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RESUME

Les contaminations dans le réseau de distribution d'eau potable, qu'elles soient intentionnelles ou
accidentelles, peuvent avoir un impact négatif sur la santé publique. Cette thése porte sur la
simulation d’intrusions accidentelles dues a des pertes de pression prolongées dans les réseaux. Les
distributeur d’eau doivent pouvoir prédire la distribution spatiale et temporelle des contaminants
microbiens pendant et aprés les conditions de pression déficientes (PDC) afin d’identifier les
actions correctives appropriées. Des modeles réalistes hydraulique et de qualité d'eau sous
conditions PDC, associés a un cadre avance d'évaluation quantitative du risque microbien
(QMRA), peuvent aider les services publics a prendre les mesures appropriées au bon moment pour
minimiser le risque d'infection associé a des intrusions accidentelles due a des événements de

pression faible / négative.

L'objectif principal de cette recherche est de développer et d'intégrer des concepts réalistes de
modeélisation de la qualité de I'eau et de I'nydraulique dans un modéle QMRA afin d'améliorer
I'évaluation des risques pour la santé publigue associés aux événements de pression continue faible
ou négative dans les réseaux de distribution d'eau potable. Plus précisément, ce projet visait a: (1)
évaluer I'utilisation de 1’analyse par la pression (PDA) au lieu de I’analyse traditionnelle par la
demande (DDA) pour définir les zones potentiellement a risque d’intrusion / rétro-contamination
dans un réseau de distribution de grande taille; (2) développer une méthode combinant a la fois des
résultats d'analyse déterminés par la pression et une analyse de la qualité de I'eau multi-espéces
(MSWQA-PDA); (3) évaluer I'impact de deux relations pression-demande sur les parameétres
hydrauliques et de qualité de I'eau; (4) réduire les incertitudes et améliorer les hypothéses dans la
modélisation de I'intrusion, du devenir et du transport accidentels de contaminants; (5) comparer
la distribution spatiale et temporelle d’E. coli et les zones de pression touchees, résultant de
I’intrusion d'eaux usées en l'absence et la présence de divers résidus de désinfectant, et évaluer la
possibilité d'émettre un avis sectoriel d'ébullition de I'eau (BWA); (6) étudier dans quelle mesure
les conditions de pressions déficientes maintenues causées par la fermeture de stations de
traitement de 1’eau potable, affectent les résiduels de désinfectant avec et sans l'impact de la
demande en oxydant de ’cau d'intrusion; (7) évaluer la probabilité spatiale de détecter E. coli a
travers le réseau a différentes périodes et (8) évaluer le risque pour la santé publique associé aux
événements d'intrusion accidentelle en améliorant un modele d'évaluation du risque microbien

quantitatif disponible.
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Dans ce travail, une modélisation de la qualité de I'eau multi-especes fondée sur laPDA (MSWQA-
PDA) est proposée pour prédire ’intrusion d'eau contaminée résultant de pertes de pression
prolongées. L'outil développé simule également le devenir et le transport des contaminants et la

perte de désinfectant résiduel dans le réseau pendant et apres les PDC.

Premierement, pour veérifier la fiabilité de I'approche présentée (MSWQA-PDA), les conditions de
pressions déficients continues sont modélisées en simulant des arréts prolongés des stations de
traitement dans un réseau de distribution d’eau potable de grande taille desservant une population
d’environ 400 000 personnes via 1 600 km de conduites. A titre de preuve de concept, de multiples
especes de la qualité de 1’eau, notamment 1’age de I’eau, le chlore et le THM, sont modélisées et
comparées au scénario de conditions de pressions normales. Les résultats montrent que la
simulation DDA surestime les zones exposées a des pressions faibles et négatives, ce qui pourrait
donner lieu a des avis préventifs injustifiés. Ces conditions ont généralement causé une diminution
des concentrations résiduelles de chlore et, par conséquent, une augmentation des concentrations
de THM par rapport aux conditions de fonctionnement normales, et cela méme sans prendre en
compte I'impact de l'intrusion. Ces différences sont principalement dues aux augmentations de
temps de séjour. Les variations sont les plus élevées aux nceuds avec des valeurs de pression plus

basses.

Le modele couplé MSWQA-PDA est ensuite utilisé pour modéliser le devenir et le transport d’E.
coli résultant de I'intrusion d'eaux usées non traitées suite a des pressions déficientes prolongées (5
heures) en présence de différents types de désinfectant. Les volumes d’intrusion & chacun des 73
sites de fuite ayant des pressions <1 m, sont estimés en tenant compte de 1’état des conduites (c’est-
a-dire de 1’age et des matériaux) et de la pression résultante d’intrusion calculée a partir de la PDA.
Les résultats montrent qu’environ 11% des nceuds sont positifs pour E. coli (> 1E-06 UFC /L) a
tout moment au cours de la période de simulation de 4 jours et en absence de tout désinfectant.
Cette valeur diminue a 10% et 1% en présence de 1 mg/L de chloramines et de chlore,
respectivement. On constate qu’E. coli peut étre transporté vers des zones ou la pression est plus
élevée (P > 10 m, sur la base des pressions sous PDC) en fonction de I'effet des résiduels de
désinfectant sur les microorganismes. Pour le systéme chloré (1 mg/ L), E. coli demeure présent
(> 10-6 UFC /L) a 119 nceuds 4 heures apres le début de l'intrusion, pour ensuite ne persister qu’a
8 nceuds 9 heures aprés le début de I'intrusion. Cela indique qu'il est peu probable que les

événements de contamination soient détectés a l'aide d'un échantillonnage d'E. coli a moins que
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I'échantillonnage ne soit effectué rapidement sur les sites d'intrusion ou & proximité. En présence
de chloramines, la probabilité nodale moyenne de détection était supérieure a 0,1 a 166 nceuds aux
premier et deuxieme intervalles de 5 heures, ce qui indique qu'un échantillonnage a réponse rapide
dirigé vers les zones a risque pourrait confirmer efficacement la contamination. Faire correspondre
les programmes d'échantillonnage des services publics avec les prévisions numériques
correspondantes peut augmenter la probabilité de détecter la contamination. Selon les
concentrations modélisées, des volumes d'échantillonnage plus importants peuvent é&tre
nécessaires. L utilisation d’un volume d'échantillon plus important peut prolonger la fenétre de
temps pour effectuer I'échantillonnage apres une intrusion, en raison des probabilités plus grandes
de détection positive.

Finalement, un nouveau modele QMRA développé par Blokker et al. (2018) est couplé a un modéle
de qualité de I'eau a base de PDA pour évaluer les risque d’infection de Cryptosporidium résultant
d'une intrusion accidentelle des eaux usées. Pour ce faire, une distribution Poisson du nombre de
verres par personne par jour et une distribution log-normale du volume ingéré par verre sont
utilisés. Durant les périodes de pression déficiente, I'utilisation moyenne du robinet de cuisine est
modifiée en fonction de la disponibilité de la demande calcule a partir des résultats du PDA. Pour
tenir compte de I’incertitude des calculs liés a la variabilité comportementale des consommateurs,
200 simulations de Monte Carlo sont réalisées. Le nombre simulé de personnes infectées augmente
de 235 fois en fonction des concentrations croissantes de Cryptosporidium dans les eaux usées
brutes (1 a 560 oocystes/ L) pour une durée d'intrusion de 24 heures. Le nombre maximum de
personnes infectées, au cours des 4 jours d'observation, diminue de 64% et 94% pour les scénarios
de 10 heures et 1 heure, respectivement, par rapport a une intrusion de 24 heures. La distribution
spatiale des risques nodaux pour différentes durées d'événements a montré que cette durée est un
facteur clé dans la définition de la délinéation de zones assujetties a une avis préventif. 1l est aussi
démontré que le fait de ne pas boire de 1’eau du robinet lorsque le débit au robinet est trés faible
(un temps de remplissage de plus de 20 fois plus long) pourrait réduire le nombre de personnes

infectées jusqu’a 65% le jour de I’intrusion.

Dans I’ensemble, ce projet de recherche modélise les variations de la qualité de I’eau dues aux
pertes de charge prolongées dans les réseaux de distribution d’eau potable. Les résultats de cette

étude peuvent étre utilisés pour fournir des informations sur I'élaboration et I'amélioration de la



réglementation ou des recommandations pratiques pour la gestion du réseau d'eau potable dans des
PDC prolongés et minimiser les effets néfastes sur la santé publique.



ABSTRACT

Contamination events in drinking water distribution system, whether intentional or accidental, can
adversely affect public health. This study is focused on simulating accidental intrusion events due
to sustained pressure losses. Utilities need to understand the spatial and temporal distribution of
microbial contaminants during and after pressure deficient conditions (PDCs) to determine
adequate remediation actions. Realistic hydraulic and water quality models under PDCs coupled
with advanced quantitative microbial risk assessment (QMRA) framework can help utilities to take
timely and appropriate action to minimize the infection risk associated with accidental intrusion

due to low/negative pressure events.

The main objective of this research is to develop and integrate realistic hydraulic and water quality
modeling concepts into a QMRA model in order to improve the assessment of public health risks
associated with the occurrence of sustained low/negative pressure events in drinking water
distribution systems. On a more detailed level, this project sought to: (1) evaluate the use of
pressure-driven analysis (PDA), instead of traditional demand-driven analysis (DDA), to define
the zones potentially at risk of intrusion/backflow in a full-scale distribution system; (2) develop a
method that combines both pressure-driven analysis results and multi-species water quality
analysis (MSWQA-PDA); (3) assess the impact of two pressure-demand relationships on hydraulic
and water quality parameters; (4) reduce uncertainty and improve assumptions in modeling
accidental intrusion and fate and transport of contaminants; (5) compare the spatial and temporal
distribution of E. coli and the affected pressure zones, resulting from the ingress of sewage in the
absence and presence of various disinfectant residuals and evaluate the possibility of issuing
sectorial boil water advisory (BWA); (6) investigate how sustained PDCs, due to major WTPs
shutdown, affect the disinfectant residuals with and without considering the ingress demand
impact; (7) evaluate the spatial probability of detecting E. coli throughout the network at different
periods and (8) evaluate the public health risk associated with accidental intrusion events by

improving an available quantitative microbial risk assessment model.

In this work, a multi-species water quality modeling based on PDA (MSWQA-PDA) is proposed
to predict the ingress of contaminated water resulting from sustained PDCs. The developed tool
simulates also the fate and transport of contaminant and the decay of disinfectant across the
network during and after PDCs. First, to verify the reliability of the presented approach (MSWQA-
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PDA), continuous sustained PDCs are modeled by assuming some major WTP shutdowns in a full-
scale drinking water distribution system that serves a population of ~400,000 through 1,600 km of
pipes. As a proof of concept, multiple water quality species including water age, chlorine and THM
are modeled and compared with the scenario of normal operating conditions. Results show that,
DDA overestimate the areas at risk of low and negative pressure, which may lead to unjustified
advisories. The simulated continuous PDCs generally resulted in greater chlorine residual loss, and
consequently THM augmentation compared to normal operating conditions even without
considering the impact of intrusion. This is mainly because of longer residence time. The variations

are shown to be higher at nodes with lower pressure values.

As the next step, MSWQA-PDA is applied to model fate and transport of E. coli resulting from
intrusion of raw sewage due to sustained PDCs of 5 hours in the presence of different types of
disinfectant residuals. The intrusion volumes at each of the 73 leakage points, having pressures <
1 m, are estimated by taking into account the state of pipes (i.e. age and materials) and the internal
pressure head, calculated from PDA. Results show that, 11% of the nodes experienced positive E.
coli (> 1E-06 CFU/L) at any time during the 4-day simulation period in the absence of any
disinfectant. This value decreases to 10% and 1% in the presence of 1 mg/L of chloramine and
chlorine, respectively. It is observed that E. coli can be transported to areas with higher pressure (P
> 10 m, based on pressures under PDCs) according to the efficacy of disinfectant residuals on the
intruded microorganisms. For chlorinated system (1 mg/L), positive E. coli (> 10-6 CFUI/L) is
found at 119 nodes 4 hours after the start of intrusion rapidly decreasing to 8 nodes 9 hours after
the start of intrusion. This indicates that the contamination events are unlikely to be detected using
E. coli sampling unless sampling is conducted rapidly at or close to intrusion sites. In the presence
of chloramine, the nodal mean probability of detection was more than 0.1 in the first and second
5-hour intervals at 166 nodes, indicating that a rapid response sampling directed at the areas at risk
could be effective in confirming contamination. Matching the utility sampling schedules with the
corresponding numerical predictions can increase the probability of detecting the contamination.
Depending on modeled concentrations, larger sampling volumes may be required. A larger sample
volume can extend the post intrusion allowable sampling time during which sampling can be

performed with a greater likelihood of positive detection.

Finally, a novel QMRA model developed by Blokker et al. (2018) is coupled with water quality
calculations based on PDA to assess Cryptosporidium infection risk from accidental intrusion of
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sewage. Poisson and the lognormal distribution for the number of glasses per person per day and
ingested volume per glass is used, respectively. For the time of consumption, the average kitchen
tap use is modified based on the availability of demand using PDA results. To take into account
the uncertainty of the calculations from consumers’ behavioral variability, 200 Monte Carlo
simulations are performed. The simulated number of infected people increases by 235-fold with
increasing concentrations of Cryptosporidium in raw sewage from 1 to 560 oocysts/L (fixed
intrusion duration: 24 hours). The maximum number of infected people, during the 4 observation
days, gets 64% and 94% lower for the scenarios of 10 hours and 1 h, respectively, compared to 24
hour intrusion. Spatial distribution of nodal risks for different event durations illustrated that
duration is a key factor in defining the boundaries of BWA. It is shown that, not drinking water
from tap with very low-flow (i.e. filling time increase by more than 20 times) could decrease the

number of infected people up to 65% on the day of intrusion.

Overall, this research project models the water quality variations due to sustained pressure losses
in drinking water distribution systems. Results from this study can be used to provide insight into
the development and improvement of regulations or practical recommendations for managing

drinking water network under sustained PDCs and minimize the adverse public health effects.
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CHAPTER 1 INTRODUCTION - IMPROVING MODELING TOOLS
TO PREDICT WATER QUALITY DUE TO SUSTAINED
LOW/NEGATIVE PRESSURE EVENTS

The integrity of the drinking water distribution systems is important not only to minimize leakage
but also to minimize the risk of contaminants entering into the distribution systems. It is well
established that distribution system deficiencies can be a source of waterborne disease outbreaks
(Craun et al. 2010, Guzman-Herrador et al. 2015, Hunter et al. 2005, Kirmeyer et al. 20014, Lindley
and Buchberger 2002, Nygard et al. 2007, Payment et al. 1991, Payment et al. 1997). For the period
1971 to 1998 in U.S., 113 outbreaks out of 619 investigated cases (18.1%) were caused by
distribution system deficiencies (Lindley and Buchberger 2002). In Quebec, the two
epidemiological studies of Payment et al. (1991) and Payment et al. (1997) suggested that
deficiencies in the distribution network could lead to an increased burden of gastrointestinal
diseases. Pathogen intrusion in water distribution system may result in a decrease of water quality
if there is not an adequate disinfectant residual concentration to control the propagation of
pathogens from the intrusion points. Three events must occur at the same time to cause pathogen
intrusion in distribution system: low/negative pressure, the presence of a source of contamination
and a pathway for entry of the contaminated volume. Submerged air valves, cross-connections,
faulty seals, faulty joint or leakage points are at risk for entry of untreated water into the drinking

water distribution system due to negative or low pressure.

Water utilities need management plans in order to detect and respond to sustained low pressure
conditions in order to limit the impact of pressure losses on their customer’s health. Realistic and
accurate modeling methods under pressure deficient conditions can be a valuable tool for utility
managers in decision-making. As mentioned by Besner et al. (2011), the occurrence of adverse
pressure conditions can be represented by two types of events: transient low or negative pressure
and sustained low or negative pressure events. Transient low/negative pressure events can occur in
the network lasting from a few milliseconds to a few minutes. These events have been well
documented and were studied through modeling and field investigations, and several guidelines are
proposed to prevent these events (Besner et al. 2010b, Boulos et al. 2005, Ebacher et al. 2012,
Ebacher et al. 2011a, Gullick et al. 2005, LeChevallier et al. 2011, Walski and Lutes 1994, Yang

et al. 2011). Sustained low/negative pressure events have been recorded in the literature (Besner et
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al. 2007, Besner et al. 2011, Douglas et al. 2018, Kirmeyer et al. 2014) and can become more
frequent in decaying infrastructure. The volume of contaminated water ingress into the network is
directly influenced by the duration of low/negative pressure events, and consequently adversely
affects the level of public health. Therefore, the present work is aimed to concentrate on simulating

extended duration low/negative pressure events lasting a few hours.

The use of quantitative microbial risk analysis (QMRA) to assess the microbial risk associated with
the intrusion of pathogens in distribution system is challenging. Different factors such as the
location of ingress, the contaminant mass rate, the duration of contamination events, the
interactions between microorganisms and disinfectant throughout the network, and finally the
consumer's behavior all impact the likelihood of contaminated water reaching the tap (Besner et
al. 2011). In the last decade, QMRA associated with contamination events due to transient pressure
drops, main repairs or intentional contamination has gained more attention (Blokker et al. 2014,
Blokker et al. 2018, LeChevallier et al. 2011, Schijven et al. 2016, Teunis et al. 2010, Van Abel et
al. 2014, Yang et al. 2011, Yang et al. 2015). However, no study has yet applied QMRA models
integrated with realistic pressure-driven analysis (PDA) to assess the probability of infection
associated to accidental intrusion due to sustained pressure drops. This can only be achieved by

taking into account both the network’s response and consumer’s behavior during PDCs.

Using PDA rather than demand-driven analysis (DDA) under pressure deficient conditions leads
to more realistic hydraulic simulations (Cheung et al. 2005, Siew and Tanyimboh 2012). As water
quality parameters depend on hydraulic conditions, a realistic hydraulic simulation (with PDA) is
required to be linked with water quality model under pressure deficient conditions. In previous
studies, the hydraulic engine for multi-species water quality analysis was based on DDA (Betanzo
et al. 2008, Islam et al. 2017, Karamouz et al. 2017, Klosterman et al. 2009, Muray and Adachi
2011, Propato and Uber 2004, Teunis et al. 2010, Tinelli and Juran 2017, Tinelli et al. 2018, Yang
and Boccelli 2016). Although useful, these simulations are only valid under normal operating
conditions. To the best of our knowledge, all water quality simulation studies under pressure
deficient conditions, using PDA, are based on single-species water quality model (Afshar and
Marifio 2014, Bashi-Azghadi et al. 2017a, Bashi-Azghadi et al. 2017b, Rasekh and Brumbelow
2014, Seyoum and Tanyimboh 2014, Seyoum et al. 2011, Zafari et al. 2017), except the recent
work by Seyoum and Tanyimboh (2017) that modeled chlorine residual, trihalomethanes and

haloacetic acids under PDCs for a small network with 380 nodes. In addition, the contaminant mass
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rate in ingress water was approximated randomly using the existing data or was considered as a
fixed parameter for all the intrusion nodes (Besner et al. 2010c, Betanzo et al. 2008, Islam et al.
2017, LeChevallier et al. 2011, Propato and Uber 2004, Teunis et al. 2010). In this study, we
estimated node-specific intrusion volume by adjusting the volume for the state of pipes using nodal

leakage demand, and the nodal internal pressure value using PDA.

Prior work and this thesis emphasize the need to further develop QMRA models coupled with
realistic numerical model calculations. An approach capable of integrating pressure-driven
hydraulic simulation results into a multispecies water quality model is proposed. With this
approach, the interaction between microorganism and disinfectant residuals under pressure
deficient conditions can be considered. These improved models can provide a basis for reevaluating
and enhancing statutory monitoring programs to increase the probability of contamination
detection. They also offer insights to utility managers for appropriate preventive/corrective actions
and timely response to sustained PDCs. Finally, this PhD project addresses several knowledge gaps
on assessing the risk associated to accidental intrusion caused by sustained low-pressure conditions
by performing several original improvements to various models (hydraulics, intrusion, quality and
QMRA).

This thesis is structured in 9 chapters. A review of the state of the literature is presented in Chapter
2. It is followed by the objectives, hypotheses and methodology in Chapter 3. Chapters 4 through
6 represent the research results in the form of published or submitted articles. A published paper in
conference proceeding is presented in Chapter 7. Finally, a general discussion is presented in

Chapter 8, followed by conclusions and recommendations in Chapter 9.



CHAPTER 2 LITERATURE REVIEW

2.1. Distribution System Deficiencies

Drinking water distribution system is the final barrier for providing safe drinking water to
consumers. According to experience records in Canada (Canadian Council of Ministers of the
Environment (CCME) 2004), water system infrastructure is subject to a variety of events or threats
such as mechanical failures (e.g. pump breakdowns and valves jamming), environmental (e.g.
forest fires), power outages, contamination, communication disruption (e.g. failure of automatic
signal equipment), etc. Waterborne disease outbreaks are attributed to distribution system
deficiencies and their portion has been increased in recent decades (Kirmeyer et al. 2001a,
Kirmeyer et al. 2014). Between 1971 and 1998, 18 % of investigated waterborne disease outbreaks
(113 out of 619) in the United States were the results of drinking water distribution system
deficiencies (Craun and Calderon 2001). Contaminant intrusion or backflow as the result of low or
negative pressure events in distribution system can cause water quality problems and consequently
lead to adverse health effects (Guzman-Herrador et al. 2015, Lindley and Buchberger 2002). Under
these circumstances, appropriate and timely response to contamination events by utilities can

minimize public health risks.
2.2. Pressure deficient conditions

The occurrence of adverse pressure conditions in drinking distribution systems can appear in the
form of transient or sustained low/negative pressure event. While transient events are short duration
events (e.g. few milliseconds to a few minutes) the duration of sustained low or negative pressure
is usually in the order of minutes to hours (Besner et al. 2011). Submerged air valves, cross-
connections, faulty seals, faulty joint or leakage points are the risk points where untreated water
can intrude into the distribution system under pressure deficient conditions. The causes and

consequences of each type of event are briefly described below.
2.2.1. Transient low/negative pressure events

Rapid changes in velocity occur when the operational status of flow control component varies (e.g.

pump shut down or valve closure). Such rapid changes will impose a pressure wave movement
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through the system. Different studies have investigated the possibility of ingress of contaminated
water into the distribution systems under transient pressure drops using numerical modeling tools
or through field studies and practical guidelines are proposed to control these events (Besner et al.
2010b, Boulos et al. 2005, Ebacher et al. 2011a, Gullick et al. 2005, Gullick et al. 2004,
LeChevallier et al. 2011, Walski and Lutes 1994). Details toward transient flow concept and the
methods of controlling hydraulic transient can also be found in Walski et al. (2003). Some of the
causes of transient flow conditions that may lead to pathogen intrusion in distribution systems are
as follows (Kirmeyer et al. 2001b): altitude valve closure, opening and closing a fire hydrant, valve
operation (opening and closing), air-valve slam, flushing operations, malfunctioning of air
release/vacuum valves, malfunctioning of pressure relief valves, booster pump startup and shut
down, sudden change in demand, check valve slam, resonance, breaking in a pipeline and losing
an overhead storage tank. Isolation and disinfection process may be required at some distance away
from the area of the main break as the contamination intrusion does not certainly occur at the point
of the main break (LeChevallier 1999). Transient low/negative pressure events were measured by
Besner et al. (2010a) installing high-speed pressure transient data loggers in full-scale water
systems. Eleven negative pressure events were reported during phase 1 of this study. The cause of
these negative pressures was due to power failures at the water treatment plant, repairs of isolated

water mains and closure of a transmission main.
2.2.2. Sustained low/negative pressure events

While transient events are short duration events, the duration of sustained low/negative pressure is
usually in the order of minutes to hours. The latter event was reported in some distribution systems
(Besner et al. 2007, Besner et al. 2011, Douglas et al. 2018, Kirmeyer et al. 2014). With water
infrastructure aging, sustained low/negative pressure events are likely to become more common
and can be an important source of contaminant intrusion; thus the need for improvement of
hydraulic and water quality models under such conditions. Immediately after a pressure drop is
reported in the network, preventive/corrective actions are required to protect public health. When
the duration of the pressure drop is longer, it is more likely that the utilities are informed about the
pressure-deficient conditions through the complaints receive from customers and the pressure
monitoring (Erickson et al. 2015). Planned or emergency construction/repair/replacement work,

power failures, main break, large scale flushing or high fire-flow water demand by attaching a
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pump to a hydrant may cause sustained low/negative pressure in distribution systems (Besner et al.
2011, Erickson et al. 2015). During the field measurements done by Besner et al. (2007) and
(2010a), the occurrence of sustained low/negative pressure is reported at different locations of the
network. Negative pressure lasted between 1 and 37 minutes and pressure below 20 psi lasted up

to 20 hours are reported during 3 closures of the transmission main (Besner et al. 2007).
2.3. Quantitative microbial risk assessment

Infection, illness and death can be modeled in microbial risk assessment. The risks of illness and
death generally are calculated using infection risk by implementing morbidity or mortality ratios.
Infection is the first symptom of exposure to a pathogen. However, in the lack of clinical sign it is
difficult to assess infection in humans (United States Environmental Protection Agency USEPA
2012). One common method for evaluation is quantitative microbial risk assessment (QMRA) that
has become a useful tool for evaluating the drinking water safety (Smeets et al. 2010, World Health
Organisation (WHO) 2006). QMRA consisted of the following steps (United States Environmental
Protection Agency USEPA 2012): hazard identification (recognizing the proper microorganism);
hazard characterization (the qualitative description of microorganisms’ ability or potential to cause

harmful effects); exposure assessment and risk characterization.

In spite of the evidence supporting the role of water network in infectious waterborne diseases
(Craun et al. 2002, Guzman-Herrador et al. 2015, Lindley and Buchberger 2002), QMRA has been
mostly used to only assess the risk of drinking water treatment failures (Schijven et al. 2011, Tfaily
et al. 2015, World Health Organisation (WHQO) 2016). Employing QMRA model to assess the risk
of contamination in water distribution systems is complicated as different parameters such as
location, duration and intensity of the event, propagation of contaminated water and the
coincidence of a consumption event with passing of contaminants from the tap should be integrated
into the model. These requirements are addressed in a conceptual model presented by Besner et al.
(2011) to provide a guidance for quantifying the risk from contamination intrusion in the

distribution system.

Reviews of the health risk from intrusion in water distribution systems exist (Besner et al. 2011,
Hamouda et al. 2018, Islam et al. 2015, Vifas et al. 2019). Most of the current QMRA models have

been used to predict the public health risk associated with intentional intrusion, transient events in
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water distribution system or main breaks (Blokker et al. 2018, Schijven et al. 2016, Teunis et al.
2010, Yang et al. 2011, Yang et al. 2015). Water quality, hydraulic and surge modeling were
coupled with Monte Carlo simulations to estimate the average risk of infection and the number of
people infected (LeChevallier et al. 2011). Teunis et al. (2010) and Yang et al. (2011) have used
the same risk model. The public health risk associated to transient and sustained intrusion events
was investigated by Besner et al. (2010c) for a duration of 1 min and 1 hour, respectively. These
authors recommended to include pressure driven analysis in future studies to determine the
low/negative pressure points instead of demand-driven analysis. The probability of infection
resulting from intentional intrusion due to contaminated aerosol droplets inhalation or ingestion of
contaminants is investigated, including the consumer behavior (Schijven et al. 2016). In the study
done by Blokker et al. (2018), the number of infected people from 1E+4 ingress load of
Cryptosporidium (1E4 per isolation section volume with average of 3.4 m3) due to breaks in the
distribution system was between 1 to ~120 for a single event. In their study the scenarios had been
simulated under different hydraulic/water quality conditions (different times of opening valves and

contamination locations) in the Monte Carlo simulations.

Usually, standard risk assessment models assume a fixed consumption volume, at a specific hour,
per person per day (Besner et al. 2010c, Islam et al. 2017), at fixed times during the day or using
randomize times of water consumptions at any time during the day (Besner et al. 2010c, Davis and
Janke 2009, Yang et al. 2011), or only one consumption event per day (LeChevallier et al. 2011,
Yang et al. 2011). However, there are several studies that used probabilistic models to more
accurately simulate the behavior of consumers (Blokker et al. 2014, Blokker et al. 2018, Davis and
Janke 2008, 2009, Schijven et al. 2016). Also, Blokker et al. (2018) and Davis and Janke (2009)
showed that the time of water intake from the tap, for drinking water purpose, is not necessarily
equal to the total consumption time. Blokker et al. (2018) used the kitchen tap use data to better

identify realistic consumption times during the day.



2.4. Hydraulic simulations: demand-driven analysis vs pressure-driven

analysis

To simulate the hydraulic dynamics of a distribution network, two sets of equations are required.
The first set of equations is the conservation of flows for each node in the network and the next is
the nonlinear relationship between flow and head loss for each pipe. The energy conservation
equation in a steady state condition along hydraulic pipe between node i and j is expressed as

follows:

PV’ P, Vo’

08 + 28 +2; + hpumpu = 0,8 + 28 + 22 + Beurbineu + hi Eq. 2-1
in which hy,;m,,, is head delivered to the fluid by the pump, hyypine,,, is the head that is removed
from fluid by turbine (it is equal to O if there is no turbine in the system), h; is head loss due to all
components of the piping system between points 1 and 2. Hazen-Williams, Darcy-Weisbach, and
Chezy-Manning are the most common head loss relationships due to friction that are used in

network modeling (Mays 2004).

Flow conservation equation that must be satisfied around all nodes in steady state condition is as

follows:

ZQ”_Di:O fori=1,..,N Eq. 2-2
j

in which D; is flow demand at node i, N is the number of junction nodes, Q;; is flow in pipe i-j

where | is set of nodes directly connected to the node i.

The approaches for simulating the hydraulic behavior in water distribution systems can be
classified into two groups: demand-driven analysis (DDA) and pressure driven analysis (PDA).
Both of these methods are based on the solution of the energy equation and mass conservation
equation. In the demand driven algorithm, while energy and mass conservation equations are solved
to calculate nodal heads and link flows, the nodal demands are considered as a fixed parameter in
continuity equation. Therefore, this approach lead to unrealistic results under PDCs as it considers

that all the nodal demands are met regardless of the nodal pressure values. These results cannot be
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physically acceptable and are only mathematical results, as in reality the nodal demands cannot be
fully satisfied in the case of insufficient nodal pressure (Nyende-Byakika et al. 2012). Therefore,
when nodal pressures are not sufficient to supply the full demand, a more realistic approach called
PDA is preferred. However, in the majority of network solvers such as EPANET, the demand-
driven approach is used and is perfectly adequate to model network hydraulics under normal
operating conditions. Pressure deficient condition occurs when the nodal pressure drops below its
critical value (see section 2.4.2) due to a failure condition in the system. Examples of such
conditions are unplanned pipe outage, insufficient water supply from water sources, pump stations

failure, etc.

Several algorithms maybe applied to solve the equations in DDA. Todini (2006) classified the
existing solution algorithms presented by the researchers into four groups as: the global gradient
algorithm, the linear theory algorithm, the simultaneous loop algorithm, the Newton-Raphson
nodal algorithm. The Global Gradient method (GGM) has been established as a robust approach
and as the most suitable for fast convergence. This algorithm has been applied in EPANET 2
(Rossman 2000). Wu et al. (2009), Siew and Tanyimboh (2012), Siew and Tanyimboh (2009) and
Siew and Tanyimboh (2010b) have applied the improved GGM to consider demands as function

of pressures.
2.4.1. Pressure-demand relationships

In a conventional water distribution hydraulic simulation, the demand is assumed as a fixed value
that usually comes from field data observations. Recently, by developing pressure driven approach,
it has been attempted to compute the demand values in the system as function of nodal head during
pressure deficient conditions in the system. Determining an accurate relationship between nodal
pressure and demand for a network may require a huge amount of field data, which does not seem
to be practical. However, many researchers have attempted to develop some relationships between
nodal demand and pressure (Bhave 1981, Fujiwara and Li 1998, Gupta and Bhave 1996, Reddy
and Elango 1989, Tanyimboh and Templeman 2004, 2010, Tucciarelli et al. 1999, Wagner et al.
1988). Shirzad et al. (2013) conducted a set of laboratory and field experiments in three points of
a real water distribution to measure the discharge from different faucets and their corresponding

pressures. These authors were the first to compare different existing PDRs based on measured data.
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These authors proposed a new relationship based on the measured data and orifice equation.
However, this research reveals the need of more field and/or experimental data to define a suitable
function between nodal pressures and demands. Recently, improvement to pressure-demand
relationship (PDR) have been proposed by taking into account the impact of the number of orifices
that are attached to the hydraulic model node, the number of open orifices and their elevation
(Walski 2017, Walski et al. 2019). When demands related to several consumers are aggregated at a
node of the hydraulic model, a parabolic relationship may not be applied anymore, because the
relationship must be a function of different factors such as consumer location, consumption
behavior, plumbing fixtures and headloss in the secondary network (Ciaponi et al. 2014, Gupta

2015). A selection of the proposed relationships and their parameters are shown in Table 2.1.
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Table 2.1: Summary of the relationships proposed by different researchers for estimating available flow.

Head-Flow Equation Parameters to be known Reference

req _ _avl ; 1 i Bhave (1981
q  =4q;", if YV > H™" ( )

0< qlavl < queq, if Hj = Hl.min H].min Probably the first one who considered the

avl e travl < pymin nodal flows and heads at the same time, this
9 =0, if ™" < Hj method is named as node flow analysis.

o (s -y min Gupta and Bhave (1996)
G = a7*|1-10 () by, Hy™, s .
J Modified Germanopoulos (1985)
= = _
avl _ Hi_Hlmin 1z req pymin - ~ gred Hjmm Wagner et al. (1988)
q] - dees_H]gnin q] y j j j Hdes
. j
1 _
¢V =0, H; < H™
. min Reddy and Elango (1989

ai"! = Sc;(H; — H"™)°* Sepr B Y 90 (1989)
" =a o= .

avi _ (H=H) GHIS 2R, -HP™) roq iy req By Fujiwara and Li (1998)

(H]ples_H]mm) dees
- .
Q" =0, H, <
. . . Tanyimboh and Templeman (2004

avl _ _req exp(ag+BiH) B = 11.502 o = —4.595H;9%5-6.907H;™" a; , B in the case of existence of field y P ( )
b T thexp(og+BiHp’ ) Ao Hjes—p; data, otherwise H;"** and H;™™" Tanyimboh and Templeman (2010) )

Q= a(Hj - emin)b

a, b1 €min

Walski (2017), Walski et al. (2019)

q]‘-“’l: available flow at node j, q}”eq: required design demand, H]-mi“: minimum head at node j, H;: available nodal head, H]-des: minimum required head at node j,
SCj and b, are node constants, a: coefficient and is a function of the number of open orifices and their orifice coefficient values, b: coefficient and is a function of
orifice elevations, e;,: elevation of the lowest orifice.

(+) The values of a; and B are specified using field data for the node in equation. This relationship seems to be the only function that removes the need of extra
conditions for H; < H]-min and H; > H].r 4 (Tanyimboh 2008). In the case that no field data is available, these two parameters can be defined as the function of H]-rnin

and H;"** by assuming: g3'(H;"**) = 0.999¢; and q{*'(H;™™") = 0.01q;"".
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2.4.2. Critical Pressure in Water Distribution Systems

Critical pressure is the nodal pressure value below which the nodal demand cannot be fully
supplied. Actually, the critical pressure is a value that is unique for each node and each network
and its exact value must be determined from field measurements. As this task is not often practical,
this critical value is usually approximated for the system using existing guidelines. However, this

may induce uncertainty in the results when performing PDA.

Several criteria are used to estimate the critical pressure value. The terms threshold pressure,
minimum required pressure, and critical pressure are used interchangeably this document. The
pressure at any point in the distribution network should never fall below 20 psi across the street
when the network is subjected to a maximum daily demand plus fire flow (Ministére de
I'environnement du Québec 2002). A minimum pressure of 20 psi must be maintained at ground
level at all points in the distribution system under all conditions of flow, while during normal
operating condition, the pressure must be approximately 60 to 80 psi and not less than 35 psi (Great
Lakes Upper Mississippi River Board of State Public Health and Environmental Managers 2007).
Even though acceptable pressure may vary in different systems, they must usually be maintained
between 30 psi and 100 psi during normal working conditions (Chase 2000). If the pressure values
exceed 100 psi, it is likely to increase water loss through leaks and may also lead to main breaks
or plumbing systems damage. Also it is mentioned that a pressure supply of 30 psi is enough for
the top floors of multistory buildings. Depending on the characteristics of the water supply system,
the minimum pressures may have to be kept higher than 30 psi at specific places in the network.
As an example, facilities in some hospitals or industries may require a minimum pressure higher
than 30 psi to operate correctly (Chase 2000). Operation of some devices in residential houses may
also require specific minimum pressure. As an example most dishwashers require a minimum
operating pressure anywhere from 20 to 40 psi (Mays 2004). During emergency cases such as fire
flows, the entire system pressure should be kept above 20 psi. Also keeping the system pressure
above 20 psi can help to avoid the potable supply being contaminated from cross-connections
(Chase 2000).

A survey on the state minimum pressure standards and the practical reaction of the utilities to

low/negative pressure events shows that, even though a minimum pressure standard of 20 psi is
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required for the majority of the states, the delay to issue boil-water advisories and notifying events

to state primacy agencies follow different policies (Erickson et al. 2015).
2.4.3. Approaches to Pressure-Driven Analysis: A General Literature Review

Developed approaches to perform PDA can be categorized in (1) methods that involve DDA, (2)
and methods that solve the mass and energy conservation equations and the selected PDR at the
same time (Sayyed and Gupta 2013). In the following selected approach will be explained in more

details.

