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Collaboration or Funding: Lessons from a Study of Nanotechnology 

Patenting in Canada and the United States 

Leila Tahmooresnejad1, Catherine Beaudry2* 

 
Polytechnique Montréal, Montreal, QC, H3C 3A7, Canada 

Center for interuniversity research on science and technology (CIRST) 
 

Abstract 

This paper is concerned with how government research funding and collaboration between 
researchers affect academic technological production in the context of nanotechnology in Canada 
and in the United States. We use the co-invention and co-authorship networks of scientists to build 
indicators of collaborative behaviour and investigate whether the nature of the network plays a role 
in the academic technological productivity and quality. Results suggest that technological output 
has the potential to offer governments useful guidance concerning the effectiveness of academic 
grants and collaboration in the United States and in Canada. This paper provides evidence that the 
position of researchers in both co-invention and co-publication networks does influence 
technological productivity and quality.  

Keywords: Research funding, Academic patents, Collaboration, Nanotechnology 

1 Introduction 

The rapid increase in academic patenting raises issues regarding the development of new 

technologies. Universities, as an important source of knowledge, traditionally contribute to 

solving research problems and publications, but in recent decades, universities have been 

involved in patenting and supporting industrial innovation (Lawson, 2013). Recent 

development in relationship between university and industry, especially the growth of 

university patenting has attracted considerable attention over past decades. In 1980, the 

passage of the Bayh-Dole Act in the United States (US) removed patenting restrictions for 
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universities and provided greater flexibility for university licensing agreements, and 

consequently, the number of academic patents has dramatically increased (Siegel et al., 

2003). Bayh-Dole Act resulted in establishing technology transfer offices in universities to 

identify the potential commercial interest in exploiting and licensing the results of 

university research. In addition to being a trigger to re-evaluate the role of universities in 

society towards a multi-faceted and powerful knowledge transfer organization (Grimaldi, 

et al. 2011).  

Nanotechnology has been widely considered as one of the leading drivers of future 

economic development and has been of particular interest for national governments over 

recent years. Most countries have greatly strengthened their nanotechnology R&D 

programs and have given nanotechnology research a higher priority in their strategic 

economic planning (Dang et al., 2010; Pandza and Holt, 2007 ; Shea, 2005). Academic 

research has a strong role to play in the early stages of research program particularly in 

emerging knowledge-based technologies (Aghion et al., 2008), i.e. when the technology is 

not yet mature or market-ready. 

Because of the large amount of investment in nanotechnology, the question of whether this 

substantial investment in nanotechnology research enhances technological innovations 

emanating from universities or only generates scientific output gains is a key issue here. 

Understanding the impact of funding is critical as it is not trivial that such government 

expenditure is effective. An efficient allocation of public funding requires identifying the 

impact of receiving government grant on the subsequent research output. We need more 

evidence to find out whether such researchers are likely to be more productive. This paper 

aims to find to what extent government research funding influences academic patenting in 

the field of nanotechnology in Canada and the US.  

Paull et al. (2003) indicated that government investment plays an important role in the 

development of emerging technologies that are risky and need long-term research. For 

instance, the US has created the first major investment trend through the funding of the 

National Nanotechnology Initiative (NNI) to benefit from this new technology. Initiatives 

such as the NNI have created a new wave of government-funded research and have 

provided a proper base for nanotechnology development. The cumulative investment in 
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NNI amounted to almost $21 billion over the period 2001 to 2015 (NNI, 2014).  Roco 

(2005) declared that accordingly many countries have followed suit and substantially 

increased investment in nanotechnology in recent years.  

Canada has similarly launched various government-funded programs to support 

nanotechnology development: examples of federal research funding are provided via 

organizations such as the Canada Foundation for Innovation (CFI) and the National 

Research Council (NRC). In addition to the classic grant awarding organisations such as 

the Natural Sciences and Engineering Research Council (NSERC) and the Canadian 

Institutes of Health Research (CIHR), the National Institute for Nanotechnology (NINT), 

established in 2001, operates as a partnership between the NRC and University of Alberta 

and was jointly founded by the Government of Canada, the Government of Alberta and the 

University of Alberta. The considerable Canadian federal investments, and the lesser 

provincial and private sector investments earmarked for nanotechnology helped to spur 

R&D, attract leading researchers and facilitate the work of local communities of nano 

researchers in Canada (Hu et al., 2011; Steele, 2008).  

These nano researchers generally work in well-connected collaborative teams. In the last 

decades, there is more focus on formation of research collaboration and scientific networks. 

Academic researchers tend to participate in teams when they receive federal funding and 

their research would be benefited from new collaborations and may increase the likelihood 

of good quality and quantity of their research output. Hence, in order to advance knowledge 

in economics of science, technology and innovation, we need to examine academic 

research collaborations linking scientists to one another in a scientific environment. This 

paper explores the impact of a researcher’s position in networks on technological activities 

and investigates whether the nature of the network plays a role in the academic 

technological productivity and quality. Much attention has been paid to university 

patenting in recent years and its interaction with university-industry collaborations is of 

great interest (Geuna and Nesta, 2006; Lissoni, 2009; Murray, 2004). Our paper focuses 

on this collaborative behaviour of researchers and compares its effect with that of funding 

on technological output. While this study concentrates on an important field as the 

technologically advanced world has been considered it to be the future (Basely et al. 2008; 

Naschie, 2006), it provides direct insight into the scientific and innovative relationships 
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between scientists at the same time, something that has not been considered in previous 

studies. 

A complementary line of study examines this relationship in the US and Canada. The US, 

being one of Canada’s major collaborative partners, there is a high occurrence of co-

invention patents between the two countries. A study of 12 foreign patenting countries in 

the USPTO by Marinova and McAleer (2003) shows that the US ranked first and Canada 

ranked fifth in terms of the number of nanotechnology patents between 1975-2000. Given 

the breadth of potential applications and significant belief in the potential of 

nanotechnology to transform economy and society, Canada has followed the US and 

established nanotechnology initiatives to take advantage of innovation evolution in 

nanotechnology. Wong et al. (2007) ranked Canada in the 6th position amongst the top 10 

inventor countries for nanotechnology patents between 1976-2004. In addition, they also 

found that Canada had the largest improvement in average citations received per patent 

between 2000-2004. In assessing nanotechnology patents, Chen and Roco (2009) 

demonstrated that Canada continued to rank in the top 10 nanotechnology assignee 

countries in 2005-2006.  

Using patent data from the United States Patent and Trademark Office (USPTO) and other 

funding databases, this paper makes three useful contributions to prior studies. First, we 

focus on nanotechnology patents resulting from academic research and investigate whether 

government funding and collaborations increase the number of patents and enhance 

university patent quality. Second by focusing on two scientific and innovative networks 

between academic researchers, we examine the crucial role of these networks in driving 

technological progress. Third, we supplement our analyses with a comparison between the 

US and Canada to try to understand the affection of collaboration and funding in academic 

research. The remainder of the paper is organized as follows: the next section briefly 

describes the existing literature. We then introduce the data, variables and methodology 

employed in Section 3, and Section 4 presents the results. Finally, we conclude with a 

concise discussion in Section 5. 
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2 Conceptual framework 

Academic research is regarded as a key source of new knowledge that contributes to 

technological change. Since the field of nanotechnology is science-based in nature, 

universities appear to have an enhanced role to play in terms of innovations and economic 

development (Etzkowitz et al., 2000). Not so long ago, it was not traditionally a prime 

concern for universities to bring academic research results to the industry, but it is now 

increasingly necessary for universities to become significantly involved in economic 

development, patenting and licensing activities (Van Looy et al., 2004; Perkmann and 

Walsh, 2009; Musico et al., 2013). Narin et al, (1997) highlighted that rapidly growing 

linkages exist between scientific publications and patents. Crespi et al. (2011) further 

showed that academic patenting even could complement publishing. Their findings indeed 

found an inverted U-shaped relationship between patenting output and publishing, 

suggesting a positive correlation up to a certain level of patenting. According to Meyer et 

al. (2010), nanotechnology is perceived to be a highly promising technology. 

Wong et al. (2007) found that universities play an increasing role in nanotechnology 

patenting in Canada and the US. In this regard, governments aggressively support academic 

research to accelerate its progress via grants to cover the rather high research costs and 

infrastructure expenses associated with this new technology. 

Given the influence of this emerging technology on future scientific and economic 

development, it is vital to identify the pivotal role of government funding aimed at 

stimulating nanotechnology. Because of the growth of funding trends in nanotechnology 

(Bhattacharya, 2007; Crawley, 2007; Davies, 2007; Hullmann, 2006; Roco, 2005; Roco, 

2011; Sargent 2008; Seear et al., 2009), it is not surprising that funders, i.e. mainly 

governments, seek to determine whether such funding increases the return to academic 

research output. According to Arora et al. (1998), moreover public grants affect both 

current and future researcher output. A strong correlation between research funding and 

technological performance has been identified by other scholars, indicating that this R&D 

funding can lead to the growth of technological production (see Chen et al., 2013; Coupé, 

2001; Foltz et al., 2000; Geffen and Judd, 2004; Huang, et al., 2005; Payne and Siow, 

2003; Piekkola, 2007). For instance, the findings of Payne and Siow (2003) show that on 
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average an increase of $1 million in government research funding results in 0.2 more 

patents in universities. Furthermore, the statistical analysis of Huang et al. (2005) regarding 

US nanotechnology demonstrated that the number of citations that each National Science 

Foundation (NSF)-funded inventor received for patents was 5 times greater than that of 

other inventors.  

