POLYPUBLIE e |

PO'YtGChnique Montréal D'INGENIERIE

Titre:
Title:

Auteur:
Author:

Date:
Type:

Référence:
Citation:

POLYTECHNIQUE

A [
UNIVERSITE o3

Caractérisation de projets de développement logiciel dans une
perspective de flux de connaissances

Olivier Gendreau

2010
Mémoire ou these / Dissertation or Thesis

Gendreau, O. (2010). Caractérisation de projets de développement logiciel dans
une perspective de flux de connaissances [Ph.D. thesis, Ecole Polytechnique de

Montréal]. PolyPublie. https://publications.polymtl.ca/391/

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie: , L
PolyPublie URL: https://publications.polymtl.ca/391

Directeurs de
recherche: Pierre N. Robillard

Programme

Advisors:

' Génie informatique
Program:

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca/
https://publications.polymtl.ca/391/
https://publications.polymtl.ca/391/

UNIVERSITE DE MONTREAL

CARACTERISATION DE PROJETS DE DEVELOPPEMENT LOGICIEL DANS
UNE PERSPECTIVE DE FLUX DE CONNAISSANCES

OLIVIER GENDREAU
DEPARTEMENT DE GENIE INFORMATIQUE ET GENIE LOGICIEL

ECOLE POLYTECHNIQUE DE MONTREAL

THESE PRESENTEE EN VUE DE L’OBTENTION
DU DIPLOME DE PHILOSOPHIAE DOCTOR (Ph.D.)
(GENIE INFORMATIQUE)

AOUT 2010

© Olivier Gendreau, 2010.

UNIVERSITE DE MONTREAL

ECOLE POLYTECHNIQUE DE MONTREAL

Cette thése intitulée:

CARACTERISATION DE PROJETS DE DEVELOPPEMENT LOGICIEL DANS UNE
PERSPECTIVE DE FLUX DE CONNAISSANCES

présentée par : GENDREAU Olivier

en vue de I’obtention du diplome de : Philosophiae Doctor

a été diment acceptée par le jury d’examen constitué de :

M. GAGNON Michel, Ph.D., président

M. ROBILLARD Pierre N., Ph.D., membre et directeur de recherche

M. DESMARAIS Michel, Ph.D., membre

M. LETHBRIDGE Timothy, Ph.D., membre

REMERCIEMENTS

Mes premiers remerciements vont a mon directeur de recherche, Pierre N. Robillard. Son
indéfectible soutien au cours des cing dernieres années a été crucial au succés de cette
aventure doctorale. Les innombrables commentaires et suggestions qu'il a pris le soin de
formuler m'ont poussé a produire un travail dont je suis aujourdhui fier. Je tiens
particulierement a souligner ses grandes habiletés de motivateur, qui m'ont incite, contre vents

et marées, a mener a bien mes études doctorales.

Je désire aussi remercier tous les participants des projets intégrateurs en génie logiciel a
I'Ecole Polytechnique entre la session d'hiver 2006 et d'hiver 2009 ayant accepté que j'utilise

leurs jetons d'activités, qui sont a la base de la méthodologie de cette thése.

Merci a mon collégue des deux premieres années, Simon. Son calme, sa rigueur et son désir

d'excellence m'ont inspiré dans mon parcours.

Merci a mes amis de m'avoir soutenu et un merci particulier a VValérie d'avoir pris le temps de

corriger mes articles en anglais, et ce, malgré son horaire extrémement chargé.

Merci a mes parents, René et Johanne, ainsi qu'a mon frére Pierre-Samuel de m'avoir toujours

encouragé dans mes projets et en particulier lors des difficiles cing derniéres années.

Un merci tout spécial a ma complice de tous les jours, An. Merci d'étre mon rayon de soleil,
qui a su éclairer mes journées plus sombres. Ta compréhension et ton amour m'ont porté

jusqu'a la fin de mon doctorat.

RESUME

Face aux ratés auxquelles fait face l'industrie du développement logiciel et I'incapacité des
différentes approches de processus logiciels a régler ces problémes, il s’avére intéressant de se
baser, d’une part, sur les acquis du domaine des processus logiciels et, d’autre part, de
s’inspirer des innovations de domaines connexes. En particulier, la gestion des connaissances
appliquée au génie logiciel est un sujet présentement en émergence. Une meilleure
compréhension des mécanismes de création et de conversion de connaissances au sein d'un
projet de développement logiciel est une avenue de recherche prometteuse. L'objectif
principal de cette thése de doctorat est donc de caractériser les projets de developpement

logiciel dans une perspective de flux de connaissances.

Cette thése par articles propose d'atteindre I'objectif de recherche par la présentation de trois

articles en plus d'un chapitre détaillant des résultats complémentaires.

Le premier article présente et justifie la méthodologie utilisée dans le cadre des travaux de
recherche de cette thése. Plus précisément, l'article détaille la méthodologie ATS (activity
time slip), une approche a partir de laquelle des développeurs logiciels doivent enregistrer
leurs activités dans une perspective de connaissances. Les données recueillies sont ensuite
codifiées selon le modéle de flux de connaissances, qui est inspiré du modele de création de
connaissances de Nonaka & Takeuchi (1995) et qui définit six facteurs cognitifs dans le cadre
d'un projet de développement logiciel: I'acquisition, la cristallisation, la validation, la
réalisation, la vérification et I'organisation du travail. Une étude de cas multiples est

présentée, afin de démontrer 'originalité et la pertinence de la méthodologie proposée.

Le second article présente l'utilisation du modeéle de flux de connaissances, dans le cadre
d'une étude de cas, afin d'analyser les conséquences de la qualité de la documentation lors de
la réutilisation de composants FLOSS (free/libre open source software). L'analyse de I'étude
de cas permet de déterminer les conséquences négatives d'une documentation inadéquate sur

le flux de connaissances au sein d'un projet de développement logiciel.

Le troisiéme article vise a comprendre les mécanismes menant aux divergences observees

entre la conception et I'implémentation d'un projet de développement logiciel. L'utilisation de

la méthodologie ATS et du modele de flux de connaissances facilite I'analyse de I'étude de
cas. Ainsi, les discordances entre les artefacts de conception et I'implémentation s'expliquent

par le fait que la conception n'est qu'une image de possibilités.

Les résultats de recherche complémentaires permettent de caractériser trois projets
intégrateurs de développement logiciel, a la maniére d'une étude de cas multiples de type
exploratoire reposant sur la méthodologie ATS et la modélisation par flux de connaissances.
Ainsi, l'analyse des jetons d'activité (ATS) permet de porter un jugement sur la rigueur des
développeurs et donc sur la fiabilité des jetons, selon les trois profils identifiés. De plus, les
facteurs cognitifs sont caractérisés selon leur caractére individuel et participatif. Par ailleurs,
le séquencement cognitif permet l'identification de quatre profils de développeurs: le
cristallisateur, le codeur, le polyvalent et I'agent libre. Finalement, une forte corrélation a été
observée entre un effort d'acquisition élevé et une productivité du code source faible, ce qui
constitue une contribution majeure, de par son originalité et ses conséquences théoriques et

pratiques.

Les contributions de cette thése sont de trois ordres: méthodologiques, théoriques et pratiques.
Les contributions méthodologiques sont relatives a la méthodologie ATS. Le principal
avantage de la méthodologie ATS est qu'elle permet I'analyse du développement logiciel sous
une perspective différente de ce qui est possible avec les autres méthodologies utilisées en
développement logiciel. De plus, la méthodologie offre l'avantage supplémentaire de
sensibiliser les développeurs a ce qu'ils font, dans le cadre de projets intégrateurs. Parmi les
contributions théoriques, deux ressortent du lot, soit le développement d'un modeéle de flux de
connaissances et la forte corrélation observée entre un effort d'acquisition élevé et une
productivité du code source faible. Finalement, étant donné que les expérimentations ont été
faites dans le cadre de projets intégrateurs, les contributions pratiques permettront d'abord et
avant tout d'améliorer ces projets sous quatre aspects: la formation des équipes, le choix du

projet, le choix du processus et la supervision des equipes.

La principale limitation de cette these est au niveau de sa validité externe. En effet,
I'expérimentation étant basée sur des projets intégrateurs développés par des étudiants, il est
[égitime de se questionner sur la validité des résultats dans d'autres conditions, notamment en

milieu industriel. Face a cette limitation potentielle, il est recommandé de conduire les mémes

Vi

expérimentations dans un contexte industriel, de maniere & prouver la validité externe des

résultats.

Une avenue de recherche recommandée concerne I'extension de la méthodologie. En effet, il a
été démontré que la méthodologie ATS permet d'analyser le développement logiciel dans une
perspective de flux de connaissances et il serait tres intéressant d'observer la symbiose de cet
aspect avec d'autres problématiques complémentaires telles que les interactions ad hoc au sein
d'une équipe de développement logiciel et la nature des interactions entre un développeur et

son ordinateur, au cours du déeveloppement logiciel.

Vil

ABSTRACT

Given the failures faced by the software development industry and the inability of different
software process approaches to solve these problems, it is interesting to rely, on the one hand,
on achievements in the software process field and, on the other hand, learn from innovations
in related fields. In particular, knowledge management applied to software engineering is a
subject currently emerging. A better understanding of knowledge creation and conversion's
mechanisms in software development projects is promising. The main objective of this thesis
Is to characterize software development projects from a knowledge flow perspective.

This doctoral thesis intends to achieve the research goal by presenting three papers and

additional complementary results.

The first paper presents and justifies the methodology used in this thesis. The paper details the
ATS (activity time slip) methodology, where software developers must log their activities
from a knowledge perspective. Data are then codified based on the knowledge flow model,
which is related to Nonaka and Takeuchi’s (1995) knowledge creation model and which
defines six cognitive factors: acquisition, crystallization, validation, implementation,
verification and work organization. A multiple case study is presented to demonstrate the

originality and relevance of the proposed methodology.

The second paper presents a case study using the knowledge flow model to analyze the
consequences of documentation quality in FLOSS components reuse. The case study's
analysis allows the identification of negative consequences on a software development

project's knowledge flow resulting from inadequate documentation.

The third paper focuses on understanding the mechanisms leading to discrepancies between
design and implementation in a software development project. The use of the ATS
methodology and the knowledge flow model facilitates the case study's analysis. The
discrepancies between design artifacts and implementation can be explained by the fact that

design is an image of possibilities.

Complementary research results allow the characterization of three software development

capstone projects by means of an exploratory multiple case study based on the ATS

viii

methodology and the knowledge flow model. The analysis of the activity time slips (ATS)
allows to judge the developers' rigor and therefore the reliability of their activity time slips,
according to three identified patterns. Also, cognitive factors are characterized from a
individual and participative viewpoint. Furthermore, cognitive sequencing allows the
identification of four developers profiles: the crystallizer, the coder, the "versatile", and the
free agent. Moreover, a strong correlation was observed between high acquisition effort and
low source code productivity, which is a major contribution, because of its theoretical and

practical implications.

Contributions of this thesis are threefold: methodological, theoretical and practical. The
methodological contributions are related to the ATS methodology. Its main advantage is
allowing software development's analysis from a different perspective of what is possible
from other software development methodologies. In addition, in the context of capstone
projects, the methodology educates developers on what they are doing. Among theoretical
contributions, two stand out: the development of a knowledge flow model and the strong
correlation between high acquisition effort and low source code productivity. Moreover,
because the experiments were made in the context of capstone projects, practical contributions
will first and foremost allow to enhance these projects in four areas: team creation, project

selection, software process selection, and teams supervision.

The main limitation of this thesis is its external validity. Since experimentation is based on
capstone projects developed by students, it is legitimate to question the validity of results in
other conditions, especially in industrial setting. Given this potential limitation, it is
recommended to conduct the same experiments in an industrial setting in order to prove the

external validity of results.

Further research should focus on the methodology's extension. Since the ATS methodology
allows software project analysis based on a knowledge flow perspective, it would be
interesting to examine this aspect's symbiosis with other complementary issues such as ad hoc
interactions within a software development team and the nature of interactions between a

developer and his computer during software development.

TABLE DES MATIERES

REMERCIEMENTS ...ttt e e e nees i
RESUMEttt ettt iv
ABSTRACT .t ettt h et ekttt he e e a b e e b et e ab e e ehe e b e e b e e e nbe e naeeanbeenree s Vil
TABLE DES MATIERES ..ottt sttt s st nss st s ssnsessnaasenssnsnsans iX
LISTE DES TABLEAUX ...ttt xiii
LISTE DES FIGURESot Xiv
LISTE DES SIGLES ET ABREVIATIONSooviiiiieieeceseeee et iss s XVi
LISTE DES ANNEXESottt ettt b et e e b e e XVii
INTRODUGTION ...ttt ettt b e b e e b e sae e e b e e s be e s nreenneeenns 1
CHAPITRE1 REVUE CRITIQUE DE LA LITTERATUREcccoooeveeeeevecesceteee e, 4
1.1 ProCessus IOQICIELooiiiiiiiiiieie e 4
1.1.1 Processus basés SUT I'INGENICTICccueruviiieeiiiiieiieie et 5
1.1.2 MELhOAES QIIES....cueeeiceecieee et re e s 8

1.2 Amélioration de processus I0QICIEIS.cceiieiieiiiiieie e 11
1.2.1 Approche traditionNelle..........ooi i 11
1.2.2 APPIOCHE PAr TECEIE ...ttt 13

1.3 Perspective de CONNAISSANCEScveiieeiieeieiieiteerestee e etesreeste e e e sbeesteeaesreesteensesreeeeans 14
1.3.1 Données, informations et CONNAISSANCESccueerrerrerieirierieesie et 14
1.3.2 MOJEIES & CONNAISSANCES.......cueivereeieeeeienieiesiesie sttt et sbe e ene e 14
1.3.3 Gestion des connaissances et processus 10giCIelsccooeiviiiniieninenineeee, 16

1.4 Synthese de [a HEIatUrecoveiuiiieceee e 18

CHAPITRE2 DEMARCHE DE L'ENSEMBLE DU TRAVAIL DE RECHERCHE ET
ORGANISATION GENERALE DU DOCUMENT ..o, 19

CHAPITRE3 A QUALITATIVE AND QUANTITATIVE DATA COLLECTION
METHODOLOGY FOR KNOWLEDGE ANALYSIS IN SOFTWARE

ENGINEERING ... s 21

Bl ADBSTFACE ..t 21
3.2 INEFOAUCTION ..ottt 21
3.3 A LT aToTo (o] (o]0 V2RSSR 23
TR 01 N O 1S 10 YU 23
3.3.2 Data colleCtion tECNNIQUESccveieiieiieeie et sre e 25
3.3.3 RESEAICN GaALA.c.eieeiiiesiieie e 29
3.3.4 Ethical CONSIABIALIONSccuviiieieiiiieiiesie sttt 29
3.4 KNOWIEdge PErSPECIIVEc.eoiieieciecie ettt sbe et ane s 30
3.4.1 KNoOWIEdge MOUEIS.......coiieeiecie e sre s 30
3.4.2 Knowledge Management..........cooiiiiiiiiiiiieiee e 31
3.5 Knowledge FIOW in SOTtWAre PrOJECTS.......ccuiiiieiiiiiesic e 32
3.8 DISCUSSION ..otttk b bbb ettt bbb n et nes 40
3.6.1 Methodological ChalleNGES...........ccviiiiieiicie e 40
3.6.2 Knowledge FIOW FESUIES.........cooiiiiiiiiieee e 43
BT CONCIUSIONS ...t bbbttt bbbt 43

CHAPITRE4 CONSEQUENCES OF DOCUMENTATION QUALITY IN FLOSS

REUSE: A CASE STUDY ...t 44

A1 ADSIIACE ...t bbbt 44
4.2 INEFOAUCTION ...ttt bbbttt 44
4.3 Methodological APProach ..o 45
T R O Vo 13 (0 (2 o (0] [Tt S PSSRSO 45

4.3.2 Knowledge FIOW PerspeCtiVe.........coveiiiiiiiiiiciee et 46

Xi

4.3.3 Effort Time SHP MOooiiiiiiiic s 48
4.3.4 Independent Data COIfICAtION..........ccciiiiiiiiiiiee e 49
4.4 FLOSS Component Reuse: The Case of the SFLphone Capstone Project 50
o R o (o] [T O 11 (=4 USSR 50
4.4.2 DiscCIplined SOTtWAre PrOCESS.........coiiuiiiriiiieiieiesiese sttt 51
4.5 ANAIYSIS ANG RESUILS ..ot 52
451 TimMeE SHP TOKENS ...coviiiieiieee ettt be e e enreenaeanes 52
4.5.2 Knowledge FIOW ANAIYSISccvoiiiiiiieie et 53
4.5.3 FLOSS LIDIAry ISSUBSc.ccuiiieiiieiiesie sttt st 54
4.5.4 Consequences of Ambiguous Library Documentationcccceevveeneniesieninennenn 57
4.8 DISCUSSION ..ottt b et bbbt b ettt b e n e bt n e e 58
4.6.1 Extra EFfort DIStrDULIONc.cooiiiiiiiiiccee e 59
4.6.2 Software Practice ReCOmMMENMAtioNccooveiiiiiiiiie e 61
A7 CONCIUSTIONS ...ttt bbbttt b ettt nnes 62
4.8 ACKNOWIEAGMENTScviiiiieie ettt et e esra e te e e sbe e aeenneaneas 63

CHAPITRES IS DESIGN USEFUL IN SMALL SOFTWARE PROJECTS? AN

EXPLORATORY CASE STUDY ...oiiiiiiiiieeee e s 64

5.1 ADSIIACT ...ttt b et 64
5.2 INEFOAUCTION ... bbbttt bbb 64
5.3 Description 0f the PrOJECT.........coviiiiiice et 67
5.3.1 ClaSS CaABUOIIESveviiuieiieiieieete sttt ettt ettt sb et e e 68
5.4 DeSIgN ProCeSS ACHIVITIES.....c.oiviiiiitiiiiiieiiieieie ettt bbb 72
5.5 DIHSCUSSION ...ttt b bbbt b bbb 74
5.6 CONCIUSION......ouiiiiiiiii bbbt 78

5.7 ACKNOWIEAGMENTSooiiiiiiie ittt et e e e ns 78

Xii

CHAPITRE 6 RESULTATS COMPLEMENTAIRESccoviiiiiiirierssiesisesssiesssisssenes 80
6.1 INEFOAUCTION ..ttt 80
6.2 Modéle de flux de CONNAISSANCEScvrierieiriirieieiesieree et 80
6.3 Caractéristiques des projets analySESccviveiieieiieii e 83
6.4 Caracterisation des EVEIOPPEUISccciiirieirieiieeierte et 85
6.5 Caracterisation de I'effort ..o 90

6.5.1 EFfOrt globalc..ooeeieee s 90
6.5.2 Travail individuel et partiCipatif...........c.cccooiiiieii i 92
6.5.3 SEquencemMent COgNITLIT........cccuiiiiiii e 102
6.5.4 Relation aVEC 1€ COUE SOUICTEoiuiiirieeiieieie ettt 111
8.6 DISCUSSION ...eviiieeieii ettt ettt bbb 112

CHAPITRE 7 DISCUSSION GENERALEcoovoieveieievceeeeees et 115
7.1 Contributions MEthodOIOGIGUEScvruiriirieiiiieie e e 115
7.2 Contributions thEOTIQUESc.eveiiiiieiciee e e 117
7.3 ContribUtioNS PratiQUESccvveiueeieiieeiie et ese sttt te e be e sreeneens 117

7.3.1 FOrmation d8S EQUIPES.ciuieeeiieeite et ste ettt sae e raeste e reene e 117
7.3.2 CROIX AU PIOJEL....eeiiiiieiieieeie ettt 118
7.3.3 CROIX AU PIOCESSUS.cueeueenieseeteste sttt ettt bbbttt naesb ettt 118
7.3.4 SUPEIVISION UES EQUIPES ...c.vveveeiieieeiestee st ettt te et e et teeste e sraeste e sreene e 119
CONCLUSION ET RECOMMANDATIONS ...t 120
LISTE DES REFERENCESouiiiiiiiieieeessesessessessse sttt sssssanes 122

ANNEXES. ... bbbttt nne s 136

Xiii

LISTE DES TABLEAUX

Tableau 1.1: ProCeSSUS SECHciiiiiiiiieisiesiese e 15
Table 3.1: Activity Time SIip (ATS) TOKEN CONENT.......cooiiiiiiiriiieiieeeeee e 28
Table 3.2: TOKEN BXAMPIES ...t 34
Table 3.3: Software development effort and tOKENSccovieiieii i 35
Table 3.5: Project reliability INAEXcc.voiiieice e 42
Table 4.1: Time SHP TOKEN CONTENT........coveiieiiiie et nreas 48
Table 4.2: CapStONe PrOJECE PIOCESScveiiiieriirieiiisiesiie ettt bbbt 52
Table 4.3: Component effort diStribULION..............cooiiiiiii e 58
Tableau 6.1 : Mots-clefs des facteurs COgNItIfS........c.cocveveiieii i 83
Tableau 6.2 : Caractéristiques du ProJEL CBoiviiieiiiieieeie e 84
Tableau 6.3 : Caractéristiques du PrOJEL C7cccviiiiieiie et e 84
Tableau 6.4 : Caractéristiques du Projet C8coviiiereiie et e 85
Tableau 6.5 : Caractéristiques des jetons individuels du projet C6cccccvevvevveviiiieiiese e, 86
Tableau 6.6 : Caractéristiques des jetons individuels du projet C7ccoceeveveiieveiiieceese e, 86
Tableau 6.7 : Caractéristiques des jetons individuels du projet C8ccoeovveiieiineincieien 86
Tableau 6.8 : Caractéristiques des jetons individuels du projet C8cccoeceveieceiineincnere 90
Tableau 6.9 : Effort investi par facteur cognitif pour le projet C6..........ccoevviviiieviiic e, 90
Tableau 6.10: Effort investi par facteur cognitif pour le projet C7.......c.ccoevviieiieiiiiciiece e 91
Tableau 6.11 : Effort investi par facteur cognitif pour le projet C8.........cceoeieieiciiiiiiecee, 91
Tableau 6.12 : Répartition de I'effort individuel et participatif des projets C6 aC8 92
Tableau 6.13 : Profils des dBVEIOPPEUIS..........ccuveieiie ittt 105

Tableau 6.14 : Réalisation de code source et effort d'acquisSitionccccovevviie e, 111

Xiv

LISTE DES FIGURES

Figure 1.1 Vue d’ensemble du RUP.........ccoiiiiiiiiiii e 6
Figure 1.2 Modele bidimensionnel du UPEDUcccooviioiiiiiiie e 7
Figure 3.1: Knowledge FIOW MOGELoouviiiiiiiie e 33
Figure 3.2: Project P06 total effort distribution ..o, 36
Figure 3.3: Project PO7 total effort distributioncccoviiiiiii i, 38
Figure 3.4: Project P08 total effort distributionc.ccooiiiiiii i, 38
Figure 3.5: Project P09 total effort distributioncoceiiiiiiiee e 39
Figure 4.1: Knowledge FIOW MOGEIcoooiiiiiiiiiiieee e 47
Figure 4.2: GENEriC ProCeSS PraCiCe.........couviiiieeie et rie sttt re e 51
Figure 4.3: Cognitive Factor Effort Distribution in the SFLphone Projectcccocevveieiieenen, 54
Figure 4.4: Real and Adjusted Acquisition Cognitive Factor Cumulative Effort............c.ccccoeueee. 60
Figure 4.5: Real and Adjusted Verification Cognitive Factor Cumulative Effortc..c....... 60
Figure 4.6: Real and Adjusted Realization Cognitive Factor Cumulative Effort 61
Figure 4.7: Reusable Code Validation PractiCeccccoouviiiiieii i 62
Figure 5.1: Model OF CIaSS OFIGINeiviiiiiiieie e 69
Figure 5.2: Size in number of executable statements of the implemented classes.............ccccc...... 70

Figure 5.3: Size in number of executable statements of the designed classes that have been
added and AdAPLEAooi i e nreereanes 70

Figure 5.4: Product perspectives in terms of executable statements and number of classes for

the designed classes and the classes Not deSIGNEd...........coovveriiiriiieie e 71
Figure 5.5: Knowledge fFlIOW MOGEL..........cuviiiiiii e 73
Figure 5.6: Model of cognitive activities performed during the design process...........ccccccvevuvenee. 74
Figure 6.1 : Modeéle du flux de connaissances d'un développeur logiCiel............c.ccccvviniiiinnnnnnn. 82

Figure 6.2 : Distribution de la durée des jetons individuels du projet C6...........ccocoeervrvrineennnnn 87

XV

Figure 6.3: Distribution de la durée des jetons individuels du projet C7........ccccevvvvvvviivnivnieninnn 87
Figure 6.4 : Distribution de la durée des jetons individuels du projet C8...........cccocereiiiiinnnnne, 88
Figure 6.5 : Profils de distribution de Jetons o, B €t Y ...ooivviiiiiiiiiiiiiiiie e 89
Figure 6.6 : Evolution de I'effort individuel et participatif du projet C6cccccvvevveveeevrnnrnnnn. 93
Figure 6.7 : Evolution de I'effort individuel et participatif du projet C7cccooeeverecrerrrreennnes 94
Figure 6.8 : Evolution de I'effort individuel et participatif du projet C8ccccocoevvvvcrerrrreennnes 94

Figure 6.9 : Evolution de I'effort d'acquisition individuel et participatif des projets C6 & C8....... 95

Figure 6.10 : Evolution de I'effort de cristallisation individuel et participatif des projets

Figure 6.11: Evolution de I'effort de validation individuel et participatif des projets C6 a C897
Figure 6.12 : Evolution de I'effort de réalisation individuel et participatif des projets C6 a C8....98
Figure 6.13 : Evolution de I'effort de vérification individuel et participatif des projets C6 & C8..99

Figure 6.14 : Evolution de I'effort d'organisation du travail individuel et participatif des

PIOJELS €8 @ T8ttt ettt b et b ettt b et e en 100
Figure 6.15 : Vue A-CV-RV du séquencement cognitif du développeur C7A..........cccovevvrennnne. 103
Figure 6.16 : Vue A-CR-VV du séquencement cognitif du développeur C7A..........cccovevvvennnne. 103
Figure 6.17 : Vue partielle A-CV-RV du séquencement cognitif du développeur C7A 104
Figure 6.18 : Vue partielle A-CR-VV du séquencement cognitif du développeur C7A 104
Figure 6.19 : Vue A-CV-RV du séquencement cognitif du développeur C8E.............cccevvenenne. 106
Figure 6.20 : Vue A-CR-VV du séquencement cognitif du développeur C8E.............cccevvenenne. 107
Figure 6.21 : Vue A-CV-RV du séquencement cognitif du développeur C7C.........ccccererienennee. 107
Figure 6.22 : Vue A-CR-VV du séquencement cognitif du développeur C7C..........c.ccoovvvvnenns 108
Figure 6.23 : Vue A-CV-RV du séquencement cognitif du développeur CEEcccouvenene. 109
Figure 6.24 : Vue A-CR-VV du séquencement cognitif du développeur CEEcccuvene.ne. 109

Figure 6.25 : Corrélation entre la réalisation de code source et I'effort d'acquisition.................. 111

ASD
ATS
CMMI
DSDM
ETS
FDD
FLOSS
IDE

ISO/IEC

LD
MBASE
RUP
SECI
SPICE
SW-CMM
UPEDU

XP

XVi

LISTE DES SIGLES ET ABREVIATIONS

Adaptive Software Development

Activity Time Slip (jeton d'activité), fait référence au méme concept que ETS
Capability Maturity Model Integration

Dynamic Systems Development Method

Effort Time Slip (jeton d'effort), fait référence au méme concept que ATS
Feature-Driven Development

Free/libre open source software

Integrated Development Environment

International Organization for Standardization et International

Electrotechnical Commission

Lean Development

Model-Based Architecting and Software Engineering
Rational Unified Process

Socialisation, externalisation, combinaison et internalisation
Software Process Improvement and Capability dEtermination
Software Capability Maturity Model

Unified Process for Education

Extreme Programming

LISTE DES ANNEXES

Annexe A Knowledge Conversion in Software Development
Annexe B Exploring Knowledge Flow in Software Project D

Annexe C Echantillon type de jetons ATS........ccceevvevrreenne.

Xvii

evelopment.........ccocvevevenennen. 141

INTRODUCTION

La dénomination « génie logiciel » est née de la Conférence du génie logiciel de ’OTAN tenue
en 1968 pour repondre au besoin de mieux définir et encadrer les pratiques relatives au
développement de systemes logiciels (Naur & Randell, 1969). Malgré les diverses innovations au
cours des années subsequentes, prés de trois décennies plus tard, le Standish Group (1994) a
publié le dévastateur rapport Chaos qui conclut que plus de la moitié (53%) des quelque 175 000
projets en technologie de I’information entrepris chaque année aux Etats-Unis n’atteignent pas les
objectifs fixés (d’échéancier, de coit et de qualité), qu'environ le tiers (31%) sont tout
simplement annulés avant d’étre complétés et qu'uniquement le sixieme (16%) des projets atteint
les objectifs fixés. Face a cette situation alarmante, la réaction de 1’industrie a été plus musclée
que par le passé. Notamment, la gestion de projet et la gestion des exigences ont été renforcées.
De plus, les processus basés sur 1’ingénierie ont été popularisés. Toutefois, dans sa mise a jour du
rapport Chaos en 2009, le Standish Group rapporte que, comparativement a 1994, les projets
n'atteignant pas les objectifs sont en baisse de 9% (44%), les projets annulés sont en baisse de 7%
(24%), alors que les projets atteignant les objectifs fixés sont en hausse de 16% (32%) (Eveleens
& Verhoef, 2010). Force est de constater que, malgré une amélioration considérable de la

situation en 15 ans, beaucoup de progres reste a faire.

Au fil des années, plusieurs modeles de développement logiciel on été élaborés. Or, qu'on pense
au modeéle en cascades, au modele en spirale ou un modéle itératif, force est de constater que le
développement logiciel est difficile a modéliser. Des années 1970 a 2000, les processus
développés étaient principalement prédictifs et basés sur la production d’artefacts, souvent dans
le but de satisfaire des normes. A 1’opposé, principalement depuis le début du XXI° siécle, les
méthodologies agiles, qui sont réactives et qui mettent I’accent sur les ressources humaines,
gagnent en popularité. Toutefois, ce mouvement souleve le scepticisme dans les milieux ou la

tracabilité est essentielle (processus fortement basé sur les normes, systemes critiques, etc.).

Face a la problematique des différentes approches de processus logiciels, il s’avere intéressant de
se baser, d’une part, sur les acquis du domaine des processus logiciels et, d’autre part, de
s’inspirer des innovations de domaines connexes. En particulier, la gestion des connaissances

appliquée au génie logiciel est un sujet présentement en émergence. Une meilleure

compréhension des mécanismes de création et de conversion de connaissances au sein d'un projet

de développement logiciel est une avenue de recherche prometteuse.

L'objectif principal de cette these de doctorat est donc de caractériser les projets de
développement logiciel dans une perspective de flux de connaissances. L'objectif sera atteint par
la présentation de trois articles complémentaires en plus d'un chapitre détaillant des résultats

complémentaires.

Le chapitre 1 présente une revue de la littérature relative au contexte de I'objectif de recherche.
Ainsi, les différents types de processus logiciels sont détaillés, les concepts d’amélioration de

processus logiciels sont expliqués et la perspective de connaissances est etudiée.

Le chapitre 2 détaille la démarche de I'ensemble du travail de recherche et I'organisation générale

du document.

Les chapitres 3 a 5 présentent 3 articles soumis pour publication a des revues avec comité de

lecture.

Plus précisément, le chapitre 3 introduit le premier article de revue. Cet article a pour principal
objectif la présentation et la justification de la méthodologie utilisée dans le cadre des travaux de

recherche présentés dans cette these.

Le chapitre 4 présente le second article de revue. Cet article expose une étude de cas permettant
d'analyser les conséquences de la qualité de la documentation lors de la réutilisation de

composants FLOSS (free/libre open source software).

Le chapitre 5 introduit le troisieme et dernier article de revue. Cet article a pour but de
comprendre les mécanismes menant aux divergences observées entre la conception et

I'implémentation d'un projet de développement logiciel.

Le chapitre 6 présente des résultats de recherche complémentaires, pas encore soumis pour
publication. L'objectif du chapitre est de caractériser 3 projets intégrateurs, a la maniere d'une

étude de cas multiples de type exploratoire.

Le chapitre 7 propose une discussion générale des apports méthodologiques, théoriques et

pratiques de I'ensemble des travaux de recherche présentes dans ce document.

En annexe se trouvent deux articles de conférences publiés antérieurement a la soumission des
articles de revue. Le premier vise a établir les bases du sujet de recherche. Le second vise a
introduire le modéle de flux de connaissances, soit la contribution théorique principale de cette

these de doctorat.

CHAPITRE 1

REVUE CRITIQUE DE LA LITTERATURE

Ce chapitre vise a présenter la littérature relative a I'objectif de recherche, soit la caractérisation
de projet de développement logiciel dans une perspective de flux de connaissances. Or, la
littérature précisément reliee a l'objectif de recherche étant trés limitée, quelques éléments
théoriques pertinents sont présentés.

Dans un premier temps, les différents types de processus logiciels sont détaillés (section 1.1). Par
la suite, les concepts d’amélioration de processus logiciels sont expliqués (section 1.2). Puis, la
perspective de connaissances est étudiée (section 1.3). Finalement, une synthese des écrits
(section 1.4) conclut ce chapitre.

1.1 Processus logiciel

Depuis environ une décennie, deux types d’approche de développement logiciel se démarquent
soit celle dite traditionnelle (Kettunen & Laanti, 2005; Nerur, Mahapatra, & Mangalaraj, 2005),
ou basée sur I’ingénierie (Fowler, 2005; Germain & Robillard, 2005) et I’autre dite agile
(Cockburn, 2002; Fowler, 2005) ou légére (Zettel, Maurer, Munch, & Wong, 2001; Nawrocki,
Walter, & Wojciechowski, 2002).

La premiere soutient que le développement logiciel doit étre un processus discipliné incorporant
des notions de mathématiques, de science et d’ingénierie (Bailetti & Liu, 2003). La seconde

suggere que le développement logiciel est un processus créatif et agile (Rifkin, 2001).

Certains croient que la tendance actuelle en développement logiciel est de délaisser les imposants
processus organisationnels rigides au profit des processus agiles et adaptables (Kettunen &
Laanti, 2005).