A semi-pressure-driven approach was developed by Ozger (2003). This method is based on
demand-driven analysis using EPANET 2 software. This author was probably one of the first
researchers to propose the use of artificial reservoir to model pressure deficient conditions in
distribution systems. The strategy of this approach is that the nodal demands are considered as
unknown parameters while the threshold pressure is imposed in the system. During semi-pressure-
driven analysis (SPDA), the first step is to run the network by demand-driven analysis in order to
identify the nodes that cannot supply the full demand due to pressure deficiency. Next the amount
of the available flow at these pressure deficient nodes is quantified by the following procedure: (i)
new node elevation is set to the original node elevation plus threshold pressure head; (ii) non-zero
demand is fixed to zero for all pressure deficient nodes; (iii) artificial reservoir is connected to
each pressure deficient node; (iv) artificial tank elevation is set to new node elevation. It should be
noted that the reservoir is connected to its junction by an infinitesimally short pipe to avoid head
losses. This pipe is defined as a control valve that only allows flow from the junction into the tank.
With the above modification, the hydraulics of the networks are solved for the second time. If,
after the second simulation, any artificial reservoirs receive more water than the original demand
assigned to the node then a new iteration is required. In this case, those artificial reservoirs are
removed and the original nodal properties (e.g. nodal elevation and nodal base demand) are
restored. While keeping the rest of conditions unchanged, the hydraulic model should be run again.
The iteration procedure is continued until all the available flows into artificial reservoirs are less
than the original demand. Ozger (2003) applied SPDA for both steady-state analysis and extended
period simulation under pressure deficient conditions due to pipe failure. This approach has been

used to perform reliability analysis of distribution systems (Ozger 2003, Yoo et al. 2005). The
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semi pressure driven analysis of Ozger (2003) was then employed to model serious pressure

shortfalls in a real network including one reservoir and 22 pipes (Nyende-Byakika et al. 2012).

A methodology named pressure-deficient network algorithm (PDNA) is proposed and
implemented into the EPANET hydraulic solver by using artificial reservoirs to model an 8-pipe
single source and 14-pipe multiple-source network in the presence of firefighting demand and/or
pipe breakage (Ang and Jowitt 2006). As an improvement of the algorithm provided by Ang and
Jowitt (2006), a modified pressure deficient network algorithm (M-PDNA) is presented by Jinesh
Babu and Mohan (2012) to overcome the drawback of PDNA from the standpoint of topology
variation and consequently multiple runs of EPANET. The method was successfully validated to
perform extended period simulation by modeling a multiple source pumped network assuming a
diurnal change in demands and the performance of M-PDNA was shown by solving a network of
124 pipes. However, Gorev and Kodzhespirova (2013) illustrated that the M-PDNA approaches
of Jinesh Babu and Mohan (2012) failed to converge during an extended period simulation under
pressure deficient condition using a network example in two different cases. Through a network
example, Suribabu and Neelakantan (2011) illustrated that PDNA did not provide reasonable
results for some specific pipe isolations and the reason is mentioned to be that in PDNA the
pressure is brought to minimum value by obligating the demand to be reduced. While in the case
of having no outflow in the critical nodes, this would not be possible. These authors presented a
method termed complementary reservoir solution (CRS) that is simpler than PDNA as it requires
fewer removals and additions of artificial reservoirs. However, CRS still had the problem of
requiring multiple hydraulic run. With CRS, additional flow enters the network through the
reservoir even if this is not the case in reality and may cause error, however, Mamizadeh and
Sharoonizadeh (2016) proposed some modifications to CRS to overcome this problem. Later,
another study proposed an improvement to original CRS to minimize the number of artificial
reservoirs that are required to be attached to the nodes with negative pressure head (Suribabua et
al. 2017).

The methods that apply artificial reservoirs have some shortcomings such as high computational
cost and modification to network topology. It is a tedious approach to apply for the analysis of
large networks and for extended period simulation. Wu (2007) mentioned that the computational

efficiency will significantly deteriorate during the application of PDNA to large networks due to
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topology variation and the necessity of refreshing the data of hydraulic model and also reopening
the EPANET solver. Non-iterative approaches have been proposed to perform PDA using
EPANET 2, in which the artificial elements are attached to all the demand nodes without the need
of modifying the topology iteratively (Gorev and Kodzhespirova 2013, Mahmoud et al. 2017,
Pacchin etal. 2017, Paez et al. 2018, Sayyed et al. 2014, Sayyed et al. 2015). However, implication
of these methods for EPS may still be difficult.

A FORTRAN computer program that uses a globally convergent Newton-Raphson approach to
treat PDA that is termed PRAAWNDS (Program for the Realistic Analysis of the Availability of
Water in Distribution Systems) was applied by Tanyimboh (2008). It was observed that different
PDRs (Fujiwara and Li 1998, Gupta and Bhave 1996, Tanyimboh and Templeman 2004, Wagner
et al. 1988) have a significant impact on final results. It was also demonstrated that computational
time is not increased for PDA compared to DDA. Some researchers (e.g. Giustolisi and Walski
(2012)) claimed that PDA is less efficient than DDA from numerical and mathematical point of

view, because applying PDRs in PDA complicates the numerical and mathematical process.

An approach for modeling PDA was introduced in which the PDR was integrated in the gradient
method. It was shown that this approach can properly model the normal and pressure deficient
conditions (Siew and Tanyimboh 2009, 2010a). In these studies, PRAAWNDS software was used
as a validation reference. Siew and Tanyimboh (2010b) presented an extension of EPANET 2 to
model pressure deficient condition by applying Tanyimboh and Templeman (2004) head-flow
function. They integrated this function into a gradient method and named it as EPANET-PDX
(pressure dependent extension). A real life network was chosen and the pressure deficient
condition was generated by causing a pressure shortage for each reservoir in a way that only 22%
of the total demand was achieved. Similar results were achieved for EPANET-PDX, PRAAWDS
and the feasibility check, so it was concluded that EPANET-PDX models pressure deficient
condition accurately. Siew and Tanyimboh (2012) and Seyoum and Tanyimboh (2014) performed
additional case studies applying EPANET-PDX. It is observed that EPANET-PDX was robust
during the demand satisfaction between zero to 100%. Recently, EPANET-PMX has been
developed to combine the advantages of EPANET, EPANET-MXS and EPANE-PDX (Seyoum
and Tanyimboh 2017).
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A pressure-driven analysis using the existing emitter component within EPANET was proposed
by Rossman (2007) to model pressure dependent flows. In 2010, EPANET was modified for
pressure-driven demand analysis by Pathirana (2010) who employed emitter modeling of
demands. In the current version of EPANET-EMITTER, the user is allowed to define the critical
pressure value in the software. However, it is not possible to define various emitter exponent or
critical pressure values for different nodes. More details regarding pressure driven analysis, based
on emitter formula for the networks with severe topography, can be found in Trifunovic and
Vairavamoorthy (2012). OOTEN (Object Oriented Toolkit for EPANET), a code library
developed in C and C++, can be applied to modify EPANET’s computational engine for specific
uses. Cheung et al. (2005) modified the EPANET source code to include PDRs directly into
OOTEN. As the values of the minimum and desired heads are required in pressure-driven analysis,
the input file must be modified to specify these values. The proposed pressure driven method was
applied on two networks to examine the performance of the method under abnormal conditions

(fire flow).

An efficient approach of pressure driven model (Wu and Walski 2006) was developed and
integrated into the modeling framework WaterGEMS (Bentley 2006) by Wu et al. (2006). The
integrated approach was implemented in a real distribution system. In addition, the application of
this approach to criticality analysis is demonstrated through the examples. Extended global
gradient methods used by Wu et al. (2009) to analyze pressure deficient scenarios can be applied
to the case with consideration of different PDR at each node.

2.5. Intrusion of pathogens into distribution systems

Water quality regulations usually require that water entering into the distribution system maintain
a predefined minimum disinfectant residual either at the entrance or at end points of the system
(Government of Ontario 2003, Ministére du Développement Durable de I’Environnement et des
Parcs du Québec (MDDEP) 2005, United States Environmental Protection Agency (USEPA)
2006). Such a disinfectant residual is usually justified to protect from microbiological re-
contamination, reduce bacterial regrowth and control biofilm formation. However, depending
upon the characteristics of the distributed water, the use of residual disinfection may lead to

undesirable side effects such as the excessive formation of disinfection by-products. Therefore,
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the concentration of disinfectant residual should be determined in consideration of the trade-off
between these two issues. Concentrations of disinfectant residual needed to control microbial

intrusion events can be determined by applying an accurate hydraulic/water quality model.
2.5.1. Intrusion predictions

Sustained or transient pressure losses can cause contaminant ingress into distribution systems if

there is an external source of contamination and a pathway.

Pathways: Submerged air vacuum valve (AVV), faulty joint, main repair sites, cross-connections
and leakage points are the potential locations for intrusion during pressure losses. Cross-
connections are physical connections between potable and non-potable water source through
which a contaminant may enter a drinking water supply. Backflow from buildings into the
distribution system, contamination in water tanks, and low pressure in the network are causes of
water quality failure reported by Hlavinek et al. (2008) in the networks. A list of backflow incidents
can be found in United States Environmental Protection Agency (USEPA) (2001). Field testing
done by Schneider et al. (2010) showed that backflow events took place in 1.6% of all meter reads,
each month, and in 5% of the homes, affect each year, where backflow-sensing meters had been
installed. Water in an air valve chamber presents a risk of contamination, since fecal contamination
indicators and enteric viruses have been detected in flooded valve chambers (Besner et al. 2010a).
In Canada, after the water is withdrawn by suppliers, ~13% of the water is lost before it arrives to
the consumers, however, this value can be higher (20-30%) for other territories (Renzetti and
Dupont 2013). This amount of water is mostly lost through pipe leaks, which are representative of

the intrusion pathways during pressure losses.

Contamination source outside the pipes: Microbial indicators concentrations in air vacuum valve
chambers, groundwater, and runoff water or raw waters/wastewater were measured in previous
studies (Besner et al. 2010a, Ebacher et al. 2013, Payment 2003), showing that the detected E. coli
concentrations were much higher in local wastewater compared to groundwater and valve vault

water samples.

Intrusion volume: As field measuring of intrusion volumes is costly and impractical, simulating

the potential intrusion volumes and defining the intrusion points, by numerical models is of great
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importance. The orifice equation used by researchers for this purpose (Besner et al. 2010c, Ebacher
et al. 2012, Ebacher et al. 2011b, Gibson et al. 2019, Kirmeyer et al. 2001a, LeChevallier et al.
2011). In these studies the diameter in orifice equation was either directly defined or global leakage
rate was applied to all nodes to estimate the intrusion flow rates. Using InfoSurge model, the total
intrusion volume of 157 L through 1517 leakage orifices was reported versus the total intrusion
volume of 766 L through 11 submerged air vacuum valves, for an intrusion event lasted for ~3
minutes (Ebacher et al. 2010). Some researchers have proposed modifications to the orifice
equation to take into account the impact of soil-leak interactions, leak-area variations due to
pressure changes, and type of leaks (Clayton and van Zyl 2007, Kabaasha et al. 2018, van Zyl et
al. 2017, van Zyl and Malde 2017, Yu et al. 2016). It is shown that variation of round hole area is
negligible with pressure changes, while this was not the case for longitudinal slits. In the latter
case, a modified orifice equation with leakage exponent varying between 0.5 to 1.5 was proposed
(van Zyl et al. 2017). Not considering the impact of soil characteristics outside of pipelines can

lead to a conservative intrusion flow rate estimation (Collins et al. 2010).
2.5.2. Equation to model fate and transport of pathogens

For a specific intrusion event, the estimation of the amount of pathogens that an individual may be
exposed through drinking tap water requires the simulation of the fate and transport of the
microorganisms into the system. The presence and type of disinfectant, the type of pathogen and
the organic matter content of the intruded material, attachment/detachment of pathogens from
biofilm, and hydraulic conditions are factors that will influence the transport and survival of the
microorganisms into the system. Three mechanisms may be used to model water quality:
advection, dispersion, and reaction. The advection term describes the particles transport by the
bulk motion of flow. The dispersion term model the movement of particles due to molecular
diffusion. The reaction term can define the decay, growth, death, adsorption, and consumption rate
of the particles. Water quality modeling in water distribution system can be simulated using the

advection-dispersion-reaction equation as follows:

0

d d d
3t c(x,t) + E (V(X, t)c(x, t)) = <d(x, t) £ c(x, t)> + f(x, t, c(x, t)) Eq. 2-3
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in which c(x,t) is the concentration of a certain species with spatial variable x and time t > 0,
v(x,t) is the flow velocity and f(x, t, u(x, t)) counts for reactions between various species. More

details on derivation of this equation and numerical solutions for solving this equation can be found
in Hundsdorfer and Verwer (2003).

Most of the water quality models apply advection-reaction equation to simulate the concentration
of a constituent in the distribution system (Walski et al. 2003). Longitudinal dispersion in pipes is
usually neglected with the assumption of completely mixed flow. However, that is only acceptable
under turbulent flow conditions. Blokker et al. (2008) reviewed the effect of dispersion on water
quality modeling. They mention that the dispersion term cannot be neglected in the case of laminar
flow and the contribution of this term in water quality model may be important. There are many
other studies documenting the effect of the dispersion term (Lee and Buchberger 2000, Tzatchkov
et al. 2002). Tzatchkov et al. (2002) observed that for high and medium velocities, the EPANET
advection-reaction model and their proposed advection-dispersion-reaction model gave similar
results. While for low velocity condition, their proposed model was more accurate. EPANET’s
water quality simulator (Rossman 2000) doesn’t consider the dispersion phenomenon and models

advection transport and reactions in the bulk flow and at the pipe wall.
2.5.3. Water quality modeling

Propato and Uber (2004) quantitatively investigated the vulnerability of distribution systems to
microbial intrusions using DDA by assuming deliberate continuous intrusion of Giardia, a
pathogen resistant to chlorine. These authors were the first who attempted to quantitatively predict
the effect of disinfectant residual on microbial intrusion events. Simulation results were expressed
as vulnerability curves which showed identical trends in both networks: consumer protection
increased with increasing the disinfectant concentrations as well as with applying booster
chlorination and free chlorine residual is more effective than combined chlorine. Betanzo et al.
(2008) later extended the work by investigating intrusion of E. coli, which is more easily
inactivated by chlorine. In their simulations, intrusion occurred at a single node of the network and
investigated three scenarios to model the fate and transport of pathogens from intrusion event: (i)
constant intrusion flow at a specific node, no disinfectant decay, (ii) similar to the first scenario,

with the exception for that the intrusion event at that specific node can only take place whenever
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the pressure is lower or equal to 20 psi, (iii) disinfectant decay modeling was added. Some of the
limitations of the simulations presented by Betanzo et al. (2008) are as follows: (i) the dilution of
intrusion water is assumed to be less than 1 % to have a first order decay (ii) constant intrusion
concentrations of Giardia/E. coli are assumed regardless of the system pressure, and (iii) as the
pressure of the system at some points goes below 20 psi, the use of a demand driven hydraulic
model may cause inaccuracies in simulation and consequently unrealistic estimations of residual
disinfectant in the network. Betanzo et al. (2008) concluded that 0.5 mg/L of free chlorine residual
in distributed drinking water may be insufficient to control intruded Giardia. However, E. coli can
be inactivated during an intrusion event in the presence of 0.5 mg/L of free chlorine residual.
Chloramines as a secondary disinfectant may have negligible benefits for the inactivation of
microorganisms from intrusion events (Betanzo et al. 2008, Propato and Uber 2004). There is still
debate regarding the protective action of disinfectant residual in the distribution system according

to the existing regulations to mitigate the impact of intrusion events in the distribution systems.

In some studies, the concentration of microorganisms is considered constant during the
simulations. However this situation can only be accurate and efficient to simulate worst case
scenarios where no inactivation of microorganisms occurs such as for Cryptosporidium in contact
with chlorine or chloramines (Betancourt and Rose 2004). However in other studies, the
inactivation of microorganisms is modeled while the disinfectant residual is considered constant,
i.e. no disinfectant decay (Betanzo et al. 2008). The interaction between microorganisms and
disinfectant cannot be simulated using classical single-species water quality models such as
EPANET. To overcome these problems multi-species models such as EPANET-MSX have been
developed (Shang et al. 2011). For example, EPANET-MSX software can be used to simulate
multi-species interactions such as attachment/detachment of pathogens to/from biofilm, interaction
of disinfectant with organic and inorganic matter, and inactivation of microorganisms (Uber 2010).
EPANET-MSX facilitated the simulation of multiple interacting species and
has been used by a number of authors (Betanzo et al. 2008, Islam et al. 2017, Karamouz et al.
2017, Klosterman et al. 2009, Muray and Adachi 2011, Propato and Uber 2004, Seyoum et al.
2013, Tinelli and Juran 2017, Tinelli et al. 2018, Yang and Boccelli 2016). EPANET-MSX was
used to assess the efficacy of disinfectants on virus intrusion associated with low/negative pressure
transients by Teunis et al. (2010) and LeChevallier et al. (2011). It should be noted that the
hydraulic engine of this software is based on DDA, as in EPANET 2. Recently, Seyoum and
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Tanyimboh (2017) modified the source code of EPANET-MSX to provide PDA. Except this recent
study, other studies that attempted to model water quality under pressure deficient conditions,
using PDA, are based on single-species water quality model (Bashi-Azghadi et al. 2017a, Bashi-
Azghadi et al. 2017b, Rasekh and Brumbelow 2014, Seyoum and Tanyimboh 2014, Seyoum et al.
2011, Zafari et al. 2017).

Microbial inactivation model: Haas and Karra (1984a) compared 3 available kinetic models under
disinfectant demand free conditions: Chick—Watson, Hom, and Monod model. The equations of
these models are as follows:

In (Nﬁ) = —kC™t (Chick—-Watson model) Eq. 2-4
0
N !
In (N—O) = —k'C™t™ (Hom model) Eqg. 2-5
N\ _ —kyC exp—kqt(C+kp)—1 _
In (N—O) = [t = ) ] (Monod model) Eqg. 2-6

where C is disinfectant concentration, N/No is the ratio of microorganism concentration, and k, n
and m are empirical constants. Computed combined chlorine and free chlorine were compared
with experimental data sets. They observed that, in general, all three models fit the data properly.
In a few cases, the Hom and Monod models fitted the data better. However, the authors concluded
that applying the simple Chick—Watson model to estimate the inactivation of microorganisms due

to free or combined chlorine was generally adequate.

Disinfectant decay model: Most decay model used in water distribution models are first order
equations (Betanzo et al. 2008, Islam et al. 2017, Propato and Uber 2004, Teunis et al. 2010).
Chlorine consumption is usually divided in two phases. The short term decay phase that usually
occurs in the first 4 hours is followed by a much slower decay phase (Jadas-Hécart et al. 1992).
As an improvement to first order model, the parallel first order decay model has been used by
some researchers. This model assumes two kinetic terms: one for the initial rapid chlorine residual
decay and one for the slow and long term chlorine decay. Other relations which proposed to model
disinfectant decay are listed in Table 2.2. First and second order models were compared by
Boccelli et al. (2003) and the differences between these two models for chlorine decay under re-

chlorination conditions were shown. They claimed that the second order model is always better
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than or provides the same fit as the first order model. The second order model is capable to
represent chlorination kinetics more accurately than the first order model. In many cases the
parallel first order decay model provides a suitable fit to the existing experimental data (Haas and
Karra 1984b, Helbling and VVanbriesen 2009, Warton et al. 2006).



Table 2.2. Disinfection decay model presented by different authors;
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concentration, k= coefficient rate

Type Model form and/or Analytical solution Definition of parameters References

dc r=Hydraulic radius of pipe section, k= Digiano and Zhang
Zero-Order w - K/ coefficient rate, C=chlorine concentration (2005)

_ e C, =initial chlorine, C=chlorine concentration, | Fisher et al. (2011);
First order dt k= coefficient rate Haas and Karra

C = C,y exp(—kt) (1984b)

. . dac _ . C* =portion of the initial chlorine residual

First-order decay with dt k(€ =" which is indefinitely persistent, C=chlorine Haas and Karra
stable components C = C*+(Cy — Cexp(—kb) (1984b)

Parallel first-order
decay

dc dc

a: kICX, a: kZC(l—X),

C = Coxexp(—k;t) + Co(1 — x)exp(—k,t)

K1 and k2= coefficient rate, x= chlorine
fraction that react with rate of Ky, C, =initial
chlorine, C=chlorine concentration,

Haas and Karra
(1984h)
Ramos et al. (2010)

dc _

X= concentration of reactant, C=chlorine

Power law decay
(nth-order)

dt
1

C=(kt(n — 1) + (Cio)n_l)‘ﬁ

chlorine, C=chlorine concentration

—=-k.CX :
Second order de concentration, k= coefficient rate Kohpaei et al. (2011)
WXfast _ ~Kiast- C. Xfast Xfast and X0 = concentrations of fast and _
Parallel second order dXC:l:ow slow reactants with coefficient rate of Kohpaei et al. (2011)
model dt = ~Ksiow- C- Xsiow Kease and kg o, respectively
dC _ dXfast | dXsiow
dt dt dt
€ _ _ken K and n= adjustable constants, C, =initial

Haas and Karra
1984c)

Power law decay with
stable components
(nth-order)

1

1
c=c¢C" kt(n — 1 —————) n-1
+( (n )+ (CO oyt n

K and n= adjustable constants, C, =initial
chlorine, C* =portion of the initial chlorine
residual which is indefinitely persistent

Haas and Karra
(1984b)

Combined first and
second order model

ac
» =k—k1C - kzlc(2

1 2 1 2\ k
L= (— 4 ekt
i TG TRYe

K; and k2= coefficient rate, C, =initial
chlorine, C=chlorine concentration

Hua et al. (1999)

*: No. of parameters required to be determined
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A theoretical three-species E. coli inactivation model was presented by Uber (2010), using
EPANET-MSX software. The three-species included in the model were: E. coli bacteria, free
chlorine and an organic rich matrix (e.g. nutrient broth). They proposed the following second order
model for three-component system (Table 2.3).

Table 2.3: Second order three-component system and the simplified one (Uber 2010).

Second order three-component system | Simplified second order three-component system
dE dE
E = _k61CE + keZBE E = —keCE
O o\ CE = kyCB — ksC ¢
dt - cl c2 c3 E = —kCCB
dB
dB
—_ = _kaBC + kszE = _k BC
dt dt b

Note: E= measure of coliform bacteria in CFU/L, B= organic matrix, in Uber (2010) modeled for an intentional
contamination scenario as Tryptic Soy Broth (TSB), in mL TSB/L, C=chlorine concentration in mg/L

The simplified three-species model (free chlorine, E. coli bacteria, and a nutrient broth) was applied
by Klosterman et al. (2009) to model E. coli inactivation in a single pipe. The contaminant injected
into the pipe was E. coli and Tryptic Soy Broth (TSB). The simulation was done for a single pipe.
Later, Karamouz et al. (2017) applied the same equations and constants to model contamination
events in a real network. EPANET-MSX was used by Muray and Adachi (2011) to model the
inactivation of microorganisms and chlorine decay in the presence of Tryptic Soy Broth (TSB).
Laboratory data was used to estimate the model parameters. Two microorganisms, E. coli and B.
globigii spores were studied. Simplified second order model as in Table 2.3 was used in their
studies. Estimation of pathogen concentrations may be more complicated than what is considered
in most of the models. It should be considered that decay constants in the presence of TSB are not
representative of decay in mixed ingress water during intrusion events. In the case of intrusion
simulation, it would be more realistic to apply decay constants for the reaction of chlorine with

background organics using a two species second-order model, as in Yang and Boccelli (2016).

2.6. Sampling strategies

E. coli analysis is currently used for confirmation of contamination in the distribution system as

well as for clearance sampling to confirm that the network is no more contaminated. E. coli is a
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coliform bacteria and the most adopted indicator of contamination by human/animal waste in
drinking water. Its presence in the water distribution system can indicate a potential for a serious
threat to public health (Federation of Canadian Municipalities (FCM) and National Research
Council (NRC-CNRC) 2004). Most coliform bacteria are not harmful, but they come from the same
sources as other bacteria and organisms that can cause disease (Centers for Disease Control and
Prevention (CDC) 2013). Sampling frequency, distribution of sampling sites and detection limit
(volume of sample) are the parameters that can impact the probability of detection (van Lieverloo
et al. 2007). Through laboratory studies, some studies showed that larger-volume samples can
increase the probability of detecting E. coli or total coliform (Hambsch et al. 2007, Hanninen et al.
2003, Hargy et al. 2010).

The prescribed sampling frequency for total coliform monitoring can vary from 1 sample to 480
samples per month for distribution systems serving 25 people and more than 3,960,000 people,
respectively (Environmental Protection Agency (EPA) 2013, National Research Council of the
National Academies 2006). The locations of sampling should represent various pressure zones and
areas that are supplied by different sources and reservoirs (National Research Council of the
National Academies 2006). Any total coliform positive sample needs repeat sampling within 24
hours. In the case of total coliform-positive, either for routine or repeat sample, E. coli should be
measured and if positive the State must be notified by the end of the day (Environmental Protection
Agency (EPA) 2013). Any repeat sample with (i) fecal coliform positive, and (ii) total coliform
positive following a fecal coliform or E.coli positive routine sample is part of an acute violation
and a non-acute violation occurs when (National Research Council of the National Academies
2006):

1- > 5% of the samples are total coliform positive during the month, for a system serving > 33,000
people and collecting > 40 samples per month.

2- >1 sample is total coliform positive per month, for a system serving < 33,000 people and

collecting < 40 samples per month.

The effectiveness of existing statutory sampling protocols had been investigated by hydraulic
model simulations of contamination events (Blokker et al. 2018, van Lieverloo et al. 2007). Blokker

et al. (2018) observed that if sampling was conducted 1-4 hours after the repair the at the optimal
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location, the detection probability increased to 80% compared to ~25% under the statutory Dutch
sampling protocol which necessitates a 100 mL sample for E. coli analysis to be taken the day after
the maintenance. In agreement, van Lieverloo et al. (2007) reported mean detection probabilities
of 55-65%, when large parts of the sewage reach reservoirs and 0-13% when contamination does
not reach any of the reservoirs. Both studies considered no inactivation for E. coli during their
simulations, therefore, in reality the detection probability would be even lower in the presence of

disinfectant residuals.
2.7. Critical literature review

Events that may lead to sustained low/negative pressure conditions in a distribution system are
usually controlled by the following strategies: boil water order, notices not to consume water until
return to service, mitigation strategies (e.g. super-disinfection) and installation of temporary
networks (Besner et al. 2011). However, some situations may lead to low pressure events of shorter
but still significant durations (more than a few minutes), for example during maintenance activities,
where the above-mentioned controlling strategies may not be applied. During this type of event, it
is possible that intrusion will affect public health. In addition, a delayed response or the application
of inadequate preventive/corrective actions can also cause adverse health effects associated with
contamination of drinking water due to unplanned extended pressure losses. Most of the existing
QMRA models used to evaluate the risk of infection due to intrusion events are related to short
transient events, pipe breaks or intentional contamination (Blokker et al. 2018, LeChevallier et al.
2011, Schijven et al. 2016, Teunis et al. 2010, Van Abel et al. 2014, Yang et al. 2011, Yang et al.
2015). Also, the water quality modeling in existing QMRA models is based on demand driven
hydraulic simulation. To the best of our knowledge, no studies have yet been conducted to derive
a quantitative relationship between public health risk and sustained low/negative pressure events
using water quality calculations based on pressure driven analysis and integrating the impact of

consumers' behavior during pressure drop on the consumption event.

The other drawback of applying the classical demand driven approach under pressure deficient
conditions is that the intrusion flow rate, and consequently the contaminant mass rate cannot be

modeled correctly. The reason is that the volume of untreated water that intrudes into the
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distribution system depends on the internal pipe pressure, while the nodal pressures estimated by
DDA are not realistic under PDCs. However, this fact is not considered in most of the studies
estimating the contaminant mass rate resulting from intrusion events. Previous studies calculated
the concentration of contaminants or the contaminant mass rate at intrusion nodes using random
data, a probabilistic model or a fixed value for all the nodes (Besner et al. 2010c, Betanzo et al.
2008, Islam et al. 2017, Propato and Uber 2004, Teunis et al. 2010). Previous researchers that
estimated intrusion volume by orifice equation usually applied a fixed diameter to all the potential
intrusion nodes or the intrusion volumes were estimated using a global leakage rate (Besner et al.
2010c, Ebacher et al. 2012, Ebacher et al. 2011b, Kirmeyer et al. 2001a, LeChevallier et al. 2011).
However, for more realistic simulation, it is recommended that the intrusion volume should reflect
the state of pipes (Besner et al. 2011, Ebacher et al. 2012, Gibson et al. 2019). Without this
adjustment, the potential intrusion volume would be overestimated at areas of low leakage, while
underestimated risks at areas with decaying infrastructure that are more prone to intrusion.
Furthermore, studies with calculation of intrusion volumes for extended duration of pressure drops
are not available in the literature. The studies that modeled contamination events using
EPANET/EPANET-MSX did not consider the impact of intrusion volume on the hydraulic

conditions and vice versa. In this study, this simplification will also be addressed.

Recently, Seyoum and Tanyimboh (2017) modified the source code of EPANET-MSX to include
PDA and modeled THM and chlorine under continuous sustained PDCs in a small network with
380 nodes. To the best of our knowledge, no study has yet simulated accidental intrusion event due
to sustained pressure drops taking into account the interactions between multiple water quality
species under sustained PDCs using PDA. Up to now, the studies that modeled contamination
events are either based on a single-species water quality model (Blokker et al. 2018, Rasekh and
Brumbelow 2015, van Lieverloo et al. 2007), single species water quality model is coupled with
PDA (Afshar and Marifio 2014, Bashi-Azghadi et al. 2017a, Bashi-Azghadi et al. 2017b, Rasekh
and Brumbelow 2014, Zafari et al. 2017), or multi-species water quality analysis was performed
based on DDA (Betanzo et al. 2008, Islam et al. 2017, Karamouz et al. 2017, Klosterman et al.
2009, Muray and Adachi 2011, Propato and Uber 2004, Teunis et al. 2010, Tinelli and Juran 2017,
Tinelli et al. 2018, Yang and Boccelli 2016).
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Standard hydraulic models based on demand-driven analysis (DDA) do not adequately represent
the real hydraulic behavior of distribution networks under pressure deficient conditions. As it has
been reported in many studies such as Lee et al. (2016), Siew and Tanyimboh (2012) and Cheung
et al. (2005) applying a pressure-dependent analysis (PDA) rather than DDA under pressure
deficient conditions lead to more realistic hydraulic simulations. To perform PDA, many studies
have proposed some PDRs, compared different PDRs or attempted to improve the existing
relationships (Bhave 1981, Cheung et al. 2005, Fujiwara and Li 1998, Gupta and Bhave 1996, Jun
and Guoping 2013, Liu et al. 2011, Tanyimboh and Templeman 2004, 2010, Wagner et al. 1988,
Walski 2017, Walski et al. 2019). However, finding an appropriate pressure-demand function is a
challenging task in the absence of field data, which was the case in all the reported studies. Several
studies showed that the choice of PDR affect the nodal pressures and nodal outflows (Cheung et
al. 2005, Ciaponi and Creaco 2018, Liu et al. 2011, Yoo et al. 2012). There is no study that has

investigated directly the impact of using different PDRs on the water quality in the case of intrusion.

First-order decay model has been generally applied to simulate the decay of chlorine in the case of
intrusion (Betanzo et al. 2008, Islam et al. 2017, LeChevallier et al. 2011, Propato and Uber 2004,
Teunis et al. 2010). However, this equation does not directly depend on the contaminants
concentration and employ a fixed decay constant to all contaminated or non-contaminated zones

throughout the network during and after intrusion.

Finally, van Lieverloo et al. (2007) and Blokker et al. (2018) assessed the probability of detecting
E. coli based on standard monitoring program using the numerical model. However, a single water
quality model was used and E. coli inactivation was not considered. To the best of our knowledge,
there is no study yet that has evaluated the likelihood of detecting E. coli in the presence of chlorine

residuals due to intrusion events under low-pressure events applying numerical models.
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CHAPTER 3 RESEARCH OBJECTIVES, HYPOTHESIS AND
METHODOLOGY

3.1 Research objectives and hypotheses

The main objective of this research is to develop and integrate realistic hydraulic and water quality
modeling concepts into a QMRA type model in order to improve the assessment of public health
risks associated with the occurrence of sustained low/negative pressure events in drinking water

distribution systems.
More specifically, the objectives of this project are:

1. Evaluate the use of PDA, instead of traditional DDA, to determine the nodes with
low/negative pressure values for defining the zones potentially at risk of intrusion/backflow
in a full-scale distribution system;

2. Develop a method to allow combination of both pressure-driven analysis results and multi-

species water quality analysis (MSWQA-PDA);

3. Evaluate the impact of two pressure-demand relationships on hydraulic and water quality

parameters;

4. Reduce the uncertainty and improve assumptions in modeling accidental intrusion and fate
and transport of contaminants under sustained low/negative pressure events of shorter

duration lasting few hours;

5. Compare the spatial and temporal distribution of E. coli and the affected pressure zone,
resulting from the ingress of sewage in the absence and presence of various disinfectant

residuals and evaluate the possibility of issuing sectorial BWA following sustained PDCs;

6. Investigate how sustained PDCs due to major WTPs shutdown affect disinfectant residuals

with and without considering the ingress demand impact;

7. Evaluate the spatial probability of detecting E. coli throughout the network at different

periods following an intrusion event resulted from sustained pressure 10ss
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8. Estimate the public health risk associated with intrusion events of Cryptosporidium under
sustained low/negative pressure by improving the existing quantitative microbial risk

assessment model;
The project objectives are derived from the following research hypotheses:

1. DDA cannot correctly define areas prone to intrusion/backflow under pressure-deficient

conditions and overestimates the zones potentially at risk of low-pressure.

Originality: Even though there are several studies comparing PDA and DDA during
pressure losses, an in-depth investigation is conducted to study how the differences in
estimated nodal pressures between PDA and DDA can affect the delineation of the zones
at risk of intrusion/backflow under different severity of PDCs in a large full-scale network.
The extent of the pressure differences between DDA and PDA as a function of pressure
values under PDCs is quantified. The use of PDA can avoid unjustified boil water

advisories and open the possibility of issuing sectorial BWASs.

The hypothesis will be discarded if the spatial distribution of zones at risk of
intrusion/backflow does not change using PDA or if the nodal pressure difference is less

than 1 m at every node under PDCs.

2. A methodology is required to allow integration of pressure-driven hydraulic analysis and
multi-species water quality model for intrusion modeling as the result of sustained

low/negative pressure events.

Originality: A methodology is proposed which enables to simulate the interactions between
multiple water quality species under sustained PDCs using PDA. At the beginning of this
project, there was no numerical tool capable of considering the both aspects at the same
time. The source code does not require to be modified and the method can be used with any

pressure-driven method.

The hypothesis can be discarded if the interactions between water quality species can be

neglected or if there is no sustained pressure drop in the network.
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3. Even slight differences in pressure values (< 1 m) between using different PDRs when
performing PDA lead to noticeable differences in potential intrusion volume through

leakage points and consequently in the concentration of the intruded microorganisms.

Originality: Even though several studies have investigated the impact of using different
pressure-demand relationships on the pressure and total available demand, but there is no
information about the impact on water quality. During modeling intrusion through leakage
points resulted from sustained PDCs, the computed intrusion volume and contaminant
concentration are compared using the Tanyimboh and the Wagner relationships while

performing PDA.

The hypothesis will be discarded if the nodal pressures are the same between using Wagner

and Tanyimboh relationships or if the difference in total intrusion volumes is less than 10%.

4. The effect of nodal pressure head inside the network and leak characteristic must be

incorporated in the calculation of contamination mass rate at each intrusion node.

Originality: In existing studies, some simplified assumptions are made when modeling
intrusion. Improvements are proposed in the presented project to include (a) a systematic
calculation of nodal intrusion volume, based on differentiation of pressure outside and
inside of the water main under PDCs and leakage demand during normal condition at each
node, and (b) the impact of intrusion volume on hydraulic behavior and vice versa and

consequently its effect on nodal contaminants mass rate.

The hypothesis may be refuted if the intrusion volume variations from different intrusion

nodes are less than 10%.

A secondary hypothesis should be also considered: the chlorine decay constant must be
increased selectively based on the existence of contamination, in the case of using nth-order

decay model.

Originality: Improvement is proposed in the presented project to include the dependency of
disinfectant decay at different locations on the presence of contamination when using first-

order decay model.
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The hypothesis may be refuted if all the pipes are contaminated during and after intrusion

events.

Disinfectant residuals can prevent widespread propagation of contaminants throughout the
network and confine E. coli CFUs to lower-pressure areas compared with the scenario of

no disinfectant residual.

Originality: There is no study available modeling accidental intrusion considering
interaction between microorganism and disinfectant residual as the results of sustained
PDCs using pressure-driven hydraulic analysis. This allows investigating the propagation
of contaminants based on nodal pressure under depressurization. In addition, it opens the
possibility of issuing sectorial BWA based on hydraulic and water quality simulation

results.

This hypothesis may be refuted if disinfectant residuals do not confine the propagation of

E. coli to lower-pressure areas.

Losses of chlorine residual as the result of sustained PDCs, resulting from WTP shutdowns,
are due to ingress demand and less so because of increasing water age, outlasting the

duration of low-pressure event.

Originality: With the help of the presented approach (MSWQ-PDA) and improved
assumptions, chlorine variations during and after sustained PDCs of few-hours can be
modeled to estimate the role of water age variations and ingress demand on the changes,
and assess the time that it takes for the residuals to reach the predicted values before the

pressure losses.