In the US, there was an increase in public funding and university patenting in the 1980s 

due to the Bayh-Dole legislation, which gives intellectual property rights to academic 

patents derived from publicly funded universities (Argyres and Liebeskind, 1998; Mowery 

and Sampt, 2005; Siegel et al., 2003; Zucker and Darby, 2005). According to their study 

of university patenting between 1965-1992, Henderson et al. (1998) showed that this act 

increased the number of patents while the number of inventors remained relatively 

constant. Mowery et al. (2001) further raised the point that the Bayh-Dole Act was one of 

the main factors that increased university patenting. In 1999, the Expert Panel on the 

Commercialization of University Research of the Canadian Prime Minister also suggested 

that universities should keep ownership of the patents that resulted from publicly funded 

research (Mowery and Sampt, 2005). Grimaldi, et al. (2011) reviewed the impact of Bayh-

Dole Act and concluded that the ensuring increased research commercialization following 

its introduction has not decreased the amount of basic research performed in universities. 

Thursby and Thursby (2011) examined the research and invention disclosure of universities 

and their findings did not show any negative effect of this legislation on universities’ 

traditional role in basic research compared to more commercial potential. Quite the 

contrary, the importance of universities in creating and exploiting knowledge in the 

aftermath of Bayh-Dole has increased. In addition, university research commercialization 

stimulated start-up activities, economic efficiency and encouraged entrepreneurship. 

Aldridge and Audretsch (2011) found that researcher entrepreneurship was prevalent in the 

Bayh-Dole era.  

Academic technological productivity resulting from this increased investment can be 

assessed by two attributes: quantity and quality. Similarly to a number of science-based 

domains such as biotechnology or chemistry, nanotechnology heavily relies on patenting 

to protect intellectual property. A patent is an accessible technology document and patent 

data are presumed to be indicative of the value of innovations (Ernst, 1998). Despite 
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various indicators used to measure the variation of patent quality such as patent renewal 

data (Deng, 2007; Griliches, 1990; Harhoff et al., 1999; Hall et al., 2000; Maurseth, 2005; 

Pakes and Schankerman, 1984; Pakes, 1986; Serrano, 2010; Svensson, 2011), or family 

size (Harhoff et al., 1999; Lanjouw and Schankerman, 1999; Maurseth, 2005; Martinez, 

2010), citations are more appropriately related to the importance and presence of a patent 

in other research, indicating the valuable technological content of that patent. While the 

first indicator is correlated with the value of innovation at the organizational rather than 

individual level, the second considers the number of countries in which a patent application 

is submitted. 

Higher quality patents are more likely to contain technological advances that can create 

subsequent innovations (see Breschi and Lissoni, 2004; Chen and Roco, 2009; Daim, et 

al., 2006; Griliches, 1990; Hall et al., 2002; Huang, et al., 2003; Huang et al., 2004; Li et 

al., 2007; Wallin, 2005). A number of indicators such as patent renewal, triadic patents, 

citations, etc. have been used in the literature (Maurseth, 2005; Lanjouw and Schankerman, 

1999; Pakes and Schankerman, 1984). According to Meyer et al. (2010), patent citation 

analysis is a prominent approach to track the strengths of links between science and 

technology. The citation of patents also indicates the importance of an innovation and can 

be a signal regarding to potential innovativeness. The signal is more important as the patent 

is cited more (Mazzucato and Tancioni, 2013). Forward citations are the most common 

indicator used to measure patent “quality” by many scholars (Baron and Delcamp, 2010; 

Breschi and Lissoni, 2004; Harhoff et al., 1999; Hall et al., 2000; Lanjouw and 

Schankerman, 1999; Maurseth 2005; Serrano, 2010; Weingart, 2005). 

An alternative to citations as a proxy for patent “quality” is the number of claims. Claims 

describe the essential novel features of the invention and circumscribe the property rights 

conferred by a patent. Referring to prior studies, high quality patents contain a large 

number of claims and can be considered valuable since they indicate the breadth and scope 

of protection (Baron and Delcamp, 2010; Lanjouw and Schankerman, 2004; Tong and 

Frame, 1994; Trappey et al., 2012). These measures are appropriate quality proxies given 

that they are highly correlated with valuable innovations (Trajtenberg, 1990; Hall et al., 

2000; Harhoff et al., 1999). 
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One of the questions that driven this research is how academic inventors are affected by 

government funding and whether dedicated nanotechnology public R&D funding increases 

the technological production and quality of universities. This assessment is essential for 

decision-making and R&D planning. However, prior studies that examined the impact of 

government grants in universities, most commonly focused on scientific output of 

academic researchers rather than on their technological output. A few studies (see Huang, 

et al., 2005; Huang, et al., 2006) specifically consider nanotechnology funding in such an 

emerging technology field, however, there is a great need to understand how technology 

development has evolved and been influenced by government funding over this short 

period of time. We propose Hypothesis 1 to shed light on this issue:  

Hypothesis 1: Academic inventors funded by the government contribute to (a) more 

nanotechnology patents and (b) higher quality patents than other academic inventors who 

are less funded by government. 

In addition to research funding, numerous studies have investigated factors other than 

funding that have impacted academic innovation activities. Previous studies (Azoulay et 

al., 2009; Breschi et al., 2008; Crespi et al., 2008; Thursby and Thursby, 2007; Van Looy 

et al., 2006) have further focused on the link between publications and patents and 

highlighted a correlation between university patenting and publishing activities. Other 

scholars have examined social networks and indicated that social relationships do matter 

for technological innovations, presuming that when researchers work together at least once, 

they will be able to exchange further information later (Balconi et al., 2004; Breschi and 

Lissoni, 2004; Murray, 2002; Newman, 2000; Newman, 2001; Wasserman and Faust, 

1994).  

In addition to funding, scientists cannot perform the work alone in the realm of increasingly 

complex technologies. Collaborating with other scientists has become the norm and 

contributes to improved productivity. Ma and Lee (2008), and Ruegg (2007) further studied 

technological collaborations and highlighted the role of these collaborative relationships 

on technological development. Their framework presumes that when inventors apply for a 

patent together, they will keep in touch afterwards for a period of time to exchange and 

share knowledge. In this regard, patents can be exploited to map the social relationships 
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between researchers and to measure to what extent collaborative behaviour exists within 

research communities.  

In recent years, these collaborations have attracted much theoretical attention regarding 

their influence on research productivity given the critical importance of research teams 

(Cagliano et al., 2000; Frenken et al., 2005; Teichert and Ernst, 1999). The structure of 

networks formed by socially connected researchers influences the extent of knowledge 

diffusion and consequently the technological performance of inventors within these 

networks. Patenting activity is generally considered an appropriate proxy to measure 

technological performance and has been widely used in research studies to examine the 

impact of collaborative networks, built from co-publication and co-invention data, on 

research productivity, innovations and knowledge flows (Powell, et al., 1999; Ahuja, 2000; 

Breschi and Lissoni, 2004; Breschi and Lissoni, 2009; Lecocq and Van Looy, 2009).  

Co-invention networks are generally more fragmented than co-publication networks, 

mainly because there are a smaller number of co-inventors on a patent than there are co-

authors on a paper, but academic inventors occupy more prominent and connected 

positions than non-academic inventors in these technological networks (Balconi et al., 

2004; Breschi and Catalini, 2008; Murray, 2002). Similarly, Breschi and Catalini (2010) 

compared the patterns of connectivity in co-authorship and co-invention analysis and 

indicated that single inventor patents are more common than single author publications in 

scientific output. Furthermore, Breschi and Lissoni (2009) found that connected patents in 

co-inventor networks are of higher quality than non-connected patents measured by the 

number of citations they receive. 

In this regard, we put forward two propositions on network behaviour from academic 

inventors in co-invention and co-publication networks to address the influence of social 

networks on the technological output.  

Hypothesis 2: The technological performance of academic inventors who hold a more 

influential network position in co-invention networks is (a) higher and (b) yields better 

quality patents. 
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Hypothesis 3: The technological performance of academic inventors who hold a more 

influential network position in co-publication networks is (a) higher and (b) yields better 

quality patents.  

3 Data and methodology 

Data 

Our empirical context is associated to the innovative output of academic researchers in 

nanotechnology. To construct the necessary panel dataset, we drew on various funding, 

patents and publication databases in Canada and the US. We created two databases of 

Canadian and American patents in the field of nanotechnology extracted from the United 

States Patent and Trademark Office (USPTO), using the affiliations of authors to 

distinguish Canadian-based and US-based inventors3. For the American-based inventors 

we used the Nanobank and StartechZD databanks (which both contain subsets of the 

USPTO). The justification for using the USPTO instead of the Canadian Intellectual 

Property Office (CIPO) is that the latter does not systematically contain inventor’s 

addresses, which complicates the disambiguation process. Beaudry and Schiffauerova 

(2011) suggested that Canadian nanotechnology inventors file their patent applications in 

the US as well as, or in lieu of, in Canada. Similarly, a country patent analysis by Li et al. 

(2007b) demonstrated that the number of Canadian patents in the USPTO is much higher 

than in the European Patent Office (EPO).  

To identify nanotechnology-related patents, we performed a lexical extraction on patents 

which contain nanotechnology related keywords. We used a set of keywords suggested by 

Porter et al. (2008), Schmoch et al. (2003), Zitt and Bassecoulard (2006), Mogoutov and 

Kahane (2007) and Zucker et al. (2011). These studies used distinct keywords in their 

definition of nanotechnology but as there is no agreement on a unified lexical query 

delineating core nanotechnology keywords, we utilized the keywords which were used in 

more than one study and considered common keywords of the all keywords used by these 

different studies. We used this set of common keywords and consulted with 

nanotechnology experts to validate this choice. This process was very useful and led us to 

	
3 Patents with both Canadian and US inventors were counted in both sets 
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remove some redundant keywords and keywords that would lead to false positive results. 

