic analysis. This allows investigating the propagation 

of contaminants based on nodal pressure under depressurization. In addition, it opens the 

possibility of issuing sectorial BWA based on hydraulic and water quality simulation 

results. 

This hypothesis may be refuted if disinfectant residuals do not confine the propagation of 

E. coli to lower-pressure areas. 

6. Losses of chlorine residual as the result of sustained PDCs, resulting from WTP shutdowns,

are due to ingress demand and less so because of increasing water age, outlasting the

duration of low-pressure event.

Originality: With the help of the presented approach (MSWQ-PDA) and improved 

assumptions, chlorine variations during and after sustained PDCs of few-hours can be 

modeled to estimate the role of water age variations and ingress demand on the changes, 

and assess the time that it takes for the residuals to reach the predicted values before the 

pressure losses.  

This hypothesis may be refuted if the median chlorine concentration of the affected nodes 

with intrusion demand decreases by less than 0.1 mg/L than without intrusion, and if the 

chlorine residuals reach the normal level immediately after the pressure is back to normal. 

7. The probability of detecting E. coli by standard sampling protocols is almost nil for

contamination confirmation and clearance following accidental intrusion events.

Originality: No study has yet assessed the probability of detecting E. coli in the presence of 

disinfectant residuals resulting from intrusion events due to PDCs using numerical models. 
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The simulation results can be applied to improve the sampling strategies in terms of timing, 

location and volume of sample for confirmation and clearance of intrusion events

This hypothesis may be refuted if the probability is high enough (> 50%) that standard 

sampling protocols or improved sampling can be conducted in chlorine or chloraminated 

system to detect intrusion events by E. coli sampling. 

8. Coupling QMRA with water quality calculation based on pressure-driven hydraulic

analysis is essential when assessing the infection risk associated with the accidental

intrusion events due to sustained PDCs. The impact of consumers' behavior on the infection

risk is not negligible

Originality: No other study conducted QMRA coupled with water quality model calculation 

based on PDA to quantify the microbial infection risks resulted from accidental intrusion 

through leakage points due to sustained pressure drop. The impact of consumers' behavior 

such as volume of consumption and number of times that one fills a glass should also be 

considered when assessing the probability of infection from the consumption of drinking 

water from the tap. 

This hypothesis may be discarded if there is no significant (< 20%) change in the number 

of infected people when taking into account the behavioral variability within each 

consumer at each day using Monte Carlo simulation as well as if the number of intrusion 

nodes (P < 1 m) for both PDA and DDA are the same 

A summary of the modeling approach for each of the hypothesis, the expected results and the 

corresponding chapter of the thesis is demonstrated in Table 3.1.
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Table 3.1. Modeling approach to validate (or invalidate) the research hypothesis and corresponding chapters of the thesis. 

Hypothesis Scale Modeling approach Expected results Chapter 

1. DDA cannot correctly define

areas prone to

intrusion/backflow under

pressure-deficient conditions

and overestimates the zones

potentially at risk of low-

pressure.

Modeling PDA performed by WaterGEMS. 

Modified EPANET input file used 

for negative pressure. 

Hydraulic parameters during 

sustained PDCs by PDA. 

Potential intrusion volume. 

Impact of pressure criteria on the 

areas at risk of low/negative 

pressure. 

Chapter 4 

Chapter 7 

2. Pressure-driven hydraulic

analysis must be combined with

a multi-species water quality

model to account for the

interactions between

microorganism and disinfectant

residual for intrusion modeling

as the result of sustained

low/negative pressure events.

Modeling Developed MSWQA-PDA 

approach by modifying INP file 

based on PDA results using 

MATLAB to be used by EPANET-

MSX for water quality analysis. 

An approach that enables multi-

species water quality analysis 

under sustained PDCs. 

Application to a large real network 

with hourly variations of 

parameters.  

Chapters 4 to 

7 

3. Even slight differences in

pressure values (< 1 m)

between using different PDRs

when performing PDA lead to

noticeable differences in

potential intrusion volume

through leakage points and

consequently in the

concentration of the intruded

microorganisms.

Modeling MSWQA-PDA was applied to 

investigate the impact of using two 

different pressure-demand 

relationships (Wagner and 

Tanyimboh) on the hydraulic and 

water quality results. 

Difference between pressure head, 

number of intrusion nodes and 

intrusion volume, demand 

satisfaction ratio, and 

Cryptosporidium concentration 

between using different pressure 

demand relationships. 

Chapter 7 
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Table 3.1. Modeling approach to validate (or invalidate) the research hypothesis and corresponding chapters of the thesis (continued). 

Hypothesis Scale Modeling approach Expected results Chapter 

4. The effect of nodal pressure

head inside the network and

leak characteristic must be

incorporated in the calculation

of contamination mass rate at

each intrusion node, and the

chlorine decay constant must

be increased selectively based

on the existence of

contamination, in the case of

using nth-order decay model.

Modeling Estimating intrusion volume by 

orifice equation at each node. The 

leakage constant at each node is 

adjusted based on the nodal leakage 

demand and pressure head of the 

calibrated model under normal 

conditions reflecting the state of 

pipes. 

Intrusion volume defined as negative 

demand in the model and the 

modified INP file is regenerated 

using the adjusted PDA hydraulic 

results. 

Selectively increase the chlorine 

decay rate in the first order model 

based on the presence of the 

conservative fictitious species 

defined in the model. 

Adjusted hydraulic conditions 

considering intrusion volume. 

An exclusive nodal intrusion 

volume and contamination mass 

rate corresponding to hydraulic 

parameters of that node under 

low/negative pressure event. 

Areas subjected to increased 

chlorine decay due to intrusion as 

a function of time based on tracer 

monitoring. 

Chapter 5 

Chapter 6 

5. Disinfectant residuals can

prevent widespread

propagation of contaminants

throughout the network and

confine E. coli CFUs to lower-

pressure areas compared with

the scenario of no disinfectant

residual.

Modeling Applying the modeling approaches 

presented for hypotheses 3 and 4. 

Spatial and temporal distribution 

of E. coli throughout the network 

in the absence and presence of 

different types and concentrations 

of disinfectant residual.  

Determine the pressure zones 

under PDCs that can be affected 

by E. coli during and after the 

intrusion events. 

Chapter 5 
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Table 3.1. Modeling approach to validate (or invalidate) the research hypothesis and corresponding chapters of the thesis (continued). 

Hypothesis Scale Modeling approach Expected results Chapter 

6. Losses of chlorine residual as

the result of sustained PDCs,

resulting from WTP

shutdowns, are due to ingress

demand and less so because of

increasing water age,

outlasting the duration of the

low-pressure event.

Modeling Applying the modeling approaches 

presented for hypotheses 3 and 4. 

Impact of sustained PDCs on 

chlorine and chloramine 

concentration variation without 

and with intrusion-associated 

demand. 
Chapter 5 

7. The probability of detecting E.

coli by standard sampling

protocols is almost nil for

contamination confirmation

and clearance following

accidental intrusion events.

Modeling Using the water quality results of 

MSWQA-PDA and a Poisson 

distribution to estimate the 

probability of detecting E. coli based 

on sampling volumes of 100 mL and 

1 L. 

Distribution of the mean 

probability of detecting positive E. 

coli nodes during the 5-hour 

intervals from the start of intrusion 

up to 20 hours. 

Chapter 5 

8. Coupling QMRA with water

quality calculation based on

pressure-driven hydraulic

analysis is essential when

assessing the infection risk

associated with the accidental

intrusion events due to

sustained PDCs. The impact of

consumers' behavior on the

infection risk is not negligible.

Modeling An advanced QMRA model is linked 

with water quality calculations based 

on PDA. 

Impact of Cryptosporidium 

concentration, duration, volume, 

time of consumption, dose-

response relationship, on infection 

risk from accidental intrusion due 

to PDCs 

Spatial distribution of event risk 

and daily risk 

Chapter 6 



37 

3.2 Research methodology 

The modeling approach can be classified into five main parts: 

1) Identification of potential intrusion nodes, intrusion volumes, and demand availability at

the nodes experiencing low-pressure conditions using pressure-driven hydraulic analysis

(hypotheses 1-3);

2) Developing a technique that enables multispecies water quality analysis based on pressure-

driven analysis (MSWQA-PDA) (hypothesis 2);

3) Prediction of accidental intrusion through leakage points  (hypothesis 4);

4) Characterization and simulation of the fate and transport of pathogens from the pathways

of entry across the network (hypothesis 4 to 7);

5) Using QMRA to assess the impact of intrusion of pathogenic microorganisms due to

sustained PDCs on public health (hypothesis 8).

A framework of the proposed approaches to intrusion modeling, fate/transport of contaminants, 

and QMRA analysis of water distribution system due to substandard pressure conditions is 

illustrated diagrammatically in Figure 3.1. A summary of each step is described in this chapter. 

More details on the developed methodology (MSWQA-PDA), intrusion modeling and fate and 

transport of multiple species are presented in Chapter 4, Chapter 5, and Chapter 7. Quantitative 

microbial risk assessment model that is used to predict the infection risk of intrusion through leak 

openings during pressure drops is described in more details in Chapter 6. 

https://www.tandfonline.com/doi/abs/10.1080/09669589708667287
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Figure 3.1. Flowchart of the model used for infection risk analysis associated with accidental intrusion events under sustained PDCs.
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3.2.1 Hydraulic analysis under sustained low/negative pressure event 

To simulate hydraulic of the network during substandard pressure conditions, pressure-driven 

hydraulic analysis is used in this study and the results are compared with DDA. PDA is more 

reliable to simulate water network under low/negative pressure conditions than traditional DDA, 

which considers a fixed demand at the nodes regardless of the adequacy of nodal pressure for 

supplying all the required demand.  

3.2.1.1 Pressure-driven hydraulic analysis 

The hydraulic analysis of the drinking water distribution system is carried out using WaterGEMS 

(Bentley Systems 2014) software because of its ability to perform PDA. When applying PDA, an 

extra equation that is the relationship between pressure and demand should be implemented in the 

model. The selection of pressure-demand relationships (PDRs) is a challenge when performing 

PDA and can lead to some uncertainty in the absence of field data. The impacts of using two 

different PDRs are investigated on the hydraulic and water quality results: Tanyimboh and 

Templeman (2004, 2010) and Wagner et al. (1988) in Chapter 7. The PDR can be described more 

by a parabolic equation at a withdrawal point (faucet). However, if the demand at each node of the 

distribution system corresponds to several consumers and taps, which is the case for the studied 

network, other elements such as the configuration and head loss of the secondary network and 

locations of consumptions must be considered when selecting an appropriate PDR (Ciaponi et al. 

2014, Gupta 2015). The equation suggested by Tanyimboh and Templeman (2004, 2010) was used 

throughout the rest of the simulations according to the literature and due to lack of field data for 

the studied network. In the PDRs, the desired pressure head, which is the value below which the 

nodal demand can only be satisfied partially, is considered to be 15 m (21 psi) at all nodes. It is 

assumed that no demand can be supplied if the nodal head is lower than the elevation of the node. 

The equations, parameters and the assumptions are explained in more details in Chapter 4 and 

Chapter 7. 

3.2.1.2 Characteristics of the Distribution System and Scenarios of Pressure-Deficient 

Conditions 

A large full-scale water distribution system with more than 30,000 nodes, and three water treatment 

plants (WTPs) was selected to be evaluated under sustained low/negative pressure events and to 
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test the performance of the proposed modeling approach. The network serves nearly 400,000 

residents across around 1,630 km of pipes in Laval (Quebec-Canada). The pipe materials include 

cast iron, ductile iron, prestressed concrete and PVC, which consist 41%, 35%, 10% and 8% of the 

total pipe length, respectively. There is no storage tanks or pump stations in the water network and 

the whole network is hydraulically interconnected. Therefore, the influence zone corresponding to 

each WTP under normal operating conditions (Figure 3.2) can be affected by any change in the 

hydraulic conditions. 
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     (a)

(b)

Figure 3.2. (a) Location of WTPs (triangles) and the influence zone under normal operating 

conditions for each of the WTP is demonstrated by different color, (b) distribution of nodal 

elevation; Node X: location where a fire flow demand of 15,000 L/min is applied (chapter 5). 

Different scenarios of hypothetical sustained PDCs are simulated in the following chapters while 

all are based on major shutdown of one or two of the WTPs. To evaluate and test the proposed 

WTP C 

WTP A 

WTP B 

Node X 
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approach and to illustrate its efficacy on real systems first continues PDCs with different intensities 

are simulated in Chapter 4 and Chapter 7 and water quality results are compared with the scenario 

of normal operating conditions. Then, the methodology is applied to model shorter duration 

low/negative pressure events (1, 5, 10, or 24 hours) in Chapter 5 and Chapter 6.  

3.2.2 Multispecies water quality analysis based on pressure-driven analysis 

(MSWQA-PDA)  

3.2.2.1 Modifying the input file of EPANET 

EPANET-MSX as a multi-species water quality model is selected for the simulations to model the 

interactions between pathogens inactivation, disinfectant decay, and the chlorine demand of 

different types of contamination matrices. The command-line version of EPANET-MSX is used in 

this study. For command line execution of EPANET-MSX, the original EPANET function library 

(epanet2.dll), epanetmsx.exe, MSX file and the input file of EPANET should be placed in the same 

directory as the application’s executable file (Shang et al. 2011). However, EPANET-MSX engine 

is based on demand-driven hydraulic analysis, which is not realistic to be used for modeling water 

quality under sustained PDCs. To overcome this limitation, a technique is presented in which the 

input file of EPANET is modified by incorporating the computed available demands under 

pressure-deficient conditions with the help of the developed MATLAB program. A feasibility 

check (Ackley et al. 2001) was performed to verify the reliability and accuracy of the proposed 

methodology and validate the content of the modified EPANET input file. The presented 

methodology has been tested for large full-scale network with up to 30,000 nodes for time-varying 

hydraulic parameters equal and longer than 1 hour. More details regarding the proposed technique 

can be found in Chapter 4. 

3.2.2.2 Low and Negative Pressure Values 

During simulations, it is observed that negative pressure values were reported as zeros by 

WaterGEMS V8i (SELECTseries 5) (Bentley Systems 2014), the latest version available at the 

beginning of this project. Determining the value of negative pressures at these nodes was an 

important issue in this project for estimating the intrusion volume by orifice equation. To overcome 
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this problem, we proposed to use the pressure values results from the modified .INP file of 

EPANET, by which the negative values were calculated (Figure 3.1). At the same time, we reported 

this issue to the Bentley technical support and they fixed it after a while in one of their next versions 

of WaterGEMS. However, for this project, the same procedure proposed at the beginning of the 

project is continued in the simulations.  

3.2.3 Intrusion prediction 

Three conditions must exist simultaneously at a node to allow intrusion to occur: (i) existence of 

pathway, which is defined based on the existence of leakage demand at the node, (ii) force to drive 

intrusion, which is determined based on the differences between internal and external pressure head 

on pipe, and (iii) presence of contamination source, which is assumed to exist everywhere around 

the pipes. The pressure values calculated from pressure-driven hydraulic analysis are used to define 

areas prone to intrusion during low/negative pressure events and to calculate the intrusion flow 

rates at each node. We assumed a pressure head outside the pipe of 1 m across the distribution 

system, within the range of the water table above the pipe in the studied network (Ebacher et al. 

2013).  

In order to produce contaminant mass rate values that are node-event-specific, the nodal potential 

intrusion volume is adjusted by nodal leakage demand and internal pressure head under normal 

operating conditions. With this adjustment, the intrusion potential would be more representative of 

areas of low leakage (low intrusion potential) and areas with decaying infrastructure prone to 

intrusion (high intrusion potential). The calibrated network model with daily demand patterns 

under normal operating conditions is used to estimate the leakage constant at each node and at each 

hour of the day. For simplicity, and to be conservative in our analyses, the maximum value of 

leakage constant during the day at each node is applied to estimate the intrusion flow rate under 

PDCs. More details on calculating the leakage constant and intrusion flow rate can be found in 

Chapter 5. Due to the issue that we observed in the PDA model of WaterGEMS, when the intrusion 

flow rates were directly implemented at the intrusion nodes, we propose to assign the negative 

demand to an artificial node that is connected to the intrusion node with a short pipe having 

negligible head loss. This is to address the issue of the negative demand implemented at the node 

that was used by the model to first supply the nodal demand, even if the nodal pressure value was 
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≤ 0 and PDA model was used. After implementing the intrusion volume in the model as a negative 

demand, the impact of intrusion volume on hydraulic behavior and vice versa is then considered, 

details are presented Chapter 5.  

3.2.4 Fate and transport analysis 

The EPANET-MSX software utilizes a Lagrangian transport approach to solve the advection-

reaction equation. The model assumes that the mixing of fluid at pipe junctions is instantaneous 

and complete. The effect of axial dispersion is neglected in the model. The reaction equations used 

in this study are listed in Table 3.2. Regarding the THM modeling, chlorine demand in the bulk 

flow was only considered while both bulk and wall demand were considered in the model. To 

provide more realistic results from the widely used nth-order kinetic model (here 1st order for 

chlorine and 2nd order for chloramine, Table 3.2) in the case of intrusion events, we have proposed 

a simple technique to apply different decay constants in contaminated (Kintrusio) and non-

contaminated zones (Knormal). The contaminated areas can be changed in time based on the presence 

or absence of a conservative fictitious species, which is injected into the distribution system at the 

intrusion nodes. Because of some limitations that exist in the software, we notice some issues 

during intrusion modeling. Because of the initial chlorine demand (0.088 mg/L) that is 

implemented at the intrusion node during intrusion events, the chlorine value gets negative at the 

intrusion node if the chlorine concertation at that node is less than 0.088 any time during intrusion. 

To avoid mistakenly calculating E. coli concenrtations, due to negative values of chlorine at the 

intrusion nodes, the chlorine concentration is set to zero in the Chick-Watson model (Table 3.2), if 

it has a negative value. Even though we tried to overcome this limitation, it remains important to 

address these shortcomings in future improvements of numerical hydraulic/quality models when 

used for intrusion simulation. We also noticed that, even if the chlorine residual becomes negative 

at an intrusion node, the initial demand is not transferred to the next nodes; however, in reality the 

chlorine demand is transferred to the downstream nodes. 

Extended period simulation (EPS) is used to perform hydraulic and water quality analysis. For 

water quality simulation the model is run for a while under normal operation conditions to allow 

water quality (water age and disinfectant residuals) reaching equilibrium conditions. The 
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simulation time and hydraulic and water quality time steps are defined in each chapter based on 

the simulated scenarios. 

 

Table 3.2. Reaction equations and the constant values used in different chapters. 

Parameter Reaction Constant values Chapter 

Water age 
R = k1   
(zero-order reaction) 

k1=1 
Everywhere 

Chlorinea 

dC

dt
= −kC  

(first-order reaction) 

k = kb + kw,  

kb=0.02 h-1 (0.48 day-1),  

kw=0.01 h-1 (0.24 day-1) 

Chapter 4 

Chapter 7 

THMb 
THM = Ktc(C0 − C )

+ THM0 

C0 = 1.5 mg/L 

Ktc = 41 µg/L per mg/L free Cl2 
Chapter 4 

Chapter 7 

E. colic 

𝑑𝑃

𝑑𝑡
= −𝑘𝑝𝐶𝑃 

(Chick-Watson model) 

𝑘𝑝= 246 (L/mg ∙ h), chlorine, 10°C 

𝑘𝑝=0.99 (L/mg ∙ h), chloramine, 10°C Chapter 5 

Chlorined 
𝑑𝐶

𝑑𝑡
= −𝑘′𝐶 

Contaminated zone: 

𝑘′=Kintrusion=0.24 h−1 

Non-contaminated zone: 

𝑘′=Knormal=0.055 h−1 

Initial chlorine demand of the ingress 

water: 0.088 mg/L 

Chapter 5 

Chloraminee 
𝑑𝐶

𝑑𝑡
= −𝑘′′𝐶𝑛 

Contaminated zone: 

𝑘′′=Kintrusion=0.11 (mg Cl2 ∙ h/L)−1 

Non-contaminated zone: 

𝑘′′=Knormal=0.012 (mg Cl2 ∙ h/L)−1 

No initial chlorine demand  

Chapter 5 

Note: R: the instantaneous rate of reaction, k1: the reaction rate coefficient, kb: the bulk decay constant (h-1), kw: the 

wall decay constant (h-1), k: the overall decay constant (h-1), THM0: the initial THM concentration at t=0, C0: the initial 

chlorine concentration at t=0, C: the chlorine concentration (mg/L), and Ktc: an indicator of the THM productivity of 

the water (µg/L of THM per mg/L of free chlorine), 𝑃: the E. coli concentration (CFU/L), 𝑘𝑝: the inactivation constant 

(L/mg ∙ h), 𝑘′: the chlorine decay coefficient (h−1), 𝑘′′: the chloramine decay coefficient (L/mg ∙ h), 𝑛: assigned a 

value of 2. (a) Brown et al. (2011); (b) Boccelli et al. (2003), (Hua 2000); (c) Betanzo et al. (2008); (d) (LeChevallier 

et al. 2011, Yang et al. 2011). 

The probability of finding an E. coli during sampling is calculated based on the spatial and temporal 

concentrations calculated by the water quality model, the probability of not detecting E. coli is 

calculated using a Poisson distribution, and the probability of detecting positive is then calculated 

as: 1- probability of not detecting E. coli. Poisson function is a simple model that can express the 

distribution of suspended particles. The probability of finding k particle can be calculated as 

follows (Teunis et al. 2004): 
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𝑃(𝑘; 𝜇) =

𝑒−𝜇𝜇𝑘

𝑘!
 

Eq. 3-1 

in which µ is sample volume multiplied by concentration of particles. 

3.2.5 Quantitative microbial risk assessment 

In this project, a QMRA model is coupled with water quality calculations based on PDA results. 

Dr. Mirjam Blokker from KWR Watercycle Research Institute provided us the MATLAB code for 

the QMRA model which was previously used to assess the microbial risk of repairs of part of the 

drinking water network of the town Zandvoort serving 4,347 people (Blokker et al. 2018). We 

customized this MATLAB code to asses the risk of accidental intrusion events as the result of 

hypothetical sustained low/negative pressure events for the studied network by coupling the 

QMRA model with the PDA.  

Exposure analysis is one of the main steps in calculating the infection risk using QMRA models. 

As illustrated in Figure 3.1, the exposure analysis predicts the dose by taking into account the 

concentrations computed from the numerical model and the probability of coinciding the water 

intake from the tap with the passage of contaminants through that node.  

In this study, sewage is considered as the external source of contamination. The risk 

of Cryptosporidium infection associated with intrusion events due to sustained low/negative 

pressure events is then assessed. More details on the calculation of contaminant mass rates and 

fate/transport can be found in Chapter 5. The calculated concentrations at each time step for all the 

30,077 nodes are saved in an excel file and the data are imported into MATLAB as the input of the 

exposure analysis. The reported time step for the concentrations is 1 hour in all the scenarios.  

The network is modeled for 4 days from the onset of intrusion. Therefore, the ingested dose for 

each person corresponds to 4 days of observation. However, reporting the risk for each day 

individually can also be beneficial for further assessment. For this purpose, the QMRA model is 

run for only one day, using the temporal Cryptosporidium concentration related to the desired day 

from water quality model and the modified kitchen tap use corresponding to that specific day, to 

be able to calculate the dose of each day, separately, for each people. To evaluate the impact of 

various parameters in estimating the Cryptosporidium infection risk, 23 scenarios are simulated 
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(Table 3.3). A detailed description of the assumptions used for each scenario can be found in 

Chapter 6.  

Table 3.3. Overview of the simulated scenarios for QMRA analysis 

Duration Time Demand pattern Daily risk or event risk 

24 hours 
From 00:00 (day1) 

to 00:00 (day 2) 

Constant peak 

hour 

Event risk (4 days): 

a. Concentration of Cryptosporidium:

1, 6, 26, and 560 oocysts/L 

b. Volume per day:

Lognormal distribution, 300 mL, 500 mL, and 1 

L 

c. Number of glasses per day:

Poisson distribution, 1, 3, and 10 times 

d. Infection risk:

maximum, median 

10 hours 
From 14:00 to 

00:00 

Constant peak 

hour 
Event risk (4 days) 

1 hour 
From 06:30 to 

07:30 

Constant peak 

hour 
Event risk (4 days) 

1 hour 
From 06:30 to 

07:30 
Daily pattern 

Event risk (4 days) 

Day 1 

Day 2 

Day 3 

Day 4 

Day 1 with DSR of 5 % instead of zero 

In exposure analysis, to take into account the uncertainties concerning the consumers’ behavioral 

variability in estimating the dose 200 Monte Carlo simulations are performed. Consumer’s 

behavior in the current study is defined as: (i) time of consumption during the day, (ii) number of 

glasses, and (iii) volume per glass. 

For each person, the number of glasses per day is estimated using a Poisson distribution and for 

the volume per glass lognormal distribution is applied using the data from Blokker et al. (2018) 

(Figure 3.3). As the boundary, minimum and maximum volume per person per day were set to 0 

and 4.2 L (Blokker et al. 2018). Other scenarios with constant volumes and number of glasses per 

person per day are simulated to investigate the sensitivity of infection risk (Table 3.3). The Dutch 

kitchen tap use from Blokker et al. (2018) is modified based on the demand availability during 

PDCs obtained from PDA to be used as the consumption time during the day. Figure 3.4 shows 

both patterns for scenario of 10 hours for days 1 and 2. More details can be found in chapter P3. 
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Figure 3.3. Consumption amount using the number of glasses with a Poisson distribution: λ=2.5  

in this study (model 2016), and a lognormal distribution (μ=−3.19 en σ=1.485) for the volume 

per glass (from Blokker et al. (2018)). 

Figure 3.4. Consumption at kitchen tap use by Blokker et al. (2018) (orange, square); modified 

kitchen tap use in this study for the residential nodes that have no available demand for 

consumption based on PDA results at days 1 and 2 for the 10-hour scenario (blue, circle); days 3 

and 4 are the same as day 2. 

Dose-response analysis is carried on to predict the probability of infection using the estimated 

dose from exposure analysis. In their model, Monte Carlo simulation is done with 10,000 parameter 
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(α, β) pairs (Teunis et al. 2010) and a set of dose-response relationships is achieved. Then, the 

median (50th percentile) and maximum (100th percentile) dose-response relationships are selected 

to calculate the median and maximum infection risk, respectively. This method reduces the 

computational cost of dose-response analysis (Blokker et al. 2018). More details regarding the 

dose-response model used in this study can be found in (Blokker et al. 2014, Blokker et al. 2018). 
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CHAPTER 4 ARTICLE 1 – COMBINING A MULTI-SPECIES WATER 

QUALITY AND PRESSURE-DRIVEN HYDRAULIC ANALYSIS TO 

DETERMINE AREAS AT RISK DURING SUSTAINED PRESSURE-

DEFICIENT CONDITIONS IN A DISTRIBUTION SYSTEM 

With pipeline infrastructure ageing and system renewal activities, sustained pressure losses in 

drinking water distribution systems may become more frequent. In this chapter, a methodology that 

enables multi-species water quality analysis based on pressure-driven analysis is proposed. To 

evaluate the capability of the developed approach, multiple water quality parameters (water age, 

chlorine residual, and THMs) under continuous pressure-deficient conditions were simulated in a 

full-scale water distribution system (30,077 nodes). Variations of water quality under the simulated 

pressure-deficient conditions are compared to normal operating conditions for different groups of 

nodes, which are categorized according to the nodal pressure values during pressure losses. The 

extent of the pressure differences between DDA and PDA and their impact on the estimation of the 

zones at risk of low pressures is also presented. This paper was published in Journal of Water 

Resources Planning and Management in 2018. Supplementary information is presented in 

Appendix A. 
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Abstract 

Realistic numerical models can assist in managing pressure losses in water distribution systems, 

which is a challenge for water utilities. This paper presents a methodology for simulating the impact 

of sustained low/negative pressure events on hydraulic and water quality parameters. The 

developed methodology enables Multi-Species Water Quality Analysis based on Pressure-Driven 

Analysis (MSWQA-PDA). This approach has been applied to a large full-scale water distribution 

system model to evaluate its capability. The spatial variation of water age, chlorine residual, and 

trihalomethanes (THMs), under normal and sustained low/negative pressure conditions is 

investigated. Generally, poorer water quality was observed under pressure-deficient conditions 

compared to normal operating conditions, especially at nodes reaching lower pressure values. The 

results confirm that under significant sustained low/negative pressure events, demand-driven 

analysis cannot correctly identify the zones at risk of low and negative pressure, which may lead 

to unjustified boil water advisories (BWA) for some customers.  

KEYWORDS: Water distribution system; Demand-driven analysis; Pressure-deficient conditions; 

Pressure-driven analysis; EPANET-MSX; Water quality 

4.1 Introduction  

Two analysis methods exist for predicting the hydraulic behavior of water distribution systems: 

demand-driven analysis (DDA) and pressure-driven analysis (PDA). The demand-driven algorithm 

solves the mass and energy conservation equations to calculate nodal heads and pipe flows. In 

DDA, demand values are considered constant, while in the pressure-driven approach, the actual 

nodal demands are considered as unknowns and vary with the nodal pressure values. Many 

researchers have demonstrated that the use of PDA rather than DDA provides more realistic results 

under pressure-deficient conditions (Cheung et al. 2005, Liserra et al. 2014, Siew and Tanyimboh 

2012). 

Several methods have been proposed to perform PDA. These methods are generally classified in 

two categories (Sayyed and Gupta 2013, Siew and Tanyimboh 2012). The first category includes 

approaches that involve DDA such as in the studies by Ozger (2003) and Ang and Jowitt (2006). 

For example, Ozger (2003) developed a semi-pressure-driven approach based on iterative use of 

demand-driven analysis and artificial reservoirs to model pressure-deficient conditions. The other 
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category of approaches simultaneously solves the mass and energy conservation equations and the 

selected Pressure Demand Relationship (PDR) (Giustolisi and Laucelli 2011, Siew and Tanyimboh 

2012, Wu et al. 2009).  

Several PDRs have been proposed in the literature to perform PDA (Fujiwara and Li 1998, Gupta 

and Bhave 1996, Tanyimboh and Templeman 2004, Wagner et al. 1988). When modelling low 

pressure events using PDA, the selection of a specific PDR over another may lead to some 

differences in the computed pressure values and available demands (Cheung et al. 2005, Liu et al. 

2011). Gupta and Bhave (1996) compared several existing PDRs and concluded that the 

relationship from Wagner et al. (1988) was more representative of the network behavior in their 

study. Several existing PDRs were also evaluated by Shirzad et al. (2013) through field experiments 

in some locations of a real water distribution system by measuring the discharge from different 

faucets and their corresponding pressures. These authors concluded the data measured at the faucets 

was best described by the orifice and Wagner et al. (1988) equations. Vairagade et al. (2015) 

investigated PDRs at different nodes of a skeletonized network using the WaterGEMS® software 

and pressure-dependent analysis. Each primary node in the reduced network was representative of 

a secondary network. These authors concluded that the Tanyimboh and Templeman (2010) 

relationship better describes the PDR at the nodes of this skeletonized network. While the PDR at 

a withdrawal point such as a faucet behaves like a parabolic relationship, the governing PDR at a 

node, where demands of a secondary network representing several consumers are lumped, depends 

on different factors such as the locations where consumption occurs, the configuration and head 

loss of the secondary network and indoor plumbing systems (Ciaponi et al. 2014, Gupta 2015). 

However, finding an appropriate PDR is a challenging task in the absence of field data.  

Some commercial software packages enable PDA. However, this capability is not available in the 

standard publicly available version of the EPANET 2.0 software (Rossman 2000). Although not 

publicly available, EPANET-PDX has been developed by modifying the source code of EPANET 

to enable PDA through the application of the head dependent gradient method (Siew and 

Tanyimboh 2012). Seyoum et al. (2011) verified the accuracy of EPANET-PDX by applying the 

calculated actual nodal demands as new demands in EPANET 2.0. The new nodal heads were 

identical to the calculated values from EPANET-PDX. This verification procedure is called 

feasibility check (Ackley et al. 2001).  
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Simulation of water quality in a distribution system is usually performed based on DDA results 

and commonly involves a single-species water quality model (as in EPANET 2.0). Although useful, 

single-species models are unable to simulate the interactions between two or more species (such as 

chlorine and E. coli). This may become a limitation if this type of analysis is required. In 2007, 

USEPA released the Multi-Species Extension of EPANET (EPANET-MSX) which is a DDA-

based model. As water quality parameters depend on hydraulic conditions, a realistic hydraulic 

simulation with PDA should be linked with water quality modelling to assess the impact of 

pressure-deficient conditions on water quality. In recent years, very few studies have combined 

PDA and water quality modelling due to existing limitations in most water quality and hydraulic 

modelling tools, being either a single-species water quality model or hydraulic engine based on 

DDA. The EPANET-MSX software has the ability to consider any number of multi-species 

interactions and may be used to simulate processes such as attachment/detachment of pathogens 

to/from biofilm, interaction of disinfectant with organic and inorganic matter, and inactivation of 

microorganisms (Uber 2010). A prototype of this software was used by Betanzo et al. (2008) and 

Propato and Uber (2004) to model intrusion events in distribution systems. They were able to 

simulate the simultaneous inactivation of microorganisms and disinfectant decay. However, 

because EPANET-MSX is based on DDA, it may not accurately simulate low/negative pressure 

conditions. The commercial software market is rapidly evolving and the latest version of 

WaterGEMS now proposes multi-species analysis based on the EPANET-MSX model (Bentley 

Systems 2014). Seyoum and Tanyimboh (2014) and Seyoum et al. (2013) applied EPANET-PDX 

to perform water quality modelling under pressure-deficient conditions.  However, as EPANET-

PDX considers single-species water quality modeling, interactions between species could not be 

modeled. The coupling of PDA and single species water quality analysis in simulation-optimization 

models by Rasekh and Brumbelow (2014) has been proposed to assist in operational decision 

making during contamination events.  

This study presents a methodology for modelling hydraulic behavior and water quality in a network 

under sustained low/negative pressure conditions. The developed methodology, which is referred 

as Multi-Species Water Quality Analysis based on Pressure-Driven Analysis (MSWQA-PDA) 

throughout this paper, allowed us to incorporate the advantages of both a multi-species water 

quality model (EPANET-MSX) and PDA. As a proof of concept, spatial variations of water quality 

species, including water age, chlorine residual, and THMs, are simulated throughout a full-scale 
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distribution system under different sustained low/negative pressure scenarios. Simulation outputs 

such as nodal Demand Satisfaction Ratios (DSRs), spatial clustering and number of nodes 

considered at risk of low/negative pressure are also investigated. It is hypothesized that the use of 

a more realistic tool, as described and applied in this study, can help better define areas prone to 

intrusion/backflow, which may need corrective/preventive actions in the case of pressure loss 

events. 

4.2 Methodology  

4.2.1 Description of the distribution system 

The studied distribution system has three water treatment plants (WTPs) and serves a population 

of about 400,000. The all-pipes hydraulic model of the network includes 30,077 nodes and a total 

pipe length of about 1,600 km. There are no storage tanks or pump stations in the water network. 

The average daily demand is approximately 210,000 m3/day. The whole network is hydraulically 

interconnected, yet each WTP supplies water to different areas (or influence zones) of the 

distribution system under normal operating conditions (Figure 4.1(a)). Therefore, the supply area 

of each WTP can vary if pressure-deficient conditions occur in the network. Zones 1, 2 and 3 

include 24 %, 28 %, and 47 % of the total nodes, respectively. Because of the control system 

architecture of high lift pump stations at the three WTPs, the hydraulic model of the water utility 

uses reservoirs with variable head to simulate pump operation rather than individual pump curves 

and operation routines. Figure 4.1 (b) shows the distribution of nodal elevations in each of the three 

influence zones. 
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Figure 4.1 (a) Location of WTPs (triangles) and approximate boundaries of each influence zone 

under normal operating conditions (dash-lines); (b) distribution of nodal elevations for each 

influence zone. 

4.2.2 Pressure-deficient scenarios 

For this proof of concept, hypothetical sustained and significant pressure-deficient conditions were 

achieved by simulating the shutdown of two WTPs with only one WTP remaining for the supply 

of the complete distribution system. Three pressure-deficient scenarios were simulated by varying 

the available head at the supplying source (Table 4.1). Hydraulic and water quality results from 

these scenarios were compared to normal operating conditions (first scenario, Sc1). In the second 

scenario, the water head at the only online WTP (WTP 3) remains the same as normal. In scenario 

3, it is assumed that the water head is lower at WTP 3, for example due to malfunctioning of the 

pumping system in response to increased discharge. The fourth scenario is based on the assumption 

of the flexibility of the pumping system at the only online WTP (WTP 3) to produce higher head 

to compensate for the shortage of supply caused by the failure of the other two WTPs. 