This hypothesis may be refuted if the median chlorine concentration of the affected nodes
with intrusion demand decreases by less than 0.1 mg/L than without intrusion, and if the

chlorine residuals reach the normal level immediately after the pressure is back to normal.

. The probability of detecting E. coli by standard sampling protocols is almost nil for

contamination confirmation and clearance following accidental intrusion events.

Originality: No study has yet assessed the probability of detecting E. coli in the presence of

disinfectant residuals resulting from intrusion events due to PDCs using numerical models.
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The simulation results can be applied to improve the sampling strategies in terms of timing,

location and volume of sample for confirmation and clearance of intrusion events

This hypothesis may be refuted if the probability is high enough (> 50%) that standard
sampling protocols or improved sampling can be conducted in chlorine or chloraminated

system to detect intrusion events by E. coli sampling.

8. Coupling QMRA with water quality calculation based on pressure-driven hydraulic
analysis is essential when assessing the infection risk associated with the accidental
intrusion events due to sustained PDCs. The impact of consumers' behavior on the infection

risk is not negligible

Originality: No other study conducted QMRA coupled with water quality model calculation
based on PDA to quantify the microbial infection risks resulted from accidental intrusion
through leakage points due to sustained pressure drop. The impact of consumers' behavior
such as volume of consumption and number of times that one fills a glass should also be
considered when assessing the probability of infection from the consumption of drinking

water from the tap.

This hypothesis may be discarded if there is no significant (< 20%) change in the number
of infected people when taking into account the behavioral variability within each
consumer at each day using Monte Carlo simulation as well as if the number of intrusion
nodes (P < 1 m) for both PDA and DDA are the same

A summary of the modeling approach for each of the hypothesis, the expected results and the

corresponding chapter of the thesis is demonstrated in Table 3.1.
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Hypothesis Scale Modeling approach Expected results Chapter
1. DDA cannot correctly define Modeling PDA performed by WaterGEMS. Hydraulic parameters during
e DI O under Modified EPANET input file useq ~ SUStained PDCs by PDA.
" o for negative pressure. Potential intrusion volume. Chapter 4
pressure-deficient conditions
and overestimates the zones Impact of pressure criteria on the Chapter 7
potentially at risk of low- areas at risk of low/negative
pressure. pressure.
2. Pressure-driven hydraulic Modeling Developed MSWQA-PDA An approach that enables multi-
analysis must be combined with approach by modifying INP file species water quality analysis
a multi-species water quality based on PDA results using under sustained PDCs.
m?ecizlc:?oﬁgck?el{[wef:r: the mg‘; I;Q%Vgebreqlﬁﬂﬁznﬁﬁg ET Application toa Ia_trge real network  Chapters 4 to
. i .. ' with hourly variations of 7
microorganism and disinfectant
X ; . . parameters.
residual for intrusion modeling
as the result of sustained
low/negative pressure events.
3. Even slight differences in Modeling MSWQA-PDA was applied to Difference between pressure head,
pressure values (< 1 m) investigate the impact of using two ~ number of intrusion nodes and
between using different PDRs different pressure-demand intrusion volume, demand
when performing PDA lead to relationships (Wagner and satisfaction ratio, and
noticeable differences in Tanyimboh) on the hydraulic and Cryptosporidium concentration Chapter 7

potential intrusion volume
through leakage points and
consequently in the
concentration of the intruded
microorganisms.

water quality results.

between using different pressure
demand relationships.
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Table 3.1. Modeling approach to validate (or invalidate) the research hypothesis and corresponding chapters of the thesis (continued).

Hypothesis Scale Modeling approach Expected results Chapter
4. The effect of nodal pressure Modeling  Estimating intrusion volume by Adjusted hydraulic conditions
head inside the network and orifice equation at each node. The considering intrusion volume.
!eak characte(lstlc must be _ Iea_kage constant at each node is An exclusive nodal intrusion
incorporated in the calculation adjusted based on the nodal leakage A
S volume and contamination mass
of contamination mass rate at demand and pressure head of the . .
. . . rate corresponding to hydraulic
each intrusion node, and the calibrated model under normal t £ that node und
chlorine decay constant must conditions reflecting the state of parameters ot that node under
) ; : low/negative pressure event.
be increased selectively based pipes.
on the existence of . . . Avreas subjected to increased
contamination, in the case of Intru3|on_ volume defined as negative chlorine decay due to intrusion as Chapter 5
using nth-order decay model demand in the model and the a function of time based on tracer Chapter 6
' modified INP file is regenerated monitorin
using the adjusted PDA hydraulic g
results.
Selectively increase the chlorine
decay rate in the first order model
based on the presence of the
conservative fictitious species
defined in the model.
5. Disinfectant residuals can Modeling  Applying the modeling approaches Spatial and temporal distribution
prevent widespread presented for hypotheses 3 and 4. of E. coli throughout the network
propagation of contaminants in the absence and presence of
throughout the network and different types and concentrations
confine E. coli CFUs to lower- of disinfectant residual. Chapter 5

pressure areas compared with
the scenario of no disinfectant
residual.

Determine the pressure zones
under PDCs that can be affected
by E. coli during and after the
intrusion events.
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Table 3.1. Modeling approach to validate (or invalidate) the research hypothesis and corresponding chapters of the thesis (continued).

Hypothesis Scale Modeling approach Expected results Chapter
6. Losses of chlorine residual as  Modeling  Applying the modeling approaches Impact of sustained PDCs on
the result of sustained PDCs, presented for hypotheses 3 and 4. chlorine and chloramine
resulting from WTP concentration variation without
shutdowns, are due to ingress and with intrusion-associated
demand and less so because of demand. Chapter 5
increasing water age,
outlasting the duration of the
low-pressure event.
7. The probability of detecting E.  Modeling  Using the water quality results of Distribution of the mean
coli by standard sampling MSWQA-PDA and a Poisson probability of detecting positive E.
protocols is almost nil for distribution to estimate the coli nodes during the 5-hour Chapter 5
contamination confirmation probability of detecting E. coli based intervals from the start of intrusion
and clearance following on sampling volumes of 100 mL and  up to 20 hours.
accidental intrusion events. 1L.
8. Coupling QMRA with water Modeling  An advanced QMRA model is linked Impact of Cryptosporidium
quality calculation based on with water quality calculations based concentration, duration, volume,
pressure-driven hydraulic on PDA. time of consumption, dose-
analysis is essential when response relationship, on infection
assessing the infection risk risk from accidental intrusion due Chanter 6
associated with the accidental to PDCs P
intrusion events due to A i .
i ) Spatial distribution of event risk
sustained PDCs. The impact of and daily risk

consumers' behavior on the
infection risk is not negligible.
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3.2 Research methodology
The modeling approach can be classified into five main parts:

1) Identification of potential intrusion nodes, intrusion volumes, and demand availability at
the nodes experiencing low-pressure conditions using pressure-driven hydraulic analysis
(hypotheses 1-3);

2) Developing a technique that enables multispecies water quality analysis based on pressure-
driven analysis (MSWQA-PDA) (hypothesis 2);

3) Prediction of accidental intrusion through leakage points (hypothesis 4);

4) Characterization and simulation of the fate and transport of pathogens from the pathways
of entry across the network (hypothesis 4 to 7);

5) Using QMRA to assess the impact of intrusion of pathogenic microorganisms due to

sustained PDCs on public health (hypothesis 8).

A framework of the proposed approaches to intrusion modeling, fate/transport of contaminants,
and QMRA analysis of water distribution system due to substandard pressure conditions is
illustrated diagrammatically in Figure 3.1. A summary of each step is described in this chapter.
More details on the developed methodology (MSWQA-PDA), intrusion modeling and fate and
transport of multiple species are presented in Chapter 4, Chapter 5, and Chapter 7. Quantitative
microbial risk assessment model that is used to predict the infection risk of intrusion through leak
openings during pressure drops is described in more details in Chapter 6.


https://www.tandfonline.com/doi/abs/10.1080/09669589708667287

38

Hydraulic modeling Outside pipe conditions
PDA hydraulic modelling Modifying .INP file of EPANET Water level Leakage points
.----» WaterGEMS® > MATLAB =] outside pipes and flow rates
l’ ‘1' Orificle Microorganism
PDA hydraulic results: Modified EPANET input file G concentration
available demand and ‘l’ ‘l’
nodal pressure ) l Intrusion
(negative pressure - Available Pressure inside pipe _»Intruswn_’ﬂoW v, Contaminant
reported as zero) . (including negative nodes . mass rate
pressure) i
Consumption events Water quality modeling
Consumption Consumption Number of
volume I consumptions per day —» Multi-species water quality modelling
| | | EPANET-MSX —
QMRA l ‘1,
—— Dose <

Temporal and spatial distribution of

Infection risk €<—— concentration of microorganism

— Dose-response equation

Figure 3.1. Flowchart of the model used for infection risk analysis associated with accidental intrusion events under sustained PDCs.
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3.2.1 Hydraulic analysis under sustained low/negative pressure event

To simulate hydraulic of the network during substandard pressure conditions, pressure-driven
hydraulic analysis is used in this study and the results are compared with DDA. PDA is more
reliable to simulate water network under low/negative pressure conditions than traditional DDA,
which considers a fixed demand at the nodes regardless of the adequacy of nodal pressure for

supplying all the required demand.

3.2.1.1 Pressure-driven hydraulic analysis

The hydraulic analysis of the drinking water distribution system is carried out using WaterGEMS
(Bentley Systems 2014) software because of its ability to perform PDA. When applying PDA, an
extra equation that is the relationship between pressure and demand should be implemented in the
model. The selection of pressure-demand relationships (PDRS) is a challenge when performing
PDA and can lead to some uncertainty in the absence of field data. The impacts of using two
different PDRs are investigated on the hydraulic and water quality results: Tanyimboh and
Templeman (2004, 2010) and Wagner et al. (1988) in Chapter 7. The PDR can be described more
by a parabolic equation at a withdrawal point (faucet). However, if the demand at each node of the
distribution system corresponds to several consumers and taps, which is the case for the studied
network, other elements such as the configuration and head loss of the secondary network and
locations of consumptions must be considered when selecting an appropriate PDR (Ciaponi et al.
2014, Gupta 2015). The equation suggested by Tanyimboh and Templeman (2004, 2010) was used
throughout the rest of the simulations according to the literature and due to lack of field data for
the studied network. In the PDRs, the desired pressure head, which is the value below which the
nodal demand can only be satisfied partially, is considered to be 15 m (21 psi) at all nodes. It is
assumed that no demand can be supplied if the nodal head is lower than the elevation of the node.
The equations, parameters and the assumptions are explained in more details in Chapter 4 and
Chapter 7.

3.2.1.2 Characteristics of the Distribution System and Scenarios of Pressure-Deficient
Conditions

A large full-scale water distribution system with more than 30,000 nodes, and three water treatment
plants (WTPs) was selected to be evaluated under sustained low/negative pressure events and to
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test the performance of the proposed modeling approach. The network serves nearly 400,000
residents across around 1,630 km of pipes in Laval (Quebec-Canada). The pipe materials include
cast iron, ductile iron, prestressed concrete and PVC, which consist 41%, 35%, 10% and 8% of the
total pipe length, respectively. There is no storage tanks or pump stations in the water network and
the whole network is hydraulically interconnected. Therefore, the influence zone corresponding to
each WTP under normal operating conditions (Figure 3.2) can be affected by any change in the

hydraulic conditions.
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Figure 3.2. (a) Location of WTPs (triangles) and the influence zone under normal operating
conditions for each of the WTP is demonstrated by different color, (b) distribution of nodal
elevation; Node X: location where a fire flow demand of 15,000 L/min is applied (chapter 5).

Different scenarios of hypothetical sustained PDCs are simulated in the following chapters while
all are based on major shutdown of one or two of the WTPs. To evaluate and test the proposed
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approach and to illustrate its efficacy on real systems first continues PDCs with different intensities
are simulated in Chapter 4 and Chapter 7 and water quality results are compared with the scenario
of normal operating conditions. Then, the methodology is applied to model shorter duration

low/negative pressure events (1, 5, 10, or 24 hours) in Chapter 5 and Chapter 6.

3.2.2 Multispecies water quality analysis based on pressure-driven analysis
(MSWQA-PDA)

3.2.2.1 Modifying the input file of EPANET

EPANET-MSX as a multi-species water quality model is selected for the simulations to model the
interactions between pathogens inactivation, disinfectant decay, and the chlorine demand of
different types of contamination matrices. The command-line version of EPANET-MSX is used in
this study. For command line execution of EPANET-MSX, the original EPANET function library
(epanet2.dll), epanetmsx.exe, MSX file and the input file of EPANET should be placed in the same
directory as the application’s executable file (Shang et al. 2011). However, EPANET-MSX engine
is based on demand-driven hydraulic analysis, which is not realistic to be used for modeling water
quality under sustained PDCs. To overcome this limitation, a technique is presented in which the
input file of EPANET is modified by incorporating the computed available demands under
pressure-deficient conditions with the help of the developed MATLAB program. A feasibility
check (Ackley et al. 2001) was performed to verify the reliability and accuracy of the proposed
methodology and validate the content of the modified EPANET input file. The presented
methodology has been tested for large full-scale network with up to 30,000 nodes for time-varying
hydraulic parameters equal and longer than 1 hour. More details regarding the proposed technique

can be found in Chapter 4.

3.2.2.2 Low and Negative Pressure Values

During simulations, it is observed that negative pressure values were reported as zeros by
WaterGEMS V8i (SELECTseries 5) (Bentley Systems 2014), the latest version available at the
beginning of this project. Determining the value of negative pressures at these nodes was an

important issue in this project for estimating the intrusion volume by orifice equation. To overcome
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this problem, we proposed to use the pressure values results from the modified .INP file of
EPANET, by which the negative values were calculated (Figure 3.1). At the same time, we reported
this issue to the Bentley technical support and they fixed it after a while in one of their next versions
of WaterGEMS. However, for this project, the same procedure proposed at the beginning of the

project is continued in the simulations.

3.2.3 Intrusion prediction

Three conditions must exist simultaneously at a node to allow intrusion to occur: (i) existence of
pathway, which is defined based on the existence of leakage demand at the node, (ii) force to drive
intrusion, which is determined based on the differences between internal and external pressure head
on pipe, and (iii) presence of contamination source, which is assumed to exist everywhere around
the pipes. The pressure values calculated from pressure-driven hydraulic analysis are used to define
areas prone to intrusion during low/negative pressure events and to calculate the intrusion flow
rates at each node. We assumed a pressure head outside the pipe of 1 m across the distribution
system, within the range of the water table above the pipe in the studied network (Ebacher et al.
2013).

In order to produce contaminant mass rate values that are node-event-specific, the nodal potential
intrusion volume is adjusted by nodal leakage demand and internal pressure head under normal
operating conditions. With this adjustment, the intrusion potential would be more representative of
areas of low leakage (low intrusion potential) and areas with decaying infrastructure prone to
intrusion (high intrusion potential). The calibrated network model with daily demand patterns
under normal operating conditions is used to estimate the leakage constant at each node and at each
hour of the day. For simplicity, and to be conservative in our analyses, the maximum value of
leakage constant during the day at each node is applied to estimate the intrusion flow rate under
PDCs. More details on calculating the leakage constant and intrusion flow rate can be found in
Chapter 5. Due to the issue that we observed in the PDA model of WaterGEMS, when the intrusion
flow rates were directly implemented at the intrusion nodes, we propose to assign the negative
demand to an artificial node that is connected to the intrusion node with a short pipe having
negligible head loss. This is to address the issue of the negative demand implemented at the node
that was used by the model to first supply the nodal demand, even if the nodal pressure value was
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<0 and PDA model was used. After implementing the intrusion volume in the model as a negative
demand, the impact of intrusion volume on hydraulic behavior and vice versa is then considered,

details are presented Chapter 5.

3.2.4 Fate and transport analysis

The EPANET-MSX software utilizes a Lagrangian transport approach to solve the advection-
reaction equation. The model assumes that the mixing of fluid at pipe junctions is instantaneous
and complete. The effect of axial dispersion is neglected in the model. The reaction equations used
in this study are listed in Table 3.2. Regarding the THM modeling, chlorine demand in the bulk
flow was only considered while both bulk and wall demand were considered in the model. To
provide more realistic results from the widely used nth-order kinetic model (here 1% order for
chlorine and 2" order for chloramine, Table 3.2) in the case of intrusion events, we have proposed
a simple technique to apply different decay constants in contaminated (Kintrusio)) and non-
contaminated zones (Knormar). The contaminated areas can be changed in time based on the presence
or absence of a conservative fictitious species, which is injected into the distribution system at the
intrusion nodes. Because of some limitations that exist in the software, we notice some issues
during intrusion modeling. Because of the initial chlorine demand (0.088 mg/L) that is
implemented at the intrusion node during intrusion events, the chlorine value gets negative at the
intrusion node if the chlorine concertation at that node is less than 0.088 any time during intrusion.
To avoid mistakenly calculating E. coli concenrtations, due to negative values of chlorine at the
intrusion nodes, the chlorine concentration is set to zero in the Chick-Watson model (Table 3.2), if
it has a negative value. Even though we tried to overcome this limitation, it remains important to
address these shortcomings in future improvements of numerical hydraulic/quality models when
used for intrusion simulation. We also noticed that, even if the chlorine residual becomes negative
at an intrusion node, the initial demand is not transferred to the next nodes; however, in reality the

chlorine demand is transferred to the downstream nodes.

Extended period simulation (EPS) is used to perform hydraulic and water quality analysis. For
water quality simulation the model is run for a while under normal operation conditions to allow

water quality (water age and disinfectant residuals) reaching equilibrium conditions. The
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simulation time and hydraulic and water quality time steps are defined in each chapter based on

the simulated scenarios.

Table 3.2. Reaction equations and the constant values used in different chapters.

Parameter Reaction Constant values Chapter
R=k ki=1 X
Water age (zero-order reaction) Everywhere
dc k = ky, + ky,
Chlorinet  at = KC ke=0.02 h-1 (0.48 day™) Chapter 4
(first-order reaction) kw=0.01 h! (0.24 day™) Chapter 7
THM = K (Co — Co = 1.5 mg/L Chapter 4
THMP (Co -E%HMO Kic = 41 pg/L per mg/L free Cl, Chagter 7
ar _ —k.CP k,= 246 (L/mg - h), chlorine, 10°
E. coli® a7 k,=0.99 (L/mg - h), chloramine, 10° Chapter 5
(Chick-Watson model)
Contaminated zone:
dc k'=Kintrusion=0.24 h™!
: , Non-contaminated zone:
Chlorine® = —k'C k'=K ormar=0.055 h-1 Chapter 5
Initial chlorine demand of the ingress
water: 0.088 mg/L
Contaminated zone:
dC k”:Kintrusion:-O.ll (mg Clz " h/L)_1
Chloramine® — = —k''c™ Non-contaminated zone: Chapter 5
dt k" =Knomai=0.012 (mg Cl, - h/L)~1

No initial chlorine demand
Note: R: the instantaneous rate of reaction, k;: the reaction rate coefficient, ky: the bulk decay constant (h%), k,,: the

wall decay constant (h%), k: the overall decay constant (h™%), THM,: the initial THM concentration at t=0, C,: the initial
chlorine concentration at t=0, C: the chlorine concentration (mg/L), and K,.: an indicator of the THM productivity of
the water (ug/L of THM per mg/L of free chlorine), P: the E. coli concentration (CFU/L), k,,: the inactivation constant
(L/mg - h), k': the chlorine decay coefficient (h™1), k"' the chloramine decay coefficient (L/mg - h), n: assigned a
value of 2. (a) Brown et al. (2011); (b) Boccelli et al. (2003), (Hua 2000); (c) Betanzo et al. (2008); (d) (LeChevallier
etal. 2011, Yang et al. 2011).

The probability of finding an E. coli during sampling is calculated based on the spatial and temporal
concentrations calculated by the water quality model, the probability of not detecting E. coli is
calculated using a Poisson distribution, and the probability of detecting positive is then calculated
as: 1- probability of not detecting E. coli. Poisson function is a simple model that can express the
distribution of suspended particles. The probability of finding k particle can be calculated as
follows (Teunis et al. 2004):
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e Huk Eq. 3-1
k!

P(k; p) =
in which p is sample volume multiplied by concentration of particles.

3.2.5 Quantitative microbial risk assessment

In this project, a QMRA model is coupled with water quality calculations based on PDA results.
Dr. Mirjam Blokker from KWR Watercycle Research Institute provided us the MATLAB code for
the QMRA model which was previously used to assess the microbial risk of repairs of part of the
drinking water network of the town Zandvoort serving 4,347 people (Blokker et al. 2018). We
customized this MATLAB code to asses the risk of accidental intrusion events as the result of
hypothetical sustained low/negative pressure events for the studied network by coupling the
QMRA model with the PDA.

Exposure analysis is one of the main steps in calculating the infection risk using QMRA models.
As illustrated in Figure 3.1, the exposure analysis predicts the dose by taking into account the
concentrations computed from the numerical model and the probability of coinciding the water

intake from the tap with the passage of contaminants through that node.

In this study, sewage is considered as the external source of contamination. The risk
of Cryptosporidium infection associated with intrusion events due to sustained low/negative
pressure events is then assessed. More details on the calculation of contaminant mass rates and
fate/transport can be found in Chapter 5. The calculated concentrations at each time step for all the
30,077 nodes are saved in an excel file and the data are imported into MATLAB as the input of the

exposure analysis. The reported time step for the concentrations is 1 hour in all the scenarios.

The network is modeled for 4 days from the onset of intrusion. Therefore, the ingested dose for
each person corresponds to 4 days of observation. However, reporting the risk for each day
individually can also be beneficial for further assessment. For this purpose, the QMRA model is
run for only one day, using the temporal Cryptosporidium concentration related to the desired day
from water quality model and the modified kitchen tap use corresponding to that specific day, to
be able to calculate the dose of each day, separately, for each people. To evaluate the impact of

various parameters in estimating the Cryptosporidium infection risk, 23 scenarios are simulated
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(Table 3.3). A detailed description of the assumptions used for each scenario can be found in

Chapter 6.
Table 3.3. Overview of the simulated scenarios for QMRA analysis
Duration Time Demand pattern Daily risk or event risk
Event risk (4 days):
a. Concentration of Cryptosporidium:
1, 6, 26, and 560 oocysts/L
b. Volume per day:
24 hours From 00:00 (dayl) Constant peak Lognormal distribution, 300 mL, 500 mL, and 1
to 00:00 (day 2) hour L
¢. Number of glasses per day:
Poisson distribution, 1, 3, and 10 times
d. Infection risk:
maximum, median
From 14:00 to Constant peak .
10 hours 00:00 hour Event risk (4 days)
From 06:30 to Constant peak .
1 hour 07:30 hour Event risk (4 days)
Event risk (4 days)
Day 1
From 06:30 to . Day 2
1 hour 07:30 Daily pattern Day 3
Day 4

Day 1 with DSR of 5 % instead of zero

In exposure analysis, to take into account the uncertainties concerning the consumers’ behavioral
variability in estimating the dose 200 Monte Carlo simulations are performed. Consumer’s
behavior in the current study is defined as: (i) time of consumption during the day, (ii) number of
glasses, and (iii) volume per glass.

For each person, the number of glasses per day is estimated using a Poisson distribution and for
the volume per glass lognormal distribution is applied using the data from Blokker et al. (2018)
(Figure 3.3). As the boundary, minimum and maximum volume per person per day were set to 0
and 4.2 L (Blokker et al. 2018). Other scenarios with constant volumes and number of glasses per
person per day are simulated to investigate the sensitivity of infection risk (Table 3.3). The Dutch
kitchen tap use from Blokker et al. (2018) is modified based on the demand availability during
PDCs obtained from PDA to be used as the consumption time during the day. Figure 3.4 shows
both patterns for scenario of 10 hours for days 1 and 2. More details can be found in chapter P3.
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Figure 3.3. Consumption amount using the number of glasses with a Poisson distribution: A=2.5
in this study (model 2016), and a lognormal distribution (u=—3.19 en 6=1.485) for the volume
per glass (from Blokker et al. (2018)).
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Figure 3.4. Consumption at kitchen tap use by Blokker et al. (2018) (orange, square); modified
kitchen tap use in this study for the residential nodes that have no available demand for
consumption based on PDA results at days 1 and 2 for the 10-hour scenario (blue, circle); days 3

and 4 are the same as day 2.

Dose-response analysis is carried on to predict the probability of infection using the estimated

dose from exposure analysis. In their model, Monte Carlo simulation is done with 10,000 parameter
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(o, B) pairs (Teunis et al. 2010) and a set of dose-response relationships is achieved. Then, the
median (50th percentile) and maximum (100th percentile) dose-response relationships are selected
to calculate the median and maximum infection risk, respectively. This method reduces the
computational cost of dose-response analysis (Blokker et al. 2018). More details regarding the

dose-response model used in this study can be found in (Blokker et al. 2014, Blokker et al. 2018).
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CHAPTER 4 ARTICLE 1 - COMBINING A MULTI-SPECIES WATER
QUALITY AND PRESSURE-DRIVEN HYDRAULIC ANALYSIS TO
DETERMINE AREAS AT RISK DURING SUSTAINED PRESSURE-

DEFICIENT CONDITIONS IN A DISTRIBUTION SYSTEM

With pipeline infrastructure ageing and system renewal activities, sustained pressure losses in
drinking water distribution systems may become more frequent. In this chapter, a methodology that
enables multi-species water quality analysis based on pressure-driven analysis is proposed. To
evaluate the capability of the developed approach, multiple water quality parameters (water age,
chlorine residual, and THMSs) under continuous pressure-deficient conditions were simulated in a
full-scale water distribution system (30,077 nodes). Variations of water quality under the simulated
pressure-deficient conditions are compared to normal operating conditions for different groups of
nodes, which are categorized according to the nodal pressure values during pressure losses. The
extent of the pressure differences between DDA and PDA and their impact on the estimation of the
zones at risk of low pressures is also presented. This paper was published in Journal of Water
Resources Planning and Management in 2018. Supplementary information is presented in

Appendix A.
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Abstract

Realistic numerical models can assist in managing pressure losses in water distribution systems,
which is a challenge for water utilities. This paper presents a methodology for simulating the impact
of sustained low/negative pressure events on hydraulic and water quality parameters. The
developed methodology enables Multi-Species Water Quality Analysis based on Pressure-Driven
Analysis (MSWQA-PDA). This approach has been applied to a large full-scale water distribution
system model to evaluate its capability. The spatial variation of water age, chlorine residual, and
trihalomethanes (THMs), under normal and sustained low/negative pressure conditions is
investigated. Generally, poorer water quality was observed under pressure-deficient conditions
compared to normal operating conditions, especially at nodes reaching lower pressure values. The
results confirm that under significant sustained low/negative pressure events, demand-driven
analysis cannot correctly identify the zones at risk of low and negative pressure, which may lead
to unjustified boil water advisories (BWA) for some customers.

KEYWORDS: Water distribution system; Demand-driven analysis; Pressure-deficient conditions;

Pressure-driven analysis; EPANET-MSX; Water quality

4.1 Introduction

Two analysis methods exist for predicting the hydraulic behavior of water distribution systems:
demand-driven analysis (DDA) and pressure-driven analysis (PDA). The demand-driven algorithm
solves the mass and energy conservation equations to calculate nodal heads and pipe flows. In
DDA, demand values are considered constant, while in the pressure-driven approach, the actual
nodal demands are considered as unknowns and vary with the nodal pressure values. Many
researchers have demonstrated that the use of PDA rather than DDA provides more realistic results
under pressure-deficient conditions (Cheung et al. 2005, Liserra et al. 2014, Siew and Tanyimboh
2012).

Several methods have been proposed to perform PDA. These methods are generally classified in
two categories (Sayyed and Gupta 2013, Siew and Tanyimboh 2012). The first category includes
approaches that involve DDA such as in the studies by Ozger (2003) and Ang and Jowitt (2006).
For example, Ozger (2003) developed a semi-pressure-driven approach based on iterative use of

demand-driven analysis and artificial reservoirs to model pressure-deficient conditions. The other
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category of approaches simultaneously solves the mass and energy conservation equations and the
selected Pressure Demand Relationship (PDR) (Giustolisi and Laucelli 2011, Siew and Tanyimboh
2012, Wu et al. 2009).

Several PDRs have been proposed in the literature to perform PDA (Fujiwara and Li 1998, Gupta
and Bhave 1996, Tanyimboh and Templeman 2004, Wagner et al. 1988). When modelling low
pressure events using PDA, the selection of a specific PDR over another may lead to some
differences in the computed pressure values and available demands (Cheung et al. 2005, Liu et al.
2011). Gupta and Bhave (1996) compared several existing PDRs and concluded that the
relationship from Wagner et al. (1988) was more representative of the network behavior in their
study. Several existing PDRs were also evaluated by Shirzad et al. (2013) through field experiments
in some locations of a real water distribution system by measuring the discharge from different
faucets and their corresponding pressures. These authors concluded the data measured at the faucets
was best described by the orifice and Wagner et al. (1988) equations. Vairagade et al. (2015)
investigated PDRs at different nodes of a skeletonized network using the WaterGEMS® software
and pressure-dependent analysis. Each primary node in the reduced network was representative of
a secondary network. These authors concluded that the Tanyimboh and Templeman (2010)
relationship better describes the PDR at the nodes of this skeletonized network. While the PDR at
a withdrawal point such as a faucet behaves like a parabolic relationship, the governing PDR at a
node, where demands of a secondary network representing several consumers are lumped, depends
on different factors such as the locations where consumption occurs, the configuration and head
loss of the secondary network and indoor plumbing systems (Ciaponi et al. 2014, Gupta 2015).
However, finding an appropriate PDR is a challenging task in the absence of field data.

Some commercial software packages enable PDA. However, this capability is not available in the
standard publicly available version of the EPANET 2.0 software (Rossman 2000). Although not
publicly available, EPANET-PDX has been developed by modifying the source code of EPANET
to enable PDA through the application of the head dependent gradient method (Siew and
Tanyimboh 2012). Seyoum et al. (2011) verified the accuracy of EPANET-PDX by applying the
calculated actual nodal demands as new demands in EPANET 2.0. The new nodal heads were
identical to the calculated values from EPANET-PDX. This verification procedure is called
feasibility check (Ackley et al. 2001).
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Simulation of water quality in a distribution system is usually performed based on DDA results
and commonly involves a single-species water quality model (as in EPANET 2.0). Although useful,
single-species models are unable to simulate the interactions between two or more species (such as
chlorine and E. coli). This may become a limitation if this type of analysis is required. In 2007,
USEPA released the Multi-Species Extension of EPANET (EPANET-MSX) which is a DDA-
based model. As water quality parameters depend on hydraulic conditions, a realistic hydraulic
simulation with PDA should be linked with water quality modelling to assess the impact of
pressure-deficient conditions on water quality. In recent years, very few studies have combined
PDA and water quality modelling due to existing limitations in most water quality and hydraulic
modelling tools, being either a single-species water quality model or hydraulic engine based on
DDA. The EPANET-MSX software has the ability to consider any number of multi-species
interactions and may be used to simulate processes such as attachment/detachment of pathogens
to/from biofilm, interaction of disinfectant with organic and inorganic matter, and inactivation of
microorganisms (Uber 2010). A prototype of this software was used by Betanzo et al. (2008) and
Propato and Uber (2004) to model intrusion events in distribution systems. They were able to
simulate the simultaneous inactivation of microorganisms and disinfectant decay. However,
because EPANET-MSX is based on DDA, it may not accurately simulate low/negative pressure
conditions. The commercial software market is rapidly evolving and the latest version of
WaterGEMS now proposes multi-species analysis based on the EPANET-MSX model (Bentley
Systems 2014). Seyoum and Tanyimboh (2014) and Seyoum et al. (2013) applied EPANET-PDX
to perform water quality modelling under pressure-deficient conditions. However, as EPANET-
PDX considers single-species water quality modeling, interactions between species could not be
modeled. The coupling of PDA and single species water quality analysis in simulation-optimization
models by Rasekh and Brumbelow (2014) has been proposed to assist in operational decision

making during contamination events.

This study presents a methodology for modelling hydraulic behavior and water quality in a network
under sustained low/negative pressure conditions. The developed methodology, which is referred
as Multi-Species Water Quality Analysis based on Pressure-Driven Analysis (MSWQA-PDA)
throughout this paper, allowed us to incorporate the advantages of both a multi-species water
quality model (EPANET-MSX) and PDA. As a proof of concept, spatial variations of water quality
species, including water age, chlorine residual, and THMs, are simulated throughout a full-scale
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distribution system under different sustained low/negative pressure scenarios. Simulation outputs
such as nodal Demand Satisfaction Ratios (DSRs), spatial clustering and number of nodes
considered at risk of low/negative pressure are also investigated. It is hypothesized that the use of
a more realistic tool, as described and applied in this study, can help better define areas prone to
intrusion/backflow, which may need corrective/preventive actions in the case of pressure loss

events.

4.2 Methodology

4.2.1 Description of the distribution system

The studied distribution system has three water treatment plants (WTPs) and serves a population
of about 400,000. The all-pipes hydraulic model of the network includes 30,077 nodes and a total
pipe length of about 1,600 km. There are no storage tanks or pump stations in the water network.
The average daily demand is approximately 210,000 m®day. The whole network is hydraulically
interconnected, yet each WTP supplies water to different areas (or influence zones) of the
distribution system under normal operating conditions (Figure 4.1(a)). Therefore, the supply area
of each WTP can vary if pressure-deficient conditions occur in the network. Zones 1, 2 and 3
include 24 %, 28 %, and 47 % of the total nodes, respectively. Because of the control system
architecture of high lift pump stations at the three WTPs, the hydraulic model of the water utility
uses reservoirs with variable head to simulate pump operation rather than individual pump curves
and operation routines. Figure 4.1 (b) shows the distribution of nodal elevations in each of the three

influence zones.
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Figure 4.1 (a) Location of WTPs (triangles) and approximate boundaries of each influence zone
under normal operating conditions (dash-lines); (b) distribution of nodal elevations for each

influence zone.

4.2.2 Pressure-deficient scenarios

For this proof of concept, hypothetical sustained and significant pressure-deficient conditions were
achieved by simulating the shutdown of two WTPs with only one WTP remaining for the supply
of the complete distribution system. Three pressure-deficient scenarios were simulated by varying
the available head at the supplying source (Table 4.1). Hydraulic and water quality results from
these scenarios were compared to normal operating conditions (first scenario, Scl). In the second
scenario, the water head at the only online WTP (WTP 3) remains the same as normal. In scenario
3, it is assumed that the water head is lower at WTP 3, for example due to malfunctioning of the
pumping system in response to increased discharge. The fourth scenario is based on the assumption
of the flexibility of the pumping system at the only online WTP (WTP 3) to produce higher head

to compensate for the shortage of supply caused by the failure of the other two WTPs.

Table 4.1. Hydraulic grade (HG, m) and outflow (Qout, L/s) at each WTP for all 4 scenarios.

WTP 1 WTP 2 WTP 3

Scenarios HG Qw HG Qu HG Quu

Scl 76 716 75 701 77 1354
Sc2 - 0 - 0 77 2367
Sc3 - 0 - 0 63 2084

Sc4 - 0 - 0 88 2549
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In order to verify the validity of the proposed modelling approach, and for simplicity, continuous
sustained pressure-deficient conditions are considered throughout the whole simulation duration
for this first application of the presented methodology. A constant demand of 239,414 m®day is
applied throughout the simulations as well. This demand corresponds to peak hour consumption in

the studied distribution system.

4.2.3 Pressure-driven analysis

In this study, the commercial software WaterGEMS® is used to model the hydraulic behavior of
the network. This software incorporates a pressure-driven analysis tool based on the modified
Global Gradient Algorithm (GGA), as formulated by Wu and Walski (2006) and Wu et al. (2006).
Wu et al. (2009) have applied this modified GGA to a large-scale water distribution system under
a critical pipe outage. More details on the modified GGA solution can be found in WaterGEMS
manual (Bentley Systems 2014).

In this software, relationship between pressure and demand can be defined as either a power
function or a pressure-demand piecewise linear curve. In this paper, the Tanyimboh and
Templeman (2004, 2010) equation is selected as the PDR to be used in the pressure-driven
algorithm (hereafter referred to as the Tanyimboh equation). More details about this equation and
the choice of parameters are included in the Supplemental Information. In this work, it is assumed
that when the nodal head above the ground level is less than 15 m (desired pressure head), the flow
is considered as partially supplied. Also, no demand is supplied for nodes with head lower than the
nodal elevation. The DSR for a node is the ratio of the available demand (under pressure-deficient
conditions) to the required demand at that node. The DSR for each supply zone is calculated by

dividing the sum of the available demands by the total required demand within the zone.

4.2.4 Water quality modelling

Multi-species water quality modelling is performed using the EPANET-MSX software (Shang et
al. 2011). More details about this software are provided in the Supplemental Information. To
simulate the water quality behavior of the studied network, an extended period simulation (EPS)
of 480 h was carried out to reach the equilibrium conditions of water quality parameters. The water
quality results were then reported for the last hour. As water quality modelling in EPANET-MSX

is based on demand-driven analysis, a MATLAB program was developed to modify the input file
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of EPANET (.INP) by incorporating the computed available demands under pressure-deficient
conditions. This modified .INP file is then used by EPANET-MSX for water quality modelling
under pressure-deficient conditions in the all-pipes network which, in this case includes more than
30,000 nodes and 33,252 pipe segments. This methodology is referred as MSWQA-PDA and the
flowchart is illustrated in Figure 4.2. A feasibility check (Ackley et al. 2001) was performed to
validate the content of the modified .INP file. In this regard, the nodal heads and pipe flows
calculated from the .INP file generated by MATLAB should be identical with the results from the
pressure-driven algorithm. The pressure dependent demand model of WaterGEMS V8i
(SELECTseries 5) was found to report the negative nodal pressure values as zero. However, the
generated EPANET input file allows for the calculation of the negative pressure magnitude for

these nodes, as shown in Figure 4.2, which is another advantage of the presented technique.