Finally we used these keywords in the USPTO database and then extracted only the patents 

for which at least one inventor had an address in Canada or the US. Using a similar keyword 

query, we then added nanotechnology-related scientific publications from Elsevier’s 

Scopus. 

For the purpose of our analysis, we extracted data between the years 1985-2005. The reason 

that 2005 is chosen as the end year for the sample is that we aimed to have enough citation 

years after the end date for the sample (2005) because we examined three periods for 

citations, 3 years, 5 years and 7 years after grant year for patents. It is not uncommon to 

find patents that have taken 5 years to be granted and then to count 5 years of citations 

delays us to 2015. For the analysis that follows the start year of the panel, we chose 1996 

for two reasons: first, prior to that date, too few nanotechnology papers and patents are 

found, second, the Scopus database changed to include many more journals with 

publication year after 1995. 

Patents were employed to build collaborative co-invention networks and articles were used 

to construct the co-publication networks in three-, five- and seven-year intervals starting in 

1985. These time intervals are an important consideration in our analysis since we assume 

that researchers keep in touch to share and exchange their knowledge over time. 

Our source of data for funding in both countries is federal funding. Data on federal grants 

for the US was collected from the Nanobank and StartechZD databases. The government 

grant data for Canadian researchers was retrieved from two of the three federal agencies: 

the National Sciences and Engineering Research Council of Canada (NSERC) and the 

Canadian Institutes of Health Research (CIHR)4. The data was then precisely and manually 

cleaned and databases were merged to finally end up with a target panel data for the 

examination. The data from the Nanobank and the StartechZD databanks were already 

cleaned. In Canada, the merge between grants, patents and publication databases was 

	
4 These two federal agencies invested considerable amounts of funding on nanotechnology and nanomedicine 
in Canada and they were initiatives in launching research programs in this field. NSERC’s funding allocation 
supports the participation of academic researchers in nanotechnology. 



	 12 

performed manually to avoid cases of homonymy and of synonymy. We are confident5 to 

have minimised ambiguities by proceeding this way for Canada.  

Dependent variables 

To establish the base model, we take into account the number and two proxies for the 

quality of patents and the complex relationship between funding and collaborative 

determinants. The first dependent variable, the number of patents (NPit), accounts for the 

production of technology. Two other variables, the number of citations (NCiit) and the 

number of claims (NClit) 6, are proxies for patent quality in the base model (in Eq. 6).  

Similarly to the networks, three different time frames were considered in order to count the 

number of citations: 3-year, 5-year and 7-year. In the final model, we used the 5-year 

window for which we found more consistently significant results rather compared to the 

two other periods. 

For each academic inventor the dependent variables are the following: 

	 (1) 

	 (2) 

Where nCitpitj  and nClaimpit are respectively the number of forward citations up to j years 

after the granting year and the number of claims of patent p for inventor i that was filed in 

year t. 

Independent variables 

	
5 We did a considerable amount of work to clean the data as much as possible to correctly identify inventors 
and their names. For example to overcome the disambiguation of addresses of individuals, their affiliations 
were checked manually to clearly identify the inventors from universities, we checked for misspelling of 
names and eliminated dual entries and identified the researchers with similar names but different affiliations 
and addresses through time. We assigned unique IDs for individuals to use them as reference point which 
gave us an excellent base for the merging of different databases. The funding data was provided by the 
government and had been cleaned and verified. The fact that Scopus links authors with their affiliations was 
a great help to match with patenting databases and to disambiguate the data. 
6 Because of the gap between patent filing years and patent issue years, we track the impact of funding on 
the patents based on their filing date for the number of patents and the number of claims, but for citation, 
the issue year of the patent is considered.  

NCiit = nCitpitj
j

j+5

∑
p=1

n

∑

NClit = nClaimpit
p=1

n

∑
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The average yearly amount of government funding received by an academic-inventor i over 

the past three years (F) enables us to test our first hypothesis. For the collaboration 

variables, we make use of the tools developed for social network analysis, i.e. betweenness 

centrality and the clustering coefficient. Betweenness centrality (BC) measures the 

importance of intermediary researchers in the network. It is calculated by the number of 

shortest connecting path (geodesic distance7) between two nodes. In our networks the 

nodes represent individual scientists or inventors. Betweenness centrality was first 

suggested by Freeman (1977) as an indicator of the level of control of a specific researcher 

on communication and knowledge sharing within an interrelated community. According to 

some scholars (see Balconi et al., 2004; Salmenkaita 2004; Izquierdo and Hanneman, 

2006), betweenness centrality in co-invention networks is positively correlated with the 

productivity of scientists. If a researcher with a high level of betweenness centrality leaves 

the network, the network may break into smaller subnetworks. For a researcher k, this 

indicator is calculated by (Leydesdorff, 2007): 

	 (3)	

where gij indicates the number of geodesic paths between i and j and gij(k) is defined as the 

number of these paths that include researcher k. From this equation, we derive two 

variables: PBC measures betweenness centrality in the co-invention network (the prefix P 

stands for patents) and ABC measures betweenness centrality in the co-publication network 

(the prefix A hence stands for articles).  

The clustering coefficient (CC) is defined as the likelihood that two researchers are related 

when they both have a mutual relationship with a third researcher in the network. This 

measure represents the tendency of researchers to cluster. Networks with a high clustering 

coefficient enhance the innovative output and performance of individuals. Clustering offers 

connectivity between researchers and increases the speed with which, and the probability 

that, partners access knowledge (Schilling and Phelps, 2007). The clustering coefficient is 

calculated by Eq. 5: 

	
7 The geodesic distance is the shortest distance between two nodes indicated the number of relationships in 
the shortest path connecting one researcher to another. 

BC k( ) =
gij k( )
gijj

∑
i
∑ , ∀i ≠ j ≠ k
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	 (4)	

where ki is the number of neighbours of i and Ei denotes the number of direct links that 

connects the ki nearest neighbours of researcher i (Watts and Strogatz, 1998). For this 

equation, we also derive two variables: PCC measures the clustering coefficient in the co-

invention network (the prefix P stands for patents) and ACC measures the clustering 

coefficient in the co-publication network (the prefix A stands for articles). 

We employ software package Pajek to calculate these network determinants for our two 

co-publication and co-invention networks. The two network characteristics of the co-

invention network (PBC and PCC) and of the co-publication network (ABC and ACC) are 

used to evaluate hypothesis 2 and hypothesis 3.  

Model 

An important consideration in this study is the potential influence of the time delay between 

our explanatory variables and research output. The patenting of innovations or the 

publication of results is more likely to occur at the end of a funding period or within a few 

years of setting up a scientific or technological network. Given this time delay, we assume 

a one-year lag8  for funding and a two-year9  lag for the network determinants before 

publication/application of research output. Our model can therefore be expressed as: 

	 (5)	

where Dt represent time dummy variables.  

To analyze the data, we estimate Poisson and Negative Binomial regression models, which 

are both appropriate for count measures (numbers of patents and claims). The former 

provides a means to deal with skewness and the latter allows us to account for significant 

over-dispersion. In the presence of over-dispersion which was observed in our data, the 

	
8 This study has considered various time lags, one-, two- and three-year lag, for funding and one-year lag 
was found to be more appropriate yielding the most consistently significant results which was similar to the 
time lag that Beaudry and Allaoui (2012) used in their study of the impact of funding on publications. 
9 Different time lags were tested and we found two-year lag produced the most consistent results. 
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negative binomial model is more appropriate. Because nanotechnology-related patents 

received fewer citations and are not in sufficient numbers to be examined as a count 

variable, we hence created an ordered categorical variable for the number of forward 

citations. We define a categorical variable (C(NCiit)) based on the number of citations 

received over 5 years. This variable takes the value 0 if NCiit is 0, the value 1 if NCiit is 

between 1 and 5, and the value 2 if the number of citations over 5 years is more than 5 

(Eq.6).  Ordered probit regressions are appropriate for modeling with such a categorical 

dependent variable. This model distinguishes unequal differences between ordinal 

categories of dependent variable (Greene, 2003). 

	 (6)	

The inclusion of funding and research output in this equation raises concerns regarding 

potential endogeneity. The decision to assign grants to scientists and their prior and 

subsequent research output are intrinsically linked, in addition to which we may have some 

omitted variables that affect the opportunity to receive grants. Researchers with a higher 

performance receive more funding from governments, and the amount of future grants 

raised may be related to previous productivity of researchers.  

To specifically address this concern and control for potential endogeneity, we employ the 

Two-Stage-Residual-Inclusion used by Biro (2009). We therefore estimate a variant of the 

model using a set of instruments for the estimation of our funding variable (Eq. 7), the 

endogenous variable. We include the career age of a scientist since the first publication or 

the first grant or the first patent in the field of nanotechnology, Age, as a proxy for real age. 

The quadratic form of this variable (Age2) helps account for potential non-linearity. The 

number of past articles of researchers over three years (NA) is included to explain the fact 

that funding is generally given to academic researchers with a high publication rate (Van 

Raan, 2004).  

	 (2)	

C NCiit( ) =
0 if NCiit = 0
1 if 1≤ NCiit ≤ 5
2 if NCiit > 5

⎧
⎨
⎪

⎩⎪
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Endogeneity tests using the Durbin–Wu–Hausman test showed that our funding regressor 

is in fact endogenous. We then performed tests for overidentifying restrictions10 where the 

null hypothesis is that the instruments are valid instruments. This tests that the instruments 

are not correlated with the error term and the excluded instruments are correctly excluded 

from the model. The results showed that our instruments are valid instruments. 

The residuals of this first-stage equation are then added to the regressors of the second 

stage equation given by Eq. (5) prior to its estimation. Because of a small number of years 

of observations per academic-inventor, our estimations provide clustered robust standard 

errors rather than what would be obtained from panel regressions.  