Table 4.1. Hydraulic grade (HG, m) and outflow (Qout, L/s) at each WTP for all 4 scenarios. 

Scenarios 
WTP 1 WTP 2 WTP 3 

HG  Qout  HG Qout HG Qout 

Sc1 76 716 75 701 77 1354 

Sc2 - 0 - 0 77 2367 

Sc3 - 0 - 0 63 2084 

Sc4 - 0 - 0 88 2549 
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In order to verify the validity of the proposed modelling approach, and for simplicity, continuous 

sustained pressure-deficient conditions are considered throughout the whole simulation duration 

for this first application of the presented methodology. A constant demand of 239,414 m3/day is 

applied throughout the simulations as well. This demand corresponds to peak hour consumption in 

the studied distribution system. 

4.2.3 Pressure-driven analysis     

In this study, the commercial software WaterGEMS® is used to model the hydraulic behavior of 

the network. This software incorporates a pressure-driven analysis tool based on the modified 

Global Gradient Algorithm (GGA), as formulated by Wu and Walski (2006) and Wu et al. (2006). 

Wu et al. (2009) have applied this modified GGA to a large-scale water distribution system under 

a critical pipe outage. More details on the modified GGA solution can be found in WaterGEMS 

manual (Bentley Systems 2014). 

In this software, relationship between pressure and demand can be defined as either a power 

function or a pressure-demand piecewise linear curve. In this paper, the Tanyimboh and 

Templeman (2004, 2010) equation is selected as the PDR to be used in the pressure-driven 

algorithm (hereafter referred to as the Tanyimboh equation). More details about this equation and 

the choice of parameters are included in the Supplemental Information. In this work, it is assumed 

that when the nodal head above the ground level is less than 15 m (desired pressure head), the flow 

is considered as partially supplied. Also, no demand is supplied for nodes with head lower than the 

nodal elevation. The DSR for a node is the ratio of the available demand (under pressure-deficient 

conditions) to the required demand at that node. The DSR for each supply zone is calculated by 

dividing the sum of the available demands by the total required demand within the zone. 

4.2.4 Water quality modelling  

Multi-species water quality modelling is performed using the EPANET-MSX software (Shang et 

al. 2011). More details about this software are provided in the Supplemental Information. To 

simulate the water quality behavior of the studied network, an extended period simulation (EPS) 

of 480 h was carried out to reach the equilibrium conditions of water quality parameters. The water 

quality results were then reported for the last hour. As water quality modelling in EPANET-MSX 

is based on demand-driven analysis, a MATLAB program was developed to modify the input file 
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of EPANET (.INP) by incorporating the computed available demands under pressure-deficient 

conditions. This modified .INP file is then used by EPANET-MSX for water quality modelling 

under pressure-deficient conditions in the all-pipes network which, in this case includes more than 

30,000 nodes and 33,252 pipe segments. This methodology is referred as MSWQA-PDA and the 

flowchart is illustrated in Figure 4.2. A feasibility check (Ackley et al. 2001) was performed to 

validate the content of the modified .INP file. In this regard, the nodal heads and pipe flows 

calculated from the .INP file generated by MATLAB should be identical with the results from the 

pressure-driven algorithm. The pressure dependent demand model of WaterGEMS V8i 

(SELECTseries 5) was found to report the negative nodal pressure values as zero. However, the 

generated EPANET input file allows for the calculation of the negative pressure magnitude for 

these nodes, as shown in Figure 4.2, which is another advantage of the presented technique.  

 

Figure 4.2: Flowchart of MSWQA-PDA. 

For the purpose of this demonstration, three water quality parameters were selected for multi-

species water quality analysis: water age, chlorine residual, and THM formation. Although some 

of these parameters may not be directly related to pressure-deficient conditions, they were selected 

for the sake of simplicity and to validate the efficacy of the modelling approach developed. The 

reaction equations and the constant values used to simulate water quality are included in the 

Supplemental Information (Table A-1).  

4.3 Results 

In the studied distribution system, under normal operating conditions (Sc1), WTPs 1, 2, and 3 

supply 26%, 25%, and 49% of the total demand, respectively. To demonstrate the application of 
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the proposed modelling approach, simulations were performed under normal operating and 

sustained low pressure conditions (Table 4.1). Significant pressure-deficient conditions (Sc2, Sc3, 

and Sc4) were created by the shutdown of WTPs 1 and 2. Under the simulated conditions, results 

indicate that WTP 3, which has the largest capacity, can provide 85 %, 75 %, and 92 % of the total 

required network demand in scenarios 2, 3, and 4, respectively.   

4.3.1 Validating the reliability of the proposed methodology  

As a first step, because the modified .INP file is used by EPANET-MSX to perform water quality 

analysis, the reliability and accuracy of this file were verified. To do so, the results from the 

modified .INP file of EPANET were compared with those from the pressure-driven algorithm. 

Identical values of flow and pressure (zero and positive pressures) ensure that the generated 

modified .INP file is reliable (Figure 4.3). Comparison results for the second scenario are 

illustrated, but the same trend is obtained for other scenarios. As can be seen in Figure 4.3 (a), the 

generated modified .INP file of EPANET allows for the calculation of negative pressure values, 

while WaterGEMS V8i reports those as zero. 

(a)  (b)  

Figure 4.3: Comparison between results calculated with the modified .INP file of EPANET and 

the pressure dependent demand model of WaterGEMS for Sc2: (a) nodal pressures, and (b) pipe 

flows. 

4.3.2 Investigation of hydraulic behavior under scenarios of pressure-deficient 

conditions 
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The average DSR of each zone is indicated in Table 4.2, for scenarios 1 to 4. As expected, under 

normal operating conditions (Sc1), all demands are satisfied. For all other scenarios, where the 

water is only supplied by WTP 3, meeting the required demand especially for zones 1 and 2, which 

are located further from WTP 3 becomes challenging at some nodes. The DSR is related to the 

hydraulic grade maintained at WTP 3. Under the studied pressure-deficient conditions, zone 2 is 

globally better fed by WTP 3 as compared to zone 1, reflecting network topology and the average 

nodal elevation in each zone (Figure 4.1 (b)). Statistics related to the distribution of percentage of 

demand satisfaction for different pressure-deficient scenarios are shown in Figure A-1 in Appendix 

A. 

Table 4.2. Average DSR of each zone for scenarios 1 to 4. 

Scenarios 
Demand Satisfaction Ratio (%) 

Zone 1 Zone 2 Zone 3 Total 

Sc1 100% 100% 100% 100% 

Sc2 59.2% 85.9% 99.2% 85.4% 

Sc3 38.0% 72.4% 96.5% 75.2% 

Sc4 75.3% 94.4% 99.7% 92% 

 

Comparison of pressure values from DDA and PDA 

Statistics related to the distribution of nodal pressure values (median, maximum, minimum, mean, 

25th and 75th percentiles) for different scenarios are illustrated in Figure 4.4. Pressure values 

obtained from PDA and DDA are compared for each zone. As expected, for the first scenario, the 

calculated pressure values were the same using the PDA or DDA tool. As the lowest possible gauge 

pressure of water at 20⁰C is -10.1 m (i.e. cavitation head), the extent of the unrealistic 

underestimation of pressure values by DDA under pressure-deficient conditions is obvious. 

Pressure values from the PDA model were above -10.1 m in all zones for all the pressure-deficient 

scenarios. In the second scenario, the median pressure values obtained by DDA and PDA are, 

respectively, 37 m and 39 m for zone 3 (DSR: 99 %), -1 m and 16 m for zone 2 (DSR: 86 %), and 

-11 m and 8 m for zone 1 (DSR: 59 %) (Figure 4.4). 
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Figure 4.4: Comparison of pressure results calculated from PDA (modified EPANET input file) 

and DDA under pressure-deficient conditions (Sc2, Sc3, and Sc4), and normal reference 

operating conditions (Sc1) (DDA only). 

As expected, Figure 4.5 shows that the extent of the difference of nodal pressure (∆P) estimated by 

DDA and PDA decreases with increasing values of pressure estimated by PDA. The extent of the 

differences is clearly driven by the severity of the pressure-deficient conditions. Indeed, the 

differences for Sc3 with only 75% of DSR are much larger than for Sc4 with a DSR of 92%. Even 

though the ∆P is generally lower for the groups of nodes with higher pressure, no specific minimal 

pressure can be determined after which PDA and DDA estimates would converge for all nodes. 
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Figure 4.5: Nodal pressure differences between PDA and DDA for pressure-deficient scenarios of 

(a) Sc3 and (b) Sc4 for different categories of pressure calculated by PDA (modified .INP file) 

for all the nodes; the proportion (%) of nodes in each pressure category is indicated on top. 

Spatial distribution of negative and low pressure areas under pressure-deficient conditions  

The spatial distribution of areas of most interest for low pressure is illustrated in Figure 4.6. Figure 

4.6 (a) shows normal operating conditions, which are equivalent for DDA and PDA, with all nodes 

maintaining pressures above 21 m. Pressure maps of scenarios 2 to 4 (Figure 4.6 (b) to (d)) show 

that the extent of the area affected by low and negative pressures depends on the hydraulic grade 

maintained at the only online WTP. Figure 4.6 (e) and (f) show the spatial distribution of pressure 

values simulated by DDA under two of the pressure-deficient scenarios (Sc2 and Sc4). The extent 

of the zones with negative pressure is largely overestimated when compared to the PDA results, in 

line with the difference in computed pressures by the two methods (Figure 4.4). Therefore, DDA 

cannot correctly identify the zones which are prone to backflow and/or intrusion under the 

significant simulated pressure-deficient conditions.  
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Figure 4.6: Spatial distribution of pressure using PDA for scenarios 1 to 4 (a, c, b, and d), and 

using DDA for scenarios 2 and 4 (e, f). 

4.3.3 Investigation of water quality behavior under pressure-deficient 

scenarios 

To illustrate the impact of low pressure events on water quality, the simulated water age, chlorine 

residual and THM concentration for Sc2 are compared with the values corresponding to normal 

operating conditions (Sc1) (Figure 4.7). Three categories defined under pressure-deficient 

conditions of Sc2 are used for comparison: nodes with pressure (a) more than 15 m, (b) less than 

or equal to 15 m including negative pressure, and (c) less than or equal to zero. For nodes with 

P>15 m (20,470 nodes, 68%),  median and 75th percentile water age reached 12 and 26 h during 

Sc2, as compared to 12 and 19 h under normal operating conditions, respectively (Figure 4.7(a)). 

As the pressure at the nodes under pressure-deficient conditions decreases, statistical parameters 

(median, 75th and 95th percentiles) related to water age for nodes with P ≤ 15 m (9607 nodes, 

32%) reach higher values: they go from 9, 14, and 27 h under normal operating conditions to 19, 

29, and 68 h under pressure-deficient conditions, respectively. These differences are increased even 
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more for nodes with zero or negative pressure (585 nodes, 2%). Chlorine residuals at nodes with P 

≤ 15 m also showed considerable variations between pressure-deficient and normal operating 

conditions: medians decreased from 1.2 to 0.8 mg/L, and 25th percentiles decreased from 1 to 0.6 

mg/L (Figure 4.7(b)). These differences are even more important for nodes with zero or negative 

pressure where the median chlorine concentration is decreased from 1.2 to 0.5 mg/L. THM 

concentration generally increased under pressure-deficient conditions as a result of increased water 

age and chlorine consumption, especially at the nodes with lower pressures (Figure 4.7(c)). The 

correlation between water age, chlorine residual, and THM concentration obeys a logical trend for 

all pressure categories.  

 

Figure 4.7: Comparisons of water quality parameters between normal operation conditions (Sc1) 

and pressure-deficient conditions (Sc2: WTP 1 and 2 out of service and WTP 3 at 77m) for three 

categories defined under pressure-deficient conditions: nodes with P > 15m, nodes with P ≤ 15 m 

(including negative pressure), and nodes with P ≤ 0; n is the number of nodes. 
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Similar trends as shown for Sc2 was observed for water quality parameters in other pressure-

deficient scenarios (Sc3 and Sc4). Figure 4.8 shows that the range of differences in chlorine 

residuals between pressure-deficient conditions and normal operating conditions (Sc1) generally 

increases for group of nodes with lower pressure under the three pressure-deficient scenarios (Sc2 

to Sc4). The median of these differences in chlorine residuals for Sc2 to Sc4 were 0.0 for nodes 

with P > 15, 0.3 mg/L for nodes with 0 < P ≤ 15, and varied between 0.6 to 0.8 mg/L for nodes 

with P ≤ 0. 

 

Figure 4.8: Differences of computed chlorine residuals between normal operation conditions 

(NOCs) and pressure-deficient conditions (PDCs) of scenarios 2 to 4 for three categories defined 

under each scenario-specific pressure-deficient conditions: nodes with P > 15, 0 < P ≤ 15 m, and 

nodes with P ≤ 0. 

4.4 Discussion 

Adverse pressure conditions in distribution systems may take the form of transient or sustained 

low/negative pressure events. Modelling and field investigations of distribution systems have 

shown that transient low and negative pressures can be common, ranging in duration from few 

milliseconds to a few minutes (Besner et al. 2010b, Ebacher et al. 2012, Ebacher et al. 2011a, 

Gullick et al. 2005) leading to the introduction of guidelines to prevent these events (Boulos et al. 

2005, LeChevallier et al. 2011). The potential for intrusion of contaminated water during transients 

has been evaluated through field investigations and modelling (Ebacher et al. 2013, McInnis 2004, 

Teunis et al. 2010, Yang et al. 2011) and a framework to assess the associated potential public 

health risk proposed (Besner et al. 2011).  
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With water infrastructure aging and intensified system renewal activities, sustained pressure-

deficient conditions in distribution systems may become more common. Sustained low/negative 

pressure events were measured by Besner et al. (2007) and (2010a) during construction work on a 

transmission main (400 mm). Low pressure (< 20 psi) lasting up to 20 hours was recorded at some 

sites. In order to identify appropriate utility management response to protect public health, these 

events should be better characterized in terms of intensity, duration and spatial distribution. A 

methodology consisting of an innovative combination of PDA results and multi species water 

quality model capable to conduct this evaluation is proposed. 

4.4.1 Improving modelling tools towards a better prediction of water quality 

under pressure-deficient conditions 

In DDA, demand values are considered fixed parameters in the continuity equation, and satisfaction 

of these demand values under pressure-deficient conditions may lead to unrealistically low nodal 

pressure values. PDA is more realistic as it calculates the available nodal demand as a function of 

nodal pressure. Also, DDA cannot predict the nodes with unsatisfied demand during a system 

failure.  

As expected, the comparison of the distribution of estimated nodal pressures (Figure 4.4) reveals 

that the differences between DDA and PDA are most pronounced in areas where demand 

satisfaction is lowest. Demand satisfaction ratio was lowest in zone 1 (38.0-75.3%) than in zone 2 

(72.4-94.4%), whereas zone 3 hardly experienced unsatisfied demand (96.5-99.7%) (Table 4.2). 

These results confirm that system managers cannot rely on DDA to model pressure-deficient 

conditions, especially in the case of very low and negative pressures, and that PDA should be used 

to identify areas with critical pressure loss across the distribution system. 

The pressure underestimation by DDA was not only observed at nodes with low pressure (≤ 15m) 

as computed by PDA, but also at nodes with pressures up to 50 m, although smaller differences 

were generally observed for higher pressure nodes (Figure 4.5). The intensity of the pressure-

deficient conditions also impacts the range of these differences. Yet, no minimal pressure in the 

pressure range tested (≤ 70m) could be identified above which pressure results from both 

approaches (DDA and PDA) would converge for all nodes and scenarios. These differences in 

estimated nodal pressures directly influence the delineation of the areas at risk of intrusion and 
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backflow in the distribution system. Finally, whether DDA (under normal operating conditions) or 

PDA is used, proper calibration and validation are needed. In the case of PDA, the selection of a 

proper pressure demand relationship should be addressed. 

A hydraulic feasibility check (Ackley et al. 2001) of flow and pressure was conducted by using 

results of the modified EPANET input file and WaterGEMS (Figure 4.3). Such verification is 

warranted not only to validate the reliability of the generated modified INP. file but also to 

determine whether or not negative pressures reported as zero have an impact on the other hydraulic 

results. Negative pressures reported as zero can lead to apparent total head reversal observations 

for PDA. Lee et al. (2015) argue that their PDA used tool produces unacceptable results as they 

observed flow direction from a node with lower total head to a node with higher total head under 

pressure-deficient conditions in a small model distribution system. However, this observation was 

likely caused only by the fact that negative pressures were not reported in the PDA model used. 

The pressure dependent demand model of WaterGEMS (V8i SELECTseries 5) used in this study 

was also found to report negative nodal pressure values as zero pressure. Such a limitation was 

addressed in the proposed approach by calculating the negative pressure values using the generated 

modified EPANET input file (Figure 4.2). As illustrated in Figure 4.3, the negative pressures 

reported as zero in WaterGEMS do not have any impact on the hydraulic calculations of pipe flows 

and positive nodal pressures and is only a reporting issue.  

Water quality modelling in a distribution system is commonly limited to a single-species with 

demand-driven hydraulic analysis. However, a multi-species water quality model is required to 

simulate the interactions between two or more species. Moreover, a realistic hydraulic analysis, 

such as PDA, must be combined with water quality modelling to enable simulating the impact of 

low/negative pressure events on water quality. The presented technique (MSWQA-PDA) allows 

applying a multi-species water quality model (i.e. EPANET-MSX) to an all-pipes model of a large 

full-scale distribution system under different severe hypothetical sustained low/negative pressure 

conditions. As a proof of concept for multi-species water quality modeling, variations of water age, 

chlorine residual, and THM concentration were modeled and compared for normal and pressure-

deficient conditions throughout the network.  

The results show the importance of integrating a realistic hydraulic analysis (i.e. PDA) with a multi-

species water quality analysis, providing a step forward towards more accurate and reliable 
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management strategies and consequently reducing public health risk under sustained pressure-

deficient conditions. The proposed methodology can be used without modifying the source code 

and can contribute to the future development of open source software combining multi-species 

analysis and PDA. It should be noted that further efforts are needed to provide more reliable 

numerical models capable to consider and predict water quality changes more accurately in water 

distribution systems. For example, under unsteady conditions, the impact of flow reversals and 

biofilm re-suspension on turbidity and chlorine decay must be investigated.   

4.4.2 Regulatory and management implications 

The delineation of zones at risk for intrusion and backflow relies on the identification of 

distribution system zones at risk for low and negative pressures. For each system, these zones 

should be defined by setting the minimum acceptable threshold pressure that reflects the risk of 

backflow from the connected buildings. The minimal pressure that should be maintained in 

distribution systems has been lengthily debated, and guideline reference values vary in their 

tolerance of low but positive pressures. When pressures decrease below 14 m (20 psi), during main 

breaks, it is not uncommon for the water utility to issue a boil water advisory because of the 

possibility of system contamination from cross-connections (Mays 2000). Erickson et al. (2015) 

surveyed the existing standards and guidelines addressing low/negative pressure events in the 

United States. The authors report that, although the majority of the interviewed agencies have 

guidelines for issuing a BWA for zero or negative pressure events, this is not the case for low 

positive pressures. Only two of the eleven interviewed states always recommended issuing a BWA 

for low pressure between 0 to 14 m.  In this context, nodes with negative pressure (P ≤ 0m) are 

considered part of the highest risk zone justifying a BWA, and nodes with low but positive pressure 

(0 < P ≤ 15 m) are considered as susceptible location to intrusion/backflow which may lead to 

corrective/preventive actions in the network. For the studied distribution system, the number of 

nodes susceptible to intrusion/backflow varies considerably for different minimal pressure criteria 

(0, 5, 10 or 15 m) as shown in Table 4.3.  This clearly demonstrates the need to select an appropriate 

pressure criterion to evaluate the risk of low pressure. For example, in scenario 2, the number of 

nodes prone to intrusion/backflow varies from 585 (2%) to 9,607 (32%) when considering different 

minimal pressure criteria (0, 5, 10 or 15 m) (Table 4.3). The number of nodes at risk also varies 

with the pressure loss scenario (Sc2 to Sc4). The number of nodes triggering a BWA (P ≤ 0 m) 
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varies from 2472 (8 %) to 103 (< 1 %) by changing the hydraulic grade at the only working WTP 

(Table 4.3). Even a small number of nodes prone to intrusion/backflow may impact public health, 

depending on the vulnerability of the supplied customers, the intrusion rate, and the contamination 

level. Although the minimal pressure triggering corrective/preventive actions is a most critical 

criterion when defining the extent of the zone at risk, guidance remains poorly defined. 

Furthermore, the actual response should also be based on online field pressure monitoring with 

adequate number and suitable location of monitoring sites.  

Table 4.3. Number of nodes experiencing very low pressure for Sc2 to Sc4. 

Scenario Cause of low/negative pressure event 
Number of nodes 

P ≤ 0 m (P ≤ 5 m) (P ≤ 10 m) P ≤ 15 m 

Sc2 Shutdown of two WTPs 
585 (2%) 

3,250 

(11%) 

7,131 

(24%) 

9,607 

(32%) 

Sc3 Shutdown of two WTPs and loss of 

pressure head at the remaining WTP 
2,472 (8%) 

6,528 

(22%) 

9,193 

(31%) 

12,722 

(42%) 

Sc4 Shutdown of two WTPs and increased 

pressure head at the remaining WTP 
103 (<1%) 

1,470 

(5%) 

4,422 

(15%) 

7,773 

(26%) 

 

Negative and low pressure zones are significantly reduced in this distribution system when the 

PDA modelling approach is used (Figure 4.6). Besides the number of nodes affected by low or 

negative pressures, the boundaries of a BWA zone depend on the spatial clustering of these nodes. 

Figure 4.9 illustrates the extent of areas which may require corrective/preventive actions for 

different minimal pressure criteria. As the criteria for minimal pressure increases, the spatial 

dispersion of the low-pressure nodes across the system is such that the definition of a system wide 

BWA area may become unavoidable. The possibility of issuing sectorial BWAs is an important 

issue for utilities wishing to limit the impact of pressure losses on their customers.  
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Figure 4.9: Geographical distribution of areas triggering corrective/preventive actions (in red) for 

different minimal pressure criteria (0, 5, 10, or 15 m). 

Although hydraulic modelling using PDA is a useful tool, other factors should also be considered 

by water utility managers to justify issuing a BWA or corrective/preventive actions, including the 

duration of the low or negative pressure, measurements from online pressure monitors, the presence 

of vulnerable populations (hospitals, schools, day care centers, etc.), residual disinfectant 

concentrations at the time of pressure loss, fate and transport of contaminants, the number of stories 

of buildings in low pressure areas, the zoning (ex. industrial), and the presence of backflow 

prevention devices. 

Water quality variations during sustained low pressure events in distribution systems can be related 

to changes in the hydraulic conditions of the system (i.e. nodal pressures and pipe flow rates), and 

also to contamination from intrusion/backflow into the distribution system. In this study, the focus 

was put on the first issue. In the case of unsteady flow conditions, the variation of disinfectant 

residual concentrations due to biofilm re-suspension and scouring of corrosion products caused by 

flow reversals is also another factor to be investigated. Generally, results show poorer water quality 

(water age, Cl2 and THM) for the simulated sustained pressure-deficient scenarios compared to 

normal operating conditions. These differences are generally higher for nodes with negative 

pressure (P ≤ 0) or low/negative pressure (P ≤ 15) compared to nodes with pressure above 15 m 

(Figure 4.8). These water quality variations were only due to changes in the hydraulic parameters 

such as flow direction, flow rate, and head loss. This means that, besides the higher risk of intrusion 

or backflow due to pressure drop in some areas of the network, the protection provided by chlorine 

P≤10 P≤15 

P≤5 P≤0 
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residuals also decreases, when compared to normal operating conditions. This loss of chlorine is 

of particular interest as the residual disinfectant is usually considered as the last barrier against 

pathogen (mostly bacterial and viral) intrusion. In this study, THM formation was used to 

demonstrate the capability of the presented technique to simulate multiple species in a single run 

under pressure-deficient conditions. The results showed that the increase in THM concentrations 

was not a major concern. 

4.5 Conclusion 

A methodology that enables multi-species water quality analysis based on pressure-driven analysis 

(MSWQA-PDA) was developed by modifying the EPANET input file. The main advantage of this 

methodology is the simultaneous modelling of multiple water quality parameters, and hydraulic 

conditions during sustained low/negative pressure conditions. The proposed approach does not 

require modifying the source code and can also communicate with other existing pressure-

dependent approaches. To the best of the authors’ knowledge, this is the first application of a multi-

species water quality model to a large full-scale network (more than 30,000 nodes and 1,630 km 

of pipes) under sustained pressure-deficient conditions based on a pressure-driven approach.  

The simulated sustained pressure-deficient scenarios showed that models based on DDA will 

overestimate the zones at risk of low pressures, potentially leading to unjustified boil water 

advisories. Responding competently to depressurization is an important challenge for water utilities 

and health authorities. Therefore, a realistic hydraulic analysis (i.e. PDA) is required to achieve 

more reliable results.   

The critical pressure value triggering corrective/preventive actions has been the subject of much 

debate. This critical pressure value (0, 5, 10, or 15 m) directly influences the number of nodes 

subject to corrective/preventive actions and their spatial clustering zones under BWA. In the 

studied distribution system, the selection of a higher pressure threshold limits the potential for a 

sectorial BWA. 

Water quality parameters (water age, chlorine residual and THM concentration) were generally 

poorer under the simulated pressure-deficient scenarios compared to normal operating conditions, 

especially at nodes with lower pressure values. This shows the importance of using enhanced 
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modelling tools which can combine both pressure-driven analysis and multi-species water quality 

simulations. 

Although such results were observed for continuous sustained pressure-deficient conditions, the 

next step will consist in using the MSWQA-PDA approach to simulate low/negative pressure 

events lasting a few hours. Microbial intrusion should also be integrated to the model to take 

advantage of the full potential of the developed approach. 
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CHAPTER 5 ARTICLE 2 –IMPROVEMENT OF ACCIDENTAL 

INTRUSION PREDICTION DUE TO SUSTAINED LOW-PRESSURE 

CONDITIONS: IMPLICATIONS FOR CHLORINE AND E. COLI 

MONITORING IN DISTRIBUTION SYSTEMS 

Appropriate numerical models can provide a basis to redefine the current E. coli sampling 

protocols. In this chapter, intrusion of contaminated water due to sustained pressure losses lasting 

a few hours and fate and transport of E. coli through the network are simulated using the developed 

approach (MSWQA-PDA). This technique allows for simultaneous consideration of the 

interactions between E. coli and disinfectant residuals and the impact of water quality variations 

due to hydraulic changes under sustained PDCs, using realistic PDA. The results can offer timely 

actionable information to utilities and improve sampling strategies in terms of location, timing, and 

volume of samples. The results also provide insight into propagation of E. coli throughout the 

network based on pressure values under PDCs and issuing sectorial boil water advisories. This 

paper was submitted in Journal of Water Resources Planning and Management. Supplementary 

information is presented in Appendix B.  
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Abstract 

Low/negative pressure events that increase the risk of contaminant intrusion may take place in 

distribution systems and may become more common in ageing infrastructure. Guidance of whether 

to issue an advisory after loss of pressure is based on the duration and extent of pressure loss and 

is accompanied by E. coli monitoring obligation. In this paper, the limitations of E. coli monitoring 

to detect intrusion is demonstrated using a conservative 5-hour pressure loss and considering 

intrusion of raw sewage. In low/negative pressure areas (P < 1 m), 74 nodes were prone to intrusion. 

Volumes of intrusion are adjusted as a function of the pipe internal pressure and an adjusted leakage 

constant. Ingress of contaminated water and fate and transport of E. coli throughout a 30,077 nodes 

distribution system are simulated using a realistic pressure-driven hydraulic model coupled to a 

multi-species water quality model (EPANET-MSX). Spatial and temporal distribution of 

contamination shows that contamination can be transported to higher-pressure zones with the 

extent of propagation depending on the efficacy of disinfectant residuals to inactivate intruded 

microorganisms. For chlorinated distribution system the limited positive nodes show the challenge 

of any confirmation of contamination unless conducted during the intrusion at or downstream of 

the intrusion sites. In chloraminated system, a larger number of nodes (2905 nodes) experienced E. 

coli over the simulation duration compared to chlorinated system (166 nodes), increasing the 

likelihood of detecting contamination. The nodal mean probability of detection was > 0.1 in both 

the first and second 5-hour intervals at 166 nodes. Larger sampling volumes (1 L versus 100 mL) 

provides greater sensitivity: it extends the period and increases the number of sites where samples 

can be collected with a higher probability of positive detection. These observations question 

whether extending E. coli sampling after 15 hours is informative without using larger sampling 

volumes. Overall, numerical predictions can guide utilities to optimal locations for both 

confirmation and clearance sampling. Large volume sampling at at-risk nodes identified by 

advanced numerical models provide greater credence in negative results to manage boiling 

advisories. 

KEYWORDS: Sustained pressure deficient conditions; Intrusion; E. coli detection; Chlorine; 

Multi-species water quality simulation; Pressure-driven analysis;  
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5.1 Introduction 

Pressure and disinfectant residuals in distribution systems (DSs) are the final barrier for protecting 

the public health against microbial contamination. Ingress of contaminated water due to network 

deficiencies can cause water quality issues and health problems (Craun et al. 2010, Lindley and 

Buchberger 2002). Sampling locations and/or sensor placements to monitor water quality in the 

network can be optimized to increase the probability of detecting a contamination event (He et al. 

2018, Khorshidi et al. 2018, Ohar et al. 2015, Zhao et al. 2016). However, as sensors are parameter-

dependent and may not be deployed everywhere, numerical models are required to optimize 

monitoring and response during and after pressure deficient conditions (PDCs). Therefore, 

improving the accuracy and reliability of hydraulic and water quality models to simulate intrusion 

and the propagation of contaminants throughout the DSs is essential. 

Intrusion events in DSs can be classified into two types: accidental and intentional. Simulation of 

accidental intrusion due to low/negative pressure events requires a PDA, in place of the traditional 

demand-driven analysis (DDA). In the PDA, the available demand at each node is calculated as a 

function of nodal pressure using different methodologies (Ang and Jowitt 2006, Giustolisi and 

Laucelli 2011, Paez et al. 2018, Siew and Tanyimboh 2012). A detailed literature review on 

pressure-driven approaches and existing pressure-demand relationships can be found elsewhere 

(Hatam et al. 2018a).  

The water quality model used to simulate the fate and transport of contamination should be based 

on a realistic hydraulic analysis of PDCs (i.e. PDA). DDA has been used for the management of 

contamination events and optimization modeling along with single-species water quality modeling 

(Baranowski and LeBoeuf 2006, Shafiee and Berglund 2017). Rasekh and Brumbelow (2014) and 

Zafari et al. (2017) proposed optimization models based on PDA and single-species water quality 

simulations (using EPANET) to minimize the adverse effects of contamination. Besner et al. (2011) 

discussed challenges related to estimation of public health risk associated with contamination 

resulting from PDCs. With the Multi-Species Extension of EPANET (Shang et al. 2011), multi-

species interactions including interaction of disinfectant with organic and inorganic matter, 

inactivation of microorganisms, and attachment/detachment of pathogens to/from biofilm can be 

considered (Uber 2010). Some studies have applied EPANET-MSX to model contaminant 

intrusion events in the DSs considering the inactivation of microorganisms and disinfectant decay 
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(Betanzo et al. 2008, Islam et al. 2017, LeChevallier et al. 2011, Propato and Uber 2004, Teunis et 

al. 2010, Yang and Boccelli 2016). However, as for EPANET 2, EPANET-MSX is a DDA based 

model that is less accurate to model fate and transport of contaminants under sustained PDCs.  

Using the numerical model, van Lieverloo et al. (2007) and Blokker et al. (2018) evaluated the 

probability of detecting E. coli with standard monitoring program and they observed that the 

detection probability was low. It should be noted that E. coli inactivation was not considered in 

these studies. The possibilities to improved sampling strategies (location, timing and volume) are 

required to be further investigated in the presence of disinfectant. For a more realistic simulation 

of accidental ingress and propagation of contaminated water under sustained pressure losses, a 

multi-species water quality model should be combined with PDA. Recently, EPANET-MSX has 

been coupled to pressure-driven hydraulic analysis results by Seyoum and Tanyimboh (2017) and 

Hatam et al. (2018a) using different approaches to model THM and chlorine under continuous 

sustained PDCs. The latter approach was used to simulate the transport of the non-reactive 

Cryptosporidium under continuous PDCs (Hatam et al. 2018b). To the knowledge of the authors, 

no study so far has investigated fate and transport of contaminants by simultaneously accounting 

for (1) the interactions between microorganism and disinfectant residuals, and (2) the effect of 

hydraulic conditions under sustained pressure losses applying a realistic hydraulic analysis (i.e. 

PDA).  

Pressure within a pipe is one of the key factors determining intrusion locations and contaminant 

concentration at the entry points. Intrusion flow rates are driven by the pressure differential 

between the outside and inside of a water main. Contaminant concentrations have been considered 

using different approaches. Teunis et al. (2010) have calculated virus concentrations at intrusion 

nodes based on local water flow, random intrusion volume, random negative pressure duration and 

random sewage concentration. Besner et al. (2010c) have generated a possible range of 

contaminant mass rates using a probabilistic model, considering the pressure head values inside 

and outside the pipe as a triangular probability distribution function. Propato and Uber (2004) 

simulated intrusion events considering a constant mass flow rate of pathogens downstream of each 

intrusion node. Finally, Betanzo et al. (2008) assumed constant microorganism concentrations 

based on concentrations reported in sewage with a specific dilution factor into pipe water (10%), 

without considering the nodal pressure values impact on intrusion flow rate. 
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In this paper, a methodology to estimate node-specific contaminant mass rate at nodes prone to 

intrusion is proposed. For the simulated sustained PDCs, the potential nodal intrusion volume is 

tuned adjusting the leakage constant of each node based on the nodal leakage demand (representing 

pipe age and type of materials) and application of the nodal pressure inside the network, using PDA 

results. Then, the fate and transport of E. coli resulting from the ingress of sewage caused by 

sustained PDCs lasting 5 hours is modeled in a large full-scale DS with 30,077 nodes. The results 

from coupling of EPANET-MSX to PDA provides insight into the fate of E. coli with estimates of 

disinfectant decay and microorganism inactivation. Results are then interpreted to reevaluate and 

improve sampling strategies (location, timing, and volume sample) during and after intrusion 

events for various disinfectant residual scenarios (no residual, chlorine, and chloramine).  

5.2 Methodology 

5.2.1 Description of Simulated Sustained Low-Pressure Event 

The modeled network includes 30,077 nodes, three WTPs and a total pipe length of about 1,600 

km. Under normal operation conditions (NOCs), each WTP supplies water to a specific area of the 

system. However, as the entire network is hydraulically interconnected, the influence zone of each 

WTP is modified when changes in hydraulic conditions take place. More information on the 

characteristics of the network can be found in Hatam et al. (2018a). The sustained PDCs correspond 

to a combination of the shutdown of one of the WTPs for a 5-hour period and a fire flow demand 

of 15,000 L/min at one point (Table 5.1). Flow rates of the remaining WTPs were increased to 

some extent to compensate the shutdown of WTP1 as described in (Hatam et al. 2018a). For 

simplicity of analysis, the demand is considered to be constant (239,414 m3/day) corresponding to 

the peak hour consumption. The hydraulic model of the studied system is built such that total 

demands at each node are classified as residential, industrial, commercial, institutional, municipal, 

and leakage. To allow water quality (disinfectant residuals) reaching equilibrium conditions, the 

model is run for 10 days under NOCs using the extended period simulation. The PDCs are 

simulated from 16:00 to 21:00 of day 11th (Table 5.1).The model is then run for three additional 

days to investigate the spatial and temporal distribution of contamination throughout the network.  
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Table 5.1. Comparing network hydraulic conditions under normal and pressure-deficient 

conditions; HG and Qout are hydraulic grade and outflow rate, respectively. 