WaterGEMS®: —3| MATLAB: _ EPANET-MSX:
PDA hydraulic modeling Modifying .INP file of EPANET multi-species water quality modeling
v
Modified EPANET input
file
PDA hydraulic results: v Spatial distribution of multiple
pipe flow, nodal water quality species in the
pressure (negative ™~ | PDA hydraulic results: pipe flow, nodal network  under  pressure-
pressure reported as pressure (including negative pressure) deficient conditions
zero), and g

Simulation results

Figure 4.2: Flowchart of MSWQA-PDA.

For the purpose of this demonstration, three water quality parameters were selected for multi-
species water quality analysis: water age, chlorine residual, and THM formation. Although some
of these parameters may not be directly related to pressure-deficient conditions, they were selected
for the sake of simplicity and to validate the efficacy of the modelling approach developed. The
reaction equations and the constant values used to simulate water quality are included in the

Supplemental Information (Table A-1).

4.3 Results

In the studied distribution system, under normal operating conditions (Scl), WTPs 1, 2, and 3
supply 26%, 25%, and 49% of the total demand, respectively. To demonstrate the application of
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the proposed modelling approach, simulations were performed under normal operating and
sustained low pressure conditions (Table 4.1). Significant pressure-deficient conditions (Sc2, Sc3,
and Sc4) were created by the shutdown of WTPs 1 and 2. Under the simulated conditions, results
indicate that WTP 3, which has the largest capacity, can provide 85 %, 75 %, and 92 % of the total
required network demand in scenarios 2, 3, and 4, respectively.

4.3.1 Validating the reliability of the proposed methodology

As a first step, because the modified .INP file is used by EPANET-MSX to perform water quality
analysis, the reliability and accuracy of this file were verified. To do so, the results from the
modified .INP file of EPANET were compared with those from the pressure-driven algorithm.
Identical values of flow and pressure (zero and positive pressures) ensure that the generated
modified .INP file is reliable (Figure 4.3). Comparison results for the second scenario are
illustrated, but the same trend is obtained for other scenarios. As can be seen in Figure 4.3 (a), the
generated modified .INP file of EPANET allows for the calculation of negative pressure values,
while WaterGEMS V8i reports those as zero.
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Figure 4.3: Comparison between results calculated with the modified .INP file of EPANET and

45 -

30 -

15 -

Pipe flow (LPS), PDA

Nodal pressure (m), PDA

the pressure dependent demand model of WaterGEMS for Sc2: (a) nodal pressures, and (b) pipe

flows.

4.3.2 Investigation of hydraulic behavior under scenarios of pressure-deficient

conditions

Impact of pressure-deficient conditions on satisfaction of required demand
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The average DSR of each zone is indicated in Table 4.2, for scenarios 1 to 4. As expected, under
normal operating conditions (Scl), all demands are satisfied. For all other scenarios, where the
water is only supplied by WTP 3, meeting the required demand especially for zones 1 and 2, which
are located further from WTP 3 becomes challenging at some nodes. The DSR is related to the
hydraulic grade maintained at WTP 3. Under the studied pressure-deficient conditions, zone 2 is
globally better fed by WTP 3 as compared to zone 1, reflecting network topology and the average
nodal elevation in each zone (Figure 4.1 (b)). Statistics related to the distribution of percentage of
demand satisfaction for different pressure-deficient scenarios are shown in Figure A-1 in Appendix
A.

Table 4.2. Average DSR of each zone for scenarios 1 to 4.

Demand Satisfaction Ratio (%)

Scenarios Zonel Zone?2 Zone3  Total
Scl 100% 100% 100% 100%
Sc2 59.2% 85.9% 99.2% 85.4%
Sc3 38.0% 72.4% 96.5% 75.2%
Sc4 75.3% 94.4% 99.7% 92%

Comparison of pressure values from DDA and PDA

Statistics related to the distribution of nodal pressure values (median, maximum, minimum, mean,
25th and 75th percentiles) for different scenarios are illustrated in Figure 4.4. Pressure values
obtained from PDA and DDA are compared for each zone. As expected, for the first scenario, the
calculated pressure values were the same using the PDA or DDA tool. As the lowest possible gauge
pressure of water at 20°C is -10.1 m (i.e. cavitation head), the extent of the unrealistic
underestimation of pressure values by DDA under pressure-deficient conditions is obvious.
Pressure values from the PDA model were above -10.1 m in all zones for all the pressure-deficient
scenarios. In the second scenario, the median pressure values obtained by DDA and PDA are,
respectively, 37 m and 39 m for zone 3 (DSR: 99 %), -1 m and 16 m for zone 2 (DSR: 86 %), and
-11 m and 8 m for zone 1 (DSR: 59 %) (Figure 4.4).
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Figure 4.4: Comparison of pressure results calculated from PDA (modified EPANET input file)
and DDA under pressure-deficient conditions (Sc2, Sc3, and Sc4), and normal reference

operating conditions (Sc1) (DDA only).

As expected, Figure 4.5 shows that the extent of the difference of nodal pressure (AP) estimated by
DDA and PDA decreases with increasing values of pressure estimated by PDA. The extent of the
differences is clearly driven by the severity of the pressure-deficient conditions. Indeed, the
differences for Sc3 with only 75% of DSR are much larger than for Sc4 with a DSR of 92%. Even
though the AP is generally lower for the groups of nodes with higher pressure, no specific minimal

pressure can be determined after which PDA and DDA estimates would converge for all nodes.



61

35 _
8% 13% 21% 15% 28% 14% 1% 35 ® Median []25%-75%
_ 30 F ” - 30+ I Min-Max * Mean
E 25} Sc3 25 Sc4
é 20 | 20k
0,-: 15 15l <1% 5% 21% 9% 21% 8% 13% 23%
<
2 o 1mITT@Té
-
' °| i
]
O C - -I- 0 L ;
0 5 15 20 30 40 50 0 5 15 20 30 40 50
(a) Pressure (m) (PDA) (b) Pressure (m) (PDA)

Figure 4.5: Nodal pressure differences between PDA and DDA for pressure-deficient scenarios of
(@) Sc3 and (b) Sc4 for different categories of pressure calculated by PDA (modified .INP file)
for all the nodes; the proportion (%) of nodes in each pressure category is indicated on top.

Spatial distribution of negative and low pressure areas under pressure-deficient conditions

The spatial distribution of areas of most interest for low pressure is illustrated in Figure 4.6. Figure
4.6 (a) shows normal operating conditions, which are equivalent for DDA and PDA, with all nodes
maintaining pressures above 21 m. Pressure maps of scenarios 2 to 4 (Figure 4.6 (b) to (d)) show
that the extent of the area affected by low and negative pressures depends on the hydraulic grade
maintained at the only online WTP. Figure 4.6 (¢) and (f) show the spatial distribution of pressure
values simulated by DDA under two of the pressure-deficient scenarios (Sc2 and Sc4). The extent
of the zones with negative pressure is largely overestimated when compared to the PDA results, in
line with the difference in computed pressures by the two methods (Figure 4.4). Therefore, DDA
cannot correctly identify the zones which are prone to backflow and/or intrusion under the

significant simulated pressure-deficient conditions.
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Figure 4.6: Spatial distribution of pressure using PDA for scenarios 1 to 4 (a, ¢, b, and d), and

using DDA for scenarios 2 and 4 (e, f).

4.3.3 Investigation of water quality behavior under pressure-deficient

scenarios

To illustrate the impact of low pressure events on water quality, the simulated water age, chlorine
residual and THM concentration for Sc2 are compared with the values corresponding to normal
operating conditions (Scl) (Figure 4.7). Three categories defined under pressure-deficient
conditions of Sc2 are used for comparison: nodes with pressure (a) more than 15 m, (b) less than
or equal to 15 m including negative pressure, and (c) less than or equal to zero. For nodes with
P>15 m (20,470 nodes, 68%), median and 75th percentile water age reached 12 and 26 h during
Sc2, as compared to 12 and 19 h under normal operating conditions, respectively (Figure 4.7(a)).
As the pressure at the nodes under pressure-deficient conditions decreases, statistical parameters
(median, 75th and 95th percentiles) related to water age for nodes with P < 15 m (9607 nodes,
32%) reach higher values: they go from 9, 14, and 27 h under normal operating conditions to 19,

29, and 68 h under pressure-deficient conditions, respectively. These differences are increased even
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more for nodes with zero or negative pressure (585 nodes, 2%). Chlorine residuals at nodes with P

< 15 m also showed considerable variations between pressure-deficient and normal operating

conditions: medians decreased from 1.2 to 0.8 mg/L, and 25th percentiles decreased from 1 to 0.6

mg/L (Figure 4.7(b)). These differences are even more important for nodes with zero or negative

pressure where the median chlorine concentration is decreased from 1.2 to 0.5 mg/L. THM

concentration generally increased under pressure-deficient conditions as a result of increased water

age and chlorine consumption, especially at the nodes with lower pressures (Figure 4.7(c)). The

correlation between water age, chlorine residual, and THM concentration obeys a logical trend for

all pressure categories.
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Figure 4.7: Comparisons of water quality parameters between normal operation conditions (Sc1)
and pressure-deficient conditions (Sc2: WTP 1 and 2 out of service and WTP 3 at 77m) for three

categories defined under pressure-deficient conditions: nodes with P > 15m, nodes with P <15 m

(including negative pressure), and nodes with P <0; n is the number of nodes.
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Similar trends as shown for Sc2 was observed for water quality parameters in other pressure-
deficient scenarios (Sc3 and Sc4). Figure 4.8 shows that the range of differences in chlorine
residuals between pressure-deficient conditions and normal operating conditions (Scl) generally
increases for group of nodes with lower pressure under the three pressure-deficient scenarios (Sc2
to Sc4). The median of these differences in chlorine residuals for Sc2 to Sc4 were 0.0 for nodes
with P > 15, 0.3 mg/L for nodes with 0 < P < 15, and varied between 0.6 to 0.8 mg/L for nodes
with P <0.
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Figure 4.8: Differences of computed chlorine residuals between normal operation conditions
(NOCs) and pressure-deficient conditions (PDCs) of scenarios 2 to 4 for three categories defined
under each scenario-specific pressure-deficient conditions: nodes with P > 15,0 <P <15 m, and

nodes with P <0.

4.4 Discussion

Adverse pressure conditions in distribution systems may take the form of transient or sustained
low/negative pressure events. Modelling and field investigations of distribution systems have
shown that transient low and negative pressures can be common, ranging in duration from few
milliseconds to a few minutes (Besner et al. 2010b, Ebacher et al. 2012, Ebacher et al. 2011a,
Gullick et al. 2005) leading to the introduction of guidelines to prevent these events (Boulos et al.
2005, LeChevallier et al. 2011). The potential for intrusion of contaminated water during transients
has been evaluated through field investigations and modelling (Ebacher et al. 2013, MclInnis 2004,
Teunis et al. 2010, Yang et al. 2011) and a framework to assess the associated potential public
health risk proposed (Besner et al. 2011).
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With water infrastructure aging and intensified system renewal activities, sustained pressure-
deficient conditions in distribution systems may become more common. Sustained low/negative
pressure events were measured by Besner et al. (2007) and (2010a) during construction work on a
transmission main (400 mm). Low pressure (< 20 psi) lasting up to 20 hours was recorded at some
sites. In order to identify appropriate utility management response to protect public health, these
events should be better characterized in terms of intensity, duration and spatial distribution. A
methodology consisting of an innovative combination of PDA results and multi species water

quality model capable to conduct this evaluation is proposed.

4.4.1 Improving modelling tools towards a better prediction of water quality

under pressure-deficient conditions

In DDA, demand values are considered fixed parameters in the continuity equation, and satisfaction
of these demand values under pressure-deficient conditions may lead to unrealistically low nodal
pressure values. PDA is more realistic as it calculates the available nodal demand as a function of
nodal pressure. Also, DDA cannot predict the nodes with unsatisfied demand during a system

failure.

As expected, the comparison of the distribution of estimated nodal pressures (Figure 4.4) reveals
that the differences between DDA and PDA are most pronounced in areas where demand
satisfaction is lowest. Demand satisfaction ratio was lowest in zone 1 (38.0-75.3%) than in zone 2
(72.4-94.4%), whereas zone 3 hardly experienced unsatisfied demand (96.5-99.7%) (Table 4.2).
These results confirm that system managers cannot rely on DDA to model pressure-deficient
conditions, especially in the case of very low and negative pressures, and that PDA should be used

to identify areas with critical pressure loss across the distribution system.

The pressure underestimation by DDA was not only observed at nodes with low pressure (< 15m)
as computed by PDA, but also at nodes with pressures up to 50 m, although smaller differences
were generally observed for higher pressure nodes (Figure 4.5). The intensity of the pressure-
deficient conditions also impacts the range of these differences. Yet, no minimal pressure in the
pressure range tested (< 70m) could be identified above which pressure results from both
approaches (DDA and PDA) would converge for all nodes and scenarios. These differences in

estimated nodal pressures directly influence the delineation of the areas at risk of intrusion and
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backflow in the distribution system. Finally, whether DDA (under normal operating conditions) or
PDA is used, proper calibration and validation are needed. In the case of PDA, the selection of a

proper pressure demand relationship should be addressed.

A hydraulic feasibility check (Ackley et al. 2001) of flow and pressure was conducted by using
results of the modified EPANET input file and WaterGEMS (Figure 4.3). Such verification is
warranted not only to validate the reliability of the generated modified INP. file but also to
determine whether or not negative pressures reported as zero have an impact on the other hydraulic
results. Negative pressures reported as zero can lead to apparent total head reversal observations
for PDA. Lee et al. (2015) argue that their PDA used tool produces unacceptable results as they
observed flow direction from a node with lower total head to a node with higher total head under
pressure-deficient conditions in a small model distribution system. However, this observation was
likely caused only by the fact that negative pressures were not reported in the PDA model used.
The pressure dependent demand model of WaterGEMS (V8i SELECTseries 5) used in this study
was also found to report negative nodal pressure values as zero pressure. Such a limitation was
addressed in the proposed approach by calculating the negative pressure values using the generated
modified EPANET input file (Figure 4.2). As illustrated in Figure 4.3, the negative pressures
reported as zero in WaterGEMS do not have any impact on the hydraulic calculations of pipe flows

and positive nodal pressures and is only a reporting issue.

Water quality modelling in a distribution system is commonly limited to a single-species with
demand-driven hydraulic analysis. However, a multi-species water quality model is required to
simulate the interactions between two or more species. Moreover, a realistic hydraulic analysis,
such as PDA, must be combined with water quality modelling to enable simulating the impact of
low/negative pressure events on water quality. The presented technique (MSWQA-PDA) allows
applying a multi-species water quality model (i.e. EPANET-MSX) to an all-pipes model of a large
full-scale distribution system under different severe hypothetical sustained low/negative pressure
conditions. As a proof of concept for multi-species water quality modeling, variations of water age,
chlorine residual, and THM concentration were modeled and compared for normal and pressure-

deficient conditions throughout the network.

The results show the importance of integrating a realistic hydraulic analysis (i.e. PDA) with a multi-

species water quality analysis, providing a step forward towards more accurate and reliable
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management strategies and consequently reducing public health risk under sustained pressure-
deficient conditions. The proposed methodology can be used without modifying the source code
and can contribute to the future development of open source software combining multi-species
analysis and PDA. It should be noted that further efforts are needed to provide more reliable
numerical models capable to consider and predict water quality changes more accurately in water
distribution systems. For example, under unsteady conditions, the impact of flow reversals and

biofilm re-suspension on turbidity and chlorine decay must be investigated.

4.4.2 Regulatory and management implications

The delineation of zones at risk for intrusion and backflow relies on the identification of
distribution system zones at risk for low and negative pressures. For each system, these zones
should be defined by setting the minimum acceptable threshold pressure that reflects the risk of
backflow from the connected buildings. The minimal pressure that should be maintained in
distribution systems has been lengthily debated, and guideline reference values vary in their
tolerance of low but positive pressures. When pressures decrease below 14 m (20 psi), during main
breaks, it is not uncommon for the water utility to issue a boil water advisory because of the
possibility of system contamination from cross-connections (Mays 2000). Erickson et al. (2015)
surveyed the existing standards and guidelines addressing low/negative pressure events in the
United States. The authors report that, although the majority of the interviewed agencies have
guidelines for issuing a BWA for zero or negative pressure events, this is not the case for low
positive pressures. Only two of the eleven interviewed states always recommended issuing a BWA
for low pressure between 0 to 14 m. In this context, nodes with negative pressure (P < 0m) are
considered part of the highest risk zone justifying a BWA, and nodes with low but positive pressure
(0 < P <15 m) are considered as susceptible location to intrusion/backflow which may lead to
corrective/preventive actions in the network. For the studied distribution system, the number of
nodes susceptible to intrusion/backflow varies considerably for different minimal pressure criteria
(0,5, 10 0or 15 m) as shown in Table 4.3. This clearly demonstrates the need to select an appropriate
pressure criterion to evaluate the risk of low pressure. For example, in scenario 2, the number of
nodes prone to intrusion/backflow varies from 585 (2%) to 9,607 (32%) when considering different
minimal pressure criteria (0, 5, 10 or 15 m) (Table 4.3). The number of nodes at risk also varies

with the pressure loss scenario (Sc2 to Sc4). The number of nodes triggering a BWA (P <0 m)
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varies from 2472 (8 %) to 103 (< 1 %) by changing the hydraulic grade at the only working WTP
(Table 4.3). Even a small number of nodes prone to intrusion/backflow may impact public health,
depending on the vulnerability of the supplied customers, the intrusion rate, and the contamination
level. Although the minimal pressure triggering corrective/preventive actions is a most critical
criterion when defining the extent of the zone at risk, guidance remains poorly defined.
Furthermore, the actual response should also be based on online field pressure monitoring with

adequate number and suitable location of monitoring sites.

Table 4.3. Number of nodes experiencing very low pressure for Sc2 to Sc4.

Number of nodes

Scenario  Cause of low/negative pressure event P<0m (P<5m) (P<10m) P<i5m

Sc2 Shutdown of two WTPs 3,250 7,131 9,607
85(2%) (1106 (2a%)  (32%)
Sc3 Shutdown of two WTPs and loss of 2,472 (8%) 6,528 9,193 12,722
pressure head at the remaining WTP ’ (22%) (31%) (42%)

Sc4 Shutdown of two WTPs and increased 1,470 4,422 7,773

103 (<1%)

pressure head at the remaining WTP (5%) (15%) (26%)

Negative and low pressure zones are significantly reduced in this distribution system when the
PDA modelling approach is used (Figure 4.6). Besides the number of nodes affected by low or
negative pressures, the boundaries of a BWA zone depend on the spatial clustering of these nodes.
Figure 4.9 illustrates the extent of areas which may require corrective/preventive actions for
different minimal pressure criteria. As the criteria for minimal pressure increases, the spatial
dispersion of the low-pressure nodes across the system is such that the definition of a system wide
BWA area may become unavoidable. The possibility of issuing sectorial BWAS is an important

issue for utilities wishing to limit the impact of pressure losses on their customers.
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Figure 4.9: Geographical distribution of areas triggering corrective/preventive actions (in red) for

different minimal pressure criteria (0, 5, 10, or 15 m).

Although hydraulic modelling using PDA is a useful tool, other factors should also be considered
by water utility managers to justify issuing a BWA or corrective/preventive actions, including the
duration of the low or negative pressure, measurements from online pressure monitors, the presence
of wvulnerable populations (hospitals, schools, day care centers, etc.), residual disinfectant
concentrations at the time of pressure loss, fate and transport of contaminants, the number of stories
of buildings in low pressure areas, the zoning (ex. industrial), and the presence of backflow

prevention devices.

Water quality variations during sustained low pressure events in distribution systems can be related
to changes in the hydraulic conditions of the system (i.e. nodal pressures and pipe flow rates), and
also to contamination from intrusion/backflow into the distribution system. In this study, the focus
was put on the first issue. In the case of unsteady flow conditions, the variation of disinfectant
residual concentrations due to biofilm re-suspension and scouring of corrosion products caused by
flow reversals is also another factor to be investigated. Generally, results show poorer water quality
(water age, Cl> and THM) for the simulated sustained pressure-deficient scenarios compared to
normal operating conditions. These differences are generally higher for nodes with negative
pressure (P < 0) or low/negative pressure (P < 15) compared to nodes with pressure above 15 m
(Figure 4.8). These water quality variations were only due to changes in the hydraulic parameters
such as flow direction, flow rate, and head loss. This means that, besides the higher risk of intrusion

or backflow due to pressure drop in some areas of the network, the protection provided by chlorine
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residuals also decreases, when compared to normal operating conditions. This loss of chlorine is
of particular interest as the residual disinfectant is usually considered as the last barrier against
pathogen (mostly bacterial and viral) intrusion. In this study, THM formation was used to
demonstrate the capability of the presented technique to simulate multiple species in a single run
under pressure-deficient conditions. The results showed that the increase in THM concentrations

was not a major concern.

45 Conclusion

A methodology that enables multi-species water quality analysis based on pressure-driven analysis
(MSWQA-PDA) was developed by modifying the EPANET input file. The main advantage of this
methodology is the simultaneous modelling of multiple water quality parameters, and hydraulic
conditions during sustained low/negative pressure conditions. The proposed approach does not
require modifying the source code and can also communicate with other existing pressure-
dependent approaches. To the best of the authors’ knowledge, this is the first application of a multi-
species water quality model to a large full-scale network (more than 30,000 nodes and 1,630 km

of pipes) under sustained pressure-deficient conditions based on a pressure-driven approach.

The simulated sustained pressure-deficient scenarios showed that models based on DDA will
overestimate the zones at risk of low pressures, potentially leading to unjustified boil water
advisories. Responding competently to depressurization is an important challenge for water utilities
and health authorities. Therefore, a realistic hydraulic analysis (i.e. PDA) is required to achieve

more reliable results.

The critical pressure value triggering corrective/preventive actions has been the subject of much
debate. This critical pressure value (0, 5, 10, or 15 m) directly influences the number of nodes
subject to corrective/preventive actions and their spatial clustering zones under BWA. In the
studied distribution system, the selection of a higher pressure threshold limits the potential for a
sectorial BWA.

Water quality parameters (water age, chlorine residual and THM concentration) were generally
poorer under the simulated pressure-deficient scenarios compared to normal operating conditions,

especially at nodes with lower pressure values. This shows the importance of using enhanced
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modelling tools which can combine both pressure-driven analysis and multi-species water quality

simulations.

Although such results were observed for continuous sustained pressure-deficient conditions, the
next step will consist in using the MSWQA-PDA approach to simulate low/negative pressure
events lasting a few hours. Microbial intrusion should also be integrated to the model to take

advantage of the full potential of the developed approach.
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CHAPTER 5 ARTICLE 2 -IMPROVEMENT OF ACCIDENTAL
INTRUSION PREDICTION DUE TO SUSTAINED LOW-PRESSURE
CONDITIONS: IMPLICATIONS FOR CHLORINE AND E. COLI
MONITORING IN DISTRIBUTION SYSTEMS

Appropriate numerical models can provide a basis to redefine the current E. coli sampling
protocols. In this chapter, intrusion of contaminated water due to sustained pressure losses lasting
a few hours and fate and transport of E. coli through the network are simulated using the developed
approach (MSWQA-PDA). This technique allows for simultaneous consideration of the
interactions between E. coli and disinfectant residuals and the impact of water quality variations
due to hydraulic changes under sustained PDCs, using realistic PDA. The results can offer timely
actionable information to utilities and improve sampling strategies in terms of location, timing, and
volume of samples. The results also provide insight into propagation of E. coli throughout the
network based on pressure values under PDCs and issuing sectorial boil water advisories. This
paper was submitted in Journal of Water Resources Planning and Management. Supplementary
information is presented in Appendix B.
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Abstract

Low/negative pressure events that increase the risk of contaminant intrusion may take place in
distribution systems and may become more common in ageing infrastructure. Guidance of whether
to issue an advisory after loss of pressure is based on the duration and extent of pressure loss and
is accompanied by E. coli monitoring obligation. In this paper, the limitations of E. coli monitoring
to detect intrusion is demonstrated using a conservative 5-hour pressure loss and considering
intrusion of raw sewage. In low/negative pressure areas (P <1 m), 74 nodes were prone to intrusion.
Volumes of intrusion are adjusted as a function of the pipe internal pressure and an adjusted leakage
constant. Ingress of contaminated water and fate and transport of E. coli throughout a 30,077 nodes
distribution system are simulated using a realistic pressure-driven hydraulic model coupled to a
multi-species water quality model (EPANET-MSX). Spatial and temporal distribution of
contamination shows that contamination can be transported to higher-pressure zones with the
extent of propagation depending on the efficacy of disinfectant residuals to inactivate intruded
microorganisms. For chlorinated distribution system the limited positive nodes show the challenge
of any confirmation of contamination unless conducted during the intrusion at or downstream of
the intrusion sites. In chloraminated system, a larger number of nodes (2905 nodes) experienced E.
coli over the simulation duration compared to chlorinated system (166 nodes), increasing the
likelihood of detecting contamination. The nodal mean probability of detection was > 0.1 in both
the first and second 5-hour intervals at 166 nodes. Larger sampling volumes (1 L versus 100 mL)
provides greater sensitivity: it extends the period and increases the number of sites where samples
can be collected with a higher probability of positive detection. These observations question
whether extending E. coli sampling after 15 hours is informative without using larger sampling
volumes. Overall, numerical predictions can guide utilities to optimal locations for both
confirmation and clearance sampling. Large volume sampling at at-risk nodes identified by
advanced numerical models provide greater credence in negative results to manage boiling

advisories.

KEYWORDS: Sustained pressure deficient conditions; Intrusion; E. coli detection; Chlorine;

Multi-species water quality simulation; Pressure-driven analysis;
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5.1 Introduction

Pressure and disinfectant residuals in distribution systems (DSs) are the final barrier for protecting
the public health against microbial contamination. Ingress of contaminated water due to network
deficiencies can cause water quality issues and health problems (Craun et al. 2010, Lindley and
Buchberger 2002). Sampling locations and/or sensor placements to monitor water quality in the
network can be optimized to increase the probability of detecting a contamination event (He et al.
2018, Khorshidi et al. 2018, Ohar et al. 2015, Zhao et al. 2016). However, as sensors are parameter-
dependent and may not be deployed everywhere, numerical models are required to optimize
monitoring and response during and after pressure deficient conditions (PDCs). Therefore,
improving the accuracy and reliability of hydraulic and water quality models to simulate intrusion

and the propagation of contaminants throughout the DSs is essential.

Intrusion events in DSs can be classified into two types: accidental and intentional. Simulation of
accidental intrusion due to low/negative pressure events requires a PDA, in place of the traditional
demand-driven analysis (DDA). In the PDA, the available demand at each node is calculated as a
function of nodal pressure using different methodologies (Ang and Jowitt 2006, Giustolisi and
Laucelli 2011, Paez et al. 2018, Siew and Tanyimboh 2012). A detailed literature review on
pressure-driven approaches and existing pressure-demand relationships can be found elsewhere
(Hatam et al. 2018a).

The water quality model used to simulate the fate and transport of contamination should be based
on a realistic hydraulic analysis of PDCs (i.e. PDA). DDA has been used for the management of
contamination events and optimization modeling along with single-species water quality modeling
(Baranowski and LeBoeuf 2006, Shafiee and Berglund 2017). Rasekh and Brumbelow (2014) and
Zafari et al. (2017) proposed optimization models based on PDA and single-species water quality
simulations (using EPANET) to minimize the adverse effects of contamination. Besner etal. (2011)
discussed challenges related to estimation of public health risk associated with contamination
resulting from PDCs. With the Multi-Species Extension of EPANET (Shang et al. 2011), multi-
species interactions including interaction of disinfectant with organic and inorganic matter,
inactivation of microorganisms, and attachment/detachment of pathogens to/from biofilm can be
considered (Uber 2010). Some studies have applied EPANET-MSX to model contaminant

intrusion events in the DSs considering the inactivation of microorganisms and disinfectant decay
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(Betanzo et al. 2008, Islam et al. 2017, LeChevallier et al. 2011, Propato and Uber 2004, Teunis et
al. 2010, Yang and Boccelli 2016). However, as for EPANET 2, EPANET-MSX is a DDA based

model that is less accurate to model fate and transport of contaminants under sustained PDCs.

Using the numerical model, van Lieverloo et al. (2007) and Blokker et al. (2018) evaluated the
probability of detecting E. coli with standard monitoring program and they observed that the
detection probability was low. It should be noted that E. coli inactivation was not considered in
these studies. The possibilities to improved sampling strategies (location, timing and volume) are
required to be further investigated in the presence of disinfectant. For a more realistic simulation
of accidental ingress and propagation of contaminated water under sustained pressure losses, a
multi-species water quality model should be combined with PDA. Recently, EPANET-MSX has
been coupled to pressure-driven hydraulic analysis results by Seyoum and Tanyimboh (2017) and
Hatam et al. (2018a) using different approaches to model THM and chlorine under continuous
sustained PDCs. The latter approach was used to simulate the transport of the non-reactive
Cryptosporidium under continuous PDCs (Hatam et al. 2018b). To the knowledge of the authors,
no study so far has investigated fate and transport of contaminants by simultaneously accounting
for (1) the interactions between microorganism and disinfectant residuals, and (2) the effect of
hydraulic conditions under sustained pressure losses applying a realistic hydraulic analysis (i.e.
PDA).

Pressure within a pipe is one of the key factors determining intrusion locations and contaminant
concentration at the entry points. Intrusion flow rates are driven by the pressure differential
between the outside and inside of a water main. Contaminant concentrations have been considered
using different approaches. Teunis et al. (2010) have calculated virus concentrations at intrusion
nodes based on local water flow, random intrusion volume, random negative pressure duration and
random sewage concentration. Besner et al. (2010c) have generated a possible range of
contaminant mass rates using a probabilistic model, considering the pressure head values inside
and outside the pipe as a triangular probability distribution function. Propato and Uber (2004)
simulated intrusion events considering a constant mass flow rate of pathogens downstream of each
intrusion node. Finally, Betanzo et al. (2008) assumed constant microorganism concentrations
based on concentrations reported in sewage with a specific dilution factor into pipe water (10%),

without considering the nodal pressure values impact on intrusion flow rate.
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In this paper, a methodology to estimate node-specific contaminant mass rate at nodes prone to
intrusion is proposed. For the simulated sustained PDCs, the potential nodal intrusion volume is
tuned adjusting the leakage constant of each node based on the nodal leakage demand (representing
pipe age and type of materials) and application of the nodal pressure inside the network, using PDA
results. Then, the fate and transport of E. coli resulting from the ingress of sewage caused by
sustained PDCs lasting 5 hours is modeled in a large full-scale DS with 30,077 nodes. The results
from coupling of EPANET-MSX to PDA provides insight into the fate of E. coli with estimates of
disinfectant decay and microorganism inactivation. Results are then interpreted to reevaluate and
improve sampling strategies (location, timing, and volume sample) during and after intrusion

events for various disinfectant residual scenarios (no residual, chlorine, and chloramine).
5.2 Methodology

5.2.1 Description of Simulated Sustained Low-Pressure Event

The modeled network includes 30,077 nodes, three WTPs and a total pipe length of about 1,600
km. Under normal operation conditions (NOCs), each WTP supplies water to a specific area of the
system. However, as the entire network is hydraulically interconnected, the influence zone of each
WTP is modified when changes in hydraulic conditions take place. More information on the
characteristics of the network can be found in Hatam et al. (2018a). The sustained PDCs correspond
to a combination of the shutdown of one of the WTPs for a 5-hour period and a fire flow demand
of 15,000 L/min at one point (Table 5.1). Flow rates of the remaining WTPs were increased to
some extent to compensate the shutdown of WTP1 as described in (Hatam et al. 2018a). For
simplicity of analysis, the demand is considered to be constant (239,414 m®/day) corresponding to
the peak hour consumption. The hydraulic model of the studied system is built such that total
demands at each node are classified as residential, industrial, commercial, institutional, municipal,
and leakage. To allow water quality (disinfectant residuals) reaching equilibrium conditions, the
model is run for 10 days under NOCs using the extended period simulation. The PDCs are
simulated from 16:00 to 21:00 of day 11" (Table 5.1).The model is then run for three additional

days to investigate the spatial and temporal distribution of contamination throughout the network.
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Table 5.1. Comparing network hydraulic conditions under normal and pressure-deficient
conditions; HG and Qout are hydraulic grade and outflow rate, respectively.

Pressure conditions NOCs PDCs (5 hours)
HG (m) Qout(L/S) HG (m) Qout(L/S)
WTP1 76 716 - -
WTP2 75 701 65 856
WTP3 77 1354 77 2028
Fire Flow - 15,000 L/min

5.2.2 Ingress of Contaminated Water

The following hypotheses are used to model contaminant intrusion: (i) the size of the entry pathway
is proportional to the leakage demand assigned to a node, (ii) the pressure differential between
internal and external pressure heads is obtained through PDA. The pressure head on all pipes is
assumed equal to 1 m, based on the range of the water table head above the pipes in the studied
network (Ebacher et al. 2013), and (iii) a contamination source (sewage) is assumed to exist

everywhere around all pipes. To calculate the intrusion flow rate (Q; (m®/s)) the orifice equation

Q; = (CdA)i\/Zg(Hext — Hyne,)) is used. To calculate intrusion flow rate, H;y, is the pressure
head inside the pipe at node i (m) under PDCs calculated using PDA. In this study, (C,A); are

calculated using the corresponding leakage flow rate at time t (Qleakagei t) in the calibrated model

under NOCs:

Cleaki’t = (CaA)ir = Qleakagei’t/\/zg(Hintilt — Hexe) Eq.5-1

in which Ciear ; is the leakage constant, Hing; is the pressure head inside the pipe at node i at time
t, under NOCs, H,,, is the pressure head outside the pipe (m), A is the orifice area (m?), C, is the
coefficient of discharge (unitless), and g is the gravitational acceleration (m/s?). Using the network
model with daily demand patterns, C;., IS calculated at each node and at each hour over a 24-hour
period. For the sake of simplicity and to be conservative, the maximum value of C;,,, at each node
during this period is used for computing the intrusion flow rate during the PDCs period (Figure B-
1).

The external source of contamination selected here is raw sewage assumed to be leaking from

adjacent sewer mains. E. coli was selected for simulation, as it is the reference indicator organism

for confirmation and clearance of contamination in DSs, is abundant and is inactivated to various
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degrees by disinfectants. A concentration of 1.6E06 CFU/100 mL in the local sewage was used
(Payment et al. 2001). The contaminant mass rate at each intrusion node is calculated by
multiplying the concentration of microorganisms outside the pipe (C,,:) by nodal intrusion flow
rate. The intrusion flow rates are implemented by assigning a negative demand to an artificial node
connected to the intrusion node using a short pipe with negligible head loss. The impact of intrusion
volumes on the pressure values and DSRs is considered by adding the intrusion flow rates to the
PDA model and solving the hydraulic model again. The modified INP file of EPANET is then
regenerated based on these hydraulic results. The intrusion flow rates can be recalculated using the
recent pressure values to investigate the impact of possible pressure variations on the intrusion
flows. Another iteration may be needed if larger intrusion flow rates (such as backflow from cross

connections or submerged air vacuum valves) enter the system, although this is not the case here.

Several intrusion scenarios (Table 5.2) are simulated to investigate the impacts of disinfectant
residual type and concentration on the fate and transport of E. coli. The intrusion duration is
assumed to be equal to the duration of the low/negative pressure event. Contaminant propagation

is simulated for 3 days after PDCs are over.

Table 5.2. Description of intrusion scenarios.

Scenario Disinfectant type Disinfectant Contaminant
Concentration (mg/L)

1) No disinfectant 0.0 Sewage- E. coli
(2) Chlorine 0.5 Sewage- E. coli
3) Chlorine 1.0 Sewage- E. coli
(4) Chlorine 2.0 Sewage- E. coli
(5) Chlorine 1.0 No intrusion

(6) Chloramine 1.0 Sewage- E. coli
() Chloramine 2.0 Sewage- E. coli
(8) Chloramine 1.0 No intrusion

5.2.3 Disinfectant Decay and Microorganism Inactivation

To simulate chlorine decay the simple first-order model is used and for chloramine, the second-
order model is applied. The Chick-Watson model is applied for the inactivation of E. coli (Betanzo
et al. 2008). The inactivation constant (k,) is considered 246 and 0.99 (L/mg - h) for chlorine and
chloramine at 10°C, respectively, by assuming that k,, is reduced by half for every 10°C decrement

in temperature (Betanzo et al. 2008). Based on data obtained from disinfectant decay experiments



79

for a 0.1% wastewater intrusion with total organic carbon levels ranging from 4.6 to 54 mg/L
(LeChevallier et al. 2011, Yang et al. 2011), the initial chlorine demand of the ingress water was
set to 0.088 mg/L and no initial demand is considered in the case of chloramine. For chlorine, the
decay constants with and without intrusion are set to 0.24 and 0.055 h™1, respectively, and for
chloramine, these values are set to 0.11 and 0.012 (mg Cl, - h/L)~1, respectively. The higher
disinfectant decay constant value (identified as Kintrusion) IS only applied to pipes that receive
intrusion materials as determined by a conservative tracer. For a more accurate estimation of
disinfectant residuals while using the nth-order decay model, a conservative fictitious species is
assumed to be injected into the network at the intrusion nodes. Contrary to E. coli, this species is
transported into the system without any decay and is only used to determine zones, at each time
step, for which Kintrusion Will be applied in the decay model. For simplicity, a constant Kintrusion Value
is applied to these pipes regardless of the variation in dilution of entering sewage. For the remaining
pipes in the network, the disinfectant decay rates set for water not exposed to intrusion water
(Knormar) 1S used. In this study, if negative chlorine concentrations are computed at intrusion nodes
from the initial chlorine demand, the chlorine concentration is considered as zero in the analysis.