Moreover, the network positions occupied by individuals may be a result of high quality 

publication and inventive activity, which once again raises the issue of possible 

endogeneity problem related to these variables as well. Prior studies show that knowledge 

diffusion is more efficient in clustered networks since collaboration among such network 

facilitates the sharing of new knowledge (Cowan and Jonard, 2004; Cowan, 2005). Well-

connected scientists because of their higher involvement with other researchers in these 

higher clustered networks are presumed to possess a greater ability to produce output. This 

also becomes more important when members have high knowledge levels in a clustered 

group and are known as the source of knowledge and innovation in that cliquish group 

(Cowan and Jonard, 2004). A researcher with a more cliquish position is more likely to 

attract other researchers to his/her “clique” as additional co-inventors by virtue of his/her 

reputation among other researchers. These concepts are closely intertwined and can be a 

cause of potential endogeneity due to a simultaneity problem. We therefore suspect that 

our network variables are likely to be endogenous.  

To address this endogeneity concern regarding our second and third hypotheses, we 

estimated instrumental variables regressions and Durbin–Wu–Hausman tests to determine 

whether endogenous regressors in the model are in fact exogenous variables. Tests 

regarding potential endogeneity of the network variables all failed to reject endogeneity in 

our study. Similar results were obtained for the co-publication and co-invention networks.	

	
10 This includes Sargan statistic, Basmann test and Sargan and Basmann pseudo-F test. 
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4 Empirical Results 

The estimation results for models mentioned in the previous section are shown in Tables 

1, 2 and 3 and include the results of Ordered probit regressions (Table 2), Negative 

Binomial regressions (Table 1 and Table 3) of Eq. 6 (second stage) and OLS regression of 

Eq. 6 (no endogeneity) using the clustering method appropriate to repeated observations 

for the same individual over a number of years. In each table, we consider 6 models 

estimated both with and without controlling for potential endogeneity (2SRI and No end.). 

The results of first stage regressions (Eq. 7) are presented in Appendix B. Our analyses 

have considered various sets of variables in a hierarchical progression including non-linear 

effects. 

When we consider the number of generated patents, the results in Table 1 show no impact 

of funding (F) on technological productivity in Canada: even when we re-estimated the 

results to correct for potential endogeneity, we cannot capture the endogeneity. In the US, 

in contrast, there is a positive impact of lagged federal funding (one-year lag) on the 

number of patents when we account for endogeneity. The results are robust to the 

introduction of a quadratic effect of network measures (Models 3 and 6). In terms of 

instrument variables, they are all strongly significant and appropriate for the US, and in 

Canada only the number of articles over the past three years (NAit) does not seem to be a 

consistently good instrument, but the age variable (Age) which we used as a proxy for 

career age of researchers is significant. These significant results show that these variables 

affect the amount of funding received by researchers and can be appropriate instruments to 

correct the potential endogeneity. While, we successfully account for endogeneity in the 

US, the results cannot capture the endogeneity in Canada. In terms of capturing the 

endogeneity, we also need our instrumental variables to be validated and verified by 

examining their correlation with other exogenous variables, with dependent variables and 

with our endogenous variable. This condition was also respected in models that we 

captured endogeneity problem and we found these instrumental variables significant in the 

first stage of 2SRI models, which suggests that these are appropriate instruments to correct 

the potential endogeneity in our models. 
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Table 1 –  Impact of funding and collaborations on nanotechnology patents in Canada and in the United States  

NPit
	

Canada  United States  
(1) (2) (3)  (4) (5) (6) 
1-1 

(NO End.) 
2-1 

(NO End.) 
3-1 

(NO End.)  4-1 
(NO End.) 

4-2 
(2SRI) 

5-1 
(NO End.) 

5-2 
(2SRI) 

6-1 
(NO End.) 

6-2 
(2SRI) 

ln(Fit-1) -0.0603  -0.0726  -0.0896   0.0218  0.2236 *** 0.0173  0.2216 *** 0.0110  0.1608 *** 
(0.1283)  (0.1275)  (0.1301)   (0.0287)  (0.0391)  (0.0285)  (0.0388)  (0.0259)  (0.0372)  

[ln(Fit-1)]2
 

0.0065  0.0077  0.0092   -0.0010  -0.0027  -0.0006  -0.0024  -0.0002  -0.0016  
(0.0128)  (0.0127)  (0.0130)   (0.0025)  (0.0026)  (0.0025)  (0.0026)  (0.0022)  (0.0023)  

NPPit-1
 0.4129 *** 0.4344 *** 0.4046 ***  0.1691 *** 0.1540 *** 0.1735 *** 0.1588 *** 0.3097 *** 0.2871 *** 

(0.0443)  (0.0487)  (0.0525)   (0.0072)  (0.0074)  (0.0074)  (0.0076)  (0.0299)  (0.0287)  
[NPPit-1]2

 

-0.0100 *** -0.0101 *** -0.0091 ***                                                              -0.0086 *** -0.0077 *** 
(0.0032)  (0.0031)  (0.0035)                                                               (0.0021)  (0.0020)  

ln(104 ´ PBCit-2) 
 0.3962 ***                                0.1223  0.1202  0.4884 *** 0.5455 *** 0.0983  0.1341  

(0.1522)                                 (0.0935)  (0.1081)  (0.1325)  (0.1362)  (0.0956)  (0.1119)  
ln(104 ´ ABCit-2) 0.0815                                 0.0321  -0.0514  0.0820  -0.0138  0.0845  -0.0087  

(0.0704)                                 (0.1688)  (0.1980)  (0.1641)  (0.1876)  (0.1690)  (0.1943)  
ln(103 ´ PCCit-2)

 
               -0.0384  0.5446 ***  0.0056  0.0066  0.0036  0.0044  -0.0641  -0.1570 * 
               (0.0235)  (0.2048)   (0.0073)  (0.0072)  (0.0074)  (0.0073)  (0.0882)  (0.0909)  

[ln(103 ´ PCCit-2)]2                               -0.0868 ***                                                              0.0081  0.0221  
                              (0.0304)                                                               (0.0131)  (0.0135)  

ln(103 ´ ACCit-2)
                0.0546 ** 0.3432 **  -0.0227 ** -0.0492 *** -0.0216 ** -0.0487 *** 0.0552  0.0957  

               (0.0218)  (0.1727)   (0.0093)  (0.0097)  (0.0092)  (0.0096)  (0.1270)  (0.1315)  
[ln(103 ´ ACCit-2)]2                               -0.0449 *                                                              -0.0101  -0.0191  

                              (0.0267)                                                               (0.0189)  (0.0196)  
ln(104 ´ PBCit-2) ´ NPPit-1

                                                                             -0.0444 *** -0.0536 ***                               
                                                                            (0.0104)  (0.0132)                                

Residual(ln(Fit-1))                                                              -0.1877 ***                -0.1892 ***                -0.1377 *** 
                                                             (0.0270)                 (0.0250)                 (0.0270)  

Constant -2.7334 *** -2.6812 *** -2.7198 ***  -1.1075 *** -1.8673 *** -1.1135 *** -1.8787 *** -1.2488 *** -1.7978 *** 
(0.2443)  (0.2623)  (0.2599)   (0.0680)  (0.1368)  (0.0678)  (0.1292)  (0.0818)  (0.1336)  

Years Yes               Yes                            Yes                             Yes  Yes  Yes  Yes  Yes  Yes  
ln(alpha) -0.0064  -0.0675  0.0060   -0.3165 *** -0.3795 *** -0.3274 *** -0.3982 *** -0.6455 *** -0.6679 *** 

(0.2544)  (0.2649)  (0.2479)   (0.0871)  (0.0861)  (0.0874)  (0.0867)  (0.1175)  (0.1136)  
Nb observations 1329  1329  1329   9157  9157  9157  9157  9157  9157  
Nb Groups 532  532  532   5381  5381  5381  5381  5381  5381  
Loglikelihood -656.496  -655.736  -651.37   -6828  -6786.6  -6820  -6777.4  -6689  -6666  
�����c2

 
226.57 *** 234.44 *** 204.41 ***  1618 *** 1649.4 *** 1696.2 *** 1742.7 *** 3135.3 *** 2923.2 *** 

Notes: ***, **, * show significance at the 1%, 5% and 10% levels. Standard errors are presented at parentheses. 
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Table 2 –  Impact of funding and collaborations on the citations received by nanotechnology patents in Canada and in the United States 

C(NCiit)
	

Canada  United States 
(1) (2)  (3) (4) 

1-1 
(NO End.) 

1-2 
(2SRI) 

2-1 
(NO End.) 