Neill (2003) croit que les méthodes agiles dépendent grandement du talent des développeurs, ce
qui constitue un risque considérable pour une organisation. Les méthodes agiles preconisent les

individus et les interactions plut6t que les processus et les outils, un logiciel fonctionnel plutot

qu’une documentation efficace, la collaboration du client plutdt que la négociation de contrat,
ainsi que la réponse au changement plutot que la poursuite d’un plan. Toutefois, 1’auteur met en
garde contre I’absence d’universalité des méthodes agiles en particulier pour les applications

critiques et les grosses organisations.

Pour sa part, Fowler (2005) résume la différence fondamentale des méthodes agiles par rapport
aux processus traditionnels a deux caractéristiques: elles sont adaptatives plutdt que prédictives et

elles sont orientées ressources humaines plutdt qu’orientées processus.

Par ailleurs, il importe de souligner 1’existence de plusieurs processus propriétaires, centrés sur la
gestion, qui sont utilisés dans certains grands projets de développement informatique
(gouvernements, banques, etc.). Ces processus, dont Macroscope (Fujitsu, 2006) est un exemple,
sont en fait des adaptations des méthodes génériques discutées dans la littérature scientifique et

ne seront donc pas considérés dans le cadre de cette these.

1.1.1 Processus basés sur I’ingénierie

Les processus basés sur 1’ingénierie visent la production d’artefacts pour supporter la prise de
décision concernant les exigences et la conception; le principe de base étant que les efforts
d’activités de planification de production d’artefacts résulteront en un cofiit global plus bas, une

livraison de produit a temps et une meilleure qualité logicielle (Germain & Robillard, 2005).

Les processus traditionnels sont surtout utilisés au sein d’entreprises devant respecter des normes
pour des raisons d’affaires. D’ailleurs, ces organisations se forgent souvent un processus a partir
des normes auxquelles elles doivent se conformer. Il existe aussi des modeles de processus a
partir desquels il est possible d’adapter un processus selon les besoins de 1’organisation, dont le
Rational Unified Process, le Unified Process for Education et Model-Based Architecting and

Software Engineering.

1.1.1.1 Rational Unified Process

Le Rational Unified Process (RUP) (Kruchten, 2000) est un modele de processus basé sur les cas
d’utilisation, centré sur 1’architecture, itératif et incrémental, développé par Rational Software
Corporation (maintenant IBM). L’objectif du RUP est d’assurer le développement de logiciel de

haute qualité qui respecte les besoins des utilisateurs, 1’échéancier et le budget. Plus précisément,

le RUP est un cadre de référence (framework) d’un cycle de développement logiciel. 1l oriente

I’équipe de développement autant pour les activités de gestion que pour les activités techniques.

<O \ I

Discipline

Software Englneelmg Process

e s *,
8 R

o £
Vg =3 4
EE Role o 6&
Bip, Y
gy ey
Workflow E’ Tool
Mentor

| Artifact
'Eg
]
g s Y &,
]
Y ﬂ @ @

Checkpoints Template Report

Workflow Details Refers to
=

Figure 1.1 Vue d’ensemble du RUP
(Tiré de RUP)

La Figure 1.1 présente une vue d’ensemble des éléments de base du RUP. D’abord, le processus
logiciel est organisé par disciplines, qui regroupent des activités de méme type. Puis, ces
disciplines sont exprimées par des flux de travail (workflow), qui sont des séquences d’activités
produisant des résultats observables. A leur tour, ces flux de travail sont décrits par des détails de
flux de travail qui sont représentés par des activités faites par des roles, en utilisant des outils,
dans le but de générer des artefacts. Pour leur part, les activités sont des unités de travail décrites
en étapes concréetes. En ce qui a trait aux réles, ils définissent le comportement et les
responsabilités d’individus ou de groupes d’individus dans le contexte d’une organisation

logicielle. Finalement, un artefact est un produit de travail issu du processus logiciel.

Les disciplines sont des ensembles d’activités reliées a un type de probleme au sein d’un projet.
Le RUP en possede neuf soit la modélisation d’affaires, les exigences, 1’analyse et conception,
I’implémentation, les tests, le déploiement, la gestion de la configuration et des changements, la

gestion de projet et I’environnement.

1.1.1.2 Unified Process for Education

Le Unified Process for Education (UPEDU) (Robillard, Kruchten, & d'Astous, 2003) est un
modele de processus dérivé du RUP. La particularit¢ du UPEDU est qu’il a été adapté au
domaine académique. Par exemple, trois des neuf disciplines ont été supprimées du RUP parce

qu’elles s’appliquaient mal au contexte académique.

Commenc. Elaboration Conzstruction Transition
Disciplines
Requis . :
Analyse et - H :
conception
Implartation A
1 [l i
Tast i — o, _.!‘._._._.‘..*.n._.__.___
i L] L]
Gestion cont. et E i :
changement H
Gestion de projet e | i, . | it . it e .t
Initiale E1 E2 1 Cc2 C3 T T2

Figure 1.2 Modele bidimensionnel du UPEDU
(Tiré de Germain (2004))

La figure 1.2 explicite le modele bidimensionnel de processus et de cycle de vie du UPEDU. Les
quatre phases d’un cycle de développement sont situées en abscisse et sont divisées en huit
itérations, tandis que les six disciplines se trouvent en ordonnées. Pour leur part, les six courbes

représentent une possibilité de répartition de 1’effort au sein de disciplines selon 1’itération.

1.1.1.3 Model-Based Architecting and Software Engineering

Le Model-Based Architecting and Software Engineering (MBASE) (Boehm, Port, Egyed, & Abi-
Antoun, 1999) est un modele de processus qui se veut une extension du RUP axée sur
I’ingénierie systéme utilisant intensément le logiciel (software-intensive system engineering). A
ce sujet, les quatre caractéristiques principales sont 1’évitement de conflit de modeles (model

clash avoidance); I’intégration de modéles et le cadre de processus (framework process); les

négociations gagnant-gagnant des exigences des intervenants; les jalons de point d’ancrage de

cycle de vie et les critéres de réussite-échec (Boehm, Port, & Basili, 2002).

En somme, MBASE est une autre mouture de processus basé sur lI'ingénierie, avec la particularité

d'étre axée sur l'ingénierie systeme.

1.1.2 Méthodes agiles

Les méthodes agiles s’inscrivent en opposition aux méthodes traditionnelles qui sont mal
adaptées trop lourdes pour répondre assez rapidement aux fréguents changements
d’environnement (Erickson, Lyytinen, & Keng, 2005). A ce propos, un manifeste pour le
développement agile de logiciels (Agile Manifesto) a été développé par les promoteurs et leaders
des méthodes agiles (Beck, K., et al., 2001).

Afin de parvenir a s’adapter aux changements d’environnement, les méthodes agiles divisent le
projet en sous-projets fonctionnels réalises en incréments relativement courts (3 & 12 semaines) et
mettent 1’accent sur la gestion des connaissances tacites au lieu de la documentation externe

(Cockburn, 2002).

Les méthodes agiles possédent toutes les caractéristiques suivantes : itératives, incrémentales,

autoorganisées et émergentes (Lindvall, M., et al., 2002).

Il existe un grand nombre de méthodes agiles dont les plus importantes sont: Extreme
Programming, Scrum, Dynamic Systems Development Method, Adaptive Software Development,

Crystal, Lean Development et Feature-Driven Development.

1.1.2.1 Extreme Programming

Certainement la plus populaire des méthodes agiles, le Extreme Programming (XP) est destiné
aux équipes de petite ou moyenne taille évoluant dans un environnement de développement ou

les exigences sont vagues ou changent rapidement (Beck, 1999a).

XP est constitué de quatre valeurs — communication, simplicité, rétroaction et courage — et de
douze pratiques : jeu de planification, courts délais de livraison, métaphores, conception simple,
tests, refactorisation, programmation par paire, intégration continue, propriété collective, client

sur le site, semaines de 40 heures et espace de travail ouvert (Beck, 1999b).

XP propose un cycle incrémental de développement qui suit des itérations trés courtes (quelques
semaines), dans le but de tirer parti du cott du changement d’un logiciel au cours du cycle de vie.
Une itération typique est déterminée par le client qui choisit les caractéristiques, sous forme
scénarios utilisateurs (user stories) qu’il désire voir implémentées, selon leur valeur et leur co(t.
Par la suite, les histoires sont divisées en taches, qui sont distribuées aux programmeurs par
équipe de deux (programmation par paire, aussi appelée programmation par bindme). Pour
chaque tache, les tests unitaires sont implémentes et exécutés préalablement a I’implémentation
de la tache, de maniére a constituer une base automatique de tests du systéeme. Ce type de
développement basé sur les tests donne aux développeurs, au fil du temps, confiance au
comportement de leur systeme (Beck, 1999a).

1.1.2.2 Scrum

Scrum est une méthode agile pour la gestion de projet, qui préconise la construction par
incrément pour les environnements complexes au sein d'équipes de moins de 10 développeurs
(Schwaber & Beedle, 2002). Les sprints, qui s’étendent sur une a quatre semaines, constituent les
itérations de développement. Chaqgue sprint posséde une date fixe de livraison et le produit livré
constitue un incrément par rapport au sprint précédent. Les taches a faire au cours d’un sprint
sont consignées dans le backlog et sont réparties au sein de 1’équipe, qui est dirigée par le scrum
master (Rising & Janoff, 2000). Scrum est principalement axé sur la gestion de projet,
notamment par le développement itératif et le contréle accru a I’aide de réunions quotidiennes

(appelées scrum) (Fowler, 2005).

1.1.2.3 Dynamic Systems Development Method

Le Dynamic Systems Development Method (DSDM) (Stapleton, 1997) se concentre sur une
modélisation holistique du développement logiciel en mettant 1’accent sur les boucles de
rétroaction, donc sur la gestion des connaissances. L’essentiel de 1’argumentation repose sur une
vision du développement caractérisée par des systemes intimement reliés a leur environnement et
ayant tendance a évoluer de pair avec ceux-ci. Le modele correspond a un ensemble de boucles
d’interactions et de rétroactions contrélant la production de logiciel sous une perspective continue
et dynamique. Une telle modélisation est dynamique, rétroactive, centrée sur la gestion de

risques, multidimensionnelle, continue, en plus d’inclure la connaissance et 1’incertitude

10

(Dalcher, 2003). Or, bien que la modélisation du DSDM soit impressionnante, le cadre trés

théorique rend son application complexe.

1.1.2.4 Adaptive Software Development

Highsmith (1997) a développé le Adaptive Software Development (ASD) afin de faire face au
développement de logiciels complexes imprédictibles et non linéaires. Le concept clef de cette
théorie est I’émergence comme réponse a 1’absence de déterminisme, donc a I’impossibilité de
déterminer le lien entre cause et effet. En somme, ASD est principalement centré sur la gestion

du changement.

1.1.2.5 Crystal

Les méthodologies Crystal ont été développées par Cockburn comme un groupe d’approches
adaptées a différentes tailles d’équipe et différents degrés de criticité de systémes logiciels

(Fowler, 2005).

Malgré leurs variations, toutes les approches Crystal partagent des caractéristiques communes
dont les trois priorités sont la siireté (de I’issue du projet), I’efficacité et I’habitabilité (possibilité
pour les développeurs de coexister avec Crystal). Elles ont aussi des propriétés communes dont
les trois plus importantes sont les livraisons fréquentes, 1’amélioration réflective et une solide

communication.

En somme, les méthodologies Crystal mettent 1’emphase sur la planification et la gestion de
projet afin de gérer notamment les communications déficientes au sein d’un processus de

développement.

1.1.2.6 Lean Development

Le Lean Development (LD) est une stratégie provenant de la gestion de production qui vise a
continuellement améliorer les processus d’affaires en mettant I’accent sur les activités générant
de la valeur aux yeux du client (Poppendeick & Poppendeick, 2003). Le LD et le XP ont
plusieurs points en commun: méthodologie utilisée, adaptation aux besoins changeants, travail

d’équipe, itérations et controle de la qualité. A 1’opposé, les deux approches possédent des

11

différences : transfert de la connaissance, méthodes de mesures et répartition des colts
(Dall'Agnol, Janes, Succi, & Zaninotto, 2003).

En somme, le LD vise a réduire la complexité au cours du processus en retardant les décisions

aux lourdes conséquences le plus tard possible.

1.1.2.7 Feature-Driven Development

Le Feature-Driven Development (FDD) (Palmer & Felsing, 2002) est centré sur les intervenants
et I’architecture. Comme son nom 1’indique, le FDD est basé sur les caractéristiques, de la méme
manicre que le RUP est basé sur les cas d’utilisation. Le cycle de vie est composé de cinq étapes :
développer un modeéle global, produire une liste de caractéristiques, planifier par caractéristiques,
concevoir par caractéristique et construire par caractéristique. Les itérations sont d’une durée de

deux semaines ou moins.

En somme, le FDD concentre le développement logiciel sur les caractéristiques du produit.

1.2 Amelioration de processus logiciels

L’amélioration de processus logiciels (software process improvement) est née d’un mouvement
pour la qualité initiée par Crosby (1979), Deming (1986) et Juran (1988).

Une organisation qui désire améliorer son processus logiciel peut utiliser deux types d'approche
soit I'approche traditionnelle, dite par plan (blueprint) et I'approche par lignes directrices, dite par
recette (recipe). L'approche traditionnelle met I'accent sur le formalisme et la conformité d'un
processus a des modeéles de référence, alors que l'approche par recette met l'accent sur les

connaissances des utilisateurs du processus.

1.2.1 Approche traditionnelle

Les organisations désirant améliorer leur processus logiciel par I'approche traditionnelle tentent
de se conformer a des modeles de référence de processus. Les quatre modeéles de reférence les
plus connus sont ISO 9001, SW-CMM, CMMI et ISO/IEC 15504.

12

1.2.1.1 1SO 9001

ISO 9000 est une série de normes internationales congues pour la gestion et 1’assurance de la
qualité qui spécifie les exigences de base pour le développement, la production, I’installation et la
mise en service au niveau du systéme et au niveau du produit. En particulier, ISO 9001 (avec les
lignes directrices de ISO 9000-3) est applicable au développement et a la maintenance de
systemes logiciels (Jung & Hunter, 2001). La détermination de la capacité d’une organisation se
fait a partir d’une liste de points de contrdle et tous les points doivent étre satisfaits afin que
I’organisation en question soit considérée comme respectant la norme de qualité 1SO 9000
(Wang, Y., etal., 1997).

Le principal probléme avec ce modele de référence est, d’'une part, qu’il est mal adapté au

domaine logiciel et, d’autre part, qu’il ne permet qu’une évaluation globale de la qualité.

1.2.1.2 Software Capability Maturity Model (SW-CMM)

Le SW-CMM (Paulk, Curtis, Chrissis, & Weber, 1993), développé par le Software Engineering
Institute (SEI), catégorise un ensemble de pratiques clefs de développement logiciel en 18
secteurs clefs, qui sont eux-mémes regroupés en 5 niveaux de capacité cumulatifs. L’atteinte d’un
niveau de capacité est associée a un niveau de maturité de processus, ce qui survient lorsque tous

les buts associés a tous les secteurs clefs d’un niveau sont respectés.

Le principal avantage de ce modeéle est la simplicité de comparaison que procurent les 5 niveaux
de capacité. En d'autres mots, deux organisations possédant un méme niveau de maturité seront
considérées comme ayant des processus de méme qualité. Or, le caractére étagé (staged) du
modele est simpliste. Par exemple, une organisation qui respecte tous les secteurs clefs du
niveau 2, sauf un but d'un secteur clef, sera considérée comme de niveau 1 (initial), soit le méme

niveau de maturité gu'une entreprise n'ayant qu'un processus aléatoire.

1.2.1.3 Capability Maturity Model Integration (CMMI)

Le Capability Maturity Model Integration (CMMI) est basé sur le CMM-SW, mais se distingue
par le fait qu’il intégre quatre disciplines (au lieu d’une seule) soit I’ingénierie systéme (system

engineering), I’ingénierie logicielle (software engineering), le développement intégré de produit

13

et processus (integrated product and process development) et I’approvisionnement (supplier

sourcing).

De plus, le CMMI corrige le principal inconvénient du SW-CMM, en ajoutant la représentation
continue (continuous). Ainsi, un niveau de capacité, sur une échelle de 0 a 5, est associé a chaque
secteur clef. Le profil d’une organisation peut donc étre déterminé selon le niveau de capacité de

chaque secteur clef, au lieu d'étre réduit a représentation étagée (staged).

1.2.1.4 1SO/IEC 15504

ISO/IEC 15504 (ISO, 2003) est une norme internationale aussi connue sous le nom de Software
Process Improvement and Capability Determination (SPICE). Elle posséde une architecture
d’évaluation de processus a deux dimensions : les processus et la capacité. Dans la dimension
processus, les différents processus (au sens d’ensemble de pratiques), qui sont associés au
développement et a la maintenance du logiciel, sont divisés en cing catégories soit client-
fournisseur, ingénierie, support, gestion et organisation. Pour sa part, la dimension capacité est

représentée par des attributs de processus (PA) et est divisée en 6 niveaux.

SPICE remédie aussi au principal inconvénient de SW-CMM en déterminant la capacité propre a

chacune des cinq catégories de processus. Ainsi, les résultats de 1’évaluation sont plus détaillés

pour SPICE que pour SW-CMM.

1.2.2 Approche par recette

Un défi important de ’amélioration de processus est de s’assurer que les utilisateurs de processus
logiciels partagent une compréhension commune du processus. L’amélioration de processus
nécessite le transfert et la construction de connaissances de processus des individus et de
I’organisation, ce que I’on peut traduire par une problématique de gestion des connaissances.
Souvent, 1’amélioration de processus traditionnelle met 1’accent sur la description et la

prescription au détriment de la compétence et du comportement.

L'approche par recette propose des lignes directrices insistant sur le role central des
connaissances tacites dans le partage et la création d'informations, ainsi que sur I'importance de la
modelisation de ce que les utilisateurs de processus font (processus réel) plutot que ce qu’ils

devraient faire (processus prescrit) (Aaen, 2003).

14

1.3 Perspective de connaissances

Il'y a déja deux décennies, Alvin Toffler (1990) prédisait I’imminence d’une société basée sur les
connaissances comme source de pouvoir. En ce début de XXI® siécle, les connaissances
s’averent, en effet, une arme stratégique cruciale pour les entreprises en quéte de productivité

accrue, d’ou I’importance de la gestion des connaissances (Choi & Lee, 2002).

Les informations et les connaissances sont les forces vitales des organisations d’aujourd’hui
(Trandsen & Vickery, 1998) et particulierement des organisations logicielles. En effet, les
connaissances sont primordiales au cours du cycle de développement d’un produit logiciel,

particulierement lors de la conception.

1.3.1 Données, informations et connaissances

D’entrée de jeu, il est important de bien faire la distinction entre données, informations et
connaissances. En effet, les connaissances sont composées d’informations qui, elles, sont
composées de données (Williams, 2006). De plus, la connaissance est spécifique au contexte, car
elle dépend du temps et de I’espace. L’information devient connaissance lorsqu’elle est
interprétée par un individu, associée a un contexte et ancrée dans les croyances et engagements
d’un individu (Nonaka & Takeuchi, 1995).

Il existe deux types de connaissances : les connaissances explicites et les connaissances tacites
(Polanyi, 1997). Les connaissances explicites peuvent étre exprimées en langage formel et
systématique. Elles peuvent étre traitées, transmises et conservées relativement facilement
(Williams, 2006). A I’opposé, les connaissances tacites sont hautement personnelles et difficiles &
formaliser. Les connaissances tacites sont profondément ancrées dans les actions, procédures,

routines, engagements, idéaux, valeurs et émotions d’individus (Schon, 1983).

1.3.2 Modéles de connaissances

En sciences cognitives, plusieurs modeéles ont eté développés afin de représenter les
connaissances, mais quatre modeles sont particulierement reconnus (Bjornson & Dingsoyr,
2008). Il s'agit du modele d'apprentissage expérientiel de Kolb, de la théorie d'apprentissage par
double boucle d'Argyris & Schon, de la théorie des communautés de pratique de Wenger et du

modele de création de connaissances de Nonaka & Takeuchi.

15

Kolb (1984) décrit I'apprentissage expérientiel par quatre modes d'apprentissage répartis dans
deux dimensions. Une dimension réfere & I'appropriation d'expérience et inclut deux modes: la
compréhension par conceptualisation abstraite et l'appréhension par expériences concretes.
L'autre dimension réfere a la conversion d'expérience et inclut également deux modes: I'intention
par observation réflective et I'extension par expérimentation active. Selon Kolb, les quatre modes

doivent étre utilisés afin de maximiser I'apprentissage.

Argyris & Schoén (1978) différentient I'apprentissage par simple et par double boucle.
L'apprentissage par simple boucle implique la génération de nouvelles stratégies d'action sans
modification de valeurs de gouvernance, alors que l'apprentissage par double boucle implique
I'adaptation et la modification de stratégies et de valeurs de gouvernance.

Face au processus traditionnel d'apprentissage individuel, Wenger (1998) propose un processus
d'apprentissage social qu'il appelle la communauté de pratique. Les membres d'une communauté
de pratique s'impliquent dans un processus d'apprentissage collectif par le partage de

connaissances issues d'une méme pratique.

Selon Nonaka & Takeuchi (1995), la connaissance est créée par I’interaction entre les
connaissances explicites et tacites. 1ls proposent un modele, le processus SECI, définissant quatre
types de conversion de connaissances: socialisation, externalisation, combinaison et
internalisation. Le tableau 1.1 présente les types de conversion impliqués selon les connaissances

initiales et finales.

Tableau 1.1: Processus SECI

Connaissances Connaissances Type de conversion

initiales finales de connaissances

Tacites Tacites Socialisation

Tacites Explicites Externalisation
Explicites Explicites Combinaison

Explicites Tacites Internalisation

16

La socialisation est le processus de conversion de nouvelles connaissances tacites lors
d’expériences partagées. Elle survient typiquement dans le cadre de relation maitre-apprenti ou
I’apprentissage des connaissances tacites se fait par I’expérimentation plutdt que par la lecture de
manuels. Certaines organisations tirent d’ailleurs profit des connaissances tacites détenues par

leurs fournisseurs et leurs clients en interagissant avec eux.

L’externalisation est le processus d’articulation des connaissances tacites en connaissances
explicites. Lorsque les connaissances tacites sont explicitées, les connaissances sont cristallisées,
leur permettant d’étre partagées, devenant ainsi la base de nouvelles connaissances. La création

de concepts dans le développement d’un nouveau produit en est un exemple.

La combinaison est le processus de conversion de connaissances explicites en d’autres
connaissances explicites plus complexes ou systématiques. L’agrégation et la fragmentation de

concepts font partie du processus de combinaison.

L’internalisation est le processus d’incorporation de connaissances explicites en connaissances
tacites. La formation est 1I’exemple par excellence de I’internalisation, ou des individus
s’approprient au sein de leurs connaissances tacites des connaissances explicites de

I’organisation.

1.3.3 Gestion des connaissances et processus logiciels

La gestion des connaissances est un vaste champ interdisciplinaire (Bjornson & Dingsoyr, 2008).
Earl (2001) suggére une taxonomie de stratégies de gestion de connaissances, qu'il nomme des
écoles (schools), selon trois catégories: technocratiques, économiques ou comportementales. Les
écoles technocratiques incluent: I'école systéme, insistant sur le partage de connaissances; I'école
cartographique, s'intéressant a la cartographie des connaissances organisationnelles; I'école
d'ingénierie, mettant l'accent sur les processus et le flux de connaissances dans les organisations.
L'école économique s'intéresse a l'exploitation commerciale des connaissances et du capital
intellectuel. Les écoles comportementales incluent: I'école organisationnelle, se concentrant sur
les réseaux pour le partage des connaissances; I'école spatiale, se concentrant sur la facon dont les
bureaux peuvent étre concus afin de promouvoir le partage des connaissances; I'école stratégique,

considérant la gestion de connaissances en tant qu'outil stratégique.

17

L'école d'ingénierie, se concentrant principalement sur le processus, est I'école de gestion de
connaissances recevant la plus importante attention empirique (Bjornson & Dingsoyr, 2008).
Deux catégories peuvent étre identifiées au sein de cette école. La premiére s'intéresse au
processus logiciel complet en ce qui concerne la gestion des connaissances. La seconde considere

les possibilités d'amélioration d'activités spécifiques au sein d'un processus logiciel.

Par rapport & la premiére catégorie, Alavi & Leidner (2001) croient que le principal défi de
gestion des connaissances est de faciliter le flux de connaissances entre les individus de maniere a

maximiser la quantité de connaissances transférees.

Arent & Norbjerg (2000) ont étudié I'amélioration de processus logiciels d'une perspective de
connaissances basée sur le modéle de création de connaissances de Nonaka & Takeuchi. Ils ont
conclu gu'autant les connaissances tacites que les connaissances explicites sont cruciales au
succes de I'amélioration de processus logiciels. Les connaissances tacites sont nécessaires pour
modifier les pratiques, alors que les connaissances explicites sont nécessaires afin de créer une

mémoire organisationnelle.

Nerur & Balijepally (2007) affirment que le type de processus logiciel a un impact sur la maniere
de gérer les connaissances. L'approche traditionnelle repose essentiellement sur la gestion de
connaissances explicites, tandis que les méthodes agiles se fondent principalement sur la gestion

de connaissances tacites.

Dahkli & Chouikha (2009) suggerent un processus de développement logiciel orienté
connaissances concu de maniére a réduire I'écart entre les connaissances réellement intégrées

dans les systemes logiciels et les connaissances détenues par les acteurs organisationnels.

Par rapport a la seconde catégorie, Melnik & Maurer (2004) s'intéressent au rble de la
conversation et de l'interaction sociale en tant qu'éléments clés de I'efficacité du partage des
connaissances dans un processus agile. Ils concluent que le partage des connaissances explicites
est inefficace lorsque des artefacts cognitifs complexes sont utilisés. Plus le niveau de complexité
est élevé, plus un partage interactif de connaissances est nécessaire, par le biais de

communications verbales directes.

Bjornson & Dingsoyr (2005) ont étudié le partage des connaissances par le tutorat dans une petite
entreprise de consultation dans le domaine logiciel. Afin d'améliorer le mentorat, ils proposent

d'introduire des méthodes pour augmenter le niveau de réflexion des employés.

18

Desouza, Awazu, & Wan (2006) ont examiné les facteurs qui contribuent a l'utilisation de
connaissances explicites dans une organisation de génie logiciel. lls ont constaté que la
complexité percue, I'avantage relatif percu, ainsi que les risques percus sont les facteurs affectant

les connaissances explicites.

En somme, la littérature relative a I'école d'ingénierie de la gestion de connaissances s'intéresse
aux pratiques et au processus logiciels dans une optique de gestion de connaissance, mais pas

spécifiqguement dans une perspective empirique de flux de connaissances.

1.4 Synthese de la littérature

Les processus logiciels sont principalement catégorisés selon deux types d’approches. D’une part,
on retrouve les processus basés sur I’ingénierie tels que RUP, UPEDU et MBASE. D’autre part,
se trouvent les processus agiles tels que XP, Scrum, DSDM, ASD, Crystal, LD et FDD.

Une organisation qui désire améliorer son processus logiciel peut utiliser deux types d'approche
soit I'approche traditionnelle, dite par plan (blueprint) et I'approche par lignes directrices, dite par
recette (recipe). A ce sujet, on remarque plusieurs similitudes entre d’une part, les processus
traditionnels et I’amélioration de processus traditionnelle et, d’autre part, les processus agiles et

I’amélioration de processus par recette.

Face a cette dualité entre les approches traditionnelles et agiles/par recette, il s’avere intéressant
d'explorer d'autres alternatives en s’inspirant des innovations de domaines connexes, notamment

la perspective de connaissances relative a la gestion de connaissances.

L'école d'ingénierie, se concentrant principalement sur le processus, est I'école de gestion de
connaissances recevant la plus importante attention empirique. A ce sujet, le modéle de création
de connaissances de Nonaka & Takeuchi étant le plus utilisé. Or, bien que la littérature s'intéresse
aux pratiques et au processus logiciels dans une optique de gestion de connaissance, il existe un

vide quant a la perspective empirique de flux de connaissances.

Conséquemment, l'objectif principal de cette these, étant de caractériser les projets de
développement logiciel dans une perspective de flux de connaissances, est original et s'inscrit en

continuité avec la I'état de la littérature.

19

CHAPITRE 2

DEMARCHE DE L'ENSEMBLE DU TRAVAIL DE RECHERCHE ET
ORGANISATION GENERALE DU DOCUMENT

Le type de présentation retenu pour ce document est la these par articles. Ainsi, les trois
prochains chapitres présentent trois articles soumis a des revues avec comité de lecture. De plus,
le chapitre 6 contient des résultats de recherche complémentaires, pas encore été soumis pour

publication.

Par ailleurs, deux articles de conférences ont été publiés antérieurement a la soumission des
articles de revue. Ces 2 articles se trouvent en annexe. D'abord, I'article intitulé "Knowledge
Conversion in Software Development" a été présenté dans le cadre de la Nineteenth International
Conference on Software Engineering and Knowledge Engineering (SEKE'2007) a Boston, aux
Etats-Unis, en juillet 2007. Cet article visait a établir les bases du sujet de recherche. Plus
précisément, l'article suggere une perspective de connaissances, basé sur le processus SECI de
Nonaka & Takeuchi, comme moyen d'analyse d'un projet de développement logiciel. Pour sa
part, l'article intitulé "Exploring Knowledge Flow in Software Project Development" a été
présenté dans le cadre de la 2009 International Conference on Information, Process, and
Knowledge Management (EKNOW'09) a Cancun, au Mexique, en février 2009. Cet article visait
a introduire le modeéle de flux de connaissances, soit la base théorique de cette theése de doctorat.

Cet article est d'ailleurs une version préliminaire de l'article de revue présenté au chapitre 4.

Le chapitre 3 présente le premier article de revue. Intitulé "A qualitative and quantitative data
collection methodology for knowledge analysis in software engineering", et écrit par Olivier
Gendreau et Pierre N. Robillard, il a été soumis pour publication dans un numéro spécial sur la
recherche quantitative en génie logiciel de la revue Empirical Software Engineering. Cet article a
pour principal objectif la présentation et la justification de la méthodologie utilisée dans le cadre
des travaux de recherche de cette these. Plus précisément, l'article détaille la méthodologie ATS
(activity time slip), une approche a partir de laquelle des developpeurs logiciels doivent

enregistrer leurs activités dans une perspective de connaissances. Les données recueillies sont

20

ensuite codifiées selon le modéle de flux de connaissances, qui est inspiré du modeéle de création
de connaissances de Nonaka & Takeuchi. Une étude de cas multiples est présentée, afin de

démontrer l'originalité et la pertinence de la méthodologie proposée.

Le chapitre 4 présente le second article de revue. Intitulé "Consequences of Documentation
Quality in FLOSS Reuse: A Case Study", et écrit par Olivier Gendreau et Pierre N. Robillard, il a
été soumis pour publication a la revue Information and Software Technology. Cet article présente
I'utilisation du modele de flux de connaissances, dans le cadre d'une étude de cas, afin d'analyser
les conséquences de la qualité de la documentation lors de la réutilisation de composants FLOSS
(free/libre open source software). L'analyse de I'étude de cas permet de déterminer les
consequences négatives d'une documentation inadéquate sur le flux de connaissances au sein d'un

projet de développement logiciel.

Le chapitre 5 présente le troisieme et dernier article de revue. Intitulé "Is Design Useful in Small
Software Projects? An Exploratory Case Study", et écrit par Olivier Gendreau et Pierre N.
Robillard, il a été soumis pour publication a la revue Journal of Systems and Software. Cet article
a pour but de comprendre les mécanismes menant aux divergences observées entre la conception
et I'implémentation d'un projet de développement logiciel. L'utilisation de la méthodologie ATS

et du modele de flux de connaissances facilite I'analyse de I'étude de cas.

Finalement, le chapitre 6 présente des résultats de recherche complémentaires, pas encore soumis
pour publication. L'objectif du chapitre est de caractériser trois projets intégrateurs de
développement logiciel, a la maniére d'une étude de cas multiples de type exploratoire reposant
sur la méthodologie ATS et la modélisation par flux de connaissances. D'abord, les
caractéristiques générales des projets sont présentées. Par la suite, les développeurs sont
caractériseés par I'analyse de leur production de jetons (time slip). Puis, I'effort est caractérisé sous
plusieurs perspectives: la répartition de I'effort global, la répartition et I'évolution du travail
individuel et participatif, le séquencement cognitif, ainsi que la relation entre I'effort et le code

source.

21

CHAPITRE 3

A QUALITATIVE AND QUANTITATIVE DATA COLLECTION
METHODOLOGY FOR KNOWLEDGE ANALYSIS IN SOFTWARE
ENGINEERING

3.1 Abstract

To better understand the complexity of software development, it could be useful to analyze
software activities from a knowledge perspective. However, the nature of knowledge offers a
methodological challenge, since knowledge is the result of various cognitive activities and mostly
resides in a software developer’s mind. This paper proposes the activity time slip (ATS)
methodology, which is an approach in which software developers record their activities from a
knowledge viewpoint. The ATS methodology is designed to support the grounded theory
approach. We present a multiple-case study analysis from four industrial capstone projects
conducted between 2006 and 2009. Data are codified based on the knowledge flow model, which
is related to Nonaka and Takeuchi’s knowledge creation model. The level of accuracy obtained
with the ATS methodology is sufficient to explore various knowledge perspectives in software
development. The methodological challenges presented by both the participants and the

researchers are discussed.

3.2 Introduction

Software engineering is a knowledge-intensive activity (Henninger, 1997; Robillard, 1999; Xu,
Rajlich, & Marcus, 2005; Bjornson &Dingsoyr, 2008; Ras & Rech 2008), and software artifacts
constitute an accumulation of knowledge owned by organizational stakeholders (Baetjer, 1998).
Software development requires programmers to gather and absorb large amounts of knowledge
distributed over several domains, such as application and programming (Clayton, Rugaber, &
Wills, 1998), and to encode that knowledge in the software (Xu et al., 2005).

In order to better understand the complexity of software development, Ko, DeLine, &

Venolia (2007) suggest analyzing software activities from a knowledge perspective. However,

22

the nature of knowledge offers a methodological challenge. Since knowledge is the product of
various cognitive activities and mostly resides in a software developer’s mind, it would perhaps
be better described by the developers. Therefore, we propose an approach where software

developers record their activities from a knowledge viewpoint.

Qualitative data can come from three sources: interviews, observations (live or audio-video), and
artifacts. Interviews are limited and time-consuming for both the researchers and the participants
involved. Live observation is often less invasive for the participants, but observation time is
limited. Audio-video may be less invasive still, but a formal protocol analysis from scripts could
be very time-consuming. Artifacts are often produced by the participants as part of their usual
tasks.