Pressure conditions NOCs PDCs (5 hours)  
HG (m) Qout (L/s) HG (m) Qout (L/s) 

WTP1 76 716 - - 

WTP2 75 701 65 856 

WTP3 77 1354 77 2028 

Fire Flow             -  15,000 L/min 

5.2.2 Ingress of Contaminated Water 

The following hypotheses are used to model contaminant intrusion: (i) the size of the entry pathway 

is proportional to the leakage demand assigned to a node, (ii) the pressure differential between 

internal and external pressure heads is obtained through PDA. The pressure head on all pipes is 

assumed equal to 1 m, based on the range of the water table head above the pipes in the studied 

network (Ebacher et al. 2013), and (iii) a contamination source (sewage) is assumed to exist 

everywhere around all pipes. To calculate the intrusion flow rate (𝑄𝑖 (m
3/s)) the orifice equation 

(𝑄𝑖 = (𝐶𝑑𝐴)𝑖√2𝑔(𝐻𝑒𝑥𝑡 − 𝐻𝑖𝑛𝑡𝑖
)) is used. To calculate intrusion flow rate, 𝐻𝑖𝑛𝑡𝑖

 is the pressure 

head inside the pipe at node i (m) under PDCs calculated using PDA. In this study, (𝐶𝑑𝐴)𝑖 are 

calculated using the corresponding leakage flow rate at time t (𝑄𝑙𝑒𝑎𝑘𝑎𝑔𝑒𝑖,𝑡
) in the calibrated model 

under NOCs: 

 
𝐶𝑙𝑒𝑎𝑘𝑖,𝑡

= (𝐶𝑑𝐴)𝑖,𝑡 = 𝑄𝑙𝑒𝑎𝑘𝑎𝑔𝑒𝑖,𝑡
/√2𝑔(𝐻𝑖𝑛𝑡𝑖,𝑡

− 𝐻𝑒𝑥𝑡) Eq. 5-1 

in which 𝐶𝑙𝑒𝑎𝑘𝑖,𝑡
 is the leakage constant, 𝐻𝑖𝑛𝑡𝑖,𝑡

 is the pressure head inside the pipe at node i at time 

t, under NOCs, 𝐻𝑒𝑥𝑡 is the pressure head outside the pipe (m),  A is the orifice area (m2), 𝐶𝑑 is the 

coefficient of discharge (unitless), and g is the gravitational acceleration (m/s2). Using the network 

model with daily demand patterns, 𝐶𝑙𝑒𝑎𝑘 
is calculated at each node and at each hour over a 24-hour 

period. For the sake of simplicity and to be conservative, the maximum value of 𝐶𝑙𝑒𝑎𝑘 
at each node 

during this period is used for computing the intrusion flow rate during the PDCs period (Figure B-

1). 

The external source of contamination selected here is raw sewage assumed to be leaking from 

adjacent sewer mains. E. coli was selected for simulation, as it is the reference indicator organism 

for confirmation and clearance of contamination in DSs, is abundant and is inactivated to various 
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degrees by disinfectants. A concentration of 1.6E06 CFU/100 mL in the local sewage was used 

(Payment et al. 2001). The contaminant mass rate at each intrusion node is calculated by 

multiplying the concentration of microorganisms outside the pipe (𝐶𝑜𝑢𝑡) by nodal intrusion flow 

rate. The intrusion flow rates are implemented by assigning a negative demand to an artificial node 

connected to the intrusion node using a short pipe with negligible head loss. The impact of intrusion 

volumes on the pressure values and DSRs is considered by adding the intrusion flow rates to the 

PDA model and solving the hydraulic model again. The modified INP file of EPANET is then 

regenerated based on these hydraulic results. The intrusion flow rates can be recalculated using the 

recent pressure values to investigate the impact of possible pressure variations on the intrusion 

flows. Another iteration may be needed if larger intrusion flow rates (such as backflow from cross 

connections or submerged air vacuum valves) enter the system, although this is not the case here. 

Several intrusion scenarios (Table 5.2) are simulated to investigate the impacts of disinfectant 

residual type and concentration on the fate and transport of E. coli. The intrusion duration is 

assumed to be equal to the duration of the low/negative pressure event. Contaminant propagation 

is simulated for 3 days after PDCs are over. 

Table 5.2. Description of intrusion scenarios. 

Scenario Disinfectant type Disinfectant  

Concentration (mg/L) 

Contaminant 

(1) No disinfectant 0.0  Sewage- E. coli 

(2) Chlorine 0.5 Sewage- E. coli 

(3) Chlorine 1.0 Sewage- E. coli 

(4) Chlorine 2.0 Sewage- E. coli 

(5) Chlorine 1.0 No intrusion 

(6) Chloramine 1.0 Sewage- E. coli 

(7) Chloramine 2.0 Sewage- E. coli 

(8) Chloramine 1.0  No intrusion  

 

5.2.3 Disinfectant Decay and Microorganism Inactivation 

To simulate chlorine decay the simple first-order model is used and for chloramine, the second-

order model is applied. The Chick-Watson model is applied for the inactivation of E. coli (Betanzo 

et al. 2008). The inactivation constant (𝑘𝑝) is considered 246 and 0.99 (L/mg ∙ h) for chlorine and 

chloramine at 10°C, respectively, by assuming that 𝑘𝑝 is reduced by half for every 10°C decrement 

in temperature (Betanzo et al. 2008). Based on data obtained from disinfectant decay experiments 
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for a 0.1% wastewater intrusion with total organic carbon levels ranging from 4.6 to 54 mg/L 

(LeChevallier et al. 2011, Yang et al. 2011), the initial chlorine demand of the ingress water was 

set to 0.088 mg/L and no initial demand is considered in the case of chloramine. For chlorine, the 

decay constants with and without intrusion are set to 0.24 and 0.055 h−1, respectively, and for 

chloramine, these values are set to 0.11 and 0.012 (mg Cl2 ∙ h/L)−1, respectively. The higher 

disinfectant decay constant value (identified as Kintrusion) is only applied to pipes that receive 

intrusion materials as determined by a conservative tracer. For a more accurate estimation of 

disinfectant residuals while using the nth-order decay model, a conservative fictitious species is 

assumed to be injected into the network at the intrusion nodes. Contrary to E. coli, this species is 

transported into the system without any decay and is only used to determine zones, at each time 

step, for which Kintrusion will be applied in the decay model. For simplicity, a constant Kintrusion value 

is applied to these pipes regardless of the variation in dilution of entering sewage. For the remaining 

pipes in the network, the disinfectant decay rates set for water not exposed to intrusion water 

(Knormal) is used. In this study, if negative chlorine concentrations are computed at intrusion nodes 

from the initial chlorine demand, the chlorine concentration is considered as zero in the analysis. 

The probability detecting E. coli is calculated using a Poisson distribution (Teunis et al. 2004). 

5.3 Fate and transport of contaminated water during and after pressure 

losses 

Fate and transport of ingress E. coli throughout the network, in the absence and presence of 

disinfectant residuals, and the propagations of conservative fictitious species is then simulated 

using a multi-species water quality analysis based on PDA by employing the approach presented 

in Hatam et al. (2018a). Previously, the methodology (MSWQA-PDA) was applied to model 

continuous PDCs (Hatam et al. 2018a, b). In this study, the capability of MSWQA-PDA approach 

to consider time-varying parameters (with hourly variations) such as pumping regimes at water 

treatment plants (WTPs) is illustrated by applying it to simulate intrusion events due to 

low/negative pressure events lasting a few hours. More details on the methodology can be found 

in supplemental materials and Hatam et al. (2018a). 



80 

 

5.4 Results and Discussion 

5.4.1 Impact of sustained low/negative pressure events on pressure and DSRs  

Pressure values during NOCs (at 15:00) and sustained PDCs (at 16:00) are illustrated for different 

groups of nodes in Figure 5.1 (a). The nodes are categorized based on their pressure values during 

PDCs to better visualize the differences. Median pressure values calculated by DDA and PDA are, 

respectively, -4.6 and 0.3 m for the first group of nodes (P ≤ 1 m, 74 nodes), whereas closer values 

(35.0 and 35.8 m) are obtained  for the group of nodes with P > 15 m (25,168 nodes). The results 

show that DDA underestimates the pressure values when modeling pressure losses, especially for 

nodes with low-pressure values (P < 15 m), which agrees with a previous study (Hatam et al. 

2018a). This can lead to unreliable overestimation of the areas prone to intrusion as well as 

incorrect estimation of intrusion volumes potentially entering the system. As an illustration, the 

number of nodes with pressure less than 1 m (considered as prone to intrusion in this study) 

increases to 1156 nodes when using DDA, as compared to 74 nodes using PDA.  

About 16% of nodes, excluding the nodes with no demand during NOCs (469 nodes), experience 

pressure less than or equal to 15 m (Figure 5.1  b). During the studied PDCs, 25% of these nodes 

experience a DSR between 0 and 56%, and the 75th percentile is 99%. Defining the nodes with 

partial demand satisfaction is important for customers, but even more so in terms of ensuring 

adequate fire flows. For the studied event, the node where a fire demand (15,000 L/min) was 

assigned for 5 hours had a DSR of 99% with a pressure of 12 m during PDCs. 
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a) b)   

Figure 5.1. (a) Pressure values during NOCs (15:00), and PDCs (16:00) using both PDA and 

DDA, and (b) DSR excluding nodes without any demand (469 nodes) during NOCs; Square: 

Median; *: Mean; Box: 25%-75%; Whisker: Min-Max. 

5.4.2 Intrusion volumes to estimate E. coli concentration at the intrusion nodes  

PDA showed that 74 nodes had an internal pressure less than 1 m. Intrusion flow rates have been 

computed at 73 of these nodes as one node had no leakage demand assigned in the model 

(translating into no intrusion pathway). The corresponding pressure values and intrusion flow rates 

for the nodes identified as experiencing potential ingress are illustrated in (Figure B-2). The total 

volume of ingress water for the 5-hour pressure loss is 1,909 L through the 73 leakage orifices. 

Distribution of intrusion volume through these nodes is illustrated in Figure 5.2. For half of the 

nodes the intrusion volume is less than 17 L, while the maximum value reaches 119 L. Duration of 

event is an important factor that affects intrusion volume. To the knowledge of the authors, studies 

computing intrusion volumes for long duration of PDCs are not available in the literature. This 

makes it difficult to compare the order of magnitude of intrusion volumes. For a shorter event 

duration, a smaller total intrusion volume of 157 L for a 3-minute event through 1,517 leakage 

orifices was reported in the same DS (Ebacher et al. 2010).  

Given the extent of the intrusion volumes obtained under the modeled scenario, the impact of the 

intrusion volumes on the network hydraulic, was considered by adding the intrusion flow rates into 

the PDA model. The adjusted PDA hydraulic results were used to regenerate the modified INP file 

of EPANET. The adjusted pressure values obtained from the modified INP file differed only 

slightly (less than 0.004 m), with no need for additional iterations. The intrusion flow rates (Figure 
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5.2) can then be used to calculate the contaminant mass rate at each intrusion node. Consequently, 

the concentration of E. coli at each intrusion node can be obtained based on the severity of PDCs, 

assumptions regarding leakage magnitude, contaminant concentration outside the pipe, and water 

table submergence, the upstream flow rates, and water quality conditions.  

 
Figure 5.2. Distribution of intrusion volumes per node for the 5 hours pressure loss. 

5.4.3  Behavior of different disinfectants under PDCs and a 5-hour intrusion 

event 

The impact of the contaminated water ingress on disinfectant residual concentrations is illustrated 

in Figure 5.3. For clarity, results are only illustrated for the nodes with positive E. coli during any 

time over the whole simulation period for intrusion scenarios 3 and 5 (Figure 5.3 (b) and (d), 

respectively). The results for disinfectant residuals at these same nodes in the absence of intrusion 

are also presented in Figure 5.3 (a) and (c) allowing for a comparison of chlorine concentrations 

with and without intrusion. For the case of chlorine without intrusion, chlorine residuals remain 

higher than 0.4 mg/L at nearly 90% of nodes at any time before and after PDCs (Figure 5.3, a). 

After the ingress of contaminated water, chlorine concentrations at these nodes decrease with half 

of the nodes experiencing residuals lower than 0.4 mg/L for 5 hours, and less than 0.1 mg/L for 2 

hours (Figure 5.3, b). It is interesting to note that a 5-hour intrusion event leads to sustained and 

significant chlorine losses outlasting the PDCs. The sharp decrease in chlorine concentrations with 

intrusion can be explained by: (1) the effect of the immediate chlorine demand (0.088 mg/L) 

applied to the 73 nodes with intrusion (2) the increased chlorine decay rates applied to the areas 

with conservative fictitious species, and (3) the rises in water age (described on Figure 5.3, a).  
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With chlorine, a relatively small number of nodes were found to be positive for E. coli (≥ 10-6 

CFU/L) with a maximum of 166 nodes at any time. It should be noted that an accuracy of 6 

decimals is used to report species concentration in EPANET-MSX. As expected, at nodes positive 

for E. coli, chlorine residual losses are higher than for chloramines (Figure 5.3, b and d). The 

median chloramine residuals remained high (0.7 mg/L) even after the intrusion event, reflecting 

the absence of immediate demand and the lower rate constant of 0.11 (mg Cl2 ∙ hour/L)−1 

associated with ingress as compared to chlorine (0.24 h−1). Regardless of the higher residuals, the 

inactivation of E. coli was also slower than for chlorine reflecting the lower inactivation rate 

constant. During the whole simulation period, more E. coli positive nodes (2,905) were observed, 

as compared to 166 nodes for chlorine. In contrast to chlorine, chloramine decay is not a critical 

factor as the limited inactivation reflects the slower kinetics of this disinfectant requiring higher 

CT values as compared to chlorine. The trend here agrees with previous studies investigating 

contamination by Giardia or viruses in the presence of chlorine and chloramine (LeChevallier et 

al. 2011, Propato and Uber 2004, Yang et al. 2011). Figure B-3 shows the distribution of water age 

and chlorine residual without the influence of ingress water considering all 30,077 nodes. Median 

water age generally increases at nodes with pressure ≤ 15 m, resulting in decreases in chlorine 

residuals that persist after the end of PDCs, decreasing the protection at nodes most vulnerable to 

contamination.  
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(a) (b)  

(c) (d)  

 
 

Figure 5.3. Temporal distribution of disinfectant residuals throughout the network for the nodes 

with positive E. coli at any time during and after the intrusion. No node was positive for E. coli 

without intrusion. Positive nodes with intrusion used for comparison with and without intrusion. 

For 1 mg/L chlorine (a) without intrusion, Sc5, and (b) with intrusion, Sc3. For 1 mg/L 

chloramine (c) without intrusion, Sc8, and (d) with intrusion, Sc6. Time intervals on the timeline 

are not equal. The red boxes show the concentration during PDCs; Square: Median; Box: 10%-

90%; Whisker: Min-Max. 
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5.4.4 Propagation of E. coli under different conditions 

As expected, the presence of chlorine residuals in the network limits the widespread propagation 

of E. coli downstream of the intrusion nodes, to a maximum of 166 nodes at any time during the 

4-day simulation. Within that timeframe, the extent of areas positive for E. coli at any time is larger 

(2,095 nodes) in the chloraminated system as compared to the chlorinated system (Figure 5.4). As 

expected, the no disinfectant scenario shows an even larger contamination area (3,287 nodes) and 

increased E. coli concentrations. These results suggest that, in the case of a chlorinated system, the 

detection of an intrusion event can be a difficult process unless sampling is conducted during peak 

E. coli concentration at nodes, which is highly unlikely. 

 

Figure 5.4. Maximum E. coli concentrations for scenarios with chlorine (Sc3, 1 mg/L), 

chloramine (Sc6, 1 mg/L) and without disinfectant (Sc1). Cyan color represents a concentration 

of ≤ 1 CFU/100 mL. 

Figure 5.4 does not inform on the temporal shifts in the distribution of E. coli across the network 

nor on the duration of positivity for E. coli at any given node. Figure 5.5 summarizes the temporal 

propagation of E. coli in chloraminated and chlorinated systems. For both disinfectants, 4 hours 

after the start of intrusion (20:00 day 1), the concentrations are high (up to 1.6E06 CFU/100 mL) 

at and near the intrusion nodes, reflecting the conservative scenario of undiluted wastewater present 

around the pipe. The number of nodes positive for E. coli is greater in the chloraminated system 

(192 nodes) as compared to the chlorinated system (119 nodes). E. coli are transported to areas 

farther away albeit at lower concentrations, as shown by results after four and nine hours after the 

intrusion event (Figure 5.5). After nine hours, 826 nodes remain positive for E. coli with 72 % (593 



86 

 

nodes) experiencing low expected concentrations of E. coli (≤ 1 CFU/100 mL in cyan). The closer 

examination of the breakdown of these low concentrations reveals that concentrations in 314/826 

(38%) of nodes positive for E. coli are very low (≤ 0.01 E. coli/100 mL) (Figure B-4). With 

chlorine, few nodes remain positive (8 and 2 nodes after four and nine hours, respectively).  

 

Figure 5.5.  E. coli distribution in chloraminated (Sc6) and chlorinated (Sc3) systems at 20:00 of 

day 1, 01:00 of day 2, and 06:00 of day 2 following intrusion; Intrusion starts at 16:00 of day 1 

and lasts for a duration of 5 hours. 

5.4.5 Propagation of E. coli based on pressure values under PDCs 

The effect of different chlorine concentrations on the propagation of contamination is illustrated in 

Figure 5.6. The nodes are grouped into six intervals based on their maximum E. coli concentration 

≤1 CFU/ 100 mL 
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against their respective pressure values under PDCs. Maximum E. coli concentrations at the 

intrusion nodes (P < 1 m) are higher than 100 CFU/ 100 mL for all scenarios (Sc2 to Sc4). By 

increasing chlorine concentration from 0.5 to 1, and then to 2 mg/L, the number of nodes with 

positive E. coli is decreased from 228 to 166, and 101, respectively. Over the simulation duration 

in these scenarios, E. coli reached nodes that had maximum pressure values of 11, 8, and 5 m under 

PDCs, respectively.  Higher chlorine residuals therefore contribute to restrain the impact of a 

contamination by limiting the propagation of E. coli into the system, confining it into lower 

pressure areas (defined based on the pressure values under PDCs) in the case of intrusion during 

PDCs. 
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Figure 5.6. Effect of different chlorine concentrations (0.5, 1 and 2 mg/L) at the outlet of WTPs 

on maximum E. coli concentration estimated over the whole simulation duration, only 

considering nodes positive for E. coli ; *: Median; Box: 25%-75%; Whisker: Min-Max; +: Raw 

data. 
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In the case of a chloraminated system (Sc6 and Sc7), the number of nodes with positive E. coli is 

higher than in a chlorinated system for the same 5-hour intrusion event (Figure 5.7, a and b). Over 

the simulation duration in these scenarios, E. coli reached nodes with pressures up to 40 m (defined 

based on pressure values under PDCs). In the absence of a disinfectant residuals in the system 

(Figure 5.7, c), the absence of inactivation leads to an even wider propagation and higher 

concentrations in line with the spatial distribution of maximum E. coli observed in Figure 5.4.  
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Figure 5.7. Effect of different chloramine concentrations (1 and 2 mg/L) at the WTPs on 

maximum E. coli concentration estimated over the whole simulation duration, only considering 

nodes positive for E. coli; *: Median; Box: 25%-75%; Whisker: Min-Max; +: Raw data. 
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5.4.6 Source of uncertainties 

Several sources of uncertainties should be considered when interpreting predictions of ingress 

resulting from sustained and short term PDCs. Factors to consider include the volume of ingress at 

each node, the quality of water outside the pipe, the impact of ingress water on chlorine demand, 

the ability to predict demand and the selection of the external head (Ebacher et al. 2012, Yang and 

Boccelli 2014). In this study, some of these uncertainties are addressed by proposing two 

improvements: a node specific estimate of contaminant mass rate following intrusion and an 

enhanced chlorine decay modeling that adjusts chlorine decay in the presence of ingress water. A 

common simplification hypothesis consists of applying a constant concentration of 

microorganisms regardless of the actual low/negative pressure values at the intrusion nodes 

(Betanzo et al. 2008, Islam et al. 2017); others consider a random distribution of intrusion volumes 

and negative pressure durations to calculate the dilution factor at the negative pressure nodes 

(LeChevallier et al. 2011, Teunis et al. 2010). When considering the mitigating impact of 

disinfectant residual, it is important to consider the impact of contaminated water on instant and 

long-term chlorine decay. In this study, the intrusion volumes were computed based on nodal 

pressures from PDA and node specific leakage constants. Chlorine decay for sewage intrusion at 

different percentages of wastewater dilution was described by a first-order model and applied to 

the whole DS (Betanzo et al. 2008, LeChevallier et al. 2011). The application of the intrusion decay 

constant (Kintrusion) to the whole network after intrusion may underestimate chlorine residuals across 

the system, depending on network topology, duration and location of intrusions. To reduce the 

possible chlorine underestimation, we limited the nodes to which Kintrusion is applied to those where 

intrusion water is transported as identified by the transport of a conservative species, while Knormal 

was applied to the remaining nodes. However, we recognized that considering same Kintrusion, 

representing a 0.1% wastewater intrusion, regardless of variations of dilution ratios in time and 

space, leaves some overestimation of chlorine losses in affected nodes. 

5.4.7  Implications for management strategies 

The novel approach combining PDA and multi-species water quality modeling provides more 

realistic results to estimate the prevalence and fate of E. coli across a DS after intrusion resulting 

from extended PDCs. These findings have several operational and regulatory implications. The 

case studies presented provide a basis for redefining optimal sampling approaches for: (1) the 
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detection of contamination in response to a pressure loss in a DS, which is known as confirmation 

sampling; and (2) the confirmation of the elimination of any residual contamination after a 

confirmed event, which can be considered as clearance sampling. Furthermore, this study also 

brings valuable insights in the possibility of delineating areas that are at risk in order to better define 

areas for which advisories should be issued. 

5.4.7.1 Implications for confirmation and clearance sampling 

Responding to low-pressure conditions involves emergency response sampling to determine 

whether a contaminant has entered the system and how far it has spread. It is distinct from statutory 

sampling. Network sampling can be conducted to: (1) confirm the presence of contaminants as 

soon as possible after the event (2) determine the extent of the plume, and (3) confirm the system 

is clear of contaminants (Hart et al. 2019).  Unlike intentional contamination events, the locations 

at risk of intrusion resulting from sustained low-pressure events are mostly known. Indeed, events 

causing sustained pressure losses (power outages, large breaks, plant shutdowns, etc.) are 

documented and the resulting low pressures on the network are monitored, as most networks have 

online pressure probes at critical pressure points. Unlike chemical contaminants, the detection of 

E. coli positive samples is constrained by the detection limits of statutory monitoring methods that 

mandate the absence of E. coli in a prescribed volume of 100 mL (EPA Office of Environmental 

Enforcement 2009). The specificities of these methods determine the probability of utilities 

detecting E. coli, which is a discrete particle present in low concentrations. 

Figure 5.8 shows the distribution of the mean probability of detecting positive E. coli nodes, within 

5 hours, in the chloraminated system. The mean probability of positive detection is estimated 

during the 5-hour intervals from the start of intrusion up to 20 hours using sampling volumes of 

100 mL and 1 L (Figure 5.8 (a) to (d) for 100 mL and (e) to (h) for 1 L). Obviously, sampling at 

the nodes that remain positive longer increase the likelihood of detecting positive E. coli. The 

impact of the sampling volume of 100 mL (versus 1 L) is shown by the number of nodes positive 

with a mean detection probability > 0.1. Only 5 nodes have mean probability > 0.1 within all the 

four intervals of 5 hours as compared to 68 (74) nodes within the first 3 intervals. Quick response 

sampling offers even more sites with 166 (167) nodes having mean probability > 0.1 in both the 

first and second 5-hour intervals, while delayed deployment restricts it to 71 (185) nodes. 

Increasing the sampling volume improves sensitivity, especially for areas with lower E. coli 
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concentrations. Extreme low probabilities at most affected nodes would render confirmation 

sampling unreliable unless sampling is targeted to areas with expected higher concentration at the 

right time. 
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Figure 5.8. Mean probability of detecting E. coli for sampling volumes of 100 mL (a) to (d) and 1 

L (e) to (h) for different periods. 
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Figure 5.9 shows the distribution of nodal mean probabilities over different time periods for the 

2905 nodes that become positive for E. coli during at least one time step of the simulation in the 

chloraminated system (spatial distribution of nodes in Figure 5.4). Figure 5.9 illustrates that, for a 

5-hour intrusion, it is very important to quickly sample in the vicinity of intrusion areas; otherwise, 

false negatives may occur. During the intrusion period as the contamination is not yet widely 

disseminated through the network the median and 75th percentile is around zero. For all post-

intrusion intervals, the median probability is very low and the 25% of nodes with higher detection 

probabilities decreases with time after intrusion, less so when a 1 L volume is collected. The post-

intrusion periods (5-20 hours) corresponds to the clearance-sampling window. To avoid false 

negatives, larger volumes should be collected at sampling locations with higher probabilities as 

determined by predicted contaminant concentrations in the first 10 hours after the event (Figure 

5.8).   

E. coli monitoring at predefined statutory sampling sites is not suited to confirm contamination or 

verify clearance in a timely manner. van Lieverloo et al. (2007) estimated the combined detection 

probability of 47 fixed statutory sampling locations to evaluate the sensitivity of monitoring 

programs for 12 contamination events. The probability calculations were based on the duration of 

E. coli present at more than 1 CFU/mL and sampling intervals. The probability of detection of 

positive E. coli after intrusion of up 160 L of sewage was quite low over 50 days unless the 

contamination occurred at the treatment plant or trunk main, even without disinfectant. In our 

studies, the probability of detecting positive E. coli is calculated based on the predicted nodal 

concentrations at each hour using a Poisson distribution that provides a better estimate of the 

probability of detection. More importantly, our results provide predictions directed to reevaluate 

sampling protocols and provide timely actionable information to water utilities. 
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Figure 5.9. Box-plot of mean probability of detecting positive E. coli during 5 hours for 4 time 

periods for Sc6 (chloramine, 1 mg/L); each group consists of 2905 nodes, which are the nodes 

that experience E. coli at any time over the whole simulation duration; the y-axis is cut off at 0.2 

while the maximum value is 1 for all the box. 

In the presence of chlorine, if sampling is conducted once the intrusion is over, detecting E. coli is 

almost impossible even with a large total volume of sewage intrusion of 1,909 L (Figure 5.5). To 

assess if any contamination occurred, sampling should only be conducted during the event at sites 

close to the intrusion zones (119 nodes >10-6 E. coli/L).  Deploying sampling personnel and 

identifying proper sampling sites may not be feasible at such short notice.  

Implementing large volume sampling appears promising to improve sensitivity but raises issues of 

higher operational costs and practicality. Because it is likely to result in higher positive detection, 

it could meet some resistance from utilities fearful of more frequent or extended advisories. 

Increased sensitivity is desirable as E. coli is inactivated much more easily than most pathogens, 

and the absence of E. coli at a node does not ensure the absence of more resistant pathogens such 

as Giardia or Cryptosporidium (Payment 1999, Smeets et al. 2009). 

In light of these results, using a combination of PDA hydraulic and water quality models to 

optimize E. coli sampling is proposed. This way, utilities could be informed of the likelihood of 

intrusion and adapt their sampling plan accordingly. If contamination is confirmed, the combined 
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models would direct when and where to conduct the clearance sampling. Unless sampling is 

intensified in affected areas, the likelihood of detecting an E. coli positive will be so low that 

sampling resources will be wasted while contaminated areas remain undetected. To improve the 

confirmation of contamination, we propose a post-event intensive sampling approach conducted as 

early as possible after the event is known with sampling at intrusion nodes or nodes hydraulically 

close to the intrusion sites. The identification of these high-risk nodes should be done using PDA, 

not DDA, and considering readings from online pressure monitors and water quality probes, if 

available. For clearance sampling, timing and location of sample collection should also be 

identified using the hydraulic and water quality models, but more importantly, large volume 

samples should be considered. 

Sampling for confirmation and clearance of fecal indicators in distribution systems has been 

developed to respond to a positive sample for E. coli and Total Coliforms. For example, the 1989 

Total Coliform Rule prescribes that repeat samples be taken at locations within five connections 

up flow and down flow of the positive location. An alternative approach is also allowed in the 2013 

Revised TCR to repeat locations that best verify and determine the extent of potential 

contamination in the distribution system (Environmental Protection Agency (EPA) 2013). Our 

results show that utilities could use the numerical tools proposed to best verify contamination. 

5.4.7.2 Implications for the definition of areas subject to an advisory 

There are several factors to consider when defining areas subjected to a preventive boil-water 

advisory (BWA). A geographical distribution of potentially affected areas can be determined based 

on a minimum pressure criterion during sustained PDCs. However, as proposed by Hatam et al. 

(2018a), intrusion circumstances should be incorporated as well. In Figure 5.10, positive E. coli 

nodes (blue circles) during the whole simulation period are overlaid on pressure mapping under 

PDCs. These observations are of value for water utility managers when in need of defining areas 

under a BWA. This figure shows some important points that may affect the preventive/corrective 

decisions. The BWA must be defined not only based on low-pressure areas, but also based on areas 

to which contamination will travel under pressure-deficient and normal-pressure conditions. 

Although the vulnerable low-pressure areas should be considered, Figure 5.10 shows that there are 

some areas in low-pressure zones where no contamination is transported. Depending on the water 

path during PDCs and NOCs, the contamination will reach areas other than the low-pressure nodes. 
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The definition of areas subjected to preventive/corrective actions should take into account pressure 

distribution under PDCs, intrusion locations and volumes, fate and transport of contaminants as 

well as the type of contaminant and its interaction with the disinfectant.  

As the definition of a BWA can be quite complex in a large hydraulically connected DS, another 

option to avoid system-wide BWA would be to implement district metered areas (DMA). 

Sectorization of areas prone to intrusion under major PDC events such as plant failures could 

confine contamination to a smaller area allowing for the issuance of sectorial advisories. 

 

Figure 5.10. Superposition of pressure map under PDCs (16:00) using PDA on nodes with 

positive E. coli at any time during the simulation (blue circles) (a) in the absence of disinfectant, 

(b) with chloramine, and (c) with chlorine. 
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5.5 Conclusion  

In this paper, the fate and transport of contaminated water as a result of accidental intrusion through 

leakage points caused by a sustained depressurization was investigated throughout a large full-

scale water network. Then, the spatial and temporal water quality was simulated based on the 

realistic simulation of hydraulic conditions under pressure-deficient conditions using PDA. The 

interactions between E. coli and disinfectant residuals were considered, using a multi-species water 

quality analysis. This was possible using a novel methodology extended and applied to simulate 

accidental intrusion events due to sustained PDCs lasting a few hours (5 hours). The mass of E. 

coli entering at each intrusion node was estimated based on the pipe internal pressure under PDCs, 

and nodal leakage flow rates in the DS model under NOCs. Major findings are:  

 Consideration of contaminants fate and transport based on the hydraulic behavior of the 

network is essential for adequate utility response to sustained depressurization events and to 

justify preventive/corrective actions. 

 In the simulated scenarios, E. coli was transported to higher-pressure zones (up to ~40 m) in 

the absence of disinfectant residuals. Chloramine residuals decreased E. coli concentrations at 

higher-pressure nodes. Even more so, a chlorine residual of 0.5 mg/L limited the contaminated 

zone and restricted E. coli propagation to lower pressure areas (P < 11 m). Increasing the 

chlorine concentration to 2 mg/l prevented widespread transport of E. coli across the DS and 

confined contamination to lower pressure areas (P < 5 m).  

 In the presence of chlorine, the probability of detecting E. coli by sampling is unlikely unless 

sampling is conducted rapidly and close to the intrusion zones. Improved sampling strategies 

(location and timing) are required. The location and timing of sampling should be determined 

considering the duration, location and intensity of PDCs, the severity of the contamination 

event in terms of ingress volumes and contaminant type and concentration, and the disinfectant 

efficacy on the pathogen of concern.  

 Targeted spatial-temporal sample collection in combination with high volume sampling will 

increase the value of negative E. coli results.  

 Modeling of the temporal variations of E. coli concentrations across the DS following an 

intrusion event should be used to guide confirmation sampling and establish a base for lifting 

an advisory by clearance sampling. 
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 The combined MSWQA-PDA method allows for the investigation of the propagation of the 

reactive contaminant by taking into account the effects of both PDCs and intrusion-associated 

demand on disinfectant decay. Appropriate numerical tools can assist utilities, increasing their 

ability of detecting accidental intrusion under low/negative pressure events, and consequently, 

applying appropriate preventive/corrective actions to protect public health. 

 Timely response to sustained PDCs is now possible in smart DSs equipped with multiple online 

pressure sensors and emerging low-cost autonomous water quality sensors. Online chlorine 

sensors positioned in areas prone to intrusion could detect atypical loss of residual indicating 

the need for subsequent actions. 
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CHAPTER 6 ARTICLE 3 –USING NODAL INFECTION RISKS TO 

GUIDE INTERVENTIONS FOLLOWING ACCIDENTAL INTRUSION 

DUE TO SUSTAINED LOW PRESSURE EVENTS IN A DRINKING 

WATER DISTRIBUTION SYSTEM 

 

In this chapter, the infection risk of accidental intrusion resulting from sustained PDCs, with 

different durations, is quantified using water quality calculations based on realistic PDA. This is 

done by integrating the impact of demand availability on the consumption during pressure drops 

in QMRA analysis and adjusting intrusion volume for nodal pressure and pipe state. During shorter 

pressure losses, utilities can avoid system wide advisories to limit the impact of depressurization 

events on their customers. The spatial/temporal distribution of nodal risks throughout the network, 

as proposed in this chapter, can help to determine the boundaries of sectorial boil water advisory 

or other preventive/corrective actions. This paper was published in Journal of Water. 

Supplementary information is presented in Appendix C.  
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Abstract 

Improving the risk models to include the possible infection risk linked to pathogen intrusion into 

distribution systems during pressure-deficient conditions (PDCs) is essential. The objective of the 

present study was to assess the public health impact of accidental intrusion through leakage points 

in a full-scale water distribution system by coupling a quantitative microbial risk assessment 

(QMRA) model with water quality calculations based on pressure-driven hydraulic analysis. The 

impacts on the infection risk of different concentrations of Cryptosporidium in raw sewage 

(minimum, geometric mean, mean, and maximum) and various durations of intrusion/PDCs (24 h, 

10 h, and 1 h) were investigated. For each scenario, 200 runs of Monte Carlo simulations were 

carried out to assess the uncertainty associated with the consumers’ behavioral variability. By 

increasing the concentrations of Cryptosporidium in raw sewage from 1 to 560 oocysts/L for a 24-

h intrusion, or by increasing the duration of intrusion from 1 to 24 h, with a constant concentration 

(560 oocysts/L), the simulated number of infected people was increased by 235-fold and 17-fold, 

respectively. On the first day of the 1-h PDCs/intrusion scenario, a 65% decrease in the number of 

infected people was observed when supposing no drinking water withdrawals during low-pressure 

conditions at nodes with low demand available (<5%) compared to no demand. Besides assessing 

the event risk for an intrusion scenario, defined as four days of observation, the daily number of 

infected people and nodal risk were also modeled on different days, including during and after 

intrusion days. The results indicate that, for the case of a 1-h intrusion, delaying the start of the 

necessary preventive/corrective actions for 5 h after the beginning of the intrusion may result in 

the infection of up to 71 people. 

KEYWORDS: QMRA; Sustained pressure drops; Accidental intrusion; Infection risk from 

Cryptosporidium; Pressure-driven hydraulic analysis 

6.1 Introduction 

Distribution system (DS) deficiencies may play a role in the occurrence  of waterborne disease 

outbreaks (Kirmeyer et al. 2001a). Ageing of pipeline infrastructure is going to become more 

problematic over time by increasing the probability of experiencing sustained low/negative 

pressure conditions in the network (pipe breaks), leading to possible intrusion from points of 

leakage. Assessment of public health risk associated with such type of events may be achieved 
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through modeling. While reliable hydraulic and water quality models can be used to simulate 

ingress of contaminated water and its propagation into a network, the use of quantitative microbial 

risk assessment (QMRA) models is required to estimate the potential health risk. QMRA and 

management approaches can contribute in bringing safer water to  consumers (World Health 

Organisation (WHO) 2016).  

Modeling of water quality under pressure deficient conditions. Integration of pressure-driven 

hydraulic analysis into QMRA models is required for a more accurate risk analysis of water 

contamination resulting from accidental intrusion under sustained pressure-deficient conditions 

(PDCs). In such conditions, a reliable estimation of intrusion points, contamination mass rate 

entering the DS, and fate/transport of contamination through the network cannot be achieved using 

traditional demand driven-analysis (DDA) models such as EPANET 2 (Rossman 2000). Pressure-

driven analysis (PDA) was coupled to single species water quality modeling to optimize 

management strategies (e.g., flushing and isolation actions) by minimizing the mass of consumed 

contaminant (Bashi-Azghadi et al. 2017a, Rasekh and Brumbelow 2014, Zafari et al. 2017). A 

more detailed literature review on hydraulic and water quality modeling under sustained PDCs can 

be found elsewhere (Hatam et al. 2018a). 