2-2 
(2SRI)  3-1 

(NO End.) 
3-2 

(2SRI) 
4-1 

(NO End.) 
4-2 

(2SRI) 
ln(Fit-1) -0.0142  0.1047  -0.0058  0.1019   -0.0569  -0.2364  -0.0656  -0.2556  

(0.1194)  (0.1805)  (0.1203)  (0.1821)   (0.1722)  (0.1896)  (0.1745)  (0.1942)  
[ln(Fit-1)]2

 
0.0000  -0.0005  -0.0009  -0.0014   0.0024  0.0028  0.0033  0.0039  

(0.0115)  (0.0117)  (0.0117)  (0.0119)   (0.0152)  (0.0154)  (0.0154)  (0.0156)  
NPPit-1

 0.3963 *** 0.4337 *** 0.3842 *** 0.4199 ***  0.1286 *** 0.1557 *** 0.1308 *** 0.1582 *** 
(0.0855)  (0.0851)  (0.0868)  (0.0888)   (0.0234)  (0.0311)  (0.0234)  (0.0331)  

[NPPit-1]2
 

-0.0162 ** -0.0170 *** -0.0159 ** -0.0167 ***  -0.0020 *** -0.0027 *** -0.0019 *** -0.0028 ** 
(0.0067)  (0.0064)  (0.0065)  (0.0063)   (0.0005)  (0.0010)  (0.0005)  (0.0011)  

ln(104 ´ PBCit-2) 0.1489  0.2033  0.0110  0.0777   -0.0814  -0.0418  0.0214  0.0060  
(0.1695)  (0.1733)  (0.2217)  (0.2367)   (0.1765)  (0.1837)  (0.1910)  (0.1982)  

ln(103 ´ PCCit-2)
 

0.1308 *** 0.1061 ** 0.4228  0.3614   0.0017  -0.0018  -0.2370  -0.1073  
(0.0422)  (0.0514)  (0.3185)  (0.3379)   (0.0268)  (0.0271)  (0.2287)  (0.2435)  

[ln(103 ´ PCCit-2)]2                               -0.0435  -0.0377                                 0.0359  0.0160  
                               (0.0465)  (0.0481)                                 (0.0345)  (0.0365)  
ln(103 ´ ACCit-2)

 0.0048  -0.0025  0.0022  -0.0043   0.0104  0.0118  0.0084  0.0087  
(0.0338)  (0.0325)  (0.0339)  (0.0326)   (0.0272)  (0.0279)  (0.0269)  (0.0277)  

Residual(ln(Fit-1))                -0.1168                 -0.1063                  0.1799 **                0.1872 ** 
               (0.1193)                 (0.1215)                  (0.0717)                 (0.0733)  

Constantcut1 2.1299 *** 2.9056 *** 2.0894 *** 2.7969 ***  2.7530 *** 2.0324 *** 2.7646 *** 2.0160 *** 
(0.4731)  (0.8975)  (0.4733)  (0.9261)   (0.4623)  (0.5839)  (0.4684)  (0.5893)  

Constantcut2 2.9937 *** 3.7714 *** 2.9591 *** 3.6681 ***  3.8086 *** 3.1169 *** 3.8240 *** 3.1062 *** 
(0.5182)  (0.9087)  (0.5134)  (0.9339)   (0.6248)  (0.7400)  (0.6310)  (0.7466)  

Nb observations 201  201  201  201   2531  2531  2531  2531  
Nb Groups 155  155  155  155   1966  1966  1966  1966  
�����c��

 
62.80 *** 65.43 *** 77.79 *** 82.00 ***  2060.7 *** 1950.9 *** 1950.5 *** 1827.5 *** 

Pseudo R2 0.2700  0.2723  0.2745  0.2738        0.3003       0.3119  0.3140  0.3087  
Notes: ***, **, * show significance at the 1%, 5% and 10% levels. Standard errors are presented at parentheses. 
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Table 3 –  Impact of funding and collaborations on the number of claims of nanotech patents in Canada and the United States 

NCLit
 

Canada  United States 
(1) (2) (3)  (4) (5) (6) 

1-1 
(NO End.) 

1-2 
(2SRI) 

2-1 
(NO End.) 

2-2 
(2SRI) 

3-1 
(NO End.) 

3-2 
(2SRI)  4-1 

(NO End.) 
4-2 

(2SRI) 
5-1 

(NO End.) 
5-2 

(2SRI) 
6-1 

(NO End.) 
6-2 

(2SRI) 
ln(Fit-1) -0.1080  -0.3745 * -0.0878  -0.2952  -0.1774  -0.5926 **  0.2397 *** 0.4352 *** 0.2346 *** 0.4275 *** 0.2379 *** 0.4161 *** 

(0.1646)  (0.2080)  (0.1639)  (0.2060)  (0.1709)  (0.2332)   (0.0576)  (0.0705)  (0.0576)  (0.0705)  (0.0591)  (0.0713)  
[ln(Fit-1)]2

 
0.0113  0.0093  0.0097  0.0087  0.0174  0.0168   -0.0188 *** -0.0193 *** -0.0184 *** -0.0189 *** -0.0188 *** -0.0196 *** 

(0.0164)  (0.0162)  (0.0164)  (0.0162)  (0.0171)  (0.0174)   (0.0049)  (0.0050)  (0.0049)  (0.0050)  (0.0050)  (0.0051)  
NPPit-1

 0.3764 *** 0.4588 *** 0.3982 *** 0.4251 *** 0.4488 *** 0.5167 ***  0.2393 *** 0.2115 *** 0.2468 *** 0.2192 *** 0.3066 *** 0.2740 *** 
(0.0725)  (0.0819)  (0.0938)  (0.0967)  (0.0975)  (0.1000)   (0.0136)  (0.0130)  (0.0141)  (0.0134)  (0.0156)  (0.0150)  

[NPPit-1]2
 

-0.0074  -0.0150 ** -0.0081  -0.0116 * -0.0128 ** -0.0206 ***                                                              -0.0055 *** -0.0047 *** 
(0.0053)  (0.0061)  (0.0061)  (0.0065)  (0.0059)  (0.0065)                                                               (0.0004)  (0.0004)  

ln(104 ´ PBCit-2) 
 0.4549 ** 0.5926 **                                                              0.0887  0.1149  0.4065 ** 0.4350 *** -0.0776  -0.0036  

(0.2013)  (0.2316)                                                               (0.1166)  (0.1192)  (0.1653)  (0.1640)  (0.1522)  (0.1554)  
ln(104 ´ ABCit-2) 0.1411  0.2218 **                                                              -0.1119  -0.0605  -0.0709  -0.0449  -0.0497  -0.0099  

(0.0961)  (0.1045)                                                               (0.2413)  (0.2530)  (0.2387)  (0.2513)  (0.2495)  (0.2609)  
ln(103 ´ PCCit-2)

 
                              -0.0284  -0.0092  0.9810 *** 1.1145 ***  -0.0019  -0.0009  -0.0036  -0.0026  0.3728  0.2629  
                              (0.0380)  (0.0382)  (0.2815)  (0.2883)   (0.0147)  (0.0147)  (0.0149)  (0.0148)  (0.2308)  (0.2312)  

[ln(103 ´ PCCit-

2)]2 
                                                            -0.1545 *** -0.1707 ***                                                              -0.0566 * -0.0401  
                                                            (0.0424)  (0.0433)                                                               (0.0337)  (0.0337)  

ln(103 ´ ACCit-2)
                               0.0392  0.0538 * 0.7921 *** 1.2389 ***  -0.0207  -0.0522 *** -0.0206  -0.0516 *** 0.5505 * 0.7240 ** 

                              (0.0315)  (0.0309)  (0.2466)  (0.3008)   (0.0162)  (0.0171)  (0.0162)  (0.0171)  (0.2996)  (0.3184)  
[ln(103 ´ ACCit-

2)]2 
                                                            -0.1191 *** -0.1851 ***                                                              -0.0842 * -0.1140 ** 
                                                            (0.0372)  (0.0454)                                                               (0.0438)  (0.0466)  

ln(104 ´ PBCit-2) ´ 
NPPit-1 

                                                                                                                         -0.0552 *** -0.0554 ***                               
                                                                                                                         (0.0134)  (0.0133)                                

Residual(ln(Fit-1))                0.3056 **                0.2329 *                0.4467 ***                 -0.1950 ***                -0.1919 ***                -0.1749 *** 
               (0.1446)                 (0.1309)                 (0.1579)                  (0.0317)                 (0.0314)                 (0.0315)  

Constant 0.3409  2.0425 ** 0.4906  1.7625 ** 0.4563  2.9577 ***  1.8040 *** 1.1190 *** 1.7953 *** 1.1222 *** 1.7564 *** 1.1478 *** 
(0.3256)  (0.8731)  (0.3122)  (0.8184)  (0.3249)  (0.9522)   (0.0957)  (0.1602)  (0.0961)  (0.1593)  (0.0982)  (0.1602)  

Years Yes  Yes  Yes  Yes  Yes  Yes   Yes  Yes  Yes  Yes  Yes  Yes  
ln(alpha) 3.2671 *** 3.2599 *** 3.2730 *** 3.2685 *** 3.2515 *** 3.2386 ***  2.3505 *** 2.3432 *** 2.3497 *** 2.3425 *** 2.3380 *** 2.3322 *** 

(0.0837)  (0.0833)  (0.0835)  (0.0833)  (0.0838)  (0.0836)   (0.0272)  (0.0272)  (0.0272)  (0.0273)  (0.0272)  (0.0273)  
Nb observations 1329  1329  1329  1329  1329  1329   9157  9157  9157  9157  9157  9157  
Nb Groups 532  532  532  532  532  532   5381  5381  5381  5381  5381  5381  

Loglikelihood 
-1535.46  -1534.34  -1536.38  -1535.67  -1533.05  -1531.06   

-
17890.2  -17876  -17888.6  -17875.2  -17865.9  -17855  

W����c�
 

219.38 *** 251.22 *** 238.50 *** 245.62 *** 146.26 *** 143.0889 ***  1825.5 *** 1836.9 *** 1872.4 *** 1890.6 *** 2263.6 *** 2281.4 *** 
Notes: ***, **, * show significance at the 1%, 5% and 10% levels. Standard errors are presented at parentheses. 
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Our findings in the US are generally in line with that of other scholars (Chen et al., 2013; Huang, 

et al., 2005; Payne and Siow, 2003) who found a correlation between funding and technological 

productivity. In addition, past experience in patenting activity (NPPit) is associated with new 

patents in both Canada and the US. Examining the quadratic effect of a researcher’s industrial 

interests in the past three years shows that this positive impact has a limit: the maximum threshold 

of the resulting inverted-U relationship corresponds to roughly 20 patents for Canada and 18 

patents for the US. Contributing to more patents beyond these points is associated with a 

decreasing trend (Figure 1). 