The probability detecting E. coli is calculated using a Poisson distribution (Teunis et al. 2004).

5.3 Fate and transport of contaminated water during and after pressure

losses

Fate and transport of ingress E. coli throughout the network, in the absence and presence of
disinfectant residuals, and the propagations of conservative fictitious species is then simulated
using a multi-species water quality analysis based on PDA by employing the approach presented
in Hatam et al. (2018a). Previously, the methodology (MSWQA-PDA) was applied to model
continuous PDCs (Hatam et al. 2018a, b). In this study, the capability of MSWQA-PDA approach
to consider time-varying parameters (with hourly variations) such as pumping regimes at water
treatment plants (WTPs) is illustrated by applying it to simulate intrusion events due to
low/negative pressure events lasting a few hours. More details on the methodology can be found
in supplemental materials and Hatam et al. (2018a).
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5.4 Results and Discussion

5.4.1 Impact of sustained low/negative pressure events on pressure and DSRs

Pressure values during NOCs (at 15:00) and sustained PDCs (at 16:00) are illustrated for different
groups of nodes in Figure 5.1 (a). The nodes are categorized based on their pressure values during
PDCs to better visualize the differences. Median pressure values calculated by DDA and PDA are,
respectively, -4.6 and 0.3 m for the first group of nodes (P <1 m, 74 nodes), whereas closer values
(35.0 and 35.8 m) are obtained for the group of nodes with P > 15 m (25,168 nodes). The results
show that DDA underestimates the pressure values when modeling pressure losses, especially for
nodes with low-pressure values (P < 15 m), which agrees with a previous study (Hatam et al.
2018a). This can lead to unreliable overestimation of the areas prone to intrusion as well as
incorrect estimation of intrusion volumes potentially entering the system. As an illustration, the
number of nodes with pressure less than 1 m (considered as prone to intrusion in this study)

increases to 1156 nodes when using DDA, as compared to 74 nodes using PDA.

About 16% of nodes, excluding the nodes with no demand during NOCs (469 nodes), experience
pressure less than or equal to 15 m (Figure 5.1 b). During the studied PDCs, 25% of these nodes
experience a DSR between 0 and 56%, and the 75th percentile is 99%. Defining the nodes with
partial demand satisfaction is important for customers, but even more so in terms of ensuring
adequate fire flows. For the studied event, the node where a fire demand (15,000 L/min) was
assigned for 5 hours had a DSR of 99% with a pressure of 12 m during PDCs.
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Figure 5.1. (a) Pressure values during NOCs (15:00), and PDCs (16:00) using both PDA and
DDA, and (b) DSR excluding nodes without any demand (469 nodes) during NOCs; Square:
Median; *: Mean; Box: 25%-75%; Whisker: Min-Max.

5.4.2 Intrusion volumes to estimate E. coli concentration at the intrusion nodes

PDA showed that 74 nodes had an internal pressure less than 1 m. Intrusion flow rates have been
computed at 73 of these nodes as one node had no leakage demand assigned in the model
(translating into no intrusion pathway). The corresponding pressure values and intrusion flow rates
for the nodes identified as experiencing potential ingress are illustrated in (Figure B-2). The total
volume of ingress water for the 5-hour pressure loss is 1,909 L through the 73 leakage orifices.
Distribution of intrusion volume through these nodes is illustrated in Figure 5.2. For half of the
nodes the intrusion volume is less than 17 L, while the maximum value reaches 119 L. Duration of
event is an important factor that affects intrusion volume. To the knowledge of the authors, studies
computing intrusion volumes for long duration of PDCs are not available in the literature. This
makes it difficult to compare the order of magnitude of intrusion volumes. For a shorter event
duration, a smaller total intrusion volume of 157 L for a 3-minute event through 1,517 leakage

orifices was reported in the same DS (Ebacher et al. 2010).

Given the extent of the intrusion volumes obtained under the modeled scenario, the impact of the
intrusion volumes on the network hydraulic, was considered by adding the intrusion flow rates into
the PDA model. The adjusted PDA hydraulic results were used to regenerate the modified INP file
of EPANET. The adjusted pressure values obtained from the modified INP file differed only
slightly (less than 0.004 m), with no need for additional iterations. The intrusion flow rates (Figure
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5.2) can then be used to calculate the contaminant mass rate at each intrusion node. Consequently,
the concentration of E. coli at each intrusion node can be obtained based on the severity of PDCs,
assumptions regarding leakage magnitude, contaminant concentration outside the pipe, and water

table submergence, the upstream flow rates, and water quality conditions.
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Figure 5.2. Distribution of intrusion volumes per node for the 5 hours pressure loss.

5.4.3 Behavior of different disinfectants under PDCs and a 5-hour intrusion

event

The impact of the contaminated water ingress on disinfectant residual concentrations is illustrated
in Figure 5.3. For clarity, results are only illustrated for the nodes with positive E. coli during any
time over the whole simulation period for intrusion scenarios 3 and 5 (Figure 5.3 (b) and (d),
respectively). The results for disinfectant residuals at these same nodes in the absence of intrusion
are also presented in Figure 5.3 (a) and (c) allowing for a comparison of chlorine concentrations
with and without intrusion. For the case of chlorine without intrusion, chlorine residuals remain
higher than 0.4 mg/L at nearly 90% of nodes at any time before and after PDCs (Figure 5.3, a).
After the ingress of contaminated water, chlorine concentrations at these nodes decrease with half
of the nodes experiencing residuals lower than 0.4 mg/L for 5 hours, and less than 0.1 mg/L for 2
hours (Figure 5.3, b). It is interesting to note that a 5-hour intrusion event leads to sustained and
significant chlorine losses outlasting the PDCs. The sharp decrease in chlorine concentrations with
intrusion can be explained by: (1) the effect of the immediate chlorine demand (0.088 mg/L)
applied to the 73 nodes with intrusion (2) the increased chlorine decay rates applied to the areas

with conservative fictitious species, and (3) the rises in water age (described on Figure 5.3, a).
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With chlorine, a relatively small number of nodes were found to be positive for E. coli (> 10°
CFU/L) with a maximum of 166 nodes at any time. It should be noted that an accuracy of 6
decimals is used to report species concentration in EPANET-MSX. As expected, at nodes positive
for E. coli, chlorine residual losses are higher than for chloramines (Figure 5.3, b and d). The
median chloramine residuals remained high (0.7 mg/L) even after the intrusion event, reflecting
the absence of immediate demand and the lower rate constant of 0.11 (mg Cl, - hour/L)™!
associated with ingress as compared to chlorine (0.24 h~1). Regardless of the higher residuals, the
inactivation of E. coli was also slower than for chlorine reflecting the lower inactivation rate
constant. During the whole simulation period, more E. coli positive nodes (2,905) were observed,
as compared to 166 nodes for chlorine. In contrast to chlorine, chloramine decay is not a critical
factor as the limited inactivation reflects the slower kinetics of this disinfectant requiring higher
CT values as compared to chlorine. The trend here agrees with previous studies investigating
contamination by Giardia or viruses in the presence of chlorine and chloramine (LeChevallier et
al. 2011, Propato and Uber 2004, Yang et al. 2011). Figure B-3 shows the distribution of water age
and chlorine residual without the influence of ingress water considering all 30,077 nodes. Median
water age generally increases at nodes with pressure < 15 m, resulting in decreases in chlorine
residuals that persist after the end of PDCs, decreasing the protection at nodes most vulnerable to

contamination.
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Figure 5.3. Temporal distribution of disinfectant residuals throughout the network for the nodes
with positive E. coli at any time during and after the intrusion. No node was positive for E. coli
without intrusion. Positive nodes with intrusion used for comparison with and without intrusion.
For 1 mg/L chlorine (a) without intrusion, Sc5, and (b) with intrusion, Sc3. For 1 mg/L
chloramine (c) without intrusion, Sc8, and (d) with intrusion, Sc6. Time intervals on the timeline
are not equal. The red boxes show the concentration during PDCs; Square: Median; Box: 10%-
90%; Whisker: Min-Max.
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5.4.4 Propagation of E. coli under different conditions

As expected, the presence of chlorine residuals in the network limits the widespread propagation
of E. coli downstream of the intrusion nodes, to a maximum of 166 nodes at any time during the
4-day simulation. Within that timeframe, the extent of areas positive for E. coli at any time is larger
(2,095 nodes) in the chloraminated system as compared to the chlorinated system (Figure 5.4). As
expected, the no disinfectant scenario shows an even larger contamination area (3,287 nodes) and
increased E. coli concentrations. These results suggest that, in the case of a chlorinated system, the
detection of an intrusion event can be a difficult process unless sampling is conducted during peak

E. coli concentration at nodes, which is highly unlikely.
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Figure 5.4. Maximum E. coli concentrations for scenarios with chlorine (Sc3, 1 mg/L),
chloramine (Sc6, 1 mg/L) and without disinfectant (Sc1). Cyan color represents a concentration
of <1 CFU/100 mL.

Figure 5.4 does not inform on the temporal shifts in the distribution of E. coli across the network
nor on the duration of positivity for E. coli at any given node. Figure 5.5 summarizes the temporal
propagation of E. coli in chloraminated and chlorinated systems. For both disinfectants, 4 hours
after the start of intrusion (20:00 day 1), the concentrations are high (up to 1.6E06 CFU/100 mL)
at and near the intrusion nodes, reflecting the conservative scenario of undiluted wastewater present
around the pipe. The number of nodes positive for E. coli is greater in the chloraminated system
(192 nodes) as compared to the chlorinated system (119 nodes). E. coli are transported to areas
farther away albeit at lower concentrations, as shown by results after four and nine hours after the

intrusion event (Figure 5.5). After nine hours, 826 nodes remain positive for E. coli with 72 % (593
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nodes) experiencing low expected concentrations of E. coli (<1 CFU/100 mL in cyan). The closer
examination of the breakdown of these low concentrations reveals that concentrations in 314/826
(38%) of nodes positive for E. coli are very low (< 0.01 E. coli/100 mL) (Figure B-4). With

chlorine, few nodes remain positive (8 and 2 nodes after four and nine hours, respectively).

Chloraminated system Chlorinated system
20:00,day 1

1000

800

600

qw 00T/N4D) 102 3

400

~—

200

<1 CFU/ 100 mL

Figure 5.5. E. coli distribution in chloraminated (Sc6) and chlorinated (Sc3) systems at 20:00 of
day 1, 01:00 of day 2, and 06:00 of day 2 following intrusion; Intrusion starts at 16:00 of day 1
and lasts for a duration of 5 hours.

5.4.5 Propagation of E. coli based on pressure values under PDCs

The effect of different chlorine concentrations on the propagation of contamination is illustrated in

Figure 5.6. The nodes are grouped into six intervals based on their maximum E. coli concentration
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against their respective pressure values under PDCs. Maximum E. coli concentrations at the
intrusion nodes (P < 1 m) are higher than 100 CFU/ 100 mL for all scenarios (Sc2 to Sc4). By
increasing chlorine concentration from 0.5 to 1, and then to 2 mg/L, the number of nodes with
positive E. coli is decreased from 228 to 166, and 101, respectively. Over the simulation duration
in these scenarios, E. coli reached nodes that had maximum pressure values of 11, 8, and 5 m under
PDCs, respectively. Higher chlorine residuals therefore contribute to restrain the impact of a
contamination by limiting the propagation of E. coli into the system, confining it into lower
pressure areas (defined based on the pressure values under PDCs) in the case of intrusion during
PDCs.
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Figure 5.6. Effect of different chlorine concentrations (0.5, 1 and 2 mg/L) at the outlet of WTPs

on maximum E. coli concentration estimated over the whole simulation duration, only

considering nodes positive for E. coli ; *: Median; Box: 25%-75%; Whisker: Min-Max; +: Raw

data.
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In the case of a chloraminated system (Sc6 and Sc7), the number of nodes with positive E. coli is
higher than in a chlorinated system for the same 5-hour intrusion event (Figure 5.7, a and b). Over
the simulation duration in these scenarios, E. coli reached nodes with pressures up to 40 m (defined
based on pressure values under PDCs). In the absence of a disinfectant residuals in the system
(Figure 5.7, c), the absence of inactivation leads to an even wider propagation and higher

concentrations in line with the spatial distribution of maximum E. coli observed in Figure 5.4.
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Figure 5.7. Effect of different chloramine concentrations (1 and 2 mg/L) at the WTPs on
maximum E. coli concentration estimated over the whole simulation duration, only considering
nodes positive for E. coli; *: Median; Box: 25%-75%; Whisker: Min-Max; +: Raw data.
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5.4.6 Source of uncertainties

Several sources of uncertainties should be considered when interpreting predictions of ingress
resulting from sustained and short term PDCs. Factors to consider include the volume of ingress at
each node, the quality of water outside the pipe, the impact of ingress water on chlorine demand,
the ability to predict demand and the selection of the external head (Ebacher et al. 2012, Yang and
Boccelli 2014). In this study, some of these uncertainties are addressed by proposing two
improvements: a node specific estimate of contaminant mass rate following intrusion and an
enhanced chlorine decay modeling that adjusts chlorine decay in the presence of ingress water. A
common simplification hypothesis consists of applying a constant concentration of
microorganisms regardless of the actual low/negative pressure values at the intrusion nodes
(Betanzo et al. 2008, Islam et al. 2017); others consider a random distribution of intrusion volumes
and negative pressure durations to calculate the dilution factor at the negative pressure nodes
(LeChevallier et al. 2011, Teunis et al. 2010). When considering the mitigating impact of
disinfectant residual, it is important to consider the impact of contaminated water on instant and
long-term chlorine decay. In this study, the intrusion volumes were computed based on nodal
pressures from PDA and node specific leakage constants. Chlorine decay for sewage intrusion at
different percentages of wastewater dilution was described by a first-order model and applied to
the whole DS (Betanzo et al. 2008, LeChevallier et al. 2011). The application of the intrusion decay
constant (Kintrusion) to the whole network after intrusion may underestimate chlorine residuals across
the system, depending on network topology, duration and location of intrusions. To reduce the
possible chlorine underestimation, we limited the nodes to which Kintrusion is applied to those where
intrusion water is transported as identified by the transport of a conservative species, while Knormal
was applied to the remaining nodes. However, we recognized that considering same Kintrusion,
representing a 0.1% wastewater intrusion, regardless of variations of dilution ratios in time and

space, leaves some overestimation of chlorine losses in affected nodes.

5.4.7 Implications for management strategies

The novel approach combining PDA and multi-species water quality modeling provides more
realistic results to estimate the prevalence and fate of E. coli across a DS after intrusion resulting
from extended PDCs. These findings have several operational and regulatory implications. The

case studies presented provide a basis for redefining optimal sampling approaches for: (1) the
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detection of contamination in response to a pressure loss in a DS, which is known as confirmation
sampling; and (2) the confirmation of the elimination of any residual contamination after a
confirmed event, which can be considered as clearance sampling. Furthermore, this study also
brings valuable insights in the possibility of delineating areas that are at risk in order to better define

areas for which advisories should be issued.

5.4.7.1 Implications for confirmation and clearance sampling

Responding to low-pressure conditions involves emergency response sampling to determine
whether a contaminant has entered the system and how far it has spread. It is distinct from statutory
sampling. Network sampling can be conducted to: (1) confirm the presence of contaminants as
soon as possible after the event (2) determine the extent of the plume, and (3) confirm the system
is clear of contaminants (Hart et al. 2019). Unlike intentional contamination events, the locations
at risk of intrusion resulting from sustained low-pressure events are mostly known. Indeed, events
causing sustained pressure losses (power outages, large breaks, plant shutdowns, etc.) are
documented and the resulting low pressures on the network are monitored, as most networks have
online pressure probes at critical pressure points. Unlike chemical contaminants, the detection of
E. coli positive samples is constrained by the detection limits of statutory monitoring methods that
mandate the absence of E. coli in a prescribed volume of 100 mL (EPA Office of Environmental
Enforcement 2009). The specificities of these methods determine the probability of utilities

detecting E. coli, which is a discrete particle present in low concentrations.

Figure 5.8 shows the distribution of the mean probability of detecting positive E. coli nodes, within
5 hours, in the chloraminated system. The mean probability of positive detection is estimated
during the 5-hour intervals from the start of intrusion up to 20 hours using sampling volumes of
100 mL and 1 L (Figure 5.8 (a) to (d) for 100 mL and (e) to (h) for 1 L). Obviously, sampling at
the nodes that remain positive longer increase the likelihood of detecting positive E. coli. The
impact of the sampling volume of 100 mL (versus 1 L) is shown by the number of nodes positive
with a mean detection probability > 0.1. Only 5 nodes have mean probability > 0.1 within all the
four intervals of 5 hours as compared to 68 (74) nodes within the first 3 intervals. Quick response
sampling offers even more sites with 166 (167) nodes having mean probability > 0.1 in both the
first and second 5-hour intervals, while delayed deployment restricts it to 71 (185) nodes.

Increasing the sampling volume improves sensitivity, especially for areas with lower E. coli
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concentrations. Extreme low probabilities at most affected nodes would render confirmation
sampling unreliable unless sampling is targeted to areas with expected higher concentration at the

right time.
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Figure 5.8. Mean probability of detecting E. coli for sampling volumes of 100 mL (a) to (d) and 1
L (e) to (h) for different periods.
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Figure 5.9 shows the distribution of nodal mean probabilities over different time periods for the
2905 nodes that become positive for E. coli during at least one time step of the simulation in the
chloraminated system (spatial distribution of nodes in Figure 5.4). Figure 5.9 illustrates that, for a
5-hour intrusion, it is very important to quickly sample in the vicinity of intrusion areas; otherwise,
false negatives may occur. During the intrusion period as the contamination is not yet widely
disseminated through the network the median and 75th percentile is around zero. For all post-
intrusion intervals, the median probability is very low and the 25% of nodes with higher detection
probabilities decreases with time after intrusion, less so when a 1 L volume is collected. The post-
intrusion periods (5-20 hours) corresponds to the clearance-sampling window. To avoid false
negatives, larger volumes should be collected at sampling locations with higher probabilities as
determined by predicted contaminant concentrations in the first 10 hours after the event (Figure
5.8).

E. coli monitoring at predefined statutory sampling sites is not suited to confirm contamination or
verify clearance in a timely manner. van Lieverloo et al. (2007) estimated the combined detection
probability of 47 fixed statutory sampling locations to evaluate the sensitivity of monitoring
programs for 12 contamination events. The probability calculations were based on the duration of
E. coli present at more than 1 CFU/mL and sampling intervals. The probability of detection of
positive E. coli after intrusion of up 160 L of sewage was quite low over 50 days unless the
contamination occurred at the treatment plant or trunk main, even without disinfectant. In our
studies, the probability of detecting positive E. coli is calculated based on the predicted nodal
concentrations at each hour using a Poisson distribution that provides a better estimate of the
probability of detection. More importantly, our results provide predictions directed to reevaluate

sampling protocols and provide timely actionable information to water utilities.
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Figure 5.9. Box-plot of mean probability of detecting positive E. coli during 5 hours for 4 time
periods for Sc6 (chloramine, 1 mg/L); each group consists of 2905 nodes, which are the nodes
that experience E. coli at any time over the whole simulation duration; the y-axis is cut off at 0.2

while the maximum value is 1 for all the box.

In the presence of chlorine, if sampling is conducted once the intrusion is over, detecting E. coli is
almost impossible even with a large total volume of sewage intrusion of 1,909 L (Figure 5.5). To
assess if any contamination occurred, sampling should only be conducted during the event at sites
close to the intrusion zones (119 nodes >10° E. coli/L). Deploying sampling personnel and

identifying proper sampling sites may not be feasible at such short notice.

Implementing large volume sampling appears promising to improve sensitivity but raises issues of
higher operational costs and practicality. Because it is likely to result in higher positive detection,
it could meet some resistance from utilities fearful of more frequent or extended advisories.
Increased sensitivity is desirable as E. coli is inactivated much more easily than most pathogens,
and the absence of E. coli at a node does not ensure the absence of more resistant pathogens such

as Giardia or Cryptosporidium (Payment 1999, Smeets et al. 2009).

In light of these results, using a combination of PDA hydraulic and water quality models to
optimize E. coli sampling is proposed. This way, utilities could be informed of the likelihood of

intrusion and adapt their sampling plan accordingly. If contamination is confirmed, the combined
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models would direct when and where to conduct the clearance sampling. Unless sampling is
intensified in affected areas, the likelihood of detecting an E. coli positive will be so low that
sampling resources will be wasted while contaminated areas remain undetected. To improve the
confirmation of contamination, we propose a post-event intensive sampling approach conducted as
early as possible after the event is known with sampling at intrusion nodes or nodes hydraulically
close to the intrusion sites. The identification of these high-risk nodes should be done using PDA,
not DDA, and considering readings from online pressure monitors and water quality probes, if
available. For clearance sampling, timing and location of sample collection should also be
identified using the hydraulic and water quality models, but more importantly, large volume
samples should be considered.

Sampling for confirmation and clearance of fecal indicators in distribution systems has been
developed to respond to a positive sample for E. coli and Total Coliforms. For example, the 1989
Total Coliform Rule prescribes that repeat samples be taken at locations within five connections
up flow and down flow of the positive location. An alternative approach is also allowed in the 2013
Revised TCR to repeat locations that best verify and determine the extent of potential
contamination in the distribution system (Environmental Protection Agency (EPA) 2013). Our

results show that utilities could use the numerical tools proposed to best verify contamination.

5.4.7.2 Implications for the definition of areas subject to an advisory

There are several factors to consider when defining areas subjected to a preventive boil-water
advisory (BWA). A geographical distribution of potentially affected areas can be determined based
on a minimum pressure criterion during sustained PDCs. However, as proposed by Hatam et al.
(2018a), intrusion circumstances should be incorporated as well. In Figure 5.10, positive E. coli
nodes (blue circles) during the whole simulation period are overlaid on pressure mapping under
PDCs. These observations are of value for water utility managers when in need of defining areas
under a BWA. This figure shows some important points that may affect the preventive/corrective
decisions. The BWA must be defined not only based on low-pressure areas, but also based on areas
to which contamination will travel under pressure-deficient and normal-pressure conditions.
Although the vulnerable low-pressure areas should be considered, Figure 5.10 shows that there are
some areas in low-pressure zones where no contamination is transported. Depending on the water

path during PDCs and NOCs, the contamination will reach areas other than the low-pressure nodes.
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The definition of areas subjected to preventive/corrective actions should take into account pressure
distribution under PDCs, intrusion locations and volumes, fate and transport of contaminants as

well as the type of contaminant and its interaction with the disinfectant.

As the definition of a BWA can be quite complex in a large hydraulically connected DS, another
option to avoid system-wide BWA would be to implement district metered areas (DMA).
Sectorization of areas prone to intrusion under major PDC events such as plant failures could

confine contamination to a smaller area allowing for the issuance of sectorial advisories.
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Figure 5.10. Superposition of pressure map under PDCs (16:00) using PDA on nodes with
positive E. coli at any time during the simulation (blue circles) (a) in the absence of disinfectant,

(b) with chloramine, and (c) with chlorine.
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5.5 Conclusion

In this paper, the fate and transport of contaminated water as a result of accidental intrusion through
leakage points caused by a sustained depressurization was investigated throughout a large full-
scale water network. Then, the spatial and temporal water quality was simulated based on the
realistic simulation of hydraulic conditions under pressure-deficient conditions using PDA. The
interactions between E. coli and disinfectant residuals were considered, using a multi-species water
quality analysis. This was possible using a novel methodology extended and applied to simulate
accidental intrusion events due to sustained PDCs lasting a few hours (5 hours). The mass of E.
coli entering at each intrusion node was estimated based on the pipe internal pressure under PDCs,

and nodal leakage flow rates in the DS model under NOCs. Major findings are:

e Consideration of contaminants fate and transport based on the hydraulic behavior of the
network is essential for adequate utility response to sustained depressurization events and to
justify preventive/corrective actions.

¢ In the simulated scenarios, E. coli was transported to higher-pressure zones (up to ~40 m) in
the absence of disinfectant residuals. Chloramine residuals decreased E. coli concentrations at
higher-pressure nodes. Even more so, a chlorine residual of 0.5 mg/L limited the contaminated
zone and restricted E. coli propagation to lower pressure areas (P < 11 m). Increasing the
chlorine concentration to 2 mg/l prevented widespread transport of E. coli across the DS and
confined contamination to lower pressure areas (P <5 m).

¢ In the presence of chlorine, the probability of detecting E. coli by sampling is unlikely unless
sampling is conducted rapidly and close to the intrusion zones. Improved sampling strategies
(location and timing) are required. The location and timing of sampling should be determined
considering the duration, location and intensity of PDCs, the severity of the contamination
event in terms of ingress volumes and contaminant type and concentration, and the disinfectant
efficacy on the pathogen of concern.

e Targeted spatial-temporal sample collection in combination with high volume sampling will
increase the value of negative E. coli results.

e Modeling of the temporal variations of E. coli concentrations across the DS following an
intrusion event should be used to guide confirmation sampling and establish a base for lifting

an advisory by clearance sampling.
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e The combined MSWQA-PDA method allows for the investigation of the propagation of the
reactive contaminant by taking into account the effects of both PDCs and intrusion-associated
demand on disinfectant decay. Appropriate numerical tools can assist utilities, increasing their
ability of detecting accidental intrusion under low/negative pressure events, and consequently,
applying appropriate preventive/corrective actions to protect public health.

e Timely response to sustained PDCs is now possible in smart DSs equipped with multiple online
pressure sensors and emerging low-cost autonomous water quality sensors. Online chlorine
sensors positioned in areas prone to intrusion could detect atypical loss of residual indicating
the need for subsequent actions.
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CHAPTER 6 ARTICLE 3 -USING NODAL INFECTION RISKS TO
GUIDE INTERVENTIONS FOLLOWING ACCIDENTAL INTRUSION
DUE TO SUSTAINED LOW PRESSURE EVENTS IN A DRINKING
WATER DISTRIBUTION SYSTEM

In this chapter, the infection risk of accidental intrusion resulting from sustained PDCs, with
different durations, is quantified using water quality calculations based on realistic PDA. This is
done by integrating the impact of demand availability on the consumption during pressure drops
in QMRA analysis and adjusting intrusion volume for nodal pressure and pipe state. During shorter
pressure losses, utilities can avoid system wide advisories to limit the impact of depressurization
events on their customers. The spatial/temporal distribution of nodal risks throughout the network,
as proposed in this chapter, can help to determine the boundaries of sectorial boil water advisory
or other preventive/corrective actions. This paper was published in Journal of Water.

Supplementary information is presented in Appendix C.
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Abstract

Improving the risk models to include the possible infection risk linked to pathogen intrusion into
distribution systems during pressure-deficient conditions (PDCs) is essential. The objective of the
present study was to assess the public health impact of accidental intrusion through leakage points
in a full-scale water distribution system by coupling a quantitative microbial risk assessment
(QMRA) model with water quality calculations based on pressure-driven hydraulic analysis. The
impacts on the infection risk of different concentrations of Cryptosporidium in raw sewage
(minimum, geometric mean, mean, and maximum) and various durations of intrusion/PDCs (24 h,
10 h, and 1 h) were investigated. For each scenario, 200 runs of Monte Carlo simulations were
carried out to assess the uncertainty associated with the consumers’ behavioral variability. By
increasing the concentrations of Cryptosporidium in raw sewage from 1 to 560 oocysts/L for a 24-
h intrusion, or by increasing the duration of intrusion from 1 to 24 h, with a constant concentration
(560 oocysts/L), the simulated number of infected people was increased by 235-fold and 17-fold,
respectively. On the first day of the 1-h PDCs/intrusion scenario, a 65% decrease in the number of
infected people was observed when supposing no drinking water withdrawals during low-pressure
conditions at nodes with low demand available (<5%) compared to no demand. Besides assessing
the event risk for an intrusion scenario, defined as four days of observation, the daily number of
infected people and nodal risk were also modeled on different days, including during and after
intrusion days. The results indicate that, for the case of a 1-h intrusion, delaying the start of the
necessary preventive/corrective actions for 5 h after the beginning of the intrusion may result in
the infection of up to 71 people.

KEYWORDS: QMRA; Sustained pressure drops; Accidental intrusion; Infection risk from

Cryptosporidium; Pressure-driven hydraulic analysis

6.1 Introduction

Distribution system (DS) deficiencies may play a role in the occurrence of waterborne disease
outbreaks (Kirmeyer et al. 2001a). Ageing of pipeline infrastructure is going to become more
problematic over time by increasing the probability of experiencing sustained low/negative
pressure conditions in the network (pipe breaks), leading to possible intrusion from points of

leakage. Assessment of public health risk associated with such type of events may be achieved



103

through modeling. While reliable hydraulic and water quality models can be used to simulate
ingress of contaminated water and its propagation into a network, the use of quantitative microbial
risk assessment (QMRA) models is required to estimate the potential health risk. QMRA and
management approaches can contribute in bringing safer water to consumers (World Health
Organisation (WHO) 2016).

Modeling of water quality under pressure deficient conditions. Integration of pressure-driven
hydraulic analysis into QMRA models is required for a more accurate risk analysis of water
contamination resulting from accidental intrusion under sustained pressure-deficient conditions
(PDCs). In such conditions, a reliable estimation of intrusion points, contamination mass rate
entering the DS, and fate/transport of contamination through the network cannot be achieved using
traditional demand driven-analysis (DDA) models such as EPANET 2 (Rossman 2000). Pressure-
driven analysis (PDA) was coupled to single species water quality modeling to optimize
management strategies (e.g., flushing and isolation actions) by minimizing the mass of consumed
contaminant (Bashi-Azghadi et al. 2017a, Rasekh and Brumbelow 2014, Zafari et al. 2017). A
more detailed literature review on hydraulic and water quality modeling under sustained PDCs can

be found elsewhere (Hatam et al. 2018a).

Applications of QMRA to drinking water DSs. Despite evidence of drinking water DS
deficiencies causing infectious waterborne diseases (Craun et al. 2010, Lindley and Buchberger
2002), the majority of QMRA work has been devoted to assessing risk of drinking water treatment
failures (World Health Organisation (WHQ) 2016). Vifias et al. (2019) and Hamouda et al. (2018)
presented detailed literature reviews on QMRA models applied to microbial contaminants in
drinking water DSs. Besner et al. (2011) developed a conceptual model to assess the public health
risk associated with intrusion events. QMRA models have been applied to real DSs to evaluate the
infection risk associated with the presence of viruses resulting from intrusion events caused from
transient PDCs (LeChevallier et al. 2011, Teunis et al. 2010, Yang et al. 2011). Standard QMRA
models consider the water is consumed randomly at any time or at fixed times during the day
(Besner et al. 2010c, Davis and Janke 2009, Yang et al. 2011). The timing of water withdrawals
for drinking purpose is an important factor when assessing the probability of infection as a result
of intrusion events and may not be the same as the timing of the total consumption (Blokker et al.
2018, Davis and Janke 2009). An improved QMRA that integrates the consumer's behavior
(probability density functions (PDFs) of the numbers of glasses and the volume consumed, and
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kitchen tap use) was developed and applied to assess the infection risk associated with
contamination after main repairs (Blokker et al. 2014, Blokker et al. 2018). They investigated the
impact of different parameters such as the location of contamination and the times of valve
openings on the infection risk with various pathogens (Campylobacter, Cryptosporidium, Giardia
and rotavirus), in the absence of any disinfectant residual. Schijven et al. (2016) also considered
consumer behavior to estimate the infection risk from ingestion of contaminated water or inhalation
of contaminated aerosol droplets in the case of intentional contamination of different durations and

seeding concentrations in a DS.

Improving estimations of the infection risks due to sustained pressure deficient conditions requires
numerical approaches that produce realistic estimations of nodal ingress volumes, predictions of
propagation throughout the network, and integration of the consumer's behavior during and after
pressure losses. Besner et al. (2010c) emphasized the necessity of performing PDA instead of DDA
to simulate the infection risk associated with PDCs in future studies. Besides low pressure, the
presence of external contamination and pathways are essential for intrusion to occur (Islam et al.
2017). Adjusting the presence of potential pathway for intrusion based on the state of decay of the
piping has been proposed (Ebacher et al. 2012, Gibson et al. 2019).

The primary objective of this work was to estimate the infection risk associated with accidental
intrusion through leakage points into a DS as a result of unplanned sustained low/negative pressure
events (24 h, 10 h, and 1 h). To achieve this goal, several original improvements to the various
models were made. First, the QMRA model developed by Blokker et al. (2018) was customized
and linked with water quality calculations based on a pressure-driven hydraulic analysis. Then, the
estimated contamination mass rate at each intrusion node was adjusted by the assigned leakage
demand (proxy for pipe age and material) and the pressure values during PDCs, computed using
PDA. Finally, to better simulate the consumers behavior during low-pressure conditions, the
consumption of tap water was adjusted based on demand availability (no demand or <5%) on the
infection risk. The secondary objective of this work was to propose a basis for the analysis of risk
to guide the definition of areas subjected to a boil water advisory or corrective actions. To achieve
this goal, we assessed the potential use of the temporal (daily versus event) and spatial distribution
of nodal risks to determine the location and the duration of advisories. To the knowledge of the
authors, no study so far has quantified the infection risk of accidental intrusion resulting from

sustained PDCs, using realistic PDA to adjust intrusion volume for nodal pressure, perform water
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quality analysis and integrate the impact of demand availability on the consumption during pressure
drops.

6.2 Methodology

The QMRA model developed by Blokker et al. (2018) was customized to be coupled with water
quality calculations based on pressure-driven hydraulic analysis. The model was used to quantify
the infection risk associated with accidental intrusion events as a result of sustained PDCs in a full-
scale DS. The main steps for risk analysis are exposure analysis and calculation of infection risk.
A simplified flow chart of the QMRA steps is illustrated in Figure 6.1. These steps include: (a)
simulating the hydraulic behavior of the network under the intended PDCs to define the intrusion
nodes, intrusion flow rates (based on size of opening leaks and pressure differential), and nodes
with unsatisfied demand; (b) defining the outside pipe conditions to calculate the potential
contaminant mass rate entering the system; (c) modeling fate/transport of ingress microorganisms
through network; (d) specifying the microbial exposure (dose) considering consumers' drinking

water behavior; and (e) estimating the risk of infection based on dose—response models.
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6.2.1 Exposure Analysis

6.2.1.1 Hydraulic and water quality analysis

To estimate the ingested dose, fate/transport of contaminants through the network should first be
estimated using appropriate hydraulic and water quality models. Water quality modeling based on
PDA was performed using WaterGEMS V8i (SELECTseries 5) (Bentley Systems 2014). Transport
of Cryptosporidium oocysts through the network was simulated over time and, because
Cryptosporidium is highly resistant to chlorine disinfection (World Health Organization (WHO)
2009), the chlorine decay was not included in the model. Sewage is defined as the source of
contamination outside the pipes. Minimum, geometric mean, arithmetic mean, and maximum
levels of Cryptosporidium in sewage were assumed to be 1, 6, 26, and 560 oocysts/L, respectively
(Payment et al. 2001).

The DS model used in this study includes 30,077 nodes and 3 water treatment plants (WTPs),
which serve nearly 400,000 residents. More details on the simulated full-scale network can be
found in Hatam et al. (2018a). The unplanned shutdown of one WTP was simulated and a 5 m
decrement in the outlet pressure of the two other WTPs was assumed as a result of the flow-
rate increase. It should be noted that the two other WTPs might (partially) compensate the
shutdown of the other WTP as the entire network is hydraulically interconnected. Following the
shutdown duration (1, 10 or 24 h), the simulation was continued for 3 days to investigate the long-
term public health impacts of the accidental intrusion events in this large DS. The impacts of
intrusion duration on exposure and, consequently, risk of infection were studied. More details on
accidental intrusion modeling can be found in the Supplementary Materials. Nodes with pressure
head less than 1 m were considered as the potential intrusion sites (Figure C-4). In the hydraulic
model, for the sake of simplicity, the demand is considered constant during the day and equal to
the peak hour demand (i.e., 19:00) for the scenarios of 1, 10 and 24 h of PDCs/intrusion. Additional
scenario with the daily water consumption pattern in the hydraulic model was studied for the

intrusion event resulting from 1 h PDCs set to start at 18:30.

6.2.1.2 Consumption Events

The temporal concentrations of Cryptosporidium calculated from water quality analysis were then
imported into MATLAB (MathWorks, Natick, MA, USA) where the QMRA was performed for
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exposure assessment and dose—response analysis. Consumption events or consumers' behavior in
this study refer to: (1) the volume of consumption; (2) the number of times that one fills a glass;
and (3) the times at which the glass is filled from the tap. In the present study, consumption times
corresponded to the water use at the kitchen tap as proposed by Blokker et al. (2018). In the
simulations, the average kitchen tap use was then modified for each node of the studied network
based on the nodal residential demand and the availability of demand, calculated from PDA under
PDCs. In this study, the average kitchen tap use for non-residential nodes (about 60% of the nodes)
was set to zero. This differed from Blokker et al. (2018) who adjusted the average kitchen tap use
at certain times to include zero demand periods identified by detailed residential demand. In this
study, to account for demand satisfaction as computed by PDA at each node, the kitchen tap use
was set to zero at times when there was no demand available under PDCs (Figure C-1). For PDCs
with some demand satisfaction, it was assumed that consumers can adjust the filling duration based
on the available flow at the tap. If the PDCs did not last for the whole day, the total daily volume
of water consumed by each person at the nodes with no demand under PDCs would not be affected.
The sensitivity of the results to the demand satisfaction ratio (DSR) was investigated in an
additional scenario by fixing the Kitchen tap use to zero at the time when there is low (<5%) demand
available at the nodes. This approach is more realistic as the required time to fill a glass of water
at a kitchen tap will increase by more than 20 times when the DSR is less than 5%.