Applications of QMRA to drinking water DSs. Despite evidence of drinking water DS 

deficiencies causing infectious waterborne diseases (Craun et al. 2010, Lindley and Buchberger 

2002), the majority of QMRA work has been devoted to assessing risk of drinking water treatment 

failures (World Health Organisation (WHO) 2016). Viñas et al. (2019) and Hamouda et al. (2018) 

presented detailed literature reviews on QMRA models applied to microbial contaminants in 

drinking water DSs. Besner et al. (2011) developed a conceptual model to assess the public health 

risk associated with intrusion events. QMRA models have been applied to real DSs to evaluate the 

infection risk associated with the presence of viruses resulting from intrusion events caused from 

transient PDCs (LeChevallier et al. 2011, Teunis et al. 2010, Yang et al. 2011). Standard QMRA 

models consider the water is consumed randomly at any time or at fixed times during the day 

(Besner et al. 2010c, Davis and Janke 2009, Yang et al. 2011). The timing of water withdrawals 

for drinking purpose is an important factor when assessing the probability of infection as a result 

of intrusion events and may not be the same as the timing of the total consumption (Blokker et al. 

2018, Davis and Janke 2009). An improved QMRA that integrates the consumer's behavior 

(probability density functions (PDFs) of the numbers of glasses and the volume consumed, and 
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kitchen tap use) was developed and applied to assess the infection risk associated with 

contamination after main repairs (Blokker et al. 2014, Blokker et al. 2018). They investigated the 

impact of different parameters such as the location of contamination and the times of valve 

openings on the infection risk with various pathogens (Campylobacter, Cryptosporidium, Giardia 

and rotavirus), in the absence of any disinfectant residual. Schijven et al. (2016) also considered 

consumer behavior to estimate the infection risk from ingestion of contaminated water or inhalation 

of contaminated aerosol droplets in the case of intentional contamination of different durations and 

seeding concentrations in a DS. 

Improving estimations of the infection risks due to sustained pressure deficient conditions requires 

numerical approaches that produce realistic estimations of nodal ingress volumes, predictions of 

propagation throughout the network, and integration of the consumer's behavior during and after 

pressure losses. Besner et al. (2010c) emphasized the necessity of performing PDA instead of DDA 

to simulate the infection risk associated with PDCs in future studies. Besides low pressure, the 

presence of external contamination and pathways are essential for intrusion to occur (Islam et al. 

2017). Adjusting the presence of potential pathway for intrusion based on the state of decay of the 

piping has been proposed (Ebacher et al. 2012, Gibson et al. 2019). 

The primary objective of this work was to estimate the infection risk associated with accidental 

intrusion through leakage points into a DS as a result of unplanned sustained low/negative pressure 

events (24 h, 10 h, and 1 h). To achieve this goal, several original improvements to the various 

models were made. First, the QMRA model developed by Blokker et al. (2018) was customized 

and linked with water quality calculations based on a pressure-driven hydraulic analysis. Then, the 

estimated contamination mass rate at each intrusion node was adjusted by the assigned leakage 

demand (proxy for pipe age and material) and the pressure values during PDCs, computed using 

PDA. Finally, to better simulate the consumers behavior during low-pressure conditions, the 

consumption of tap water was adjusted based on demand availability (no demand or <5%) on the 

infection risk. The secondary objective of this work was to propose a basis for the analysis of risk 

to guide the definition of areas subjected to a boil water advisory or corrective actions. To achieve 

this goal, we assessed the potential use of the temporal (daily versus event) and spatial distribution 

of nodal risks to determine the location and the duration of advisories. To the knowledge of the 

authors, no study so far has quantified the infection risk of accidental intrusion resulting from 

sustained PDCs, using realistic PDA to adjust intrusion volume for nodal pressure, perform water 



105 

 

quality analysis and integrate the impact of demand availability on the consumption during pressure 

drops. 

6.2 Methodology 

The QMRA model developed by Blokker et al. (2018) was customized to be coupled with water 

quality calculations based on pressure-driven hydraulic analysis. The model was used to quantify 

the infection risk associated with accidental intrusion events as a result of sustained PDCs in a full-

scale DS. The main steps for risk analysis are exposure analysis and calculation of infection risk. 

A simplified flow chart of the QMRA steps is illustrated in Figure 6.1. These steps include: (a) 

simulating the hydraulic behavior of the network under the intended PDCs to define the intrusion 

nodes, intrusion flow rates (based on size of opening leaks and pressure differential), and nodes 

with unsatisfied demand; (b) defining the outside pipe conditions to calculate the potential 

contaminant mass rate entering the system; (c) modeling fate/transport of ingress microorganisms 

through network; (d) specifying the microbial exposure (dose) considering consumers' drinking 

water behavior; and (e) estimating the risk of infection based on dose–response models. 

 

Figure 6.1. Flowchart for QMRA of accidental intrusion during sustained PDCs; WL, water 

level; MO, microorganism. 
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6.2.1 Exposure Analysis 

6.2.1.1 Hydraulic and water quality analysis 

To estimate the ingested dose, fate/transport of contaminants through the network should first be 

estimated using appropriate hydraulic and water quality models. Water quality modeling based on 

PDA was performed using WaterGEMS V8i (SELECTseries 5) (Bentley Systems 2014). Transport 

of Cryptosporidium oocysts through the network was simulated over time and, because 

Cryptosporidium is highly resistant to chlorine disinfection (World Health Organization (WHO) 

2009), the chlorine decay was not included in the model. Sewage is defined as the source of 

contamination outside the pipes. Minimum, geometric mean, arithmetic mean, and maximum 

levels of Cryptosporidium in sewage were assumed to be 1, 6, 26, and 560 oocysts/L, respectively 

(Payment et al. 2001).   

The DS model used in this study includes 30,077 nodes and 3 water treatment plants (WTPs), 

which serve nearly 400,000 residents. More details on the simulated full-scale network can be 

found in Hatam et al. (2018a). The unplanned shutdown of one WTP was simulated and a 5 m 

decrement in the outlet pressure of the two other WTPs was assumed as a result of the flow-

rate increase. It should be noted that the two other WTPs might (partially) compensate the 

shutdown of the other WTP as the entire network is hydraulically interconnected. Following the 

shutdown duration (1, 10 or 24 h), the simulation was continued for 3 days to investigate the long-

term public health impacts of the accidental intrusion events in this large DS. The impacts of 

intrusion duration on exposure and, consequently, risk of infection were studied. More details on 

accidental intrusion modeling can be found in the Supplementary Materials. Nodes with pressure 

head less than 1 m were considered as the potential intrusion sites (Figure C-4). In the hydraulic 

model, for the sake of simplicity, the demand is considered constant during the day and equal to 

the peak hour demand (i.e., 19:00) for the scenarios of 1, 10 and 24 h of PDCs/intrusion. Additional 

scenario with the daily water consumption pattern in the hydraulic model was studied for the 

intrusion event resulting from 1 h PDCs set to start at 18:30. 

6.2.1.2 Consumption Events 

The temporal concentrations of Cryptosporidium calculated from water quality analysis were then 

imported into MATLAB (MathWorks, Natick, MA, USA) where the QMRA was performed for 
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exposure assessment and dose–response analysis. Consumption events or consumers' behavior in 

this study refer to: (1) the volume of consumption; (2) the number of times that one fills a glass; 

and (3) the times at which the glass is filled from the tap. In the present study, consumption times 

corresponded to the water use at the kitchen tap as proposed by Blokker et al. (2018). In the 

simulations, the average kitchen tap use was then modified for each node of the studied network 

based on the nodal residential demand and the availability of demand, calculated from PDA under 

PDCs. In this study, the average kitchen tap use for non-residential nodes (about 60% of the nodes) 

was set to zero. This differed from Blokker et al. (2018) who adjusted the average kitchen tap use 

at certain times to include zero demand periods identified by detailed residential demand. In this 

study, to account for demand satisfaction as computed by PDA at each node, the kitchen tap use 

was set to zero at times when there was no demand available under PDCs (Figure C-1). For PDCs 

with some demand satisfaction, it was assumed that consumers can adjust the filling duration based 

on the available flow at the tap. If the PDCs did not last for the whole day, the total daily volume 

of water consumed by each person at the nodes with no demand under PDCs would not be affected. 

The sensitivity of the results to the demand satisfaction ratio (DSR) was investigated in an 

additional scenario by fixing the kitchen tap use to zero at the time when there is low (<5%) demand 

available at the nodes. This approach is more realistic as the required time to fill a glass of water 

at a kitchen tap will increase by more than 20 times when the DSR is less than 5%. 

The other important parameter for estimating the risk of exposure to microbial contamination is 

the volume of water that is ingested per person per day. The number of times each person would 

fill his/her glass or bottle during a day was estimated using a Poisson distribution. The ingested 

volume at each filling time was defined by a lognormal distribution. Due to the lack of information 

for the studied network, the data from Blokker et al. (2018) were used for the simulation and more 

details can be found in their paper.  

In this study, the hydraulic and water quality conditions were assumed to be known for each 

scenario, and 200 runs of Monte Carlo simulations were performed to investigate consumers' 

behavior. In each Monte Carlo run, the number and times of consumption events as well as the 

ingested volume for each consumption event were randomly picked for each person every day of 

the simulation. 
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In the studied hydraulic model, the total nodal demands could be a combination of different types 

of demand defined as: residential, commercial, industrial, institutional, municipal or, leakage. In 

total, 11,194 of the nodes included residential demand. To determine the number of people supplied 

per node, the residential demand per node was considered and the daily per capita average demand 

was set to 220 L/person/day. Consequently, only the residential exposure from tap water as a result 

of the simulated accidental intrusion was investigated (e.g., exposure at school was not considered). 

More information on the estimation of the number of people at each node and the distribution of 

population is in the Supplementary Materials. Dose is equal to the number of consumed pathogens 

and was calculated by multiplying the intake volume by the concentration of pathogens at the time 

of withdrawal. This step was repeated for all the glasses that a person takes over the simulation 

duration, which is 1 day for daily risk and 4 days for the event risk. For each person, the total dose 

was calculated by summing the dose in each glass consumed. 

6.2.2 Calculation of Infection Risk 

Dose–response analysis was performed to calculate the infection risk for each person resulting 

from accidental intrusion during sustained PDCs. The computed dose was implemented in the 

dose–response model employed by Blokker et al. (2014) for Cryptosporidium using the median 

(50th percentile) and maximum (100th percentile) dose–response relationships. The median 

infection risk is reported everywhere in this study unless otherwise stated. 

The calculated infection risks of all the people in the network were summed up and rounded to the 

nearest integer greater than or equal to the calculated value to estimate the equivalent number of 

infected people for the simulated event (Blokker et al. 2018). The number of infected people was 

calculated either for the whole observation period (4 days) or for each day separately. To calculate 

the nodal risk, the infection risks corresponding to all the people at the same node were summed 

up. 

6.3 Results  

Estimating ingress volumes. Histograms of nodal pressures and demand satisfaction ratios 

(DSRs: available nodal demand divided by the required demand) using PDA are illustrated in 

Figure 6.2. Fewer than 1% of the nodes (93 nodes) were prone to intrusion as they experienced 

pressures less than 1 m under PDCs, which corresponded to the set pressure head above pipes. For 
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about 30% of the nodes, the pressure was less than or equal to the required pressure value assumed 

in this study for full demand satisfaction (15 m). The DSRs for these nodes are shown in Figure 

6.2 (b), excluding nodes with no required demand. Figure 6.2 (b) shows that 1103 nodes have a 

DSR of less than 50% during depressurization. 
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Figure 6.2. Distribution of: (a) nodal pressures for the whole network (30,077 nodes); and (b) 

demand satisfaction ratios (DSRs) for nodes under pressure-deficient conditions (8578 nodes), 

excluding the nodes with zero demand. 

The distribution of intrusion flow rates at the ingress nodes is illustrated in Figure 6.3. The 

maximum flow rate was 56 L/h and about half of the nodes had an intrusion flow rate less than 5 

L/h. The contaminated water entered the network at a flow rate of 804 L/h through all the leakage 

orifices. For the scenarios of 10 and 24 h PDCs, the intrusion flow rate at each node remained 

constant during the event because of the use of a constant demand. As the 1 h event, with daily 

consumption pattern, was assumed to occur at the peak demand hour, the nodal intrusion flow rates 

also corresponded to those shown in Figure 6.3. 
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Figure 6.3. Distribution of nodal intrusion flow rates through 93 leak openings under the 

simulated pressure-deficient conditions. 

Concentrations of pathogens in sewage. To cover different consumption behaviors, 200 Monte 

Carlo simulations were carried out for each scenario of Cryptosporidium concentration in sewage 

(1, 6, 26, and 560 oocysts/L). The resulting cumulative probability distributions of the number of 

infected people are plotted in Figure 6.4. In this figure, the solid lines correspond to the median 

infection risk, and the dotted lines are the maximum infection risk. For all concentrations, the 

number of infected people associated to the maximum infection risk was increased by about two 

folds compared to the median infection risk. For the concentration of 560 oocysts/L, 50% of the 

consumption events led to at least 1378 (2652) infected people considering the median (maximum) 

infection risk. As expected, the number of infected people increases when the Cryptosporidium 

concentration increased from 1 to 560 oocysts/L.  
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Figure 6.4. Number of infected people corresponding to median and maximum infection risks 

resulting from a 24-h depressurization; 200 Monte Carlo simulations (consumption events) for 

each Cryptosporidium concentration: 1, 6, 26, and 560 oocysts/L; number of infected people 

corresponds to the cumulative dose over four days of observation; F(x): probability that the 

median/maximum number of infected people will be less than or equal to x. 

Consumption behavior. Figure 6.5 shows the sensitivity of the number of infected people over 

the four-day observation period to the volume of consumption (300 mL, 500 mL or 1 L per day per 

person) and number of glasses per day (1, 3, or 10). A total of nine scenarios were considered with 

a Cryptosporidium concentration of 560 oocysts/L and 24 h of PDCs. As expected, lower volumes 

of unboiled tap drinking water per person per day largely reduced the infection risk. By decreasing 

the volume by half (500 mL), the number of infected people decreased by 40%; decreasing the 

volume to 300 mL reduced the risk further by about 60%. By increasing the number of glasses per 
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day from 1 to 3, 19 more people were likely to be infected for a 300 mL volume, and this value 

became 62 for a 1 L consumption volume per day per person (based on the values of F(x) = 1).   

 

Figure 6.5. Impact of consumption volumes and number of glasses per day on the number of 

infected people corresponding to median infection risk over a four day-period; Cryptosporidium 

concentration = 560 oocysts/L; the x-axis scale is the same between the plots (150 people). 

Duration. Shorter duration PDCs can take place in real networks because of WTP shutdowns, pipe 

breaks or fire flows. The cumulative probability distribution of the number of infected people for 

200 random consumption behaviors is shown for different durations of PDCs: 1, 10, and 24 h 

(Figure 6.6). In all scenarios, the timing of the event is adjusted so that the network experienced 

low/negative pressures at the peak consumption time (i.e., 19:00) of the first day. A significant 

dependence of the infection risk with the intrusion duration was observed: a lower maximum 

number of infected people (84) was observed for a 1-h intrusion compared to 502 and 1410 for 10 

and 24 h intrusion events, respectively.  
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Figure 6.6. Comparing the probability distribution of the number of infected people over a four-

day period for 200 Monte Carlo simulations for each duration of PDCs: 1, 10, and 24 h; 

Cryptosporidium concentration in sewage = 560 oocysts/L. 

Spatial distribution of nodal infection risk. Besides the number of infected people under PDCs, 

the temporal and geographical distribution of infection risk is also essential in defining appropriate 

preventive/corrective actions. In this regard, the probability of infection of the individuals who 

were assigned to the same node were summed up to predict the nodal risk. Figure 6.7 shows the 

spatial distribution of risk for above-mentioned scenarios corresponding to the consumption events 

with the maximum number of infected people (F(x) = 1 in Figure 6.6). As shown, with increasing 

duration of intrusion event, not only the nodal risks were increased, but also larger areas were at 

risk.  
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Figure 6.7. Spatial distribution of nodal risks for three durations of PDCs: 1, 10, and 24 h; 

Cryptosporidium concentration in sewage = 560 oocysts/L; nodes with an infection risk below 1 

× 10−3 are drawn in black; infection risks corresponding to consumption events with F(x) = 1 

(Figure 6.6) are illustrated. 

Daily risk for the 1-h event with daily demand patterns. For the prior analyses, demand was 

considered constant during the day and equal to the peak hour demand (i.e., 19:00) in the hydraulic 

model. The reason is that adjusting different intrusion volumes and nodes at each hour of the 

duration of PDCs using PDA would be computationally intensive. However, we investigated a 1 h 

PDCs/intrusion using the daily water consumption pattern in the hydraulic model to assess its 

impact on the infection risk. Over four days of observation, the maximum number of infected 

people increased to 99 (Figure C-3) with demand patterns compared to 84 with a constant demand 

in the hydraulic model (Figure 6.6, 1 h). 
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Figure 6.8 illustrates the daily probability of the number of people infected by Cryptosporidium 

according to different consumption behaviors for the day that intrusion occurred (at 18:30) and the 

three days post-intrusion. The day after the event, the maximum number of infected people was 

reduced by 59% as compared to the event day. It indicates that, over time, the contaminated water 

left the network as large volumes of water were used for purposes other than drinking, such as 

toilet flushing and industrial usage. The maximum numbers of infected people for Days 1–4 were 

71, 29, 3 and 1, respectively. 

 

Figure 6.8. Number of infected people corresponding to median infection risk for Days 1 to 4 for 

the scenario of 1 h of PDCs with daily consumption patterns; Cout = 560 oocysts/L; 200 Monte 

Carlo simulations (consumption events) every day. 

For Days 1–4, the total nodal risk corresponding to the consumption event with the maximum 

number of infected people (F(x) = 1 in Figure 6.8) was estimated, and the spatial distribution is 

plotted in Figure 6.9. The number of nodes at high risk decreased from Day 1 to Day 4 as well as 

the extent of the areas at risk. At the end of the first day, when the intrusion ended, the nodal 

infection risk was ≤ 1 × 10−7 at 29,754 nodes and higher than 1 × 10−4 at 123 nodes. Only 16 of the 

nodes showed total nodal risks equivalent to more than one person. On Day 2, the total number of 

infected people through the whole network decreases to 29 compared to 71 for Day 1, but the 

number of nodes with an infection risk ≤ 1 × 10−7 was lower compared to Day 1. The reason is that 

Cryptosporidium oocysts reached more nodes in the network on Day 2, but at lower concentrations 
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as the ingress volume became diluted and flushed out. On Day 2, the nodal infection risk was more 

than one only at four nodes. On Days 3 and 4, the nodal infection risk was below one for all the 

nodes. 

 

 

Figure 6.9. Spatial distribution of nodal risk; Days 1–4 for the scenario of 1 h of PDCs with daily 

consumption patterns; Cout = 560 oocysts/L; nodes with infection risk below 1 × 10−3 are drawn 

in black; infection risks corresponding to consumption events with F(x) = 1 (Figure 6.8) are 

illustrated. 

Impact of demand satisfaction ratio on risk. In all simulations, when the DSR (pressure ≤ 0) 

became zero at a node, the kitchen tap use was set to zero. To study the influence of the DSR 

(shown in Figure 6.2 (b)) on the risk, the situation where no consumption happened at nodes with 

a DSR less than 5% was also modeled (Figure 6.10). For this investigation, the number of infected 

people following a 1-h PDCs/intrusion was computed on the day that intrusion occurred. As 

expected, the number of infected people decreased when the consumption only occurred at the 

nodes with a DSR ≥ 5% during low/negative pressure conditions (Figure 6.10).  
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Figure 6.10. Probability distributions of the number of infected people during the first day of 

simulation when people with a DSR null and less than 5% do not drink water from tap; 200 

Monte Carlo simulations for each scenario; Cout = 560 oocysts/L with 1 h of PDCs with daily 

consumption patterns. 

6.4 Discussion 

Impact of event duration on the spatial distribution of risk in the network. During an intrusion 

event, the intrusion risk was determined by several factors such as the intrusion volume, pathogen 

concentration, network hydraulics, fate and transport of the contaminants and consumers' behavior. 

The volume of contaminated water entering the network is a function of the duration of the event. 

For the events with 1, 10 and 24 h of sustained depressurization, the estimated intrusion volumes 

through all leak openings were 0.8, 8 and 19 m3, respectively. Using the orifice equation, some 

studies have produced estimates of the intrusion volumes through leakage points for transient PDCs 

(Ebacher et al. 2012, Kirmeyer et al. 2001a, Teunis et al. 2010). The total intrusion volumes 

resulting from a momentary pump shutdown for different intrusion conditions through leakage 

orifices and submerged air vacuum valves (AVVs) ranged from 10 to 360 L in the same network 

(Ebacher et al. 2012). In contrast, these authors also showed that the maximum volume entering 

through a single submerged AVV during a transient could be about 95 times larger than the 

maximum volume entering through a single leakage orifice (227 L versus 2.4 L). In their study, the 
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modeled intrusion volume was driven by the global leakage rate (5% versus 40%) and pressure 

differential. However, as these authors also stated, the orifice size at a given node should reflect 

the local leakage demand. Using Monte Carlo simulations, Gibson et al. (2019) investigated the 

impact of head differences, diameter of orifices, pipe age (number of holes), and low pressure 

duration on the intrusion volumes during transient negative pressure events. For a 25-year-old pipe, 

the probability of an intrusion volume greater than 10 L was low (1%), while it increased to 70% 

for a 150-year-old pipe.  

In the current study, the orifice size at each node was considered proportional to the assigned nodal 

leakage demand in the calibrated model under normal operating conditions as described in detail 

by Hatam et al. (submitted). In the test DS, leakage demand reflects the state of pipes; older areas 

with aging cast iron being the dominant pipe material has higher leakage and thus offers more 

potential entry points for contaminated water. In this study, the effect of soil–leak interactions was 

ignored and the exponent in the orifice equation was considered equal to the theoretical value (0.5) 

that is valid for fixed leak openings. It was confirmed that the variation of the area of round hole 

with pressure is negligible and therefore the leakage exponent was close to 0.5 (van Zyl and Clayton 

2007, van Zyl and Malde 2017). However, for longitudinal slits that have large head-area slope, a 

modified orifice equation should be used in which the leakage exponent can change within 0.5 to 

1.5 (van Zyl et al. 2017).   

In this study, long durations of PDCs were considered as opposed to relatively short durations of 

low and negative pressures. Sustained PDCs are reported in the literature due to transmission main 

repairs (Besner et al. 2007, Besner et al. 2011) and can happen during power outages. This type of 

event may be less frequent than transient pressure fluctuations, but of graver consequences, as 

shown by the potentially larger intrusion volumes. The duration of transient negative or low 

pressures is a key factor affecting the virus infection risks estimated by QMRA (LeChevallier et 

al. 2011, Teunis et al. 2010, Yang et al. 2011). As expected, for the simulated sustained PDCs, the 

number of infected people for the three different intrusion durations showed strong dependency on 

the intrusion duration (Figure 6.6), as it determines the total amount of Cryptosporidium oocysts 

introduced into the network. The maximum number of infected people was reduced to less than 

half when the intrusion duration decreased from 24 h (1410) to 10 h (502), and even more so if the 

event only lasted 1 h (84). Our results are in agreement with those of Schijven et al. (2016), who 

used QMRA to investigate the impact of intentional contamination. Exposed persons were 
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increased by 2–3 folds when the duration of the injection of contaminants increased from 10 to 120 

min.  

More importantly, in this study, we showed that the duration determined the areas with high 

pathogen concentrations corresponding to a potentially significant infection risk. The geographical 

distribution of the nodal risk shown in Figure 6.7 emphasizes the importance of considering the 

duration of PDCs/intrusion when issuing sectorial boil water advisories (BWA) as well as other 

preventive/corrective actions. For 24 and 10 h intrusion events, the zones at risk were more or less 

the same with different risk levels. However, for a much shorter duration of intrusion (1 h), the 

zones at elevated risk were significantly reduced (Figure 8). The arbitrary cutoff line in Figure 6.8 

can be used to compare the summation of the total risks at nodes in different zones affected by 

contaminated ingress water. On its right side, a very small cumulative risk of 0.2 infection for the 

1 h intrusion was observed; this risk increased to 1.4 and 3.5 for the intrusion events of 10 and 24 

h, respectively. These values include all low nodal risks (≤ 1 × 10−3) which are not plotted in Figure 

6.7 for clarity.  

Concentration of Cryptosporidium in ingress water. There are scarce data on the actual 

concentrations of pathogens in ingress water. Concentrations of pathogens in ingress water could 

range from those found in wastewater, representing a high-risk scenario of ingress directly from 

undiluted sewage (Payment et al. 2001), to the much lower concentrations measured in trench 

water, urban groundwater or runoff (Besner et al. 2010a, Ebacher et al. 2013). The number of 

infected people increased from 6 to 1410 when Cryptosporidium concentrations increased from 1 

to 560 oocysts/L (Figure 6.4, median) for the worst-case consumption event (out of 200) (F(x) = 

1). In agreement with our results, the contaminant concentration outside the pipe ranked among the 

top factors in previous QMRA studies (Blokker et al. 2018, LeChevallier et al. 2011, Teunis et al. 

2010, Yang et al. 2015). When using the maximum dose–response relationship rather than the 

median relationship to account for uncertainties, the maximum number of infected people increased 

about two folds (Figure 6.4). The magnitude of differences between the median and maximum 

dose-response relationships is a critical factor to consider as recent evidence suggests that even 

higher dose–response values for C. hominis should be considered (World Health Organisation 

(WHO) 2016, World Health Organization (WHO) 2009). Therefore, both the concentrations and 

the selection of the dose–response will contribute to uncertainty (World Health Organisation 

(WHO) 2016).  
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Consumption behavior. Standard QMRA models usually consider only one consumption event 

per day (LeChevallier et al. 2011, Yang et al. 2011) or a constant volume of consumption per day 

for every person at fixed hours (Besner et al. 2010c, Islam et al. 2017). For the 24 h scenario, the 

amount of water consumed daily from the kitchen tap had a huge impact on the maximum number 

of infected people, with decreases of ~ 40% and 60% when consumption was reduced from a 

baseline of 1 L/day to 500 mL/day and 300 mL/day, respectively. The model was also sensitive, 

but to a lesser degree, to the number of glasses per day for a fixed volume (Figure 6.5). Increasing 

the number of glasses per day from 1 to 10 increased the overall infection risk (by up to 2%) for 

the 24-h scenario. This rise is more pronounced for larger consumption volumes (Figure 6.5). 

Impact of the number of glasses per day was most noticeable when switching from a single 

consumption event to 3 or 10 consumption events. Blokker et al. (2018) and Van Abel et al. (2014) 

also observed that three ingestion volumes per day result in higher numbers of infected people 

compared to only one withdrawal of the total volume per day.  

Several studies have investigated and integrated probabilistic models to better represent the 

consumers’ behavior into QMRA models, including PDFs of volume of unboiled tap water, number 

of glasses per day, volume per glass, timing of consumption, and household water usage (Blokker 

et al. 2018, Davis and Janke 2008, 2009, Schijven et al. 2016). Blokker et al. (2018) fully integrated 

consumers’ behavior using a Poisson distribution for the number of glasses per person per day and 

a lognormal distribution for the ingested volume per glass and the kitchen tap use. This model was 

applied to investigate various scenarios of fecal contamination resulting from DS repairs and the 

potential for preventive actions to mitigate risks of infection. In this study, we used the Blokker 

model to investigate accidental intrusion due to sustained low/negative pressure event of various 

durations, adding 200 simulations to quantify the range of risks corresponding to different 

consumers’ behavior. The differences between the numbers of infected people for minimum (F(x) 

= 0) and maximum (F(x) = 1) probabilities in Figure 6.8 reveal the potential impact of consumers’ 

behavior for a specific event. The ranges were widest for the first day (from 71 to 46 people, 35% 

reduction) than for the following days. The variations observed were less important in the scenarios 

of 10 and 24 h (Figure 6.6). Understanding the uncertainty associated with a combination of 

plausible behaviors appears important.  

Impact of daily demand. The diurnal consumption patterns result in variable intrusion volumes 

and numbers of intrusion nodes during different hours of the day because of the variations in nodal 
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pressure values. In this study, the demand was set to peak hour demand, which could lead to 

overestimation of intrusion volumes if system pressure was not decreased for night flows. On the 

other hand, fixed peak water demand overestimated the flushing of contaminants from the network 

by leakage, commercial, industrial, institutional demands, etc. during periods of low human 

consumption, resulting in an underestimation of the risk. With the scenario of 1 h PDCs/intrusion 

which incorporates daily demand patterns in the hydraulic model, it was shown that the 

underestimation was about 15%, which we consider to be acceptable (Figure 6.6 compared to 

Figure C-3). 

Integrating demand availability from PDCs. The novelty of this work lies in the coupling of the 

PDA and QMRA. Unlike DDA, PDA permits identification of areas with demand shortage, 

allowing for more realistic estimations of consumption based on water availability at the tap during 

pressure losses. For example, consuming at a DSR of 5% and less would mean that the filling time 

would increase by more than 20-fold. As shown on Figure 6.10, the number of infected people on 

Day 1 decreased sharply from 71 to 24 (65%) if only consumers at nodes with DSR >5% during 

low/negative pressures were considered. It should be noted that limitations to consumption only 

occur during the low-pressure conditions. Furthermore, the extent of these differences depends on 

the consumption time, and the duration and timing of the event. The results shows that restricting 

drinking water consumption during periods of low or intermittent flow would greatly reduce risks. 

Therefore, utilities and health authorities could consider educating people not to consume water 

during these periods of low flow. Further study is needed to define a minimal DSR criteria based 

on the amount of reduction in infection risk. 

Implication for risk management. The nodal risks considered the contaminant transport in the 

network and the probability of coincidence of passage of contaminants at the tap and consumption. 

However, the spatial and temporal distribution of total nodal risks also reflected the distribution of 

the population between nodes (Figure 6.7 and Figure 6.9). The areas in which to issue a BWA, and 

those where corrective actions (e.g., flushing) would be effective, can be determined using nodal 

risk values in reference to an acceptable risk level.  

QMRA models have been used to evaluate the efficacy of different mitigation strategies such as 

BWAs, flushing, and disinfection for reducing the infection risk after main break repairs/transient 

pressures (Blokker et al. 2018, Yang et al. 2011, Yang et al. 2015). Yang et al. (2015) showed that 
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flushing at >0.9 m/s reduced infection risks by 2–3 logs for norovirus, E. coli O157:H7 and 

Cryptosporidium. For viral and bacterial pathogens, disinfection with a CT of at least 100 

mg·min/L using free chlorine was required after flushing to decrease the risk below the USEPA 

yearly microbial risk target value (1 × 10−4) (National Research Council of the National Academies 

2006). Issuing a system-wide BWA that decreased by 80% the average number of glasses of 

unboiled water consumed led to a four-fold reduction in the number of infected people (Blokker et 

al. 2018).  

Estimating the daily risk, instead of the event risk, after an intrusion event can guide risk 

management decisions. The spatial distribution of risk as shown in Figure 6.9 is a key factor to 

define the boundaries and duration of sectorial BWAs. Figure 6.8 and Figure 6.9 show the 

contribution of each day to the total event risk over the four-day period. Notably, for the 1-h 

intrusion, delaying necessary preventive/corrective actions up to 5 h from the start of the intrusion 

may result in the infection of up to 71 people. After that 5-h mark, a BWA or other 

preventive/corrective actions would still offer protection for about 33 additional people (sum over 

the three following days). The reduced benefit of late interventions on the fourth day was evident 

with only one equivalent infection prevented. Timely response to sustained PDCs is therefore 

essential and can be achieved by improving sampling strategies using enhanced numerical model 

(Hatam et al. submitted) and equipping the DS with multiple online pressure sensors and water 

quality sensors. The duration of the BWA could be adjusted depending on the corrective actions 

implemented to meet the acceptable risk level for an event.  

Figure 6.11 offers insights into whether pressure during PDCs can be used to determine areas to 

target for preventive/corrective actions. Pressure during the PDCs determine the extent of intrusion. 

However, whether contaminants will travel from low-pressure nodes to higher pressure nodes 

(based on pressure during PDCs) is determined by water paths during normal and PDCs. This was 

clearly illustrated by the fact that, for the 1-h PDCs, consumption of tap water at nodes other than 

negative pressure nodes resulted in 63, 28, 3, and 1 infected people on Days 1–4, respectively. This 

showed that the benefits of avoiding consumption at negative nodes (based on the pressure values 

under PDCs) after the PDCs was limited, as these values for the whole network, including negative 

nodes, were 71, 29, 3 and 1, respectively. Even with a pressure criterion of 15 m, the number of 

infected people on Day 2 would be significant (6) (Figure 6.11). These results are consistent with 

the study by Hatam et al. (submitted) who showed that E. coli can be transported to higher pressure 
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zones (up to ~40 m) in the absence of disinfectant residuals during a 5-h PDCs/intrusion. Our 

results emphasize that issuing sectorial BWAs based only on pressure is not adequate to protect the 

population against infection, even for the scenario of 1-h PDCs/intrusion with a high 

Cryptosporidium concentration (560 oocyst/L). The simulation of the fate and transport of 

contaminants is necessary to define an effective sectorial BWA.  

In future work, reporting the hourly risk, instead of the daily risk, could be helpful to utilities to 

define preventive/corrective actions and timely response. In this study, the PDCs occurred at 18:30 

on Day 1, therefore some of the daily demands were already satisfied before the intrusion event.  

The timing of the event impacts the infection risk, which needs to be investigated in future studies. 

Blokker et al. (2018) showed limited effect for timing of repairs. 

Although the field validation of the transport of pathogens and indicators appears desirable, it is 

however not feasible to conduct in complex operating distribution systems. Such validation would 

require extensive monitoring during intentional extended loss of pressure events and monitoring of 

infections by an epidemiological investigation that utilities and health authorities will not allow. 

The conservative modelling presented in this study nevertheless demonstrates the value of 

numerical tools combined to QMRA to quantify risk and assist utilities and regulators. 

 

Figure 6.11. Number of infected people for different pressure (P) ranges (based on the pressure 

values under PDCs) on Days 1–4; Infection risks corresponding to the consumption event with 

F(x) = 1 (Figure 6.8) are illustrated. The event starts at 18:30 on Day 1 for a duration of 1 h. 

Daily patterns in the hydraulic model. 
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6.5 Conclusion  

 An approach is proposed to couple QMRA and water quality calculations based on pressure-

driven hydraulic analysis to assess the infection risk under sustained low/negative pressure 

events, causing accidental intrusion of potentially contaminated water surrounding the pipes. 

The intrusion volume at potential intrusion nodes is adjusted for nodal pressure and pipe state 

(age and material) using leakage demand. 

 By implementing PDA, the pattern of kitchen tap use was dynamically modified to include the 

impact of demand availability during PDCs in the analysis. During the PDCs, using a higher 

critical value of the DSR (5% instead of no demand) for drinking water withdrawals led to a 

significant reduction in the number of infected people (~65% on Day 1 of 1-h PDCs). This 

reduction in infection risk if contaminated water is not consumed should be considered to guide 

preventive notices. It shows that customers should be advised not to drink water when flow at 

the tap is low (i.e., it takes much longer time to fill a glass).  

 In this work, depending on the pathogen concentration in sewage, the number of infected people 

changed by 235-fold, showing the importance of selecting a representative level of 

contamination in a system. Using raw sewage as the ingress water is a conservative scenario as 

water surrounding water mains is likely to be less contaminated than sewage.  

 Results show that the number of glasses per day (1, 3, or 10) was less important than the 

consumption volume (300 mL, 500 mL, or 1 L) for the scenario of 24-h PDCs.  

 The duration of PDCs/intrusion is a decisive factor in determining the infection risk, issuing 

sectorial boil water advisories and other preventive/corrective actions. Spatial and temporal 

distribution of nodal risks presented in this study can help to determine the boundaries and 

duration of sectorial BWAs.  