This paper’s main objective is to detail the activity time slip (ATS) methodology, a qualitative
and quantitative research data collection technique, which allows the analysis of software
development from a knowledge perspective. The ATS methodology is inspired from the work
diary (Lethbridge, Sim, & Singer, 2005), and provides a good tradeoff between data accuracy and
data analysis effort. It makes it possible to capture complex information in a flexible way, on an

ongoing basis, and in the developers’ real environment.

The ATS methodology is designed to support the grounded theory approach, which supposes that
theory is ‘‘grounded’’ in the data, rather than presumed at the outset of the research. In pure
grounded theory, there would be no preconceptions with respect to the concepts of importance.
Often researchers adapt grounded theory, by using prior software engineering knowledge based
on expert opinion and the scientific literature as a starting point for domains and probes in the
preliminary study proposal. Grounded theory is based on two major principles: first, that
phenomena are not conceived as static, but rather constantly changing in response to evolving
conditions; and second, that people have, although do not always use, the means to control their

destinies by their response to conditions (Corbin, 1990).

Although it is not the purpose of this paper to provide an in-depth and comprehensive review of
grounded theory, some of its basic tenets should be understood, as they provide the scientific

rationale for an approach such as the ATS methodology.

23

These tenets are the following:

Data collection and analysis are interrelated and concurrent processes, rather than linear
ones; analysis begins as soon as the first bit of data is collected.

Concepts are the basic units of analysis. Thus, data collected from subjects are given
conceptual labels.

Specificity of the concept is achieved by understanding the qualifiers of the concept (e.g.
what factors impact the concept, such as the input artifact, the type of activity,
interaction).

Analysis is achieved through constant comparison of similarities and differences in the
data, and the search for both supportive and disconfirming evidence. Throughout the
research process, hypotheses are revised based on the ongoing assessment of both
qualifying and disqualifying evidence derived from partial data analysis, until they can be
fully supported by all the data, facilitating a robust analysis.

Sufficient data must be collected to reach "conceptual saturation”, the complete
elaboration of the properties, dimensions, and variations that constitute each category or

theme.

The ATS methodology is developed to gain an understanding of how knowledge needs evolve

throughout a software project’s development. This methodology is illustrated with a multiple-

case study analysis from four industrial capstone projects conducted between 2006 and 2009 at

the Ecole Polytechnique de Montréal.

The structure of this paper is as follows. Section 2 presents the ATS methodology. Section 3

details knowledge concepts. Section 4 offers a knowledge flow analysis of software development.

Section 5 provides a discussion of our research. Finally, our conclusions are presented in

section 6.

3.3 Methodology

3.3.1 Case study

Software engineering involves real people in real environments (Lethbridge et al., 2005).

Conducting empirical research on real-world issues implies a tradeoff between level of control

24

and degree of realism. Case studies are, by definition, conducted in real-world settings, and thus
have a high degree of realism, mostly at the expense of the level of control, which makes them
suitable candidates for a software engineering research methodology (Runeson & Hdst, 2009).
According to Yin (2003), a case study involves a how or why form of research question, does not

require control of behavioral issues, and focuses on contemporary events.

Since we want to understand the flow of knowledge throughout a software project’s
development, we need to accept a lower level of control in order to better seize the realism of the

process. Therefore, the case study is the appropriate research methodology for our purpose.

It is important to use several data sources in a case study, in order to limit the effects of one
interpretation of a single data source (Runeson & Host, 2009). A single study will have a large
number of parameters, some controlled and some completely unconstrained (Miller, 2008).
However, the evidence from multiple cases is often considered more compelling, and the overall
study is therefore regarded as more robust (Herriot & Firestone, 1983). Moreover, multiple cases
allow consideration of replication logic, which is analogous to that used in multiple experiments
(Hersen & Barlow, 1976). Yin (2003) states that more than two cases can already make a strong

argument. Therefore, we chose to analyze four different projects as part of a multiple-case study.

Robson (2002) distinguishes four research purposes: exploratory, descriptive, explanatory, and
improving. Exploratory research aims to find out what is happening, seeking new insights and
generating ideas and hypotheses for new research. Descriptive research is designed to portray a
situation or phenomenon. Explanatory research seeks an explanation of a situation or a problem,
mostly in the form of a causal relationship. Improving research tries to enhance some aspect of

the phenomenon studied.

Case study methodology was originally used primarily for exploratory purposes, and some
researchers still limit case studies for this purpose (Flyvbjerg, 2006). By trying to better

understand the knowledge flow in software development, our research purpose is exploratory.

Other research methodologies related to case studies include the survey, the experiment, and
action research (Runeson & Host, 2009). A survey is a collection of standardized information
from a specific population. Its primary objective is descriptive and its primary data are
quantitative. An experiment is characterized by measuring the effects on one variable of

manipulating another variable. Its primary objective is explanatory and its primary data are

25

quantitative. Action research aims to influence or change some aspect of the focus of the research
(Robson, 2002), and is closely related to the case study. Its primary objective is improvement and

its primary data are qualitative.

Data collected in an empirical study may be quantitative or qualitative. Quantitative data involve
numbers, while qualitative data are represented as words and/or pictures (Gilgun, 1992).
Qualitative research has been designed mostly by educational researchers and other social
scientists to study the complexities of human behavior (Taylor & Bogdan, 1984). It could be
argued that the study of human behavior is one of the few phenomena that is complex enough to
require qualitative methodologies. In software engineering, the blend of technical and human
behavioral aspects requires a combination of qualitative and quantitative methodologies, in order

to take advantage of the strengths of both (Seaman, 1999).

The ATS methodology makes use of both qualitative and quantitative data. For instance, a
description of software activities from a knowledge perspective (qualitative data) and the time
spent on these activities (quantitative data) are important aspects of our methodology.

Theory generation methodologies are generally used to extract a statement or proposition from a
set of field notes that is supported in multiple ways by the data (Seaman, 1999). These
methodologies are often referred to as grounded-theory methodologies, because the theories, or
propositions, are grounded in the data (Glaser & Strauss, 1967). To illustrate the potential of the
ATS methodology for developing grounded theory, we have developed a knowledge flow model
(cf. section 3.5).

3.3.2 Data collection techniques

Field studies provide empirical study researchers with a unique perspective on software

engineering, and are particularly useful in understanding practices and in developing theories.

Lethbridge et al. (2005) provide a taxonomy of data collection for software engineering field
studies based on the degree of human contact required. First degree contact techniques, such as
interviewing and shadowing, require direct access to a participant population. Second degree
contact techniques, such as fly-on-the-wall, allow researchers to observe work without needing to
communicate directly with participants. Finally, third degree contact techniques, such as tool

analysis, use logs, and documentation analysis, require access only to work artifacts.

26

Of course, close contact with subjects (first-degree techniques) requires a stronger working
relationship than the unobtrusive study of work artifacts (third-degree techniques). However,
first-degree techniques are invaluable because of their flexibility and the phenomena they can be
used to study, which are mainly related to cognition. However, their two major drawbacks are

that they are less reliable and consume more resources than third-degree techniques.

First-degree techniques can be either inquisitive or observational (Lethbridge et al., 2005). Each
type is appropriate for gathering a different kind of information from software engineers.
Inquisitive first degree techniques allow the experimenter to obtain a general understanding of the
software engineering process, such as brainstorming, interviews, questionnaires, and conceptual
modeling. Observational first degree techniques provide a real-time portrayal of the phenomena
studied, such as work diaries, think-aloud protocols, shadowing, and participant observation.
However, it is more difficult to analyze the data, both because they are dense and because they

require considerable knowledge to interpret correctly.

The ATS methodology is based on a data collection technique which can be employed for the
entire duration of projects (without sampling). We want to achieve the best tradeoff between data
accuracy and data analysis effort. Observational first degree techniques are the most likely to
meet this requirement. Indeed, Lethbridge et al. (2005) conclude that interviews and
questionnaires (inquisitive techniques) are the most straightforward instruments, but the data they
produce typically present an incomplete picture. Bonke (2005) compared diary information
(observational technique) to questionnaire information, and found that time-use information is
preferentially obtained from diaries, as this methodology is considered more reliable than

information from questionnaires.

Several studies aimed at understanding software development work practices have employed
different methodologies. Perry et al. (1994) used time diaries (13 developers in one year) to
understand how technology affects software process. Singer, Lethbridge, Vinson, &
Anquetil (1997) studied the work practices of software engineers by surveying, observing (14
half-hour sessions), and interviewing developers. LaToza, Venolia, & DeLine (2006) conducted
two surveys and a semi-structured interview to understand code-related activities and the
motivation behind those activities. Chong & Siino (2006) explored interruption patterns among

software developers who program in pairs versus those who program solo by analyzing 40 hours

27

of direct observation data. Ko et al. (2007) also analyzed work interruptions by employing the
shadowing technique with seventeen developers and transcribed their activities minute by minute
in 90-minute sessions, for a total of 25 hours of work. The analysis of shadowing data is very
time-consuming. But, the work diary technique presents a good tradeoff between data accuracy

and data analysis effort.

3.3.2.1 Work diary

Work diaries require respondents to record events that occur during the day. This may involve
filling out a form, recording specific activities as they occur or at the end of the day, or noting a

current task occurring at a preselected time (Lethbridge et al., 2005).

The main advantage of time diary information is that very complex information is provided in a
very flexible way (Bonke, 2005). Diary studies have high ecological value, as they are carried out
in situ in the users’ real environments (Czerwinski, 2004). Work diaries can provide better event
self-reporting, because they record tasks on an ongoing basis rather than in retrospect. Moreover,
this method gives researchers a way of understanding how software engineers spend their time
without undertaking a great deal of observation or shadowing (Lethbridge et al., 2005). Perry et
al. (1994) were able to validate the time diary as a low-cost, effective way to determine how

people spend their time.

However, there are three major drawbacks associated with work diary entries. They rely on self-
reporting, which may not always represent reality. They can interfere with the activity of
respondents as they work. Participants may fail to record certain events, or may not record events
with sufficient detail (Lethbridge et al., 2005).

The next section describes how these drawbacks are managed in the ATS methodology.

3.3.2.2 Activity Time Slip (ATS)

The ATS data collection technique is inspired from the traditional work diary. Analyses based on
the preliminary ATS methodology were first published by Germain & Robillard (2005) and
improved by Gendreau & Robillard (2007, 2009). The meaning of work (from work diary) is
different from that of activity (from the ATS). On the one hand, work is related to a task, as

usually defined by a project manager. Examples of tasks reported in a work diary could be:

28

coding module A, testing B, etc. It is often part of a schedule and is related to project resources.
On the other hand, an activity is a personal endeavor undertaken while a developer is executing a
task. Examples of an activity reported in an ATS are: browsing the Web, reading API-X, talking
to John about ABC, etc. A task may include many activities, but an activity only relates to one
task. An activity relates to the real effort invested in software development, while a task relates to
what is prescribed.

The ATS methodology requires that, each time a developer executes an activity, details must be
logged in an ATS token. Table 1 details the token fields.

Table 3.1: Activity Time Slip (ATS) Token Content

Field Description
ID Unique token identifier
Date Activity date
Start time Activity start time
End time Activity end time
Effort Activity duration (computed from the start/end time fields)
P;..P, P, to P, participants involved in executing the activity
It Activity iteration identifier
Input artifact Activity main input artifact

Output artifact Activity main output artifact
Discipline Process discipline related to the activity
Role Process role of the developer who executed the activity
Process activity Process activity related to the activity

Activity description Detailed description of the activity

The ATS methodology is more reliable than the work diary approach, because it deals with its
drawbacks. While work diaries mainly compute task duration (elapsed time often on days scale),
the ATS method aims to record actual effort expended on activities (time duration on hours
scale). Each developer uses a preformatted spreadsheet to detail activities on an ongoing basis,
providing a precision of roughly one token per hour. This approach minimizes interference with
work, and encourages participants to record every activity without affecting accuracy. Moreover,
a member of the research team regularly validates tokens by making sure the developers fill out

each field of the token completely. This was done in order to closely represent the real effort

29

expended on the various activities. Interviews were conducted with the participants to understand
their difficulties in meeting the requirements of the ATS methodology, and short training sessions
were provided when required. Furthermore, a consistency validation was also conducted on the

meaning of the token.

3.3.3 Research data

Data for our research were collected from four industrial capstone projects conducted between
2006 and 2009 at the Ecole Polytechnique de Montréal. The capstone project is an elective
project-oriented course for senior software engineering students. The four projects were based on
requirements supplied by a single avionics industrial partner. An engineer from the participating
organization met with the students once a week to assist them in developing the software product.
The collocated software development team had access to a private development room on campus
for the duration of the project, equipped with a meeting table, a whiteboard, and five

workstations.

The team was formed based on four criteria: current number of cumulated credits, internship
experience in industry, current grade point average (GPA), and grades for software design and

software process courses.

The capstone project was conducted by a team of 4 or 5 developers over one semester (14 weeks)
on a fixed schedule of three half-day collocated sessions and a flexible schedule of up to three

extra half-days per week.

3.3.4 Ethical considerations

According to Runeson & Host (2009), research involving key ethical factors include: informed
consent, review board approval, confidentiality, handling of sensitive results, inducements, and
feedback.

Students participating in a capstone project signed a consent form explaining the ATS
methodology and ensuring the confidentiality and proper handling of their personal data. The
research methodology and the consent form were previously approved by the Ecole
Polytechnique de Montréal’s ethics committee (certificate CER-05/06-15).

30

3.4 Knowledge Perspective

The subjects presented in this section show that knowledge is complex. It can be viewed from
many perspectives and modeled accordingly. Knowledge management, which is largely
interdisciplinary, is becoming a real concern in software engineering. New methodologies must

be explored to enable us to better capture data related to knowledge flow.

3.4.1 Knowledge models

In the cognitive sciences, there are four knowledge models that are referred to widely: Kolb’s
model of experiential learning, Argyris and Schon’s double-loop learning theory, Wenger’s
theory of communities of practice, and Nonaka and Takeuchi’s theory of knowledge creation

(Bjornson & Dingsoyr, 2008).

Kolb (1984) describes learning from experience as involving four learning modes that can be
placed in two dimensions. One dimension relates to how people grasp experience and includes
two modes: comprehension (abstract conceptualization) and apprehension (concrete experience).
The other dimension relates to how people convert experience, and also includes two modes:
intention (reflective observation) and extension (active experimentation). Kolb stresses the
importance of taking advantage of all four modes for learning to be effective.

Argyris & Schon (1978) differentiate single- and double-loop learning. Single-loop learning
involves the generation of new action strategies to achieve existing governing values, while
double-loop learning involves adaptation and modification of the governing values themselves
(Dick & Dalmau, 1990).

Wenger (1998) opposes the traditional individual learning process in favor of a social type of
learning process, which he refers to as communities of practice (CoP). The members of a CoP
engage in a process of collective learning through the action of sharing knowledge related to a

common practice.

Nonaka & Takeuchi (1995) claim that knowledge creation occurs through the interaction between
tacit and explicit knowledge, which is called knowledge conversion. Polanyi (1967) categorized
knowledge as either explicit or tacit. Explicit knowledge can be expressed in formal and
systematic language, and can be processed and stored relatively easily (Williams, 2006). Tacit

31

knowledge is deeply rooted in an individual’s actions, experience, and values, making it highly
personal and difficult to formalize (Schon, 1983). There are four types of knowledge conversion:
socialization (from tacit knowledge to tacit knowledge), externalization (from tacit knowledge to
explicit knowledge), combination (from explicit knowledge to explicit knowledge), and
internalization (from explicit knowledge to tacit knowledge). Socialization relates to the
conversion of new tacit knowledge from past experiences. Externalization is the process of
crystallizing knowledge by making tacit knowledge explicit. Combination relates to converting
explicit knowledge to more complex or systematic explicit knowledge. Internalization occurs

when someone embodies explicit knowledge in tacit knowledge.

3.4.2 Knowledge management

Knowledge management is a large interdisciplinary field (Bjornson & Dingsoyr, 2008). Earl
(2001) proposes taxonomy of strategies, or “schools”, categorized as: technocratic, economic,
and behavioral. The technocratic schools are: the systems school, focusing on technology for
knowledge-sharing; the cartographic school, which is concerned with mapping organizational
knowledge; and the engineering school, which focuses on processes and knowledge flows in
organizations. The economic school is concerned with commercial exploitation of knowledge and
intellectual capital. The behavioral schools are: the organizational school, focusing on networks
for sharing knowledge; the spatial school, which focuses on how office space can be designed to
promote knowledge-sharing; and the strategic school, which sees knowledge management as a

dimension of competitive strategy.

The engineering school, focusing mainly on process, is the knowledge management school
receiving the most empirical attention (Bjornson & Dingsoyr, 2008). Two major categories can
be identified within this school. The first investigates the entire software process with respect to
knowledge management. The second considers possibilities of specific activity improvement to

the software process.

As part of the first category, Alavi & Leidner (2001) believe the major challenge in knowledge
management is to facilitate the flow of knowledge between individuals in order to maximize the

amount of knowledge transfer.

32

Arent & Norbjerg (2000) studied software process improvement (SPI) from a knowledge
perspective based on the knowledge creation model (Nonaka & Takeuchi, 1995). They concluded
that both tacit and explicit knowledge are crucial to SPI success. Tacit knowledge is necessary to

change practices, and explicit knowledge is necessary to create an organizational memory.

Nerur & Balijepally (2007) argue that the type of software process affects how knowledge is
managed. The traditional (engineering-based) approach relies primarily on managing explicit

knowledge, while agile methodologies primarily rely on managing tacit knowledge.

Dahkli & Chouikha (2009) propose a knowledge-oriented software development process
designed to reduce the knowledge gap resulting from the discrepancy between the knowledge

integrated in software systems and the knowledge owned by organizational actors.

As part of the second category, Melnik & Maurer (2004) discuss the role of conversation and
social interaction as the key elements of effective knowledge-sharing in an agile process. They
conclude that explicit knowledge-sharing is inefficient when complex cognitive artifacts are used.
The higher the level of complexity, the more need there is for interactive knowledge-sharing

through direct verbal communication.

Bjornson & Dingsoyr (2005) investigated knowledge-sharing through mentoring in a small
software consultancy company. In order to improve mentoring, they propose introducing

methods to increase the employees’ level of reflection.

Desouza, Awazu, & Wan (2006) examined what factors contribute to the use of explicit
knowledge in a software engineering organization. They found that perceived complexity,
perceived relative advantage, and perceived risk are factors affecting the use of explicit
knowledge.

To sum up, knowledge management’s engineering school literature investigates software process
and practices with respect to knowledge management, but not from a knowledge flow

perspective.

3.5 Knowledge Flow in Software Projects

The following section illustrates the uses of the ATS methodology to derive a conceptual model

based on the grounded theory, as well as to validate the model with multiple-case studies.

33

Based on the grounded theory, the ATS tokens of the 2006 capstone project provided the
concepts on which we can develop a knowledge flow model (Figure 3.1), which is related to
Nonaka and Takeuchi’s knowledge creation model. We then used this knowledge flow model to

codify each token of the four capstone projects, in order to analyze software development from a

knowledge perspective.

Development
artifact

Crystallization
Validation

information knowledge

uonezijesy
UOIEIILIBA

[Source code]

Figure 3.1: Knowledge Flow Model

The four rounded-corner boxes in Figure 3.1 represent knowledge sources. External information
can be general or specific to the project under development. General information may come from
various sources, such as the Web, a paper, or a book. Specific information comes from any of the
project’s pre-existing documentation. A development artifact is a physical representation of
knowledge, such as a software requirement specification (SRS), a design specification, or a test
plan. Source code strictly includes executable statements and comments. Tacit knowledge is

individual knowledge built from interacting with other knowledge sources.

The arrows in Figure 3.1 represent the cognitive factors, which constitute the knowledge flow
between knowledge sources. Real-life examples (based on the 2006 project) of all six cognitive
factors are detailed in Table 3.2. The acquisition cognitive factor is involved when a developer

needs to increase his tacit knowledge from external information. The crystallization cognitive

34

factor is the translation of a developer’s mental representation of a concept (tacit knowledge) into
an artifact (explicit knowledge), such as a use-case diagram or an architectural plan. The
realization cognitive factor also involves the translation of tacit knowledge into explicit
knowledge, but requires, in addition, technical know-how, which is related to source code
production. The validation cognitive factor involves bidirectional knowledge flow between tacit
knowledge and development artifacts (explicit knowledge), in order to validate the consistency of
those two knowledge sources. The verification cognitive factor is like validation, except that
source code is the knowledge source, thus involving technical know-how. The work planning
cognitive factor mostly involves developers’ synchronization of the project’s planning and

progress knowledge.

This knowledge flow model is limited to software development activities. The management
activities related to the software project are not taken into consideration in this model, because
they are not specific to software development and they frequently involve several projects.
Writing a software development plan is an example of a management activity.

Table 3.2: Token examples

Cognitive factor ~ Token Description

Acquisition Read Qt website documentation to better understand drag-and-drop functions.

Crystallization Define use cases 1 and 2 in the Use Case Specification.

Realization Code CGraphicComponents and CGraphicDesign classes for drag-and-drop functionalities.
Verification Fix drag-and-drop bug in CGraphicComponents and CGraphicDesign classes.
Validation Conduct team peer review of the architecture document.

Work planning Conduct team meeting for iteration 3 task planning.

In order to extract knowledge behavior from ATS tokens, a coding scheme, based on the
knowledge flow model, has been designed. An ATS token is codified according to the cognitive
factor concerned. However, some tokens involve more than one cognitive factor. Therefore, the
coder needs to determine the dominant cognitive factor, mainly based on the description of the
token and its context (input artifact, role, process, etc.). For instance, fixing a code defect
involves both the verification and realization cognitive factors. First, it requires locating the

defect in the code, which is related to the verification cognitive factor. Then, the actual fixing of

35

the code involves the realization cognitive factor. In this situation, the dominant cognitive factor

remains verification.

All the tokens of the four capstone projects were codified by two independent coders, who
had to decide which cognitive factor was dominant. However, tokens related to academic and
technical activities were not accounted for in the codification, since they were not specific to
project development. Academic activities are related to the academic course, such as teamwork
training and project presentation. Technical activities are related to tasks which can be performed
by technicians, such as configuring the network or setting up and maintaining the development

environment.

From a coding scheme viewpoint, there are 6 possible software development (SD)
categories: acquisition, crystallization, verification, validation, realization, and work planning.
There are also 3 possible categories not related to software development: management, academic,
and technical. Table 3.3 presents the software development (SD) effort, the number of SD tokens,

and the token-per-hour ratio.

Table 3.3: Software development effort and tokens
Project SD effort (h) SDtokens Token/hour

P06 997 1426 1.4
P07 750 1408 1.9
P08 810 887 1.1
P09 628 621 1.0

The codification of ATS tokens allows the analysis of effort distribution, which makes it easier to

understand a project’s knowledge flow.

Every project studied had two deadlines. The first required the development team to present their
system architecture to the industrial partner. It occurred at between 30% and 45% of project
completion, depending on the project. The second deadline occurred at the end of the semester,

when the product was delivered to the client.

Figures 3.2 to 3.5 present the total effort expended on each cognitive factor in relation to project
completion for projects P06, P07, P08, and P09. Each of the 6 curves of the graphs represents the

36

total effort expended (Y-axis) for a given cognitive factor with respect to the percentage of
project completion (X-axis). For example, in P06 (Figure 2), at 20% of project completion (X-
axis), 11% of the total effort (Y-axis) had been expended on crystallization. Validation
represented 5% of the total effort and acquisition 3%, realization and work planning both
accounted for 1%, and no verification effort had been expended to that point. The analysis of the
slopes of the 6 curves in Figure 2 provides a better understanding of the relationship between

cognitive factors throughout the project.

40%

35%

Total effort

= = Acquisition

------- Crystallization

e\ 2 Fif iCatiON

Validation
— Realization

Work planning

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Project completion

Figure 3.2: Project P06 total effort distribution

As depicted in Figure 3.2, at the end of the first phase of project P06 (30% of project
completion), crystallization was the project’s most important cognitive factor (14% of total
effort), requiring an almost constant effort, as can be observed from the linear part of the
cumulative effort curve. This behavior is typical of disciplined software processes, because many
development artifacts are produced during that timeframe, such as SRS, use case documentation,
and architecture and design documentation. Between 85% and 95% of project completion,

crystallization is an important cognitive factor. This behavior can be explained by the developers’

37

need to update artifacts to fit the software product before delivery, which we refer to as

retrofitting.

Throughout project P06, validation is closely related to crystallization, which is typical of
software projects, since validation mostly depends on reviewing crystallized development

artifacts.

Acquisition is an important cognitive factor at between 25% and 65% of project completion. It is
related to new knowledge needed from developers in order to understand the project’s domain or

elaborate the system architecture.

Work planning is not a significant part of the project’s total effort, but it requires an almost
constant effort for the duration of the project, as can be seen from the cumulative effort curve

throughout the project, which is almost linear.

Realization and verification are closely related throughout the project. Both start by being
important cognitive factors at around 35% of project completion, which is close to the end of the
first phase of the project. Realization is the most important cognitive factor from 35% to 85% of
completion, while verification is very important from 35% until the end of the project. The
relation between the two cognitive factors is due to code verification and testing being

complements to code implementation.

Figure 3.3 illustrates the cognitive factor effort distribution for project PO7. The effort
distribution for the first phase of this project (35% of project completion) is very similar to that of
P06: crystallization was the project’s most important cognitive factor (13% of total effort),
validation is closely related to crystallization, acquisition is moderately important (5% of total
effort), and realization and verification are unimportant (2% and 1% of total effort respectively).
However, by the end of the project, P07 and P06 were noticeably different. Work planning added
up to 11% of total effort, and crystallization added up to 26% of total effort, a particularly high
figure. Moreover, even though realization and verification were closely related throughout the
project, verification surpassed realization at 90% of project completion, which is atypical. These
observations can be explained by the team’s development philosophy. Artifact production and
work planning were considered as goals to achieve at “any cost”. Consequently, the essence of

software development — to develop a quality product — was overshadowed.

38

40%
£
o
£ 35%
©
°
= 30%
25%
= = Acquisition
2% 2 e Crystallization
Verification
15%
Validation
10% Realization
Work planning
5%
0%
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Project completion
Figure 3.3: Project P07 total effort distribution
40%
£
o
£ o35%
©
°
= 30%

25% //
- = Acquisition
20% 4

------- Crystallization

Verification
15%
Validation
10% Realization
Work planning
5%
0% !

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Project completion

Figure 3.4: Project P08 total effort distribution

Figure 3.4 shows cognitive factor effort distribution for project P08. As was the case for projects
P06 and P07, at the end of the first phase of P08 (45% of project completion), crystallization was
the project’s most important cognitive factor (16% of total effort). Like PO6 and P07, throughout

39

the P08, validation was closely related to crystallization, and realization was closely related to
verification. Work planning also required an almost constant effort for the duration of the project.
However, P08’s acquisition (9% of total effort of the project’s first 25%) was completed sooner
than in P06 and PO7. This behavior can be explained by the developers’ lack of domain-specific

knowledge.

Total effort
w
<

25%

= == Acquisition
2% /7 eeeens Crystallization
” e\ 2 rif iCatioON
15%
Validation
10% Realization
Work planning
5%
0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Project completion

Figure 3.5: Project P09 total effort distribution

Figure 3.5 details cognitive factor effort distribution for project P09. As was the case for P06,
P07, and P08, at the end of the first phase of P09 (35% of project completion), crystallization was
the project’s most important cognitive factor (12% of total effort). However, unlike the other
projects, realization was already important (8% of total effort), and a crystallization plateau was
reached at around 20% of project completion. Like the other projects, throughout P09, validation
was closely related to crystallization, and realization was closely related to verification. But P09’s
realization (37% of total effort) is very important compared to that of P06, P07, and P08
(respectively 23%, 19%, and 28% of total effort). These observations can be explained by the
team’s development philosophy, which was very different from that in PO7. The P09 developers

rightly produced artifacts and planned their work in order to help software development. In other

40

words, the development of a quality product was the main focus of the project, and this was
complemented by supporting activities, which was not the case for PO7.

3.6 Discussion

In this section, we discuss the methodological challenges and results of the knowledge flow

analysis.

3.6.1 Methodological challenges

The ATS methodology offers participant (project developer), researcher, intercoder reliability
and external validity challenges.

3.6.1.1 Participant

The participant must understand what an activity is in order to accurately log its details in a token
(cf. Table 3.1). A short training session provided to participants prior to the project by the
researchers is usually enough. One difficulty for the participant is to identify an activity switch
and log it accordingly. For example, the implementation of a feature mostly involves coding and
testing/debugging activities that are intertwined in time. The participant must understand what he

is doing and correctly log these activities.

3.6.1.2 Researcher

The researcher must consider three methodological challenges: continuous project

methodological supervision, consistency validation, and an adequate coding scheme.

The researcher must provide the participant with continuous methodological supervision
throughout the project. He has to regularly ensure that the tokens were correctly filled in by
participants. The most common problems are an incomplete activity description and an
inappropriate token duration. The first occurs mostly at the beginning of a project, and is easily
fixed by appropriate participant training. The second is influenced by a participant’s personality,
as participants with a rigorous mind pay greater attention to activity switching than others. Close

supervision is therefore required to motivate those participants to correctly fill in tokens.

41

Consistency validation is another critical aspect to consider. The researcher must validate tokens
to ensure that they do not overlap. Two types of validation are performed: start/end time and
participants. The start time and end time fields of each token are analyzed to make sure that they
do not overlap. Also, fields P; to P, (participants involved in the execution of an activity) are
validated to make sure that every participant mentioned in a token did, in fact, complete a token
confirming the same activity. For example, if participant A completes a token stating that he was
in a meeting with participant B, and then a token from participant B must state that he was in a

meeting with participant A.

The definition of the coding scheme is a methodologically critical aspect of any methodology
based on protocol analysis. Our coding scheme is based on the cognitive factors of the
knowledge flow model, which was developed using grounded theory. However, some tokens
involve more than one cognitive factor. Therefore, the coder has to determine the dominant
cognitive factor based on the token’s description and context. To ensure the reliability of coding
decisions, two independent coders were asked to codify the tokens of the four capstone projects.
Thereafter, an intercoder reliability measure allowed assessment of the convergence of their

coding.

3.6.1.3 Intercoder reliability

With judgment-based coding schemes, the best approach for validating the reliability of the

quality of data is to rely on intercoder agreements (Perreault & Leigh, 1989).

When researchers use multiple coders and evaluate the convergence of their coding, the most
commonly used measure of intercoder reliability is the simple percentage of agreement between
two (or more) coders (Bettman & Park, 1980). Although easy to use, simple percentage
agreement statistics are likely to be influenced heavily by the number of coding
categories (Cohen, 1960).

The next most frequently used intercoder reliability measure is Cohen’s kappa. However, this is a
conservative measure because of the way it estimates interceders’ agreement related to chance
(Perreault & Leigh, 1989). It is difficult to operate in practice because it requires an estimate of
the number of chance codings (Clark, 1999). The Perreault & Leigh reliability index (l;) is

42

preferable to other methodologies, since it accounts for differences in reliability as a function of
the number of categories (Kolbe & Burnett, 1991).

Table 3.5: Project reliability index

Project I,
P06 0.95
P07 0.93
P08 0.94
P09 0.93

Table 3.5 presents Perreault & Leigh’s reliability index for the four projects based on two
independent coders. The indices presented (all above 0.9) show a strong project coding
reliability.

3.6.1.4 External validity

The external validity of empirical studies with students is a commonly raised concern. According
to Carver, Jaccheri, Morasca, & Shull (2003), more and more students are employed during the
summer or for complete internships in industrial environments, which brings an expanded set of
skills to many upper-level courses. Host, Regnell, & Wohlin (2000) conclude that only minor
differences exist between students and professionals regarding their ability to perform relatively
simple tasks requiring judgment. Moreover, their studies do not contradict the assumption that
final-year software engineering students are qualified to participate in empirical software
engineering research. Similar results were obtained in a study about detection methodologies for
software requirement inspection conducted by Porter, Votta, & Basili (1995) with students and
then replicated with professionals (Porter & Votta, 1998). Consequently, the external validity of
our study is increased by relying on senior students who have some internship experience in the
industry.

43

3.6.2 Knowledge flow results

As the ATS methodology enables representation of a model of knowledge flow throughout a
software development project, the cognitive activity diagrams presented here serve to illustrate

proofs of concept for the methodology.

The ATS methodology is a software activity measure which is independent of the software
process used. It is related to recorded cognitive activities, which allow a better understanding of
knowledge needs throughout a software project. A detailed analysis of these results is outside the

scope of this paper.

3.7 Conclusions

There is a growing need to consider the knowledge perspective in software development, since
developers’ activities are mostly cognitive. Knowledge cannot be measured directly, since it is
mostly tacit in the developer’s mind. Techniques have been developed in the social sciences, like
think-aloud protocols, to explore the participant thinking process. Such techniques can only be
applied for a short period of time on very specific cognitive activities, however, and they are not

well suited for studying the knowledge flow in a whole software development project.

The ATS methodology presented in this paper is a compromise between short duration, very
accurate data (think-aloud) and project span self-reported data on participant cognitive activities.
The level of accuracy obtained with the ATS methodology is sufficient to explore various

knowledge perspectives in software development.

The ATS methodology offers challenges to researchers: appropriate project methodological

supervision, consistency validation, and an adequate coding scheme.

This methodology is actually most useful when combined with other measurement approaches.
Future work is needed in various directions. Tools can be built to ease the capture of data and to
perform some of the validation online. ATS tokens can be combined with audio-video recording
to increase the reliability and the content of the measure. ATS tokens can also be combined with

records of technical activities performed on a computer.

44

CHAPITRE 4

CONSEQUENCES OF DOCUMENTATION QUALITY
IN FLOSS REUSE: A CASE STUDY

4.1 Abstract

Context: Many software development projects reuse free/libre open source software (FLOSS)
components for various reasons. However, FLOSS projects evolve quickly and the

documentation does not always keep up.

Objective: This paper aims to assess the consequences of documentation quality for FLOSS

component reuse.

Method: Data were gathered from an industrial capstone project, carried out over a 14-week
period by five senior students, which required a total effort of roughly 1800 hours. The project’s
development was analyzed from a knowledge flow perspective, based on a professional
constructivism approach, which integrates Nonaka and Takeuchi’s knowledge creation model and
Wertsch’s social constructivist learning theory. The data gathering technique used was the effort

time slip method.