The other important parameter for estimating the risk of exposure to microbial contamination is
the volume of water that is ingested per person per day. The number of times each person would
fill his/her glass or bottle during a day was estimated using a Poisson distribution. The ingested
volume at each filling time was defined by a lognormal distribution. Due to the lack of information
for the studied network, the data from Blokker et al. (2018) were used for the simulation and more

details can be found in their paper.

In this study, the hydraulic and water quality conditions were assumed to be known for each
scenario, and 200 runs of Monte Carlo simulations were performed to investigate consumers'
behavior. In each Monte Carlo run, the number and times of consumption events as well as the
ingested volume for each consumption event were randomly picked for each person every day of

the simulation.
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In the studied hydraulic model, the total nodal demands could be a combination of different types
of demand defined as: residential, commercial, industrial, institutional, municipal or, leakage. In
total, 11,194 of the nodes included residential demand. To determine the number of people supplied
per node, the residential demand per node was considered and the daily per capita average demand
was set to 220 L/person/day. Consequently, only the residential exposure from tap water as a result
of the simulated accidental intrusion was investigated (e.g., exposure at school was not considered).
More information on the estimation of the number of people at each node and the distribution of
population is in the Supplementary Materials. Dose is equal to the number of consumed pathogens
and was calculated by multiplying the intake volume by the concentration of pathogens at the time
of withdrawal. This step was repeated for all the glasses that a person takes over the simulation
duration, which is 1 day for daily risk and 4 days for the event risk. For each person, the total dose

was calculated by summing the dose in each glass consumed.

6.2.2 Calculation of Infection Risk

Dose-response analysis was performed to calculate the infection risk for each person resulting
from accidental intrusion during sustained PDCs. The computed dose was implemented in the
dose—response model employed by Blokker et al. (2014) for Cryptosporidium using the median
(50th percentile) and maximum (100th percentile) dose—response relationships. The median

infection risk is reported everywhere in this study unless otherwise stated.

The calculated infection risks of all the people in the network were summed up and rounded to the
nearest integer greater than or equal to the calculated value to estimate the equivalent number of
infected people for the simulated event (Blokker et al. 2018). The number of infected people was
calculated either for the whole observation period (4 days) or for each day separately. To calculate

the nodal risk, the infection risks corresponding to all the people at the same node were summed

up.

6.3 Results

Estimating ingress volumes. Histograms of nodal pressures and demand satisfaction ratios
(DSRs: available nodal demand divided by the required demand) using PDA are illustrated in
Figure 6.2. Fewer than 1% of the nodes (93 nodes) were prone to intrusion as they experienced

pressures less than 1 m under PDCs, which corresponded to the set pressure head above pipes. For
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about 30% of the nodes, the pressure was less than or equal to the required pressure value assumed
in this study for full demand satisfaction (15 m). The DSRs for these nodes are shown in Figure
6.2 (b), excluding nodes with no required demand. Figure 6.2 (b) shows that 1103 nodes have a

DSR of less than 50% during depressurization.
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Figure 6.2. Distribution of: (a) nodal pressures for the whole network (30,077 nodes); and (b)
demand satisfaction ratios (DSRs) for nodes under pressure-deficient conditions (8578 nodes),

excluding the nodes with zero demand.

The distribution of intrusion flow rates at the ingress nodes is illustrated in Figure 6.3. The
maximum flow rate was 56 L/h and about half of the nodes had an intrusion flow rate less than 5
L/h. The contaminated water entered the network at a flow rate of 804 L/h through all the leakage
orifices. For the scenarios of 10 and 24 h PDCs, the intrusion flow rate at each node remained
constant during the event because of the use of a constant demand. As the 1 h event, with daily
consumption pattern, was assumed to occur at the peak demand hour, the nodal intrusion flow rates

also corresponded to those shown in Figure 6.3.
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Figure 6.3. Distribution of nodal intrusion flow rates through 93 leak openings under the

simulated pressure-deficient conditions.

Concentrations of pathogens in sewage. To cover different consumption behaviors, 200 Monte
Carlo simulations were carried out for each scenario of Cryptosporidium concentration in sewage
(1, 6, 26, and 560 oocysts/L). The resulting cumulative probability distributions of the number of
infected people are plotted in Figure 6.4. In this figure, the solid lines correspond to the median
infection risk, and the dotted lines are the maximum infection risk. For all concentrations, the
number of infected people associated to the maximum infection risk was increased by about two
folds compared to the median infection risk. For the concentration of 560 oocysts/L, 50% of the
consumption events led to at least 1378 (2652) infected people considering the median (maximum)
infection risk. As expected, the number of infected people increases when the Cryptosporidium

concentration increased from 1 to 560 oocysts/L.
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Figure 6.4. Number of infected people corresponding to median and maximum infection risks
resulting from a 24-h depressurization; 200 Monte Carlo simulations (consumption events) for
each Cryptosporidium concentration: 1, 6, 26, and 560 oocysts/L; number of infected people
corresponds to the cumulative dose over four days of observation; F(x): probability that the

median/maximum number of infected people will be less than or equal to x.

Consumption behavior. Figure 6.5 shows the sensitivity of the number of infected people over
the four-day observation period to the volume of consumption (300 mL, 500 mL or 1 L per day per
person) and number of glasses per day (1, 3, or 10). A total of nine scenarios were considered with
a Cryptosporidium concentration of 560 oocysts/L and 24 h of PDCs. As expected, lower volumes
of unboiled tap drinking water per person per day largely reduced the infection risk. By decreasing
the volume by half (500 mL), the number of infected people decreased by 40%; decreasing the
volume to 300 mL reduced the risk further by about 60%. By increasing the number of glasses per
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day from 1 to 3, 19 more people were likely to be infected for a 300 mL volume, and this value

became 62 for a 1 L consumption volume per day per person (based on the values of F(x) = 1).
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Figure 6.5. Impact of consumption volumes and number of glasses per day on the number of
infected people corresponding to median infection risk over a four day-period; Cryptosporidium

concentration = 560 oocysts/L; the x-axis scale is the same between the plots (150 people).

Duration. Shorter duration PDCs can take place in real networks because of WTP shutdowns, pipe
breaks or fire flows. The cumulative probability distribution of the number of infected people for
200 random consumption behaviors is shown for different durations of PDCs: 1, 10, and 24 h
(Figure 6.6). In all scenarios, the timing of the event is adjusted so that the network experienced
low/negative pressures at the peak consumption time (i.e., 19:00) of the first day. A significant
dependence of the infection risk with the intrusion duration was observed: a lower maximum
number of infected people (84) was observed for a 1-h intrusion compared to 502 and 1410 for 10

and 24 h intrusion events, respectively.
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Figure 6.6. Comparing the probability distribution of the number of infected people over a four-
day period for 200 Monte Carlo simulations for each duration of PDCs: 1, 10, and 24 h;

Cryptosporidium concentration in sewage = 560 oocysts/L.

Spatial distribution of nodal infection risk. Besides the number of infected people under PDCs,
the temporal and geographical distribution of infection risk is also essential in defining appropriate
preventive/corrective actions. In this regard, the probability of infection of the individuals who
were assigned to the same node were summed up to predict the nodal risk. Figure 6.7 shows the
spatial distribution of risk for above-mentioned scenarios corresponding to the consumption events
with the maximum number of infected people (F(x) = 1 in Figure 6.6). As shown, with increasing
duration of intrusion event, not only the nodal risks were increased, but also larger areas were at

risk.



114

L___’The sum of nodal . 103
infection risks: 0.18

10 hours Y oz 24 hours

Figure 6.7. Spatial distribution of nodal risks for three durations of PDCs: 1, 10, and 24 h;
Cryptosporidium concentration in sewage = 560 oocysts/L; nodes with an infection risk below 1
x 107 are drawn in black; infection risks corresponding to consumption events with F(x) = 1

(Figure 6.6) are illustrated.

Daily risk for the 1-h event with daily demand patterns. For the prior analyses, demand was
considered constant during the day and equal to the peak hour demand (i.e., 19:00) in the hydraulic
model. The reason is that adjusting different intrusion volumes and nodes at each hour of the
duration of PDCs using PDA would be computationally intensive. However, we investigated a 1 h
PDCsl/intrusion using the daily water consumption pattern in the hydraulic model to assess its
impact on the infection risk. Over four days of observation, the maximum number of infected
people increased to 99 (Figure C-3) with demand patterns compared to 84 with a constant demand
in the hydraulic model (Figure 6.6, 1 h).
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Figure 6.8 illustrates the daily probability of the number of people infected by Cryptosporidium
according to different consumption behaviors for the day that intrusion occurred (at 18:30) and the
three days post-intrusion. The day after the event, the maximum number of infected people was
reduced by 59% as compared to the event day. It indicates that, over time, the contaminated water
left the network as large volumes of water were used for purposes other than drinking, such as
toilet flushing and industrial usage. The maximum numbers of infected people for Days 1-4 were
71, 29, 3 and 1, respectively.
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Figure 6.8. Number of infected people corresponding to median infection risk for Days 1 to 4 for
the scenario of 1 h of PDCs with daily consumption patterns; Cout = 560 oocysts/L; 200 Monte

Carlo simulations (consumption events) every day.

For Days 1-4, the total nodal risk corresponding to the consumption event with the maximum
number of infected people (F(x) = 1 in Figure 6.8) was estimated, and the spatial distribution is
plotted in Figure 6.9. The number of nodes at high risk decreased from Day 1 to Day 4 as well as
the extent of the areas at risk. At the end of the first day, when the intrusion ended, the nodal
infection risk was < 1 x 107" at 29,754 nodes and higher than 1 x 10 at 123 nodes. Only 16 of the
nodes showed total nodal risks equivalent to more than one person. On Day 2, the total number of
infected people through the whole network decreases to 29 compared to 71 for Day 1, but the
number of nodes with an infection risk < 1 x 10" was lower compared to Day 1. The reason is that

Cryptosporidium oocysts reached more nodes in the network on Day 2, but at lower concentrations
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as the ingress volume became diluted and flushed out. On Day 2, the nodal infection risk was more
than one only at four nodes. On Days 3 and 4, the nodal infection risk was below one for all the

nodes.

Figure 6.9. Spatial distribution of nodal risk; Days 1-4 for the scenario of 1 h of PDCs with daily
consumption patterns; Cout = 560 0ocysts/L; nodes with infection risk below 1 x 1072 are drawn
in black; infection risks corresponding to consumption events with F(x) = 1 (Figure 6.8) are

illustrated.

Impact of demand satisfaction ratio on risk. In all simulations, when the DSR (pressure < 0)
became zero at a node, the kitchen tap use was set to zero. To study the influence of the DSR
(shown in Figure 6.2 (b)) on the risk, the situation where no consumption happened at nodes with
a DSR less than 5% was also modeled (Figure 6.10). For this investigation, the number of infected
people following a 1-h PDCs/intrusion was computed on the day that intrusion occurred. As
expected, the number of infected people decreased when the consumption only occurred at the

nodes with a DSR > 5% during low/negative pressure conditions (Figure 6.10).
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Figure 6.10. Probability distributions of the number of infected people during the first day of
simulation when people with a DSR null and less than 5% do not drink water from tap; 200
Monte Carlo simulations for each scenario; Cout = 560 oocysts/L with 1 h of PDCs with daily

consumption patterns.

6.4 Discussion

Impact of event duration on the spatial distribution of risk in the network. During an intrusion
event, the intrusion risk was determined by several factors such as the intrusion volume, pathogen
concentration, network hydraulics, fate and transport of the contaminants and consumers' behavior.
The volume of contaminated water entering the network is a function of the duration of the event.
For the events with 1, 10 and 24 h of sustained depressurization, the estimated intrusion volumes
through all leak openings were 0.8, 8 and 19 m?3, respectively. Using the orifice equation, some
studies have produced estimates of the intrusion volumes through leakage points for transient PDCs
(Ebacher et al. 2012, Kirmeyer et al. 2001a, Teunis et al. 2010). The total intrusion volumes
resulting from a momentary pump shutdown for different intrusion conditions through leakage
orifices and submerged air vacuum valves (AVVs) ranged from 10 to 360 L in the same network
(Ebacher et al. 2012). In contrast, these authors also showed that the maximum volume entering
through a single submerged AVV during a transient could be about 95 times larger than the

maximum volume entering through a single leakage orifice (227 L versus 2.4 L). In their study, the
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modeled intrusion volume was driven by the global leakage rate (5% versus 40%) and pressure
differential. However, as these authors also stated, the orifice size at a given node should reflect
the local leakage demand. Using Monte Carlo simulations, Gibson et al. (2019) investigated the
impact of head differences, diameter of orifices, pipe age (number of holes), and low pressure
duration on the intrusion volumes during transient negative pressure events. For a 25-year-old pipe,
the probability of an intrusion volume greater than 10 L was low (1%), while it increased to 70%

for a 150-year-old pipe.

In the current study, the orifice size at each node was considered proportional to the assigned nodal
leakage demand in the calibrated model under normal operating conditions as described in detail
by Hatam et al. (submitted). In the test DS, leakage demand reflects the state of pipes; older areas
with aging cast iron being the dominant pipe material has higher leakage and thus offers more
potential entry points for contaminated water. In this study, the effect of soil-leak interactions was
ignored and the exponent in the orifice equation was considered equal to the theoretical value (0.5)
that is valid for fixed leak openings. It was confirmed that the variation of the area of round hole
with pressure is negligible and therefore the leakage exponent was close to 0.5 (van Zyl and Clayton
2007, van Zyl and Malde 2017). However, for longitudinal slits that have large head-area slope, a
modified orifice equation should be used in which the leakage exponent can change within 0.5 to
1.5 (van Zyl et al. 2017).

In this study, long durations of PDCs were considered as opposed to relatively short durations of
low and negative pressures. Sustained PDCs are reported in the literature due to transmission main
repairs (Besner et al. 2007, Besner et al. 2011) and can happen during power outages. This type of
event may be less frequent than transient pressure fluctuations, but of graver consequences, as
shown by the potentially larger intrusion volumes. The duration of transient negative or low
pressures is a key factor affecting the virus infection risks estimated by QMRA (LeChevallier et
al. 2011, Teunis et al. 2010, Yang et al. 2011). As expected, for the simulated sustained PDCs, the
number of infected people for the three different intrusion durations showed strong dependency on
the intrusion duration (Figure 6.6), as it determines the total amount of Cryptosporidium oocysts
introduced into the network. The maximum number of infected people was reduced to less than
half when the intrusion duration decreased from 24 h (1410) to 10 h (502), and even more so if the
event only lasted 1 h (84). Our results are in agreement with those of Schijven et al. (2016), who
used QMRA to investigate the impact of intentional contamination. Exposed persons were
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increased by 2-3 folds when the duration of the injection of contaminants increased from 10 to 120

min.

More importantly, in this study, we showed that the duration determined the areas with high
pathogen concentrations corresponding to a potentially significant infection risk. The geographical
distribution of the nodal risk shown in Figure 6.7 emphasizes the importance of considering the
duration of PDCs/intrusion when issuing sectorial boil water advisories (BWA) as well as other
preventive/corrective actions. For 24 and 10 h intrusion events, the zones at risk were more or less
the same with different risk levels. However, for a much shorter duration of intrusion (1 h), the
zones at elevated risk were significantly reduced (Figure 8). The arbitrary cutoff line in Figure 6.8
can be used to compare the summation of the total risks at nodes in different zones affected by
contaminated ingress water. On its right side, a very small cumulative risk of 0.2 infection for the
1 h intrusion was observed,; this risk increased to 1.4 and 3.5 for the intrusion events of 10 and 24
h, respectively. These values include all low nodal risks (< 1 x 10~%) which are not plotted in Figure

6.7 for clarity.

Concentration of Cryptosporidium in ingress water. There are scarce data on the actual
concentrations of pathogens in ingress water. Concentrations of pathogens in ingress water could
range from those found in wastewater, representing a high-risk scenario of ingress directly from
undiluted sewage (Payment et al. 2001), to the much lower concentrations measured in trench
water, urban groundwater or runoff (Besner et al. 2010a, Ebacher et al. 2013). The number of
infected people increased from 6 to 1410 when Cryptosporidium concentrations increased from 1
to 560 oocysts/L (Figure 6.4, median) for the worst-case consumption event (out of 200) (F(x) =
1). In agreement with our results, the contaminant concentration outside the pipe ranked among the
top factors in previous QMRA studies (Blokker et al. 2018, LeChevallier et al. 2011, Teunis et al.
2010, Yang et al. 2015). When using the maximum dose-response relationship rather than the
median relationship to account for uncertainties, the maximum number of infected people increased
about two folds (Figure 6.4). The magnitude of differences between the median and maximum
dose-response relationships is a critical factor to consider as recent evidence suggests that even
higher dose-response values for C. hominis should be considered (World Health Organisation
(WHO) 2016, World Health Organization (WHQ) 2009). Therefore, both the concentrations and
the selection of the dose—response will contribute to uncertainty (World Health Organisation
(WHO) 2016).
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Consumption behavior. Standard QMRA models usually consider only one consumption event
per day (LeChevallier et al. 2011, Yang et al. 2011) or a constant volume of consumption per day
for every person at fixed hours (Besner et al. 2010c, Islam et al. 2017). For the 24 h scenario, the
amount of water consumed daily from the kitchen tap had a huge impact on the maximum number
of infected people, with decreases of ~ 40% and 60% when consumption was reduced from a
baseline of 1 L/day to 500 mL/day and 300 mL/day, respectively. The model was also sensitive,
but to a lesser degree, to the number of glasses per day for a fixed volume (Figure 6.5). Increasing
the number of glasses per day from 1 to 10 increased the overall infection risk (by up to 2%) for
the 24-h scenario. This rise is more pronounced for larger consumption volumes (Figure 6.5).
Impact of the number of glasses per day was most noticeable when switching from a single
consumption event to 3 or 10 consumption events. Blokker et al. (2018) and Van Abel et al. (2014)
also observed that three ingestion volumes per day result in higher numbers of infected people

compared to only one withdrawal of the total volume per day.

Several studies have investigated and integrated probabilistic models to better represent the
consumers’ behavior into QMRA models, including PDFs of volume of unboiled tap water, number
of glasses per day, volume per glass, timing of consumption, and household water usage (Blokker
etal. 2018, Davis and Janke 2008, 2009, Schijven et al. 2016). Blokker et al. (2018) fully integrated
consumers’ behavior using a Poisson distribution for the number of glasses per person per day and
a lognormal distribution for the ingested volume per glass and the kitchen tap use. This model was
applied to investigate various scenarios of fecal contamination resulting from DS repairs and the
potential for preventive actions to mitigate risks of infection. In this study, we used the Blokker
model to investigate accidental intrusion due to sustained low/negative pressure event of various
durations, adding 200 simulations to quantify the range of risks corresponding to different
consumers’ behavior. The differences between the numbers of infected people for minimum (F(x)
= 0) and maximum (F(x) = 1) probabilities in Figure 6.8 reveal the potential impact of consumers’
behavior for a specific event. The ranges were widest for the first day (from 71 to 46 people, 35%
reduction) than for the following days. The variations observed were less important in the scenarios
of 10 and 24 h (Figure 6.6). Understanding the uncertainty associated with a combination of

plausible behaviors appears important.

Impact of daily demand. The diurnal consumption patterns result in variable intrusion volumes

and numbers of intrusion nodes during different hours of the day because of the variations in nodal
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pressure values. In this study, the demand was set to peak hour demand, which could lead to
overestimation of intrusion volumes if system pressure was not decreased for night flows. On the
other hand, fixed peak water demand overestimated the flushing of contaminants from the network
by leakage, commercial, industrial, institutional demands, etc. during periods of low human
consumption, resulting in an underestimation of the risk. With the scenario of 1 h PDCs/intrusion
which incorporates daily demand patterns in the hydraulic model, it was shown that the
underestimation was about 15%, which we consider to be acceptable (Figure 6.6 compared to
Figure C-3).

Integrating demand availability from PDCs. The novelty of this work lies in the coupling of the
PDA and QMRA. Unlike DDA, PDA permits identification of areas with demand shortage,
allowing for more realistic estimations of consumption based on water availability at the tap during
pressure losses. For example, consuming at a DSR of 5% and less would mean that the filling time
would increase by more than 20-fold. As shown on Figure 6.10, the number of infected people on
Day 1 decreased sharply from 71 to 24 (65%) if only consumers at nodes with DSR >5% during
low/negative pressures were considered. It should be noted that limitations to consumption only
occur during the low-pressure conditions. Furthermore, the extent of these differences depends on
the consumption time, and the duration and timing of the event. The results shows that restricting
drinking water consumption during periods of low or intermittent flow would greatly reduce risks.
Therefore, utilities and health authorities could consider educating people not to consume water
during these periods of low flow. Further study is needed to define a minimal DSR criteria based

on the amount of reduction in infection risk.

Implication for risk management. The nodal risks considered the contaminant transport in the
network and the probability of coincidence of passage of contaminants at the tap and consumption.
However, the spatial and temporal distribution of total nodal risks also reflected the distribution of
the population between nodes (Figure 6.7 and Figure 6.9). The areas in which to issue a BWA, and
those where corrective actions (e.g., flushing) would be effective, can be determined using nodal

risk values in reference to an acceptable risk level.

QMRA models have been used to evaluate the efficacy of different mitigation strategies such as
BWAs, flushing, and disinfection for reducing the infection risk after main break repairs/transient
pressures (Blokker et al. 2018, Yang et al. 2011, Yang et al. 2015). Yang et al. (2015) showed that
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flushing at >0.9 m/s reduced infection risks by 2-3 logs for norovirus, E. coli O157:H7 and
Cryptosporidium. For viral and bacterial pathogens, disinfection with a CT of at least 100
mg-min/L using free chlorine was required after flushing to decrease the risk below the USEPA
yearly microbial risk target value (1 x 10#) (National Research Council of the National Academies
2006). Issuing a system-wide BWA that decreased by 80% the average number of glasses of
unboiled water consumed led to a four-fold reduction in the number of infected people (Blokker et
al. 2018).

Estimating the daily risk, instead of the event risk, after an intrusion event can guide risk
management decisions. The spatial distribution of risk as shown in Figure 6.9 is a key factor to
define the boundaries and duration of sectorial BWAs. Figure 6.8 and Figure 6.9 show the
contribution of each day to the total event risk over the four-day period. Notably, for the 1-h
intrusion, delaying necessary preventive/corrective actions up to 5 h from the start of the intrusion
may result in the infection of up to 71 people. After that 5-h mark, a BWA or other
preventive/corrective actions would still offer protection for about 33 additional people (sum over
the three following days). The reduced benefit of late interventions on the fourth day was evident
with only one equivalent infection prevented. Timely response to sustained PDCs is therefore
essential and can be achieved by improving sampling strategies using enhanced numerical model
(Hatam et al. submitted) and equipping the DS with multiple online pressure sensors and water
quality sensors. The duration of the BWA could be adjusted depending on the corrective actions

implemented to meet the acceptable risk level for an event.

Figure 6.11 offers insights into whether pressure during PDCs can be used to determine areas to
target for preventive/corrective actions. Pressure during the PDCs determine the extent of intrusion.
However, whether contaminants will travel from low-pressure nodes to higher pressure nodes
(based on pressure during PDCs) is determined by water paths during normal and PDCs. This was
clearly illustrated by the fact that, for the 1-h PDCs, consumption of tap water at nodes other than
negative pressure nodes resulted in 63, 28, 3, and 1 infected people on Days 1-4, respectively. This
showed that the benefits of avoiding consumption at negative nodes (based on the pressure values
under PDCs) after the PDCs was limited, as these values for the whole network, including negative
nodes, were 71, 29, 3 and 1, respectively. Even with a pressure criterion of 15 m, the number of
infected people on Day 2 would be significant (6) (Figure 6.11). These results are consistent with
the study by Hatam et al. (submitted) who showed that E. coli can be transported to higher pressure
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zones (up to ~40 m) in the absence of disinfectant residuals during a 5-h PDCs/intrusion. Our
results emphasize that issuing sectorial BWAs based only on pressure is not adequate to protect the
population against infection, even for the scenario of 1-h PDCs/intrusion with a high
Cryptosporidium concentration (560 oocyst/L). The simulation of the fate and transport of

contaminants is necessary to define an effective sectorial BWA.

In future work, reporting the hourly risk, instead of the daily risk, could be helpful to utilities to
define preventive/corrective actions and timely response. In this study, the PDCs occurred at 18:30
on Day 1, therefore some of the daily demands were already satisfied before the intrusion event.
The timing of the event impacts the infection risk, which needs to be investigated in future studies.
Blokker et al. (2018) showed limited effect for timing of repairs.

Although the field validation of the transport of pathogens and indicators appears desirable, it is
however not feasible to conduct in complex operating distribution systems. Such validation would
require extensive monitoring during intentional extended loss of pressure events and monitoring of
infections by an epidemiological investigation that utilities and health authorities will not allow.
The conservative modelling presented in this study nevertheless demonstrates the value of

numerical tools combined to QMRA to quantify risk and assist utilities and regulators.
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Figure 6.11. Number of infected people for different pressure (P) ranges (based on the pressure
values under PDCs) on Days 1-4; Infection risks corresponding to the consumption event with
F(x) = 1 (Figure 6.8) are illustrated. The event starts at 18:30 on Day 1 for a duration of 1 h.
Daily patterns in the hydraulic model.
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6.5 Conclusion

e An approach is proposed to couple QMRA and water quality calculations based on pressure-
driven hydraulic analysis to assess the infection risk under sustained low/negative pressure
events, causing accidental intrusion of potentially contaminated water surrounding the pipes.
The intrusion volume at potential intrusion nodes is adjusted for nodal pressure and pipe state
(age and material) using leakage demand.

e By implementing PDA, the pattern of kitchen tap use was dynamically modified to include the
impact of demand availability during PDCs in the analysis. During the PDCs, using a higher
critical value of the DSR (5% instead of no demand) for drinking water withdrawals led to a
significant reduction in the number of infected people (~65% on Day 1 of 1-h PDCs). This
reduction in infection risk if contaminated water is not consumed should be considered to guide
preventive notices. It shows that customers should be advised not to drink water when flow at
the tap is low (i.e., it takes much longer time to fill a glass).

¢ Inthis work, depending on the pathogen concentration in sewage, the number of infected people
changed by 235-fold, showing the importance of selecting a representative level of
contamination in a system. Using raw sewage as the ingress water is a conservative scenario as
water surrounding water mains is likely to be less contaminated than sewage.

e Results show that the number of glasses per day (1, 3, or 10) was less important than the
consumption volume (300 mL, 500 mL, or 1 L) for the scenario of 24-h PDCs.

e The duration of PDCs/intrusion is a decisive factor in determining the infection risk, issuing
sectorial boil water advisories and other preventive/corrective actions. Spatial and temporal
distribution of nodal risks presented in this study can help to determine the boundaries and
duration of sectorial BWAs.

e A fast response by the utility is key to reducing the infection risk by limiting the contamination
area. For a 1-h intrusion, delaying 5 h the necessary preventive/corrective actions from the start

of the intrusion may result in the infection of up to 71 people.
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CHAPTER 7 ARTICLE 4 -INVESTIGATING THE IMPACT OF
SUSTAINED LOW PRESSURE EVENTS ON WATER QUALITY IN
WATER SUPPLY NETWORKS USING PRESSURE-DRIVEN
ANALYSIS

The main objective of this chapter is to assess the impact of different pressure-demand relationships
under continuous PDCs, while using PDA, on the intrusion flow rates, hydraulic conditions and
multiple water quality parameters (chlorine residual, THMs, and Cryptosporidium). This paper was
published in the proceedings of first International Joint Conference in Water Distribution Systems

Analysis & Computing and Control held in Kingston, Ontario, Canada, on July 2018.
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ABSTRACT

With infrastructure aging, sustained low/negative pressure events in distribution systems (DSs)
may become more common. Therefore, more accurate numerical tools to predict hydraulic and
water quality (WQ) behavior of DS under low/negative pressure conditions are needed to better
identify areas where corrective/preventive actions are justified. A technique which allows
combining pressure-driven hydraulic analysis and multi-species WQ model (i.e EPANET-MSX)
is applied to investigate the impact of sustained pressure losses on hydraulic and WQ of a full-scale
network. In this regard, chlorine residual and THMs concentrations are simulated during a severe

sustained low/negative pressure event considering continuous intrusion of contaminated water.
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Cryptosporidium oocysts resulting from the ingress of sewage at low/negative pressure nodes was
considered as conservative tracer. The impact of using different pressure demand relationships
(PDRs) while performing pressure-driven analysis (PDA), is investigated on both the hydraulic

and WQ behavior of the network during simulated sustained pressure deficient conditions (PDCs).

KEYWORDS: Multi-species water quality model, pressure-driven analysis, continuous intrusion

from sustained low-negative pressure events

7.1 Introduction

To ensure public health protection during pressure losses, appropriate emergency responses are
required by water utility managers. Hydraulic and water quality modelling can be applied to predict
the behavior of pressure deficient networks. To accurately simulate PDCs, a pressure-driven
hydraulic analysis should be performed rather than the traditional demand-driven analysis (DDA).
Different methods have been proposed in the literature to perform PDA (Ozger 2003, Wu et al.
2009). Some studies are based on iterative use of DDA, while others solve simultaneously the mass
and energy conservation equations and an equation which express the relation between pressure
and demand (PDR). In this regard, different PDRs have been proposed to perform PDA (Fujiwara
and Li 1998, Tanyimboh and Templeman 2010, Wagner et al. 1988). Some investigations on
selecting a representative PDR have been performed (Ciaponi et al. 2014, Shirzad et al. 2013);

however, finding an appropriate PDR is a challenging task in the absence of field data.

A multi-species water quality model is required to be able to account for the interactions between
microorganisms, disinfectant residual and different types of matrices. In 2007, EPANET-MSX
which is a multi-species extension of EPANET was released. Yang et al. used EPANET-MSX to
simulate the interactions between disinfectant decay and virus inactivation due to intrusion events
(Yang et al. 2011). Other researchers have applied this software to simulate contaminant intrusion
for E. coli (Islam 2017). However, standard modeling tools are usually limited to either single
species water quality analysis or the hydraulic analysis is only valid under normal operating
conditions. Some researchers modeled water quality using pressure-driven hydraulic analysis for
optimization models (Rasekh and Brumbelow 2014). Also, the coupling of PDA and single species
water quality analysis has been proposed for water quality reliability assessment (Gupta et al. 2012,
Liserra et al. 2014).
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In this study, the impact of sustained low/negative pressure events on water quality variations by
the help of a recently developed methodology is demonstrated. This modeling approach allows
performing multi-species water quality modelling under sustained PDCs based on pressure driven
hydraulic analysis results. The efficiency and applicability of this methodology are evaluated by
simulating multiple water quality species in a single run under a significant sustained PDCs. As a
proof of concept, and because modeling work is still ongoing, the water quality species included
in this demonstration include chlorine, THMs and Cryptosporidium oocysts as a conservative
tracer. Chlorine residual and THM spatial variations under sustained PDCs comparing to normal
operating conditions are evaluated and the contamination transport throughout the DS due to
continuous intrusion is investigated. The impact of using different PDRs, when performing PDA,
on hydraulic and WQ parameters is also demonstrated. The extent of areas which may need

corrective/preventive actions are compared based on different criteria using different methods.

7.2 Methodology

A full-scale distribution system with three WTPs is selected for the simulations and evaluating the
performance of the proposed methodology. This network is comprised of 30,077 nodes which
serves a population of about 400,000. There are no storage tanks or pump stations in the water
network. As the entire network is hydraulically interconnected the supply zone of each WTP can

be modified under PDCs based on the hydraulic conditions of the network.

7.2.1 Hydraulic analysis

To simulate sustained PDCs, pressure-driven hydraulic analysis is performed using the commercial
software WaterGEMS®. Different PDRs can be defined in this software using pressure-demand
piecewise linear curve. In this study, the impact of using two different PDRs when performing
PDA, on hydraulic and water quality parameters are compared. Tanyimboh relationship can be
defined as follows (Tanyimboh and Templeman 2010):

avl _ _req eXp(ai + BjHi) Eq. 7-1
) ' 1+ exp(oj + BjH))

where q]?*Vl and queq are available and required demand at node j, respectively, H; is available head.

aj and Bj are parameters defined using field data while in the absence of field data, they can be

estimated by B; = 11.502/(H;"*° — H;™™) and «; = (—4.595H;%° — 6.907H;™" ) /(H;*** — H;™™).
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In these equations H]-min and H]-deS are minimum and desired pressure head, respectively. Wagner
Equation (Wagner et al. 1988) can be presented as follows when pressure head is between H]-min

and H]F‘esz

min + 1/2
avl _ Hi B Hi req Eq 7'2
9 = Hdes _ pmin q;
] ]
In this study, H]-min and H]-des are considered to be 0 and 15 m, respectively, for all the nodes. Demand
Satisfaction Ratios (DSRs) are calculated by dividing the available demand to the required demand

at each node.

A continuous sustained low/negative pressure event (Scenario 1) is simulated by assuming that
only one WTP out of three is online and the hydraulic and water quality behavior are compared
with the normal conditions (Scenario 2) in which all 3 WTPs are working. A constant demand
corresponding to peak hour consumption in the studied distribution system is considered
throughout the simulations for simplicity.

7.2.2 Water quality analysis

To enable performing multi-species water quality analysis during sustained low/negative pressure
conditions a methodology is proposed which modify the EPANET input file based on the PDA
results. This modified input file will then be used by EPANET-MSX for multi-species water quality
analysis. More details on the developed techniqgue (MSWQA-PDA) can be found in (Hatam et al.
2018a).

To demonstrate the advantage of the proposed technique, chlorine residual, THMs and
Cryptosporidium oocysts (simulated as a conservative tracer as chlorine has no effect on this
microorganism) are predicted during sustained PDCs. The overall chlorine decay considers

reactions in the bulk flow (k) and at the pipe wall (k,,) using a first-order reaction model (% =
—(ky, + ky)C). THMs are calculated using the following equation:

THM = K (Co — C) + THM, Eq. 7-3
in which C, is the initial chlorine concentration at t=0, C is the chlorine concentration (mg/L), and

K. is the proportion of the chlorine bulk demand that leads to THM formation which is considered
to be 41 pg/L per mg/L free Cl, (Courtis et al. 2009).
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At this step, for simplicity, a conservative scenario is simulated by assuming continuous
contaminant intrusion at all the nodes with pressure less than 1 m, within the range of water table
levels in this system (Ebacher et al. 2013), due to a sustained pressure drop event in the DS. The
concentration of Cryptosporidium oocysts in sewage is assumed to be equal to 26 oocysts/L (mean
concentration) (Payment et al. 2001). The contaminant is considered to be transported as a
conservative tracer and no inactivation or interaction with other species is assumed. The intrusion

flow rate (Q;) at each node is calculated using the orifice equation (Q; = C;m(D?/

4)\/29(Hexe — Hine))- The orifice diameter (D) is considered to be constant at all the nodes (1 mm)
and the pressure head (H,.,.) outside the pipe is considered to be equal to 1 m. The available
demands for consumers are assumed to be zero at the intrusion nodes. The internal pressure head
(H;,.) at each node is calculated from the model. Intrusion volume may affect the hydraulic
conditions of DSs and an iterative procedure can be applied for calculating Q; through orifice
equation if large intrusion volumes are coming into the DS. In this paper, the impact of intrusion
flow rates on pressure variations was considered by adding the intrusion flow rates into the model.
However, the intrusion volumes were not then corrected using the adjusted pressure values as the
differences were considered negligible in terms of both pressure and intrusion volume.

For water quality analysis an extended period simulation of 20 days was carried out to reach the
equilibrium conditions of water quality parameters and the results were then reported for the last

hour.

7.3 Results and discussions

The distribution of nodal demand satisfaction ratios is demonstrated in Figure 7.1 (a), using
Tanyimboh equation. The results are grouped by the pressure values to facilitate the comparison,
as required demands are completely satisfied at nodes with pressure more than 15 m. The median
DSR for nodes under PDCs (P < 15) is 72% using Tanyimboh equation. For Wagner equation
(results are not shown here) this value is 67% and, the mean is about 60% for both relationships.
However, as it is shown in Figure 7.1 (b), using different PDRs can lead to different DSRs at some
nodes in the network. For this scenario, the median, 75 percentile and maximum percentage of
difference between the Tanyimboh and Wagner DSRs are 0.3%, 5% and 30%, respectively.
Discrepancies in the available demand can impact WQ by affecting the path through which the

water passes to reach a node.
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Figure 7.1. Distribution of (a) percentage of DSRs under pressure-deficient scenario when using
Tanyimboh for two groups of nodes and (b) nodal DSRs absolute differences between different
PDRs (% ADSR=|DSRTanyimboh-DSRwagner|]) While performing PDA, for all the nodes. These

results exclude nodes with no required demand.

Pressure values under normal operating conditions and pressure deficient conditions using
traditional DDA and PDA (Wagner and Tanyimboh) are compared in Figure 7.2. Again the
pressure values under PDCs calculated by Tanyimboh equation are used to discriminate nodes with

pressure less than or equal to 15 m and nodes with pressure more than 15 m.

During normal conditions, pressure values are between 21 to 63 m while under PDCs the minimum
pressure in the network is decreased to —7 m using PDA (either Wagner or Tanyimboh equation)
(Figure 7.2). However, the results show that DDA incorrectly estimates the pressure values under
PDCs especially for nodes experiencing PDCs (P < 15m) (pressures are between 2 to -27 m).