 A fast response by the utility is key to reducing the infection risk by limiting the contamination 

area. For a 1-h intrusion, delaying 5 h the necessary preventive/corrective actions from the start 

of the intrusion may result in the infection of up to 71 people.    
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CHAPTER 7 ARTICLE 4 –INVESTIGATING THE IMPACT OF 

SUSTAINED LOW PRESSURE EVENTS ON WATER QUALITY IN 

WATER SUPPLY NETWORKS USING PRESSURE-DRIVEN 

ANALYSIS  

 

The main objective of this chapter is to assess the impact of different pressure-demand relationships 

under continuous PDCs, while using PDA, on the intrusion flow rates, hydraulic conditions and 

multiple water quality parameters (chlorine residual, THMs, and Cryptosporidium). This paper was 

published in the proceedings of first International Joint Conference in Water Distribution Systems 

Analysis & Computing and Control held in Kingston, Ontario, Canada, on July 2018. 
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ABSTRACT 

With infrastructure aging, sustained low/negative pressure events in distribution systems (DSs) 

may become more common. Therefore, more accurate numerical tools to predict hydraulic and 

water quality (WQ) behavior of DS under low/negative pressure conditions are needed to better 

identify areas where corrective/preventive actions are justified. A technique which allows 

combining pressure-driven hydraulic analysis and multi-species WQ model (i.e EPANET-MSX) 

is applied to investigate the impact of sustained pressure losses on hydraulic and WQ of a full-scale 

network. In this regard, chlorine residual and THMs concentrations are simulated during a severe 

sustained low/negative pressure event considering continuous intrusion of contaminated water. 
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Cryptosporidium oocysts resulting from the ingress of sewage at low/negative pressure nodes was 

considered as conservative tracer. The impact of using different pressure demand relationships 

(PDRs) while performing pressure-driven analysis (PDA), is investigated on both the hydraulic 

and WQ behavior of the network during simulated sustained pressure deficient conditions (PDCs). 

KEYWORDS: Multi-species water quality model, pressure-driven analysis, continuous intrusion 

from sustained low-negative pressure events 

7.1 Introduction  

To ensure public health protection during pressure losses, appropriate emergency responses are 

required by water utility managers. Hydraulic and water quality modelling can be applied to predict 

the behavior of pressure deficient networks. To accurately simulate PDCs, a pressure-driven 

hydraulic analysis should be performed rather than the traditional demand-driven analysis (DDA). 

Different methods have been proposed in the literature to perform PDA (Ozger 2003, Wu et al. 

2009). Some studies are based on iterative use of DDA, while others solve simultaneously the mass 

and energy conservation equations and an equation which express the relation between pressure 

and demand (PDR). In this regard, different PDRs have been proposed to perform PDA (Fujiwara 

and Li 1998, Tanyimboh and Templeman 2010, Wagner et al. 1988). Some investigations on 

selecting a representative PDR have been performed (Ciaponi et al. 2014, Shirzad et al. 2013); 

however, finding an appropriate PDR is a challenging task in the absence of field data. 

A multi-species water quality model is required to be able to account for the interactions between 

microorganisms, disinfectant residual and different types of matrices. In 2007, EPANET-MSX 

which is a multi-species extension of EPANET was released. Yang et al. used EPANET-MSX to 

simulate the interactions between disinfectant decay and virus inactivation due to intrusion events 

(Yang et al. 2011). Other researchers have applied this software to simulate contaminant intrusion 

for E. coli (Islam 2017). However, standard modeling tools are usually limited to either single 

species water quality analysis or the hydraulic analysis is only valid under normal operating 

conditions. Some researchers modeled water quality using pressure-driven hydraulic analysis for 

optimization models (Rasekh and Brumbelow 2014). Also, the coupling of PDA and single species 

water quality analysis has been proposed for water quality reliability assessment (Gupta et al. 2012, 

Liserra et al. 2014).  
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In this study, the impact of sustained low/negative pressure events on water quality variations by 

the help of a recently developed methodology is demonstrated. This modeling approach allows 

performing multi-species water quality modelling under sustained PDCs based on pressure driven 

hydraulic analysis results. The efficiency and applicability of this methodology are evaluated by 

simulating multiple water quality species in a single run under a significant sustained PDCs. As a 

proof of concept, and because modeling work is still ongoing, the water quality species included 

in this demonstration include chlorine, THMs and Cryptosporidium oocysts as a conservative 

tracer. Chlorine residual and THM spatial variations under sustained PDCs comparing to normal 

operating conditions are evaluated and the contamination transport throughout the DS due to 

continuous intrusion is investigated. The impact of using different PDRs, when performing PDA, 

on hydraulic and WQ parameters is also demonstrated. The extent of areas which may need 

corrective/preventive actions are compared based on different criteria using different methods. 

7.2 Methodology  

A full-scale distribution system with three WTPs is selected for the simulations and evaluating the 

performance of the proposed methodology. This network is comprised of 30,077 nodes which 

serves a population of about 400,000. There are no storage tanks or pump stations in the water 

network. As the entire network is hydraulically interconnected the supply zone of each WTP can 

be modified under PDCs based on the hydraulic conditions of the network.  

7.2.1 Hydraulic analysis 

To simulate sustained PDCs, pressure-driven hydraulic analysis is performed using the commercial 

software WaterGEMS®. Different PDRs can be defined in this software using pressure-demand 

piecewise linear curve. In this study, the impact of using two different PDRs when performing 

PDA, on hydraulic and water quality parameters are compared. Tanyimboh relationship can be 

defined as follows (Tanyimboh and Templeman 2010):  

 qj
avl = qj

req exp(αj + βjHj)

1 + exp(αj + βjHj)
 Eq. 7-1 

where qj
avl and qj

req
 are available and required demand at node j, respectively, Hj

  is available head. 

αj and βj are parameters defined using field data while in the absence of field data, they can be 

estimated by βj = 11.502/(Hj
des − Hj

min) and αj = (−4.595Hj
des − 6.907Hj

min )/(Hj
des − Hj

min). 
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In these equations Hj
min and Hj

des are minimum and desired pressure head, respectively. Wagner 

Equation (Wagner et al. 1988) can be presented as follows when pressure head is between Hj
min 

and Hj
des: 

 qj
avl = (

Hj − Hj
min

Hj
des − Hj

min
)

1/2

qj
req Eq. 7-2 

In this study, Hj
min and Hj

des are considered to be 0 and 15 m, respectively, for all the nodes. Demand 

Satisfaction Ratios (DSRs) are calculated by dividing the available demand to the required demand 

at each node. 

A continuous sustained low/negative pressure event (Scenario 1) is simulated by assuming that 

only one WTP out of three is online and the hydraulic and water quality behavior are compared 

with the normal conditions (Scenario 2) in which all 3 WTPs are working. A constant demand 

corresponding to peak hour consumption in the studied distribution system is considered 

throughout the simulations for simplicity.  

7.2.2 Water quality analysis    

To enable performing multi-species water quality analysis during sustained low/negative pressure 

conditions a methodology is proposed which modify the EPANET input file based on the PDA 

results. This modified input file will then be used by EPANET-MSX for multi-species water quality 

analysis. More details on the developed technique (MSWQA-PDA) can be found in (Hatam et al. 

2018a).  

To demonstrate the advantage of the proposed technique, chlorine residual, THMs and 

Cryptosporidium oocysts (simulated as a conservative tracer as chlorine has no effect on this 

microorganism) are predicted during sustained PDCs. The overall chlorine decay considers 

reactions in the bulk flow (kb) and at the pipe wall (kw) using a first-order reaction model (
dC

dt
=

−(kb + kw)C). THMs are calculated using the following equation: 

 THM = Ktc(C0 − C ) + THM0 Eq. 7-3 

in which C0 is the initial chlorine concentration at t=0,  C is the chlorine concentration (mg/L), and 

Ktc is the proportion of the chlorine bulk demand that leads to THM formation which is considered 

to be 41 µg/L per mg/L free Cl2 (Courtis et al. 2009).  
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At this step, for simplicity, a conservative scenario is simulated by assuming continuous 

contaminant intrusion at all the nodes with pressure less than 1 m, within the range of water table 

levels in this system (Ebacher et al. 2013), due to a sustained pressure drop event in the DS. The 

concentration of Cryptosporidium oocysts in sewage is assumed to be equal to 26 oocysts/L (mean 

concentration) (Payment et al. 2001). The contaminant is considered to be transported as a 

conservative tracer and no inactivation or interaction with other species is assumed. The intrusion 

flow rate (𝑄𝑖) at each node is calculated using the orifice equation (𝑄𝑖 = 𝐶𝑑𝜋(𝐷2/

4)√2𝑔(𝐻𝑒𝑥𝑡 − 𝐻𝑖𝑛𝑡)). The orifice diameter (D) is considered to be constant at all the nodes (1 mm) 

and the pressure head (𝐻𝑒𝑥𝑡) outside the pipe is considered to be equal to 1 m. The available 

demands for consumers are assumed to be zero at the intrusion nodes. The internal pressure head 

(𝐻𝑖𝑛𝑡) at each node is calculated from the model. Intrusion volume may affect the hydraulic 

conditions of DSs and an iterative procedure can be applied for calculating Qi through orifice 

equation if large intrusion volumes are coming into the DS. In this paper, the impact of intrusion 

flow rates on pressure variations was considered by adding the intrusion flow rates into the model. 

However, the intrusion volumes were not then corrected using the adjusted pressure values as the 

differences were considered negligible in terms of both pressure and intrusion volume. 

For water quality analysis an extended period simulation of 20 days was carried out to reach the 

equilibrium conditions of water quality parameters and the results were then reported for the last 

hour.  

7.3 Results and discussions    

The distribution of nodal demand satisfaction ratios is demonstrated in Figure 7.1 (a), using 

Tanyimboh equation. The results are grouped by the pressure values to facilitate the comparison, 

as required demands are completely satisfied at nodes with pressure more than 15 m. The median 

DSR for nodes under PDCs (P ≤ 15) is 72% using Tanyimboh equation. For Wagner equation 

(results are not shown here) this value is 67% and, the mean is about 60% for both relationships. 

However, as it is shown in Figure 7.1 (b), using different PDRs can lead to different DSRs at some 

nodes in the network. For this scenario, the median, 75 percentile and maximum percentage of 

difference between the Tanyimboh and Wagner DSRs are 0.3%, 5% and 30%, respectively. 

Discrepancies in the available demand can impact WQ by affecting the path through which the 

water passes to reach a node. 
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Figure 7.1. Distribution of (a) percentage of DSRs under pressure-deficient scenario when using 

Tanyimboh for two groups of nodes and (b) nodal DSRs absolute differences between different 

PDRs (% ∆DSR=|DSRTanyimboh-DSRWagner|) while performing PDA, for all the nodes. These 

results exclude nodes with no required demand. 

Pressure values under normal operating conditions and pressure deficient conditions using 

traditional DDA and PDA (Wagner and Tanyimboh) are compared in Figure 7.2. Again the 

pressure values under PDCs calculated by Tanyimboh equation are used to discriminate nodes with 

pressure less than or equal to 15 m and nodes with pressure more than 15 m.  

During normal conditions, pressure values are between 21 to 63 m while under PDCs the minimum 

pressure in the network is decreased to –7 m using PDA (either Wagner or Tanyimboh equation) 

(Figure 7.2). However, the results show that DDA incorrectly estimates the pressure values under 

PDCs especially for nodes experiencing PDCs (P ≤ 15m) (pressures are between 2 to -27 m).  

Even though small pressure differences are observed between the use of the two PDRs (less than 1 

m at all the nodes), they can affect the number of nodes prone to intrusion and volume of 

contaminated water which can enter into the DS. Therefore, water quality data will also be 

compared in the followings for these two PDRs to observe the importance of these discrepancies 

in the hydraulic parameters in water quality.  

(a)

15

Pressure (m)

0

20

40

60

80

100

%
 D

S
R

 Median 

 25%-75% 

 Min-Max 

 Mean

Tanyimboh 

 (b) 

0

2

4

6

8

10

12

14

16

 Median 

 25%-75% 

 10%-90% 

Min-Max: (0, 30%)
 



131 

 

 

Figure 7.2. Comparison of pressure results calculated from PDA (Wagner and Tanyimboh) 

(modified EPANET input file) and DDA under pressure-deficient conditions and normal 

operating conditions (NOCs) (DDA). 

The choice of a minimal pressure criteria is a critical factor when defining the nodes that may be 

susceptible to intrusion/backflow and areas which require corrective/preventive actions. Guidance 

to set these threshold pressure values remains poorly defined and do not consider the particular 

conditions of a specific network. Guideline reference values especially vary in their tolerance of 

low but positive pressures. Figure 7.3 shows the impact of different minimal pressure criteria 

choice (0, 5, 10 or 15 m) on the number of nodes at risk of intrusion/backflow for the simulated 

low/negative pressure event. It should be mentioned that the nodes which may need 

corrective/preventive actions also depend on the intrusion rate, the contamination level outside the 

pipe and fate and transport of microorganism throughout the network.  The impact of using 

different PDRs on the number of nodes experiencing low pressure (based on different minimal 

pressure criteria) is shown in Figure 7.3. The differences are less than 1% for all the groups. 

However, as expected, DDA will overestimate the zones at risk of low pressure, potentially leading 

to unjustified boil water advisories. A more detailed discussion about the impact of different 

minimal pressure criteria on the number of nodes and geographical distribution of areas which may 

need corrective/preventive actions can be found in (Hatam et al. 2018a). 
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Figure 7.3. Number of nodes at risk of intrusion/backflow based on different minimal pressure 

criteria and different methods of estimation: traditional DDA and PDA (comparing Wagner and 

Tanyimboh). 

The multi-species water quality analysis based on PDA was used to model a continuous intrusion 

of Cryptosporidium oocysts at nodes with pressures 1 m. The impact of the simulated sustained 

PDCs on chlorine and THM concentrations are shown by comparing the results of each pressure 

group to the corresponding values during normal operating conditions (Figure 7.4). As an example, 

for nodes with zero or negative pressure, the median chlorine residual decreased due to sustained 

pressure losses from 1.2 to 0.4 mg/L. For nodes with low but positive pressure the median chlorine 

residual drop from 1.1 to 0.9 mg/L while for nodes with P ≥ 15 m the median remains almost 

constant (~1 mg/L).  

 

Figure 7.4. THM and chlorine concentration under normal and pressure deficient scenario, 

Tanyimboh equation used while performing PDA. Note: Median; Box: 25%-75%; Whisker:  

min-max. 
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Cryptosporidium oocysts in contaminated ingress water at low/negative pressure nodes are 

transported throughout the DS, reaching more than 8,000 nodes at different concentrations (Figure 

7.5). The theoretical intrusion flow rate entering the DS is estimated to be 2.5 lps (968 nodes) for 

Tanyimboh, and 3.7 lps (1343 nodes) for Wagner equations.  

 

Figure 7.5. Number of nodes in the network for different ranges of Cryptosporidium 

concentration using Tanyimboh (blue) and Wagner (green) equations. 

For better comparison, chlorine residual at each node under PDCs is also compared with the 

corresponding values under NOCs and the distribution of these differences is shown in Figure 7.6 

(a). The results showed that generally the water quality gets poorer due to the simulated sustained 

pressure drop. These differences are generally more significant for the groups of nodes with lower 

pressure. The median of chlorine differences decreased from 0.8 mg/L, (for nodes with P ≤ 0) to 

zero (for nodes with P > 15). It is important to note that these differences in chlorine residual are 

caused by changing hydraulic operating conditions (water age), during the simulated sustained 

PDCs. They do not take into account other possible causes of residual loss such as biofilm re-

suspension and scouring of corrosion products caused by flow reversals. These other causes of 

residual loss can also become important and cause complete loss of residuals especially during 

unsteady flow conditions. It should be noted that in the current demonstration, the contamination 

intruded into the network during PDCs is considered to be non-reactive (conservative tracer). 

Therefore, its spatial and temporal distribution throughout the network is not affected by the nodal 

chlorine residuals, which is coherent with the high resistance of Cryptosporidium oocysts to 

chlorine. 
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Chlorine residual differences, under PDCs, based on the use of different PDRs (Wagner and 

Tanyimboh) at most of the nodes are small. As it is shown in Figure 7.6 (b), the median of 

differences is zero and about 90% of the nodes have chlorine differences less than 0.03 mg/L. This 

is while less than 4% of the nodes have chlorine differences higher than 0.1 mg/L while using 

different relationships. 

 

Figure 7.6.(a) distribution of nodal chlorine residual differences between normal (DDA) and 

pressure deficient conditions (PDA, Tanyimboh) (b) distribution of nodal chlorine residual 

differences under pressure deficient conditions between Wagner and Tanyimboh equations 

7.4 Summary and conclusions       

A recently developed methodology which enables multi-species water quality model based on a 

pressure-driven approach was applied to investigate the impact of sustained pressure losses on 

water quality in a distribution system. In this regard, chlorine residual and THMs were simulated 

during a severe sustained PDCs concurrently with modeling continuous intrusion of sewage 

contaminated water (Cryptosporidium oocysts) at nodes with low/negative pressures. However, 

this study is based on several conservative assumptions such as a continuous intrusion of 

contaminants with no reactions; future developments of this research will address extending the 

developed methodology to simulate less conservative scenarios. Ongoing work includes the 

consideration of scenarios with reactive contaminants and intrusion events in the range of hours. 

DDA does not estimate correctly the pressure values and overestimates the number of nodes with 

low pressures during PDCs, potentially leading to unjustified boil water advisories. Therefore, 
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realistic PDA should be linked with water quality models to predict water quality in the systems 

under pressure losses. Some differences, although negligible at most of the nodes, were observed 

in the predicted nodal pressures and values of available nodal demand when using different PDRs 

while performing PDA. These differences can impact on water quality modeling during PDCs. 

Under the scenario considered, the intrusion volume was significantly higher (48%) using the 

Wagner PDR. Although, PDA produces much more realistic results as compared to traditional 

DDA during PDCs, the selection of the PDRs which are more representative of the network model 

can improve the PDA results.   
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CHAPTER 8 GENERAL DISCUSSION 

In this chapter, the main findings of the project are highlighted with respect to the initial research 

objectives and questions. The main goal of this project was to develop new tools to manage risks 

associated with accidental intrusion of contaminants into drinking water distribution systems as the 

result of sustained low/negative pressure conditions. This was achieved by proposing improved 

modeling approaches and assumptions. The first main step was to develop an approach that enables 

multi-species water quality analysis based on pressure-driven hydraulic analysis. The next was to 

apply this methodology in modeling intrusion due to sustained PDCs and fate and transport of 

contaminants across the network during and after intrusion events. Finally, a QMRA model was 

linked with water quality calculations based on PDA. The management implications of the results 

to reduce public health impacts and to improve sampling program are then discussed.  

Different steps of the project are summarized in Figure 8.1. More details on the simulated scenarios 

can be found in Table 8.1. Corresponding chapters are also identified. The 8 hypotheses posed in 

Table 3.1 were all confirmed by our findings. 
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Figure 8.1. Summary of the research conducted.

General objective: 
 To develop and integrate realistic hydraulic and water quality modeling concepts into a QMRA type 

model in order to improve the assessment of public health risks associated with the occurrence of sustained 

low/negative pressure events in drinking water distribution systems 

• Create an interface that allows multi-species water quality analysis based on PDA 

• Run the model as a proof of concept in a full-scale network (> 30,000 nodes) to verify the 

reliability of the proposed methodology 

• Implement it to continuous PDCs/intrusion as well as sustained PDCs/intrusion lasting a few 

hours 

• Model water age, disinfectant residual, THMs, and microbial intrusion 

• Investigate the impact of different PDRs on hydraulic and water quality 

Improved numerical tools (MSWQ-PDA): 

• Estimate event-node-specific intrusion volume based on nodal pressure results using PDA 

• Calculate the nodal intrusion volume by leakage constant representing the state of pipes  

• Adjust the hydraulic for intrusion volume- regenerate the modified input file of EPANET  

• Increase disinfectant decay constant only at areas affected by ingress water using a conservative 

fictitious species when using the nth-order model 

• Model fate/transport of E. coli and Cryptosporidium under various scenarios of sustained PDCs 

and disinfectant residuals  

Fate and transport of ingress water due to sustained PDCs:  

• Assess the propagation of maximum E. coli and Cryptosporidium concentrations at any time 

during the simulation time as a function of pressure 

• Develop spatial and temporal maps of E. coli  

• Integrate a Poisson distribution function of the likelihood of detecting E. coli with the fate and 

transport modeling 

• Customize an advanced QMRA model to link with water quality calculations based on PDA to 

estimate the infection risk associated with sustained PDCs 

• Calculate the daily nodal infection risks of Cryptosporidium that integrates affected population, 

local leakage demand, etc.  

• Quantify the effect of contaminant concentration in ingress water and duration of events on the 

number of infected people 

• Taking into account the consumers’ behavioral variability using Monte-Carlo simulations 

Implications for management: 
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Table 8.1. Overview of the simulated low/negative pressure events and modeled water quality parameters in different chapters. 

 

Simulated sustained low/negative pressure events 
Water quality parameters PDRs Chapter 

Extent Duration 

Normal operating conditions 

(No intrusion) 
- 

Age 

Chlorine 

THMs 

- 
Chapter 4 

(Article 1) 

Shutdown of 2 WTPs (WTP B and WTP C, Figure 3.2) 

Different intensities: various water level at the remaining 

WTP 

(No intrusion) 

Continuous 

Age 

Chlorine 

THMs 

Tanyimboh 
Chapter 4 

(Article 1) 

Shutdown of  1 WTP (WTP C, Figure 3.2) 

Fire-flow at 1 node 

(Intrusion) 

5 hours 

Age 

E. coli: 

Fate and transport across the 

network 

No disinfectant 

Chlorine & Chloramine: 

With sewage impact 

Tanyimboh 
Chapter 5 

(Article 2) 

Shutdown of 1 WTP (WTP A, Figure 3.2) 

The one with the largest capacity 

(Intrusion) 

1 hour 

10 hours 

24 hours 

Cryptosporidium Tanyimboh 
Chapter 6 

(Article 3) 

Shutdown of 2 WTPs (WTP B and WTP C, Figure 3.2) 

(Intrusion) 
Continuous 

Age 

Chlorine 

THMs 

Cryptosporidium 

Wagner 

Tanyimboh 
Chapter 7 
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This project can allow us to answer fundamental questions regarding water distribution systems 

behavior and health risk assessment due to accidental intrusion under sustained PDCs. 

 What are the proper modeling tools/approaches to identify the nodes with unsatisfied 

demand, areas at risk of intrusion/backflow contamination under PDCs, and to estimate the 

node-event-specific contaminant mass rate/intrusion volume through leakage points? 

 What are the appropriate modeling tools/approaches to more realistically simulate 

accidental intrusion resulting from sustained PDCs and propagation of contaminants 

throughout the network, considering the interactions between pathogens inactivation and 

disinfectant decay, and intrusion-associated demand of disinfectant decay? 

 How sustained PDCs can affect the water quality variations regardless of any intrusion 

events? 

 What are the key factors to determine the locations of poor water qualities in the case of 

intrusion events resulting from sustained PDCs? Are the low-pressure areas (P < 15 m) the 

sole zones at risk of poor water qualities? 

 Can the intrusion events be detected by the standard E. coli sampling program? 

 How does increasing the sampling volume affect the detection probability of E. coli 

throughout the network during confirmation and clearance sampling? 

 What are the risks associated with the contaminant concentrations in different pressure 

zones throughout the network? 

 What is the impact of the duration of sustained PDCs, the contaminants concentration 

surrounding the pipes and consumers’ behavior on the probability of infection during an 

accidental intrusion through leakage points under sustained PDCs? 
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8.1 Can we approach to sectorial BWA issuance under PDCs? What are the 

proper modeling tools for a more realistic prediction of water quality 

under sustained pressure-deficient conditions? 

The utility response to depressurizations should be based on the type of event, the magnitude, and 

the duration of pressure losses. Enhancement of modeling capabilities and accuracy can be a 

valuable tool for utility managers in decision-making under PDCs and have been a popular 

research topic (Cheung et al. 2005, Germanopoulos 1985, Giustolisi et al. 2008, Gorev and 

Kodzhespirova 2013, Gupta 2015, Gupta and Bhave 1996, Pathirana 2010, Seyoum and 

Tanyimboh 2017, Siew and Tanyimboh 2009, 2011, Siew and Tanyimboh 2012, Wu and Walski 

2006, Wu et al. 2009). 

8.1.1 Why investigate sustained low/negative pressure events? 

Sustained pressure drops are reported in the literature (Besner et al. 2007, Besner et al. 2011, 

Douglas et al. 2018, Kirmeyer et al. 2014) and may become more frequent in ageing infrastructures. 

For the studied network, during 18 months monitoring, 17 negative pressure events were recorded. 

Among these events, the duration was > 3 hours for 3 events, and > 30 minutes but less than 1 hour 

for 4 events (Besner et al. 2010a). Previous studies had mostly focused on numerical analysis of 

water distribution systems under transient low/negative pressure events (Ebacher et al. 2012, 

Gullick et al. 2005, Teunis et al. 2010). Duration has been listed among the top-ranked factors in 

microbial risk estimates associated with low/negative pressure events (Teunis et al. 2010, Yang et 

al. 2011). The volume of contaminated water that can enter into the distribution systems through 

leakage points is a function of the duration of PDCs and can directly influence the public’s health. 

Therefore, the present work concentrates on simulating extended duration low/negative pressure 

events from 1 to several hours.  

Figure 8.2 illustrates three types of pathways and events, for intrusion to be occurring: (i) short 

duration event from transient negative pressures in both leakage orifices and submerged air valves, 

(ii) pipe breaks, and (iii) the work completed in this thesis, intrusion through leakage orifices during 

sustained PDCs. Results presented in Chapter 6 show that the total intrusion volumes through 93 

nodes (P < 1 m) were 800 L and 19,000 L for 1 and 24 hours of PDCs, respectively. Even for 1 h 
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pressure losses, the predicted intrusion volume was higher than the estimated volumes under 

transient low/negative pressure events described by Ebacher et al. (2012) for the same network, 

albeit the number of  entry points was higher by a factor of 7-8 compared to our study. The volumes 

reached 15 L through 676 nodes (leakage rate 5%), and 109 L through 750 nodes (leakage rate 

40%) with the external head of 1.5 m (Ebacher et al. 2012). For a single leakage point, the 

maximum intrusion volume was 56 L for 1 hour PDCs in our study. This value is 19-fold higher 

than the maximum intrusion volume reported by Ebacher et al. (2010) under transient PDCs in the 

same network with duration of < 3 minutes, leakage rate of 20% of inflow, and external head of 1 

m.  

 

Figure 8.2. Different types of low/negative pressure events as a function of duration, potential 

intrusion and resulting risk. 

8.1.2 Pressure-driven analysis versus demand-driven analysis 

Many studies have demonstrated that DDA results are not realistic when modeling low/negative 

pressure conditions and that PDA should be used (Cheung et al. 2005, Lee et al. 2016, Siew and 

Tanyimboh 2012). However, water utilities rely on DDA to simulate water distribution systems 

even to respond to pressure losses. The most commonly open source tool is EPANET, which is 

based on demand-driven hydraulic analysis. DDA produces unrealistically low nodal pressures 

under low/negative pressure conditions. For the studied PDCs, PDA generated pressures were 
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always higher than the lowest possible water gauge pressure (-10.1 m at 20°C, cavitation head), 

even under severe PDCs scenarios. Nodal pressure values decreased to less than -30 m at some 

nodes when using DDA, which is unrealistic. This was confirmed by field measurements during 

transient events in this distribution system (Ebacher et al. 2009). They reported that the measured 

pressure heads never reached the cavitation head at the monitoring points during a power failure at 

the water treatment plant causing transient negative pressures. 

Our results in Chapter 4 indicate that the extent of the pressure differences between DDA and PDA 

was sensitive to pressure values under PDCs, and to the severities of the pressure losses. Although, 

these differences were more prominent in areas with lower demand satisfaction ratio, they were 

not limited only to nodes under PDCs (P ≤ 15 m). Smaller differences were observed for nodes 

with higher pressures. However, within the studied pressure range (≤ 70 m), we could not define a 

minimum pressure for which the nodal pressures using PDA and DDA converge to the same 

value at all nodes.  

Some PDA approaches may report the negative pressure values as zero, such as in the case of 

version of WaterGEMS (V8i SELECTseries 5) (Bentley Systems 2014) used in this study. This 

can be limiting when intrusion volumes need to be estimated at low/negative pressure nodes. To 

overcome this shortcoming, we used the modified INP file of EPANET, which was created by 

MATLAB, to calculate the nodal intrusion volumes. Reporting negative pressures as zero can also 

cause some misinterpretations, as in the study by Lee et al. (2015). These authors concluded that 

PDA can produce unacceptable results such as total head reverse occurrence (flow direction is from 

lower total head to higher total head). We believe these observations were caused by the fact that 

the negative pressures were reported as zero in their PDA tool. We proved our assumption by 

resolving the same network with the same pressure-deficient scenarios considering the negative 

pressure values using the proposed methodology in this study (Appendix D). 

8.1.3 Multi-species water quality analysis combined with PDA results 

Several studies have been published in recent years that combine PDA and water quality modeling. 

However, these studies are either a single-species water quality model (Afshar and Mariño 2014, 

Bashi-Azghadi et al. 2017a, Bashi-Azghadi et al. 2017b, Rasekh and Brumbelow 2014, Seyoum 
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and Tanyimboh 2014, Seyoum et al. 2011, Zafari et al. 2017) or in the case of performing multi-

species water quality analysis the hydraulic engine is based on DDA (Betanzo et al. 2008, Islam et 

al. 2017, Karamouz et al. 2017, Klosterman et al. 2009, Muray and Adachi 2011, Propato and Uber 

2004, Teunis et al. 2010, Yang and Boccelli 2016). The main focus of the work described in this 

thesis is to predict the impact of sustained low/negative pressure events on water quality in the case 

of a contamination intrusion. No tool was available to simultaneously consider PDA and a multi-

species water quality model. To this aim, a methodology that could incorporate the both advantages 

is proposed. Figure 3.1 and Figure 4.2 provide a good overview of the capabilities of this approach. 

Recently, Seyoum and Tanyimboh (2017) used a different approach that integrates PDA and MSX 

by modifying the source code of EPANET-MSX. This approach was then applied to a small 

network with 380 nodes to simulate water age, chlorine and THMs under PDCs. However, neither 

of these newly developed modeling methods has yet been applied to simulate contaminant intrusion 

due to pressure drops using PDA and multi-species water quality analysis.  

In Chapter 5 and Chapter 7, we show that there are many challenging factors to consider when 

modeling intrusion events due to sustained PDCs and subsequent fate and transport of contaminants 

across the network. They include estimation of intrusion volume based on pipe state and nodal 

pressure, its impact on hydraulic behavior and vice versa and selectively increasing chlorine decay 

rates based on the existence of contaminants using conservative fictitious species. 

8.1.4 How can the developed approach help the existing water distribution 

modeling community? 

One of the advantages of the presented approach (MSWQA-PDA) is that it does not require 

modifying the algorithms within the EPANET source code, which is a difficult task. In addition, it 

can communicate with any PDA approach. This makes this approach available to a wide range of 

researchers. EPANET-MSX is an open source software that can be employed to model water 

quality behavior of distribution systems under sustained PDCs using this technique. However, it 

must be acknowledge that the application of the proposed methodology in its current format may 

not be straightforward for the typical end-user and more suited to research. In this project, the 

approach was tested successfully on a large full-scale network with > 30,000 nodes to simulate the 
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water quality variations due to accidental intrusion events under sustained PDCs with duration of 

≥ 1 hour.  

Due to rapid evolution of commercial software market, the latest version of WaterGEMS now 

includes multispecies analysis based on the EPANET-MSX model and pressure dependent demand 

feature. However, there is a need for robust and user-friendly open source models that combine 

PDA analysis and multi-species water quality models, especially for academics. Recently, 

researchers have emphasized on the need of a modern approach to free and open source EPANET 

development by coordinating researches to jointly develop, improve, and maintain high quality 

software (Uber et al. 2018). Based on this work and the need for improved tools, some of the 

functionalities that could be included into future versions of EPANET are: 

 A robust pressure-driven algorithm in the model. 

 Integration multi-species water quality analysis and PDA. 

 Addition of an arbitrary option to be able to account for the dispersion term by solving 

advection-dispersion-reaction equations in the software. Dispersion term can play an 

important role in the propagation of contaminants under low/negative pressure events at 

low flow rate areas. 

 Enabling for using multi-core and parallel computing when running EPANET-MSX to 

speed up the simulations. 

 Adding some options that can help verify if results from EPANET simulations are accurate. 

As an example, recently Davis et al. (2018) suggested that a capability to produce reports 

on the mass balance of water-quality constituents should be added to EPANET. 

Finally, the commercially available software could be improve by adding a module to facilitate the 

simulations of intrusion events under low/negative pressure conditions. This can include the 

calculation of nodal intrusion volume and considering its impact on both hydraulic and water 

quality behavior. 

8.1.5 Improved prediction of contaminant mass rate   

In previous studies that simulated intrusion events due to PDCs, the contaminant mass rate was 

estimated either based on a random selection of the parameters such as intrusion volumes, negative 



145 

 

 

pressure durations, pressure head values outside/inside the pipe or a constant mass flow rate of 

pathogens downstream of intrusion nodes was assumed (Besner et al. 2010c, Betanzo et al. 2008, 

Islam et al. 2017, LeChevallier et al. 2011, Propato and Uber 2004, Teunis et al. 2010). The amount 

of contaminant entering the system is a function of intrusion flow rate and the contaminant 

concentration outside the pipe. In this study, the nodal intrusion flow rates were calculated and 

used to be more event-specific and site-specific. Due to lack of data, the contaminant concentration 

and pressure head outside the pipe are considered to be constant at this step, while the presented 

approach has no limitation to use variable input data in case of availability. 

The orifice equation was used to estimate the intrusion flow rates through leak opening in pipes. 

In previous study, the orifice diameter in this equation was either determined directly (Besner et 

al. 2010c, Hatam et al. 2018b, Kirmeyer et al. 2001a) or it was estimated using a global leakage 

rate (Ebacher et al. 2012, Ebacher et al. 2011b, LeChevallier et al. 2011). However, in both cases 

implementing a fixed orifice size to all nodes will lead to overestimation of potential intrusion flow 

in areas of low leakage and underestimating the infection risk in the zones of decaying 

infrastructure with multiple pathways. In Chapter 7, the intrusion volumes were estimated by 

orifice equation assuming a constant diameter (1 mm) and a discharge coefficient (0.62) at all the 

nodes. To improve the intrusion predictions, the intrusion volumes were adjusted at each node 

based on the nodal leakage demand in the calibrated model (Chapter 5 and Chapter 6). The leakage 

rates were attributed to the nodes as a function of pipe age and materials type in the tested network. 

This approach will be very beneficial to water utilities that have knowledge about sectorial leakage 

rates using leakage detection. Furthermore, the nodal interior pressure head obtained by PDA (the 

modified EPANET input file) was used to estimate the intrusion volume at each node to be more 

event-specific and node-specific.  

In addition, to include the impact of intrusion volume on hydraulic behavior and vice versa, the 

intrusion volumes were implemented as negative demand in the PDA model. The modified 

EPANET input file was then regenerated based on the new hydraulic results. However, the above-

mentioned studies used the estimated intrusion volume for calculating the contaminant 

concentration or mass rate and were not implemented in the EPANET model. Unlike EPANET and 

WaterGEMS, the transient analysis software such as InfoSurge automatically calculate the 

intrusion flow rates (Ebacher et al. 2012) and implement them in the model. 
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8.1.6 Improved prediction of disinfectant residuals 

In the case of intrusion modeling, two-species second-order model can be used to model the 

reactions between chlorine, contaminant, and background organics (Klosterman et al. 2009, Muray 

and Adachi 2011, Yang and Boccelli 2016). However, the estimation of the decay rates between 

chlorine and background organics is a complicated task. The simple first-order decay model has 

been widely used to model chlorine decay thorough the network when modeling intrusion events 

(Betanzo et al. 2008, Islam et al. 2017, Propato and Uber 2004, Teunis et al. 2010). However, the 

first-order chlorine decay equation does not directly depend on the concentration of contaminants 

entering the system. Therefore, we believe that applying the first-order model with a fixed decay 

rate to the whole network regardless of the contamination propagation, which is a function of 

duration and location of intrusions, cannot simulate realistically the behavior of the system after 

intrusion. As an improvement, we proposed a simple and practical technique, applying increased 

decay constant (Kintrusion) only to areas at the time they experience contaminated water (Chapter 5). 

This can be done by defining another species in the model that is transported throughout the 

network as a tracer. For the remaining areas, Knormal should be applied. The areas with Knormal may 

change across time depending on the temporal and spatial distribution of the conservative species 

through the network. With this simple technique, one can significantly improve the prediction of 

chlorine residuals and contaminants through the network while using the simple first-order decay 

model in the case of contamination event. 

For health risk modeling of intrusion during negative pressure transients, some researchers have 

proposed modeling a single intrusion node at a time, establishing system responses and integrating 

adjusted random virus concentrations in intrusion water in the hydraulic and water quality models 

(LeChevallier et al. 2011, Teunis et al. 2010). These assumptions may not hold for extended low-

pressure conditions and is discussed in details in Appendix D (Figure E-1). 