 
(a) (b) 

Figure 1 –  Non-linear impact of the number of patents in past three years (NPP) on the number of patents in (a) Canada 
and (b) in the United States 

	
In terms of the role that collaboration in co-invention research networks plays in patenting activity, 

our results find a positive impact of betweenness centrality (PBC) on the number of patents. The 

results are consistently significant in Canada. In the US we are only able to find this positive impact 

in Model 5 when we include the interactive variable. Turning to the betweenness centrality of co-

authorship networks, we cannot find any impact on the technological productivity of researchers. 

These results confirm that in terms of technological productivity, a more central position in a co-

invention network is more important than in a co-authorship network. 

When we account for the nonlinear form of the clustering coefficient measure of these two 

networks (PCC, ACC) variables in the model, we observe a positive linear impact and a negative 

quadratic impact in both of these networks in Canada, indicating an inverted-U shape relationship. 

This implies that when researchers tend to cluster, they are more likely to produce more patents, 

but a higher clustering coefficient value exhibits decreasing returns (see Figure 2). Those networks 

that become too closely clustered may start suffering from Not-Invented-Here effects. In contrast, 
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we cannot observe a significant influence of innovative collaborations for the US. Hence, our 

results for Canada are generally in line with previous studies (Balconi et al., 2004; Breschi and 

Catalini, 2008; Murray, 2002; Schilling and Phelps, 2007), highlighting the importance of research 

collaboration. 

	  
(a) (b) 

Figure 2 –  Non-linear impact of the clustering coefficient in (a) the co-invention network (PCC) and (b) the co-publication 
network (ACC), on the number of patents in Canada (Model 3-1) 

	
The results as presented in Table 2 show a positive impact of the number of patenting activities in 

the past three years (NPP) on categorical variable of citations (C(NCiit)). The results show a 

positive linear impact of clustering (PCC) on patent citations in the first model only for Canada 

(Model 1-1). However, patenting activity is positively associated with patent citation and the 

results are strongly significant for both Canada and the US. We also observe a negative nonlinear 

impact implying that there is a limit for this positive effect and once we reach that limit, the 

probability of receiving more citations starts to decrease.   

The other patent quality determinant considered is the number of claims (NCLit) declared in patent 

documents. Table 3 displays the results of the Negative Binomial model with clustered robust 

standard errors. As expected, the results are positive and highly significant in the US: accessing 

greater amounts of government funding is associated with a higher number of claims. In the US 

the results indicate that beyond a specific amount of funding, patent quality diminishes (Figure 3a). 

Surprisingly, when we conducted this analysis for Canada, we found a negative impact of funding 

on the number of claims in our studied period. Past experience measured by the number of patents 

in the past three years in both Canada and the US positively influences the number of claims but 

only up to a point. Beyond this threshold (13 patents in Canada and 29 patents in the US), one 

more patent reduces the number of claims (Figure 3b and Figure 4a). 
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(a) (b) (c) 

Figure 3 – Non-linear impact of (a) funding (F), (b) the number of patents in past three years (NPP) and (c) the 
clustering coefficient in co-publication networks (ACC) on the number of claims in the United States 
(Model 6-2) 

	
With respect to the influence of betweenness centrality in innovative and scientific networks, we 

only observed a positive impact in Canada, but once we add the interactive effect of betweenness 

with the number of previous patents, we observed the positive impact in the US as well. In the US, 

our results illustrate that only the co-publication networks enhance patent quality (see Figure 3c), 

while in Canada, both co-invention and co-publication networks boost patent quality (see Figure 4b 

and Figure 4c).  

	 	  
(a) (b) (c) 

Figure 4 – Non-linear impact of (a) the number of patents in past three years (NPP), (b) the clustering coefficient in 
co-invention networks (PCC), and (c) the clustering coefficient in co-publication networks (ACC) on the 
number of claims in Canada (Model 3-2) 

	
As observed above, that a higher clustering coefficient eventually yields fewer patents, after an 

increase in the relationship, further along the inverted U-shaped curve we notice that more 

integrated clusters also lead to lower number of claims. These findings tend to suggest that 

although collaboration in integrated groups tends to result in higher quality patents, slightly more 

integrated networks eventually decrease the patent quality.  
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In particular, comparing the effects of funding and network measures in Canada and the US 

provides further evidence that having previously patented has a stronger positive effect on 

increasing the number of patents in Canada compared to the US11 (Figure 5a). The intermediary 

position of researchers in co-invention networks seems to have more influence in Canada than in 

the US (Figure 5b). Although both Canada and the US have a positive slope, one unit increase in 

betweenness centrality will have a stronger impact on the number of patents in Canada. In regards 

to assessing the impact of the clustering coefficient in co-invention networks, Figure 5c shows that 

the number of patents is associated with a slight increase in the US while we have a negative slope 

in Canada, i.e. increasing the co-invention clustering coefficient will decrease the number of 

patents in Canada. The results are the opposite for the co-invention clustering coefficient: a 

positive slope for Canada and a negative slope for the US (Figure 5d)12. 

Turning now to the patent citation, we find once more that past patenting experience has a positive 

impact on patent citations in Canada, i.e. the probability of higher quality patents increases in 

accordance with the number of patents generated in previous years (Figure 6a). Additionally, the 

clustering coefficient in co-publication networks has a higher impact in Canada compared to the 

US, where the relationship is relatively flat (Figure 6b).  

According to the comparison analysis of our second indicator of patent quality (the number of 

claims), a better intermediary position in an innovative network has more impact in Canada than 

in the US and increasing the betweenness centrality will result in higher quality patents (see Figure 

7). Neither the Negative Binomial nor the Ordered Probit regressions could provide significant 

results to compare the importance of dynamic effects of funding in the US and Canada. 

 

	
11 For the purpose of comparing the effects of funding and network measures in Canada and the US, we defined a 
dummy variable for Canada (dCA) and estimated a model where dCA interacts with other variables. Due to the 
difference in the number of observations between Canada and the US, we created 5 random samples without 
replacement from the US data that have approximately the same number of observations as the Canadian sample. 
Table C-3 in Appendix C compares the Canadian and US samples for all the variables of interest. We ran t-test to 
investigate whether there is a statistically significant difference in the means of variables in our two datasets ([Canada 
vs US-s1], [Canada vs US-s2], …, [Canada vs US-s5]). 
 
12 We investigated whether the co-invention and co-publication clustering coefficients could have a moderating 
effect on one another by interacting the two variables, but this added interaction term was never significant.  
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(a) (b) 

 

(c) (d) 
Figure 5 –  Comparison of the impact of (a) the number of patents in past three years (NPP), (b) betweenness 

centrality in the co-invention network (PBC), (c) the clustering coefficient in co-invention networks 
(PCC), and (d) the clustering coefficient in co-publication networks (ACC) on the number of 
nanotechnology patents in Canada and in the United States 

	

  

(a) (b) 
Figure 6 –  Comparison of the impact of (a) the number of patents in past three years (NPP), (b) the clustering 

coefficient in co-invention networks (PCC) on the number of citations in Canada and in the United States 
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Figure 7 –  Comparison of the impact of betweenness centrality in the co-invention network (PBC) on the number of 

claims in Canada and in the United States 

	

5 Conclusions and implications  

This paper presents an empirical analysis of the impact of public funding and of collaboration 

between academic researchers on university technological outputs in the emerging science and 

technology domain, nanotechnology, on a sample of Canadian and American academic patents. A 

limited number of studies have explored in details the influence of funding and collaboration 

together on academic innovative activity. More importantly, the large body of literature generally 

focuses on the influence of funding on scientific productivity. This paper expands the focus of 

research on patenting by examining whether funding and collaboration in both the scientific and 

the technological networks is an issue when scientists address industrial interests. To our 

knowledge this is the first study where technological performance is examined to provide insight 

on the impact of funding and compare between the networks of science and of technology in the 
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the paper, which we discuss in the following paragraphs.  
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hypothesis on quality, we confirm the impact of public funding on patent quality but only in the 

US, and thus accept Hypothesis 1b for the US. In this regard, the number of claims yields 
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higher quality patents, we find there is a limit to the increase in patent quality. This suggests that 

beyond a specific amount of funding (nearly 42 000 $), patent quality begins to decrease. The 

policy implication of these results could be that governments allocate various smaller grants to 

researchers in order to enhance the research output. 

In parallel, the amount of public funds at the disposal of researchers in Canada does not yield a 

positive impact on patent quality; hence we reject Hypothesis 1b for Canada. Although, 

government plays a central role as a source of research financing in universities, across the 

different domains of scientific research close to commercial applications, Canadian 

nanotechnology-related patents appear to be independent from research financing. 

Nanotechnology is however in its infancy and technology development is slightly slower in 

Canada than in the US. With respect to the fact that the patents considered in this paper are the 

technological output of academic researchers, because scientists aim first and foremost to publish 

rather than patent, it is possible that more collaboration and funding from industry are necessary 

to incite patenting activities in Canada. 

This analysis further sheds light on our understanding of the influence that collaboration, within 

the network of science and of technology, has on enhancing commercial interests of academic 

researchers. We characterised two technological and scientific networks based on co-invention and 

co-publication links between individual researchers. In Canada we find that collaborations in both 

networks have a significant influence on patenting productivity and quality, but in the US, 

collaborations are more effective in terms of patent quality and we are not able to capture a 

consistently significant impact on the number of patents. These findings suggest that the position 

of a researcher and the structure of collaborative teams do matter and are effective in enabling 

academic researchers to enhance their technological output. Therefore following previous studies 

(Agrawal et al., 2006; Baba et al., 2009; Balconi et al., 2004; Breschi and Catalini, 2008; Breschi 

and Lissoni, 2009; Murray, 2002; Schilling and Phelps, 2007; Teichert and Ernst, 1999) that 

generally studied the relationship between collaboration and research productivity, we contribute 

to the literature in terms of a detailed analysis of the effect of collaborations on technological 

productivity. We accept Hypothesis 3a and Hypothesis 3b only for Canada and Hypothesis 2a and 

Hypothesis 2b for both Canada and partly for the US as we have seen only betweenness centrality 

in co-invention network has a positive influence on patent quality in the US. It is worth noting that 

although our findings confirm that the structure of clusters in networks of researchers can be 
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beneficial, the collaboration of various disciplines is required and the maximum clustering 

coefficient cannot yield fruitful results. As we see in this study, if researchers do not attempt to 

establish relationships beyond their circles and maintain some level of fragmentation, maximum 

clustering leads to a reduction in research productivity and quality. 