Results: The main issues encountered in the industrial project were related to the ambiguous
documentation of the reused FLOSS components. The industrial project helped to confirm that,
in free/libre open source applications, effort is expended in software development, but not so

much in documentation.

Conclusion: We suggest that the enforcement of a reusable code validation practice would lower

FLOSS component reuse effort.

4.2 Introduction

Many software development projects reuse free/libre open source software (FLOSS) components
for various reasons. Integrating software components which have been developed separately
entails more than gathering such components from the marketplace and combining them

(Merilinna & Matinlassi, 2006). It requires selection and evaluation of potential component

45

candidates. Component documentation has become a key issue in component reuse, because it is
often the only way to assess the applicability, credibility, and quality of a third-party component
(Taulavuori, 2002). However, the lack of documentation is one of the five fundamental problems

associated with the current FLOSS development trend (Levesque, 2004).

FLOSS projects evolve differently from closed-source systems (CSS) (Koch, 2005). The total
number of lines of code in FLOSS projects does not grow more rapidly than in CSS projects, but
functions are added and modified more often in FLOSS projects over time (Paulson, Succi, &
Eberlein, 2004).. This means that FLOSS projects evolve quickly and the documentation, when
decent documentation is available, does not always keep up.

This paper aims to assess the consequences of documentation quality for FLOSS reuse
components. Section 2 details the methodological approach, the knowledge flow perspective, and
the effort time slip method. Section 3 presents the capstone project case study. Section 4 analyzes
FLOSS documentation issues. Finally, section 5 extends our analysis by discussing the
distribution of extra effort and recommending a software practice designed to minimize the

consequences of inadequate documentation.

4.3 Methodological Approach

4.3.1 Capstone Project

Data for this study were gathered from an industrial capstone project carried out at the Ecole
Polytechnique de Montréal. A capstone project is a project-oriented course for senior software
engineering students based on requirements supplied by an industrial partner. In this case, an
engineer from the participating organization met with the students once a week to assist them in
developing the software product. The collocated software development team had access to a
dedicated room on campus for the duration of the project, furnished with a conference table, a

whiteboard, and five workstations.

The team was formed based on four criteria: current number of accumulated credits, past
internship experience in industry, and current grade point average, as well as software design and

process course grades.

46

The capstone project was conducted over one semester (14 weeks) on a fixed schedule of three
half-day team working sessions per week. The team workload was initially estimated to be 1800

hours.

The external validity of empirical studies performed by students is a commonly raised concern.
According to Carver et al., more and more students are employed during the summer or in full
internships in industrial environments, which brings an expanded set of skills to many upper-
level courses (Carver et al., 2003). Host et al. (2000) conclude that only minor differences exist
between students and professionals regarding their ability to perform relatively simple tasks
requiring judgment. Moreover, their study supports the assumption that final-year software
engineering students are qualified to participate in empirical software engineering research. Also,
a study on detection methods for software requirements inspection conducted by Porter et
al. (1995) with students and then replicated with professionals produced similar results (Porter &
Votta, 1998). Consequently, the external validity of our study is increased by relying on senior

students who have some internship experience in the industry.

Precautions were taken to meet ethical requirements for research involving humans, particularly
regarding informed consent and confidentiality. In this regard, an ethics certificate was issued for

this research by the Ecole Polytechnique de Montréal’s ethics committee.

4.3.2 Knowledge Flow Perspective

The project’s development was analyzed from a knowledge flow perspective, based on a
professional constructivism approach integrating Nonaka & Takeuchi’s (1995) knowledge

creation model and Wertsch’s (1985) social constructivist learning theory.

47

Development
artifact

Crystallization
Validation

N N
External AcQuisiti Tacit i
information cquisttion knowledge Work planning
J

uonezijesy

<
@
=
=
Q
@
=
o
=]

Source
code

Figure 4.1: Knowledge Flow Model

The four rounded corner boxes in Figure 4.1 represent knowledge sources. External information
can be either general or specific to the project under development. General information may
come from various sources, such as the Web, a paper, or a book. Specific information can come
from any preexisting documentation on the project. Development artifacts are physical
representations of knowledge, such as software requirements specifications (SRS), design
specifications, or test plans. Source codes are executable statements and comments. Tacit
knowledge is individual knowledge constructed through interaction with other knowledge

sources.

The arrows in Figure 4.1 represent the cognitive factors, which are the knowledge flow between
knowledge sources. The acquisition cognitive factor is involved when developers need to
increase their tacit knowledge from external information. The crystallization cognitive factor is
the translation of developers” mental representation of a concept (tacit knowledge) into an artifact
(explicit knowledge), such as a use-case diagram or an architectural plan. The realization

cognitive factor also involves the translation of tacit knowledge into explicit knowledge, but

48

requires, in addition, technical know-how, which is related to programming skills. The validation
cognitive factor involves bidirectional knowledge flow between tacit knowledge and
development artifacts (explicit knowledge), in order to validate the consistency of those two
knowledge sources. The verification cognitive factor is like validation, except that source code is
the knowledge source, thus involving technical know-how. The work organization cognitive

factor mostly implies developers’ synchronization of project planning and progress knowledge.

This knowledge flow model is limited to software development activities. The management
activities related to software projects are not taken into consideration in this model, as
management activities are not specific to software development and frequently involve several

projects.

4.3.3 Effort Time Slip Method

The data gathering technique used is the effort time slip method, which is a more detailed version
of the work diary (Perry et al., 1994). The effort time slip method was proposed by Germain &
Robillard (2005) and improved by Gendreau & Robillard (2007, 2009). Each time a developer

executes a task, details must be logged in a time slip token. Table 4.1 details the token fields.

Table 4.1: Time Slip Token Content

Field Description
ID Unique token identifier
Date Task date
Start time Task start time
End time Task end time
Duration Task duration (computed from the start/end time fields)
P;..P, P, to P, participants involved in the execution of the task
It Task iteration identifier

Input artifact Task main input artifact

Output artifact ~ Task main output artifact

Discipline Process discipline related to the task
Role Process role of the developer who executed the task
Activity Process activity related to the task

Task description Detailed description of the task

49

In a state-of-the-art review on data collection techniques for software field studies, Lethbridge et
al. (2005) present the advantages and disadvantages of the work diary approach. Work diaries can
provide better self-reports of events, because they record activities on an ongoing basis rather
than in retrospect. Moreover, they give researchers a way of understanding how software
engineers spend their time without undertaking a lengthy observation process or shadowing.
However, there are three major drawbacks associated with work diary entries. They rely on self-
reporting, which may not always represent reality, and they can interfere with respondents as they
work. Participants may fail to record some events, or they may record them with insufficient
detail.

The effort time slip method is more reliable than the work diary approach, because it deals with
its own drawbacks. While work diaries are primarily used for accounting purposes, recording
assigned task durations (elapsed time), the effort time slip method aims to compute actual effort
expended on a professional activity with maximal precision. A task is assigned by the project
manager, design package ABC, for example, and is part of the project planning work breakdown
structure. Assigned task durations are measured in days. Activities are performed by developers
as part of their task, look on the Web for XYZ information, design component A classes, or code
method B, for example. Activities are measured in hours or parts of hours, each developer using a
preformatted spreadsheet to detail activities on an ongoing basis, providing a precision of roughly
one token per hour. This approach minimizes interference with work and encourages participants
to record every activity without affecting accuracy. Moreover, a member of the research team
regularly validates token contents for coherence and accuracy, and a consistency validation is
also conducted after the project has been completed.

4.3.4 Independent Data Codification

In order to facilitate effort time slip analysis, a coding scheme, based on the knowledge flow
model, is designed. A time slip token is codified according to the cognitive factor concerned.
However, some tokens involve more than one cognitive factor. In such a case, the dominant
cognitive factor is determined based on the description of the token and its context (task, process,
etc.). For instance, fixing a code defect implies both the verification and realization cognitive

factors. First, the defect in the code, which is related to the verification cognitive factor, must be

50

found. Then, the realization cognitive factor is used to actually fix the code. In this situation,

verification is usually the dominant cognitive factor.

With judgment-based coding schemes, the best approaches for improving the quality of data rely

on evaluating the judgments of two (or more) independent coders (Perreault & Leigh, 1989).

When researchers use multiple coders and evaluate the convergence of their coding, the most
commonly used measure of intercoder reliability is the simple percentage of agreement between
two (or more) coders (Bettman & Park, 1980). Although easy to use, simple percentage
agreement statistics are likely to be influenced heavily by the number of coding
categories (Cohen, 1960).

Other than the simple percentage of agreement, the most frequently used intercoder reliability
measure is Cohen’s kappa. However, this is a conservative measure, because of the way it
estimates intercoder agreement related to chance (Perreault & Leigh, 1989). It is difficult to
operate in practice, because it requires an estimate of the number of chance codings (Clark,
1999). The Perreault & Leigh reliability index is preferable to other methods, since it accounts for

differences in reliability as a function of the number of categories (Kolbe & Burnett, 1991).

The Perreault & Leigh reliability index will be discussed further in section 4.5.1.

4.4 FLOSS Component Reuse: The Case of the SFLphone Capstone Project

4.4.1 Project Context

The industrial partner for the capstone project was Savoir-Faire Linux (SFL), a company created
to assist organizations wishing to take advantage of Linux’s potential for their information
systems. They specialize in Linux-based applications, such as Oracle, MySQL, Apache, Samba,
Iproute2, Squid, OpenVPN, and Asterisk.

The main goal of the SFL project is to add videoconferencing capabilities to the SFLphone,
which is an SIP/IAX2-compatible softphone for Linux. The SFLphone project's main goal is to
create a robust enterprise class desktop phone. While it can serve home users as well, it has been
designed to manage hundreds of calls per day. The SFLphone was released under Version 3 of
the GNU General Public License. It is being developed by the global community and is
maintained by SFL.

o1

For the capstone project, SFL requested the addition of 33 functional requirements and 13 non
functional requirements to the existing SFLphone application. In order to help the development
team with prioritization, the functional requirements were classified as essential (24), desirable
(8), or optional (1).

The requested requirements can be summarized as 6 features: two-way video conversation; three-
way audio and video conferencing; audio and video flow synchronization; encoding and
decoding of incoming and outgoing flows; multiple-flow mixing; compliance with H.263,
SIP/SDP, RTP, IAX standards.

The project was developed in C/C++ on the Linux platform. Many open source tools were used,
such as GIT for code version management, Eclipse as a development environment, and TRAC as
a project managing and bug/issue tracking system. Skype, xChat, and emails were also used to

communicate.

4.4.2 Disciplined Software Process

The development team followed a disciplined software process based on the Unified Process for
EDUcation (UPEDU) (Robillard et al., 2003). Figure 4.2 depicts a generic process practice. A
role is responsible for the outcomes of an activity. An activity needs at least one artifact as an

input and will generate an artifact as an output.

B E N
Activity Output

artifact artifact

Figure 4.2: Generic Process Practice

Table 4.2 details the 7 disciplines, 20 activities, 8 roles, 12 main input artifacts, and 15 output

artifacts of the process followed by the capstone project development teams.

Table 4.2: Capstone Project Process

L . Main input :
Discipline Activity Role artifact Output artifact
. Software
Formalize . - .
e System engineer Vision document Requirements
Requirements g Specification (SRS)
Mod_e! _ Analyst SRS _Use case and user
specifications interface document
Analyze use Use case and user L
: Use case realization
. cases interface document
Analysis & . Software
. Define the : ;
design . engineer Use case Architecture &
architecture e .
- realization design document
Design classes
Implement
C(_)mponents Architecture &
Fix defects . Components
. - design document
Implementation Implement unit Implementer
tests
SRS U Components Unit test results
tests
Plan tests SRS Test plan
Testin Describe tests Tester Test plan Test cases
g Execute tests Test cases Test results
Evaluate tests Test results Change record
. Elan phases Al SRS Iteration plan
Project iterations .
Project manager
management . Work Breakdown .
Plan meetings Meeting agenda
Structure
Plan . .
. . . Configuration
configuration Vision document management plan
Configuration management Configuration g P
management Manage manager Code management
product Components .
. . tool repository
configuration
Find code
Understand Component Validated component
Reuse Reuser .
code documentation document

Prototype code

52

4.5 Analysis and Results

45.1 Time Slip Tokens

The developers of the SFLphone project produced 1930 validated time slip tokens for a workload
of 1813 hours. However, tokens related to academic and technical activities were not accounted
for in this analysis, since they were not specific to project development. Academic activities are
related to the academic course, such as teamwork training and project presentation. Technical

53

activities are related to tasks which can be performed by technicians, such as configuring the
network or setting up and maintaining the development environment. Consequently, 1591
development tokens were retained for an analysis totaling 1560 hours. A coding scheme was
defined based on knowledge flow model cognitive factors. For each development token, two
independent coders had to decide which cognitive factor was dominant. With a total of 1472
agreements on 1591 judgments, the Perreault & Leigh reliability index was 0.96, which indicates

a very strong categorization reliability based on the coding scheme.

4.5.2 Knowledge Flow Analysis

The effort distribution analysis from time slip tokens allows a better understanding of a project’s
knowledge flow. The SFLphone project had two milestone deadlines. The first (at 40% of project
completion) required the development team to present their system architecture to the industrial

partner. The second deadline was system delivery at the end of the semester.

Figure 4.3 presents the total effort expended on each cognitive factor in relation to project
completion. Each of the 6 curves on the graph represents the total effort expended (Y-axis) for a
given cognitive factor with respect to the percentage of project completion (X-axis). For example,
at 20% of project completion (X-axis), 7% of the total effort (Y-axis) had been expended on
crystallization. Validation and acquisition each represented 5% of total effort, verification and
work organization both accounted for 1%, while realization corresponded to 0% of the total
effort. The analysis of the slopes of the 6 curves in Figure 3 provides a better understanding of

the relationship between cognitive factors throughout the project.

As depicted in Figure 4.3, at the end of the first phase (40% of project completion),
crystallization is the most important cognitive factor of the project (19% of the total effort),
requiring an almost constant effort, as can be observed from the linear part of the cumulative
effort curve. This behavior is typical of disciplined software processes, because many
development artifacts are produced in this timeframe, such as the software requirements
specification (SRS), a use case document, and an architecture and design document. Validation
accounts for 9% of the total effort. At this point, validation effort distribution varies, depending
on the crystallized development artifact to review. Acquisition represents 7% of the total effort.

This is related to new knowledge needed from developers in order to understand the project’s

54

domain or elaborate the system architecture. Work organization is not a significant cognitive
factor, accounting for only 2% of the total effort. However, it is worth noting that this cognitive
factor requires an almost constant effort for the duration of the project, as can be demonstrated
from the linear part of the cumulative effort curve throughout the project. Realization and
verification are unimportant, with both accounting for only 1% of the total effort. The effort

invested at that point relates to prototyping and reviewing code for reuse.

40%

35%

Total effort

30%

25% /_

= = Acquisition

20% TP T LA A T e Crystallization
0 / / Verification
15% -
K Validation
10% _.“ > - Realization
...o. ¥ - o —/ / Workp|anning
. -
5% ';., / 7
o
0% ’. 1 1 1 1 1 1 1 1 1 1 1 J

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Project completion

Figure 4.3: Cognitive Factor Effort Distribution in the SFLphone Project

45.3 FLOSS Library Issues

The main issues encountered in the SFLphone project were related to FLOSS library

documentation: libavcodec, video4linux, and ccRTP.

45.3.1 Libavcodec

Several new features of the project required the system to encode and decode video images

captured by the webcam. The libavcodec library, a popular open source LGPL-licensed library of

55

codecs, helped fulfill this requirement. It could be used in two ways: through the command line
or as an integrated part of a software project.

Three different strategies were tested to learn how to use the library. First, online documentation
was available through the library’s website. Second, a user/developer mailing list could be added
and used to ask questions. Third, an IRC chat channel made direct interaction possible between
users and developers.

The online documentation was mainly used by direct users, who are individuals using
libavcodec’s encode and decode functions. It was composed of a frequently asked questions
(FAQ) section and an online general documentation section providing answers to most of the
users’ direct questions. The general documentation also covered the development of the open
source library, its development policies (coding conventions), and a review process. Developers
wanting to use the library as part of their software were invited to refer to a small API code
example and look at the source code. If they had more questions, they were encouraged to
subscribe to the library’s mailing list and participate in chat sessions.

The API code example is a page created by a user willing to share his knowledge with other
developers (Bohme, 2004). It shows the main function calls without much explanation of why
they were called in that particular order. Moreover, most of the functions in this example were no
longer recommended in the source code’s comments. The source code only pointed out what new

functions should be used without specifying how to use them.

At one point in the SFLphone project, a developer wanted to convert the color format of each
pixel from RGB to YUV. The function invoked in the code example was rejected and a new,
completely independent library was recommended instead. The documentation was ambiguous,
and, consequently, the developer blindly tested the new functions suggested in the source code

comments.

As pointed out in the online documentation, a developer could use the mailing list available to
developers. Many questions were asked, but most developers did not know the answers. The few
experts willing to take the time to respond (mainly the developer in charge of the project) had to
answer almost all the questions. Sometimes, they could only speculate on how a given

component was supposed to be used since they were not always directly involved in its

56

development. Moreover, experts capable of answering very specific questions were usually hard
to contact, since they were not using the mailing list.

Also, experts commonly suggested searching through the mailing list archive, which was
considered by many as the main documentation for developers wanting to integrate the library
into their software. This suggestion involved reading each and every existing mailing list thread

to find relevant information as the mailing list archive search function was not very effective.

The other method allowing interaction with experts was online chatting, which seemed at first to
be the quickest way to find answers. However, only basic questions were answered quickly, and
the more difficult ones were left, presumably because the expert on that particular matter was not
online. The SFLphone project developers found that browsing the mailing list archive was more

effective than asking questions via online chatting, which tended to remain unanswered.

45.3.2 Videodlinux

Many features of the SFLphone project required video capture from the webcam. The industrial
partner strongly suggested using the video4Linux (V4L) library, which is a video capture API
now integrated into Linux’s kernel. More specifically, V4L is an abstract layer between video
software and hardware. It allows both image and video capture from external devices, such as a

TV tuner or a webcam.

The industrial partner provided a small, homemade prototype to show the basic usage of the
library. The team’s strategy regarding reusing V4L consisted of a prototyping strategy. Since
every requirement related to the video features obviously involved being able to capture images
from the webcam, the team realized that developing a more complete prototype was a top
priority, in order to validate required functionalities before integrating VAL into the SFLphone.
This strategy was aimed at acquiring better V4L behavioral knowledge before integration, thus
minimizing problems. It also focused on technological risk management by allowing a better

estimate of the integration effort.

Unfortunately, V4L integration did not occur as planned, mainly because of ambiguous
documentation, a problem which was not fixed because of incomplete validation prototyping. For
instance, a V4L function was announced as being able to change a webcam’s frame per second

(FPS) rate. However, the FPS setting was not supported by many webcams. The developers were

57

unaware of this until they encountered a segfault resulting from an incorrect use of the FPS
setting function. Of course, this problem could have been avoided if proper prototyping

validation had been performed, or if the V4L documentation had been clearer.

4533 ccRTP

The Real-time Transport Protocol (RTP) defines a standardized packet format for delivering
audio and video over the Internet. The ccRTP library is a C++ implementation of RTP.

The initial version of SFLphone, which required enhancement with video capabilities by the
capstone project team, already used the ccRTP library for audio transportation. RTP was
designed for both audio and video transportation, and ccRTP documentation seemed to confirm
that it supported both transportation types. Consequently, no prototyping effort was invested in
ccRTP functionalities. This decision had major consequences for the outcome of the project. It
turned out that ccRTP was designed to support video, but had not yet been implemented in the

library.

Once again, inaccurate documentation led to false assumptions, which could have been mitigated

or avoided if proper prototyping validation had been performed.

4.5.4 Consequences of Ambiguous Library Documentation

The consequences of library documentation ambiguities were analyzed based on the time slip
tokens and interviews with the developers that validated our assignment of those tokens. The

interviews were conducted on a voluntary basis after the project had been completed and graded.

The documentation for libavcodec and video4linux was partially ambiguous. Specifically, the
behavior of both library functionalities was sometimes difficult to predict. In the two cases, the
strategy used to fix the problem was black box unit testing, which allowed better understanding

of how functions should be invoked.

In the end, libavcodec integration required a total effort of 103 hours. Forty-four hours were
considered a normal effort on libavcodec integration. The remaining 59 hours were considered
extra effort expended due to inaccurate documentation. Consequently, this problem added

substantial effort (134%) to the integration of this library.

58

Video4linux integration required a total effort of 82 hours. Forty-five hours were considered
normal activities, while the remaining 37 hours would not have been required if the

documentation had been appropriate. This problem increased the integration effort by 82%.

The ccRTP library issue is linked to the serious consequences of the false assumption that ccRTP
supported video transportation. Architectural choices were made based on erroneous
assumptions. Since the issue was discovered very late in the project, there was not enough time
left to implement another solution, although this possibility was considered. The only viable

solution was to downsize the project by not implementing all the functionalities.

Nevertheless, a great deal of effort was expended in reaching the conclusion that the
documentation was not up to date. ccCRTP integration required a total effort of 132 hours. Only 24
hours were considered normal activities, while the remaining 108 hours would not have been
required with appropriate understanding of the library functionalities. This problem increased the

integration effort of the library by 450%.

Table 4.3 summarizes the normal and extra effort expended on libavcodec, video4linux, and
ccRTP library integration. The three documentation-related issues increased the total project

effort by at least 204 hours, representing the equivalent of 5 full-time man-weeks.

This quantitative evaluation represents only one aspect of the repercussions of ambiguous
documentation. Another major drawback is the quality of the delivered product, which can be

difficult to evaluate.

Table 4.3: Component effort distribution
Component Normal (h) Extra (h) Extra added (%)

Libavcodec 44 59 134
V4L 45 37 82
CCRTP 24 108 450
Total 113 204 181

4.6 Discussion

Since the project was developed as a capstone project, the schedule was non negotiable.
Whatever happened, the development team had no choice but to deliver a functional product after

14 weeks of development. Both the schedule and the human resources (5 developers) were fixed,

59

so the only flexibility left was with the product functionalities. The industrial partner and the
development team agreed that it was preferable to cut down on these. Consequently, the
requirements related to the three-way audio and video conferencing features were not

implemented as part of this project. However, other requirements were successfully developed.

4.6.1 Extra Effort Distribution

The following figures (4.4, 4.5, and 4.6) present quantitative analysis of the cognitive factors
(acquisition, verification, and realization) affected by the documentation issues of FLOSS
components (libavcodec, video4linux, and ccRTP). The crystallization, validation, and work
organization cognitive factors were not measurably affected by the documentation issues.

Figure 4.4 shows the cumulative effort expended on the acquisition cognitive factor during the
real project (dark line) and the adjusted curve (light line), and represents the expected effort given
appropriate documentation. The revised curve was obtained by removing from the time slip
tokens all entries related to the extra effort required by the documentation problems, based on

interviews with two of the project’s developers.

The real acquisition cognitive factor effort increased around mid-project (60% towards the end),
which means that unusual effort was expended after mid-project to acquire new knowledge. This
indicates that something went wrong, as it is unusual after mid-project to expend any significant
effort on the acquisition of new knowledge. The adjusted curve is representative of measurements

on successful projects.

Figure 4.5 shows the real and adjusted verification cognitive factor cumulative effort. The
verification cognitive factor involves mainly test-related activities. Usually, this curve is almost
linear from mid-project to the end of the project, which can be observed as a constant slope for
the project duration, which is the behavior represented by the adjusted curve. The SFLphone
project ("real” curve) put an extra burden on the verification activities, as observed by the

increase in the slope starting at 55% of project completion.

Total effort

Total effort

30%

25%

20%

15%

= Acquisition (real)

10%
° Acquisition (adjusted)

5%

Project completion

Figure 4.4: Real and Adjusted Acquisition Cognitive Factor Cumulative Effort

30%

25%

20%

15%

= \/erification (real)
10%

== \/erification (adjusted)

Project completion

Figure 4.5: Real and Adjusted Verification Cognitive Factor Cumulative Effort

60

61

Figure 4.6 shows that extra effort on the realization cognitive activities started at the 55% point of
the coding effort. A strong level of coding activities was maintained until the very end of the
project. The adjusted curve of the coding activity shows a smoothing at 80% of project

completion, which is observed in successful projects.

These curves provide only a partial picture of the extra effort attributable to the documentation
issues. Unimplemented functionalities required a significant effort expended on design, test
plans, test cases, and meetings with the industrial partner, which were not taken into

consideration in this analysis.

Moreover, the team’s disappointment when they realized that the desired product could not be
delivered, as well as the client’s frustration when they received a different product than expected,

were not incorporated into this analysis.

30%
25%

20% //
y4

10%

0%

Total effort

= Realization (real)

== Realization (adjusted)

Project completion

Figure 4.6: Real and Adjusted Realization Cognitive Factor Cumulative Effort

4.6.2 Software Practice Recommendation

The SFLphone project helped us to understand that, in free/libre open source applications,

considerable effort is expended on software development, but not so much on documentation.

62

To maximize reuse benefits, we recommend adding a stronger process practice enforcing

reusable code validation and including a feedback loop.

Figure 4.7 details the reusable code validation practice. The reusable component is used by the
reuser as the input artifact. The reuser is responsible for validating the component’s reusability.
This activity produces a reusability report as the output artifact. Then, a reviewer will revise the
reusability report to ensure that it is reliable. The revised reusability report will be sent to the
reuser, if needed. This strong feedback loop will prevent improper enforcement of component

reusability validation, as was the case in the SFLphone project.

D Validate \
= component

reusabili
Reusable AL b
component
Revised RR
reusability E—
report Reusability
T report

. Revision
Reviewer

Figure 4.7: Reusable Code Validation Practice

The reusable code validation practice must be completed prior to architectural and design
activities, because important information will come out of the practice which could influence
architectural and design decisions. Moreover, this practice will help in managing technological
risk, because a better understanding of a component’s functionalities will facilitate subsequent

effort estimation.

4.7 Conclusions

The reuse of free/libre open source software components is a recommended strategy. However, it
is important to understand the possible consequences of such a choice. Based on the literature and

the results of this case study, FLOSS documentation appears ambiguous, imprecise, and out of

63

date. This leads to effort being expended fixing preventable issues. In the case of the SFLphone
project, at least 200 hours were lost due to the ambiguity of FLOSS documentation. We suggest
that the enforcement of a reusable code validation practice would lower free/libre open source

component reuse effort.

4.8 Acknowledgments

The authors wish to express their gratitude to Savoir-Faire Linux for their participation in the
2008 edition of the Capstone Project. We extend our special thanks to Benoit Grégoire, the on-
site engineer who provided assistance to the development team once a week. We also thank Jean-
Francois Blanchard-Dionne, one of the student developers, who provided insightful information

regarding the development of the project.

64

CHAPITRE 5

IS DESIGN USEFUL IN SMALL SOFTWARE PROJECTS?
AN EXPLORATORY CASE STUDY

5.1 Abstract

It is generally accepted that there are discrepancies between design artifacts and implementation.
These discrepancies have been studied from the design erosion or software evolution
perspectives. Many approaches have been proposed to retrofit or reverse engineer the source code
in lieu of design. Other approaches recognize the discrepancies and focus on keeping the best of
design and implementation. Other approaches insure information continuity from the design to
the source code. The purpose of this study is to understand the mechanisms leading to
discrepancies by analyzing a case study of a software development project based on a disciplined
software development process. Unlike design in traditional engineering where the blueprint
artifacts are abstract models of products to be implemented, software design artifacts are rather
images of product possibilities. We found that discrepancies between the designed and the
implemented classes are a consequence of the implementation activities rather than the result of a

design evolution.

5.2 Introduction

Design activity is a major component of any software process approaches. It is generally accepted
that there are discrepancies between design artifacts and resulting implementations. Many works
have been interested in finding relationship between design and code. This paper analyses the
emergence of discrepancies between design activities and resulting implementation. This work
sheds some light on this aspect by analyzing the data collected during an industrial software

development project.

Some authors call design erosion the drift between design and implementation (van Gurp &
Bosch, 2002). They have found that software designs tend to erode over time to the point that
redesigning from scratch becomes a viable alternative compared to prolonging the life of the

existing design. They demonstrate that design erosion is inevitable because of the way software is

65

developed. They have found evidence of architectural drift, vaporized design decisions and
design erosion. An important conclusion is that even an optimal design strategy for the design

phase does not deliver an optimal design.

Others prefer to call it software evolution (Li, Etzkorn, Davis, & Talburt, 2000). In this study,
three metrics—System Design Instability, Class Implementation Instability, and System
Implementation Instability—are used for the purpose of measuring object-oriented (OO) software
evolution. The metrics are used to track the evolution of an OO system in an empirical study.
They performed a study of design instability that examines how the implementation of a class can
affect its design. This study determines that some aspects of OO design are independent of

implementation, while other aspects are dependent on implementation.

Many researchers have proposed to bridge the gap between design artifacts and implementation
by reverse engineering the implementation into design artifacts. The software engineer might use
a reverse engineering system to derive a high-level model from the source code. These derived
models are useful because they are, by their very nature, accurate representations of the source.
Although accurate, the models created by these reverse engineering systems may differ from the

models sketched by engineers.

Many studies have investigated the relationships between these so-called design metrics and
product quality in terms of fault-proneness (Yuming & Hareton, 2006; Briand, Wu, & Lounis,
2001). Other studies have used OO design metrics to evaluate the testability of the resulting
designed software units (Subramanyan & Krisnan, 2003). Almost all facets of OO software have
been analyzed in terms of OO design metrics, such as predicting effort (Baudrya & Le Traon,
2005) and predicting maintenance (Alshayeb & Li, 2003). Some researchers, however, are
questioning the prediction capabilities of OO metrics and their usefulness (Fioravanto & Nesi,
2001). Most of these studies capture the results yielded by what their authors call design metrics.
In fact, it is the modeled representation of the design of the implemented classes that they are

capturing, those classes being retrofitted into UML representations.

For many developers the original design artifacts are important and effort must be made to bridge
the gap between design and implementation. The software reflection model technique permits an
engineer to summarize structural information extracted from the source within the framework of

a high-level model (Murphy, Notkin, & Sullivan, 2001). It provides a means of bridging the gap

66

between the high-level models commonly used by engineers to reason about a software system
and the system artifacts that are the software system.

Another approach is to check the compliance of OO design with respect to source code
(Antoniol, Caprile, Potrich, & Tonella, 2000). They recover an "as is" design from the code and
compare the recovered design with the actual design. Verification of the design-code compliance
is the basic step to produce an updated version of a design. Since the design represents an
abstraction of the implementation, relations between classes in the design are expected to be all
present in the code, while additional relations in the code can be regarded as implementation

details. Our study shows that it is not as simple.

Another approach is to insure information continuity. Each software artifact along the software
development cycle should be the refinement of the artifacts of the previous phase. It should be
consistent with the previous artifact and it should be possible to trace information along the
phased development process. Many approaches try to limit the discontinuity of information
across different models used in the software process.

A model connectors approach is proposed as ways for bridging information across models in the
software life cycle (Medvidovic, Grunbacher, Eegyed, & Boehm, 2003). In particular, they have
devised a set of techniques for bridging different design models, both at the same level and across
levels of abstraction. Connectors between models satisfy two primary goals: to transform model

information or to compare model information.

Another paper describes an integrated traceable software development approach in the context of
a use case design methodology (Kim & Carlson, 2001). The foundation for these approach lies in
partitioning the design schemata into a layered architecture of functional components called
design units. The proposed code generation technique focuses on creating a skeletal code
framework at the design stage to get control over the quality of the code and establish a
manageable relationship between design and the actual implementation. The proposed design
concept provides a framework for supporting traceability through the software development
lifecycle. There are many software tools that tend to preserve the continuity between the class

designs and the implementation.

The purpose of this study is to understand the emergence of discrepancies between the software

design activities in a plan-driven software development process and its implementation. Section 2

67

describes the industry-based software project on which this study is based. Section 3 presents a
model for the cognitive activities involved in the design process. Section 4 discusses the finding

of this research and its validity.

5.3 Description of the Project

The requirements for the project came from a collaborating avionics industry. The objective of
the project was to build a software tool for editing and configuring systems based on ACS
(Avionics Core Software) architecture. The ACS Library is a set of C++ classes, which are the
building blocks for developing large-scale avionics systems. The functionalities of the new tool
had to be based on class structures taken from the ACS libraries, and had to improve the
productivity associated with building systems based on this library. This new software tool also

had to be capable of integration into existing tools.

This project was carried out by senior (fourth-year) students in the Studio course in software
engineering at the Ecole Polytechnique de Montréal, which is an elective capstone, project-
oriented course offered during the last term. Teams of Studio course students must follow a
prescribed plan-driven software engineering process. Previous empirical studies on Studio
activities concerned such topics as cognitive activities (Germain & Robillard, 2003) and
comparing the strengths of engineering-based processes to those of the agile methodologies
(Germain & Robillard, 2005).

The Unified Process for EDUcation (UPEDU) (Robillard et al., 2003), is an adapted version of
the Rational Unified Process (RUP) (Kruchten, 2000). Its objective is to define a software
process which is appropriate to the project and only the activities and artifacts relevant to the
targeted projects are retained. The software process for the Studio is well defined, and all the

activities and artifact templates can be viewed on the UPEDU website.

All data used for this observational study were collected through online effort slips filled out by
participants. The data collection scheme was adapted from a core framework which included the
following data elements for each effort slip:

Participant ID

Date

Activity performed (one short sentence in free format)
Input and output artifacts

68

e Effort expended (with a 45 minutes granularity)

The participants had been trained to fill out the effort slips correctly, and the slips were checked
regularly by the instructors in order to ensure their validity. Ethical issues were handled

according to Canadian policy for research involving humans (NSERC, 2005).

This analysis takes into account only the effort that is relevant to software process activities.
Examples of effort not considered are the effort expended on training, on setting up the
development environment and on preparing the project presentations for design and product

deliveries.

The parameters of the 14-week project are the following: The students form a team of five
members. They are assigned a dedicated room and are required to spend a day and a half of
teamwork on the project. They are coached by an expert from the industry, who visits them once
a week, and by an instructor from the school, who visits them often during their weekly working
sessions to coach them on software process issues. The instructor is not involved in the resolution
of any design or coding issues. The team is required to present a design of the new product to the
client before starting the programming activities. In the case reported here, the client was
satisfied with the design presented and stated that it was consistent with the level of design
expertise in his organization. The effort expended exclusively on the design activities accounts
for 10% of the total effort.