8.2 Water quality variations due to low/negative pressure events 

Water quality variations due to PDCs in drinking water distribution systems can be resulted from 

(a) the variations in the hydraulic conditions which result in changes in traveling time and flow 

path (Chapter 4 and Chapter 5), (b) contaminant intrusion events (Chapter 5, Chapter 6, and 
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Chapter 7), (c) the impact of intrusion-associated demand on disinfectant decay (Chapter 5), and 

(d) flow reversal that may cause biofilm resuspension and scouring of corrosion products (which 

were not considered in this project). 

8.2.1 Impact of low/negative pressure events on disinfectant residuals  

Impact of variations in the hydraulic conditions: As a proof of concept, water age, chlorine, and 

THMs were simulated using MSWQA-PDA under continuous PDCs (Chapter 4). The results 

indicated that the water quality was generally poorer under the simulated PDCs, as compared to 

normal operating conditions, and was related to longer residence times under PDCs. These 

observations are in agreement with previous studies (Seyoum and Tanyimboh 2017, Seyoum et al. 

2011, Seyoum et al. 2013). Furthermore, investigating water quality results as a function of 

pressure values, under PDCs, revealed that the differences were generally lower for the group of 

nodes with P > 15 m compared to the groups of nodes with P ≤ 0 or P ≤ 15 m. Differences in 

median chlorine concentrations, the were 0.7, 0.4 mg/L for the groups of nodes with P ≤ 0 and P ≤ 

15 m, respectively, while this value was almost zero for nodes with P > 15 m (Figure 4.7). Yet, 

it should be recalled that these lower chlorine residuals under PDCs are only due to water age 

variations regardless of the intrusion associated demand. This loss of chlorine can be important, as 

the residual disinfectant is the final barrier against pathogen intrusion. The larger difference was 

observed for the group of nodes with lower pressure are especially of concerns as they are likely 

to occur where the risk of intrusion is highest under PDCs. It should be noted that these high 

differences were related to continuous PDCs compared to normal pressure condition scenario 

(Chapter 4). For shorted low/negative pressure events lasting a few hours (Chapter 5), lower 

chlorine loss was observed (median dropped 0.2 mg/L for nodes with P ≤ 1, Figure B-3). This 

further emphasizes the role of duration of PDCs in the rate of chlorine loss as the result of changes 

in the hydraulic conditions (i.e. water age).   

Impact of intrusion-associated demand: In order to provide a barrier against microbial 

contamination, maintaining a measurable disinfectant residual level (> 0.2 mg/L) at every point of 

the network has been recommended in North American practice (Propato and Uber 2004). From 

our simulation results in the case of sewage intrusion under 5 hours of PDCs (Chapter 5), we 

demonstrated that chlorine residuals decrease sharply following an intrusion event. The effect of 
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immediate chlorine demand applied to the intrusion nodes during PDCs period, and the increased 

chlorine decay rate applied to affected nodes using a conservative fictitious species can explain this 

sudden and severe loss. For the nodes with positive E. coli at any time during and after the intrusion 

(166 nodes), the median chlorine concentrations decreased sharply from ~0.8 to less than 0.1 mg/L 

for about 2 hours (1 mg/L was the concentration at the outlet of WTPs). However, for the same 

nodes and a PDC scenario, but without any intrusion event, the median dropped to ~0.6 mg/L, 

which is about 0.5 mg/L higher compared to the intrusion scenario (Figure 5.3). Interestingly, the 

data showed that the loss of residuals persisted a while even after the intrusion event was over, as 

it took a while for chlorine residuals to be restored. 

Chlorine versus chloramines: For a 5-hour PDCs scenario, the loss of chlorine was greater than 

the loss of chloramines under both scenarios of with and without intrusion associated demand. 

Without intrusion, chloramine concentrations remained above 0.4 mg/L (Figure B-3) at all 

intrusion nodes. Even with intrusion, the median chloramine residuals remained > 0.7 mg/L for the 

nodes with positive E. coli at any time during and after the intrusion (2,905 nodes) (Figure 5.3). 

This can be explained by the absence of immediate chloramine demand at the intrusion nodes as 

well as the lower intrusion decay constant as compared to chlorine. Our results indicate that even 

though the chloramine residuals remained higher in the distribution system as compared to the 

chlorine residuals, but the number of nodes receiving E. coli was higher in the chloraminated 

system (2,905 versus 166 in chlorinated system). This fact can be explained by the higher 

inactivation constant of E. coli in the presence of chlorine compared to chloramine by a factor of 

about 250 folds (246 versus 0.99 L/mg ∙ h). Our findings are in agreement with previous studies 

showing that chlorine was more effective than chloramines in the case of contamination by Giardia 

or viruses (Propato and Uber 2004, Yang et al. 2011). 

8.2.2 Does disinfectant type affect the contaminant fate and transport through 

the network?  

EPANET-MSX has been used to model intrusion or intentional injection of E. coli and its fate and 

transport across the network in the presence of disinfectant residuals, showing the importance of 

chlorine residuals in limiting the widespread propagation of E. coli (Islam et al. 2017, Karamouz 

et al. 2017, Tinelli and Juran 2017). However, the hydraulic analysis was based on DDA in all of 
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these studies. In the case of PDCs, intrusion nodes and volumes cannot be identified without PDA. 

The propagation of contaminants due to water path change during depressurization events will also 

drastically change. In Chapter 5, we took advantage of the presented MSWQA-PDA approach to 

simulate the ingress and fate/transport of contaminants (E. coli) by simultaneously accounting for 

(i) the interactions between contaminants and disinfectant residuals (chlorine or chloramine), and 

(ii) the effect of hydraulic conditions under sustained pressure losses (5 hours) applying a realistic 

hydraulic analysis (i.e. PDA). Our results showed that ~11% of the nodes experienced E. coli at 

any time over the whole simulation duration (4 days) without any disinfectant. The extent of areas 

positive for E. coli were reduced to ~7% in the chloraminated system, and much smaller (< 1%) in 

the chlorinated system (Figure 5.4). The maximum E. coli nodal concentration estimated over the 

whole simulation period was evaluated as a function of nodal pressure under PDCs. Findings show 

the significant role of disinfectant residual types and concentrations in confining the 

contaminants into low-pressure areas. It was observed that, for the studied PDCs, E. coli was 

transported to the areas with pressure up to 40 m in the case of no disinfectant residual in the 

system. A chloramine residual of 1 mg/L at the outlet of the WTPs did not prevent widespread 

propagation of E. coli. However, it decreased their concentrations to less than 1 CFU/100 mL at 

nodes with P > 20 m under PDCs. Interestingly, 1 mg/L chlorine residual at the outlet of the WTPs 

confined the contamination to a much smaller area with P < 8 m (Figure 5.6 and Figure 5.7). 

8.3 What is the public health risk associated to accidental intrusion under 

sustained low/negative pressure conditions? 

8.3.1 QMRA in drinking water distribution systems 

Even though it is reported that deficiencies in the water distribution systems could lead to 

waterborne disease outbreaks (Craun et al. 2010, Guzman-Herrador et al. 2015, Lindley and 

Buchberger 2002, Payment et al. 1991, Payment et al. 1997), the potential risk from ingress into 

the network is generally not integrated into the risk assessment of drinking water systems. In the 

past decade, some studies have proposed using QMRA to evaluate the risk from intrusion events 

in DSs due to transient low pressure events, main repairs or intentional contamination (Blokker et 

al. 2014, Blokker et al. 2018, LeChevallier et al. 2011, Schijven et al. 2016, Teunis et al. 2010, 
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Yang et al. 2011, Yang et al. 2015). However, there is no current QMRA analysis that models the 

infection risk associated with sustained low/negative pressure events based on water quality 

calculations using realistic hydraulic model under PDCs (i.e. PDA). Applying QMRA to drinking 

water distribution system can be challenging as many factors must be considered such as the 

location, concentration, and duration of contamination events as well as fate/transport of 

contaminants and the likelihood of intake of pathogens by consumers drinking tap water (Besner 

et al. 2011). To address these requirements, in Chapter 6, the improved QMRA framework 

proposed by Blokker et al. (2018) was customized and linked with water quality calculations based 

on PDA to assess the risk of accidental intrusion through leakage points due to sustained pressure 

losses in a full-scale network. The improved simulation techniques for intrusion modeling that were 

presented in Chapter 5 are incorporated into the QMRA framework (Figure 6.1). 

8.3.2 Investigating the influence of different factors on the infection risk 

variation 

In Chapter 6, specific probability distributions from Blokker et al. (2018) were used in the QMRA 

model to consider the consumers’ behavior by accounting for the number of glasses per person per 

day, the ingested volume per glass, and the time of  filling a glass. Then, for each specific 

hydraulic/quality condition, the consumers’ behavioral variability was further investigated using 

200 Monte Carlo simulations. Findings clearly show the importance of considering consumers’ 

behavioral variability. The results showed large variations (up to 55% increase) for the 1 h 

PDCs/intrusion on the first day (560 oocyst/L). During the three following days the variability 

between maximum and minimum number of infected people was less. These results reveal the 

importance of taking into account the uncertainty associated with consumers’ behavioral 

variability. Larger differences on the first day (1 h intrusion) can be explained by the fact that the 

nodal contaminant concentration varies rapidly with time. Therefore, the probability of drinking 

contaminated water is more sensitive to the number of glasses per day and can be augmented 

significantly when the number of glasses per day increases, in agreement with previous findings 

(Blokker et al. 2018, Davis and Janke 2008, Van Abel et al. 2014). 

One of the advantages of coupling QMRA model with realistic PDA in this study was that we were 

able to take into account the consumers’ behavior during PDCs. Demand availability was used to 
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show the large impact of avoiding water consumption during low pressure events on infection 

risk. This was done by modifying the kitchen tap use based on the demand availability (DSR=0 or 

DSR < 5%) at each node for each person. Results showed a ~ 65% reduction in the number of 

infected people on the first day of 1-h intrusion, if assumed that people did not drink water from 

the kitchen tap at low-flow times (DSR < 5%) compared to not consuming only at no demand 

times. Timely response to depressurization events is a challenge. Delays in issuing advisories to all 

the system’s consumers are common and excepted to occur with sectorial loss of pressure events 

that may go undetected. Therefore, our modeling results emphasize the need of public awareness 

to avoid drinking water from the tap if the flow is very low. Such a simple initiative would be 

effective in reducing the probability of infection risk due to PDCs in DSs and could be easily done 

by utilities. 

Modeling results for different durations of PDCs/intrusion (1, 10, 24 hours), showed that the 

number of infected people was much lower for the shorter duration events (Chapter 6). A 1-hour 

PDCs/intrusion could lead to lower number of infected people by 17-fold than a 24-hour event. 

So that, over the 4-day period the maximum number of infected people (out of 200 Monte Carlo 

simulations) was decreased from 1410, for the 24-hour scenario, to 502 and 84 people under 10 

hours and 1 hour PDCs/intrusion scenarios, respectively. The concentration of Cryptosporidium in 

sewage was the same for all scenarios (560 oocyst/L). This reflects the larger intrusion volume 

entering the network for the longer duration events (Figure 8.2).  

For a fixed duration of intrusion (24 hours), the number of infected people increased by 235-fold 

when the concentrations of Cryptosporidium in raw sewage varied from 1 to 560 oocysts/L. This 

mainly points out the need of further improvement in estimating the concentration of contaminants 

outside the pipes in future studies. Also, it reveals the risk of ageing sewer mains located close to 

drinking water pipes. Previous QMRA studies associated with transient PDCs, showed virus 

concentration was the third-highest ranked factor after coincidence of water withdrawals from 

contaminated water, and the duration of negative pressure (LeChevallier et al. 2011, Teunis et al. 

2010). 

Applying the maximum dose-response relation increased the number of infected people by about 

two times as compared to the median dose-response relation for all the concentration scenarios 
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(1, 6, 26, and 560 oocysts/L). These differences in trends reflect the was observed in the study by 

Blokker et al. (2014). The reason can be explained by the fact that the differences between median 

and maximum relations at lower and higher doses. Therefore, the discrepancy between the median 

and maximum probability of infection could change based on the range of calculated doses (World 

Health Organization (WHO) 2009). 

Consumption of daily volume was more important than the timing of consumption in defining 

infection risk. The sensitivity of the results to the consumption volume and number of glasses per 

day per person showed that, for 24 hours intrusion, the infection risk was more influenced by the 

consumption volume (from 300 mL to 1 L with fixed number of glasses), as compared to varying 

the number of glasses (1, 3 and 10 for a constant volume). These finding are in agreement with 

previous study by Davis and Janke (2008) showing that the quantity of ingested water is more 

important than the timing of ingestion for 24 hours intentional intrusion. In general, the variations 

were more noticeable when the number of glasses jumped from 1 to 3 than switching from 3 to 10 

glasses. Previous studies also observed that 3 glasses per day can lead to higher infection risk 

compared to the scenario that assumed the total daily intake volume was collected once a day 

(Blokker et al. 2018, Van Abel et al. 2014). 

8.4 What are the regulatory and management implications of the findings? 

8.4.1 Can the intrusion events be detected by the standard E. coli sampling 

protocols? 

The goal of regulatory sampling is to provide comprehensive understanding of water quality and 

ensure safe drinking water to consumers. E. coli is used in the regulations as a reference indicator 

organism of potential contamination in the distribution systems (Federation of Canadian 

Municipalities (FCM) and National Research Council (NRC-CNRC) 2004, United States 

Environmental Protection Agency (USEPA) 2010). In Chapter 5, the temporal and spatial 

distribution of E. coli using different types of disinfectants was evaluated and compared after 4, 9, 

and 14 hours from the start of intrusion. For both disinfectants, after 4 hours from the start of 

intrusion, while the contaminated water still was entering the network, high E. coli concentration 

> 1000 CFU/100 mL could be found at or downstream of intrusion zones. In the chlorinated system, 
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the number of nodes with positive for E. coli was very low after the end of intrusion. The limited 

positive nodes in the presence of chlorine demonstrate the challenge of any confirmation of 

contamination, unless samples are collected during the intrusion event at or downstream of the 

intrusion locations. However, determining these optimal sampling locations and deploying rapidly 

these areas for sampling at the right time may not be practical. The number of nodes was < 10 

nodes after 4 and 9 hours after the end of intrusion (Figure 5.5).  

In the chlorinated system, by the end of intrusion, E. coli was propagated to more nodes (826, after 

9 hours) although at low concentrations (Figure 5.5). The probability of detecting positive E. coli 

was estimated using a Poisson distribution at each node and each hour from the beginning of the 

intrusion up to 20 hours. With this information, one can determine the best time and location for 

sampling. In chlorinated system, for sampling volume of 100 mL, the nodal mean detection 

probability of E. coli was more than 0.1 at 166 nodes in the first two 5-hour intervals (Figure 

5.8). Our simulations offer a case study that can benefit the water utilities by allowing them to 

improve their sampling schedules using numerical predictions targeting areas with a high 

likelihood of detecting contaminants. With such an approach, negative results could be relied upon 

to provide a stronger basis to lift or avoid a BWA. Very few studies have investigated the 

effectiveness of existing statutory sampling protocols by using hydraulic modeling and simulations 

of contamination events (Blokker et al. 2018, van Lieverloo et al. 2007). Both studies indicate low 

detection probability of contamination using standard monitoring programs, even though they 

assumed that E. coli propagated throughout the network as conservative species with no 

inactivation. Our results are in agreement and show that the detection is even more challenging in 

the presence of chlorine. 

Regulations mandate zero E. coli per 100 mL volume of the sample (EPA Office of Environmental 

Enforcement 2009). The selection of a reference volume influences the probability of detecting 

E. coli. Large volume sampling, rather than the conventional 100 mL, has been used in field study 

to increase the probability of detecting E. coli and total coliform in supply zones (Hambsch et al. 

2007, Hargy et al. 2010). In the presence of chloramine, increasing the sampling volume by a factor 

of 10 (1 L) improved the detection probabilities, especially in the first 10 hours after the intrusion 

event is over (Figure 5.8 and Figure 5.9). During the second 5-hour period of post intrusion, the 75 

percentile of the mean probability of detecting positive E. coli (for 2905 nodes that experience E. 
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coli ≥ 10-6 CFU/L at any time over the whole simulation) was increased from 2% to 15% by 

augmenting the sampling volume from 100 mL to 1 L. Our findings agree with those from 

Hanninen et al. (2003) who examined three waterborne outbreaks in Finland and observed that the 

detection probability of E. coli and coliform was increased for larger volumes ( 1 to 2 L) using 

membrane filtration.  

8.4.2 Do we need a system wide BWA due to low/negative pressure events?  

The main goal of a BWA is to protect consumers against potential microbiological risks (Health 

Canada 2015). One of the objectives of this project was to look at the possibility of issuing sectorial 

BWAs, instead of a system wide BWA, after events leading to sustained pressure losses.  

DDA may lead to unjustified wide BWA. First, our results (Chapter 4) showed that DDA 

overestimated the number of nodes and the extent of areas at risk of low/negative pressures. 

Therefore, a more realistic approach under PDCs, i.e. PDA, should be used for predicting 

low/negative pressure values as well as spatial clustering of theses nodes, which can affect the 

boundaries of BWA zones.  

BWA zones should not only be determined based on pressure values. Secondly, the spatial and 

temporal distribution of E. coli across the network during and after 5 hours of intrusion event was 

investigated in the absence and presence of different types and concentrations of disinfectant 

residuals (Chapter 5). The results showed that contamination can be transported to the areas other 

than the low-pressure nodes (> 10 m). On the other hand, contamination never reached some nodes 

in low-pressure zones (< 10 m) (Figure 5.10). Therefore, the BWA zones should not only be 

determined based on low/negative pressure nodes under PDCs, but also based on 

intrusion/backflow locations, volumes, contaminant concentrations, the efficacy of disinfectant 

residuals on the contaminant, and the fate and transport of contaminants that depend on the water 

path during both pressure-deficient and normal operating conditions. 

Spatial/temporal distribution of nodal risks for issuing sectorial boil water advisory. In Chapter 

6, the spatial distribution of nodal infection risk by Cryptosporidium resulting from different 

intrusion durations (1, 10 and 24 hours) showed that duration of the event is a key factor in defining 

the areas subjected to BWA. Short duration of PDCs/intrusion (1 h) may not necessarily lead to 
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system wide BWA as the sum of nodal infection risk over a vast area of the network is < 0.2 as 

compared to 84 throughout the whole network (Figure 6.6). Furthermore, avoiding unjustified 

system wide BWA will limit the burden to the consumers. However, it should be noted that our 

finding only considers intrusion through leakage points. In the case of backflow from potential 

cross-connections or intrusion form AVVs, the areas at risk may be changed. The location of 

contaminants has a great impact on the extend of area receiving contaminates (Hart et al. 2019). 

The temporal distribution of nodal risks, daily versus event, is investigated in Chapter 6 to 

determine the duration of BWA and the impact of timely response on the public health risk. Data 

showed that for 1 h intrusion event (started from 6:30 to 7:30 PM), if the preventive/corrective 

action was delayed for 5 hours, it may lead to infection of up to 71 people. As compared to 99 for 

the 4-day observation. At the end, the infection risk for different pressure zones (identified based 

on nodal pressure during PDCs) at each day is calculated. Results showed that, on day 2 the number 

of infected people for nodes with P > 15 m was still significant (6 people) indicating that 

preventive/corrective actions cannot only be limited to the areas with low-pressure under PDCs. It 

is in agreement with results reported in Chapter 5 for E. coli propagation throughout the network 

in the absence of disinfectant or in the presence of chloramine. 

The work presented here will benefit the water utilities by providing insight into when and where 

to issue a BWA during PDCs to minimize both the areas affected by BWA and the adverse effects 

of contaminant propagation in water distribution networks to ensure safe drinking water to 

consumers. More simulations are required to investigate other types of PDCs, with different 

durations and severities, to be able to provide more detailed guidance on the duration and extent of 

pressure drops that require corrective/preventive actions. 
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8.5 Project contributions 

This project brought some original contributions to the field: 

• First applications of multispecies water quality analysis based on pressure-driven hydraulic 

analysis using the developed approach in this study (MSWQ-PDA) to a full-scale 

distribution system (30,077 nodes). 

• First estimation of intrusion volume under sustained PDCs by adjusting intrusion volumes, 

and consequently contamination mass rate, at each node based on internal pressure values 

using PDA and state of pipes (age/materials). 

• Contribution to the improvement of available commercial tools. 

• Development of several modeling techniques for more realistic simulation of intrusion 

events using the existing tool such as the variation of decay constant of nth-order model 

(Kintrusion versus Knormal) in contaminated and non-contaminated zones.  

• Demonstration that BWA cannot be determined only based on pressure criteria. 

• First demonstration of modeling E. coli intrusion for confirmation and clearance sampling 

in the presence of disinfectant residuals. 

• Probability of detecting E. coli calculated at each node at different times, during and after 

intrusion with different sampling volumes. The results can be used to reevaluate/improve 

the confirmation/clearance sampling strategies in terms of timing, location, and volume 

sample. 

• Integration of the consumers’ behavior during PDCs into the QMRA model by modifying 

the kitchen tap use based on demand availability during PDCs using PDA. 

• Daily nodal infection risk maps for issuing timely boil water notices and identify areas to 

prioritize for corrective actions 

8.6 Study limitations and sources of uncertainties  

Validation our modeling results with field data in complex operating water distribution systems is 

not feasible as creating intentional sustained PDCs in the network and extensive monitoring would 

be required. In this study, it is attempted to reduce the uncertainties and improve assumptions in 

modeling accidental intrusion and propagation of contaminants under sustained PDCs lasting few 

hours.  
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There are however several limitations and sources of uncertainties in this work, which can be 

categorized into three groups: 

A) Hydraulic sources of uncertainty 

• Improved calibration of water quality model, taking into account nodal demand and residual 

disinfectant data would be needed to validate simulations. 

• Field validation of PDA pressure estimates and more investigations on the pressure-demand 

relationships and the parameters in these equations to more accurately model the system 

behavior under substandard pressure conditions.  

• Considering the difference between the elevation of the node in the model and the taps at 

different floors as the pressure may become zero at the elevated taps before the pipe internal 

pressure becomes zero. 

• Investigating the impact of the level of skeletonization of the water distribution system 

model on hydraulic and water quality results. 

• The impact of different factors such as the shape of leakage orifice, soil hydraulics and the 

spatial distribution of leaks on the estimation of intrusion volume are not considered. 

• Evaluation if the discharge coefficient in the case of exit conditions (leakage) can be 

represented by entry conditions (intrusion). 

 

B) Water quality sources of uncertainty 

• The methodology used to attribute demand to specific nodes brings uncertainty in linking 

water quality to a specific node. 

• Accounting for the variations of intrusion decay in time and space. Assuming the same 

intrusion decay for the contaminated zones regardless of dilutions may underestimate the 

chlorine residuals. 

• More investigation on the selection of the disinfectant and microbial kinetic model and the 

decay constants on both bulk and biofilm. 

• Investigating the impact of complete mixing and plug flow on the water quality throughout 

the network. 

• The concentration of disinfectant consuming compounds and microorganisms outside the 

pipe are not known and could vary throughout the year. 
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C) QMRA sources of uncertainty 

• Investigating more accurately the impact of a BWA on the infection risk. The demand at 

the nodes under advisory should be set to zero in the hydraulic model. The demand 

variations can influence the risk by affecting the hydraulic and water quality results. 

• Investigating the impact of not considering the dispersion effect on the infection risk 

associated to intrusion events under sustained pressure losses. 

• More investigation is needed on the selection of the dose-response equation and its 

contribution to the uncertainty. 

• There is a lack of data on the consumption patterns, volume consumed and number of 

consumption events per day 

• The timing of the intrusion events had a significant impact on the infection risk and should 

be investigated further. 

In this study, due to lack of data, some conservative assumptions are made during simulation such 

as considering raw sewage as the contaminated water surrounding the pipes and not considering 

the impact of soil characteristics outside of pipelines when estimating intrusion flow rates. But, the 

presented approach can be used with variable input data when available. Nevertheless, the 

conservative modelling assumptions in this study demonstrate the value of numerical tools 

combined with quantitative microbial risk assessment models to quantify risk and assist regulators 

and utility managers. Further analysis of uncertainty can be useful to determine the impact of 

different assumptions on the modeling results.



159 

 

CHAPTER 9 CONCLUSION AND RECOMMENDATIONS 

This research project sought to assess the infection risk associated with intrusion of contaminants 

into drinking water distribution systems and predict changes in water quality as the result of 

sustained low/negative pressure conditions by proposing improved modeling tools/approaches. It 

was intended to provide insights to decision-makers for an appropriate and timely response to 

sustained PDCs.  

Modeling the studied full-scale distribution system (> 30,000 nodes) under various severities of 

sustained pressure deficient conditions, showed that DDA: 

 Cannot realistically identify the areas at risk of low/negative pressures, which can lead to 

system wide BWA that may not be justified. 

 Can overestimate the risk of intrusion and the contaminated water ingress volume, 

 Cannot define the nodes with low or no-demand during a system failure, which becomes 

more important for fire-flow analysis and infection risk analysis. 

Therefore, a methodology was proposed that allows for the coupling of EPANET-MSX with PDA 

results (MSWQA-PDA) to enable simultaneous simulation of multiple water quality parameters 

and hydraulic conditions under sustained pressure losses. Due to simulated sustained PDCs, and 

without any intrusion event taking place, we found that: 

 Water quality was generally poorer (i.e. lower chlorine residuals and higher water age and 

THM) under simulated sustained PDCs compared to normal conditions.  

 The differences between water quality parameters during pressure-deficient and normal 

operating conditions were more pronounced for groups of nodes with low/negative pressure 

(< 0 or 15 m) compared to the higher-pressure zones (> 15 m) under PDCs. 

 The duration of sustained low-pressure events can have a considerable impact on the water 

quality variations compared to normal conditions (continuous versus 5 hours). 

MSWQA-PDA was used to model fate and transport of contaminants by taking into considerations 

the effects of both hydraulic variations during PDCs and intrusion demand on the estimated 

disinfectant concentrations. In the simulations, the intrusion volumes, and therefore contaminant 

mass rates, were adjusted for the state of pipes using the nodal leakage demands of the calibrated 
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model, by help of a proposed approach, as well as the internal nodal pressures under PDCs using 

PDA.  

 The presented methodology allowed us to model, for the first time, the fate and transport 

of E. coli following intrusion events resulting from sustained PDCs by considering the 

interactions between E. coli and disinfectant residuals based on realistic PDA.  

 For 5 hours PDCs/intrusion scenario, chlorine residuals limited the contaminated zones and 

E. coli propagation is limited to lower pressure areas based on the pressure values under 

PDCs. While, without disinfectant, E. coli transported to higher-pressure zones (P > 15 m). 

 For 5 hours PDCs scenario, and in the absence of any ingress of contaminated water, some 

chlorine is decayed during PDCs because of increase of water age. However, a typical decay 

was observed with intrusion-associated demand at specific areas. This indicates that online 

chlorine sensors, if installed at optimal locations, might help in detecting intrusion events 

and contributed to a timely response to a sustained depressurization event. However, 

monitoring the residuals cannot be used as an option to detect intrusion events in the 

chloraminated system.  

 During 5 hours intrusion/PDCs, loss of residuals persisted for some time after the pressure 

was back to normal and required some time for chlorine residuals to be stabilized again. 

 For continuous PDCs/intrusion scenario, Cryptosporidium was transported to higher-

pressure areas based on the pressure values under PDCs (P > 15 m). 

 Pressure differences were < 1 m using different pressure-demand relationships (Wagner 

and Tanyimboh); however, it led to significantly higher intrusion flow rate with Wagner 

equation (48%). In this comparison, the orifice diameter was considered as a fixed 

parameter (1 mm) at all the nodes, regardless of the state of pipes.  

Concerning the question as if regulatory compliance E. coli sampling protocols can be used to 

detect the intrusion events, we estimated the temporal and spatial probability of detecting E. coli 

and found that: 

 In the chloraminated systems, targeted spatial-temporal sampling with high volume will 

increase the probability of detecting E. coli and will assist in avoiding false negatives.  
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 The probability of detecting E. coli by sampling in the chlorinated system is extremely low 

unless sampling is immediately directed to the targeted sites. For simulated scenarios, the 

spatial and temporal maps of E. coli suggest that a timely deployment for effective 

sampling is unlikely in the presence of chlorine. 

 Following pressure losses in the network, using standard monitoring programs to confirm 

contamination or verify clearance may lead to false negatives as sampling is likely to be 

conducted at the wrong sites and too late 

 Appropriate numerical tools can provide valuable insight into the regulation to revise 

sampling programs in terms of timing, location and sample volume for more reliable 

confirmation and clearance sampling. This can be done by taking into account the duration, 

intensity and locations of intrusion events caused by the pressure drop as well as the 

efficacy of disinfectant residuals in the network on the related contaminant. 

The quantification of the infection risk associated with the occurrence of sustained low/negative 

pressure events in drinking water distribution systems using the improved tools is an important 

contribution of this thesis. To this aim, the advanced QMRA model developed by Blokker et al. 

(2018) was customized and coupled with the water quality calculations based on PDA by taking 

into account the consumers’ behavior under PDCs. In summary, we conclude: 

 Varying the sewage concentration surrounding buried water mains in the model (1 to 560 

oocysts/L) led to increase in the number of infected people by 235-fold, for 24 hour 

intrusion. Therefore, selectively choosing site-specific outside contamination concentration 

can highly improve the infection risk estimations. Event of 1 h led to lower numbers of 

infected people by 17-fold as compared with a long duration 24-hour event. The nodal risk 

maps confirm that duration is a key factor to identify the boundaries of BWA or corrective 

actions.   

 Temporal infection risk distribution for the 1 h system wide event showed that delaying 

response for 5 hours could lead to infection of up to 71 people. Such a delay is highly 

probable. 
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 Considering the consumption event for consumers at nodes with DSR > 5% (instead of 

DSR > 0) during low/negative pressures led to a sharp decrease of 65% in the number of 

infected people at the day that intrusion occurred (1 h). Informing consumers not to drink 

water when pressure is low (low flow at the tap) is a simple and effective measure to lower 

risk. 

This project can offer insight into the development/improvement of regulations or practical 

recommendations for managing drinking water distribution systems under sustained pressure 

losses and minimize the adverse public health effects. This project also highlighted new 

questions/ideas for future research: 

 Apply an efficient optimization approach for sensor placement to detect the contamination 

due to different types of low/negative pressure events in drinking water distribution systems 

using improved hydraulic and water quality models. 

 Use the improved modeling techniques in this study to assess the risk associated with 

backflow of contaminated water from cross connections during sustained pressure losses 

using the QMRA model. In addition, to estimate the critical duration of pressure events and 

related pressure ranges required to contaminate the distribution system from backflows 

through cross-connections. It is worthy to consider, at the same time, the cost of necessary 

infrastructures and their maintenance for preventing huge and dangerous backflows.  

 Evaluate the public health risk for system contamination by other types of microorganisms 

(e.g. Giardia, and virus) and the efficacy of disinfectant residuals on reducing the infection 

risks associated to accidental intrusion due to sustained PDCs. 

 Use improved numerical tools to find the proper locations of chlorine booster stations and 

related chlorine concentrations to minimize the health risk after any intrusion event due to 

sustained pressure losses. 

 Review guidelines for issuing boil water advisories in terms of duration and intensity of 

pressure losses by running more cases using the improved numerical tool. 

 Investigate the implementation of district metered areas for the studied network, based on 

the modeling results, to limit the extent of the BWA areas and avoid system wide BWA. 
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 Even though PDA provides a more realistic simulation of the pressure losses compared to 

DDA, but the selection of an appropriate PDRs and the parameters in these equations using 

field data can improve the PDA predictions, especially in the case of intrusion modeling.  



164 

 

 

BIBLIOGRAPHY 

Ackley, J. R. L., Tanyimboh, T. T., Tahar, B., & Templeman, A. B. (2001, Sep). Head-driven 

analysis of water distribution systems. Paper presented at the Water Software Systems: 

Theory and Applications- International Conference on Computing and Control for the 

Water Industry CCWI, Leicester (Vol. 1, pp. 183-192). 

Afshar, A., & Mariño, M. A. (2014). Multiobjective consequent management of a contaminated 

network under pressure-deficient conditions. Journal - American Water Works Association, 

106(10), E470-E480. doi:10.5942/jawwa.2014.106.0125 

Ang, W. K., & Jowitt, P. W. (2006). Solution for water distribution systems under pressure-

deficient conditions. Journal of Water Resources Planning and Management, 132(3), 175-

185. doi:10.1061//asce/0733-9496/2006/132:3/175 

Baranowski, T. M., & LeBoeuf, E. J. (2006). Consequence management optimization for 

contaminant detection and isolation. Journal of Water Resources Planning and 

Management-Asce, 132(4), 274-282. doi:10.1061/(ASCE)0733-9496(2006)132:4(274) 

Bashi-Azghadi, S. N., Afshar, A., & Afshar, M. H. (2017a). Multi-period response management to 

contaminated water distribution networks: Dynamic programming versus genetic 

algorithms. Engineering Optimization, 50(3), 415-429. 

doi:10.1080/0305215x.2017.1318871 

Bashi-Azghadi, S. N., Afshar, M. H., & Afshar, A. (2017b). Multi-objective optimization response 

modeling to contaminated water distribution networks: Pressure driven versus demand 

driven analysis. KSCE Journal of Civil Engineering, 21(6), 2085-2096. 

doi:10.1007/s12205-017-0447-7 

Bentley Systems, Incorporated. (2014). WaterGEMS V8i users manual. Watertown, CT, USA. 

Besner, M.-C., Broséus, R., Lavoie, J., Di Giovanni, G., Payment, P., & Prévost, M. (2010). 

Pressure monitoring and characterization of external sources of contamination at the site of 

the Payment drinking water epidemiological studies. Environmental Science and 

Technology, 44(1), 269-277. doi:10.1021/es901988y 

Besner, M.-C., Ebacher, G., Jung, B. S., Karney, B., Lavoie, J., Payment, P., & Prévost, M. (2010). 

Negative pressures in full-scale distribution system: Field investigation, modelling, 

estimation of intrusion volumes and risk for public health. Drinking Water Engineering and 

Science, 3(2), 101-106. doi:10.5194/dwes-3-101-2010 

Besner, M.-C., Ebacher, G., Lavoie, J., & Prévost, M. (2007, May 15-19). Low and negative 

pressures in distribution systems: Do they actually result in intrusion? Paper presented at 

the 9th Annual Water Distribution System Analysis Symposium, ASCE-EWRI World 

Environmental and Water Resources Congress, Tampa, FL, USA (pp. 10). 

Besner, M.-C., Messner, M., & Regli, S. (2010, Sep 12-15). Pathogen intrusion in distribution 

systems: model to assess the potential health risks. Paper presented at the 12th Annual 

Conference on Water Distribution Systems Analysis (WDSA), Tucson, AZ, USA (pp. 484-

493).doi:10.1061/41203(425)46 



165 

 

 

Besner, M.-C., Prévost, M., & Regli, S. (2011). Assessing the public health risk of microbial 

intrusion events in distribution systems: conceptual model, available data, and challenges. 

Water Research, 45(3), 961-979. doi:10.1016/j.watres.2010.10.035 

Betancourt, W. Q., & Rose, J. B. (2004). Drinking water treatment processes for removal of 

Cryptosporidium and Giardia. Veterinary Parasitology, 126(1-2), 219-234. 

Betanzo, E. W., Hofmann, R., Hu, Z. F., Baribeau, H., & Alam, Z. (2008). Modeling the impact of 

microbial intrusion on secondary disinfection in a drinking water distribution system. 

Journal of Environmental Engineering, 134(4), 231-237. 

Bhave, P. R. (1981). Node flow analysis of water distribution systems. Transportation Engineering 

Journal, 107 457-467. 

Blokker, E. J. M., Vreeburg, J. H. G., Buchberger, S. G., & van Dijk, J. C. (2008). Importance of 

demand modeling in network water quality models: a review. Drinking Water Engineering 

and Science Discussions, 1 1-20. 

Blokker, M., Smeets, P., & Medema, G. (2014). QMRA in the Drinking Water Distribution System. 

16th Water Distribution System Analysis Conference (Wdsa2014): Urban Water 

Hydroinformatics and Strategic Planning, 89 151-159. doi:10.1016/j.proeng.2014.11.171 

Blokker, M., Smeets, P., & Medema, G. (2018). Quantitative microbial risk assessment of repairs 

of the drinking water distribution system. Microbial Risk Analysis, 8 22-31. 

doi:10.1016/j.mran.2017.12.002 

Boccelli, D. L., Tryby, M. E., Uber, J. G., Rossman, L. A., Zierolf, M. L., & Polycarpou, M. M. 