Moreover, we extended our models to further our understanding of the role that patenting 

experience plays on future patents. Our results, which are consistently significant in both Canada 

and the US, display a reinforcing direct impact on the technological productivity and quality of 

academic inventors. There is however a limit as we observe a threshold: no positive influence is 

observed beyond a specific number of patents (in terms of the number of patents, our threshold are 

21 patents for Canada and 18 patents for the US, and in terms of the patent quality, the thresholds 

are 13 patents in Canada and 29 patents in the US).  

We can also formulate some concluding remarks to contribute to the comparison of the US and 

Canada. Moreover, in Canada, if an academic inventor already holds a better intermediary position 

than other researchers and has a well-integrated clique around him/herself (with some level of 

fragmentation), he/she contributes to more and higher quality technological output. These findings 

suggest that collaborations in Canada are effective in enhancing academic technological output.  

From this analysis, we realize that both funding and collaborations contribute to enhancing 

patenting activities in the academic world. The findings highlight the importance and potential of 

both types of network connections. The study of co-authorship collaborations shows that the 

establishment of even these relationships becomes effective in the future academic patenting. 

Nevertheless, it is also necessary to consider that although our analysis tracks different 

performance in terms of funding and collaboration in nanotechnology area in these two countries, 

attempting to follow nanotechnology development requires the investment of governments not 

only in the young field of nanotechnology, but also in the forming the relationships between 

nanotechnology researchers. Thus, increasing attention to both research financing and knowledge 

exchange and collaboration could have the effect of raising the commercial applications in 

academic area. As Foray (2009) stressed in smart specialisation strategies, there is a role for 

government policies to supply incentives for researchers who are involved in the discovery of the 

right specialisations and support the investments which are complementary to these 

specialisations; for example investing in the co-invention of applications and connecting 
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researchers with the centers that invent and produce in right specialisations. Since the growth of 

nanotechnology relates to technologies from various fields, it is of great importance for 

governments to encourage scientists to work in teams. Researchers need to widen their connections 

within these domains in order to stimulate growth in this emerging high technology.  

As in all research, there are limitations associated with this study. We focused specifically on the 

field of nanotechnology (a multidisciplinary field), and different keywords were used to determine 

whether a patent is related to nanotechnology. Fields evolve and we may miss some of the patents 

that use emerging keywords to describe the technology. Furthermore, we may have used keywords 

that may be too general and have cast too wide a net. In addition, nanotechnology is an emerging 

field: not only has the number of patents and publications been rapidly growing, but funding has 

also been increasing to develop this new technology. Hence the collaborative structures of 

scientists have been rapidly changing over time. Our database does not cover extensively the 

multidisciplinarity of research and technological collaborations, which should bias the results 

towards more monodisciplinary teams (their position in the network would appear stronger than 

multidisiciplinary teams). Furthermore, in order to measure the applied knowledge in terms of 

innovations, we suggest that the intervention of industrial funding and industry collaboration be 

considered in future research. 
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Appendix A – Variable description 
Table A-1 –  Variable description 

Variable Description 

Dependent variables 

NPit  Number of patents of an academic inventor i in a given year t 

NCiit  Number of citations received by the patent(s) of an academic-inventor i over the following five years. 

C(NCiit)  An ordered categorical variable for the number of citations that takes the value 0 if NCiit is 0, the value 

1 if NCiit is between 1 and 5, and takes the value 2 if the number of citations over 5 years is more than 

5.  

NClit  Number of claims contained in the patent(s) of an academic-inventor i applied for in year t. 

Independent variables 

Fit-1  Average yearly amount of government funding received by an academic-inventor i over the past three 

years (t-3 to t-1) 

NPPit-1  Number of applied patents of an academic-inventor i over past three years (t-3 to t-1) 

PBCit-2  Betweenness centrality of an academic-inventor i in the three-year co-invention subnetwork lagged 

two years. 

PCCit-2  Clustering coefficient of an academic-inventor i in the three-year co-invention subnetwork lagged two 

years. 

ABCit-2  Betweenness centrality of an academic-inventor i in the three-year co-publication subnetwork lagged 

two years. 

ACCit-2  Clustering coefficient of an academic-inventor i in the three-year co-publication subnetwork lagged 

two years. 

Dt  Dummy variables for different years (t = 1985, …, 2005) 

Instrumental variables 

Aget Career age of a scientist since the first publication or the first grant or the first patent in the field of 

nanotechnology. 

NAit Number of past articles published by academic inventor i over three years. 
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Appendix B 
Table B-1 –  First-stage regression results – Number of patents – Canada and the United States  

 
NPit 

US 
(4) 

US 
(5) 

US 
(6) 

NPPit-1
 -0.0090  -0.0118  0.0073  

(0.0243)  (0.0254)  (0.0353)  
[NPPit-1]2

 

                              -0.0012  
                              (0.0009)  

ln(104 ´ PBCit-2) 
 -0.0562  -0.2338  -0.3689  

(0.2250)  (0.3500)  (0.2327)  
ln(104 ´ ABCit-2)

 
0.1183  0.1119  0.1799  

(0.5653)  (0.5656)  (0.5636)  
ln(103 ´ PCCit-2) 0.0023  0.0033  0.6898 ** 

(0.0205)  (0.0206)  (0.3131)  
[ln(103 ´ PCCit-2)]2                               -0.1022 ** 

                              (0.0462)  
ln(103 ´ ACCit-2) 0.0781 *** 0.0778 *** -0.7427  

(0.0281)  (0.0281)  (0.4646)  
[ln(103 ´ ACCit-2)]2                               0.1209 * 

                              (0.0684)  
ln(104 ´ PBCit-2) ´ 
NPPit-1

                0.0261    
               (0.0370)    

Ageit 0.3847 *** 0.3849 *** 0.3805 *** 
(0.0389)  (0.0389)  (0.0391)  

[Ageit]2 -0.0119 *** -0.0119 *** -0.0118 *** 
(0.0021)  (0.0021)  (0.0021)  

NAit 0.2650 *** 0.2641 *** 0.2627 *** 
(0.0329)  (0.0330)  (0.0330)  

Constant 2.0645 *** 2.0652 *** 2.0798 *** 
(0.2445)  (0.2445)  (0.2453)  

Years Yes  Yes  Yes  
Nb observations 9157  9157  9157  
Nb Groups 5381  5381  5381  
F 27.66 *** 26.38 *** 24.27 *** 
R2	   0.0432  0.0432  0.0443  
Notes: ***, **, * show significance at the 1%, 5% and 10% levels. Standard errors are presented at parentheses. 
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Table B-2 –  First-stage regression results – Number of claims – Canada and the United States  

NCLit 
Canada 

(1) 
US 
(4) 

Canada 
(2) 

US 
(5) 

Canada 
(3) 

US 
(6) 

NPPit-1
 0.0484  -0.0090  0.0125  -0.0118  0.0057  0.0073  

(0.1613)  (0.0243)  (0.1711)  (0.0254)  (0.1721)  (0.0353)  
[NPPit-1]2

 

-0.0115                 -0.0091                 -0.0097  -0.0012  
(0.0128)                 (0.0131)                 (0.0134)  (0.0009)  

ln(104 ´ PBCit-2) 
 0.3876  -0.0562                 -0.2338                              -0.3689  

(0.3208)  (0.2250)                 (0.3500)                              (0.2327)  
ln(104 ´ ABCit-2)

 
-0.0529  0.1183                 0.1119                              0.1799  

(0.2043)  (0.5653)                 (0.5656)                              (0.5636)  
ln(103 ´ PCCit-2)   0.0023  0.0376  0.0033  0.2600  0.6898 ** 

  (0.0205)  (0.0433)  (0.0206)  (0.5425)  (0.3131)  
[ln(103 ´ PCCit-2)]2                                                             -0.0331  -0.1022 ** 

                                                            (0.0796)  (0.0462)  
ln(103 ´ ACCit-2)   0.0781 *** -0.0302  0.0778 *** 0.5958  -0.7427  

  (0.0281)  (0.0456)  (0.0281)  (0.4646)  (0.4646)  
[ln(103 ´ ACCit-2)]2                                                             -0.0938  0.1209 * 

                                                            (0.0698)  (0.0684)  
ln(104 ´ PBCit-2) ´ 
NPPit-1

       0.0261      
      (0.0370)      

Ageit 0.3106 *** 0.3847 *** 0.3176 *** 0.3849 *** 0.3084 *** 0.3805 *** 
(0.0822)  (0.0389)  (0.0852)  (0.0389)  (0.0850)  (0.0391)  

[Ageit]2 -0.0111 ** -0.0119 *** -0.0113 ** -0.0119 *** -0.0111 ** -0.0118 *** 
(0.0047)  (0.0021)  (0.0049)  (0.0021)  (0.0049)  (0.0021)  

NAit 0.0814  0.2650 *** 0.0811 * 0.2641 *** 0.0211  0.2627 *** 
(0.0583)  (0.0329)  (0.0480)  (0.0330)  (0.0541)  (0.0330)  

Constant 5.4600 *** 2.0645 *** 5.4188 *** 2.0652 *** 5.4709 *** 2.0798 *** 
(0.5009)  (0.2445)  (0.5064)  (0.2445)  (0.5054)  (0.2453)  