5.3.1 Class Categories

The software product delivered by the Studio students is made up of 163 classes. This product,
like most real industrial software products, was not built from scratch. The project involved
adding functionalities to an existing software product. The 163 classes fall into 6 categories of

design activities:

1. The reused category contains 121 classes reused from an existing library.

2. The modified category contains 6 classes that were partially reused, since they were
modified during the implementation phase without being documented during the design
phase.

3. The adapted category contains 9 classes that were designed to be partially reused.

69

4. The added category contains 5 new classes that were designed specifically for the
product.

5. The created category contains 22 new classes that were created during the
implementation phase without any previous design.

6. The deleted category contains 3 classes that were designed, but were not implemented.

Figure 5.1 presents a model of the class categories. The box on the right hand-side of the figure
represents the implemented product made up of the 163 classes. The box at the top represents the
library, which is the source of the 136 classes (121 reused + 6 modified + 9 adapted), and the
illuminated cloud at the bottom represents the mind resource for the 27 new added (5) or created
(22) classes. Design activities represented by the broken line box in the middle were involved in
the 14 adapted (9) or added (5) classes.

Re-used

121
Modified 6

LIBRARY

-

P
M Adapted _ |9 ()

=
lDeleted DESIGN Added |5 Q
£ z

Created

Figure 5.1: Model of class origin

On a class basis, the design activities take into account only 14 classes out of the 42 implemented

classes, which accounts for little more than 30% of the product’s implemented classes.

70

1000

900

* Implemented classes
800
700
~ & Designed
o 600 —¢ i
ot B Not designed
O
E 500 *
D 400
300 - -
'S
200 *
*
100 -—0—!
EEgy
0 : HeomeooonmunmuENSRNE g |
0 10 20 30 40 50

Class ID

Figure 5.2: Size in number of executable statements of the implemented classes

The class perspective must be complemented with the size perspective. Figure 5.2 shows the size
in number of executable statements for each of the implemented classes in decreasing order of
number of executable statements. The largest class contains more than 850 executable statements,
while almost 60% of the classes have fewer than 30 executable statements. The designed classes

account for almost 80% of the executable statements.

1000
900 S Designed classes
800
700
]
s 60 _ ¢ Added
£ B Adapted
2 500 ~
O 400
300
200 *
¢ u
100 ¢
m
0 T T T T .l = -.';.'_
0 2 4 6 8 10 12 14 16
Class id

Figure 5.3: Size in number of executable statements of the designed classes
that have been added and adapted

71

Figure 5.3 shows that the design activities are concentrated in large classes that have been
adapted from existing classes or in the design of new added classes. A static analysis of the
source code reveals a very high correlation between the number of executable statements and

cyclomatic complexity.

Figure 5.4 presents the model of the product structure in terms of total size and number of classes
percentage for the four categories of implemented classes. It is observed that more than 75%
(35% + 42%) of the total number of executable statements involves design activities, and that
these account for only a third (12% + 22%) of the total number of classes. It is important to stress
that these statements were not designed, but they implement classes that have been designed. A
more detailed analysis shows, for example, that some features must have been designed, although
we cannot find any corresponding classes in the design artifact and that some features were
designed, but implemented in different classes than the one designed. These are cases of

mismatches between designed modifications and class implementations.

LIBRARY
PRODUCT
‘ - Size Classes
Modified > | 11% 14%
A
dapted — | 350 2204
DESIGN
Created L | 11% 5206
2 QA
' 80%

Figure 5.4: Product perspectives in terms of executable statements and number of classes for the
designed classes and the classes not designed

72

We found that these class discrepancies between the designed and the implemented classes are a
consequence of the implementation activities rather than the result of a design evolution. Design

analysis based only on the implemented class hames could be misleading.

5.4 Design Process Activities

In software engineering, design refers to a process discipline, or series of activities. Software
design artifacts are different from the technical blueprints found in the civil or mechanical
engineering, which must be strictly followed. Software engineering design activities address how
the system will accomplish the functional requirements, and these include algorithms,
input/output formats, interface descriptions and data definitions. Defining architecture is part of

the design process.

Software design is found to be a cognitive opportunistic process leading to the crystallization of

an entity, which is the "image of possibility".

Cognitive activities refer to the mental process by which knowledge is acquired and recorded. A
set of cognitive actions is opportunistic when we must explore further and find missing
information to complete the task. Knowledge is partially and incrementally gathered as
opportunities present themselves, which in turn depend on the cognitive availability of the
necessary material. This is not a well-planned process (Robillard, 2005).

Figure 5.5 presents the relationship between cognitive activities and knowledge sources in
software development. This knowledge flow model is related to Nonaka & Takeuchi’s (1995)

knowledge creation model.

The four rounded-corner boxes in Figure 5.5 represent knowledge sources. External information
can be general or specific to the project under development. General information may come from
various sources, such as the Web, a paper, or a book. Specific information comes from any of the
project’s pre-existing documentation. A development artifact is a physical representation of
knowledge, such as a software requirement specification (SRS), a design specification, or a test
plan. Source code strictly includes executable statements and comments. Tacit knowledge is

individual knowledge built from interacting with other knowledge sources.

73

Development
artifact

>

Validation

24% 14%

Crystallizatio

15% 4%
External Acquisition Tacit Work planning
information knowledge

23%

uonezieay

<
[2)
=.
=
)
2
o
S

[Source code]

Figure 5.5: Knowledge flow model

The arrows in Figure 5.5 represent the cognitive activities and the percentage next to an arrow
represents the effort expended in a cognitive activity relatively to the project's total effort. The
acquisition cognitive activity (15% of total effort) is involved when a developer needs to increase
his tacit knowledge from external information. The crystallization cognitive activity (24% of total
effort) is the translation of a developer’s mental representation of a concept (tacit knowledge)
into an artifact (explicit knowledge), such as a use-case diagram or an architectural plan.

Crystallization, by means of design artifact, is the representation of the "image of possibility".

Without this representation, the original “image of possibility” becomes an undefined artifact,
and in time can vanish altogether. This is not to say that the crystallized image does not change
during the subsequent implementation process, for it does, and often quite drastically. The
realization cognitive activity (23% of total effort) also involves the translation of tacit knowledge
into explicit knowledge, but requires, in addition, technical know-how, which is related to source
code production. The validation cognitive activity (14% of total effort) involves bidirectional
knowledge flow between tacit knowledge and development artifacts (explicit knowledge), in
order to validate the consistency of those two knowledge sources. The verification cognitive

activity (21% of total effort) is like validation, except that source code is the knowledge source,

74

thus involving technical know-how. The work planning cognitive activity (4% of total effort)

mostly involves developers’ synchronization of the project’s planning and progress knowledge.

Development
artifact

56%

13% 6%
information knowledge

Figure 5.6: Model of cognitive activities performed during the design process

25%

Crystallization
Validation

Figure 5.6 illustrates the cognitive activities specific to the design process as observed in this
exploratory case study. Acquisition activities, which account for 13% of the design effort, mainly
involve reading and searching on the Web for information that is relevant for the design.
Crystallization activities, which account for 56% of the design effort, involve diagramming
(mostly with the software tool Together Control Center) and producing the design artifacts.
Validation activities, which account for 25% of the design effort, involve review and inspection
of the design artifacts. Work planning activities, which account for 6% of the design effort,
involve design planning and progress tracking. All retrofitting or refactoring activities based on

the implemented classes are excluded from the design activities category.

The design phase is mainly collaborative (56% of the design effort), unlike other project
development phases (requirements, implementation, tests), with 39% of the total effort being

collaborative.

5.5 Discussion

The real design process is composed of activities performed following requirements analysis and
prior to product implementation. This study is based on a design environment, in which software
engineers perform some design activities after the requirements phase and before the

implementations phase in a real project. Some software processes will make design activities

75

more explicit than others. Professional software design is inherently complex to study for the

following reasons:

e Itis mainly a cognitive activity which cannot be measured directly;

e Itis performed by team of developers, and it is difficult to know who is doing what;

e The activity boundaries between requirements, design and implementation are fuzzy;

e Design artifacts are often not implemented as designed, and some implemented artifacts
have not been designed.

e There is a wide variability in design environments and constraints regarding the nature of

the application, the team’s experience and the project parameters.

For all these reasons and many others, any study based on a case study is one of a kind. Data
values are only indicative of one very specific case. However, many successful software products
are being made by teams of developers involved in some design activity. We believe that studies
like this one are important because they shed light on an essential process which might not differ

fundamentally from team to team.

The whole process of developing software is a complex endeavor because it involves mainly
cognitive activities, and the final product is a set of instructions to enable a computer to
implement some functionality. There are four major cognitive steps that must be performed by

the team of developers at the project level:

1. to understand the requirements,

2. to understand the product to be developed,
3. to implement the code instructions, and
4

. to test the resulting computer program.

These cognitive steps are combined and performed concurrently to varying degrees, depending
on the software process adopted. The design process observed in this case study is essentially the

second cognitive step, which is to understand the product to be developed.

This exploratory case study provides some insight into the design process. The various values
obtained from the measurements based on this case study quantify to some extent the

characteristics of the design process, which are summarized below.

76

Designers concentrate on the major features to be implemented, which are grouped together in a
few software units with little concern as to the size of the software unit. The important concern is
the relationships among the various features. The design effort, which is the effort expended to
understand the product to be implemented, is found to be of the same order of magnitude as the
effort expended to understand the requirements. Excluding the deleted and reused classes, four
class categories are involved in software projects:

1. classes created during the implementation phase (without design) because they could not
be foreseen during the design phase or are small utility classes;

2. classes added as designed,;
reused classes redesigned to be adapted for the new applications; and

4. reused classes modified during the implementation phase without any previous design.

The design process, which concentrates on the added and adapted classes, targets most (75%) of

the implemented executable statements.
The design process is made up of four major cognitive activities, which are:

1. the acquisition of knowledge,

2. the processing of this knowledge by exchanging information with teammates,
3. the crystallization of this knowledge on appropriate design artifacts, and,

4. the validation of the crystallized knowledge by inspecting the artifacts.

The process is opportunistic and depends on the knowledge available at any given time.

Design activities have two purposes. One is to provide design artifacts and the other is to
synchronize the mental models of the developers on the product to be implemented. Design
artifacts were not realized as blueprint in this case study. They were rather the crystallization with
the UML notation of an incomplete image of the product. These artifacts were used to improve

teammates understanding of the product to be implemented.

In this study, we found the design process to be most useful as a set of cognitive activities

performed to enable the understanding of the product to be implemented.

Regardless of the software process, disciplined or agile, teammates need to synchronize their
mental image of the product to be developed. In order for teammates to do so on the same mental

model, some design artifacts are needed to crystallize ideas in the mind. Starting the

7

implementation phase by ensuring that all teammates have the same image of the product in mind
reduces the risks of worthless implementation effort.

This study has led to two major observations that have an impact on any software process

paradigm.
OBSERVATION A: Design is shared learning.

The whole design process is found to be a mechanism for cognitive synchronization of the
teammates on their understanding of the perceived product. Indeed, more than half (56%) of the
design effort is expended in collaborative activities (crystallization, validation and work
planning). These activities are opportunistic in the sense that they occur in a just-in-time or on an

as-needed basis.
OBSERVATION B: Software design constitutes the elaboration of an "image of possibility".

This study shows that design is not performed as in the traditional engineering process. Software
design artifacts constitute an intermediate crystallization of a model of the product, or, more

poetically, an "image of possibility".

Discrepancies between design artifacts and implementation can be characterized as either

undocumented design improvements or redesign related to better requirements understanding.

In the analyzed project, the three-tier MVVC (Model-View-Controller) architectural pattern was
employed to isolate business logic from user interface. For the View tier, discrepancies are
related to minor design improvements. For the Controller tier, discrepancies are related to
significant design improvements, especially to the most significant class of the project (853
executable statements). Significant discrepancies reveal that designed "images of possibility"”
were not adequate for implementation. For the Model tier, 17 classes were created during
implementation, without prior design. However, the changes are related to minor redesign due to
better understanding of requirements and to design optimization. Even though a significant
number of classed were created during implementation, only 443 new executable statements were
added. Moreover, we observed that developers will not design small classes, and that the big
design classes will be implemented more conveniently in smaller classes. We believe that this
behavior is acceptable because the team mentally constructed more or less the same model during

the design activity.

78

5.6 Conclusion

This study explores the design process with respect to the classes, the executable statements and
the activities performed. Data were captured from an industrial project realized by a team of five
senior students as part of their capstone project. The resulting software product was of good
quality, and has been integrated into the participating industry’s software environment. The
project was successful and all the milestones were achieved on schedule. One of these was to

deliver and present the design of the product before the implementation iterations began.

We make two observations, which are that design activities are primarily used to share the
learning on the product to be implemented, and that software design artifacts, unlike traditional

engineering artifacts, are actually images of possibilities.

It is reasonable to believe that these observations may hold for a certain number of software

projects which are similar to the one addressed in this case study.

Studies with students can be criticized on the basis of their degree of external validity, and this is
a subject which has been discussed in the literature. The degree of validity of this study has been
increased by relying on senior students enrolled in their last semester and who have had some
internship experience in industry. The line between these students and novice professionals is
becoming blurred. From studies that have been conducted to evaluate the difference between
software engineering students and the professional software developers used as subjects in
empirical studies, it has been found that the differences are only minor. It has, in fact, been
concluded that software engineering students may substitute for professional software developers
under certain conditions (Carver et al., 2003).

Research areas that flow from this study can be divided into two categories. The first relates to
the generality of the findings of this case study. The impacts of our study regarding design
activities should be validated in a variety of industrial settings. The second relates to process
activities and the expected content of a design artifact.

5.7 Acknowledgments

We are grateful to CAE Inc. for their involvement in this project. Thanks to Jean-Frangois
Campeau for his dedicated coaching of the students. This project was made possible by the

79

participation of the five students enrolled in the Studio in software engineering. Thanks to
Francois Kemp, Robert Morin and Walid Bouzouita, who participated in the data analysis. This

project was supported in part by grant NSERC A-0141.

80

CHAPITRE 6

RESULTATS COMPLEMENTAIRES

6.1 Introduction

L'objectif de ce chapitre est de présenter des résultats complémentaires permettant de caractériser
les projets intégrateurs finaux en génie logiciel C6, C7 et C8. Cette caractérisation repose sur la
méthodologie ATS et la modélisation par flux de connaissances (section 6.2). D'abord, les
caractéristiques générales des projets seront présentées (section 6.3). Par la suite, les
développeurs seront caractérisés par I'analyse de leur production de jetons (section 6.4). Puis,
I'effort sera caractérisé sous plusieurs perspectives (section 6.5). Finalement, une discussion
présentera les contributions issues de ce chapitre (section 6.6).

6.2 Modele de flux de connaissances

Afin de permettre la caractérisation de projets logiciels selon une perspective de flux de
connaissances, un modéle de flux de connaissances a été développé selon I'approche de théorie a
base empirique (grounded theory). Selon cette approche, un modele est élaboré a partir de
données, jusqu'a l'atteinte d'une saturation conceptuelle, c'est-a-dire que le modéle représente
adéquatement les concepts observés a partir des données. Ces données proviennent des jetons
ATS consignés par les développeurs des projets intégrateurs entre 2006 et 2009. Un échantillon

des ces jetons est présenté a I'annexe C.

Avant de parvenir a la saturation conceptuelle, plusieurs itérations du modele ont été nécessaires.
D'abord, des "types de connaissances™ ont été proposés dans un article de conférence SEKE'07
(annexe A). Ces "types de connaissances” s'inspirent du modele organisationnel de création de
connaissances de Nonaka et Takeuchi (1995). Ainsi, 8 types de connaissances sont définis pour
représenter le flux de connaissances en développement logiciel: la conversion collaborative
tacite-tacite (CTT), la conversion tacite-explicite (TE), la conversion collaborative tacite-explicite
(CTE), la conversion explicite-explicite (EE), la conversion collaborative explicite-explicite

81

(CEE), la conversion explicite-tacite (ET), la conversion collaborative explicite-tacite (CET) et le

savoir-faire (KH).

Par la suite, l'article de conférence eKNOW'09 (annexe B) regroupe les 8 types de connaissances
présentés précédemment en 5 facteurs cognitifs pour représenter le flux de connaissances dans un
projet logiciel: synchronisation (conversion TT), cristallisation (conversion TE d'artefacts),
réalisation (conversion TE de code source), acquisition (conversion ET) et validation (conversion
EE). En fait, pour des fins de simplification, ce modéle ne différencie pas les activités cognitives
collaboratives des activités cognitives individuelles. De plus, une différenciation de conversion

TE est introduite entre la cristallisation d'artefacts et la réalisation de code source.

Puis, un autre modele de flux de connaissances a été développé et présenté dans l'article soumis a
la revue Empirical Software Engineering (chapitre 3). Ce modéle définit désormais 6 facteurs
cognitifs: cristallisation (conversion TE d'artefacts), réalisation (conversion TE de code source),
validation (conversion EE d'artefacts), vérification (conversion EE de code source), acquisition
(conversion ET) et organisation du travail. Comparativement a la version précédente du modeéle,
la synchronisation est répartie dans les autres facteurs cognitifs, la vérification de code source est
introduite afin de la différencier de la validation d'artefacts et I'organisation du travail est ajoutée,

pour différencier les activités cognitives relatives a la planification et a I'avancement du projet.

Finalement, la derniere itération du modele de flux de connaissances, présentée a la figure 6.1,
met l'accent sur les connaissances tacites individuelles, qui sont centrales au modele de flux de
connaissances. Le facteur cognitif d'organisation du travail a été supprimé puisqu'il n'est pas lié
strictement au développement logiciel, mais plutdt a la gestion de projet. Ainsi, le modéle
représente les possibilités de conversion de connaissances explicites et tacites au sein d'un projet

de développement logiciel sur une base individuelle.

82

Information
externe

uonisinboy

Cristallisation

Vérification

Connaissances
tacites

Artefact de

) Code source
développement

Validation

Figure 6.1 : Modele du flux de connaissances d'un développeur logiciel

Les trois boites aux coins arrondis de la figure 6.1 représentent des sources de connaissances
explicites, alors que le nuage au centre représente les connaissances tacites d'un développeur.
L'information externe peut étre générale ou spécifique au projet a développer. L'information
générale peut provenir de diverses sources telles que le Web, un article ou un manuel.
L'information spécifique provient de toute documentation préexistante du projet. Un artefact de
développement est une représentation physique de connaissances telles qu'un SRS, ou un plan de
tests. Le code source n'inclut que les déclarations (statements) et les lignes de commentaires. Les
connaissances tacites sont construites par l'interaction entre un développeur et des sources

d'information ou d'autres développeurs.

Les fleches de la figure 6.1 représentent les facteurs cognitifs, qui constituent le flux de
connaissances entre les sources de connaissances explicites et les connaissances tacites.
L'acquisition survient lorsqu'un développeur doit augmenter ses connaissances tacites a l'aide
d'information externe. La cristallisation est la traduction du modele mental d'un concept
(connaissance tacite) par un developpeur en artefact (connaissance explicite) tel qu'un diagramme
de cas d'utilisation ou document d'architecture logicielle. La réalisation implique aussi la
traduction de connaissances tacites en connaissances explicites, mais nécessite également un
savoir-faire (know-how) technique, ce qui est relié a la production de code source. La validation

implique un flux de connaissances bidirectionnel entre des connaissances tacites et des artefacts

83

de développement (connaissances explicites), de maniere a la valider la cohérence de deux
sources de connaissances. La Vérification est similaire & la validation a I'exception que le code

source est la source de connaissances, impliquant donc un savoir-faire (know-how) technique.

Le modéle de flux de connaissances est limité aux activités de développement logiciel. Les
activités de gestion de projet ne sont pas prises en considération dans le modéle puisqu'elles ne
sont pas spécifiques au développement logiciel. Rédiger un plan de développement logiciel est un

exemple d'activité de gestion de projet.

Afin de faciliter la compréhension, le tableau 6.1 présente l'interprétation de mots-clefs de

description d'un jeton ATS, en termes de facteur cognitif du modéle de flux de connaissances.

Tableau 6.1 : Mots-clefs des facteurs cognitifs

Facteurs cognitifs ~ Mots-clefs de la description d’un jeton

L apprentissage, compréhension, lecture,
Acquisition - e ok
réflexion, clarification

élaboration, rédaction, ébauche,
Cristallisation développement, modification, mise a jour
(sauf code source)

révision, validation, correction
Validation (d’artefact) et discussion
(synchronisation ou validation)

implémentation, codage, documentation

Reéalisation (code), prototypage

débogage, correction (de code), test
Vérification (coder les tests, exécuter les tests),
discussion (technique)

6.3 Caracteéristiques des projets analyses

Cette section présente, aux tableaux 6.2 a 6.4, les caractéristiques principales des projets C6, C7

et C8. Ces informations faciliteront I'analyse des résultats.

Toutes les équipes comportent cing membres.

84

Tableau 6.2 : Caractéristiques du projet C6

Caractéristique

Détails

Objectifs

Processus
logiciel

Systeme de
saisie de jetons

Equipe

e Offrir un environnement graphique de conception de systéemes
avioniques.
e Générer le code source et les fichiers reliés au modele congu.

Traditionnel, adapté du UPEDU

Outil web TSCT, tres structuré et simple a saisir, sans flexibilité de
saisie

o Utilisation formelle de la programmation par paire (2 développeurs).
e Chef d'équipe appreécié et efficace.

e Un membre est particulierement porté sur la cristallisation.

e Un membre peu impliqué dans le projet.

Tableau 6.3 : Caracteéristiques du projet C7

Caractéristique

Détails

Obijectifs

Processus
logiciel

Systeme de
saisie de jetons

Equipe

e Permettre de modifier les hiérarchies de groupes Doxygen de projets
de documentation a partir d’une interface graphique conviviale.

Traditionnel, adapté du UPEDU

Fichier Excel semi-structuré offrant une flexibilité de saisie.

e Chef d’équipe exercant un fort leadership.
e Trois membres trés motivés et consciencieux.
e Un membre particulierement porté sur la cristallisation.

e Un membre moins impliqué dans le projet.

85

Tableau 6.4 : Caractéristiques du projet C8

Caractéristique Détails

e Extraire les valeurs de champs alphanumériques et de champs

Obijectifs symboliques a partir d’une vidéo présentant des écrans de tableaux
de bord.

IIDro_ce_ssus Traditionnel, adapté du UPEDU

ogiciel

Systeme de

AN . Fichier Excel semi-structuré offrant une flexibilité de saisie.
saisie de jetons

e Membres aux personnalités tres différentes.

.. e Changement de chef d’équipe apres la mi-projet.

Equipe o)) o
e Un membre particuliérement portee sur la cristallisation.

e Un membre & la personnalité trés discréte.

6.4 Caracteérisation des développeurs

Il est possible de caractériser la rigueur des développeurs grace a lI'analyse de leurs jetons. Les
identificateurs des développeurs ont été anonymisés par les lettres A, B, C, D, E, précédees de
I'identificateur du projet (C6, C7 ou C8). Les tableaux 6.5 a 6.7 présentent les principales
caractéristiques des jetons individuels des projets C6 a C8. Ainsi, pour chaque développeur, le
nombre de jetons individuels, I'effort individuel, la médiane de la durée des jetons et la médiane
du nombre de caracteres de description des jetons sont spécifiés. La médiane de la durée des
jetons individuels est un indicateur aussi appelé granularité de jetons, permettant de juger de la
représentativité des jetons. Une médiane plus faible indique une plus grande représentativité des
jetons d'un développeur. La médiane du nombre de caracteres de description de jetons permet de
juger de la précision d'un jeton. Dans ce cas, une médiane plus élevée indique une plus grande

précision des jetons d'un développeur.

86

Tableau 6.5 : Caractéristiques des jetons individuels du projet C6

Développeur Jetons Effort (h) Médiane durée Médiane

jeton (h) caracteres
C6A 338 218 0,50 90
CcéB 304 204 0,50 84
ceC 266 172 0,50 79
CéD 243 174 0,50 78
C6E 108 112 0,92 39

Tableau 6.6 : Caractéristiques des jetons individuels du projet C7

Développeur Jetons Effort (h) Médiane duree Meédiane

jeton (h) caracteéres
C7A 233 93 0,33 55
C7B 245 123 0,42 62
crC 243 159 0,58 97
C7D 108 88 0,83 36
C7E 65 69 1,00 32

Tableau 6.7 : Caractéristiques des jetons individuels du projet C8

Développeur Jetons Effort (n) iediane durée - Mediane

jeton (h) caracteres
C8A 152 107 0,54 38
C8B 110 108 0,67 59
c8C 80 77 0,83 49
c8D 102 102 0,75 38
C8E 151 207 1,25 66

A la lumiére de l'analyse des tableaux 6.5 & 6.7, il est possible de caractériser la rigueur relative
des développeurs. Par exemple, C6A, avec une granularité de 0,5 heure et une précision de 90
caractéres est plus rigoureux que C6E, avec une granularité de 0,92 heure et une précision de 39

caracteres.

Il est possible de pousser plus loin I'analyse en étudiant la distribution de la durée des jetons
individuels de chaque développeur. Les figures 6.2 a 6.4 présentent ces distributions pour les
développeurs des projets C6, C7 et C8.

40%

35%

30%

25%

20%

15%

10%

5%

0%

00:15 00:30 00:45 01:00 01:15 01:30 01:45 02:00

2+

mC6A
mCéB
mC6C
mC6D
m C6E

Figure 6.2 : Distribution de la durée des jetons individuels du projet C6

60%

50%

40%

30%

20%

10%

0%

00:15 00:30 00:45 01:00 01:15 01:30 01:45 02:00

2+

mC6A
mCéB
mC6C
mC6D
m C6E

Figure 6.3: Distribution de la durée des jetons individuels du projet C7

87

40%

35%

30%

25%

20%

15%

10%

5%

0%

00:15 00:30 00:45 01:00 01:15 01:30 01:45 02:00

mC8A

Cc8B
mC8C
mC8D
W C8E

Figure 6.4 : Distribution de la durée des jetons individuels du projet C8

En observant les figures 6.2 a 6.4, on remarque qu'il existe principalement 3 types de profil de

distribution de jetons. Ces profils sont présentés a la figure 6.5.

Les profils de distribution de jetons o, B et y, présentés a la figure 6.5, offrent un outil d'analyse
de la représentativité des jetons et de la rigueur des développeurs. Ainsi, les développeurs de
profil o portent une attention prioritaire a la production de jetons, alors que les développeurs de
profil B y portent une attention importante. Ces deux profils de développeurs produisent des
jetons trés représentatifs de leurs efforts, donc trés fiables. Les développeurs de profil vy
considéerent les jetons comme un mal nécessaire, ce qui ne veut pas dire que leurs jetons ne sont
pas représentatifs de leur effort investi, mais ils sont moins fiables que ceux des deux autres

profils. Grace aux efforts de validation en cours de projet de la part de I'équipe de recherche, les

jetons du "pire" profil sont suffisamment fiables pour les besoins de cette recherche.

35%
30%
25%
20%
15%
10%

5%

0%

Profil a

00:15 00:30 00:45 01:00 01:15 01:30 01:45 02:00 2+

25%

20%

15%

10%

5%

0%

Profil g

00:15 00:30 00:45 01:00 01:15 01:30 01:45 02:00 2+

25%

20%

15%

10%

5%

0%

Profil y

00:15 00:30 00:45 01:00 01:15 01:30 01:45 02:00 2+

Figure 6.5 : Profils de distribution de jetons a, B et y

89

90

Le tableau 6.8 résume les profils par équipe de développeur.

Tableau 6.8 : Caractéristiques des jetons individuels du projet C8

Développeurs Développeurs Développeurs

FEl)eE au profil o au profil B au profil y
C6 C6C, C6D C6A, C6B C6E
C7 C7A,C7B c7C C7D, C7E
C8 C8B C8A, C8D C8C, C8E

L'analyse du tableau 6.8, permet de confirmer une relative uniformité des jetons des 3 projets.

Conséquemment, il raisonnable d'utiliser la totalité des jetons pour les analyses subséquentes.

6.5 Caractérisation de l'effort

Cette section vise a caractériser I'effort investi dans les projets C6, C7 et C8. Pour ce faire, la
répartition de I'effort global sera analysée (section 6.5.1), la répartition et I'évolution du travail
individuel et participatif seront étudiées (section 6.5.2), le séquencement cognitif sera expliqué

(section 6.5.3) et la relation entre I'effort et le code source sera analysée (section 6.5.4) .

6.5.1 Effort global

Afin de parvenir a caractériser I'effort investi dans les projets C6, C7 et C8, il importe d'abord de
comprendre la répartition d'effort global. Les tableaux 6.9 a 6.11 présentent I'effort investi, ainsi
que la répartition relative des 6 facteurs cognitifs du modele de flux de connaissances dans les

projets C6, C7 et C8.

Tableau 6.9 : Effort investi par facteur cognitif pour le projet C6

Facteur cognitif Effort (h) Répartition

Acquisition 150 15%
Cristallisation 236 24%
Vérification 207 21%
Validation 141 14%
Réalisation 228 23%
Organisation du travail 36 4%

Total 997 100%

91

Tableau 6.10: Effort investi par facteur cognitif pour le projet C7

Facteur cognitif Effort (h) Répartition

Acquisition 60 8%
Cristallisation 192 26%
Veérification 163 22%
Validation 106 14%
Réalisation 143 19%
Organisation du travail 85 11%
Total 750 100%

Tableau 6.11 : Effort investi par facteur cognitif pour le projet C8

Facteur cognitif Effort (h) Répartition

Acquisition 100 11%
Cristallisation 186 21%
Veérification 209 24%
Validation 104 12%
Réalisation 180 20%
Organisation du travail 108 12%
Total 887 100%

Les tableaux 6.9 a 6.11 permettent d'observer plusieurs tendances concernant la répartition

d'effort dans un projet intégrateur.

Pour les projets C6, C7 et C8, le rapport entre la cristallisation et la validation est relativement
constant soit de 1,7 a 1,9. De plus, le rapport entre la réalisation et la vérification est également
relativement constant soit de 0,8 a 1,1. Les efforts de verification et validation sont virtuellement
constants a respectivement 35%, 36% et 36%. Finalement, les efforts de cristallisation et

réalisation sont relativement constants a respectivement 47%, 47% et 41%.

L'acquisition est variable d'un projet a l'autre passant de 8% a 15%. En fait, I'acquisition
nécessaire est variable selon la différence entre les connaissances déja acquises par les
développeurs d'une équipe avant le début du projet et les connaissances qui seront nécessaires

dans le cadre du projet.

L'organisation du travail est aussi variable passant de 4% a 12%. Ce facteur cognitif dépend de
plusieurs caractéristiques relatives au fonctionnement de I'équipe de développeurs dont le degré

de maillage d'une équipe et le type de leadership exercé.

92

En somme, malgré les différences des 3 projets (nature du projet, composition de I'équipe, outils
utilisés), il existe plusieurs constantes relativement a I'effort investi dans les différents facteurs

cognitifs. Ce phénomene laisse présager la possibilité d'établir des modeles prédictifs.

6.5.2 Travail individuel et participatif

Au sein du développement d'un projet logiciel, les activités sont exécutées de maniere
individuelle (1 développeur) ou participative (2 développeurs ou plus). L'analyse de la répartition
et de I'évolution de I'effort permet de mieux comprendre les besoins en travail participatif au sein

d'un projet de développement logiciel.

Le tableau 6.12 présente la répartition de I'effort individuel par rapport a I'effort participatif a 2

développeurs et a 3 développeurs ou plus.

Tableau 6.12 : Répartition de I'effort individuel et participatif des projets C6 a C8

Effort individuel Effort participatif Effort participatif a 3

Al (%) a 2 développeurs (%) développeurs ou plus (%)
Cé6 60 26 14
C7 67 11 22
c8 69 3 28

On remarque que l'effort individuel totalise environ les deux tiers de I'effort total pour les projets
C7 et C8, avec respectivement 67% et 69% d'effort individuel. En ce qui a trait au projet C6,
I'effort individuel moins important (60%) s'explique par le fait que 2 des 5 développeurs ont
pratiqué la programmation par paire. Ainsi, pour le projet C6, I'effort participatif a 2
développeurs dépasse le quart (26%) d'effort total, contrairement aux projets C7 et C8
(respectivement 11% et 3%).

Les figures 6.6 a 6.8 présentent I'évolution de I’effort individuel, participatif a 2 développeurs et

participatif a 3 développeurs et plus des projets C6 a C8.

Le type de représentation graphique choisi nécessite d'abord la division d'un projet en tranches
d’effort de 5%. Par exemple, pour un projet de 800 heures, les heures 0 a 40 correspondraient a la
mesure d'avancement du projet (axe des abscisses) a 5%, les heures 40 a 80 correspondraient a la

mesure a 10% et ainsi de suite. Pour chaque tranche de 5% d'avancement, les proportions

93

relatives a I'effort individuel, participatif a 2 développeurs et participatif a 3 développeurs et plus
sont déterminées. Pour une mesure d'avancement de 5% (en abscisses), la somme des efforts
totaux (effort a 1, a 2 ou a 3+ développeurs) totalise toujours 5% (en ordonnées). En d'autres

mots, I'effort total (axe des ordonnées) est representé de maniere non cumulative.

5,0%

P

4,5% P/
4,0% /
. A A

3,0%

EFfort total

] développeur

\/ 2 développeurs

AR — =3+ développeurs

2,0% H
1,5% v w

1,0% \7

2,5%

0,5%

0,0% -
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Avancement du projet

Figure 6.6 : Evolution de I'effort individuel et participatif du projet C6

A titre d'exemple d'interprétation de la figure 6.6, on remarque qu'a 65% d'avancement du projet
(correspondant & la tranche d’effort de 60% a 65%), 3,8 % de I’effort total a été effectué par 1

participant, 1,0% par 2 participants et 0,2% par 3 participants ou plus.

Les figures 6.6 a 6.8 nous permettent de dresser deux constats. D'une part, I'effort individuel est
I'effort majoritaire tout au long du projet, sauf en ce qui a trait aux premiers 20% (C6 et C7) a
40% (C8) d'avancement du projet. On remarque cependant une exception de 70% a 80%
d'avancement du projet C6, ce qui s'explique par la programmation par paire pratiquée
uniquement par cette équipe. D'autre part, I'effort participatif est surtout concentré dans les
premiers 25% (C6) a 45% (C8) d'avancement du projet. Cela s'explique par la nécessité pour les
différents développeurs d'une équipe de synchroniser leur modéle mental du produit a réaliser.
Cette phase de synchronisation est surtout associée aux disciplines de requis et de conception. La
stabilisation du modéle mental de I'équipe facilite la discipline d'implémentation. Pour le reste du
projet, une synchronisation est nécessaire de maniére sporadique, comme on peut le voir dans les

trois précédentes figures.