Even though small pressure differences are observed between the use of the two PDRs (less than 1
m at all the nodes), they can affect the number of nodes prone to intrusion and volume of
contaminated water which can enter into the DS. Therefore, water quality data will also be
compared in the followings for these two PDRs to observe the importance of these discrepancies

in the hydraulic parameters in water quality.
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Figure 7.2. Comparison of pressure results calculated from PDA (Wagner and Tanyimboh)
(modified EPANET input file) and DDA under pressure-deficient conditions and normal
operating conditions (NOCs) (DDA).

The choice of a minimal pressure criteria is a critical factor when defining the nodes that may be
susceptible to intrusion/backflow and areas which require corrective/preventive actions. Guidance
to set these threshold pressure values remains poorly defined and do not consider the particular
conditions of a specific network. Guideline reference values especially vary in their tolerance of
low but positive pressures. Figure 7.3 shows the impact of different minimal pressure criteria
choice (0, 5, 10 or 15 m) on the number of nodes at risk of intrusion/backflow for the simulated
low/negative pressure event. It should be mentioned that the nodes which may need
corrective/preventive actions also depend on the intrusion rate, the contamination level outside the
pipe and fate and transport of microorganism throughout the network. The impact of using
different PDRs on the number of nodes experiencing low pressure (based on different minimal
pressure criteria) is shown in Figure 7.3. The differences are less than 1% for all the groups.
However, as expected, DDA will overestimate the zones at risk of low pressure, potentially leading
to unjustified boil water advisories. A more detailed discussion about the impact of different
minimal pressure criteria on the number of nodes and geographical distribution of areas which may

need corrective/preventive actions can be found in (Hatam et al. 2018a).
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Figure 7.3. Number of nodes at risk of intrusion/backflow based on different minimal pressure
criteria and different methods of estimation: traditional DDA and PDA (comparing Wagner and

Tanyimboh).

The multi-species water quality analysis based on PDA was used to model a continuous intrusion
of Cryptosporidium oocysts at nodes with pressures <1 m. The impact of the simulated sustained
PDCs on chlorine and THM concentrations are shown by comparing the results of each pressure
group to the corresponding values during normal operating conditions (Figure 7.4). As an example,
for nodes with zero or negative pressure, the median chlorine residual decreased due to sustained
pressure losses from 1.2 to 0.4 mg/L. For nodes with low but positive pressure the median chlorine
residual drop from 1.1 to 0.9 mg/L while for nodes with P > 15 m the median remains almost

constant (~1 mg/L).

[o] €L, NOCs(L) [o] CL,, Tanyimboh{L) [s] THM, NOCs(R) [s] THM, Tanyimboh(R)

1.6 70

1.4 160

1.2 -[ 150
- . -
S oa| [ 2
E . 130 =
= 0.6 =
O 04} l . 120 =

0.2 I 1 110

0.0 10

0.2 10

0 15

Pressure (m), Tanyimboh

Figure 7.4. THM and chlorine concentration under normal and pressure deficient scenario,
Tanyimboh equation used while performing PDA. Note: Median; Box: 25%-75%; Whisker:

min-max.
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Cryptosporidium oocysts in contaminated ingress water at low/negative pressure nodes are
transported throughout the DS, reaching more than 8,000 nodes at different concentrations (Figure
7.5). The theoretical intrusion flow rate entering the DS is estimated to be 2.5 Ips (968 nodes) for

Tanyimboh, and 3.7 Ips (1343 nodes) for Wagner equations.
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Figure 7.5. Number of nodes in the network for different ranges of Cryptosporidium

concentration using Tanyimboh (blue) and Wagner (green) equations.

For better comparison, chlorine residual at each node under PDCs is also compared with the
corresponding values under NOCs and the distribution of these differences is shown in Figure 7.6
(a). The results showed that generally the water quality gets poorer due to the simulated sustained
pressure drop. These differences are generally more significant for the groups of nodes with lower
pressure. The median of chlorine differences decreased from 0.8 mg/L, (for nodes with P < 0) to
zero (for nodes with P > 15). It is important to note that these differences in chlorine residual are
caused by changing hydraulic operating conditions (water age), during the simulated sustained
PDCs. They do not take into account other possible causes of residual loss such as biofilm re-
suspension and scouring of corrosion products caused by flow reversals. These other causes of
residual loss can also become important and cause complete loss of residuals especially during
unsteady flow conditions. It should be noted that in the current demonstration, the contamination
intruded into the network during PDCs is considered to be non-reactive (conservative tracer).
Therefore, its spatial and temporal distribution throughout the network is not affected by the nodal
chlorine residuals, which is coherent with the high resistance of Cryptosporidium oocysts to

chlorine.
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Chlorine residual differences, under PDCs, based on the use of different PDRs (Wagner and
Tanyimboh) at most of the nodes are small. As it is shown in Figure 7.6 (b), the median of
differences is zero and about 90% of the nodes have chlorine differences less than 0.03 mg/L. This
is while less than 4% of the nodes have chlorine differences higher than 0.1 mg/L while using

different relationships.

1.4 0.10
= 12 |Min:-04 Min: -1 Min:-1.3 ] ~ 0.08Min:-0.8
S Max: 1,3_|_ Max: 1.3 Max: 1.5 2 ) Max: 0.9
g 10 5 0.06
> n
5 08 S 004
5 06 S 0.02
0.4 o
5 I I R O R A R |
Q a
-0.02
2 00f T J_ """"""" 1 s 0.0
~ -0.04
o -0.2 . g = Median
@) ]
os = Median [] 25%75% I 5%-95% £ .0.06 L] 5%.95%
0 15 O -0.08 1 z‘j‘:gs%
@) Pressure (m), Tanyimboh (b) -0.10

Figure 7.6.(a) distribution of nodal chlorine residual differences between normal (DDA) and
pressure deficient conditions (PDA, Tanyimboh) (b) distribution of nodal chlorine residual
differences under pressure deficient conditions between Wagner and Tanyimboh equations

7.4 Summary and conclusions

A recently developed methodology which enables multi-species water quality model based on a
pressure-driven approach was applied to investigate the impact of sustained pressure losses on
water quality in a distribution system. In this regard, chlorine residual and THMs were simulated
during a severe sustained PDCs concurrently with modeling continuous intrusion of sewage
contaminated water (Cryptosporidium oocysts) at nodes with low/negative pressures. However,
this study is based on several conservative assumptions such as a continuous intrusion of
contaminants with no reactions; future developments of this research will address extending the
developed methodology to simulate less conservative scenarios. Ongoing work includes the
consideration of scenarios with reactive contaminants and intrusion events in the range of hours.

DDA does not estimate correctly the pressure values and overestimates the number of nodes with

low pressures during PDCs, potentially leading to unjustified boil water advisories. Therefore,
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realistic PDA should be linked with water quality models to predict water quality in the systems
under pressure losses. Some differences, although negligible at most of the nodes, were observed
in the predicted nodal pressures and values of available nodal demand when using different PDRs
while performing PDA. These differences can impact on water quality modeling during PDCs.
Under the scenario considered, the intrusion volume was significantly higher (48%) using the
Wagner PDR. Although, PDA produces much more realistic results as compared to traditional
DDA during PDCs, the selection of the PDRs which are more representative of the network model

can improve the PDA results.
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CHAPTER 8 GENERAL DISCUSSION

In this chapter, the main findings of the project are highlighted with respect to the initial research
objectives and questions. The main goal of this project was to develop new tools to manage risks
associated with accidental intrusion of contaminants into drinking water distribution systems as the
result of sustained low/negative pressure conditions. This was achieved by proposing improved
modeling approaches and assumptions. The first main step was to develop an approach that enables
multi-species water quality analysis based on pressure-driven hydraulic analysis. The next was to
apply this methodology in modeling intrusion due to sustained PDCs and fate and transport of
contaminants across the network during and after intrusion events. Finally, a QMRA model was
linked with water quality calculations based on PDA. The management implications of the results

to reduce public health impacts and to improve sampling program are then discussed.

Different steps of the project are summarized in Figure 8.1. More details on the simulated scenarios
can be found in Table 8.1. Corresponding chapters are also identified. The 8 hypotheses posed in

Table 3.1 were all confirmed by our findings.
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General objective:
To develop and integrate realistic hydraulic and water quality modeling concepts into a QMRA type
model in order to improve the assessment of public health risks associated with the occurrence of sustained
low/negative pressure events in drinking water distribution systems

Improved numerical tools (MSWQ-PDA):

»  Create an interface that allows multi-species water quality analysis based on PDA

*  Run the model as a proof of concept in a full-scale network (> 30,000 nodes) to verify the
reliability of the proposed methodology

* Implement it to continuous PDCs/intrusion as well as sustained PDCs/intrusion lasting a few
hours

*  Model water age, disinfectant residual, THMs, and microbial intrusion

» Investigate the impact of different PDRs on hydraulic and water quality

Fate and transport of ingress water due to sustained PDCs:

»  Estimate event-node-specific intrusion volume based on nodal pressure results using PDA

»  Calculate the nodal intrusion volume by leakage constant representing the state of pipes

*  Adjust the hydraulic for intrusion volume- regenerate the modified input file of EPANET

* Increase disinfectant decay constant only at areas affected by ingress water using a conservative
fictitious species when using the nth-order model

*  Model fate/transport of E. coli and Cryptosporidium under various scenarios of sustained PDCs
and disinfectant residuals

Implications for management:

»  Assess the propagation of maximum E. coli and Cryptosporidium concentrations at any time
during the simulation time as a function of pressure

*  Develop spatial and temporal maps of E. coli

» Integrate a Poisson distribution function of the likelihood of detecting E. coli with the fate and
transport modeling

*  Customize an advanced QMRA model to link with water quality calculations based on PDA to
estimate the infection risk associated with sustained PDCs

+  Calculate the daily nodal infection risks of Cryptosporidium that integrates affected population,
local leakage demand, etc.

* Quantify the effect of contaminant concentration in ingress water and duration of events on the
number of infected people

»  Taking into account the consumers’ behavioral variability using Monte-Carlo simulations

Figure 8.1. Summary of the research conducted.



Table 8.1. Overview of the simulated low/negative pressure events and modeled water quality parameters in different chapters.
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Simulated sustained low/negative pressure events

Water quality parameters PDRs Chapter
Extent Duration
Normal operating conditions Agt? Chapter 4
(No intrusion) ) Chlorine ) (Article 1)
THMs
Shutdown of 2 WTPs (WTP B and WTP C, Figure 3.2) Ade
Different intensities: various water level at the remaining . g. . Chapter 4
Continuous Chlorine Tanyimboh .
WTP THMs (Article 1)
(No intrusion)
Age
E. coli:
Shutdown of 1 WTP (WTP C, Figure 3.2) Fate and transport across the
. . Chapter 5
Fire-flow at 1 node 5 hours network Tanyimboh (Article 2)
(Intrusion) No disinfectant
Chlorine & Chloramine:
With sewage impact
Shutdown of 1 WTP (WTP A, Figure 3.2) 1 hour
. . - . Chapter 6
The one with the largest capacity 10 hours Cryptosporidium Tanyimboh X
. (Article 3)
(Intrusion) 24 hours
Age
h f2 WTPs (WTP B WTP C, Fi 2 . hlori W
S utdo_wn 0 s ( and C, Figure 3.2) Continuous Chlorine agr_ler Chapter 7
(Intrusion) THMs Tanyimboh

Cryptosporidium
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This project can allow us to answer fundamental questions regarding water distribution systems
behavior and health risk assessment due to accidental intrusion under sustained PDCs.

e What are the proper modeling tools/approaches to identify the nodes with unsatisfied
demand, areas at risk of intrusion/backflow contamination under PDCs, and to estimate the

node-event-specific contaminant mass rate/intrusion volume through leakage points?

e What are the appropriate modeling tools/approaches to more realistically simulate
accidental intrusion resulting from sustained PDCs and propagation of contaminants
throughout the network, considering the interactions between pathogens inactivation and

disinfectant decay, and intrusion-associated demand of disinfectant decay?

e How sustained PDCs can affect the water quality variations regardless of any intrusion

events?

e What are the key factors to determine the locations of poor water qualities in the case of
intrusion events resulting from sustained PDCs? Are the low-pressure areas (P < 15 m) the

sole zones at risk of poor water qualities?
e Can the intrusion events be detected by the standard E. coli sampling program?

e How does increasing the sampling volume affect the detection probability of E. coli
throughout the network during confirmation and clearance sampling?

e What are the risks associated with the contaminant concentrations in different pressure

zones throughout the network?

e What is the impact of the duration of sustained PDCs, the contaminants concentration
surrounding the pipes and consumers’ behavior on the probability of infection during an

accidental intrusion through leakage points under sustained PDCs?
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8.1 Can we approach to sectorial BWA issuance under PDCs? What are the
proper modeling tools for a more realistic prediction of water quality

under sustained pressure-deficient conditions?

The utility response to depressurizations should be based on the type of event, the magnitude, and
the duration of pressure losses. Enhancement of modeling capabilities and accuracy can be a
valuable tool for utility managers in decision-making under PDCs and have been a popular
research topic (Cheung et al. 2005, Germanopoulos 1985, Giustolisi et al. 2008, Gorev and
Kodzhespirova 2013, Gupta 2015, Gupta and Bhave 1996, Pathirana 2010, Seyoum and
Tanyimboh 2017, Siew and Tanyimboh 2009, 2011, Siew and Tanyimboh 2012, Wu and Walski
2006, Wu et al. 2009).

8.1.1 Why investigate sustained low/negative pressure events?

Sustained pressure drops are reported in the literature (Besner et al. 2007, Besner et al. 2011,
Douglas et al. 2018, Kirmeyer et al. 2014) and may become more frequent in ageing infrastructures.
For the studied network, during 18 months monitoring, 17 negative pressure events were recorded.
Among these events, the duration was > 3 hours for 3 events, and > 30 minutes but less than 1 hour
for 4 events (Besner et al. 2010a). Previous studies had mostly focused on numerical analysis of
water distribution systems under transient low/negative pressure events (Ebacher et al. 2012,
Gullick et al. 2005, Teunis et al. 2010). Duration has been listed among the top-ranked factors in
microbial risk estimates associated with low/negative pressure events (Teunis et al. 2010, Yang et
al. 2011). The volume of contaminated water that can enter into the distribution systems through
leakage points is a function of the duration of PDCs and can directly influence the public’s health.
Therefore, the present work concentrates on simulating extended duration low/negative pressure

events from 1 to several hours.

Figure 8.2 illustrates three types of pathways and events, for intrusion to be occurring: (i) short
duration event from transient negative pressures in both leakage orifices and submerged air valves,
(i) pipe breaks, and (iii) the work completed in this thesis, intrusion through leakage orifices during
sustained PDCs. Results presented in Chapter 6 show that the total intrusion volumes through 93
nodes (P <1 m) were 800 L and 19,000 L for 1 and 24 hours of PDCs, respectively. Even for 1 h
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pressure losses, the predicted intrusion volume was higher than the estimated volumes under
transient low/negative pressure events described by Ebacher et al. (2012) for the same network,
albeit the number of entry points was higher by a factor of 7-8 compared to our study. The volumes
reached 15 L through 676 nodes (leakage rate 5%), and 109 L through 750 nodes (leakage rate
40%) with the external head of 1.5 m (Ebacher et al. 2012). For a single leakage point, the
maximum intrusion volume was 56 L for 1 hour PDCs in our study. This value is 19-fold higher
than the maximum intrusion volume reported by Ebacher et al. (2010) under transient PDCs in the
same network with duration of < 3 minutes, leakage rate of 20% of inflow, and external head of 1

m.
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Figure 8.2. Different types of low/negative pressure events as a function of duration, potential

intrusion and resulting risk.

8.1.2 Pressure-driven analysis versus demand-driven analysis

Many studies have demonstrated that DDA results are not realistic when modeling low/negative
pressure conditions and that PDA should be used (Cheung et al. 2005, Lee et al. 2016, Siew and
Tanyimboh 2012). However, water utilities rely on DDA to simulate water distribution systems
even to respond to pressure losses. The most commonly open source tool is EPANET, which is
based on demand-driven hydraulic analysis. DDA produces unrealistically low nodal pressures

under low/negative pressure conditions. For the studied PDCs, PDA generated pressures were
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always higher than the lowest possible water gauge pressure (-10.1 m at 20°C, cavitation head),
even under severe PDCs scenarios. Nodal pressure values decreased to less than -30 m at some
nodes when using DDA, which is unrealistic. This was confirmed by field measurements during
transient events in this distribution system (Ebacher et al. 2009). They reported that the measured
pressure heads never reached the cavitation head at the monitoring points during a power failure at

the water treatment plant causing transient negative pressures.

Our results in Chapter 4 indicate that the extent of the pressure differences between DDA and PDA
was sensitive to pressure values under PDCs, and to the severities of the pressure losses. Although,
these differences were more prominent in areas with lower demand satisfaction ratio, they were
not limited only to nodes under PDCs (P < 15 m). Smaller differences were observed for nodes
with higher pressures. However, within the studied pressure range (< 70 m), we could not define a
minimum pressure for which the nodal pressures using PDA and DDA converge to the same

value at all nodes.

Some PDA approaches may report the negative pressure values as zero, such as in the case of
version of WaterGEMS (V8i SELECTseries 5) (Bentley Systems 2014) used in this study. This
can be limiting when intrusion volumes need to be estimated at low/negative pressure nodes. To
overcome this shortcoming, we used the modified INP file of EPANET, which was created by
MATLAB, to calculate the nodal intrusion volumes. Reporting negative pressures as zero can also
cause some misinterpretations, as in the study by Lee et al. (2015). These authors concluded that
PDA can produce unacceptable results such as total head reverse occurrence (flow direction is from
lower total head to higher total head). We believe these observations were caused by the fact that
the negative pressures were reported as zero in their PDA tool. We proved our assumption by
resolving the same network with the same pressure-deficient scenarios considering the negative

pressure values using the proposed methodology in this study (Appendix D).

8.1.3 Multi-species water quality analysis combined with PDA results

Several studies have been published in recent years that combine PDA and water quality modeling.
However, these studies are either a single-species water quality model (Afshar and Marifio 2014,
Bashi-Azghadi et al. 2017a, Bashi-Azghadi et al. 2017b, Rasekh and Brumbelow 2014, Seyoum



143

and Tanyimboh 2014, Seyoum et al. 2011, Zafari et al. 2017) or in the case of performing multi-
species water quality analysis the hydraulic engine is based on DDA (Betanzo et al. 2008, Islam et
al. 2017, Karamouz et al. 2017, Klosterman et al. 2009, Muray and Adachi 2011, Propato and Uber
2004, Teunis et al. 2010, Yang and Boccelli 2016). The main focus of the work described in this
thesis is to predict the impact of sustained low/negative pressure events on water quality in the case
of a contamination intrusion. No tool was available to simultaneously consider PDA and a multi-
species water quality model. To this aim, a methodology that could incorporate the both advantages
is proposed. Figure 3.1 and Figure 4.2 provide a good overview of the capabilities of this approach.
Recently, Seyoum and Tanyimboh (2017) used a different approach that integrates PDA and MSX
by modifying the source code of EPANET-MSX. This approach was then applied to a small
network with 380 nodes to simulate water age, chlorine and THMs under PDCs. However, neither
of these newly developed modeling methods has yet been applied to simulate contaminant intrusion

due to pressure drops using PDA and multi-species water quality analysis.

In Chapter 5 and Chapter 7, we show that there are many challenging factors to consider when
modeling intrusion events due to sustained PDCs and subsequent fate and transport of contaminants
across the network. They include estimation of intrusion volume based on pipe state and nodal
pressure, its impact on hydraulic behavior and vice versa and selectively increasing chlorine decay

rates based on the existence of contaminants using conservative fictitious species.

8.1.4 How can the developed approach help the existing water distribution

modeling community?

One of the advantages of the presented approach (MSWQA-PDA) is that it does not require
modifying the algorithms within the EPANET source code, which is a difficult task. In addition, it
can communicate with any PDA approach. This makes this approach available to a wide range of
researchers. EPANET-MSX is an open source software that can be employed to model water
quality behavior of distribution systems under sustained PDCs using this technique. However, it
must be acknowledge that the application of the proposed methodology in its current format may
not be straightforward for the typical end-user and more suited to research. In this project, the
approach was tested successfully on a large full-scale network with > 30,000 nodes to simulate the
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water quality variations due to accidental intrusion events under sustained PDCs with duration of

> 1 hour.

Due to rapid evolution of commercial software market, the latest version of WaterGEMS now
includes multispecies analysis based on the EPANET-MSX model and pressure dependent demand
feature. However, there is a need for robust and user-friendly open source models that combine
PDA analysis and multi-species water quality models, especially for academics. Recently,
researchers have emphasized on the need of a modern approach to free and open source EPANET
development by coordinating researches to jointly develop, improve, and maintain high quality
software (Uber et al. 2018). Based on this work and the need for improved tools, some of the
functionalities that could be included into future versions of EPANET are:

e Arobust pressure-driven algorithm in the model.

e Integration multi-species water quality analysis and PDA.

e Addition of an arbitrary option to be able to account for the dispersion term by solving
advection-dispersion-reaction equations in the software. Dispersion term can play an
important role in the propagation of contaminants under low/negative pressure events at
low flow rate areas.

e Enabling for using multi-core and parallel computing when running EPANET-MSX to
speed up the simulations.

e Adding some options that can help verify if results from EPANET simulations are accurate.
As an example, recently Davis et al. (2018) suggested that a capability to produce reports

on the mass balance of water-quality constituents should be added to EPANET.

Finally, the commercially available software could be improve by adding a module to facilitate the
simulations of intrusion events under low/negative pressure conditions. This can include the
calculation of nodal intrusion volume and considering its impact on both hydraulic and water

quality behavior.

8.1.5 Improved prediction of contaminant mass rate

In previous studies that simulated intrusion events due to PDCs, the contaminant mass rate was

estimated either based on a random selection of the parameters such as intrusion volumes, negative
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pressure durations, pressure head values outside/inside the pipe or a constant mass flow rate of
pathogens downstream of intrusion nodes was assumed (Besner et al. 2010c, Betanzo et al. 2008,
Islam et al. 2017, LeChevallier et al. 2011, Propato and Uber 2004, Teunis et al. 2010). The amount
of contaminant entering the system is a function of intrusion flow rate and the contaminant
concentration outside the pipe. In this study, the nodal intrusion flow rates were calculated and
used to be more event-specific and site-specific. Due to lack of data, the contaminant concentration
and pressure head outside the pipe are considered to be constant at this step, while the presented

approach has no limitation to use variable input data in case of availability.

The orifice equation was used to estimate the intrusion flow rates through leak opening in pipes.
In previous study, the orifice diameter in this equation was either determined directly (Besner et
al. 2010c, Hatam et al. 2018b, Kirmeyer et al. 2001a) or it was estimated using a global leakage
rate (Ebacher et al. 2012, Ebacher et al. 2011b, LeChevallier et al. 2011). However, in both cases
implementing a fixed orifice size to all nodes will lead to overestimation of potential intrusion flow
in areas of low leakage and underestimating the infection risk in the zones of decaying
infrastructure with multiple pathways. In Chapter 7, the intrusion volumes were estimated by
orifice equation assuming a constant diameter (1 mm) and a discharge coefficient (0.62) at all the
nodes. To improve the intrusion predictions, the intrusion volumes were adjusted at each node
based on the nodal leakage demand in the calibrated model (Chapter 5 and Chapter 6). The leakage
rates were attributed to the nodes as a function of pipe age and materials type in the tested network.
This approach will be very beneficial to water utilities that have knowledge about sectorial leakage
rates using leakage detection. Furthermore, the nodal interior pressure head obtained by PDA (the
modified EPANET input file) was used to estimate the intrusion volume at each node to be more

event-specific and node-specific.

In addition, to include the impact of intrusion volume on hydraulic behavior and vice versa, the
intrusion volumes were implemented as negative demand in the PDA model. The modified
EPANET input file was then regenerated based on the new hydraulic results. However, the above-
mentioned studies used the estimated intrusion volume for calculating the contaminant
concentration or mass rate and were not implemented in the EPANET model. Unlike EPANET and
WaterGEMS, the transient analysis software such as InfoSurge automatically calculate the

intrusion flow rates (Ebacher et al. 2012) and implement them in the model.
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8.1.6 Improved prediction of disinfectant residuals

In the case of intrusion modeling, two-species second-order model can be used to model the
reactions between chlorine, contaminant, and background organics (Klosterman et al. 2009, Muray
and Adachi 2011, Yang and Boccelli 2016). However, the estimation of the decay rates between
chlorine and background organics is a complicated task. The simple first-order decay model has
been widely used to model chlorine decay thorough the network when modeling intrusion events
(Betanzo et al. 2008, Islam et al. 2017, Propato and Uber 2004, Teunis et al. 2010). However, the
first-order chlorine decay equation does not directly depend on the concentration of contaminants
entering the system. Therefore, we believe that applying the first-order model with a fixed decay
rate to the whole network regardless of the contamination propagation, which is a function of
duration and location of intrusions, cannot simulate realistically the behavior of the system after
intrusion. As an improvement, we proposed a simple and practical technique, applying increased
decay constant (Kintrusion) Only to areas at the time they experience contaminated water (Chapter 5).
This can be done by defining another species in the model that is transported throughout the
network as a tracer. For the remaining areas, Knormai Should be applied. The areas with Knormai may
change across time depending on the temporal and spatial distribution of the conservative species
through the network. With this simple technique, one can significantly improve the prediction of
chlorine residuals and contaminants through the network while using the simple first-order decay

model in the case of contamination event.

For health risk modeling of intrusion during negative pressure transients, some researchers have
proposed modeling a single intrusion node at a time, establishing system responses and integrating
adjusted random virus concentrations in intrusion water in the hydraulic and water quality models
(LeChevallier et al. 2011, Teunis et al. 2010). These assumptions may not hold for extended low-

pressure conditions and is discussed in details in Appendix D (Figure E-1).

8.2 Water quality variations due to low/negative pressure events

Water quality variations due to PDCs in drinking water distribution systems can be resulted from
(@) the variations in the hydraulic conditions which result in changes in traveling time and flow

path (Chapter 4 and Chapter 5), (b) contaminant intrusion events (Chapter 5, Chapter 6, and
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Chapter 7), (c) the impact of intrusion-associated demand on disinfectant decay (Chapter 5), and
(d) flow reversal that may cause biofilm resuspension and scouring of corrosion products (which

were not considered in this project).

8.2.1 Impact of low/negative pressure events on disinfectant residuals

Impact of variations in the hydraulic conditions: As a proof of concept, water age, chlorine, and
THMs were simulated using MSWQA-PDA under continuous PDCs (Chapter 4). The results
indicated that the water quality was generally poorer under the simulated PDCs, as compared to
normal operating conditions, and was related to longer residence times under PDCs. These
observations are in agreement with previous studies (Seyoum and Tanyimboh 2017, Seyoum et al.
2011, Seyoum et al. 2013). Furthermore, investigating water quality results as a function of
pressure values, under PDCs, revealed that the differences were generally lower for the group of
nodes with P > 15 m compared to the groups of nodes with P < 0 or P < 15 m. Differences in
median chlorine concentrations, the were 0.7, 0.4 mg/L for the groups of nodes with P <0 and P <
15 m, respectively, while this value was almost zero for nodes with P > 15 m (Figure 4.7). Yet,
it should be recalled that these lower chlorine residuals under PDCs are only due to water age
variations regardless of the intrusion associated demand. This loss of chlorine can be important, as
the residual disinfectant is the final barrier against pathogen intrusion. The larger difference was
observed for the group of nodes with lower pressure are especially of concerns as they are likely
to occur where the risk of intrusion is highest under PDCs. It should be noted that these high
differences were related to continuous PDCs compared to normal pressure condition scenario
(Chapter 4). For shorted low/negative pressure events lasting a few hours (Chapter 5), lower
chlorine loss was observed (median dropped 0.2 mg/L for nodes with P < 1, Figure B-3). This
further emphasizes the role of duration of PDCs in the rate of chlorine loss as the result of changes

in the hydraulic conditions (i.e. water age).

Impact of intrusion-associated demand: In order to provide a barrier against microbial
contamination, maintaining a measurable disinfectant residual level (> 0.2 mg/L) at every point of
the network has been recommended in North American practice (Propato and Uber 2004). From
our simulation results in the case of sewage intrusion under 5 hours of PDCs (Chapter 5), we

demonstrated that chlorine residuals decrease sharply following an intrusion event. The effect of
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immediate chlorine demand applied to the intrusion nodes during PDCs period, and the increased
chlorine decay rate applied to affected nodes using a conservative fictitious species can explain this
sudden and severe loss. For the nodes with positive E. coli at any time during and after the intrusion
(166 nodes), the median chlorine concentrations decreased sharply from ~0.8 to less than 0.1 mg/L
for about 2 hours (1 mg/L was the concentration at the outlet of WTPs). However, for the same
nodes and a PDC scenario, but without any intrusion event, the median dropped to ~0.6 mg/L,
which is about 0.5 mg/L higher compared to the intrusion scenario (Figure 5.3). Interestingly, the
data showed that the loss of residuals persisted a while even after the intrusion event was over, as

it took a while for chlorine residuals to be restored.

Chlorine versus chloramines: For a 5-hour PDCs scenario, the loss of chlorine was greater than
the loss of chloramines under both scenarios of with and without intrusion associated demand.
Without intrusion, chloramine concentrations remained above 0.4 mg/L (Figure B-3) at all
intrusion nodes. Even with intrusion, the median chloramine residuals remained > 0.7 mg/L for the
nodes with positive E. coli at any time during and after the intrusion (2,905 nodes) (Figure 5.3).
This can be explained by the absence of immediate chloramine demand at the intrusion nodes as
well as the lower intrusion decay constant as compared to chlorine. Our results indicate that even
though the chloramine residuals remained higher in the distribution system as compared to the
chlorine residuals, but the number of nodes receiving E. coli was higher in the chloraminated
system (2,905 versus 166 in chlorinated system). This fact can be explained by the higher
inactivation constant of E. coli in the presence of chlorine compared to chloramine by a factor of
about 250 folds (246 versus 0.99 L/mg - h). Our findings are in agreement with previous studies
showing that chlorine was more effective than chloramines in the case of contamination by Giardia
or viruses (Propato and Uber 2004, Yang et al. 2011).

8.2.2 Does disinfectant type affect the contaminant fate and transport through

the network?

EPANET-MSX has been used to model intrusion or intentional injection of E. coli and its fate and
transport across the network in the presence of disinfectant residuals, showing the importance of
chlorine residuals in limiting the widespread propagation of E. coli (Islam et al. 2017, Karamouz

et al. 2017, Tinelli and Juran 2017). However, the hydraulic analysis was based on DDA in all of
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these studies. In the case of PDCs, intrusion nodes and volumes cannot be identified without PDA.
The propagation of contaminants due to water path change during depressurization events will also
drastically change. In Chapter 5, we took advantage of the presented MSWQA-PDA approach to
simulate the ingress and fate/transport of contaminants (E. coli) by simultaneously accounting for
(i) the interactions between contaminants and disinfectant residuals (chlorine or chloramine), and
(i) the effect of hydraulic conditions under sustained pressure losses (5 hours) applying a realistic
hydraulic analysis (i.e. PDA). Our results showed that ~11% of the nodes experienced E. coli at
any time over the whole simulation duration (4 days) without any disinfectant. The extent of areas
positive for E. coli were reduced to ~7% in the chloraminated system, and much smaller (< 1%) in
the chlorinated system (Figure 5.4). The maximum E. coli nodal concentration estimated over the
whole simulation period was evaluated as a function of nodal pressure under PDCs. Findings show
the significant role of disinfectant residual types and concentrations in confining the
contaminants into low-pressure areas. It was observed that, for the studied PDCs, E. coli was
transported to the areas with pressure up to 40 m in the case of no disinfectant residual in the
system. A chloramine residual of 1 mg/L at the outlet of the WTPs did not prevent widespread
propagation of E. coli. However, it decreased their concentrations to less than 1 CFU/100 mL at
nodes with P > 20 m under PDCs. Interestingly, 1 mg/L chlorine residual at the outlet of the WTPs
confined the contamination to a much smaller area with P < 8 m (Figure 5.6 and Figure 5.7).

8.3 What is the public health risk associated to accidental intrusion under

sustained low/negative pressure conditions?

8.3.1 QMRA in drinking water distribution systems

Even though it is reported that deficiencies in the water distribution systems could lead to
waterborne disease outbreaks (Craun et al. 2010, Guzman-Herrador et al. 2015, Lindley and
Buchberger 2002, Payment et al. 1991, Payment et al. 1997), the potential risk from ingress into
the network is generally not integrated into the risk assessment of drinking water systems. In the
past decade, some studies have proposed using QMRA to evaluate the risk from intrusion events
in DSs due to transient low pressure events, main repairs or intentional contamination (Blokker et
al. 2014, Blokker et al. 2018, LeChevallier et al. 2011, Schijven et al. 2016, Teunis et al. 2010,
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Yang et al. 2011, Yang et al. 2015). However, there is no current QMRA analysis that models the
infection risk associated with sustained low/negative pressure events based on water quality
calculations using realistic hydraulic model under PDCs (i.e. PDA). Applying QMRA to drinking
water distribution system can be challenging as many factors must be considered such as the
location, concentration, and duration of contamination events as well as fate/transport of
contaminants and the likelihood of intake of pathogens by consumers drinking tap water (Besner
et al. 2011). To address these requirements, in Chapter 6, the improved QMRA framework
proposed by Blokker et al. (2018) was customized and linked with water quality calculations based
on PDA to assess the risk of accidental intrusion through leakage points due to sustained pressure
losses in a full-scale network. The improved simulation techniques for intrusion modeling that were

presented in Chapter 5 are incorporated into the QMRA framework (Figure 6.1).

8.3.2 Investigating the influence of different factors on the infection risk

variation

In Chapter 6, specific probability distributions from Blokker et al. (2018) were used in the QMRA
model to consider the consumers’ behavior by accounting for the number of glasses per person per
day, the ingested volume per glass, and the time of filling a glass. Then, for each specific
hydraulic/quality condition, the consumers’ behavioral variability was further investigated using
200 Monte Carlo simulations. Findings clearly show the importance of considering consumers’
behavioral variability. The results showed large variations (up to 55% increase) for the 1 h
PDCsl/intrusion on the first day (560 oocyst/L). During the three following days the variability
between maximum and minimum number of infected people was less. These results reveal the
importance of taking into account the uncertainty associated with consumers’ behavioral
variability. Larger differences on the first day (1 h intrusion) can be explained by the fact that the
nodal contaminant concentration varies rapidly with time. Therefore, the probability of drinking
contaminated water is more sensitive to the number of glasses per day and can be augmented
significantly when the number of glasses per day increases, in agreement with previous findings

(Blokker et al. 2018, Davis and Janke 2008, VVan Abel et al. 2014).

One of the advantages of coupling QMRA model with realistic PDA in this study was that we were

able to take into account the consumers’ behavior during PDCs. Demand availability was used to
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show the large impact of avoiding water consumption during low pressure events on infection
risk. This was done by modifying the kitchen tap use based on the demand availability (DSR=0 or
DSR < 5%) at each node for each person. Results showed a ~ 65% reduction in the number of
infected people on the first day of 1-h intrusion, if assumed that people did not drink water from
the kitchen tap at low-flow times (DSR < 5%) compared to not consuming only at no demand
times. Timely response to depressurization events is a challenge. Delays in issuing advisories to all
the system’s consumers are common and excepted to occur with sectorial loss of pressure events
that may go undetected. Therefore, our modeling results emphasize the need of public awareness
to avoid drinking water from the tap if the flow is very low. Such a simple initiative would be
effective in reducing the probability of infection risk due to PDCs in DSs and could be easily done
by utilities.

Modeling results for different durations of PDCs/intrusion (1, 10, 24 hours), showed that the
number of infected people was much lower for the shorter duration events (Chapter 6). A 1-hour
PDCs/intrusion could lead to lower number of infected people by 17-fold than a 24-hour event.
So that, over the 4-day period the maximum number of infected people (out of 200 Monte Carlo
simulations) was decreased from 1410, for the 24-hour scenario, to 502 and 84 people under 10
hours and 1 hour PDCsl/intrusion scenarios, respectively. The concentration of Cryptosporidium in
sewage was the same for all scenarios (560 oocyst/L). This reflects the larger intrusion volume

entering the network for the longer duration events (Figure 8.2).

For a fixed duration of intrusion (24 hours), the number of infected people increased by 235-fold
when the concentrations of Cryptosporidium in raw sewage varied from 1 to 560 oocysts/L. This
mainly points out the need of further improvement in estimating the concentration of contaminants
outside the pipes in future studies. Also, it reveals the risk of ageing sewer mains located close to
drinking water pipes. Previous QMRA studies associated with transient PDCs, showed virus
concentration was the third-highest ranked factor after coincidence of water withdrawals from
contaminated water, and the duration of negative pressure (LeChevallier et al. 2011, Teunis et al.
2010).

Applying the maximum dose-response relation increased the number of infected people by about

two times as compared to the median dose-response relation for all the concentration scenarios
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(1, 6, 26, and 560 oocysts/L). These differences in trends reflect the was observed in the study by
Blokker et al. (2014). The reason can be explained by the fact that the differences between median
and maximum relations at lower and higher doses. Therefore, the discrepancy between the median
and maximum probability of infection could change based on the range of calculated doses (World
Health Organization (WHQO) 2009).