Years Yes  Yes  Yes  Yes  Yes  Yes  
Nb observations 1329  9157  1329  9157  1329  9157  
Nb Groups 532  5381  532  5381  532  5381  
F 87.71 *** 27.66 *** 82.06 *** 26.38 *** 73.81 *** 24.27 *** 
R2	 0.2242  0.0432  0.2245  0.0432  0.2257  0.0443  
Notes: ***, **, * show significance at the 1%, 5% and 10% levels. Standard errors are presented at parentheses. 
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Table B-3 –  First-stage regression results – Number of citations – Canada and the United States 

C(NCiit)
 Canada  United States 

1 2  3 4 
NPPit-1

 -0.4716  -0.4766   0.0447  0.0335  
(0.3053)  (0.3076)   (0.0458)  (0.0458)  

[NPPit-1]2
 

0.0148  0.0149   -0.0011  -0.0011  
(0.0195)  (0.0196)   (0.0014)  (0.0014)  

ln(104 ´ PBCit-2) 
 -0.6760  -0.7409   0.2715  -0.1477  

(0.4815)  (0.6679)   (0.3729)  (0.4124)  
ln(103 ´ PCCit-2)

 
0.2132 * 0.3668   -0.0107  0.9696 ** 

(0.1132)  (1.1178)   (0.0386)  (0.4922)  
[ln(103 ´ PCCit-2)]2                -0.0230                  -0.1463 ** 

               (0.1667)                  (0.0732)  
ln(103 ´ ACCit-2)

 0.0361  0.0351   -0.0202  -0.0230  
(0.1124)  (0.1123)   (0.0548)  (0.0547)  

Ageit 0.4888 ** 0.4910 **  0.2982 *** 0.3011 *** 
(0.2327)  (0.2341)   (0.0911)  (0.0909)  

[Ageit]2
 -0.0190  -0.0192   -0.0031  -0.0033  

(0.0130)  (0.0131)   (0.0052)  (0.0052)  
NAit -0.0346  -0.0336   0.1274 ** 0.1282 ** 

(0.0878)  (0.0880)   (0.0535)  (0.0527)  
Constant -2.4917 ** -2.5083 **  2.3235 *** 2.3367 *** 

(0.9860)  (1.0067)   (0.4848)  (0.4854)  
Nb observations 201  201   201  201  
Nb Groups 155  155   155  155  
F 21.88 *** 20.74 ***  9.52 *** 9.13 *** 
R�

 
0.2948  0.2948   0.0522  0.0539  

Notes: ***, **, * show significance at the 1%, 5% and 10% levels. Standard errors are presented at parentheses. 
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Appendix C – Descriptive statistics 
Table C.1 –  Correlation Matrix – Canada  

Variable Obs Mean Std. Dev. Min Max  1 2 3 4 5 6 7 8 9 10 11 
NPt 1329 0.2242 (0.9023) 0.00 25.00 1 1 

         
 

NCit 1329 0.4605 (3.0835) 0.00 48.00 2 0.2828 1 
        

 
NCLt 1329 4.9360 (18.5001) 0.00 265.00 3 0.7944 0.3346 1 

       
 

Ft 1329 9.9168 (0.9354) 6.06 13.03 4 -0.0225 -0.0161 0.0104 1 
      

 
NPPt 1329 0.7186 (1.8360) 0.00 40.00 5 0.8290 0.3767 0.7017 -0.0075 1 

     
 

PBCt 1329 0.0403 (0.2842) 0.00 4.89 6 0.0670 0.0248 0.1119 0.0341 0.0836 1 
    

 
ABCt 1329 0.3593 (0.9247) 0.00 4.97 7 0.0173 -0.0107 0.012 0.0235 0.0357 0.1711 1 

   
 

PCCt 1329 2.3144 (3.1827) 0.00 6.91 8 0.2581 0.1707 0.2815 0.0514 0.3997 0.1435 0.1338 1 
  

 
ACCt 1329 2.7350 (3.1575) 0.00 6.91 9 0.0193 0.0447 0.0147 -0.0338 0.0688 0.0607 0.3513 0.1304 1 

 
 

Aget 1329 5.6110 (4.0906) 1.00 20.00 10 0.0002 0.0734 -0.0045 0.1048 0.0736 0.0146 0.0553 -0.0235 0.0459 1  
NAt 1329 1.0191 (2.6056) 0.00 37.00 11 0.0154 0.0053 0.0258 0.0265 0.0451 0.0446 0.6708 0.1098 0.325 0.0516 1 
 
Table C.2 –  Correlation Matrix – United States 

Variable Obs
 

Mean
 

Std. Dev.
 

Min
 

Max
 

 1 2 3 4 5 6 7 8 9 10 11 
NPt 9157 0.4667 (1.0853) 0.00 25.00 1 1 

         
 

NCit 9157 0.0282 (1.1145) 0.00 74.00 2 0.1012 1 
        

 
NCLt 9157 12.7836 (34.3505) 0.00 1115.00 3 0.8609 0.0938 1 

       
 

Ft 9157 11.4381 (1.1189) 5.95 16.59 4 0.0362 -0.0104 0.0366 
       

 
NPPt 9157 1.6626 (2.7040) 0.00 41.00 5 0.7531 0.0726 0.6166 0.0493 1 

     
 

PBCt 9157 0.0273 (0.2231) 0.00 4.55 6 0.1748 0.0085 0.1641 0.0324 0.2477 1 
    

 
ABCt 9157 0.0170 (0.1276) 0.00 2.75 7 -0.0095 -0.0034 -0.0091 0.0043 -0.0134 0.019 1 

   
 

PCCt 9157 1.8951 (3.0034) 0.00 6.91 8 0.2201 0.0268 0.1965 0.0194 0.2857 0.1519 0.0098 1 
  

 
ACCt 9157 1.3979 (2.7425) 0.00 6.91 9 -0.0457 0.0366 -0.0444 0.0717 -0.0511 -0.0007 0.1777 -0.0059 1 

 
 

Aget 9157 10.3610 (5.2142) 1.00 21.00 10 0.0323 -0.0067 0.0400 0.1257 0.1157 0.028 -0.0179 -0.0992 0.0552 1  
NAt 9157 1.5193 (2.4994) 0.00 40.33 11 0.095 0.0082 0.083 0.1358 0.143 0.0925 0.0284 0.0355 0.2256 0.1774 1 
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Table C.3 –  Mean comparison between Canada and five similarly-sized random subsamples for the United States 

Variable 
Canada  
N=1329 

US  
N=9157 

US-s1  
N=1367 

US-s2  
N=1382 

US-s3  
N=1335 

US-s4  
N=1398 

US-s5  
N=1308 

Two-sided p-values 

Canada vs 
US  

Canada vs 
US-s1 

Canada vs 
US-s2 

Canada vs 
US-s3 

Canada vs 
US-s4  

Canada vs 
US-s5  

NPt 0.2242 
(0.9023) 

0.4667 
(1.0853) 

0.4601 
(1.0194) 

0.5014 
(1.2235) 

0.4029 
(0.9769) 

0.4828 
(1.0698) 

0.5045 
(1.0644) 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

NCit 0.4605 
(3.0835) 

0.0282 
(1.1145) 

0.0651 
(2.0115) 

0.	0086 
(0.1741) 

0.0044 
(0.1160) 

0.0085 
(0.1511) 

0.0114 
(0.1972) 

0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 

NCLt 4.9360 
(18.5001) 

12.7836 
(34.3505) 

13.1843 
(34.8538) 

14.3914 
(42.9191) 

10.5790 
(28.2920) 

12.8283 
(31.4050) 

14.3019 
(36.3335) 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Ft 9.9168 
(0.9354) 

11.4381 
(1.1189) 

11.412 
(1.0896) 

11.4151 
(1.1463) 

11.4500 
(1.0684) 

11.4517 
(1.0835) 

11.402 
(1.1319) 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

NPPt 0.7186 
(1.8360) 

1.6626 
(2.7040) 

1.6247 
(2.6154) 

1.6548 
(2.5636) 

1.5048 
(2.5277) 

1.7238 
(2.6842) 

1.6766 
(2.6372) 

0.0000 0.0000 0.0000   0.0000 0.0000 0.0000 

PBCt 0.0403 
(0.2842) 

0.0273 
(0.2231) 

0.0284 
(02423) 

0.0222 
(0.1925) 

0.0436 
(0.	3162) 

0.0382 
(0.2629) 

0.0288 
(0.2240) 

0.2340 0.2439 0.0546 0.7737 0.8449 0.2501 

ABCt 0.3593 
(0.9247) 

0.0170 
(0.1276) 

0.0192 
(0.1268) 

0.0151 
(0.1140) 

0.0172 
(0.1411) 

0.0133 
(0.0989) 

0.0144 
(0.1152) 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

PCCt 2.3144 
(3.1827) 

1.8951 
(3.0034) 

1.8522 
(2.9817) 

1.8548 
(2.9858) 

1.7419 
(2.9247) 

1.9728 
(3.0357) 

1.9154 
(3.0166) 

0.0000 0.0001 0.0001 0.0000 0.0042 0.0010 

ACCt 2.7350 
(3.1575) 

1.3979 
(2.7425) 

0.4224 
(2.7590) 

1.3435 
(2.7006) 

1.5473 
(2.8433) 

1.4064 
(2.7428) 

1.2378 
(2.6165) 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

NAt 1.0191 
(2.6056) 

1.5193 
(2.4994) 

1.5794 
(2.8198) 

1.5537 
(2.3780) 

1.5003 
(2.9054) 

1.6268 
(2.7673) 

1.3409 
(2.2317) 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0007 

Notes: Standard deviation in parentheses. 