5,0%

4,5%

Effort total

4,0%
3,5%
3,0%
2,5%
2,0%
1,5%
1,0%
0,5%

0,0%

/\ l i] développeur

= développeurs
W\ === 3+ développeurs

0%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Avancement du projet

Figure 6.7 : Evolution de I'effort individuel et participatif du projet C7

5,0%

4,5%

Effort total

4,0%
3,5%
3,0%
2,5%
2,0%
1,5%
1,0%
0,5%

0,0%

[V\ [/
/ V

V =] développeur

A>\/X A 2 développeurs
=3+ développeurs

AN
/ A

0%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Avancement du projet

Figure 6.8 : Evolution de I'effort individuel et participatif du projet C8

94

Apres s'étre intéressé a I'évolution de I'effort individuel et participatif de maniere globale, il est

intéressant de décortiquer I'évolution de I'effort pour chacun des facteurs cognitifs.

5,0%
4,5%

4,0%

Effort total

3,5%
3,0%
2,5%
2,0%
1,5%
1,0%
0,5%

0,0%

Projet C6

e] développeur

2 développeurs

== 3+ développeurs

AP

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Avancement du projet

5,0%
4,5%

4,0%

Effort total

3,5%
3,0%
2,5%
2,0%
1,5%
1,0%
0,5%

0,0%

Projet C7

=] développeur

2 développeurs

== 3+ développeurs

[\ ~

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Avancement du projet

5,0%
4,5%

4,0%

Effort total

3,5%
3,0%
2,5%
2,0%
1,5%
1,0%
0,5%

0,0%

Projet C8

e] développeur

w2 développeurs

I =3+ développeurs

I\ A ,

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Avancement du projet

Figure 6.9 : Evolution de I'effort d'acquisition individuel et participatif des projets C6 & C8

95

5,0%
4,5%

4,0%

Effort total

3,5%
3,0%
2,5%
2,0%
1,5%
1,0%
0,5%

0,0%

Projet C6

e] développeur
4

2 développeurs

A A A == 3+ développeurs

[\ /\ /\

V.. ___NAa A~

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Avancement du projet

5,0%
4,5%

4,0%

Effort total

3,5%
3,0%
2,5%
2,0%
1,5%
1,0%
0,5%

0,0%

Projet C7

=] développeur

2 développeurs

/\ == 3+ développeurs

]

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Avancement du projet

5,0%
4,5%

4,0%

Effort total

3,5%
3,0%
2,5%
2,0%
1,5%
1,0%
0,5%

0,0%

Projet C8

A e] développeur

w2 développeurs

=3+ développeurs

O

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Avancement du projet

96

Figure 6.10 : Evolution de I'effort de cristallisation individuel et participatif des projets C6 a C8

5,0%
4,5%

4,0%

Effort total

3,5%
3,0%
2,5%
2,0%
1,5%
1,0%
0,5%

0,0%

Projet C6

e] développeur

2 développeurs

== 3+ développeurs

—

A\

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Avancement du projet

5,0%
4,5%

4,0%

Effort total

3,5%
3,0%
2,5%
2,0%
1,5%
1,0%
0,5%

0,0%

ProjetC7

w1 développeur

w2 développeurs

=3+ développeurs

—
f"
—
>

T

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Avancement du projet

5,0%
4,5%

4,0%

Effort total

3,5%
3,0%
2,5%
2,0%
1,5%
1,0%
0,5%

0,0%

Projet C8

e] développeur

w2 développeurs

A =3+ développeurs

\

[
A
AN [\

[N

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Avancement du projet

Figure 6.11: Evolution de I'effort de validation individuel et participatif des projets C6 a C8

97

5,0%
4,5%

4,0%

Effort total

3,5%
3,0%
2,5%
2,0%
1,5%
1,0%
0,5%

0,0%

Projet C6

=] développeur

2 développeurs

=3+ développeurs

s

0%

10% 20% 30% 40% 50% 60% 70% 80%

90% 100%

Avancement du projet

5,0%
4,5%

4,0%

Effort total

3,5%
3,0%
2,5%
2,0%
1,5%
1,0%
0,5%

0,0%

Projet C7

=] développeur

2 développeurs

== 3+ développeurs

—~—"\

/
/ N

SN \

\/\
\ /
v/

L

0%

10% 20% 30% 40% 50% 60% 70% 80%

90% 100%

Avancement du projet

5,0%
4,5%

4,0%

Effort total

3,5%
3,0%
2,5%
2,0%
1,5%
1,0%
0,5%

0,0%

Projet C8

e 1 développeur

w2 développeurs

=3+ développeurs

PN

]

0%

10% 20% 30% 40% 50% 60% 70% 80%

90% 100%

Avancement du projet

Figure 6.12 : Evolution de I'effort de réalisation individuel et participatif des projets C6 & C8

98

5,0%
4,5%

4,0%

Effort total

3,5%
3,0%
2,5%
2,0%
1,5%
1,0%
0,5%

0,0%

Projet C6

e] développeur

2 développeurs

== 3+ développeurs

AN
yAWAY
— N~
[N N\

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Avancement du projet

5,0%
4,5%

4,0%

Effort total

3,5%
3,0%
2,5%
2,0%
1,5%
1,0%
0,5%

0,0%

Projet C7

A =] développeur
/ \ 2 développeurs
AJ \ == 3+ développeurs
~ \
[\ /.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Avancement du projet

5,0%
4,5%

4,0%

Effort total

3,5%
3,0%
2,5%
2,0%
1,5%
1,0%
0,5%

0,0%

Projet C8

=] développeur

w2 développeurs

A =3+ développeurs

. N/
NN

VY

A\ |

/ MA_—A_

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Avancement du projet

99

Figure 6.13 : Evolution de I'effort de vérification individuel et participatif des projets C6 & C8

100

5,0%

Projet C6

4,5%

4,0%

EFfort total

3,5%

3,0%

e] développeur

2,5%

2 développeurs

2,0% === 3+ développeurs

1,5%

1,0%

0,5% A\
AN A

0,0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Avancement du projet

5,0%

Projet C7

4,5%

4,0%

Effort total

3,5%

3,0% 3
=] développeur

2,5%

2 développeurs

2,0% === 3+ développeurs

1,5%

1,0% A\

0,5%

0,0%
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Avancement du projet

5,0%

Projet C8

4,5%

4,0%

Effort total

3,5%

3,0% .
e] développeur

2,5% w2 développeurs

2,0% == 3+ développeurs

1,5%

1,0% A A

0,5%

0,0% !
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Avancement du projet

Figure 6.14 : Evolution de I'effort d'organisation du travail individuel et participatif
des projets C6 a C8

101

La figure 6.9 présente I'évolution de I'effort d'acquisition du travail individuel et participatif des
projets C6 a C8. D'une part, sans surprise, l'acquisition est tres majoritairement individuelle. La
seule portion notable d'effort participatif a lieu au tout début du projet (premiers 10%
d'avancement), ce qui s'explique par la premiére rencontre de I'équipe avec le client, ou celui-ci
détaille ses besoins aux développeurs. D'autre part, on remarque que la plus grande partie de
I'effort d'acquisition est investi dans la premiere moitié du projet. De plus, dépendamment de la
nature du projet, donc des besoins en connaissances des développeurs d'un projet, I'effort
d'acquisition évolue de maniere opportuniste, dans une perspective juste-a-temps, ce qui

confirme le comportement observé par Robillard (2005).

La figure 6.10 présente I'évolution de I'effort de cristallisation du travail individuel et participatif
des projets C6 a C8. On constate que la cristallisation comporte principalement deux phases. La
premiére phase s'‘échelonne du début du projet et s'étend environ jusqu'a la mi-projet. Il s'agit de
la phase ou les développeurs cristallisent "lI'image de possibilité" du logiciel en devenir (cf.
chapitre 5). L'effort, au cours de cette phase, est a la fois autant participatif qu'individuel. La
deuxiéme phase occupe les derniers 20% du projet. A ce stade, les développeurs procédent au
retrofitting des artefacts, c'est-a-dire qu'ils mettent a jour les artefacts pour qu'ils reflétent
I'implémentation réelle du produit. Contrairement a la premiére phase, l'effort est tres

majoritairement individuel, puisqu'il n'y a que trés peu de synchronisation a faire ce stade.

La figure 6.11 présente I'évolution de I'effort de validation du travail individuel et participatif
des projets C6 a C8. La validation est intimement liée a la cristallisation, ce qui explique
plusieurs similitudes entre les évolutions respectives. En effet, au sein du développement
logiciel, le facteur cognitif de validation regroupe les activités visant a assurer que les artefacts
et les modéles mentaux de I'équipe sont valides. Par ailleurs, la validation est majoritairement
participative et elle est concentrée dans la premiére moitié du projet, tout comme la
cristallisation. De plus, une pointe d'effort a la fin du projet coincide avec le retrofitting de fin de
projet. Dans le cas du projet C8, I'absence de pointe a la toute fin du projet indique une
validation déficiente.

La figure 6.12 présente I'évolution de I'effort de réalisation du travail individuel et participatif
des projets C6 a C8. La réalisation consiste tout simplement en la production du code source. La

forte majorité de I'effort de réalisation se concentre entre 40% et 90% d'avancement du projet.

102

L'effort antérieur a 40% correspond a I'élaboration de prototypes. La réalisation est trés
majoritairement individuelle, sauf pour le projet C6, dans lequel deux développeurs

programmaient en binéme.

La figure 6.13 présente I'évolution de I'effort de vérification du travail individuel et participatif
des projets C6 a C8. De la méme maniére que la validation est liée a la cristallisation, la
verification est intimement liée a la réalisation. En effet, le facteur cognitif de vérification fait
principalement référence au debogage, au codage de tests et a I'exécution des tests. La
veérification est fortement individuelle, a I'exception de I'équipe ayant pratiqué la programmation

par paire (C6).

La figure 6.14 présente I'évolution de I'effort d'organisation du travail individuel et participatif
des projets C6 a C8. L'organisation du travail est virtuellement uniquement participative (3
développeurs et plus) et est globalement de moindre importance comparativement aux 5 autres
facteurs cognitifs. Par ailleurs, I'effort est plus important lors des premiers 30% d'avancement, ce

qui est d0 au besoin plus important de s'organiser en début de projet.

6.5.3 Séquencement cognitif

Le séquencement cognitif permet d'analyser I'effort investi par un développeur dans les différents
facteurs cognitifs, en tenant compte de leur temporalité relative. A titre d'exemple, les figures
6.15 et 6.16 présentent deux vues complémentaires du séquencement cognitif du développeur
C7A. Ainsi, la vue A-CV-RV (figure 6.15) associe les valeurs suivantes sur lI'axe des ordonnées:
1 pour l'acquisition, 2 pour la cristallisation et la validation et 3 pour la réalisation et la
veérification. Par ailleurs, la vue A-CR-VV (figure 6.16) associe les valeurs suivantes sur l'axe des
ordonnées: 1 pour l'acquisition, 2 pour la cristallisation et la réalisation et 3 pour la validation et
la vérification. Le choix de présenter deux vues complémentaires est d'ordre conceptuel. La vue
A-CV-RV regroupe les facteurs cognitifs relatifs a la production d'artefacts (cristallisation et
validation) ainsi que de code source (réalisation et vérification), alors que la vue A-CR-VV
regroupe les facteurs cognitifs d'externalisation (cristallisation et réalisation) ainsi que de

combinaison (vérification et validation).

103

C7A A-CV-RV

3. —

Facteur cognitif codifié

0,0% 10,0% 20,0% 30,0% 40,0% 50,0% 60,0% 70,0% 80,0% 90,0% 100,0%

Effort de C7TA

Figure 6.15 : Vue A-CV-RV du séquencement cognitif du développeur C7A

C7A A-CR-VV

eur cognitif codifié

Fact

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Effort de C7A

Figure 6.16 : Vue A-CR-VV du séquencement cognitif du développeur C7A

Afin de faciliter la compréhension des graphiques de séquencement cognitif, les figures 6.17 et

6.18 présentent un agrandissement des premiers 10% d'effort des figures 6.15 et 6.16.

104

C7A A-CV-RV

Facteur cognitif codifié

a e

1
0,0% 1,0% 2,0 3,0% 40% 50% 60% 70% 80% 9,0% 10,0%
Effort de C7A

Figure 6.17 : Vue partielle A-CV-RV du séquencement cognitif du développeur C7A

g- C7A A-CR-VV

3 . I o
e
E
S
£ :
2 h
&
o
5
]
2 f

Cl
2 — ~|—. L
b'||d"
. a' e'
0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%
Effort de C7A

Figure 6.18 : Vue partielle A-CR-VV du séquencement cognitif du développeur C7A

105

Pour permettre lI'analyse du séquencement cogpnitif, il est nécessaire d'observer les deux vues
complémentaires A-CV-RV et A-CR-VV. Par exemple, le segment a (figure 6.17) et son
complément a’ (figure 6.18) indiquent que le développeur C7A a consacré son premier pourcent
d'effort en acquisition. Le segment c (figure 6.17) indique qu'entre 1,0% et 1,2% de I'effort total
de C7A, le développeur était en cristallisation ou en validation. Le segment c' (figure 6.18)
indique qu'entre 1,0% et 1,2% de l'effort total de C7A, le développeur était en cristallisation ou
en réalisation. Par I'analyse complémentaire de c et ¢’, on peut conclure gu'entre 1,0% et 1,2% de
I'effort total de C7A, le développeur était en cristallisation. Ainsi, il est aussi possible de déduire
qu'entre 1,2% et 2,0% (e et e'), C7A était en acquisition, qu'entre 2,0% et 2,4% (g et g'), C7TA
était en validation et qu'entre 2,4% et 2,7% (g et i*), C7A était en cristallisation. Par ailleurs, les

segments b, b*, d, d', f, f* et h" illustrent tous une transition entre deux facteurs cognitifs.

Les vues complémentaires A-CV-RV et A-CR-VV présentent donc une "signature” du
séquencement cognitif d'un développeur, permettant d'analyser son effort investi dans les
différents facteurs cognitifs, en tenant compte de leur temporalité relative.

6.5.3.1 Profils de développeurs

A partir de la signature du séquencement cognitif des développeurs, il est possible de définir des

profils de développeurs.

Tableau 6.13 : Profils des développeurs

Profil Caractéristiques

Cristallisateur Priorité accordée a la cristallisation et a la validation des artefacts
Codeur Priorité accordée a réalisation et a la vérification du code source
Polyvalent Priorité varie selon les besoins du projet

Agent libre Detachement par rapport au projet, comportement cognitif erratique

Le tableau 6.13 présente les 4 profils de développeurs identifiés dans les projets intégrateurs C6,
C7 et C8.

106

Le cristallisateur a d'abord et avant tout une préoccupation pour la production d'artefacts, soit la
cristallisation et la validation des artefacts. Un exemple de ce profil est le développeur C7A
(figures 6.15 et 6.16). On remarque que tout au long du projet, le développeur investit la majorité

de son temps en cristallisation ou en validation.

Le codeur investit globalement un effort trés important en production de code source, soit la
réalisation et la verification. Un exemple de ce profil est le développeur C8E (figures 6.19 et
6.20). On remarque que le codeur C8E commence la réalisation aussi tot qu'a 9% (il s'agit en fait
de prototypage), comparativement au cristallisateur C7A qui commence la réalisation a 38%.
Globalement, C8E investit peu d'efforts en production d'artefacts, consacre la majorité de ses
efforts en production de code source, tout en acquérant des connaissances de maniere

opportuniste.

C8E A-CV-RV

34 — - — — — — — —

teur cognitif codifié

Facty

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Effort de C8E

Figure 6.19 : Vue A-CV-RV du séquencement cognitif du développeur C8E

107

Facteur cognitif codifié

C8E A-CR-VV

70% 80% 90%

100%
Effort de C8E

Figure 6.20 : Vue A-CR-VV du séquencement cognitif du développeur C8E

Facteur cognitif codifié

C7CA-CV-RV

10,0% 20,0% 30,0% 40,0% 50,0% 60,0% 70,0% 80,0% 90,0%

100,0%
Effot de C7C

Figure 6.21 : Vue A-CV-RV du séquencement cognitif du développeur C7C

108

Facteur cognitif codifié

C7CA-CR-VV

40% 50% 60% 70% 80% 90%

Effort de C7C

100%

Figure 6.22 : Vue A-CR-VV du séquencement cognitif du développeur C7C

109

C6E A-CV-RV
§
Figure 6.23 : Vue A-CV-RV du séquencement cognitif du développeur C6E
C6E A-CR-VV

Figure 6.24 : Vue A-CR-VV du séquencement cognitif du développeur C6E

110

Le polyvalent investit ses efforts selon les besoins du projet. Un exemple de ce profil est le
développeur C7C (figures 6.21 et 6.22). On remarque que le polyvalent C7C investi la grande
majorité de ses efforts en production d'artefacts pour les premiers 30% d'effort. Pour le reste du
projet, le polyvalent investit la majorité de ses efforts en production de code source, tout en

investissant un effort non négligeable en production d'artefacts.

L'agent libre ressent peu d'attachement pour le projet, ce qui a pour conséquences un
comportement cognitif erratique. Un exemple de ce profil est le développeur C6E (figures 6.23 et
6.24). On remarque, pour les premiers 35% d'effort, une production d'artefacts entrecoupée de
relativement longues acquisitions, suivie d'une production de code source entrecoupée a la fois

d'acquisition et de production d'artefacts. Cette signature témoigne d'un détachement du projet.

6.5.3.2 Tendances globales du sequencement cognitif

Outre les 4 profils déterminés, I'analyse du séquencement cognitif permet de découvrir deux
tendances globales dignes de mention, soit l'approche opportuniste et le besoin continu de
verification et de validation.

D'une part, en observant n'importe quelle signature de séquencement cognitif, bien que la
figure 6.19 du développeur C8E soit particulierement explicite a ce sujet, on remarque l'existence
de I'approche opportuniste, a I'effet que I'acquisition se fait dans une perspective juste a temps. En
d'autres mots, le développeur acquiert les connaissances qu'il croit nécessaires, au moment qu'il
juge opportun. Cette observation confirme l'irréalisme du modele de processus en cascades,
introduit par Royce. En effet, il n'est pas possible pour un développeur d'acquérir toutes les
connaissances nécessaires a un projet des le début. Ainsi, les modéles de processus incrémental et

itératif sont beaucoup plus proches de la réalité de développement logiciel.

D'autre part, en observant n'importe quelle vue A-CR-VV, bien que la figure 6.22 du développeur
C7C soit particulierement explicite a ce sujet, on remarque le besoin continu de vérification et
validation au sein d'un projet. En effet, tout développeur doit constamment s'assurer que la
cristallisation et la réalisation sont conformes aux regles établies, d'ou le tres grand nombre
d'oscillations entre CR (cristallisation et réalisation) et VV (verification et validation) sur toute
vue A-CR-VV. Il s'agit d'un comportement qui, bien gu'intuitif, n‘avait jamais été démontré pour

I'ensemble d'un projet.

111

6.5.4 Relation avec le code source

Un des aspects intéressants de la caracterisation de I'effort concerne I'analyse de sa relation avec
le code source réalisé. Afin d'établir cette relation, une mesure de productivité du code source
s'avere nécessaire. A cet effet, la mesure du nombre de déclarations (exécutables et déclaratives)
est plus précise que la mesure du nombre de lignes de code, car elle est moins influencée par le
style de programmation des développeurs. Le tableau 6.14 présente, pour les projets C6, C7 et
C8, le nombre de déclarations, I'effort de réalisation, le ratio de déclarations par heure (calculé en

divisant le nombre de déclarations par I'effort de réalisation) et I'effort d'acquisition.

Tableau 6.14 : Réalisation de code source et effort d'acquisition

. . . Effort de Ratio de déclarations Effort d'acquisition
Projet Déclarations

réalisation (h) par heure (% d'effort total)
C6 3462 228 15 15
C7 4268 143 30 8
C8 3842 180 21 11

Comme on peut le remarquer au tableau 6.14, le ratio de déclarations par heure varie du simple
au double (15 a 30), inversement de I'effort d'acquisition (15% a 8%). La figure 6.25 illustre cette
relation linéaire qui possede une forte corrélation. Conséquemment, il est raisonnable d'affirmer
que l'effort d'acquisition a un impact majeur sur la productivité d'une équipe en terme de

réalisation de code source.

35
25

20

15 ~X

10

Déclarations par heure

6% 8% 10% 12% 14% 16%

Effort d'acquisition

Figure 6.25 : Corrélation entre la réalisation de code source et I'effort d'acquisition

112

6.6 Discussion

L'objectif de ce chapitre était de caractériser les projets intégrateurs C6, C7 et C8. 1l s'agit en fait
d'une étude de cas multiples de type exploratoire reposant sur la méthodologie ATS et la
modeélisation par flux de connaissances (cf. chapitre 3). Ainsi, pour permettre I'analyse des
projets, leurs jetons ont été codifies comme un des 6 facteurs cognitifs du modeéle: acquisition,

cristallisation, validation, réalisation, veérification ou organisation du travail.

Au cours de la partie exploratoire de la recherche, l'effort s'est averé étre le vecteur le plus
prometteur de caractérisation. L'effort a donc été étudié sous plusieurs angles soient la répartition
de I'effort global, la répartition et I'évolution du travail individuel et participatif, le séquencement

cognitif, ainsi que la relation entre I'effort et le code source.
En ce qui a trait a I'analyse de I'effort global, trois tendances ressortent:

1. La vérification et validation d'un projet comptent pour un peu plus du tiers de I'effort
total. En d'autres mots, plus du tiers d'un projet est consacré a assurer la conformité des

artefacts et du code source.

2. La cristallisation et la réalisation d'un projet comptent pour un peu moins de la moitié de
I'effort total. Autrement dit, pres la moitié d'un projet est consacré a élaborer des artefacts

et a coder du code source.

3. La cristallisation est environ deux fois plus importante que la validation en terme d'effort.
Par contre, la réalisation et la validation ont environ la méme importance. Toute
proportion gardée, deux fois plus d'effort est consacré a s'assurer de la conformité du

code source, par rapport aux artefacts.

Concernant la répartition et I'évolution du travail individuel et participatif, sept tendances

ressortent:

1. L'effort individuel d'un projet est d'environ les deux tiers, alors que I'effort participatif est
d'environ le tiers de [l'effort total. Cette affirmation est vraie seulement si la

programmation par paire n'est pas pratiquée par une équipe de développeurs.

2. L'acquisition est trés majoritairement individuelle, est investie majoritairement dans la

premiére moitié du projet et évolue de maniere opportuniste dans une perspective juste a

113

temps. De plus, son importance relative est variable selon la différence entre les
connaissances déja acquises par les développeurs d'une équipe avant le début du projet et

les connaissances qui seront nécessaires dans le cadre du projet.

3. Lacristallisation comporte principalement deux phases. Une phase autant individuelle que
participative ou les développeurs cristallisent "l'image de possibilité” du logiciel en
devenir et une deuxieme phase, individuelle, de retrofitting des artefacts.

4. La validation est intimement liée a la cristallisation, est majoritairement participative et

elle est concentrée dans la premiére moitié du projet.

5. Larealisation est tres majoritairement individuelle (sauf dans le cas de programmation par
paire) et est concentrée entre 40% et 90% d'avancement du projet. En fait, le
comportement majoritaire des développeurs suivant un processus discipliné consiste a
compléter la cristallisation des artefacts avant de commencer la réalisation. Or, la
cristallisation n'étant qu'une "image de possibilité" et pas nécessairement la solution qui
sera implémentée, cette approche n'est pas optimale, puisqu'elle ménera a un décalage

entre la conception et le produit final (cf. chapitre 5).

6. La verification est intimement liée a la réalisation, est majoritairement individuelle (sauf
dans le cas de programmation par paire) et est concentrée dans la deuxiéeme moitié du

projet.

7. L'organisation du travail est virtuellement uniquement participative (3 développeurs et
plus) et est plus important lors des premiers 30% d'avancement, ce qui est d0 au besoin
plus important de s'organiser en début de projet. Ce facteur cognitif offre une indication
sur la dynamique interne de I'équipe, notamment le degré de maillage d'une équipe et le

type de leadership exercé.

Le séquencement cognitif est une contribution significative, a l'effet qu'il n'existe aucune
référence dans la littérature relativement a son application sur la totalité d'un projet, plutdt que

des périodes de quelques heures. Il en résulte I'observation de quatre profils de développeurs:

1. Le cristallisateur, qui investit la majorité de son temps en production d'artefact, soit en

cristallisation ou en validation;

114

2. Le codeur, qui investit globalement un effort trés important en production de code source,

soit la réalisation et la vérification;
3. Le polyvalent, qui investit ses efforts selon les besoins du projet;

4. L'agent libre, qui est détaché du projet, ce qui implique un comportement cognitif

erratique.

Une telle compréhension des profils naturels des développeurs pourra faciliter la détermination

de réles au sein d'une équipe.

Dans un autre ordre d'idées, en analysant la relation entre la production de code source et I'effort
d'un projet, il a été déterminé qu'il existait une corrélation entre la réalisation de code source et
I'effort d'acquisition. En effet, plus I'effort d'acquisition est grand, plus la productivité de
réalisation de code source est faible. Ce phénomeéne s'explique par la complexité cognitive de
I'acquisition. En effet, l'assimilation efficace de connaissances explicites en connaissances
implicites est nécessaire avant la réalisation de code source (qui est en fait transformation de
connaissances tacites en connaissances explicites). Un développeur qui aurait déja assimilé les
connaissances nécessaires a la réalisation serait avantagé en termes de productivite,

comparativement a un développeur qui doit effectuer lI'acquisition de maniere opportuniste.

Aucunes données concernant le lien entre les besoins d'acquisition et la réalisation de code source
n'existe présentement dans la littérature en génie logiciel. 1l s'agit donc d'une contribution

importante.

115

CHAPITRE 7

DISCUSSION GENERALE

Les travaux présentés dans cette these offrent de multiples contributions relativement a la
compréhension de I'aspect cognitif du développement logiciel et plus précisément sous une
perspective de flux de connaissances. Les contributions sont de trois ordres: méthodologiques,

théoriques et pratiques.

7.1 Contributions méthodologiques

Une contribution importante de cette these a trait a la méthodologie ATS, présentée en détail dans
I'article méthodologique du chapitre 3. Le principal avantage de la méthodologie ATS est qu'elle
permet lI'analyse du développement logiciel sous une perspective différente de ce qui est possible
avec les autres méthodologies utilisées en développement logiciel. En lI'occurrence, elle permet la
saisie de données cognitives menant a la compréhension du développement logiciel selon une

perspective de flux de connaissances.

Comme présenté a la section 3.3.2, les techniques de collection de données peuvent étre classées
en trois catégories, selon le degré de contact humain requis. La technique utilisée dépend bien sir
de I'objectif de mesure et le choix exige un compromis entre la précision des données recueillies
et I'effort d'analyse des données. Ainsi, la méthodologie ATS est une technique de premier degré
qui a été développée pour pallier a I'absence de technique de saisie de données cognitives pour la

durée totale d'un projet.

Deux techniques de collection de données attirent I'attention, car elles sont utilisées dans le cadre
de problématiques complémentaires a cette thése. Cherry & Robillard (2009) utilisent
I'enregistrement audio-vidéo, dans le cadre d'une observation participative, afin de caractériser les
interactions ad hoc au sein d'une équipe de développement logiciel. Or, la technique retenue,
étant donné sa lourdeur d'analyse, oblige a procéder par échantillonnage, soit dans ce cas 34
heures d'enregistrements audio-vidéo. Par ailleurs, Coman, Sillitti, & Succi (2009) utilisent un

systeme AISEMA (Automated In-process Software Engineering Measurement and Analysis) afin

116

de parvenir a comprendre la nature des interactions entre un développeur et son ordinateur, au
cours du développement logiciel. Cette technique de collection de données de troisieme degré a
I'avantage d'étre non intrusive, tout en permettant de recueillir des données sur toute la durée du
projet. Or, bien que cette technique permette une analyse comportementale des développeurs,
I'aspect cognitif ne peut qu'étre déduit, ce qui est caractéristique des techniques de troisiéme
degre. En somme, les techniques de collecte de données utilisées en genie logiciel varient selon
I'objectif de mesure et exigent un compromis entre la précision des données recueillies et I'effort

d'analyse des données.

En ce qui a trait & la précision et a la validité des jetons d'activité (ATS), la granularité offre une
indication sur la rigueur des développeurs et donc sur la fiabilité des jetons. D'abord, I'utilisation
de jetons d'activité comme technique de collecte de données est plus fiable et précise que
I'utilisation de "feuilles de temps" (work diary). En effet, alors que les feuilles de temps
s'intéressent principalement a la durée de taches, les jetons d'activités visent & enregistrer les
efforts réels déployés dans des activités cognitives. De plus, afin d'assurer une bonne fiabilité des
jetons, les jetons d'activité ont été validés régulierement, en cours de projet, en s'‘assurant de leur
complétude et de leur représentativité aupres des développeurs. Finalement, une validation de la

cohérence des jetons a été effectuée a la fin des projets.

La fiabilité des jetons, compte tenu du facteur humain, qui peut étre évaluée entre 80% (profil y)
et 95% (profil a) selon les développeurs, avec une moyenne de 85% a 90% selon I'équipe, a été
prise en compte au sein de ces travaux de recherche. En effet, la grande majorité des analyses
s'intéresse a des phénomenes plus généraux tels que la caractérisation de profils, de signatures et
de tendances, plutdt qu'a des phénomenes de granularité fine.

Finalement, la méthodologie ATS a été utilisée lors de projets intégrateurs en génie logiciel. Dans
ce contexte, la méthodologie offre I'avantage supplémentaire de sensibiliser les développeurs a ce
qu'ils font. En effet, les développeurs devant consigner dans des jetons d'activités (ATS) tout
effort de développement logiciel, ils doivent nécessairement prendre conscience de ce qu'ils font,

ce qui constitue un apport méthodologique supplémentaire.

117

7.2 Contributions théoriques

La contribution théorique la plus importante de cette these est certainement le développement
d'un modeéle de flux de connaissances. A ce propos, les trois articles des chapitres 3, 4 et 5
constituent autant d'exemples d'utilisation pertinente du modéle de flux de connaissances,

permettant de mieux comprendre le développement logiciel sur le plan cognitif.

Il est pertinent de rappeler que le modéle de flux de connaissances est une théorie a base
empirique (grounded theory). Le modéle a été elaboré, au gré de multiples itérations, a partir des
données des jetons d'activités. A ce sujet, il est possible de suivre en partie I'évolution du modéle
en comparant les deux articles de conférence (cf. annexes A et B) et le modéle "final™ présenté

dans les articles des chapitres 3, 4 et 5.

Outre les contributions théoriques déja discutées dans les articles, la forte corrélation observée
entre un effort d'acquisition élevé et une productivité du code source faible est particuliérement
porteuse. En effet, une telle corrélation identifiée a I'aide d'une étude de cas multiples (3 cas)
mérite d'étre vérifiée a plus grande échelle. Des modeéles prédictifs d'estimation d'effort

pourraient éventuellement étre développés grace a cette découverte.

7.3 Contributions pratiques

Etant donné que les expérimentations ont été faites dans le cadre de projets intégrateurs, les
contributions pratiques permettront d'abord et avant tout d'améliorer ces projets, et ce, sous quatre
aspects: la formation des équipes, le choix du projet, le choix du processus et la supervision des

équipes.

7.3.1 Formation des équipes

L'identification de quatre profils de développeur (cristallisateur, codeur, polyvalent, agent libre)
au sein des projets étudiés permettra d'orienter la formation des équipes. Notamment, la
complémentarité des profils dans une équipe est un aspect a considérer. A cet effet, une bonne
compréhension des profils naturels des développeurs pourra faciliter la détermination de

responsabilités au sein d'une équipe.

118

7.3.2 Choix du projet

Les besoins d'acquisition d'une équipe par rapport a un projet constituent un facteur capital a
considérer lors du couplage d'une équipe avec un projet intégrateur. En effet, il est crucial de bien
évaluer les besoins d'acquisition, soit la différence entre le savoir et le savoir-faire nécessaires au
développement d'un projet comparativement au savoir et au savoir-faire que posséde
préalablement une équipe. Des exemples de projets intégrateurs des derniéres années démontrent
que des besoins d'acquisition trop importants menent a un échec du projet ou vers la livraison

d'un produit ne répondant pas aux attentes du client.

7.3.3 Choix du processus

A la lumiére des résultats présentés dans cette thése, les développeurs devraient se voir proposer

un processus logiciel favorisant le partage de connaissances.
Plus précisément, il est suggéré:

e D'inclure une boucle de validation de I'acquisition, ce qui constitue une généralisation de
la pratique de validation de code réutilisation, présentée au chapitre 4. En effet, étant
donné l'importance cruciale de l'acquisition dans le développement logiciel, une telle

validation serait bénéfique a I'équipe.

e De promouvoir la validation d'artefacts et la vérification de code source de maniere
participative, possiblement par l'introduction de programmation par paire. Il s'agit d'un
moyen privilégié de partage de connaissances. Par ailleurs, l'introduction de séances de
revue de code permettrait aux développeurs de détecter des défauts et d'assurer une
uniformité dans le code, tout en synchronisant en équipe les connaissances relatives au

produit développe.

e Etant donné que les développeurs sous-estiment souvent l'importance de la boucle de
rétroaction dans les moments critiques d'un projet, d'insister sur l'importance de la
synchronisation et de la validation de connaissances, en particulier lors d'activités
antérieures au code, soit principalement lors de la formalisation des exigences, de

I'élaboration de l'architecture et de la conception.

119

e De bien faire comprendre que la conception n'est qu'une image de possibilités, ce qui
implique que I'élaboration d'une conception "parfaite” n'a aucun intérét puisqu'il est tres

probable que I'implémentation prendra ses distances de cette image de possibilités.

7.3.4 Supervision des équipes

Finalement, bien gu'ils soient généralement peu populaires aupres des développeurs, les jetons
d'activité sont tres utiles dans une perspective de supervision des équipes. En effet, les jetons
fournissent au superviseur des informations détaillées de I'effort investi, facilitant ainsi le suivi de
projet. Par ailleurs, comme mentionnée précédemment, l'obligation pour les développeurs de

remplir les jetons d'activité les sensibilise a ce qu'ils font.

120

CONCLUSION ET RECOMMANDATIONS

Les contributions originales de cette thése a I’avancement des connaissances concernant l'aspect

cognitif du développement logiciel sont nombreuses.