(1998). Optimal scheduling of booster disinfection in water distribution systems. Journal 

of Water Resources Planning and Management, 124(2), 99-110. 

Boccelli, D. L., Tryby, M. E., Uber, J. G., & Summers, R. S. (2003). A reactive species model for 

chlorine decay and THM formation under rechlorination conditions. Water Research, 

37(11), 2654-2666. doi:10.1016/s0043-1354(03)00067-8 

Boulos, P. F., Karney, B. W., Wood, D. J., & Lingireddy, S. (2005). Hydraulic transient guidelines 

for protecting water distribution systems. Journal American Water Works Association, 

97(5), 111-124. 

Brown, D. (2009). The management of trihalomethanes in water supply systems. (Ph.D., The 

University of Birmingham, Birmingham, UK). Retrieved from 

http://etheses.bham.ac.uk/364/ 

Brown, D., Bridgeman, J., & West, J. R. (2011). Predicting chlorine decay and THM formation in 

water supply systems. Reviews in Environmental Science and Bio/Technology, 10(1), 79-

99. doi:10.1007/s11157-011-9229-8 

Canadian Council of Ministers of the Environment (CCME). (2004). From source to tap: guidance 

on the multi-barrier approach to safe drinking water (Report No. PN 1334). Winnipeg, 

Manitoba, Canada: Retrieved from 

http://www.ccme.ca/assets/pdf/mba_guidance_doc_e.pdf 

http://etheses.bham.ac.uk/364/
http://www.ccme.ca/assets/pdf/mba_guidance_doc_e.pdf


166 

 

 

Centers for Disease Control and Prevention (CDC). (2013). Drinking water advisory 

communication toolbox. Retrieved from 

http://www.cdc.gov/healthywater/emergency/dwa-comm-toolbox/index.html 

Chase, D. V. (2000). Operation of water distribution systems. In Water Distribution Systems 

Handbook (pp. 15.11-15.16). 

Cheung, P. B., Van Zyl, J. E., & Reis, L. F. R. (2005, Sep 5-7). Extension of epanet for pressure 

driven demand modeling in water distribution system. Paper presented at the Eighth 

International Conference on Computing and Control for the Water Industry CCWI2005 - 

Water Management for the 21st Century, Exeter, UK (pp. 215-226). 

Ciaponi, C., & Creaco, E. (2018). Comparison of pressure-driven formulations for WDN 

simulation. Water, 10(4). doi:10.3390/w10040523 

Ciaponi, C., Franchioli, L., Murari, E., & Papiri, S. (2014). Procedure for defining a pressure-

outflow relationship regarding indoor demands in pressure-driven analysis of water 

distribution networks. Water Resources Management, 29(3), 817-832. doi:10.1007/s11269-

014-0845-2 

Clayton, C. R. I., & van Zyl, J. E. (2007, June 1,). The effect of pressure on leakage in water 

distribution systems. Paper presented at the Proceedings of the ICE - Water Management 

(Vol. 160, pp. 109-114).doi:10.1680/wama.2007.160.2.109 

Collins, R., Besner, M.-C., Beck, S., Karney, B., & Boxall, J. (2010, September 13, 2010). 

Intrusion modelling and the effect of ground water conditions. Paper presented at the 12th 

Annual WDSA Conference, The University of Arizona, Tucson, Arizona, USA. 

Courtis, B. J., West, J. R., & Bridgeman, J. (2009). Chlorine demand-based predictive modeling of 

THM formation in water distribution networks. Urban Water Journal, 6(6), 407-415. 

doi:10.1080/15730620903038461 

Craun, G. F., Brunkard, J. M., Yoder, J. S., Roberts, V. A., Carpenter, J., Wade, T., . . . Roy, S. L. 

(2010). Causes of outbreaks associated with drinking water in the United States from 1971 

to 2006. Clinical Microbiology Reviews, 23(3), 507-528. doi:10.1128/cmr.00077-09 

Craun, G. F., & Calderon, R. L. (2001). Waterborne disease outbreaks caused by distribution 

system deficiencies. Journal American Water Works Association, 93(9), 64-75. 

Craun, G. F., Nwachuku, N., Calderon, R. L., & Craun, M. F. (2002). Outbreaks in drinking-water 

systems, 1991-1998. Journal of Environmental Health, 65(1), 16-23. 

Davis, M. J., & Janke, R. (2008). Importance of exposure model in estimating impacts when a 

water distribution system is contaminated. Journal of Water Resources Planning and 

Management, 134(5), 449-456. 

Davis, M. J., & Janke, R. (2009). Development of a probabilistic timing model for the ingestion of 

tap water. Journal of Water Resources Planning and Management, 135(5), 397-405. 

Davis, M. J., Janke, R., & Taxon, T. N. (2018). Mass imbalances in EPANET water-quality 

simulations. Drinking Water Engineering and Science, 11(1), 25-47. doi:10.5194/dwes-11-

25-2018 

http://www.cdc.gov/healthywater/emergency/dwa-comm-toolbox/index.html


167 

 

 

Digiano, F. A., & Zhang, W. (2005). Pipe section reactor to evaluate chlorine-wall reaction. 

Journal American Water Works Association, 97(1), 74-85. 

Douglas, I., Elliott, J., & Besner, M.-C. (2018, Nov 11-14). Evaluating risks to water quality from 

sustained loss of pressure events in the distribution system. Paper presented at the American 

Water Works Association-Water Quality Technology Conference (WQTC), Toronto, ON, 

Canada (pp. 26). 

Ebacher, G., Besner, M.-C., Clément, B., & Prévost, M. (2012). Sensitivity analysis of some critical 

factors affecting simulated intrusion volumes during a low pressure transient event in a full-

scale water distribution system. Water Research, 46(13), 4017–4030. 

doi:10.1016/j.watres.2012.05.006 

Ebacher, G., Besner, M.-C., Lavoie, J., Jung, B. S., Karney, B. W., & Prévost, M. (2009, May 17-

22). Comparison of pressures simulated using transient analysis with field data from a full-

scale distribution system. Paper presented at the 11th Water Distribution Systems Analysis 

Symposium, Kansas City, MO, USA (pp. 9). 

Ebacher, G., Besner, M.-C., Lavoie, J., Jung, B. S., Karney, B. W., & Prévost, M. (2011). Transient 

modeling of a full-scale distribution system: Comparison with field data. Journal of Water 

Resources Planning and Management, 137(2), 173-182. doi:10.1061/(ASCE)WR.1943-

5452.0000109 

Ebacher, G., Besner, M.-C., & Prevost, M. (2013). Submerged appurtenances and pipelines: An 

assessment of water levels and contaminant occurrence. Journal American Water Works 

Association, 105(12), E684-E698. doi:10.5942/jawwa.2013.105.0156 

Ebacher, G., Besner, M.-C., & Prévost, M. (2011, May 22-26). Quantification of the relative 

importance of factors contributing to intrusion in a distribution system using a full factorial 

design. Paper presented at the World Environmental and Water Resources Congress 2011: 

Bearing Knowledge for sustainability Palm Springs, CA, USA (pp. 291-

303).doi:10.1061/41173(414)32 

Ebacher, G., Besner, M.-C., Prévost, M., & Allard, D. (2010, Sep 12-15). Negative pressure events 

in water distribution systems: Public health risk assessment based on transient analysis 

outputs. Paper presented at the 12th Annual Conference on Water Distribution Systems 

Analysis (WDSA), Tucson, AZ, USA (pp. 471-483).doi:10.1061/41203(425)45 

Environmental Protection Agency (EPA). (2013). Federal register Part II -National primary 

drinking water regulations: revisions to the total Coliform rule. Federal register. Retrieved 

from http://www.gpo.gov/fdsys/pkg/FR-2013-02-13/pdf/2012-31205.pdf 

EPA Office of Environmental Enforcement. (2009). EPA drinking water advice note. Advice note 

no. 3: E. coli in drinking water. Version 1. Retrieved from 

https://www.epa.ie/pubs/advice/drinkingwater/Advice%20Note%20No3.pdf 

Erickson, J., Roberson, J. A., Friedman, M., & Smith, C. (2015). Low-pressure events: Variation 

in state regulations and utility practices. Journal American Water Works Association, 

107(3), E120-E129. doi:10.5942/jawwa.2015.107.0024 

http://www.gpo.gov/fdsys/pkg/FR-2013-02-13/pdf/2012-31205.pdf
https://www.epa.ie/pubs/advice/drinkingwater/Advice%20Note%20No3.pdf


168 

 

 

Federation of Canadian Municipalities (FCM), & National Research Council (NRC-CNRC). 

(2004). Monitoring water quality in the distribution system. A best pratice by the national 

guide to sustainable municipal infrastructure (Report No. Version N0. 1.0). Federation of 

Canadian Municipalities and National Research Council.  

Fisher, I., Kastl, G., & Sathasivan, A. (2011). Evaluation of suitable chlorine bulk-decay models 

for water distribution systems. Water Research, 45(16), 4896-4908. 

Fujiwara, O., & Li, J. (1998). Reliability analysis of water distribution networks in consideration 

of equity, redistribution, and pressure-dependent demand. Water Resources Research, 

34(7), 1843-1850. doi:10.1029/98wr00908 

Germanopoulos, G. (1985). A technical note on the inclusion of pressure dependent demand and 

leakage terms in water supply network models. Civil Engineering Systems, 2(3), 171-179. 

doi:10.1080/02630258508970401 

Gibson, J., Karney, B., & Guo, Y. (2019). Predicting health risks from intrusion into drinking water 

pipes over time. Journal of Water Resources Planning and Management, 145(3), 

04019001. doi:10.1061/(ASCE)WR.1943-5452.0001039 

Giustolisi, O., & Laucelli, D. (2011). Water distribution network pressure-driven analysis using 

the enhanced global gradient algorithm (EGGA). Journal of Water Resources Planning and 

Management-Asce, 137(6), 498-510. doi:10.1061/(Asce)Wr.1943-5452.0000140 

Giustolisi, O., Savic, D., & Kapelan, Z. (2008). Pressure driven demand and leakage simulation 

for water distribution networks. Journal of Hydraulic Engineering, 134(5), 626-635. 

doi:10.1061/(ASCE)0733-9429(2008)134:5(626) 

Giustolisi, O., & Walski, T. M. (2012). Demand Components in Water Distribution Network 

Analysis. Journal of Water Resources Planning and Management, 138(4), 356-367. 

doi:10.1061/(asce)wr.1943-5452.0000187 

Gorev, N. B., & Kodzhespirova, I. F. (2013). Noniterative implementation of pressure-dependent 

demands using the hydraulic analysis engine of EPANET 2. Water Resources Management, 

27(10), 3623-3630. doi:10.1007/s11269-013-0369-1 

Government of Ontario. (2003). Procedure for disinfection of drinking water in Ontario. Ontario, 

Canada: Retrieved from http://www.ene.gov.on.ca/envision/gp/4448e.pdf 

Great Lakes Upper Mississippi River Board of State Public Health and Environmental Managers. 

(2007). Recommended standards for water works. Albany, New York, USA: Health 

Research Inc., Health Education Services Division. Retrieved from 

http://www.leafocean.com/test/10statepreface.html 

Gullick, R. W., LeChevallier, M. W., Case, J., Wood, D. J., Funk, J. E., & Friedman, M. J. (2005). 

Application of pressure monitoring and modelling to detect and minimize low pressure 

events in distribution systems. Water Supply: Research and Technology-Aqua, 54(2), 65-

81. 

Gullick, R. W., Lechevallier, M. W., Svindland, R. C., & Friedman, M. J. (2004). Occurrence of 

transient: Low and negative pressures in distribution systems. Journal American Water 

Works Association, 96(11), 52-66. 

http://www.ene.gov.on.ca/envision/gp/4448e.pdf
http://www.leafocean.com/test/10statepreface.html


169 

 

 

Gupta, R. (2015, May 17-21). History of pressure-dependent analysis of water distribution 

networks and its applications. Paper presented at the World Environmental and Water 

Resources Congress 2015, Austin, TX, USA (pp. 755-

765).doi:10.1061/9780784479162.070  

Gupta, R., & Bhave, P. R. (1996). Comparison of methods for predicting deficient-network 

performance. Journal of Water Resources Planning and Management, 122(3), 4. 

doi:10.1061/(ASCE)0733-9496(1996)122:3(214)  

Gupta, R., Dhapade, S., Ganguly, S., & Bhave, P. R. (2012). Water quality based reliability analysis 

for water distribution networks. ISH Journal of Hydraulic Engineering, 18(2), 80-89. 

doi:10.1080/09715010.2012.662430 

Guzman-Herrador, B., Carlander, A., Ethelberg, S., Freiesleben de Blasio, B., Kuusi, M., Lund, 

V., . . . Nygard, K. (2015). Waterborne outbreaks in the Nordic countries, 1998 to 2012. 

Eurosurveillance, 20(24), 1-10. 

Haas, C. N., & Karra, S. B. (1984a). Kinetics of microbial inactivation by chlorine. I. Review of 

results of demand-free systems. Water Research, 18(11), 1443-1449. 

Haas, C. N., & Karra, S. B. (1984b). Kinetics of wastewater chlorine demand exertion. Journal of 

the Water Pollution Control Federation, 56(2), 170-173. 

Hambsch, B., Bockle, K., & van Lieverloo, J. H. M. (2007). Incidence of faecal contaminations in 

chlorinated and non-chlorinated distribution systems of neighbouring european countries. 

Journal of Water and Health, 5(Suppl. 1), 119-130. 

Hamouda, M. A., Jin, X., Xu, H., & Chen, F. (2018). Quantitative microbial risk assessment and 

its applications in small water systems: A review. Science of The Total Environment, 645 

993-1002. doi:10.1016/j.scitotenv.2018.07.228 

Hanninen, M. L., Haajanen, H., Pummi, T., Wermundsen, K., Katila, M. L., Sarkkinen, H., . . . 

Rautelin, H. (2003). Detection and Typing of Campylobacter jejuni and Campylobacter 

coli and analysis of indicator organisms in three waterborne outbreaks in Finland. Applied 

and Environmental Microbiology, 69(3), 1391-1396. doi:10.1128/aem.69.3.1391-

1396.2003 

Hargy, T. M., Rosen, J., LeChevallier, M., Friedman, M., & Clancy, J. L. (2010). A high-volume 

sampling method for total coliform and E. coli. Journal American Water Works 

Association, 102(3), 79-+. 

Hart, D., Rodriguez, J. S., Burkhardt, J., Borchers, B., Laird, C., Murray, R., . . . Haxton, T. (2019). 

Quantifying hydraulic and water quality uncertainty to inform sampling of drinking water 

distribution systems. Journal of Water Resources Planning and Management, 145(1), 

04018084. doi:10.1061/(ASCE)WR.1943-5452.0001005 

Hatam, F., Besner, M.-C., Ebacher, G., & Prévost, M. (2018a). Combining a multispecies water 

quality and pressure-driven hydraulic analysis to determine areas at risk during sustained 

pressure-deficient conditions in a distribution system. Journal of Water Resources Planning 

and Management, 144(9), 04018057. doi:10.1061/(ASCE)WR.1943-5452.0000976 



170 

 

 

Hatam, F., Besner, M.-C., Ebacher, G., & Prévost, M. (2018b, Jul 23-25). Investigating the impact 

of sustained low pressure events on water quality in water supply networks using pressure-

driven analysis Paper presented at the 1st International WDSA/CCWI 2018 Joint 

Conference, Kingston, ON, Canada. 

Hatam, F., Besner, M.-C., Ebacher, G., & Prévost, M. (submitted). Improvement of Accidental 

Intrusion Prediction Due to Sustained Low-Pressure Conditions: Implications for Chlorine 

and E. coli Monitoring in Distribution Systems. Journal of Water Resources Planning and 

Management. 

He, G., Zhang, T., Zheng, F., & Zhang, Q. (2018). An efficient multi-objective optimization 

method for water quality sensor placement within water distribution systems considering 

contamination probability variations. Water Research, 143 165-175. 

doi:10.1016/j.watres.2018.06.041 

Health Canada. (2015). Guidance for issuing and rescinding boil water advisories in canadian 

drinking water supplies. Ottawa, ON, CANADA: Minister of Health. Retrieved from 

http://publications.gc.ca/collections/collection_2013/sc-hc/H128-1-09-578-eng.pdf 

Helbling, D. E., & Vanbriesen, J. M. (2009). Modeling residual chlorine response to a microbial 

contamination event in drinking water distribution systems. Journal of Environmental 

Engineering, 135 918-927. 

Hlavinek, P., Popovska, C., Marsalek, J., & Kukharchyk, T. (2008). Risk management of water 

supply and sanitation systems. Paper presented at the Proceedings of the NATO Advanced 

Research Workshop, Ohrid, Macedonia. 

Hua, F. (2000). The effects of water treatment works on chlorine decay and THM formation. (Ph.D., 

University of Birmingham, UK).  

Hua, F., West, J. R., Barker, R. A., & Forster, C. F. (1999). Modelling of chlorine decay in 

municipal water supplies. Water Research, 33(12), 2735-2746. 

Hundsdorfer, W. H., & Verwer, J. G. (2003). Numerical solution of time-dependent advection-

diffusion-reaction equations. Berlin; New York: Springer. 

Hunter, P. R., Chalmers, R. M., Hughes, S., & Syed, Q. (2005). Self-reported diarrhea in a control 

group: a strong association with reporting of low-pressure events in tap water. Clinical 

Infectious Diseases, 40(4), e32-e34. 

Islam, N., Farahat, A., Al-Zahrani, M. A. M., Rodriguez, M. J., & Sadiq, R. (2015). Contaminant 

intrusion in water distribution networks: Review and proposal of an integrated model for 

decision making. Environmental Reviews, 23(3), 337-352. doi:10.1139/er-2014-0069 

Islam, N., Rodriguez, M. J., Farahat, A., & Sadiq, R. (2017). Minimizing the impacts of 

contaminant intrusion in small water distribution networks through booster chlorination 

optimization. Stochastic Environmental Research and Risk Assessment, 31(7), 1759-1775. 

doi:10.1007/s00477-017-1440-x 

Islam, N., Rodriguez, M.J., Farahat, A. and Sadiq, R. (2017). Minimizing the impacts of 

contaminant intrusion in small water distribution networks through booster chlorination 

optimization. Stochastic Environmental Research and Risk Assessment, 31(7) 1759-1775. 

http://publications.gc.ca/collections/collection_2013/sc-hc/H128-1-09-578-eng.pdf


171 

 

 

Jadas-Hécart, A., El Morer, A., Stitou, M., Bouillot, P., & Legube, B. (1992). The chlorine demand 

of a treated water. Water Research, 26(8), 1073-1084. 

Jinesh Babu, K. S., & Mohan, S. (2012). Extended period simulation for pressure-deficient water 

distribution network. Journal of Computing in Civil Engineering, 26(4), 498-505. 

doi:10.1061/(asce)cp.1943-5487.0000160 

Jun, L., & Guoping, Y. (2013). Iterative Methodology of Pressure-Dependent Demand Based on 

EPANET for Pressure-Deficient Water Distribution Analysis. Journal of Water Resources 

Planning and Management, 139(1), 34-44. doi:10.1061/(asce)wr.1943-5452.0000227 

Kabaasha, A. M., Piller, O., & van Zyl, J. E. (2018). Incorporating the modified orifice equation 

into pipe network solvers for more realistic leakage modeling. Journal of Hydraulic 

Engineering, 144(2). doi:10.1061/(asce)hy.1943-7900.0001410 

Karamouz, M., Zanjani, S., & Zahmatkesh, Z. (2017). Vulnerability assessment of drinking water 

distribution networks to chemical and biological contaminations: Case study. Journal of 

Water Resources Planning and Management, 143(6). doi:10.1061/(asce)wr.1943-

5452.0000764 

Khorshidi, M. S., Nikoo, M. R., & Sadegh, M. (2018). Optimal and objective placement of sensors 

in water distribution systems using information theory. Water Research, 143 218-228. 

doi:10.1016/j.watres.2018.06.050 

Kirmeyer, G. J., Friedman, M., Martel, K., Howie, D., LeChevallier, M., Abbaszadegan, M., . . . 

Harbour, J. (2001). Pathogen intrusion into the distribution system (Report No. 90835). 

Denver, Colorado, USA: American Water Works Association Research Foundation, 

American Water Works Association and United States Environmental Protection Agency. 

Retrieved from Il y a une copie PDF dans le répertoire 

Directions//Publications_Électroniques France 

Kirmeyer, G. J., Friedman, M., Martel, K. D., Noran, P. F., & Smith, D. (2001). Practical guidelines 

for maintaining distribution system water quality. Journal American Water Works 

Association, 93(7), 62-73. 

Kirmeyer, G. J., Thomure, T. M., Rahman, R., Marie, J. L., LeChevallier, M. W., Yang, J., . . . 

Schneider, O. (2014). Effective microbial control strategies for main breaks and 

depressurization (Report No. 4307). Denver, CO, USA: Water Research Foundation. 

Retrieved from http://www.waterrf.org/Pages/Projects.aspx?PID=4307 

Klosterman, S., Hatchett, S., Murray, R., Uber, J., & Bocelli, D. (2009). Comparing single- and 

multi-species water quality modeling approaches for assessing contamination exposure in 

drinking water distribution systems. Paper presented at the World Environmental and Water 

Resources Congress: Great Rivers Kansas City, Missouri, USA (pp. 1-14). 

Kohpaei, A. J., Sathasivan, A., & Aboutalebi, H. (2011). Effectiveness of parallel second order 

model over second and first order models. Desalination and Water Treatment, 32(1-3), 107-

114. doi:10.5004/dwt.2011.2685 

LeChevallier, M. W. (1999). The case for maintaining a disinfectant residual. Journal American 

Water Works Association, 91(1), 86-94. 

http://www.waterrf.org/Pages/Projects.aspx?PID=4307


172 

 

 

LeChevallier, M. W., Xu, M., Yang, J., Teunis, P., & Fleming, K. K. (2011). Managing distribution 

system low transient pressures for water. Water Research Foundation and American Water 

Works Service Company, Inc. Retrieved from PDF dans le répertoire 

Étudiants/AAAAEtudiant_EndNote2011/PUBLICATIONS_Electroniques France 

Lee, H., Yoo, D., Kim, J., & Kang, D. (2015). Hydraulic simulation techniques for water 

distribution networks to treat pressure deficient conditions. Journal of Water Resources 

Planning and Management 06015003. doi:10.1061/(ASCE)WR.1943-5452.0000624 

Lee, M. H., Yoo, D. G., Kang, D., Jun, H., & Kim, J. H. (2016). Uncertainty quantification of 

pressure-driven analysis for water distribution network modeling. Water Science and 

Technology, 16(3), 599-610. doi:10.2166/ws.2015.168 

Lee, Y., & Buchberger, S. G. (2000). Is Dispersion Important in Water Distribution Systems? Paper 

presented at the In Proceedings of ASCE 2000 Joint Conference on Water Resources 

Engineering and Water Resources Planning and Management, Minneapolis, MN, USA. 

Lindley, T. R., & Buchberger, S. G. (2002). Assessing intrusion susceptibility in distribution 

systems. Journal American Water Works Association, 94(6), 66-79. 

Liserra, T., Maglionico, M., Ciriello, V., & Di Federico, V. (2014). Evaluation of reliability 

indicators for wdns with demand-driven and pressure-driven models. Water Resources 

Management, 28(5), 1201-1217. doi:10.1007/s11269-014-0522-5 

Liu, J., Yu, G., & Savic, D. (2011). Deficient-network simulation considering pressure-dependent 

demand. Paper presented at the ICPTT 2011: Sustainable Solutions For Water, Sewer, Gas, 

And Oil Pipelines (pp. 886-900).doi:10.1061/41202(423)94 

Mahmoud, H. A., Savić, D., & Kapelan, Z. (2017). New pressure-driven approach for modeling 

water distribution networks. Journal of Water Resources Planning and Management, 

143(8). doi:10.1061/(ASCE)WR.1943-5452.0000781 

Mamizadeh, J., & Sharoonizadeh, S. (2016). Application of modified complementary reservoir 

approach in analysis of water distribution networks under pressure-deficient conditions. 

Urban Water Journal, 14(4), 386-393. doi:10.1080/1573062x.2016.1171884 

Mays, L. W. (2000). Water distribution systems handbook: McGraw-Hill. 

Mays, L. W. (2004). Water supply systems security. New York: McGraw-Hill. 

McInnis, D. (2004). A relative-risk framework for evaluating transient pathogen intrusion in 

distribution systems. Urban Water Journal, 1(2), 113-127. 

Ministère de l'environnement du Québec. (2002). Directive 001 - Captage et distribution de l'eau. 

Québec, Canada: Retrieved from 

http://www.mddep.gouv.qc.ca/eau/potable/installation/documents/Directive001.pdf 

Ministère du Développement Durable de l’Environnement et des Parcs du Québec (MDDEP). 

(2005). Règlement sur la qualité de l’eau potable. Canada: Gouvernement du Québec. 

Retrieved from 

http://www2.publicationsduquebec.gouv.qc.ca/dynamicSearch/telecharge.php?type=2&fil

e=//Q_2/Q2R18_1_1.htm 

http://www.mddep.gouv.qc.ca/eau/potable/installation/documents/Directive001.pdf
http://www2.publicationsduquebec.gouv.qc.ca/dynamicSearch/telecharge.php?type=2&file=//Q_2/Q2R18_1_1.htm
http://www2.publicationsduquebec.gouv.qc.ca/dynamicSearch/telecharge.php?type=2&file=//Q_2/Q2R18_1_1.htm


173 

 

 

Muray, R., & Adachi, J. (2011). Predicting inactivation of Bacillus spores and E. coli when 

introduced into a water distribution system with growth medium. Paper presented at the 

American Water Works Association AWWA-WQTC Conference Proceedings, Phoenix, 

Arizona, USA (pp. 3).doi:10.1061//asce/0733-9496/2002/128:5/334 

National Research Council of the National Academies. (2006). Drinking water distribution 

systems: assessing and reducing risks. Washington, DC, USA: The National Academies 

Press. 

Nyende-Byakika, S., Ngirane-Katashaya, G., & Ndambuki, J. M. (2012). Comparative analysis of 

approaches to modelling water distribution networks. Civil Engineering and Environmental 

Systems, 29(1), 79-89. doi:10.1080/10286608.2012.663358 

Nygard, K., Wahl, E., Krogh, T., Tveit, O. A., Bohleng, E., Tverdal, A., & Aavitsland, P. (2007). 

Breaks and maintenance work in the water distribution systems and gastrointestinal illness: 

a cohort study. International of Journal Epidemiology, 36(4), 873-880. 

Ohar, Z., Lahav, O., & Ostfeld, A. (2015). Optimal sensor placement for detecting 

organophosphate intrusions into water distribution systems. Water Res, 73 193-203. 

doi:10.1016/j.watres.2015.01.024 

Ozger, S. S. (2003). A semi-pressure-driven approach to reliability assessment of water 

distribution. (Ph. D., Arizona State University). (UMI Number: 3109593) 

Pacchin, E., Alvisi, S., & Franchini, M. (2017). A new non-iterative method for pressure-driven 

snapshot simulations with EPANET. Procedia Engineering, 186 135-142. 

doi:10.1016/j.proeng.2017.03.219 

Paez, D., Suribabu, C. R., & Filion, Y. (2018). Method for extended period simulation of water 

distribution networks with pressure driven demands. Water Resources Management, 32(8), 

2837-2846. doi:10.1007/s11269-018-1961-1 

Pathirana, A. (2010, Sep 12-15). Epanet2 desktop application for pressure driven demand 

modeling. Paper presented at the Water Distribution System Analysis 2010 – WDSA2010,, 

Tucson, AZ, USA (pp. 10). 

Payment, P. (1999). Poor efficacy of residual chlorine disinfectant in drinking water to inactivate 

waterborne pathogens in distribution systems. Canadian Journal of Microbiology, 45(8), 

709-715. 

Payment, P. (2003). Enlèvement des microorganismes pathogènes et des bactéries indicatrices par 

les stations de traitement des eaux usées municipales situées sur la rivière des Mille îles 

(Report No. 3336.11.00.01). Ministère de l'Environnement du Québec. Programme d'aide 

à la recherche et au développement en environnement (PARDE). Retrieved from 

http://sdis.inrs.uquebec.ca/documents/2003_PARDE_Mille_Iles.pdf 

Payment, P., Plante, R., & Cejka, P. (2001). Removal of indicator bacteria, human enteric viruses, 

Giardia cysts, and Cryptosporidium oocysts at a large wastewater primary treatment 

facility. Canadian Journal of Microbiology, 47(3), 188-193. 

Payment, P., Richardson, L., Siemiatycki, J., Dewar, R., Edwardes, M., & Franco, E. (1991). A 

randomized trial to evaluate the risk of gastrointestinal disease due to consumption of 

http://sdis.inrs.uquebec.ca/documents/2003_PARDE_Mille_Iles.pdf


174 

 

 

drinking water meeting current microbiological standards. American Journal of Public 

Health, 81(6), 703-708. 

Payment, P., Siemiatycki, J., Richardson, L., Renaud, G., Franco, E., & Prévost, M. (1997). A 

prospective epidemiological study of gastrointestinal health effects due to the consumption 

of drinking water. International Journal of Environmental Health Research, 7(1), 5-31. 

Propato, M., & Uber, J. G. (2004). Vulnerability of water distribution systems to pathogen 

intrusion: How effective is a disinfectant residual? Environmental Science & Technology, 

38(13), 3713-3722. doi:10.1021/es035271z 

Rasekh, A., & Brumbelow, K. (2014). Drinking water distribution systems contamination 

management to reduce public health impacts and system service interruptions. 

Environmental Modelling & Software, 51 12-25. doi:10.1016/j.envsoft.2013.09.019 

Rasekh, A., & Brumbelow, K. (2015). A dynamic simulation–optimization model for adaptive 

management of urban water distribution system contamination threats. Applied Soft 

Computing, 32 59-71. doi:10.1016/j.asoc.2015.03.021 

Reddy, L. S., & Elango, K. (1989). Analysis of water distribution networks with head-dependent 

outlets. Civil Engineering Systems, 6(3), 102-110. doi:10.1080/02630258908970550 

Renzetti, S., & Dupont, D. (2013). Buried treasure: The economics of leak detection and water 

loss prevention in Ontario.  

Rossman, A. L. (2007). Discussion of “solution for water distribution systems under pressure-

deficient conditions” by Wah Khim Ang and Paul W. Jowitt. Journal of Water Resources 

Planning and Management, 133(6), 568-568. doi:10.1061/(ASCE)0733-

9496(2007)133:6(568) 

Rossman, L. A. (2000). EPANET 2. User's manual (Report No. EPA 600-R-00-57). Cincinnati, 

Ohio, USA: National Risk Management Research Laboratory, Office of Research and 

Development, United States Environmental Protection Agency (USEPA). Retrieved from 

http://www.epa.gov/nrmrl/wswrd/dw/epanet/EN2manual.PDF 

Sayyed, M. A. H. A., & Gupta, R. (2013). Predicting deficient condition performance of water 

distribution networks. Civil Engineering Infrastructures Journal, 46(2), 161-173. 

Sayyed, M. A. H. A., Gupta, R., & Tanyimboh, T. T. (2014, Jul 14-17). Modelling pressure 

deficient water distribution networks  in EPANET. Paper presented at the Procedia 

Engineering-16th Water Distribution System Analysis Conference, WDSA2014 — Urban 

Water Hydroinformatics and Strategic Planning, Bari, Italy (Vol. 89, pp. 626-

631).doi:10.1016/j.proeng.2014.11.487 

Sayyed, M. A. H. A., Gupta, R., & Tanyimboh, T. T. (2015). Noniterative application of EPANET 

for pressure dependent modelling of water distribution systems. Water Resources 

Management, 29(9), 3227-3242. doi:10.1007/s11269-015-0992-0 

Schijven, J., Forêt, J. M., Chardon, J., Teunis, P., Bouwknegt, M., & Tangena, B. (2016). 

Evaluation of exposure scenarios on intentional microbiological contamination in a 

drinking water distribution network. Water research, 96 148-154. 

doi:10.1016/j.watres.2016.03.057 

http://www.epa.gov/nrmrl/wswrd/dw/epanet/EN2manual.PDF


175 

 

 

Schijven, J. F., Teunis, P. F. M., Rutjes, S. A., Bouwknegt, M., & de Roda Husman, A. M. (2011). 

QMRAspot: a tool for quantitative microbial risk assessment from surface water to potable 

water. Water Research, 45(17), 5564-5576. 

Schneider, O. D., Bukhari, Z., Hughes, D. M., Fleming, K., LeChevallier, M., Schwartz, P., . . . 

Lee, J. J. (2010). Determining vulnerability and occurrence of residential backflow. 

Denver, Colorado, USA: Water Research Foundation and United States Environmental 

Protection Agency. Retrieved from 

http://www.waterrf.org/ProjectsReports/PublicReportLibrary/3022.pdf 

Seyoum, A. G., & Tanyimboh, T. T. (2014). Pressure-dependent network water quality modelling. 

Proceedings of the Institution of Civil Engineers ICE - Water Management, 167(6), 342-

355. doi:10.1680/wama.12.00118 

Seyoum, A. G., & Tanyimboh, T. T. (2017). Integration of hydraulic and water quality modelling 

in distribution networks: EPANET-PMX. Water Resources Management, 31(14), 4485-

4503. doi:10.1007/s11269-017-1760-0 

Seyoum, A. G., Tanyimboh, T. T., & Siew, C. (2011, Sep 5-7). Comparison of demand driven and 

pressure dependent hydraulic approaches for modelling water quality indistribution 

networks. Paper presented at the 11th International Conference on Computing and Control 

for the Water Industry CCWI 2011, Exeter, UK (pp. 619-624). 

Seyoum, A. G., Tanyimboh, T. T., & Siew, C. (2013). Assessment of water quality modelling 

capabilities of EPANET multiple species and pressure-dependent extension models. Water 

Science and Technology: Water Supply, 13(4), 1161-1166. doi:10.2166/ws.2013.118 

Shafiee, M. E., & Berglund, E. Z. (2017). Complex Adaptive Systems Framework to Simulate the 

Performance of Hydrant Flushing Rules and Broadcasts during a Water Distribution System 

Contamination Event. Journal of Water Resources Planning and Management, 143(4). 

doi:10.1061/(asce)wr.1943-5452.0000744 

Shang, F., Uber, J. G., & Rossman, L. A. (2008). Modeling reaction and transport, of multiple 

species in water distribution systems. Environmental Science and Technology, 42(3), 808-

814. 

Shang, F., Uber, J. G., & Rossman, L. A. (2011). EPANET multi-species extension user’s manual 

(Report No. EPA/600/S-07/021). Cincinnati, OH, USA: United States Environmental 

Protection Agency (USEPA).  

Shirzad, A., Tabesh, M., Farmani, R., & Mohammadi, M. (2013). Pressure-discharge relations with 

application to head-driven simulation of water distribution networks. Journal of Water 

Resources Planning and Management, 139(6), 660-670. doi:10.1061/(asce)wr.1943-

5452.0000305 

Siew, C., & Tanyimboh, T. T. (2009, May 17-21). Augmented gradient method for head dependent 

modelling of 

Water distribution networks. Paper presented at the World Environmental and Water Resources 

Congress 2009: Great Rivers, Kansas City, Missouri, United States (pp. 10). 

http://www.waterrf.org/ProjectsReports/PublicReportLibrary/3022.pdf


176 

 

 

Siew, C., & Tanyimboh, T. T. (2010a, Sep 1-3 ). Assessment of the head dependent gradient method 

with reference to PRAAWDS. Paper presented at the Integrating Water Systems – Boxall & 

Maksimovic (eds) (pp. 6). 

Siew, C., & Tanyimboh, T. T. (2010b, September 12-15). Pressure-dependent EPANET extension: 

Pressure-dependent demands. Paper presented at the Water Distribution System Analysis 

2010, Tucson, AZ, USA (pp. 10). 

Siew, C., & Tanyimboh, T. T. (2011, May 22-26). The Computational Efficiency of “EPANET-

PDX”. Paper presented at the World Environmental and Water Resources Congress 2011: 

Bearing Knowledge for Sustainability, Palm Springs, California, United States (pp. 10). 

Siew, C., & Tanyimboh, T. T. (2012). Pressure-Dependent EPANET Extension. Water Resources 

Management, 26(6), 1477-1498. doi:10.1007/s11269-011-9968-x 

Smeets, P. W. M. H., Medema, G., & van Dijk, J. C. (2009). The Dutch secret: how to provide safe 

drinking water without chlorine in the Netherlands. Drinking Water Engineering and 

Science, 2(1), 1-14. 