Consumption of daily volume was more important than the timing of consumption in defining
infection risk. The sensitivity of the results to the consumption volume and number of glasses per
day per person showed that, for 24 hours intrusion, the infection risk was more influenced by the
consumption volume (from 300 mL to 1 L with fixed number of glasses), as compared to varying
the number of glasses (1, 3 and 10 for a constant volume). These finding are in agreement with
previous study by Davis and Janke (2008) showing that the quantity of ingested water is more
important than the timing of ingestion for 24 hours intentional intrusion. In general, the variations
were more noticeable when the number of glasses jumped from 1 to 3 than switching from 3 to 10
glasses. Previous studies also observed that 3 glasses per day can lead to higher infection risk
compared to the scenario that assumed the total daily intake volume was collected once a day
(Blokker et al. 2018, Van Abel et al. 2014).

8.4 What are the regulatory and management implications of the findings?

8.4.1 Can the intrusion events be detected by the standard E. coli sampling

protocols?

The goal of regulatory sampling is to provide comprehensive understanding of water quality and
ensure safe drinking water to consumers. E. coli is used in the regulations as a reference indicator
organism of potential contamination in the distribution systems (Federation of Canadian
Municipalities (FCM) and National Research Council (NRC-CNRC) 2004, United States
Environmental Protection Agency (USEPA) 2010). In Chapter 5, the temporal and spatial
distribution of E. coli using different types of disinfectants was evaluated and compared after 4, 9,
and 14 hours from the start of intrusion. For both disinfectants, after 4 hours from the start of
intrusion, while the contaminated water still was entering the network, high E. coli concentration

> 1000 CFU/100 mL could be found at or downstream of intrusion zones. In the chlorinated system,
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the number of nodes with positive for E. coli was very low after the end of intrusion. The limited
positive nodes in the presence of chlorine demonstrate the challenge of any confirmation of
contamination, unless samples are collected during the intrusion event at or downstream of the
intrusion locations. However, determining these optimal sampling locations and deploying rapidly
these areas for sampling at the right time may not be practical. The number of nodes was < 10
nodes after 4 and 9 hours after the end of intrusion (Figure 5.5).

In the chlorinated system, by the end of intrusion, E. coli was propagated to more nodes (826, after
9 hours) although at low concentrations (Figure 5.5). The probability of detecting positive E. coli
was estimated using a Poisson distribution at each node and each hour from the beginning of the
intrusion up to 20 hours. With this information, one can determine the best time and location for
sampling. In chlorinated system, for sampling volume of 100 mL, the nodal mean detection
probability of E. coli was more than 0.1 at 166 nodes in the first two 5-hour intervals (Figure
5.8). Our simulations offer a case study that can benefit the water utilities by allowing them to
improve their sampling schedules using numerical predictions targeting areas with a high
likelihood of detecting contaminants. With such an approach, negative results could be relied upon
to provide a stronger basis to lift or avoid a BWA. Very few studies have investigated the
effectiveness of existing statutory sampling protocols by using hydraulic modeling and simulations
of contamination events (Blokker et al. 2018, van Lieverloo et al. 2007). Both studies indicate low
detection probability of contamination using standard monitoring programs, even though they
assumed that E. coli propagated throughout the network as conservative species with no
inactivation. Our results are in agreement and show that the detection is even more challenging in

the presence of chlorine.

Regulations mandate zero E. coli per 100 mL volume of the sample (EPA Office of Environmental
Enforcement 2009). The selection of a reference volume influences the probability of detecting
E. coli. Large volume sampling, rather than the conventional 100 mL, has been used in field study
to increase the probability of detecting E. coli and total coliform in supply zones (Hambsch et al.
2007, Hargy et al. 2010). In the presence of chloramine, increasing the sampling volume by a factor
of 10 (1 L) improved the detection probabilities, especially in the first 10 hours after the intrusion
event is over (Figure 5.8 and Figure 5.9). During the second 5-hour period of post intrusion, the 75

percentile of the mean probability of detecting positive E. coli (for 2905 nodes that experience E.
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coli > 10-6 CFU/L at any time over the whole simulation) was increased from 2% to 15% by
augmenting the sampling volume from 100 mL to 1 L. Our findings agree with those from
Hanninen et al. (2003) who examined three waterborne outbreaks in Finland and observed that the
detection probability of E. coli and coliform was increased for larger volumes ( 1 to 2 L) using

membrane filtration.

8.4.2 Do we need a system wide BWA due to low/negative pressure events?

The main goal of a BWA is to protect consumers against potential microbiological risks (Health
Canada 2015). One of the objectives of this project was to look at the possibility of issuing sectorial
BWAs, instead of a system wide BWA, after events leading to sustained pressure losses.

DDA may lead to unjustified wide BWA. First, our results (Chapter 4) showed that DDA
overestimated the number of nodes and the extent of areas at risk of low/negative pressures.
Therefore, a more realistic approach under PDCs, i.e. PDA, should be used for predicting
low/negative pressure values as well as spatial clustering of theses nodes, which can affect the

boundaries of BWA zones.

BWA zones should not only be determined based on pressure values. Secondly, the spatial and
temporal distribution of E. coli across the network during and after 5 hours of intrusion event was
investigated in the absence and presence of different types and concentrations of disinfectant
residuals (Chapter 5). The results showed that contamination can be transported to the areas other
than the low-pressure nodes (> 10 m). On the other hand, contamination never reached some nodes
in low-pressure zones (< 10 m) (Figure 5.10). Therefore, the BWA zones should not only be
determined based on low/negative pressure nodes under PDCs, but also based on
intrusion/backflow locations, volumes, contaminant concentrations, the efficacy of disinfectant
residuals on the contaminant, and the fate and transport of contaminants that depend on the water

path during both pressure-deficient and normal operating conditions.

Spatial/temporal distribution of nodal risks for issuing sectorial boil water advisory. In Chapter
6, the spatial distribution of nodal infection risk by Cryptosporidium resulting from different
intrusion durations (1, 10 and 24 hours) showed that duration of the event is a key factor in defining

the areas subjected to BWA. Short duration of PDCs/intrusion (1 h) may not necessarily lead to
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system wide BWA as the sum of nodal infection risk over a vast area of the network is < 0.2 as
compared to 84 throughout the whole network (Figure 6.6). Furthermore, avoiding unjustified
system wide BWA will limit the burden to the consumers. However, it should be noted that our
finding only considers intrusion through leakage points. In the case of backflow from potential
cross-connections or intrusion form AVVs, the areas at risk may be changed. The location of
contaminants has a great impact on the extend of area receiving contaminates (Hart et al. 2019).
The temporal distribution of nodal risks, daily versus event, is investigated in Chapter 6 to
determine the duration of BWA and the impact of timely response on the public health risk. Data
showed that for 1 h intrusion event (started from 6:30 to 7:30 PM), if the preventive/corrective
action was delayed for 5 hours, it may lead to infection of up to 71 people. As compared to 99 for
the 4-day observation. At the end, the infection risk for different pressure zones (identified based
on nodal pressure during PDCs) at each day is calculated. Results showed that, on day 2 the number
of infected people for nodes with P > 15 m was still significant (6 people) indicating that
preventive/corrective actions cannot only be limited to the areas with low-pressure under PDCs. It
is in agreement with results reported in Chapter 5 for E. coli propagation throughout the network

in the absence of disinfectant or in the presence of chloramine.

The work presented here will benefit the water utilities by providing insight into when and where
to issue a BWA during PDCs to minimize both the areas affected by BWA and the adverse effects
of contaminant propagation in water distribution networks to ensure safe drinking water to
consumers. More simulations are required to investigate other types of PDCs, with different
durations and severities, to be able to provide more detailed guidance on the duration and extent of

pressure drops that require corrective/preventive actions.
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8.5 Project contributions

This project brought some original contributions to the field:

» First applications of multispecies water quality analysis based on pressure-driven hydraulic
analysis using the developed approach in this study (MSWQ-PDA) to a full-scale
distribution system (30,077 nodes).

» First estimation of intrusion volume under sustained PDCs by adjusting intrusion volumes,
and consequently contamination mass rate, at each node based on internal pressure values
using PDA and state of pipes (age/materials).

» Contribution to the improvement of available commercial tools.

* Development of several modeling techniques for more realistic simulation of intrusion
events using the existing tool such as the variation of decay constant of nth-order model
(Kintrusion Versus Knormat) in contaminated and non-contaminated zones.

» Demonstration that BWA cannot be determined only based on pressure criteria.

» First demonstration of modeling E. coli intrusion for confirmation and clearance sampling
in the presence of disinfectant residuals.

» Probability of detecting E. coli calculated at each node at different times, during and after
intrusion with different sampling volumes. The results can be used to reevaluate/improve
the confirmation/clearance sampling strategies in terms of timing, location, and volume
sample.

» Integration of the consumers’ behavior during PDCs into the QMRA model by modifying
the kitchen tap use based on demand availability during PDCs using PDA.

» Daily nodal infection risk maps for issuing timely boil water notices and identify areas to

prioritize for corrective actions

8.6 Study limitations and sources of uncertainties

Validation our modeling results with field data in complex operating water distribution systems is
not feasible as creating intentional sustained PDCs in the network and extensive monitoring would
be required. In this study, it is attempted to reduce the uncertainties and improve assumptions in
modeling accidental intrusion and propagation of contaminants under sustained PDCs lasting few

hours.
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There are however several limitations and sources of uncertainties in this work, which can be

categorized into three groups:

A) Hydraulic sources of uncertainty

B)

Improved calibration of water quality model, taking into account nodal demand and residual
disinfectant data would be needed to validate simulations.

Field validation of PDA pressure estimates and more investigations on the pressure-demand
relationships and the parameters in these equations to more accurately model the system
behavior under substandard pressure conditions.

Considering the difference between the elevation of the node in the model and the taps at
different floors as the pressure may become zero at the elevated taps before the pipe internal
pressure becomes zero.

Investigating the impact of the level of skeletonization of the water distribution system
model on hydraulic and water quality results.

The impact of different factors such as the shape of leakage orifice, soil hydraulics and the
spatial distribution of leaks on the estimation of intrusion volume are not considered.
Evaluation if the discharge coefficient in the case of exit conditions (leakage) can be

represented by entry conditions (intrusion).

Water quality sources of uncertainty

The methodology used to attribute demand to specific nodes brings uncertainty in linking
water quality to a specific node.

Accounting for the variations of intrusion decay in time and space. Assuming the same
intrusion decay for the contaminated zones regardless of dilutions may underestimate the
chlorine residuals.

More investigation on the selection of the disinfectant and microbial kinetic model and the
decay constants on both bulk and biofilm.

Investigating the impact of complete mixing and plug flow on the water quality throughout
the network.

The concentration of disinfectant consuming compounds and microorganisms outside the

pipe are not known and could vary throughout the year.
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C) QMRA sources of uncertainty

* Investigating more accurately the impact of a BWA on the infection risk. The demand at
the nodes under advisory should be set to zero in the hydraulic model. The demand
variations can influence the risk by affecting the hydraulic and water quality results.

» Investigating the impact of not considering the dispersion effect on the infection risk
associated to intrusion events under sustained pressure losses.

» More investigation is needed on the selection of the dose-response equation and its
contribution to the uncertainty.

* There is a lack of data on the consumption patterns, volume consumed and number of
consumption events per day

* The timing of the intrusion events had a significant impact on the infection risk and should

be investigated further.

In this study, due to lack of data, some conservative assumptions are made during simulation such
as considering raw sewage as the contaminated water surrounding the pipes and not considering
the impact of soil characteristics outside of pipelines when estimating intrusion flow rates. But, the
presented approach can be used with variable input data when available. Nevertheless, the
conservative modelling assumptions in this study demonstrate the value of numerical tools
combined with quantitative microbial risk assessment models to quantify risk and assist regulators
and utility managers. Further analysis of uncertainty can be useful to determine the impact of

different assumptions on the modeling results.
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CHAPTER 9 CONCLUSION AND RECOMMENDATIONS

This research project sought to assess the infection risk associated with intrusion of contaminants
into drinking water distribution systems and predict changes in water quality as the result of
sustained low/negative pressure conditions by proposing improved modeling tools/approaches. It
was intended to provide insights to decision-makers for an appropriate and timely response to
sustained PDCs.

Modeling the studied full-scale distribution system (> 30,000 nodes) under various severities of

sustained pressure deficient conditions, showed that DDA:

e Cannot realistically identify the areas at risk of low/negative pressures, which can lead to
system wide BWA that may not be justified.

e Can overestimate the risk of intrusion and the contaminated water ingress volume,

e Cannot define the nodes with low or no-demand during a system failure, which becomes

more important for fire-flow analysis and infection risk analysis.

Therefore, a methodology was proposed that allows for the coupling of EPANET-MSX with PDA
results (MSWQA-PDA) to enable simultaneous simulation of multiple water quality parameters
and hydraulic conditions under sustained pressure losses. Due to simulated sustained PDCs, and

without any intrusion event taking place, we found that:

e Water quality was generally poorer (i.e. lower chlorine residuals and higher water age and
THM) under simulated sustained PDCs compared to normal conditions.

e The differences between water quality parameters during pressure-deficient and normal
operating conditions were more pronounced for groups of nodes with low/negative pressure
(<0 or 15 m) compared to the higher-pressure zones (> 15 m) under PDCs.

e The duration of sustained low-pressure events can have a considerable impact on the water

quality variations compared to normal conditions (continuous versus 5 hours).

MSWQA-PDA was used to model fate and transport of contaminants by taking into considerations
the effects of both hydraulic variations during PDCs and intrusion demand on the estimated
disinfectant concentrations. In the simulations, the intrusion volumes, and therefore contaminant

mass rates, were adjusted for the state of pipes using the nodal leakage demands of the calibrated
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model, by help of a proposed approach, as well as the internal nodal pressures under PDCs using

PDA.

The presented methodology allowed us to model, for the first time, the fate and transport
of E. coli following intrusion events resulting from sustained PDCs by considering the
interactions between E. coli and disinfectant residuals based on realistic PDA.

For 5 hours PDCs/intrusion scenario, chlorine residuals limited the contaminated zones and
E. coli propagation is limited to lower pressure areas based on the pressure values under
PDCs. While, without disinfectant, E. coli transported to higher-pressure zones (P > 15 m).
For 5 hours PDCs scenario, and in the absence of any ingress of contaminated water, some
chlorine is decayed during PDCs because of increase of water age. However, a typical decay
was observed with intrusion-associated demand at specific areas. This indicates that online
chlorine sensors, if installed at optimal locations, might help in detecting intrusion events
and contributed to a timely response to a sustained depressurization event. However,
monitoring the residuals cannot be used as an option to detect intrusion events in the
chloraminated system.

During 5 hours intrusion/PDCs, loss of residuals persisted for some time after the pressure
was back to normal and required some time for chlorine residuals to be stabilized again.
For continuous PDCs/intrusion scenario, Cryptosporidium was transported to higher-
pressure areas based on the pressure values under PDCs (P > 15 m).

Pressure differences were < 1 m using different pressure-demand relationships (Wagner
and Tanyimboh); however, it led to significantly higher intrusion flow rate with Wagner
equation (48%). In this comparison, the orifice diameter was considered as a fixed

parameter (1 mm) at all the nodes, regardless of the state of pipes.

Concerning the question as if regulatory compliance E. coli sampling protocols can be used to

detect the intrusion events, we estimated the temporal and spatial probability of detecting E. coli
and found that:

In the chloraminated systems, targeted spatial-temporal sampling with high volume will

increase the probability of detecting E. coli and will assist in avoiding false negatives.
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e The probability of detecting E. coli by sampling in the chlorinated system is extremely low
unless sampling is immediately directed to the targeted sites. For simulated scenarios, the
spatial and temporal maps of E. coli suggest that a timely deployment for effective
sampling is unlikely in the presence of chlorine.

e Following pressure losses in the network, using standard monitoring programs to confirm
contamination or verify clearance may lead to false negatives as sampling is likely to be

conducted at the wrong sites and too late

e Appropriate numerical tools can provide valuable insight into the regulation to revise
sampling programs in terms of timing, location and sample volume for more reliable
confirmation and clearance sampling. This can be done by taking into account the duration,
intensity and locations of intrusion events caused by the pressure drop as well as the

efficacy of disinfectant residuals in the network on the related contaminant.

The quantification of the infection risk associated with the occurrence of sustained low/negative
pressure events in drinking water distribution systems using the improved tools is an important
contribution of this thesis. To this aim, the advanced QMRA model developed by Blokker et al.
(2018) was customized and coupled with the water quality calculations based on PDA by taking

into account the consumers’ behavior under PDCs. In summary, we conclude:

e Varying the sewage concentration surrounding buried water mains in the model (1 to 560
oocysts/L) led to increase in the number of infected people by 235-fold, for 24 hour
intrusion. Therefore, selectively choosing site-specific outside contamination concentration
can highly improve the infection risk estimations. Event of 1 h led to lower numbers of
infected people by 17-fold as compared with a long duration 24-hour event. The nodal risk
maps confirm that duration is a key factor to identify the boundaries of BWA or corrective

actions.

e Temporal infection risk distribution for the 1 h system wide event showed that delaying
response for 5 hours could lead to infection of up to 71 people. Such a delay is highly
probable.
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Considering the consumption event for consumers at nodes with DSR > 5% (instead of
DSR > 0) during low/negative pressures led to a sharp decrease of 65% in the number of
infected people at the day that intrusion occurred (1 h). Informing consumers not to drink
water when pressure is low (low flow at the tap) is a simple and effective measure to lower

risk.

This project can offer insight into the development/improvement of regulations or practical

recommendations for managing drinking water distribution systems under sustained pressure

losses and minimize the adverse public health effects. This project also highlighted new

questions/ideas for future research:

Apply an efficient optimization approach for sensor placement to detect the contamination
due to different types of low/negative pressure events in drinking water distribution systems

using improved hydraulic and water quality models.

Use the improved modeling techniques in this study to assess the risk associated with
backflow of contaminated water from cross connections during sustained pressure losses
using the QMRA model. In addition, to estimate the critical duration of pressure events and
related pressure ranges required to contaminate the distribution system from backflows
through cross-connections. It is worthy to consider, at the same time, the cost of necessary

infrastructures and their maintenance for preventing huge and dangerous backflows.

Evaluate the public health risk for system contamination by other types of microorganisms
(e.g. Giardia, and virus) and the efficacy of disinfectant residuals on reducing the infection
risks associated to accidental intrusion due to sustained PDCs.

Use improved numerical tools to find the proper locations of chlorine booster stations and
related chlorine concentrations to minimize the health risk after any intrusion event due to

sustained pressure losses.

Review guidelines for issuing boil water advisories in terms of duration and intensity of

pressure losses by running more cases using the improved numerical tool.

Investigate the implementation of district metered areas for the studied network, based on

the modeling results, to limit the extent of the BWA areas and avoid system wide BWA.
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e Even though PDA provides a more realistic simulation of the pressure losses compared to
DDA, but the selection of an appropriate PDRs and the parameters in these equations using

field data can improve the PDA predictions, especially in the case of intrusion modeling.
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Pressure Demand Relationship and the selection of parameters
Tanyimboh equation can be presented as follows:

avl _ _req exp(a; + BjH;)
q; " = qj Eqg. A-1
1+ exp(oj + BjH))

req
j

where g?V!

;" and q

are available and required demand at node j, respectively, H;, is available

head, and o and (3j are parameters defined using field data. In the absence of field data, they can

be estimated as follows (Tanyimboh and Templeman 2004, 2010):

11.502 co A
i =T d i q- A
H]- es _ Hjmln '
—4.595H;% — 6.907H;™™
o = Eq. A-3

dees _ Hjmin
in which Hjrrlirl and dees are minimum and desired pressure head, respectively. One advantage of
the Tanyimboh equation and its derivative is that they do not have discontinuities between zero
and partially supplied zones and between partially and fully supplied zones (Tanyimboh and
Templeman 2004, 2010). In a PDR, the desired pressure head is the value below which the nodal
demand cannot be fully supplied. Actually, this is a unique value for each node and network and



182

its exact value should be determined from field measurements (Ozger 2003). As this task is not
often practical, this critical value is usually approximated for the system using existing guidelines.
For example, according to Ministere de I'environnement du Québec (2002) and other similar
guidelines (Ten States Standards 2012), the pressure at any point in the distribution network should
never fall below 14 m (20 psi) at ground level when the network is subjected to a maximum daily

demand and fire flow.
Equations related to water quality modeling

The EPANET-MSX software uses a Lagrangian transport algorithm to solve the advection-reaction

equation:

% 8= ey Eq. A4

where c; is the concentration of a certain species in pipe i as a function of time t > 0 and distance
X, v; is the flow velocity in pipe i, and f(c;) accounts for reactions between various species. Axial
dispersion is ignored and it is considered that the mixing of fluid at pipe junctions is complete and
instantaneous. In the Lagrangian transport algorithm, the movement and reaction of constituents
are tracked in segments which are transported through network pipes at the same velocity as the
bulk fluid (Shang et al. 2008). EPANET-MSX can model multiple species as well as the
interactions between them in both the bulk flow and at the pipe wall by solving a set of differential-
algebraic equations (DAES) that are supplied by the user. A complete description of multi-species
water quality modelling and the numerical integration methods for solving the system of DAES can

be found elsewhere (Shang et al. 2008, Uber et al. 2004).
Modelling water age, chlorine decay and THM formation

The reaction equations used to simulate water quality are indicated in Table A-1. Water age is
modeled by a zero-order reaction with the reaction rate coefficient equal to one. To simulate
chlorine decay, a first-order decay model was selected due to its simplicity and wide use. The
overall chlorine decay is considered to occur due to reactions in the bulk flow and at the pipe wall.
A summary of bulk and overall chlorine decay constants for different test conditions can be found

in Brown et al. (2011) and the values used in this study are indicated in Table A-1. A constant
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chlorine residual of 1.5 mg/L was considered at the outlet of each WTP. Hua (2000) investigated
the THM formation and its variation with different water quality parameters. This author noticed
that THM formation is mostly related to chlorine consumption due to reaction with organic matter
in water and therefore proposed Eg. A-7. This equation is used to model THM formation in the
present study. The constant K. represents the proportion of the chlorine bulk demand that leads to
THM formation (Brown 2009). K. was set to 41 pg/L per mg/L free Cl,, based on the literature
(Boccelli et al. 2003, Courtis et al. 2009).

Table A-1 Reaction equations of simulated water quality parameters.

Parameter ~ Reaction Constant values
Water age R = k; (zero-order reaction) Eg. A-5 k;=1
i k = kp, + ky,

Chlorine  —= = —kC (first-order reaction) Eq. A6 kp=0.02 h-1 (0.48 day™),
kw=0.01 h' (0.24 day™)
Co = 1.5 mg/L

THM THM = K,.(C, — C) + THM, Eq. A-7 K. = 41 pg/L per mg

/L free Cl,

Note: R is the instantaneous rate of reaction, k; is the reaction rate coefficient, ky, is the bulk decay
constant (h1), k,, is the wall decay constant (h™%), k is the overall decay constant (h'!), THM, is the
initial THM concentration at t=0, C, is the initial chlorine concentration at t=0, C is the chlorine
concentration (mg/L), and K. is an indicator of the THM productivity of the water, (ug/L of THM

per mg/L of free chlorine).
Satisfaction of required demand for different pressure-deficient scenarios

For the nodes located in zone 1, median DSR showed large variations (from 22% to 99%)
depending on the hydraulic grade at the only working WTP, while the 75" percentile remained
constant (100%), and the 25" percentile changed from 1% to 64% (Figure A-1). For the consumers
in zone 2, the differences in median DSR between various pressure-deficient scenarios were less
than 1%, while the 25" percentile changed from 27% to 99%. Zone 3 generally showed less

variation in DSR with the change of hydraulic grade at the sole supply point (WTP 3).
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Figure A-1 Percentage of demand satisfaction for different pressure-deficient scenarios.
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Numerical modeling

The Tanyimboh and Templeman (2010) pressure-demand relationship is selected for the pressure-
driven model (WaterGEMS V8i, SELECTseries 5) (Bentley Systems 2014). The desired pressure
head in this equation is 15 m (21 psi) at all nodes. Nodes with pressure heads equal to or lower than
zero have no demand available. Demand satisfaction ratio (DSR) at each node is the ratio of the
demand that can be supplied under PDCs to the corresponding required demand. Pressure values
under DDA and PDA are compared. Hydraulic time steps of 30 minutes and water quality time

steps of 30 seconds were used.

To simulate chlorine decay the simple first-order model is used:

dc
a _ _ Eq. B-1
= k¢ q

where C is the disinfectant residual concentration (mg/L), and k; is the chlorine decay coefficient

(h™1). For chloramine, the second-order model is used as follows:

dcC
— = —k,C" Eq. B-2
dt 2 a
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in which n is the order of power law decay and k., is the chloramine decay coefficient (L/mg - h).
Here, n is assigned a value of 2 (LeChevallier et al. 2011). For both disinfectants, the impact of
reactions with biofilm, corrosion materials, etc. on disinfectant residuals are ignored. The Chick-
Watson model is applied for the inactivation of E. coli (Betanzo et al. 2008):

P
— = —k.CP Eq. B-3
dt P f

where P is the E. coli concentration (CFU/L) and k,, is the inactivation constant (L/mg - h).

For the nodes prone to intrusion (internal pressure head less than 1 m), the maximum calculated

Cieak; are shown in Figure B-1.
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Figure B-1. Maximum estimated C,.,; at each of the 74 nodes prone to intrusion used for

calculating intrusion flow rates.
Intrusion flow rates and pressure values at the Intrusion Nodes

Figure B-2 shows the corresponding pressure values for potential intrusion nodes and intrusion
flow rates. The variation of intrusion flow rate does not follow the pressure trend because of the
variable leakage constants. The intrusion flow rate varies from 0 to 0.4 L/min per node (Figure B-
2).
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Figure B-2. (a) Pressure values at potential intrusion nodes, and (b) corresponding intrusion flow

Water Quality Variations without Intrusion Effects

Figure B-3 shows distribution of water age and chlorine residual throughout the network (grouped

based on node pressure under PDC) before and after the pressure drop without any intrusion event.

The results illustrate that it may take a while, more than 10 hours at some nodes, for the water

quality to stabilize again following the 5-hour pressure loss. The results show that the variations of

median water age and chlorine residual values are generally higher for nodes with pressure lower

than 15 m, as compared comparing to nodes with pressure greater than 15 m. The reason of these

variations is only due to hydraulic conditions, for example changing water paths. This means that

even without considering the impact of intrusion demand, pipe surfaces and corrosion by-products,
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lower chlorine residuals may be found in some areas during PDCs. For the studied PDCs, there is
a sharp decrease of the median chlorine concentration from 0.8 to 0.6 mg/L at nodes with pressure
less than 1 m (Figure B-3, b) reflects the increased water age (Figure B-3, a). Losses of chlorine
residuals may decrease the level of protection against intrusion, especially considering that the
nodes with lower pressure generally experienced higher losses compared to normal conditions.
Another approach to interpret residual losses is to examine the impact of the PDCs on the ability
to maintain a minimum reference chlorine residual across the DS. North American practice
prescribes the maintenance of a measurable disinfectant residual (> 0.2 mg/L) at all points of the
DS to maintain a barrier against microbial contaminants (Propato and Uber 2004). It is interesting
to note that chlorine residual are below 0.2 mg/L at 2,099 nodes even under normal operating
conditions for the studied model (Figure B-3, b). Less than 1% (6 nodes) of these nodes have
pressure less than or equal to 1 m, about 6 % (123 nodes) have pressure less or equal to 15 m but
more than 1 m, and about 94 % (1,970 nodes) of them have pressure more than 15 m under the
PDCs. At the end of the event, five hours after the start of PDCs (9 PM), a similar number of nodes
(1993) have chlorine less than 0.2 mg/l while among them, less than 1% (4 nodes) have pressure
values lower than or equal to 1 m and about 94 % (1877) have pressure more than 15 m. When
using chloramines, the decay is slower and all the intrusion nodes (P < 1 m) experience a residual
of higher than 0.4 mg/L (Figure B-3, c).
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categorized by pressure values under PDCs (at 16:00) with respect to time; Time intervals are not
equal; Square: Median; Box: 10%-90%; Whisker: Min-Max.
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Propagation of E. coli throughout the Network

Figure B-4 shows the spatial distribution of E. coli in the presence of chloraminated 9 hours after
the end of intrusion events. The maximum E. coli in the color map is limited to 1 CFU/100mL for
a closer examination of lower concentrations. Cyan in this map shows very low concentrations (<

0.01 E.coli/100mL).

E. coli CFU/ 100mL

Figure B-4. E.coli distribution at 06:00 day 2 in chloraminated system; Concentrations higher
than 1 CFU/100mL are demonstrated in red.
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Accidental intrusion modeling

Pressure values resulted from PDA are used to define the intrusion nodes and intrusion volumes.
Tanyimboh and Templeman (2010) equation is selected as the pressure-demand relationship. It is
assumed that when nodal pressure head is more than 15 m the demand is completely satisfied and
at nodes with pressure head less than the nodal elevation the demand cannot be supplied at all. For
calculating the intrusion volume, the negative pressure values are calculated using the method
presented in Hatam et al. (2018a). However, if one uses the recent version of WaterGEMS the issue
described for the version used in our previous study regarding reporting negative pressure as zero

is solved.

To simulate time-varying conditions, an extended period simulation is carried out for 336 hours.
Normal hydraulic operating conditions are simulated for the first 240 hours to stabilize the water
quality. Then, the unplanned shutdown of one WTP is simulated. The hydraulic and water quality

time steps are 30 minutes and 30 seconds, respectively.
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The orifice equation is applied to calculate the intrusion flow rate at each node using the nodal
pressure value from PDA when the pressure head above the pipe is below 1 m. In this equation, for
each node, the product of discharge coefficient and area of the orifice is calculated based on nodal
leakage demand of the calibrated model under normal operation conditions. For each intrusion
node, the contamination mass rate is calculated based on the intrusion flow rate at the node and the
concentration of Cryptosporidium outside the pipe. More details on accidental intrusion modeling
can be found in Hatam et al. (submitted). For the studied scenarios, after implementing the intrusion
flow rates into the hydraulic model, the maximum nodal pressure variation was less than 0.006 m.

Therefore, there is no need to recalculate the intrusion volumes based on the adjusted pressures.

In this paper, the intrusion duration concurs with the time of pressure loss and contaminant

intrusion stops once the pressure is back.
Consumption time

Probability of consumption of contaminated water depends on the time of filling a bottle or glass
from tap even if the water is not consumed immediately. In this paper, the terms of consumption
time and filling time are used interchangeably. Figure C-1 shows the modified kitchen tap use (in
blue) that is set to zero at the time when there is no demand available under PDCs to account for
demand satisfaction as computed by PDA.
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Figure C-1. Probability of filling a glass or bottle for consumption over the 2 days. Consumption
at kitchen tap use (Blokker et al. 2018) (orange, square); modified kitchen tap use for this study
for the residential nodes with no available demand for consumption based on PDA results at days

1 and 2 for the 10 hours scenario (blue, circle); days 3 and 4 are the same as day 2.
Nodal Population

Population spatial distribution of 400,000 population supplied by the three WTPs in the studied
network is demonstrated in Figure C-2. The minimum person at a node is one and the maximum is
1352. The number of people on a node is determined only based on residential demand as other
demand types are usually used for other purposes such as processing, cooling or cleaning. Also,
for example for school it happens that children bring bottles of water from home. Therefore, in this
study only the residential exposure from tap water is investigated. To obtain the number of people
at each node, the daily residential demand of that node is divided by the daily average demand per
people. The daily average demand is estimated by dividing the total residential demand of the
studied network by total population (400,000). For population calculation, the nodal demand under

normal operating condition is used and the daily pattern is considered.
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Figure C-2. (a) Geographical distribution of population, and (b) histogram of number of people at

each node; Exclude nodes with zero population.
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One-hour event with daily demand patterns

The cumulative probability distribution of the number of infected people for 200 random
consumption behaviors and the spatial distribution of risky areas are shown in Figure C-3 for one-
hour event with daily demand patterns in the hydraulic model.
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Figure C-3. The probability distribution of the number of infected people during 4 days of
simulation; 200 Monte Carlo simulations; 1 hour intrusion (a). The spatial distribution of the
nodal risk corresponding to consumption event with F(x) =1 (b). Daily pattern in the hydraulic

model.
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Pressure distribution under PDCs

Geographical distribution of nodal pressure is demonstrated in Figure C-4. Nodes with pressure

values less than 1 m are the nodes prone to intrusion in this study.

Pressure (m)
<=1

(25, 30]
(30, 35]
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Figure C-4. Spatial distribution of pressure using PDA under low/negative pressure event, at 7:00
PM.
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APPENDIX D DISCUSSION ON ISSUES OF REPORTING
NEGATIVE NODAL PRESSURE VALUES AS ZERO IN PDA
MODELS

Lee et al. (2015) have claimed that the existing tools for preforming PDA may produce
unacceptable results such as total head reverse occurrence. They have demonstrated this problem
by modeling two simple networks. In both networks, they have shown that at some pipes the flow
direction is from lower total head to higher total head. However, as the authors have also mentioned
this is not theoretically possible. Therefore, they tried to resolve this problem by proposing a
modification technique. However, the suggested methodology needs change in the system
reconfiguration and it would be difficult and time consuming for large distribution system and

more complicated in the case of EPS.

Negative pressure values were not allowed in the PDA model used by Lee et al. (2015). In the
following, we have demonstrated that this limiting assumption can be the reason of total head
reversal problem in the PDA model. Table D-1 demonstrates the hydraulic results, based on PDA,
for the same networks and the same pressure-deficient condition defined in the authors’ paper (Lee
et al. 2015). Columns 4, 6 and 8 (in both tables) are our simulation results when negative pressures
are considered. In column 6 of Table D-1, the total head at node 3 (72.45 m) is less than node 2
(78.48 m) which is consistent with flow direction. While, column 7 (the results from discussed
paper) indicates that flow direction does not match total head differences between nodes 2 and 3.
Same explanation holds for node 2 and 3 of network 2 (Table D-2). These results reveal that when
negative pressure values are considered there would be no total head reversal problem, which was
reported as a deficiency for the PDA model in Lee et al. (2015). This also eliminates the need of
applying the proposed modification technique by the authors, for PDA models, in which changing
the configuration of the system was required. Also, the results underline the importance of
improving PDA models by allowing negative pressures; otherwise the assumption of not
considering below zero pressure may lead to some misinterpretations. Moreover, negative pressure
values may become important during modeling the risk of intrusion events in distribution systems,

and estimation of intrusion volume and health impact associated with low/negative pressure events.
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Table D-1. Modeling results for network 1 under abnormal condition (pump outage).

Available demand

Node | Elevati diﬁ;ﬁ ; (LJs) Total Head (m) Pressure (m)
ID on (m) (L/s) This | Leeetal. | This | Leeetal. | This Lee et
study 2015 study 2015 study | al. 2015
Junc2 78 3 0.52 0.53 78.48 78.47 0.48 0.47
Junc3 80 3 0 0 72.45 80 -7.55 0
Juncd 20 3 3 3 70.78 70.78 ]50.78 | 50.75
Juncb 0 3 3 3 70.32 70.32 | 70.32 | 70.28
Junc6 20 3 3 3 70.78 70.78 ]50.78 | 50.75
Junc? 0 3 3 3 70.32 70.32 | 70.32 | 70.28

Table D-2. Modeling results for network 2 under abnormal condition (nodal demand is increased

at Junc2).
_ Base Available demand Hydraulic grade Pressure head

Node | Elevation demand . (L/s) . (m) _ m)

ID (m) (LJs) This Leeetal. | This Leeetal. | This Lee et

study 2015 study 2015 study | al. 2015

Junc?2 33 14 9.66 9.66 40.14 40.14 7.14 7.13
Junc3 42 2 0 0 39.69 42 -2.31 0
Juncd 10 2 2 2 39.65 39.65 29.65 | 29.64
Junch 10 2 2 2 39.46 39.46 29.46 | 29.44
Junc6 0 2 2 2 39.45 39.46 39.45 | 39.44
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APPENDIX E IMPACT OF THE CUMULATIVE IMPACT OF
INGRESS ON CHLORINE DEMAND DURING EXTENDED PDCS

The cumulative impact of chlorine demand for two intrusion nodes is shown in Figure E-1 for a
simple situation where node (b) is located downstream of node (a) with a travel time of 77 minutes
between the nodes during the PDCs. As the travel time is shorter than the duration of the simulated
PDCs, the cumulative effect of the chlorine loss can be seen distinctly at the down-flow node.
However, in the case of extended travel times between nodes and flow reversal after NOCs are
restored, such trends may not be seen at all nodes. Clearly, the intrusion duration is a key factor to
determine the extent of chlorine decay, affecting the ability to maintain minimum chlorine residuals

after intrusion.

For health risk modeling of intrusion during negative pressure transients, some researchers have
proposed modeling a single intrusion node at a time, establishing system responses and integrating
adjusted random virus concentrations in intrusion water in the hydraulic and water quality models.
Then, all separate system responses are summed at each node by assuming the operational
conditions remain the same in the system and the intrusion flow rate is small compared to the pipe
flow rate at that node (LeChevallier et al. 2011, Teunis et al. 2010). For linear superposition to be
valid, it should be assumed that the decay Kkinetics are first-order and that hydraulics of the network
are known (Boccelli et al. 1998). These assumptions may not hold for extended low-pressure
conditions as modeling each intrusion node separately cannot consider the cumulative effect of
chlorine losses at down-flow nodes, which is shown in Figure E-1. Moreover, in the simulated
sustained PDCs, the impact of intrusion flow rates on both hydraulic and water quality of the
network is considered, as intrusion flow rates may be considerable compared to some pipe flows
at intrusion nodes. In addition, selectively increasing the decay based on the presence of

conservative species is more realistic.
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Figure E-1. (a) Change of water path during PDCs; all the nodes are intrusion nodes (b) Chlorine

residuals variation due to PDCs at nodes a and b with and without intrusion (travel time of 77

minutes between nodes).