D'abord, la méthodologie ATS est détaillée, permettant la saisie de données cognitives et ainsi
facilitant I'analyse du développement logiciel selon une perspective de flux de connaissances. En
effet, le modeéle de flux de connaissances est une théorie a base empirique (grounded theory), qui
a été élaborée a partir des données des jetons d'activités (ATS), en se basant sur le modéle de
création de connaissance de Nonaka & Takeuchi (1995). Un tel modele facilite la compréhension

du développement logiciel sur le plan cognitif.

Puis, le modele de flux de connaissances est mis a profit afin d'analyser les conséquences de la
qualité de documentation dans le cadre de la réutilisation de composants FLOSS. Il en résulte que
la documentation incompléte ou inexistante de certains composants FLOSS constitue un danger
potentiel a leur réutilisation. Pour pallier a ce risque, une pratiqgue de validation de code

réutilisable est proposée.

De plus, les discordances entre les artefacts de conception et I'implémentation de solution sont
étudiées d'un point de vue cognitif. 1l en résulte que la conception est une discipline opportuniste,
majoritairement participative et incluant principalement trois activités cognitives soit l'acquisition
de connaissances a partir de sources externes, la cristallisation des connaissances dans des
artefacts, ainsi que la validation des connaissances cristallisées, par l'inspection des artefacts.
Ainsi, les discordances entre les artefacts de conception et I'implémentation s'expliquent par le

fait que la conception n'est qu'une image de possibilités.

Par ailleurs, trois projets intégrateurs sont caractérisés relativement a la production de jetons et a
I'effort investi. D'une part, lI'analyse des jetons d'activité (ATS) permet de porter un jugement sur
la rigueur des développeurs et donc sur la fiabilité des jetons, selon les profils a, B et y. D'autre
part, les facteurs cognitifs sont caractérisés selon leur caractére individuel et participatif. A cet
effet, I'acquisition est trés majoritairement individuelle et est investie majoritairement dans la
premiére moitié du projet. La cristallisation comporte principalement deux phases. Une phase
autant individuelle que participative ou les développeurs cristallisent "I'image de possibilité™ du

121

logiciel en devenir et une deuxieme phase, individuelle, de retrofitting des artefacts. La validation
est intimement liée a la cristallisation, est majoritairement participative et elle est concentrée dans
la premiére moitié du projet. La réalisation est trés majoritairement individuelle. La vérification
est intimement liée a la réalisation, est majoritairement individuelle et est concentrée dans la
deuxiéme moitié du projet. L'organisation du travail est virtuellement uniquement participative.
Par ailleurs, le sequencement cognitif permet I'identification de quatre profils de développeurs: le
cristallisateur, le codeur, le polyvalent et I'agent libre. Finalement, une forte corrélation a éeté
observée entre un effort d'acquisition élevé et une productivité du code source faible, ce qui
constitue une contribution majeure, de par son originalité et ses conséquences théoriques et

pratiques.

La principale limitation de cette thése est au niveau de sa validité externe. En effet,
I'expérimentation étant basée sur des projets intégrateurs développés par des étudiants, il est
Iégitime de se questionner sur la validité des résultats dans d'autres conditions, notamment en
milieu industriel. A ce sujet, Host et al. (2000) concluent qu'il n'existe que des différences
mineures entre les étudiants de derniére année de baccalauréat et les professionnels, concernant
leur habileté a effectuer des taches relativement simples requérant un jugement. De plus, Porter et
al. (1995) ont obtenu des résultats similaires dans une étude des méthodes de détection pour
I'inspection des requis logiciels conduits avec des étudiants et répliqués avec des professionnels
(Porter & Votta, 1998).

Face a cette limitation potentielle, il est recommandé de conduire les mémes expérimentations

dans un contexte industriel, de maniere a prouver la validité externe des résultats.

Une autre avenue de recherche recommandée concerne I'extension de la méthodologie. En effet,
il a été démontré que la méthodologie ATS permet d'analyser le développement logiciel dans une
perspective de flux de connaissances et il serait trés intéressant d'observer la symbiose de cet
aspect avec d'autres problématiques complémentaires telles que les interactions ad hoc au sein
d'une equipe de développement logiciel et la nature des interactions entre un développeur et son
ordinateur, au cours du développement logiciel. Ainsi, les développeurs devraient remplir des
jetons d'activité, seraient enregistrés par des caméras audio-vidéo et un systtme AISEMA
recueillerait des données comportementales. Cet amalgame de mesures a le potentiel d'offrir des

données permettant de porter & un autre niveau la recherche empirique en génie logiciel.

122

LISTE DES REFERENCES

Aaen, I. (2003). Software process improvement: Blueprints versus recipes. IEEE Software, 20(5),
86-93.

Alavi, M., & Leidner, D.E. (2001). Review: Knowledge Management and Knowledge
Management Systems: Conceptual Foundations and Research Issues. Management
Information Systems Quaterly, 25(1), 107-136.

Alshayeb, M., & Li, W. (2003). An Empirical Validation of Object-Oriented Metrics in Two
Iterative Processes. IEEE Transactions on Software Engineering, 29(11), 1043-1049.

Antoniol, G., Caprile, B., Potrich, A., & Tonella, P. (2000). Design Code Traceability for OO
Systems. Annals of Software Engineering, 9(1-4), 35-58.

Arent, J., & Narbjerg, J. (2000). Software Process Improvement as Organizational Knowledge
Creation: A Multiple Case Analysis. Proceedings of the 33rd Hawaii International
Conference on System Sciences, Maui, Hawaii (Vol. 4, pp. 4045-4055). Washington, DC,
USA: IEEE Computer Society

Argyris, C., & Schon, D. A. (1978). Organizational Learning: A Theory of Action Perspective.
Reading, MA, USA: Addison-Wesley.

Baetjer, H. J. (1998). Software as Capital: An Economic Perspective on Software Engineering.
Piscataway, NJ, USA: IEEE.

Bailetti, A. J., & Liu, J. (2003). Comparing software development processes using information
theory. Portland International Conference on Management of Engineering and
Technology (PICMET'03), (pp. 309-315). Portland State University.

123

Baudrya, B., & Le Traon, Y. (2005). Measuring Design Testability of a UML Class Diagram.
Information and Software Technology, 47(13), 859-879.

Beck, K. (1999a). Embracing change with extreme programming. Computer, 32(10), 70-77.

Beck, K. (1999b). Extreme programming explained: Embrace change. Reading, MA: Addison-
Wesley.

Beck, K., Beedle, M., Bennekum, A. V., Cockburn, A., Cunningham, W., Fowler, M. et al.
(2001). Manifesto for Agile Software Development. Consulté le 7 ao(t 2006, tiré de

http://www.agilemanifesto.org

Bettman, J. R., & Park, C. W. (1980). Effects of Prior Knowledge and Experience and Phase of
the Choice Process on Consumer Decision Processes: A Protocol Analysis. Journal of
Consumer Research, 7(3), 234-248.

Bjornson, F. O., & Dingsoyr, T. (2005). A Study of a Mentoring Program for Knowledge
Transfer in a Small Software Consultancy Company. Lecture Notes in Computer Science
(Vol. 3547, pp. 245-256). Heidelberg: Springer Verlag.

Bjornson, F. O., & Dingsoyr, T. (2008). Knowledge Management in Software Engineering: A
Systematic Review of Studied Concepts, Findings and Research Methods Used.
Information and Software Technology, (50)11, 1055-1068.

Boehm, B., Port, D., & Basili, V. (2002). Realizing the benefits of the CMMI with the CeBASE
method. Systems Engineering, 5(1), 73-88.

Boehm, B., Port, D., Egyed, A., & Abi-Antoun, M. (1999). The MBASE life cycle architecture
milestone package: No architecture is an island. First Working International Conference
on Software Architecture (WICSA1) (pp. 511-528). San Antonio, TX, USA: Kluwer
Academic Publishers.

http://www.agilemanifesto.org/

124

Bohme, M. (2004). Using libavformat and libavcodec. Consulté le 7 octobre 2009, tiré de

http://www.inb.uni-luebeck.de/~boehme/using_libavcodec.html

Bonke, J. (2005). Paid Work and Unpaid Work: Diary Information Versus Questionnaire
Information. Social Indicators Research, 70(3), 349-368.

Briand, L.C., Wu, J., Lounis, H., (2001). Replicated Case Studies for Investigating Quality
Factors in Object-Oriented Designs. Empirical Software Engineering, 6(1), 11-58.

Carver, J., Jaccheri, L., Morasca, S., & Shull, F. (2003). Issues in Using Students in Empirical
Studies in Software Engineering Education. Proceedings of the Ninth International
Software Metrics Symposium (METRICS’03), Sydney, Australia (pp. 239-249).
Washington, DC, USA: IEEE Computer Society.

Cherry, S., & Robillard, P. N. (2009). Audio-video recording of ad hoc software development
team interactions. Proceedings of the 2009 ICSE Workshop on Cooperative and Human
Aspects on Software Engineering, Vancouver, Canada (pp. 13-21). Washington, DC,
USA: IEEE Computer Society.

Choi, B., & Lee, H. (2002). Knowledge management strategy and its link to knowledge creation
process. Expert Systems with Applications, 23(3), 173-187.

Chong, J., & Siino, R. (2006). Interruptions on Software Teams: A Comparison of Paired and
Solo Programmers. Proceedings of the 20th Anniversary Conference on Computer
Supported Cooperative Work (CSCW’06), Banff, Alberta (pp. 29-38). New York, NY,
USA: ACM.

Clark, G. (1999). Evaluation of Written Communication: A Replication Study to Determine
accuracy. Corporate Communications: An International Journal, 4(3), 112-120.

125

Clayton, R., Rugaber, S., & Wills, L. (1998). Dowsing: A Tool Framework for Domain-Oriented
Browsing of Software Artifacts. Proceedings of the 13th IEEE International Conference
on Automated Software Engineering (ASE'98), Honolulu, Hawaii (pp. 204-207).
Washington, DC, USA: IEEE Computer Society.

Cockburn, A. (2002). Agile software development joins the "would-be" crowd. Cutter IT
Journal, 15(1), 6-12.

Cohen, J. (1960). A Coefficient of Agreement for Nominal Scales, Educational and
Psychological Measurement, 20(1), 37-46.

Coman, I. D., Sillitti, A., & Succi, G. (2009). A case-study on using an Automated In-process
Software Engineering Measurement and Analysis system in an industrial environment.
Proceedings of the 31st International Conference on Software Engineering, Vancouver,
Canada (pp. 89-99). Washington, DC, USA: IEEE Computer Society.

Corbin, J., & Strauss, A. (1990). Grounded Theory Research: Procedures, Canons and Evaluative
Criteria. Qualitative Sociology, 13(1), 3-21.

Crosby, P. B. (1979). Quality is Free: The Art of Making Quality Certain. New York, NY:
MacGraw-Hill.

Czerwinski, M., Horvitz, E., & Wilhite, S. (2004). A Diary Study of Task Switching and
Interruptions. Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, Vienna, Austria (pp. 175-182). New York, NY, USA: ACM.

Dakhli, S. B. D., & Chouikha, M. B. (2009). The Knowledge-Gap Reduction in Software
Engineering. Proceedings of the Third International Conference on Research Challenges

in Information Science, Fés, Morocco.

126

Dalcher, D. (2003). Dynamic systems development: towards continuity, growth and evolution.
Tenth IEEE International Conference and Workshop on the Engineering of Computer-
Based Systems, (pp. 62-71). Huntsville, AL, USA: IEEE Computer Society.

Dall'Agnol, M., Janes, A., Succi, G., & Zaninotto, E. (2003). Lean management - a metaphor for
extreme programming? Fourth International Conference on Extreme Programming and

Agile Processes in Software Engineering, (pp. 26-32). Genova, Italy: Springer-Verlag.

Deming, W. E. (1986). Out of Crisis. Cambridge, MA: MIT Center for Advanced Engineering.

Desouza, K. C., Awazu, Y., & Wan, Y. (2006). Factors Governing the Consumption of Explicit
Knowledge. Journal of the American Society for Information Science and Technology,
57(1), 36-43.

Dick, B., & Dalmau, T. (1990). Values in Action: Applying the Ideas of Argyris and Schon.

Brisbane, Australia: Interchange.

Earl, M. (2001). Knowledge Management Strategies: Towards a Taxonomy. Journal of

Management Information Systems, 18(1), 215-233.

Erickson, J., Lyytinen, K., Keng, S. (2005). Agile modeling, agile software development, and
extreme programming: the state of research. Journal of Database Management, 16(4), 88-
100.

Eveleens, J. L., & Verhoef, C. (2010). The Rise and Fall of the Chaos Report Figures. IEEE
Software, 27(1), 30-36.

Fioravanto, F., & Nesi, P. (2001). Estimation and Prediction Metrics for Adaptive Maintenance
Effort of Object-Oriented Systems. IEEE Transactions on Software Engineering, 27(12),
1062-1084.

127

Flyvbjerg, B. (2006). Five misunderstandings about case-study research. Qualitative Inquiry,
12(2), 219-245.

Fowler, M. (2005). The new methodology [agile methodology]. Software World, 36(1), 3-6.

Fujitsu. (2006). Macroscope. Fujitsu. Consulté le 24 octobre 2006, tirée de

http://www.fujitsu.com/ca/fr/services/consulting/method/macroscope/

Gendreau, O., & Robillard, P. N. (2007). Knowledge Conversion in Software Development.
Proceedings of the Nineteenth International Conference on Software Engineering and
Knowledge Engineering (SEKE'2007), Boston, USA (pp. 392-395). Knowledge Systems

Institute Graduate School.

Gendreau, O., & Robillard, P. N. (2009). Exploring Knowledge Flow in Software Project
Development. Proceedings of the 2009 International Conference on Information, Process,
and Knowledge Management, Cancun, Mexico (pp. 99-104). Washington, DC, USA:
IEEE Computer Society.

Germain, E., & Robillard, P.N. (2003). What Cognitive Activities are Performed in Student
Projects. Proceedings of the 16th Conference on Software Engineering Education and
Training, Madrid, Spain (pp. 224-231). Washington, DC, USA: IEEE Computer Society.

Germain, E., & Robillard, P. N. (2005). Engineering-based processes and agile methodologies for
software development: a comparative case study. Journal of Systems and Software, 75(1-
2), 17-27.

Gilgun, J. F. (1992). Definitions, Methodologies, and Methods in Qualitative Family Research,

Qualitative Methods in Family Research. Thousand Oaks: Sage.

Glaser, B. G., & Strauss, A. L. (1967). The Discovery of Grounded Theory: Strategies for
Qualitative Research. Chicago, IL, USA: Aldine Publishing.

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VPF-4W0WM84-1&_user=2101137&_coverDate=06%2F30%2F2009&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1336331615&_rerunOrigin=google&_acct=C000056154&_version=1&_urlVersion=0&_userid=2101137&md5=c3c343f1fcdc4048b311988de3beae25#bbib24
http://www.fujitsu.com/ca/fr/services/consulting/method/macroscope/

128

Henninger, S. (1997). Tools Supporting the Creation and Evolution of Software Development
Knowledge. Proceedings of the International Conference on Automated Software
Engineering (ASE'97), Incline Village, Nevada (pp. 46-53). Washington, DC, USA: IEEE

Computer Society.

Herriott, R. E., & Firestone, W.A. (1983). Multisite Qualitative Policy Research: Optimizing
Descriptions and Generalizability. Educational Researcher, 12(2), 14-19.

Hersen, M., & Barlow, D. H. (1976). Single-case experimental designs: Strategies for Studying

behavior. New York, NY: Pergamon.

Highsmith, J. (1997). Messy, exciting, and anxiety-ridden: adaptive software development.
American Programmer, 10(4), 23-29.

Host, M., Regnell, B., & Wohlin, C. (2000). Using Students as Subjects — A Comparative Study
of Students and Professionals in Lead-Time Impact Assessment. Empirical Software
Engineering, 5(3), 201-214.

ISO. (2003). Information technology - Process assessment - Part 2: Performing an assessment.
ISO/IEC 15504-2:2003, Genéve, Suisse.

Jung, H. W., & Hunter, R. (2001). The relationship between ISO/IEC 15504 process capability
levels, 1ISO 9001 certification and organization size: an empirical study. Journal of
Systems and Software, 59(1), 43-55.

Juran, J. M. (1988). Juran on Planning for Quality. New York, NY: MacMillan.

Kettunen, P., & Laanti, M. (2005). How to steer an embedded software project: tactics for

selecting the software process model. Information and Software Technology, 47(9), 587-
608.

129

Kim, J., & Carlson, C. R. (2001). Design Units a Layered Approach for Design Driven Software
Development. Information and Software Technology, 43(9), 539-549.

Ko, A. J., DeLine, R., Venolia, G. (2007). Information Needs in Collocated Software
Development Teams. Proceedings of the 29th International Conference on Software
Engineering, (pp. 344-353). Washington, DC, USA: IEEE Computer Society.

Koch, S. (2005). Evolution of Open Source Software Systems — A Large-Scale Investigation.
Proceedings of the First International Conference on Open Source Systems, Genova, Italy
(pp. 148-153). New York, NY, USA: John Wiley & Sons, Inc.

Kolb, D. (1984). Experiential Learning: Experience as the Source of Learning and Development.
Englewood Cliffs, NJ, USA: Prentice Hall.

Kolbe, R. H., Burnett, M. S. (1991). Content-Analysis Research: An Examination of Applications
with Directives for Improving Research Reliability and Objectivity. Journal of
Consumers Research, 18(2), 243-250.

Kruchten, P. (2000). The Rational Unified Process: An Introduction. Reading, MA: Addison-
Wesley.

LaToza, T. D., Venolia, G., & DeLine, R. (2006). Maintaining Mental Models: A Study of
Developer Work Habits. Proceedings of the 28th International Conference on Software
Engineering, Shanghai, China (pp. 492-501). New York, NY, USA: ACM.

Lethbridge, T. C., Sim, S. E., & Singer, J. (2005). Studying Software Engineers: Data Collection
Techniques for Software Field Studies. Empirical Software Engineering, 10(3), 311-341.

Levesque, M. (2004). Fundamental issues with open source software development. First Monday,
9(4-5).

130

Li, W., Etzkorn, L., Davis, C., & Talburt, J. (2000). An Empirical Study of Object-Oriented
System Evolution. Information and Software Technology, 42(6), 373-381.

Lindvall, M., Basili, V., Boehm, B., Costa, P., Dangle, K., Shull, F. et al. (2002). Empirical
Findings in Agile Methods. Proceedings of Extreme Programming and Agile Methods,
(pp. 197-207).

Medvidovic, N., Grunbacher, P., Egyed, A., & Boehm, B.W. (2003). Bridging Models across the
Software Lifecycle. Journal of Systems and Software, 68(3), 199-215.

Melnik, G., & Maurer, F. (2004). Direct Verbal Communication as a Catalyst of Agile
Knowledge Sharing. Proceedings of the Agile Development Conference, Salt Lake City,
UT, USA (pp. 21-31). Washington, DC, USA: IEEE Computer Society.

Merilinna, J., & Matinlassi, M. (2006). State of the art and practice of open source component
integration. Proceedings of the 32nd EUROMICRO Conference on Software Engineering
and Advanced Applications, Dubrovnik, Croatia (pp. 170-177). Washington, DC, USA:
IEEE Computer Society.

Miller, J., (2008). Triangulation as a basis for knowledge discovery in software engineering.
Empirical Software Engineering, 13(2), 223-228.

Murphy, G. C., Notkin, D., & Sullivan, K. J. (2001). Software Reflexion Models: Bridging the
Gap between Design and Implementation. IEEE Transactions on Software Engineering,
27(4), 364-380.

Naur, P., Randell, B. (1969). Software Engineering: Report of a conference sponsored by the
NATO Science Committee, Garmisch, Allemagne: OTAN.

131

Nawrocki, J. R., Walter, B., & Wojciechowski, A. (2002). Comparison of CMM Level 2 and
extreme programming. 7th European Conference on Software Quality (ECSQ 2002), (pp.
288-297). Helsinki, Finland: Springer-Verlag.

Neill, C. J. (2003). The extreme programming bandwagon: revolution or just revolting?. IT
Professional, 5(5), 62-64.

Nerur, S., & Balijepally, V. (2007). Theoretical Reflections on Agile Development
Methodologies. Communications of the ACM, 50(3), 79-83.

Nerur, S., Mahapatra, R., & Mangalaraj, G. (2005). Challenges of migrating to agile
methodologies. Communications of the ACM, 48(5), 72-78.

Nonaka, 1., & Takeuchi, H. (1995). The Knowledge-Creating Company — How Japanese

Companies Create the Dynamics of Innovation. Oxford University Press.

NSERC. (2005). Tri-Council Policy Statement: Ethical Conduct for Research Involving Humans.
Natural Sciences and Engineering Research Council of Canada. Consulté le 12 avril 2009,

tiré de http://www.pre.ethics.gc.ca/english/policystatement/policystatement.cfm

Palmer, S. R., & Felsing, J. M. (2002). A Practical Guide to Feature-Driven Development. Upper
Saddle River, NY: Prentice-Hall.

Paulk, M. C., Curtis, B., Chrissis, M. B., & Weber, C. V. (1993). Capability maturity model,
version 1.1. IEEE Software, 10(4), 18-27.

Paulson, J.W., Succi, G. & Eberlein, A. (2004). An Empirical Study of Open-Source and Closed-
Source Software Products, IEEE Transactions on Software Engineering, 30(4), 246-256.

Perreault, W. D., & Leigh, L. (1989). Reliability of Nominal Data Based on Qualitative
Judgments. Journal of Marketing Research, 26(2), 135-148.

132

Perry, D. E., Staudenmayer, N. A., Votta, L. G. 1994. «People, organizations, and process
improvement». IEEE Software, 11:4, 36-45.

Polanyi, M. (1967). The Tacit Dimension. Garden City, NY: Doubleday.

Poppendeick, M., & Poppendeick, T. (2003). Lean Software Development: An Agile Toolkit for
Software Development Managers. Reading, MA: Addison-Wesley.

Porter, A., & Votta, L. (1998). Comparing detection methods for software requirements
inspection: A replication using professional subjects. Empirical Software Engineering,
3(4), 355-380.

Porter, A., Votta, L., & Basili, V. R. (1995). Comparing Detection Methods for Software
Requirements Inspection: A replicated experiment. IEEE Transactions on Software
Engineering, 21(6), 563-575.

Ras, E., & Rech, J. (2008). Improving Knowledge Acquisition in Capstone Projects Using
Learning Spaces for Experiential Learning. 21st Conference on Software Engineering
Education and Training (pp. 77-84). Washington, DC, USA: IEEE Computer Society.

Rifkin, S. (2001). Why Software Process Innovations Are not Adopted. IEEE Software, 18(4),
110-112.

Rising, L., & Janoff, N. S. (2000). The Scrum software development process for small teams.
IEEE Software, 17(4), 26-32.

Robillard, P. N. (1999). The Role of Knowledge in Software Development. Communications of
the ACM, 42(1), 87-92.

133

Robillard, P.N. (2005). Opportunistic Problem Solving in Software Engineering. IEEE Software,
22(6), 60-67.

Robillard, P. N., Kruchten, P., & d'Astous, P. (2003). Software Engineering Process with the
UPEDU. Boston: Pearson Education.

Robson, C. (2002). Real World Research: A Resource for Social Scientists and Practitioner-

Researchers (2° éd.). Oxford: Blackwell Publishers.

Runeson, P., & Host, M. (2009). Guidelines for conducting and reporting case study research in

software engineering. Empirical Software Engineering, 14(2), 131-164.

Schon, D. A. (1983). The Reflective Practitioner. New York: Basic Books.

Schwaber, K., Beedle, M. (2002). Agile Software Development with Scrum. Prentice Hall.

Seaman, C. B. (1999). Qualitative Methods in Empirical Studies of Software Engineering. IEEE
Transactions on Software Engineering, 25(4), 557-572.

Singer, J., Lethbridge, T., Vinson, N., & Anquetil, N. (1997). An examination of software
engineering work practices. Proceedings of the 1997 Conference of the Centre for
Advanced Studies on Collaborative Research. Toronto, Ontario, Canada: IBM Press.

Standish Group. (1994). Chaos Report. Standish Group. Consulté le 15 novembre 2006, tiré de

http://www.standishgroup.com/sample_research/chaos_1994 1.php

Stapleton, J. (1997). DSDM, Dynamic Systems Development Method: the Method in Practice.
Reading, MA: Addison-Wesley.

http://www.standishgroup.com/sample_research/chaos_1994_1.php

134

Subramanyan, R., & Krisnan, M. S., (2003). Empirical Analysis of CK Metrics for Object-
Oriented Design Complexity: Implications for Software Defects. IEEE Transactions on
Software Engineering, 29(4), 297-310.

Taulavuori, A. (2002). Component documentation in the context of software product lines.
Espoo, Finland: VTT Publications.

Taylor, S. J., & Bogdan, R. (1984). Introduction to Qualitative Research Methods. New York:
John Wiley & Sons.

Trandsen, E., & Vickery, K. (1998). Learning on demand. Journal of Knowledge Management,
1(3), 169-80.

van Gurp, J., & Bosch, J., (2002). Design Erosion: Problems and Causes. Journal of Systems and
Software, 61(2), 105-119.

Wang, Y., Court, I, Ross, M., Staples, G., King, G., & Dorling, A. (1997). Quantitative
evaluation of the SPICE, CMM, 1SO 9000 and BOOTSTRAP. Third IEEE International
Software Engineering Standards Symposium and Forum (ISESS 97), (pp. 57-68). Walnut
Creek, CA, USA: IEEE Computer Society.

Wenger, E. (1998). Communities of Practice: Learning, Meaning and Identity. Cambridge

University Press.

Wertsch, J. V. (1985). Cultural, Communication, and Cognition: Vygotskian Perspectives.

Cambridge University Press.

Williams, R. (2006). Narratives of Knowledge and Intelligence... Beyond the Tacit and Explicit.
Journal of Knowledge Management, 10(4), 81-99.

135

Xu, S., Rajlich, V., & Marcus, A. (2005). An Empirical Study of Programmer Learning During
Incremental Software Development. Proceedings of the 4th IEEE International
Conference on Cognitive Informatics, Irvine, California (pp. 340-349). Washington, DC,
USA: IEEE Computer Society.

Yin, R. K. (2003). Case Study Research: Design and Methods. Thousand Oaks, CA: Sage.

Yuming, Z., & Hareton, L. (2006). Empirical Analysis of Object-Oriented, Design Metrics for
Predicting, High and Low Severity Faults. IEEE Transactions on Software Engineering,
32(10), 771-7809.

Zettel, J., Maurer, F., Munch, J., & Wong, L. (2001). LIPE: a lightweight process for e-business
startup companies based on extreme programming. Third International Conference on
Product Focused Software Process Improvement (PROFES 2001), (pp. 255-270).

Kaiserslautern, Germany: Springer-Verlag.

Annexe A

Knowledge Conversion in Software Development

Proceeding of the Nineteenth International Conference
on Software Engineering (SEKE'2007)

Boston, USA, 2007

136

137

Knowledge Conversion in Software Development

Olivier Gendreau. Pierre N. Robillard
Computer engineering department
Ecole Polytechnique de Montréal
Montréal. Québec. Canada
{olivier.gendreau. pierre-n.robillard} @polymtl.ca

Abstract

Software processes cam be categorized in two tvpes of
approach: engineering-based processes, criticized for
restraining creativity, and agile methodologies, criticized
Jor being often unpredictable. This paper proposes a
conciliatory view of software processes by analysing
human cognitive activities. Our approach, based on the
SECI Imowledge conversion process, defines eight
fmowledge conversion fypes. The approach is then tested on
a project developed by a team of undergraduate students
enrolled in a capstone project during the 2006 winter
semester at Ecole Polytechnique de Montréal. The
fmowledge perspective of the capstone project mainly
stresses the importance of creativity and information
sharing in collaborative projects.

1. Introduction

Software processes can be categorized in two types of
approach. First, there are engineering-based processes such
as Rational Unified Process (RUP), Unified Process for
EDUcation (UPEDU) or Model-Based Architecting and
Software Engineering (MBASE) These processes are
mainly criticized for restraining creativity [1]. Second, there
are agile methodologies such as Extreme Programming
(XP), Scrum. Dynamuc Systems Development Method
(DSDM). Adaptive Software Development (ASD), Crystal
Methodologies, Lean Development (LD). Feature Dniven
Development (FDD) and Agile Modelmg (AM). These
methodologies are mamly cnticized for bemng often
unpredictable [2]. In an effort to conciliate these two
software process views, an hybrid approach as emerged
mamly by mixing known advantages of the two approaches,
OpenUP [3] being an example.

The elaboration of a software process 1mplies
conformance to different standards. conventions and best
practices of the software field. Metamodels such as

Software Process Engmeening Metamodel (SPEM), OPEN
Process Framework (OPF), Software Process Improvement
Capability dEtermination for Object-Oriented/Component-
Based Software Development (OOSPICE) and LiveNet can
be wused to assure uniform representation between
processes. But in order to assess software quality or
maturity, reference models such as ISO 9001, Software
Capability Maturity Model (SW-CMM). Capability
Maturity Model Integration (CMMI) and ISO/TEC 15504
can be used. Also. software process improvement (SPI)
models are available such as Personal Software Process
(PSP), Team Software Process (TSP) and Imitiating,
Diagnosing. Establishing. Acting and Learning (IDEAL).

The SPI field can also be categorized i two approaches :
blueprmis and recipes [4]. We can see sinularities between
traditional processes and blueprint SPI as between agile
methodologies and recipe SPI In fact, tradifional processes
and blueprint SPI insist on process and prescription while
agile methodologies and recipe SPI insist on people and
adaptation.

By reviewing the software process literature, we can
conclude that most of the processes stand in the engineered-
based process/agile methodologies debate continuium. Since
we know that software development is knowledge-
intensive [5]. in order to manage this duality, the integration
of some knowledge engineering concepts should be a
valuable avenue. Recurnng problems of feedback loops
could be corrected by improving and adding software
practices in order to achieve an mtegrated knowledge
management. Of course, some sofiware disciplines are
more subject to benefit from this type of approach. In
particular, software design 1s a discipline particularly
involved with cognitive synchromisation. This knowledge-
centered activity 15 mtended to assure that team-mates share
the same mental model, the same representation of
concepts [6].

This paper proposes a conciliatory view of software
processes by analysing human cognitive activities. To
achieve this purpose, we suggest analysing knowledge

conversion in software processes. For now, there is not
much literature on that matter which leads us to believe m
the originality of the approach.

Section 2 presents useful knowledge concepts related to
knowledge conversion. Section 3 details the proposed
approach to analyze knowledge conversion in software
development and section 4 presents the observations from a
capstone project.

2. Knowledge concepts

More than two decades ago, Alvin Toffler [7] predicted
the imminence of a society based on knowledge as a source
of power. Nowadays, we can state that knowledge actually
15 a strategic tool for enterprises seeking improved
profits [8]. Therefore. knowledge management is clearly an
important matter.

Information and knowledge are vital forces in today’s
organizations [9] and particularly software organizations. In
fact, information and knowledge are essential during
software development lifecycle, predomunantly dunng
design. In this regard, Kahkonen and Abrahamsson [10]
demonstrated the link between software processes and
knowledge creation.

Knowledge 1s context-specific, meaning it depends on
time and space [11]. Information becomes knowledge when
1t 15 interpreted by someone, associate to a context and
anchored to one’s commitments [12]. We can categorize
knowledge in two types: explicit and tacit [13]. Explicit
knowledge can be expressed in formal and systematic
language. It can be processed and stored relatively
easily [14]. contrarily to tacit knowledge which is highly
personal and hard to formalise. It 15 deeply rooted mto
one’s actions, experience and values [15].

Noenaka, Tovama and Konno [12] developed a dynamuc
process enabling an orgamization to create, mamftamn and
exploit knowledge. The Unified Model of Dynamic
Knowledge Creation includes three elements: the SECI
process, which 15 a knowledge creation process through
tacit and explicit knowledge conversion; Ba, which is the
knowledge creatton context; and knowledge assets
mcluding every organization-specific resources essential to
value creation.

An organization creates knowledge from the iteraction
between tacit and explicit knowledge, called knowledge
conversion. There are four types of knowledge conversion:
socialisation (from tacit knowledge to tacit knowledge);
externalisation (from facit lknowledge to exphcit
knowledge); combmation (from explicit knowledge to
explicit knowledge); and internalisation (from explicit
knowledge to tacit knowledge) [12]. Socialisation relates to

138

the conversion of new tacit knowledge from past
expeniences. Externalisation 1s the process of crystallising
knowledge by making tacit knowledge explicit
Combination relates to converting explicit knowledge to
more complex or systematic explicit knowledge.
Internalisation happens when someone embodies explicit
knowledge into tacit knowledge.

In an organizational perspective, in order to create
knowledge, 1t is crucial to put strategies in place. Regarding
that matter, Choi and Lee [8] found links between
knowledge management and SECI knowledge creation
process. They conclude that a human strategy is more
appropriate for socialisation while a system strategy is more
appropriate for combination. As for externalisation and
internalisation, a balanced human-system strategy is more
appropriate.

Von Krogh, Nonaka and Aben [16] developed four
knowledge management strategies depending on knowledge
domain and knowledge process. A knowledge domain
mchides data, information, explicit knowledge and tacit
knowledge. A knowledge process can either be knowledge
creation or knowledge transfer.

A knowledge gap is a problem without any known
solution. When that occurs, key resources are responsible of
gathering data and mnformation and to create the necessary
knowledge in order to solve the problem. We can easily
relate knowledge gap resolution to software design.

A knowledge strategy consists of using knowledge
processes (transfer or creation) to knowledge domains
(existing or new) i order to achieve strategic goals such as
efficiency or innovation. The optimisation strategy 1s used
to transfer knowledge domains already existing in the
organization. The expansion strategy is used to create
knowledge based on data, mnformation and knowledge
already existing. The appropriation strategy 1s used to build
new knowledge domaimns with external sources. The
exploration strategy gives fo one or many teams the
responsibility to build new knowledge domains from
scratch.

To conclude, as said earlier, literature regarding
knowledge management application to software processes
1s sparse which demonstrates the origmality of this paper.

3. Proposed approach

We propose to analyse software development by using
an approach based on the SECI process developed by
Nonaka, Toyama et Konno [12]. Table I specifies the eight
different knowledge (conversion) types.