Smeets, P. W. M. H., Rietveld, L. C., van Dijk, J. C., & Medema, G. J. (2010). Practical 

applications of quantitative microbial risk assessment (QMRA) for water safety plans. 

Water Science and Technology, 61(6), 1561-1568. 

Suribabu, C. R., & Neelakantan, T. R. (2011). Balancing reservoir based approach for solution to 

pressure deficient water distribution networks. International Journal of Civil & Structural 

Engineering, 2 9. 

Suribabua, C. R., Neelakantana, T. R., & Sivakumarb, P. (2017). Improved complementary 

reservoir solution to evaluate nodal outflow under pressure-deficient conditions. ISH 

Journal of Hydraulic Engineering 1-7. 

Tanyimboh, T. T. (2008, Aug 17-20). Robust algorithm for head-dependent analysis of water 

distribution systems. Paper presented at the Proceedings of the 10th Annual Water 

Distribution Systems Analysis Conference WDSA2008,, Kruger National Park, South 

Africa (pp. 11). 

Tanyimboh, T. T., & Templeman, A. B. (2004). A New nodal outflow function for water 

distribution networks. Paper presented at the Proceeding of the 4th International 

Conference On Engineering Computational Technology (Vol. 80).doi:10.4203/ccp.80.64 

Tanyimboh, T. T., & Templeman, A. B. (2010). Seamless pressure-deficient water distribution 

system model. Proceedings of the ICE - Water Management, 163(8), 389-396. 

doi:10.1680/wama.900013 

Ten States Standards. (2012). Recommended standards for water works. Great Lakes Upper 

Mississippi River Board of State Public Health and Environmental Managers. Retrieved 

from http://10statesstandards.com/waterrev2012.pdf 

Teunis, P., Davidson, A., & Deere, D. (2004). Short term fluctuations in drinking water quality 

and their significance for public health.  

http://10statesstandards.com/waterrev2012.pdf


177 

 

 

Teunis, P. F. M., Xu, M., Fleming, K. K., Yang, J., Moe, C. L., & LeChevallier, M. W. (2010). 

Enteric virus infection risk from intrusion of sewage into a drinking water distribution 

network. Environmental Science and Technology, 44(22), 8561-8566. 

Tfaily, R., Papineau, I., Andrews, R. C., & Barbeau, B. (2015). Application of quantitative 

microbial risk assessment at 17 Canadian water treatment facilities. Journal American 

Water Works Association, 107(10), 75-75. doi:10.5942/jawwa.2015.107.0141 

Tinelli, S., & Juran, I. (2017). Numerical modeling of early bio-contamination in a water 

distribution system and comparison with laboratory experiments. Paper presented at the 

International Conference on Sustainable Infrastructure 2017 (pp. 258-269). 

Tinelli, S., Juran, I., & Cantos, W. P. (2018). Development of risk assessment tools for early 

detection of bio-contamination in water distribution systems. Water Science and 

Technology: Water Supply, 18(6), 1-11. doi:10.2166/ws.2018.036 

Todini, E. (2006, Aug 27-30). On the convergence properties of the different pipe network 

algorithms. Paper presented at the 8th Annual Water Distribution Systems Analysis 

Symposium, Cincinnati, Ohio, USA (pp. 16). 

Trifunovic, N., & Vairavamoorthy, K. (2012, Sep 24-27). Simplified emitter based approach for 

pressure-driven demand calculations of networks with extreme topography. Paper 

presented at the WDSA 2012: 14th Water Distribution Systems Analysis Conference, 

Adelaide, South Australia (pp. 1400-1417). 

Tucciarelli, T., Criminisi, A., & Termini, D. (1999). Leak analysis in pipeline systems by means 

of optimal valve regulation. Journal of Hydraulic Engineering-Asce, 125(3), 277-285. 

doi:10.1061/(Asce)0733-9429(1999)125:3(277) 

Tzatchkov, V., Aldama, A., & Arreguin, F. (2002). Advection-dispersion-reaction modeling in 

water distribution networks. Journal of Water Resources Planning and Management, 

128(5), 334-342. doi:10.1061/(ASCE)0733-9496(2002)128:5(334) 

Uber, J., Shang, F., & Rossman, L. (2004). Extensions to EPANET for fate and transport of multiple 

interacting chemical or biological components. Paper presented at the ASCE/EWRI World 

Water Congress, Critical transitions in Water and Environment Resources Management, 

Salt Lake City, Utah, USA (pp. 9). 

Uber, J. G. (2010). Multi-species network water quality modeling: Current examples, future 

potential, and research needs. Paper presented at the Integrating Water Systems. 

Proceedings of the Tenth International Conference on Computing and Control for the Water 

Industry, CCWI 2009 - 'Integrating Water Systems', London, UK (pp. 13-19). 

Uber, J. G., Boccelli, D. L., Hatchett, S., Kapelan, Z., Saldarriaga, J., Simpson, A. R., . . . van Zyl, 

J. E. (2018). Let’s get moving and write software: An open source project for EPANET. 

Journal of Water Resources Planning and Management, 144(4). 

doi:10.1061/(asce)wr.1943-5452.0000918 

United States Environmental Protection Agency (USEPA). (2001). Potential contamination due to 

cross-connections and backflow and the associated health risks. Washington, DC, USA: 

Retrieved from 



178 

 

 

http://www.epa.gov/safewater/disinfection/tcr/pdfs/issuepaper_tcr_crossconnection-

backflow.pdf 

United States Environmental Protection Agency (USEPA). (2006). National primary drinking 

water regulations: stage 2 disinfectants and disinfection byproducts rule: final rule. 

Federal Register, Part II. Washington, DC, USA: Office of Science and Technology, 

Office of Water. Retrieved from 

http://www.likuidnanotek.com/pdfamericana/1222164307.pdf 

United States Environmental Protection Agency (USEPA). (2010). National primary drinking 

water regulation: revisions to the total coliform rule (Report No. 40 CFR Parts 141, and 

142). Washington, DC, USA: Retrieved from https://www.epa.gov/dwreginfo/revised-

total-coliform-rule-and-total-coliform-rule 

United States Environmental Protection Agency USEPA. (2012). Microbial risk assessment 

guideline. Pathogenic microorganisms with focus on food and water. In Ed.) Ed.),  (pp. 

231). 

Vairagade, S., Sayyed, M., & Gupta, R. (2015, May 17–21). Node head flow relationships in 

skeletonized water distribution networks for predicting performance under deficient 

conditions. Paper presented at the World Environmental and Water Resources Congress 

2015:, Austin, TX, USA (pp. 810-819).doi:10.1061/9780784479162.075  

Van Abel, N., Blokker, E. J., Smeets, P. W., Meschke, J. S., & Medema, G. J. (2014). Sensitivity 

of quantitative microbial risk assessments to assumptions about exposure to multiple 

consumption events per day. Journal of Water and Health, 12(4), 727-735. 

doi:10.2166/wh.2014.037 

van Lieverloo, J. H., Mesman, G. A., Bakker, G. L., Baggelaar, P. K., Hamed, A., & Medema, G. 

(2007). Probability of detecting and quantifying faecal contaminations of drinking water by 

periodically sampling for E. coli: a simulation model study. Water Research, 41(19), 4299-

4308. doi:10.1016/j.watres.2007.06.003 

van Zyl, J. E., & Clayton, C. R. I. (2007). The effect of pressure on leakage in water distribution 

systems. Institution of Civil Engineers-Water Management, 160(2), 109-114. 

van Zyl, J. E., Lambert, A. O., & Collins, R. (2017). Realistic modeling of leakage and intrusion 

flows through leak openings in pipes. Journal of Hydraulic Engineering, 143(9). 

doi:10.1061/(asce)hy.1943-7900.0001346 

van Zyl, J. E., & Malde, R. (2017). Evaluating the pressure-leakage behaviour of leaks in water 

pipes. Journal of Water Supply: Research and Technology - Aqua, 66(5), 287-299. 

doi:10.2166/aqua.2017.136 

Viñas, V., Malm, A., & Pettersson, T. J. R. (2019). Overview of microbial risks in water 

distribution networks and their health consequences: quantification, modelling, trends, and 

future implications. Canadian Journal of Civil Engineering, 46(3), 149-159. 

doi:10.1139/cjce-2018-0216 

Wagner, J. M., Shamir, U., & Marks, D. H. (1988). Water distribution reliability: Simulation 

methods. Journal of Water Ressources Planning and Management, 114(3), 276-294. 

http://www.epa.gov/safewater/disinfection/tcr/pdfs/issuepaper_tcr_crossconnection-backflow.pdf
http://www.epa.gov/safewater/disinfection/tcr/pdfs/issuepaper_tcr_crossconnection-backflow.pdf
http://www.likuidnanotek.com/pdfamericana/1222164307.pdf
https://www.epa.gov/dwreginfo/revised-total-coliform-rule-and-total-coliform-rule
https://www.epa.gov/dwreginfo/revised-total-coliform-rule-and-total-coliform-rule


179 

 

 

Walski, T. (2017, May 21–25). Pressure dependent demand accounting for customer properties. 

Paper presented at the World Environmental and Water Resources Congress 2017, 

Sacramento, CA, USA (pp. 9).doi:10.1061/9780784480625.041 

Walski, T., Havard, M., Yankelitis, B., Youells, J., & Whitman, B. (2019). Pressure‐dependent 

demand under pressure‐deficient conditions. AWWA Water Science, 1(2). 

doi:10.1002/aws2.1135 

Walski, T. M., Chase, D. V., Savic, D. A., Grayman, W., Beckwigh, S., & Koelle, E. (2003). 

Advanced water distribution modeling and management (First Edition) (First Edition ed.). 

Waterbury, CT, USA: Haestad Methods Inc. 

Walski, T. M., & Lutes, T. L. (1994). Hydraulic transients cause low-pressure problems. Journal 

American Water Works Association, 86(12), 24-32. 

Warton, B., Heitz, A., Joll, C., & Kagi, R. (2006). A new method for calculation of the chlorine 

demand of natural and treated waters. Water Research, 40(15), 2877-2884. 

World Health Organisation (WHO). (2006). Protecting groundwater for health. Managing the 

quality of drinking-water sources. London, UK: IWA publishing.  

World Health Organisation (WHO). (2016). Quantitative microbial risk assessment: Application 

for water safety management. Geneva, Switzerland:  

World Health Organization (WHO). (2009). Risk assessment of Cryptosporidium in drinking water 

(Report No. WHO/HSE/WSH/09.04). Geneva, Switzerland: Public Health and 

Environment, Water, Sanitation, Hygiene and Health. Retrieved from 

http://whqlibdoc.who.int/hq/2009/WHO_HSE_WSH_09.04_eng.pdf 

Wu, Z. Y. (2007). Discussion of “Solution for Water Distribution Systems under Pressure-

Deficient Conditions” by Wah Khim Ang and Paul W. Jowitt. Journal of Water Resources 

Planning and Management, 133(6), 568-569. doi:10.1061/(ASCE)0733-

9496(2007)133:6(568) 

Wu, Z. Y., & Walski, T. (2006, Sep 10-14). Pressure dependent hydraulic modelling for water 

distribution systems under abnormal conditions. Paper presented at the IWA World Water 

Congress and Exhibition, Beijing, China (pp. 11). 

Wu, Z. Y., Wang, R. H., Walski, T. M., Yang, S. Y., Bowdler, D., & Baggett, C. C. (2006, Aug 

27-30). Efficient pressure dependent demand model for large water distribution system 

analysis. Paper presented at the 8th Annual International Symposium on Water Distribution 

System Analysis,, Cincinnati, Ohio (pp. 15). 

Wu, Z. Y., Wang, R. H., Walski, T. M., Yang, S. Y., Bowdler, D., & Baggett, C. C. (2009). 

Extended global-gradient algorithm for pressure-dependent water distribution analysis. 

Journal of Water Resources Planning and Management-Asce, 135(1), 13-22. 

doi:10.1061/(Asce)0733-9496(2009)135:1(13) 

Yang, J., LeChevallier, M. W., Teunis, P. F. M., & Xu, M. (2011). Managing risks from virus 

intrusion into water distribution systems due to pressure transients. Journal of Water and 

Health, 9(2), 291-305. doi:10.2166/wh.2011.102 

http://whqlibdoc.who.int/hq/2009/WHO_HSE_WSH_09.04_eng.pdf


180 

 

 

Yang, J., Schneider, O. D., Jjemba, P. K., & Lechevallier, M. W. (2015). Microbial risk modeling 

for main breaks. Journal American Water Works Association, 107(2), E97-E108. 

doi:10.5942/jawwa.2015.107.0010 

Yang, X., & Boccelli, D. L. (2014). Simulation study to evaluate temporal aggregation and 

variability of stochastic water demands on distribution system hydraulics and transport. 

Journal of Water Resources Planning and Management, 140(8), 04014017. 

Yang, X., & Boccelli, D. L. (2016). Dynamic Water-Quality Simulation for Contaminant Intrusion 

Events in Distribution Systems. Journal of Water Resources Planning and Management, 

142(10). doi:10.1061/(asce)wr.1943-5452.0000674 

Yoo, D. G., Suh, M. Y., Kim, J. H., Jun, H. D., & Chung, G. (2012). Subsystem-based pressure 

dependent demand analysis in water distribution systems using effective supply. KSCE 

Journal of Civil Engineering, 16(3), 457-464. doi:10.1007/s12205-012-1448-1 

Yoo, T. J., Trifunovic, N., & Tairavamoorthy, K. (2005). Reliability assessment of the Nonsan 

distribution network by the method of Ozger. Paper presented at the 31st WEDC 

International Conference, Kampala, Uganda (pp. 325-332). 

Yu, T., Jin, H., Zhang, T., Shao, Y., & Wu, X. (2016). Experimental observation on factors 

affecting intrusion volumes during low or negative pressure events. Journal of Water 

Supply: Research and Technology-Aqua, 65(5), 396-406. doi:10.2166/aqua.2016.112 

Zafari, M., Tabesh, M., & Nazif, S. (2017). Minimizing the adverse effects of contaminant 

propagation in water distribution networks considering the pressure-driven analysis 

method. Journal of Water Resources Planning and Management, 143(12). 

doi:10.1061/(asce)wr.1943-5452.0000848 

Zhao, Y., Schwartz, R., Salomons, E., Ostfeld, A., & Poor, H. V. (2016). New formulation and 

optimization methods for water sensor placement. Environmental Modelling & Software, 

76 128-136. doi:10.1016/j.envsoft.2015.10.030 

 

 

 

 

 

 

 

 



181 

 

 

APPENDICES 

APPENDIX A COMBINING A MULTI-SPECIES WATER 

QUALITY AND PRESSURE-DRIVEN HYDRAULIC ANALYSIS TO 

DETERMINE AREAS AT RISK DURING SUSTAINED PRESSURE-

DEFICIENT CONDITIONS IN A DISTRIBUTION SYSTEM 

Journal: Water Resources Planning and Management 

Title: Combining a multi-species water quality and pressure-driven hydraulic analysis to determine 

areas at risk during sustained pressure-deficient conditions in a distribution system 

Authors: Fatemeh Hatam, Marie-Claude Besner, Gabrielle Ebacher, Michèle Prévost 

 

Pressure Demand Relationship and the selection of parameters 

Tanyimboh equation can be presented as follows: 

 qj
avl = qj

req exp(αj + βjHj)

1 + exp(αj + βjHj)
 Eq. A-1 

where qj
avl and qj

req
 are available and required demand at node j, respectively, Hj,  is available 

head,  and αj and βj are parameters defined using field data. In the absence of field data, they can 

be estimated as follows (Tanyimboh and Templeman 2004, 2010):                   

 βj =
11.502 

Hj
des − Hj

min
 Eq. A-2 

 αj =
−4.595Hj

des − 6.907Hj
min 

Hj
des − Hj

min
 Eq. A-3 

in which Hj
min and Hj

des are minimum and desired pressure head, respectively. One advantage of 

the Tanyimboh equation and its derivative is that they do not have discontinuities between zero 

and partially supplied zones and between partially and fully supplied zones (Tanyimboh and 

Templeman 2004, 2010). In a PDR, the desired pressure head is the value below which the nodal 

demand cannot be fully supplied. Actually, this is a unique value for each node and network and 
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its exact value should be determined from field measurements (Ozger 2003). As this task is not 

often practical, this critical value is usually approximated for the system using existing guidelines. 

For example, according to Ministère de l'environnement du Québec (2002) and other similar 

guidelines (Ten States Standards 2012), the pressure at any point in the distribution network should 

never fall below 14 m (20 psi) at ground level when the network is subjected to a maximum daily 

demand and fire flow. 

Equations related to water quality modeling 

The EPANET-MSX software uses a Lagrangian transport algorithm to solve the advection-reaction 

equation: 

 
∂ci

∂t
+ vi

∂ci

∂x
= f(ci) Eq. A-4 

where ci is the concentration of a certain species in pipe i as a function of time t ≥ 0 and distance 

x, vi is the flow velocity in pipe i, and f(ci) accounts for reactions between various species. Axial 

dispersion is ignored and it is considered that the mixing of fluid at pipe junctions is complete and 

instantaneous. In the Lagrangian transport algorithm, the movement and reaction of constituents 

are tracked in segments which are transported through network pipes at the same velocity as the 

bulk fluid (Shang et al. 2008). EPANET-MSX can model multiple species as well as the 

interactions between them in both the bulk flow and at the pipe wall by solving a set of differential-

algebraic equations (DAEs) that are supplied by the user. A complete description of multi-species 

water quality modelling and the numerical integration methods for solving the system of DAEs can 

be found elsewhere (Shang et al. 2008, Uber et al. 2004). 

Modelling water age, chlorine decay and THM formation 

The reaction equations used to simulate water quality are indicated in Table A-1. Water age is 

modeled by a zero-order reaction with the reaction rate coefficient equal to one. To simulate 

chlorine decay, a first-order decay model was selected due to its simplicity and wide use. The 

overall chlorine decay is considered to occur due to reactions in the bulk flow and at the pipe wall. 

A summary of bulk and overall chlorine decay constants for different test conditions can be found 

in Brown et al. (2011) and the values used in this study are indicated in Table A-1. A constant 
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chlorine residual of 1.5 mg/L was considered at the outlet of each WTP. Hua (2000) investigated 

the THM formation and its variation with different water quality parameters. This author noticed 

that THM formation is mostly related to chlorine consumption due to reaction with organic matter 

in water and therefore proposed Eq. A-7. This equation is used to model THM formation in the 

present study. The constant Ktc represents the proportion of the chlorine bulk demand that leads to 

THM formation (Brown 2009). Ktc was set to 41 µg/L per mg/L free Cl2, based on the literature 

(Boccelli et al. 2003, Courtis et al. 2009).  

Table A-1 Reaction equations of simulated water quality parameters. 

Parameter Reaction  Constant values 

Water age R = k1  (zero-order reaction) Eq. A-5 k1=1 

Chlorine  
dC

dt
= −kC (first-order reaction) Eq. A-6 

k = kb + kw,  

kb=0.02 h-1 (0.48 day-1),  

kw=0.01 h-1 (0.24 day-1) 

THM THM = Ktc(C0 − C ) + THM0 Eq. A-7 

C0 = 1.5 mg/L 

Ktc = 41 µg/L per mg
/L free Cl2 

Note: R is the instantaneous rate of reaction, k1 is the reaction rate coefficient, kb is the bulk decay 

constant (h-1), kw is the wall decay constant (h-1), k is the overall decay constant (h-1), THM0 is the 

initial THM concentration at t=0, C0 is the initial chlorine concentration at t=0,  C is the chlorine 

concentration (mg/L), and Ktc is an indicator of the THM productivity of the water, (µg/L of THM 

per mg/L of free chlorine). 

Satisfaction of required demand for different pressure-deficient scenarios 

For the nodes located in zone 1, median DSR showed large variations (from 22% to 99%) 

depending on the hydraulic grade at the only working WTP, while the 75th percentile remained 

constant (100%), and the 25th percentile changed from 1% to 64% (Figure A-1). For the consumers 

in zone 2, the differences in median DSR between various pressure-deficient scenarios were less 

than 1%, while the 25th percentile changed from 27% to 99%. Zone 3 generally showed less 

variation in DSR with the change of hydraulic grade at the sole supply point (WTP 3).  
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Figure A-1 Percentage of demand satisfaction for different pressure-deficient scenarios. 
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APPENDIX B IMPROVEMENT OF ACCIDENTAL INTRUSION 

PREDICTION DUE TO SUSTAINED LOW-PRESSURE 

CONDITIONS: IMPLICATIONS FOR CHLORINE AND E. COLI 

MONITORING IN DISTRIBUTION SYSTEMS 

 

Journal: Water Resources Planning and Management (submitted) 

Title: Improvement of accidental intrusion prediction due to sustained low-pressure conditions: 

implications for chlorine and E. coli monitoring in distribution systems 

Authors: Fatemeh Hatam, Marie-Claude Besner, Gabrielle Ebacher, Michèle Prévost 

 

Numerical modeling 

The Tanyimboh and Templeman (2010) pressure-demand relationship is selected for the pressure-

driven model (WaterGEMS V8i, SELECTseries 5) (Bentley Systems 2014). The desired pressure 

head in this equation is 15 m (21 psi) at all nodes. Nodes with pressure heads equal to or lower than 

zero have no demand available. Demand satisfaction ratio (DSR) at each node is the ratio of the 

demand that can be supplied under PDCs to the corresponding required demand. Pressure values 

under DDA and PDA are compared. Hydraulic time steps of 30 minutes and water quality time 

steps of 30 seconds were used. 

To simulate chlorine decay the simple first-order model is used: 

𝑑𝐶

𝑑𝑡
= −𝑘1𝐶 Eq. B-1 

where C is the disinfectant residual concentration (mg/L), and 𝑘1 is the chlorine decay coefficient 

(h−1). For chloramine, the second-order model is used as follows: 

𝑑𝐶

𝑑𝑡
= −𝑘2𝐶𝑛 Eq. B-2 
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in which 𝑛 is the order of power law decay and 𝑘2 is the chloramine decay coefficient (L/mg ∙ h). 

Here, 𝑛 is assigned a value of 2 (LeChevallier et al. 2011). For both disinfectants, the impact of 

reactions with biofilm, corrosion materials, etc. on disinfectant residuals are ignored. The Chick-

Watson model is applied for the inactivation of E. coli (Betanzo et al. 2008): 

𝑑𝑃

𝑑𝑡
= −𝑘𝑝𝐶𝑃 Eq. B-3 

where 𝑃 is the E. coli concentration (CFU/L) and 𝑘𝑝 is the inactivation constant (L/mg ∙ h). 

For the nodes prone to intrusion (internal pressure head less than 1 m), the maximum calculated  

𝐶𝑙𝑒𝑎𝑘𝑖
 are shown in Figure B-1. 

 

Figure B-1. Maximum estimated  𝐶𝑙𝑒𝑎𝑘 
 at each of the 74 nodes prone to intrusion used for 

calculating intrusion flow rates. 

Intrusion flow rates and pressure values at the Intrusion Nodes  

Figure B-2 shows the corresponding pressure values for potential intrusion nodes and intrusion 

flow rates. The variation of intrusion flow rate does not follow the pressure trend because of the 

variable leakage constants. The intrusion flow rate varies from 0 to 0.4 L/min per node (Figure B-

2). 
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Figure B-2. (a) Pressure values at potential intrusion nodes, and (b) corresponding intrusion flow 

rates. 

Water Quality Variations without Intrusion Effects 

Figure B-3 shows distribution of water age and chlorine residual throughout the network (grouped 

based on node pressure under PDC) before and after the pressure drop without any intrusion event. 

The results illustrate that it may take a while, more than 10 hours at some nodes, for the water 

quality to stabilize again following the 5-hour pressure loss. The results show that the variations of 

median water age and chlorine residual values are generally higher for nodes with pressure lower 

than 15 m, as compared comparing to nodes with pressure greater than 15 m. The reason of these 

variations is only due to hydraulic conditions, for example changing water paths. This means that 

even without considering the impact of intrusion demand, pipe surfaces and corrosion by-products, 

(a) 

(b) 
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lower chlorine residuals may be found in some areas during PDCs. For the studied PDCs, there is 

a sharp decrease of the median chlorine concentration from 0.8 to 0.6 mg/L at nodes with pressure 

less than 1 m (Figure B-3, b) reflects the increased water age (Figure B-3, a). Losses of chlorine 

residuals may decrease the level of protection against intrusion, especially considering that the 

nodes with lower pressure generally experienced higher losses compared to normal conditions. 

Another approach to interpret residual losses is to examine the impact of the PDCs on the ability 

to maintain a minimum reference chlorine residual across the DS. North American practice 

prescribes the maintenance of a measurable disinfectant residual (> 0.2 mg/L) at all points of the 

DS  to maintain a barrier against microbial contaminants (Propato and Uber 2004). It is interesting 

to note that chlorine residual are below 0.2 mg/L at 2,099 nodes even under normal operating 

conditions for the studied model (Figure B-3, b). Less than 1% (6 nodes) of these nodes have 

pressure less than or equal to 1 m, about 6 % (123 nodes) have pressure less or equal to 15 m but 

more than 1 m, and about 94 % (1,970 nodes) of them have pressure more than 15 m under the 

PDCs. At the end of the event, five hours after the start of PDCs (9 PM), a similar number of nodes 

(1993) have chlorine less than 0.2 mg/l while among them, less than 1% (4 nodes) have pressure 

values lower than or equal to 1 m and about 94 % (1877) have pressure more than 15 m. When 

using chloramines, the decay is slower and all the intrusion nodes (P ≤ 1 m) experience a residual 

of higher than 0.4 mg/L (Figure B-3, c).  
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Figure B-3. Distribution of (a) water age with y-axis limited to 40 hours (b) chlorine (Sc5), and 

(c) chloramine (Sc8) without considering any intrusion; for all the nodes in the network 

categorized by pressure values under PDCs (at 16:00) with respect to time; Time intervals are not 

equal; Square: Median; Box: 10%-90%; Whisker: Min-Max. 
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Propagation of E. coli throughout the Network  

Figure B-4 shows the spatial distribution of E. coli in the presence of chloraminated 9 hours after 

the end of intrusion events. The maximum E. coli in the color map is limited to 1 CFU/100mL for 

a closer examination of lower concentrations. Cyan in this map shows very low concentrations (≤ 

0.01 E.coli/100mL). 

 

Figure B-4. E.coli distribution at 06:00 day 2 in chloraminated system; Concentrations higher 

than 1 CFU/100mL are demonstrated in red. 
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APPENDIX C USING NODAL INFECTION RISKS TO GUIDE 

INTERVENTIONS FOLLOWING ACCIDENTAL INTRUSION DUE TO 

SUSTAINED LOW PRESSURE EVENTS IN A DRINKING WATER 

DISTRIBUTION SYSTEM 

 

 

Journal: Water  

Title: Using nodal infection risks to guide interventions following accidental intrusion due to 

sustained low pressure events in a drinking water distribution system 

Authors: Fatemeh Hatam, Mirjam Blokker, Marie-Claude Besner, Gabrielle Ebacher, Michèle 

Prévost 

 

Accidental intrusion modeling 

Pressure values resulted from PDA are used to define the intrusion nodes and intrusion volumes. 

Tanyimboh and Templeman (2010) equation is selected as the pressure-demand relationship. It is 

assumed that when nodal pressure head is more than 15 m the demand is completely satisfied and 

at nodes with pressure head less than the nodal elevation the demand cannot be supplied at all. For 

calculating the intrusion volume, the negative pressure values are calculated using the method 

presented in Hatam et al. (2018a). However, if one uses the recent version of WaterGEMS the issue 

described for the version used in our previous study regarding reporting negative pressure as zero 

is solved.  

To simulate time-varying conditions, an extended period simulation is carried out for 336 hours. 

Normal hydraulic operating conditions are simulated for the first 240 hours to stabilize the water 

quality. Then, the unplanned shutdown of one WTP is simulated. The hydraulic and water quality 

time steps are 30 minutes and 30 seconds, respectively.  
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The orifice equation is applied to calculate the intrusion flow rate at each node using the nodal 

pressure value from PDA when the pressure head above the pipe is below 1 m. In this equation, for 

each node, the product of discharge coefficient and area of the orifice is calculated based on nodal 

leakage demand of the calibrated model under normal operation conditions. For each intrusion 

node, the contamination mass rate is calculated based on the intrusion flow rate at the node and the 

concentration of Cryptosporidium outside the pipe. More details on accidental intrusion modeling 

can be found in Hatam et al. (submitted). For the studied scenarios, after implementing the intrusion 

flow rates into the hydraulic model, the maximum nodal pressure variation was less than 0.006 m. 

Therefore, there is no need to recalculate the intrusion volumes based on the adjusted pressures. 

In this paper, the intrusion duration concurs with the time of pressure loss and contaminant 

intrusion stops once the pressure is back. 

Consumption time 

Probability of consumption of contaminated water depends on the time of filling a bottle or glass 

from tap even if the water is not consumed immediately. In this paper, the terms of consumption 

time and filling time are used interchangeably. Figure C-1 shows the modified kitchen tap use (in 

blue) that is set to zero at the time when there is no demand available under PDCs to account for 

demand satisfaction as computed by PDA. 

 



193 

 

 

 

Figure C-1. Probability of filling a glass or bottle for consumption over the 2 days. Consumption 

at kitchen tap use (Blokker et al. 2018) (orange, square); modified kitchen tap use for this study 

for the residential nodes with no available demand for consumption based on PDA results at days 

1 and 2 for the 10 hours scenario (blue, circle); days 3 and 4 are the same as day 2. 

Nodal Population 

Population spatial distribution of 400,000 population supplied by the three WTPs in the studied 

network is demonstrated in Figure C-2. The minimum person at a node is one and the maximum is 

1352. The number of people on a node is determined only based on residential demand as other 

demand types are usually used for other purposes such as processing, cooling or cleaning. Also, 

for example for school it happens that children bring bottles of water from home. Therefore, in this 

study only the residential exposure from tap water is investigated. To obtain the number of people 

at each node, the daily residential demand of that node is divided by the daily average demand per 

people. The daily average demand is estimated by dividing the total residential demand of the 

studied network by total population (400,000). For population calculation, the nodal demand under 

normal operating condition is used and the daily pattern is considered. 
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Figure C-2. (a) Geographical distribution of population, and (b) histogram of number of people at 

each node; Exclude nodes with zero population. 
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One-hour event with daily demand patterns 

The cumulative probability distribution of the number of infected people for 200 random 

consumption behaviors and the spatial distribution of risky areas are shown in Figure C-3 for one-

hour event with daily demand patterns in the hydraulic model. 

 

Figure C-3. The probability distribution of the number of infected people during 4 days of 

simulation; 200 Monte Carlo simulations; 1 hour intrusion (a). The spatial distribution of the 

nodal risk corresponding to consumption event with F(x) =1 (b). Daily pattern in the hydraulic 

model. 
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Pressure distribution under PDCs 

Geographical distribution of nodal pressure is demonstrated in Figure C-4. Nodes with pressure 

values less than 1 m are the nodes prone to intrusion in this study. 

 

Figure C-4. Spatial distribution of pressure using PDA under low/negative pressure event, at 7:00 

PM. 

 

 

 

 

 

 

 

 



197 

 

 

APPENDIX D DISCUSSION ON ISSUES OF REPORTING 

NEGATIVE NODAL PRESSURE VALUES AS ZERO IN PDA 

MODELS 

Lee et al. (2015) have claimed that the existing tools for preforming PDA may produce 

unacceptable results such as total head reverse occurrence. They have demonstrated this problem 

by modeling two simple networks. In both networks, they have shown that at some pipes the flow 

direction is from lower total head to higher total head. However, as the authors have also mentioned 

this is not theoretically possible. Therefore, they tried to resolve this problem by proposing a 

modification technique. However, the suggested methodology needs change in the system 

reconfiguration and it would be difficult and time consuming for large distribution system and 

more complicated in the case of EPS.  

Negative pressure values were not allowed in the PDA model used by Lee et al. (2015). In the 

following, we have demonstrated that this limiting assumption can be the reason of total head 

reversal problem in the PDA model. Table D-1 demonstrates the hydraulic results, based on PDA, 

for the same networks and the same pressure-deficient condition defined in the authors’ paper (Lee 

et al. 2015). Columns 4, 6 and 8 (in both tables) are our simulation results when negative pressures 

are considered.  In column 6 of Table D-1, the total head at node 3 (72.45 m) is less than node 2 

(78.48 m) which is consistent with flow direction. While, column 7 (the results from discussed 

paper) indicates that flow direction does not match total head differences between nodes 2 and 3. 

Same explanation holds for node 2 and 3 of network 2 (Table D-2). These results reveal that when 

negative pressure values are considered there would be no total head reversal problem, which was 

reported as a deficiency for the PDA model in Lee et al. (2015). This also eliminates the need of 

applying the proposed modification technique by the authors, for PDA models, in which changing 

the configuration of the system was required. Also, the results underline the importance of 

improving PDA models by allowing negative pressures; otherwise the assumption of not 

considering below zero pressure may lead to some misinterpretations. Moreover, negative pressure 

values may become important during modeling the risk of intrusion events in distribution systems, 

and estimation of intrusion volume and health impact associated with low/negative pressure events. 
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Table D-1. Modeling results for network 1 under abnormal condition (pump outage). 

Node 

ID 

Elevati

on (m) 

Base 

demand 

(L/s) 

Available demand 

(L/s) 
Total Head (m) Pressure (m) 

This 

study 

Lee et al. 

2015 

This 

study 

Lee et al. 

2015 

This 

study 

Lee et 

al. 2015 

Junc2 78 3 0.52 0.53 78.48 78.47 0.48 0.47 

Junc3 80 3 0 0 72.45 80 -7.55 0 

Junc4 20 3 3 3 70.78 70.78 50.78 50.75 

Junc5 0 3 3 3 70.32 70.32 70.32 70.28 

Junc6 20 3 3 3 70.78 70.78 50.78 50.75 

Junc7 0 3 3 3 70.32 70.32 70.32 70.28 

 

Table D-2. Modeling results for network 2 under abnormal condition (nodal demand is increased 

at Junc2). 

Node 

ID 

Elevation 

(m) 

Base 

demand 

(L/s) 

Available demand 

(L/s) 

Hydraulic grade 

(m) 

Pressure head 

(m) 

This 

study 

Lee et al. 

2015 

This 

study 

Lee et al. 

2015 

This 

study 

Lee et 

al. 2015 

Junc2 33 14 9.66 9.66 40.14 40.14 7.14 7.13 

Junc3 42 2 0 0 39.69 42 -2.31 0 

Junc4 10 2 2 2 39.65 39.65 29.65 29.64 

Junc5 10 2 2 2 39.46 39.46 29.46 29.44 

Junc6 0 2 2 2 39.45 39.46 39.45 39.44 
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APPENDIX E IMPACT OF THE CUMULATIVE IMPACT OF 

INGRESS ON CHLORINE DEMAND DURING EXTENDED PDCS 

The cumulative impact of chlorine demand for two intrusion nodes is shown in Figure E-1 for a 

simple situation where node (b) is located downstream of node (a) with a travel time of 77 minutes 

between the nodes during the PDCs. As the travel time is shorter than the duration of the simulated 

PDCs, the cumulative effect of the chlorine loss can be seen distinctly at the down-flow node. 

However, in the case of extended travel times between nodes and flow reversal after NOCs are 

restored, such trends may not be seen at all nodes. Clearly, the intrusion duration is a key factor to 

determine the extent of chlorine decay, affecting the ability to maintain minimum chlorine residuals 

after intrusion. 

For health risk modeling of intrusion during negative pressure transients, some researchers have 

proposed modeling a single intrusion node at a time, establishing system responses and integrating 

adjusted random virus concentrations in intrusion water in the hydraulic and water quality models. 

Then, all separate system responses are summed at each node by assuming the operational 

conditions remain the same in the system and the intrusion flow rate is small compared to the pipe 

flow rate at that node (LeChevallier et al. 2011, Teunis et al. 2010). For linear superposition to be 

valid, it should be assumed that the decay kinetics are first-order and that hydraulics of the network 

are known (Boccelli et al. 1998). These assumptions may not hold for extended low-pressure 

conditions as modeling each intrusion node separately cannot consider the cumulative effect of 

chlorine losses at down-flow nodes, which is shown in Figure E-1. Moreover, in the simulated 

sustained PDCs, the impact of intrusion flow rates on both hydraulic and water quality of the 

network is considered, as intrusion flow rates may be considerable compared to some pipe flows 

at intrusion nodes. In addition, selectively increasing the decay based on the presence of 

conservative species is more realistic. 
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Figure E-1. (a) Change of water path during PDCs; all the nodes are intrusion nodes (b) Chlorine 

residuals variation due to PDCs at nodes a and b with and without intrusion (travel time of 77 

minutes between nodes). 
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