TABLEL KNOWLEDGE TYPES
Enowledge C. ion detail D .
KH Mo _{'o_n‘.'ersion K how
mvolved
CTT Tacit to tacit Information sharng
. . Knowledge
TE Tacit to explicit crvstallisation
Collaborative
CTE Tt Lnowledse
cit o expuct crystallisation
EE Explicit to explicit Combination, review
CEE CTT and Collaborative
explicit to explicit combination
ET Explicit to tacit Leaming
CET CTT and . Collaborative leaming
explicit to tacit =

In table I. we can see that each of the four SECT types of
knowledge conversion can erther occur in individual or
collective contexts with the exception of CTT. In our view,
tacit to tacit knowledge conversion can not be done
individually in software development. This 15 because such
a thing involves “philosophical thinking™ which is not
relevant in software development. Another particularity is
that KH (know-how) does not mnvolve any knowledge
conversion because it is related to procedural activities.
CTT 1s a team actrvity used to exchange or synchronize
informatton. TE and CTE knowledge
crystallisation, which means that information 1s formalised
such as when structured mformation 1s wrtten 1 a
document. EE and CEE are related to activities not
requinng much creatrvity (tacit knowledge) such as
reviewing artefacts or coding from a detailed design.
Fmally. ET and CET are related to learning activities, such
as training.

mvolve

Table II details the relation between knowledge type and
engineering-based and agile software activities.

TABLEIL ENOWLEDGE TYPES AND PROCESSES ACTIVITIES
Type activity activity
KH Execute tests, Manage working environment,

Integrate system
CTT Conduct a meeting, Discuss

Dgsign components, Code

TEand | Define architecture, Fix Refactor (major),

CTE Tmajer CPdE defect, Plan Plan project’s

project’s development. develonment
Write an artifact pime

EE and Code, Review, Fix miner Refactor (minor),

CEE code defect, Debug Review, Debug
ET and iy

CET Attend a training, Leam

As it can be seen in Table II, knowledge types are simular
between engmneermg-based and agile activities. An
important concern 15 the fuzziness between various
knowledge types. The objective 1s to figure out. for a given

139

activity, the domunant knowledge type. For mstance,
coding. depending on the process used, can be perceived as
a TE or an EE knowledge tyvpe. For engmeering-based
processes, codmg mostly mvolves translating detailed
design mto code. Therefore, the donminant knowledge type
15 TE dunng the design activity and EE during the coding
activity. However, in most agile processes, codmng is
considered a creative activity involving both design and
coding. In such a process, the dominant knowledge type 15
TE. In addition, EE is less important in agile processes than
in engineermg-based processes. Therefore, for projects
needing massive artefacts production, such as in eritical
systems development, engineering-based processes are
more adequate than agile methodologies.

4. Observations from capstone project

The knowledge type approach 1s tested on a project
developed by a team of five undergraduate students
enrolled in a capstone project durmg the 2006 winter
semester. It 15 an optional project-onented course offered to
senior-year students in computer engineering at Ecole
Polytechmique de Montréal. The course’s particulanty 1s
that the project is defined by an industrial partner, this time
an mternational aeronautic company. The project 1s based
on a business needs document supplied by the industrial
partner. An engineer from the participating organization
meets the students once a week to gmde them in developing
the software product. The students follow an engineering-
based software process derived from the UPEDU.

The methodology used to measure developers effort 1s a
more elaborate version of the effort time slip method
popularized by Perry, Staudenmayer and Votta [17] and
improved afterwards by Germain and Robillard [18]. Each
time a team member executes a task. she’he must log
information in a time slip foken containing the date, start
and end time, participants mvolved in the task. process
details and task descniption. The aeronautic project
contained about 1500 fokens for a total effort of over one
thousand hours.

Table III presents the knowledge type distnibution for the
project undertaken by the students based on their time slips.

TAELE I ENOWLEDGE TYTE DISTRIBUTION

Enowledge tvpe L]

KH 7

CTT 14

TE 19

CTE 4

EE 23
CEE 19

ET 12

CET 2

Table III provides some msight mio three types of
activities that are basic to any software development
processes: collaborative activities, creativity and learning.

First, the importance of the collaborative activities spent
on this project 1s obtamed by sumnung up the four
knowledge types that mvolve information exchange: CTT.
CTE. CEE, and CET. It is found that although it 1s an
engineering-based project. almost 40% of the team effort is
spent on collaborative activities.

Second, creativity is a major endeavour in a software
development project. A first level evaluation of the amount
of team effort mnvolved in creative activities in this project
1s to consider all knowledge types that are mnitiated by tacit
knowledge, which are CTT. CTE and TE. These three tacit
knowledge types count for 37% of the total team effort.
Interestingly. almost half of the creativity effort 15 done
collaboratively.

Finally, in most projects, some learning 1s needed unless
team members are already expert in the field Learning 1s
characterised by the conversion of explicit knowledge mnto
tacit knowledge. Some of the learming occurred duming
discussion (CTT) but it 1s difficult to evaluate its
importance. Consequently, for this project, leamning
activities count for at least 14% (TE and CTE) of the total
team effort.

5. Conclusions and future work

KEnowledge type approach, based on the SECI process.
provides a cognitive perspective to software engineering
activities. It defines eight knowledge conversion types (KH.
CTT. TE. CTE. EE, CEE, ET. and CET). By recording
effort for each process activities, it 1s possible to evaluate
the knowledge type distribution in a project’s development.

The knowledge perspective of the capstone project
stresses the importance of creativity and information
shaning in collaborative projects. More detailed analyses
could provide enough insight to enable the design of
practices that will be tailored to the creativity needed in
projects. Ongoing research are aiming at measuring the
difference between disciplined and extreme processes from
a knowledge type perspective.

References

[1] A] Bailetth and J Lin, "Comparing software
development processes using information theory."
presented at Portland International Conference on
Management of Engineering and Technology
(PICMET'03), Portland, OR, USA, 2003.

6]

[7]

(8]

[11]

[12]

[15]

[16]

[17]

(18]

140

M. C. Paulk, "Extreme programmung from a CMM
perspective,” Software, JEEE, vol. 18, pp. 19-26,
2001.

Eclipse Foundation, "Eclipse Process Framework
Project (EPF).” 2006.

I. Aaen "Software process improvement:
Bluepnints versus recipes,” JEEE Software, vol. 20,
pp. 86-93, 2003.

P. N. Robillard, "The Role of Software m
Software Development." Communications of the
ACM, vol 42 pp. 87-92, 1999,

P. N. Robillard, "Opportunistic Problem Solving
in Software Engineering." Software, IEEE. vol. 22,
pp. 60-67., 2005.

A Toffler. Powershift: Knowledee, Wealth and
Violence at the Edge of the 21st Century. New
York: Bantam Books, 1990.

B. Choi and H. Lee. "Knowledge management
strategy and its link to knowledge creation
process." Expert Systems with Applications, vol
23, pp. 173-187, 2002.

E. Trandsen and K. Vickery, "Learning on
demand." Journal of Knowledge Management, vol.
1. pp. 169-80, 1998.

T. Kahkonen and P. Abrahamsson, "Digging mto
the fundamentals of extreme programming
building the theoretical base for agile methods.”
presented at 29th Euromicro Conference, Belek-
Antalya, Turkey, 2003,

F. A Havek "The Use of Knowledge m Society.”
The American Economic Review, vol. 35, pp. 519-
530, 1945.

I. Nonaka, R. Toyama, and N. Konno, "SECI, ba
and leadership: a umified model of dynanuc
knowledge creation." Long Range Planning, vol
33, pp. 5-34. 2000.

M. Polanyi, "The Tacit Dimension," in Knowledge
in Organizations. Boston: Butterworth-
Heinemann, 1997 pp. 135-146.

K. Williams, "Narratives of knowledge and
mtellipence ... beyond the tacit and explicit,”
Journal of Knowledge Management, vol. 10. pp.
81-99. 2006.

D. A Schon, The Reflective Practitioner. New
York: Basic Books. 1983,

G. Von Krogh, I. Nonaka. and M. Aben, "Making
the most of vyour company's knowledge: A
strategic framework " Long Range Plannming. vol.
34, pp. 421-439, 2001.

D. E. Perry, N. A Staudenmaver, and L. G. Votta,
"People, orgamizations, and process improvement.”
IEEE Software, vol. 11, pp. 36-45, 1994,

E. Germain and P. N. Robillard. "Engineering-
based processes and agile methodologies for
software development: a comparative case study.”
Journal of Systems and Software, vol. 75, pp. 17-
27, 2005.

141

Annexe B

Exploring Knowledge Flow in Software Project Development

Proceeding of the 2009 International Conference

on Information, Process, and Knowledge Managment

Cancun, Mexique, 2009

142

Exploring Knowledge Flow 1n
Software Project Development

Olivier Gendreau and Pierre N. Robillard

Department of Computer and Software Engineering
Ecole Polytechnique de Montréal
Montréal, Canada
{olivier. gendreau. pierre-n robillard} @polymtl.ca

Abstract — The intent of this paper is to provide a better
understanding of the knowledze flow in software project
development. The model presented identifies five
knowledge sources linked to five basic cognitive factors.
The knowledge flow model is applied on a software
project developed by a team of undergraduate students
enrolled in a capstone project during the 2008 winter
semester at Ecole Polytechnique de Montréal. Five
cognitive factors — acquisition, crystallization, realization,
svnchronization, and validation — are present throughout
a collaborative project. The relative effort expended in
each of the cognitive factors varies significantly during a
project’s development. This smdy presents a new
knowledge hased perspective for evaluating and
measuring software engineering processes.

Keywords — knowledge flow; knowledge creation model;
software development; cognifive factors; case siudy;
capstane project.

L INTRODUCTION

Knowledge can be categonized into explicit and tacit
types [1]. Explicit knowledge can be expressed m
formal and systematic language. It can be processed and
stored relatively easily [2]. Tacit knowledge 1s deeply
rooted inte one’s actions, experience, and values [3]
and, as such, 15 lighly personal and difficult to
formalize.

Nonaka and Takeuchi developed a knowledge
creation model [4]. which i1s an organizational
knowledge creation process through the interaction
between tacit and explicit knowledge, called knowledge
conversion. There are four types of knowledge
conversion: socialization (from tacit knowledge to tacit
knowledge), externalization (from tacit knowledge to
explicit knowledge). combination (from explicit
knowledge to explicit knowledge) and internalization
(from explicit knowledge to ftacit knowledge).
Socialization relates to the conversion of new tacit
knowledge from past experiences. Externalization is the
process of crystallizing knowledge by making tacit
knowledge explicit. Combination relates to converting
explicit knowledge to more complex or systematic
explicit knowledge Internalization happens when

someone embodies explicit knowledge nto tacit
knowledge.

Based on the concepts of knowledge mnternalization
and externalization, Sowe et al [5] propose a
knowledge sharing model in free/open source software
development. They analyzed knowledge shanng m the
developer and user mailing lists of the Debian project.
Their model describes knowledge sharing as a flow
between knowledge providers and knowledge seekers,
using mailing lists as their knowledge base. Borghoff &
Preschi [6] identify the flow of knowledge as one of the
four basic components of knowledge management
Thus, better understanding knowledge flow will help
improve knowledge management in a project.

The knowledge management literature is abundant
regarding knowledge conversion, but 15 sparse
regarding knowledge sources and lmowledge flow
between these sources. Understanding such concepts
would improve our comprehension of project
development.

The remainder of this paper 1s organized as follows:
section 2 details our knowledge flow model; section 3
applies our model to a capstone project; and section 4
concludes this paper and suggests future directions.

II. EKNOWLEDGE FLOW MODEL

This paper 1s based on the knowledge creation
model [4] and identifies five cognitive factors as the
base of the cognitive process. Acquisition is the process
of constructing kmowledge by collecting information
from various sources. Synchronization is the process of
sharing information mostly from face-to-face
interaction and electronic exchanges. Crystallization
and realization are processes formalizing implicit
knowledge mto explicit knowledge, respectively
artifacts and source code Finally, wvalidation is the
process of verifying and validating some explicit
knowledge (artifacts and source code).

Table I presents the relationships between the
cognitive factors and the knowledge creation model.

Based on the knowledge sharing model [5], we
derive the knowledge flow model, which 1s presented as
fig 1.

TABIEL COGNITIVE FACTORS DERIVED FROM THE
ENOWLEDGE CREATION MODEL
Cognitive factor From To
Acquisition Explicit Tacit
Validation Explicit Explicit
Synchronization Tacit Tacit
Realization Tacit Explicit (code)
Crystallization Tacit Explicit (artifact)

The five ovals m fig. 1 represent knowledge
sources. External information can be general or very
specific to the project under development. Non project-
specific information may come from various sources
such as the Internet. a paper or a book An artifact is a
physical representation of knowledge. such as sofiware
requirements, design or test plan. Teamwork represents
team members involved in the creation of artifacts and
source code. Individual tacit knowledge is knowledge
built from interactions with other knowledge sources.

The arrows m fig. 1 descnibe the direction of the
knowledge flow between knowledge sources. The
acquisition cogmitive factor 15 involved when a
developer needs to increase his individual tacit
knowledge from external information. The
crystallization cognitive factor is the translation of a
developer's mental representation of a concept (tacit
knowledge) into an artifact (explicit knowledge). such
as producing a use-case diagram or an architectural
artifact. whereas the realization cogmitive factor 1s the
production of source code. The wvalidation cognitive
factor mvolves bidirectional knowledge flow between
individual tacit knowledge and explicit knowledge such
as an arfifact or source code. In order to review an
artifact or source code, a developer will first acquire
knowledge from 1t and then mught correct it. Reviewing
the traceability between requirements and tests 1s an
example related to the validation cogmitive factor in
soffware development. Finally. the synchromization
cogmitive factor 1s related to every activity involving
wnformation sharing inside a development team. It can
occur in localized synchronous teamwork (face-to-face

——a——Crystallizatio

143

meeting), delocalized synchronous teamwork (phone
conversation) or even asynchronous teamwork (email,
chat conversation). Examples of synchronization
include discussing the choice of architecture. peer
reviewing detailed design amtifacts or formalizming
requirements with the client.

IOI. CASESTUDY: CAPSTONE PROJECT

The knowledge flow model was applied on a project
develcped by a team of five undergraduate students
enrolled in a capstone project during the 2008 winter
semester. It was an optional pro_]ect oriented course
offered to semtor-year students in software engineering
at Ecole Polytechnique de Montréal. The project was
based on requirements supplied by an industrial partner.
An engineer from the participating organization met the
students once a week to coach them throughout the
software product development. The students followed
an engineering-based software process derived from the
Unified Process for EDUcation (UPEDU) [7].

Table II details the 6 disciplines and the 12 related
artifacts included in the process used by the

development team.

TABLEIL CAPSTONE PROTECT PROCESS DISCIPLINES

AND ARTIFACTS

Artifact
1. Software requirements
specification (SE.S)
Use-case model
User-interface prototype
Use-case realization
Architecture & design
document
System build
Test plan
Test cases
Test results
Iteration Plan
Work crder
Configuration Configuration management
management plan

Discipline

Requirements

Pt b

Analysis & design
Implementation

Tests

Project management

e I ¥ R G R)

ynchromzatlnn = —
Souroe code

<_ .ﬁ\nlfac{

—-1——"ul'a||datmn

Individual tacit knawledge
"ul'alldahon——h-—

N:qws.luun Synchromzanon

Emcha-rn:alq_“"\I
information S TEEITIWDI‘Q

Figure 1. Knowledge flow model

TABLE I CAPSTONE PROJECT DEVELOPMENT ENVIRONMENT
Component Tool'technology
Platform Linux
Programming language C/IC++
Integrated development .
environment (IDE) Eclipse
WVersion control system GIT
Bug/issue fracking system TRAC

Commumication tools Skype. xChat, email

The collocated software development team had
access to a private development room on campus for
the duration of the project, where they had a private
workstation. a meeting table and a whiteboard. The
main goal of the 2008 winter project was to add
videoconferencing capabilities to an existing open-
source desktop phone. More specifically. the industrial
partner requested 33 functional requirements and 13
non-functional requirements. In order to help the
development team to prioritize, functional requirements
were classified as essential (24). desirable (8) or
optional (1). The requested requirements consisted of 6
new features: two-way video conversation; three-way
audio and wvideo conference: audio and wvideo flow
synchronization; incoming/outgoing flow
encoding/decoding. multiple flow mixing: and H. 263,
SIP/SDP, RTP, IAX standards compliance.

Table III presents the capstone project development
environment. The project was developed in C/C++ on
the Linux platform. Many open source tools were used
such as GIT (version confrol system), Eclipse
(integrated development environment) and TRAC
(project management and bug/issue tracking system).
The developers also used Skype, xChat and email as
commmmication tools. The project lasted one semester
(13 weeks) and the estimated total team effort was 2000
hours. The developers worked on a fixed schedule that
included three half-day sessions per week.

A Measurement methodology

In knowledge management (KM), the process of
measurement and development of metrics is made
complex by the intangible nature of the knowledge
asset [8]. Therefore, the methodology used to measure
effort expended by developers in a project is an
improved version of Germain & Robillard [9]. which s
based on the time slip method of Perry. Staudenmayer
and Votta [10]. Each time a developer executed a task.
information was logged in a time slip token Each
week., an imstructor validated tokens for theirr
consistency and reliance. The main fields of a token
are: umque 1dentifier; task date; task start time; task end
tume; task duration (computed from task start/end time);
task participants identifier; task main input/output

144

artifacts; process activity identification; and detailed
description of the task.

This project produced 1930 validated tokens for a
workload of 1813 hours. However, tokens related to
academic and techmcal activities were not accounted
for i this analysis. since they were not specific to
project development. Academic activities are related to
the academic course such as teamwork traiming,
software process concept explanations and project
presentation. Technical activities are related to tasks
which can be performed by technicians such as
configuring the network or setting up and maintaining
the development environment. Consequently, there
were a total of 1629 development tokens retained for an
analysis totaling 1587 hours.

A five category coding scheme was defined to
categorize the tokens. For each development token, two
independent coders had to decide which of the five
cognitive factors was dominant.

B, Intercoder reliability

With judgment-based coding schemes, the best
approaches for improving the quality of data rely on
evaluation of judgments of two (or more) mdependent
coders [11]. The Perreault & Leigh rehability index 1s
preferable to other methods (such as simple percentage
of agreement or Cohen’s kappa) since 1t accounts for
differences in reliability as a function of the number of
categories [12].

L= [(FyN - 1k)*(k/(k-1))]'? (0

Equation (1) details Perreault & Leigh’s reliability
index I.. Fy is the observed frequency of agreements
between coders, W 1s the total number of judgments and
k 1s the number of categories.

Table IV shows the results from two independent
coders. With a total of 1516 agreemenis on 1629
judgments and 5 possible categories, the reliability
index is 0.96, which indicates a strong reliability of the
categorization based on the coding scheme.

TABLEIV. INTERCODER RELIABIIITY FOR.
CAPSTONE FROJECT CODFICATION
Variable Value
K 5
N 1629
Fo 1516
L 0.98

C. Results analysis

The effort analysis from the time slip tokens allows
a Dbetter understanding of knowledge flow
collaborative software development projects. Fig. 2
presents the cumulative effort expended in each
cognitive factor in relation to project completion.

145

T 30%
0
t ”
25% s
] ’ -
-
e -
f 20% —m
f
0 . /
r / / --=-==-=- Acquisition
t 15% v P
y / Crystallization
. - Synchromzation
/ / o
10% . / — — — Walidation
! / - — Realization
- -_
.r""
5% k===
0% . S
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Project completion

Figure 2. Cumnulative cognitive factors effort repartition

Each of the 5 curves of fig. 2 represents the total effort
expended (Y-axis) for a given cognitive factor in respect to
project completion (X-axis). For example. at 20% of the
project completion (X-axis), we observe that the major effort
15 expended on synchromzation with 11% of the total effort
(Y-axis), while walidation and realization account for
respectively 1% and 0% of the total effort The analysis of
the slopes of the 5 curves i fig. 2 allows a better
understanding of the relationship between the 5 cognitive
factors throughout the project.

Synchromzation 1s the most important cognitive factor,
summing up to 28% of the total effort. It appears very
important for the first 45% of the project, totaling 20% of the
total effort. and then slows down for the rest of the project
without stoppimng to be an important cognitive factor.

Realization is unmimportant before 45% of completion,
with only 1% of total effort. but requires a major and

constant effort from that moment until the end of the project
as shown by the almost linear part of the cumulative effort
curve (45% to 90% of project completion), ending the
project with 26% of total effort.

Crystallization 15 an important cognitive factor for the
first 40% of the project (15% of total effort). then becomes
less important until the last 5% of the project, where it jumps
from 18% to 21% of effort.

Validation 15 not significant until 40% of completion,
with only 2% of total effort. but requires a significant and
constant effort from that moment until the end of the project
as shown by the almost linear part of the cumulative effort
curve (40% to 100% of project completion), ending the
project with 17% of total effort.

Acqusttion 15 somehow important for the first 30% of
completion. with 4% of total effort. but slowly progresses
until the end the project (8% of total effort).

146

10%

T 6%
o
t
1 5%
1
B
I 4%
f
o
r B Acquisition
¢ 3% Crystallization
B Synchromzation
29 B Validation
M Realization
) n H " II
0% :

20% 30% 40% 50% 60% 70% 80% 90% 100%

Project completion

Figure 3. Non-cumulative cognitive factors effort repartition

Fig. 3 illustrates the non-cumulative effort repartition,
providing an msight into the relative proportions of cognitive
factors throughout the project. Tlis complementary view
helps to analyze cogmitive factor trends, which are useful for
a betier understanding of the knowledge flow in sofiware
development projects.

D. Discussion

The five cognitive factors detailed 1n the knowledge flow
model (acquisition, crystallization, realization,
synchronization and validation) are significant throughout a
collaborative project. The relative effort expended m each of
the cognitive factors varies according to the project’s
development life-cycle. For instance, durning the
requirtements phase, the acquisition, synchronization and
crystallization effort 1s much greater than in the construction
phase, where the realization and validation effort
predominate.

It 1s noteworthy that crystallization and realization are
complementary throughout the project. This 1s mainly due to
the engineering-based process used for the analyzed project
development. The objective of this process methodology 1s
the production of artifacts in order to support early decisions

regarding requirements and design [9], which explains the
observed complementarity. Table V shows that non-
cumulative crystallization and realization effort represents
about half of the total effort.

TABLEV. NON-CUMULATIVE CRYSTALLIZATION AND
REALTZATION EFFORT
Project Crvstallization Realization Crrstal]il:ntilnn
N and realization
completion effort effort
effort

10% 2% 0% e
20% 3% 0% e
30% 4% %% e
40% 6% % e
0% 1% Ye e
60% 0% % e
T0% 0% % e
20% 0% K e
90% 0% % e
100% 3% % e

147

Future research should intend to further detail the

TABLEVI NON-CUMULATIVE CRYSTALLIZATION AND knowledge flow model from various applications. More
SYNCHRONIZATION EFFORT specifically. the relative importance of various
Project Crystallization Synchronization synchromzation sources should be analyzed, such as face-to-
completion effort effort face meeting, chat, email, and phone conversation.
10% 2% 5% The results of such studies are likely to help improve the
20% 39, 6% various practices and our understanding of software process
30% 1% 3% activities.
40% 6% 3% V. REFERENCES
0% 1% 3% [1] M Polanyi, "The tacit dimension” in Knowledge in
60% 0% 1% Organizations, L Prusak (Ed). Boston: Butterworth-
0% 0% 1% Hemnemann, 1997, pp. 135-146.
905 0% 1% [2] E Willams, "Narratives of knowledge and intelligence...
- N ' beyond the tfacit and explicit”". Joummal of Knowledge
0% ¥ 2% Management, vol. 10, 2006, pp. 81-99.
100% 3% 2% [31 D.A Schon, The Reflective Practitioner. New York: Basic
Books, 1983,

Fig. 2. fig 3. and table VI allow concluding that ML Nona]fa ami_ H. Takeuchi. The Knowledge Creating

crystallization and synchromzation are closely related. In o:fcmnmﬁit{ofogxi{;pfﬁmg;?ﬁz ?E;;e the Dynamics
o : : o ..

fact, for the first 40% of project compl_et_lou, the de_ve;lopers [5] SK Sowe L Stamelos, and L Angelis, " standing

spend much effort on synchromzing requirements, Know : T }

. : E _ . owledge sharing activites in free/open source software
architecture and high-level design. However, from mid- projects: An empirical study”. Journal of Systems and
project unt:ll_the end. both cognitive factors become less Software, vol. 81. 2008, pp. 431436
important, since the developers now have most of the (5] UM Borghoff and R Pareschi. Information technology for
necessary knowledge required to crystallize artifacts and knowledge management. Berlin: Springer, 1008,
realize code. ~ [7 PN. Robillard. P. Kruchten and P. d’Astous, Software

The knowledge flow model confirms the opportunistic Engineering Process with the UPEDU, Boston: Addison-
aspect of software development [13]. If a developer needs to Wesley. 2003.
accomplish a task and 1s lacking crucial tacit knowledge, he [8] A Kankanhalli and B.C. Tan, "A review of metrics for
will acquire 1t from an external source. He nught need to knowledge management systems and lknowledge
synchronize his new tacit knowledge with other developers management initiatives”. Proceedings of the 37th Hawaii
before crystallizing it as an artifact. Then, another developer International Conference on System Sciences (HICSS'04),
can validate the crystallized knowledge. A developer has the Washington, DC. 2004.) o
ability to easily switch from one cogmitive factor to the other. [¥1 E Germain and PN. Robillard, "Engineering-based

processes and agile methodologies for software
IV. CONCLUSION development: a comparative case study”, Joumnal of Systems
; 2 _

The mam contribution of this paper is the ienufication g{ésgg“r?tﬂl g?&;f;ﬁ,ﬁpﬁ&iﬂ' LG. Votta. "People.
of five ;Ileasurable cognitive factors descnbmg as thoroughly organizations, and process improvement’, IEEE Software.
as possible knowledge flow in software project development. vol. 11. 1994, pp. 3645.

It allows us to presume that i projects. particularly in [1]] W.D. Perreault and L. Leigh, "Reliability of nominal data
software development. activities related to acquisition based on qualitative judgments’. Journal of Marketing
(related to learming) and synchromization (related to Research, vol. 25, 1089, pp. 135-148.

communication) are often underestimated. [12] R.H Kolbe and M.S. Bumett, "Content-analysis research: an

One major difficulty of this approach is related to the examination of applications with directives for improving
recording and the codification of the time slip tokens. research reliability and objectivity”, Journal of Consumer
Rigorous validation of the tokens as the project progresses 1s Research, vol. 18, 1991, pp. 243-250.
needed to maintain some confidence in the data. Intercoder [13] P. N. Robillard, "Opportunistic problem solving in software

reliability index measurement is required to validate the
reliability of the coding scheme.

engineering”, IEEE Software, vol. 22, 2005, pp. 60-67.

148

Annexe C

Echantillon type de jetons ATS

Id Date
DM121 2007-02-05
DM123 2007-02-05
DM126 2007-02-05
DM127 2007-02-05
PL120 2007-02-05
DM128 2007-02-05
LC114 2007-02-05
LC115 2007-02-05
LC116 2007-02-05
LC117 2007-02-06
JL83 2007-02-06
LC118 2007-02-06
JL84 2007-02-06
JL85 2007-02-06
DM131 2007-02-06
DM133 2007-02-07
DM134 2007-02-07
DM135 2007-02-07
DM136 2007-02-07
DM137 2007-02-07
LC118b 2007-02-07
DM138 2007-02-07
LC119 2007-02-07
JL87 2007-02-07
PL121 2007-02-07
DM139 2007-02-07
LC120 2007-02-07
JL88 2007-02-07
PL122 2007-02-07
DM140 2007-02-07
DM141 2007-02-07
JD120 2007-02-07
LC121 2007-02-07
JD121 2007-02-07
JL89 2007-02-07
PL123 2007-02-07
DM142 2007-02-07
DM143 2007-02-07
LC122 2007-02-07
JD124 2007-02-07
JD125 2007-02-07
PL126 2007-02-07
LC124 2007-02-07
JL92 2007-02-07
JD126 2007-02-07
PL127 2007-02-07
LC125 2007-02-07
JL93 2007-02-07
PL128 2007-02-07
JD127 2007-02-07
LC126 2007-02-08
JD129 2007-02-09
JL95 2007-02-09
JD130 2007-02-09
PL130 2007-02-09
JD131 2007-02-09
LC129 2007-02-09
JL96 2007-02-09
PL131 2007-02-09
LC130 2007-02-09
JD133 2007-02-09
PL132 2007-02-09
JD135 2007-02-09
LC133 2007-02-09

H débui H fin
11:40 11:50
11:55 12:05
12:20 12:30
12:30 12:35
12:30 12:35
12:35 12:45
13:30 14:00
14:00 15:00
15:00 15:30
14:00 14:45
14:00 15:00
14:45 15:45
15:30 16:30
16:30 17:30
22:00 22:25
10:55 11:10
11:10 12:00
12:00 12:20
12:30 13:00
13:00 13:30
13:00 13:30
13:30 13:40
13:50 14:20
13:50 14:20
13:50 14:20
13:50 14:20
14:20 14:40
14:20 14:40
14:20 14:40
14:20 14:40
14:45 15:00
14:50 15:00
15:05 15:50
15:05 15:50
15:05 15:50
15:05 15:50
15:05 15:50
15:50 16:00
15:50 16:00
16:20 16:40
16:40 17:00
16:40 17:00
16:40 17:00
16:40 17:00
17:00 17:50
17:00 17:20
17:15 18:15
17:20 17:50
17:20 17:50
17:50 18:10
21:00 22:00
08:35 09:15
09:00 09:30
09:15 09:30
09:15 09:30
09:30 09:55
09:30 10:00
09:30 10:00
09:30 10:00
10:00 10:45
10:15 10:45
10:30 11:30
11:00 11:50
11:15 12:15

Effort
00:10
00:10
00:10
00:05
00:05
00:10
00:30
01:00
00:30
00:45
01:00
01:00
01:00
01:00
00:25
00:15
00:50
00:20
00:30
00:30
00:30
00:10
00:30
00:30
00:30
00:30
00:20
00:20
00:20
00:20
00:15
00:10
00:45
00:45
00:45
00:45
00:45
00:10
00:10
00:20
00:20
00:20
00:20
00:20
00:50
00:20
01:00
00:30
00:30
00:20
01:00
00:40
00:30
00:15
00:15
00:25
00:30
00:30
00:30
00:45
00:30
01:00
00:50
01:00

P1

>> > >

>

> >

>>>Pr>r>>>

>>>r>r>>>

>>>r >

>>> >

P2 P3 P4 P5 It

B 3
B 3
B 3
B E 3
B E 3
B 3
3

3

3

3

D 3

3

b 3

D 3

B 3
B 3
B 3
B 3
B 3
B 3
B 3
B 3
B D E 3
B D E 3
B D E 3
B D E 3
B D E 3
B D E 3
B D E 3
B D E 3
B 3
C 3
B C D E 3
B C D E 3
B C D E 3
B C D E 3
B C D E 3
B 3
B 3
C 3
C D E 3
C D E 3
C D E 3
C D E 3
C 3
E 3

3

D E 3
D E 3

C 3
3

C 3
D 3
D E 3

D E 3

C 3
D E 3
D E 3

D E 3

3

C 3
E 3

C 3
3

Art. d'entrée Art. de sortie

CPA
CPA
CPA
RCU
RCU
CPA

CPA

CPA

CPA
Connaissances
Connaissances

CPA

ycumentation papi Connaissances

CUI CPA
cumentation virtur Connaissances
CPA Autre
Autre Connaissances
CPA CPA
Autre Prototype
Autre Prototype
RCU cumentation pag
RCU cumentation pag
Processus cumentation pag
CPA CPA
CPA CPA
CPA CPA
CPA CPA
CUI CUI
Discussion Connaissances
Discussion Connaissances
Discussion Connaissances
RCU Mémo
Discussion Prototype
Discussion Prototype
Discussion Prototype
CuI Mémo
CPA CPA
CuI CuI
Discussion Connaissances
Discussion Mémo
Discussion Connaissances
Discussion Connaissances
Connaissances Mémo
CPA Connaissances
Discussion Connaissances
SRS SRS
cumentation virtuc Connaissances
PTL Mémo
PTL Mémo
Discussion Autre
CUI CuUI
Prototype Prototype
CPA CPA
Prototype Autre
Prototype Prototype
cumentation virtuc Connaissances
ycumentation papi Autre
CUI CuUI
Connaissances Prototype
Discussion Mémo
CUI CUI
Cul Cul
CPA Mémo
cumentation virtue Connaissances
CPA Mémo
CPA CPA
Cul Cul
CPA Produit logiciel
Cul Cul
CPA CPA

Discipline
Conception
Conception
Conception
Conception
Conception
Conception
Conception
Conception
Conception
Conception
Formation
Conception
Implémentation
Implémentation
Requis
Conception
Gestion
Conception
Conception
Conception
Conception
Requis
Conception
Conception
Conception
Conception
Conception
Conception
Conception
Conception
Conception
Requis
Requis
Conception
Requis
Requis
Requis
Conception
Formation
Requis
Gestion
Tests
Tests
Tests
Requis
Implémentation
Conception
Implémentation
Implémentation
Conception
Gestion
Requis
Implémentation
Requis
Requis
Requis
Conception
Conception
Conception
Conception
Requis
Implémentation
Requis
Conception

Role
Ingénieur logiciel
Ingénieur logiciel
Ingénieur logiciel

Analyste
Analyste
Ingénieur logiciel
Ingénieur logiciel
Ingénieur logiciel
Ingénieur logiciel
Ingénieur logiciel
Etudiant
Ingénieur logiciel
Développeur
Développeur
Analyste
Analyste
Gestionnaire
Ingénieur logiciel
Ingénieur logiciel
Ingénieur logiciel
Ingénieur logiciel
Analyste
Ingénieur logiciel
Ingénieur systéme
Ingénieur logiciel
Analyste
Ingénieur logiciel
Ingénieur systéme
Ingénieur logiciel
Analyste
Ingénieur logiciel
Analyste
Analyste
Réviseur
Analyste
Analyste
Analyste
Ingénieur logiciel
Etudiant
Ingénieur systéme
Testeur
Testeur
Testeur
Ingénieur systéeme
Analyste
Programmeur
Ingénieur logiciel
Ingénieur logiciel
Programmeur
Réviseur
Gestionnaire
Analyste
Ingénieur logiciel
Analyste
Analyste
Analyste
Ingénieur logiciel
Ingénieur systéeme
Ingénieur logiciel
Ingénieur logiciel
Analyste
Programmeur
Analyste
Ingénieur logiciel

Activité de processus
Concevoir les classes
Concevoir les classes
Concevoir les classes

Réaliser les cas d'utilisation
Réaliser les cas d'utilisation
Concevoir les classes
Formation
Concevoir les classes
Formation
Concevoir les classes
Formation
Concevoir les classes
Coder les composantes
Coder les composantes
Réaliser les cas d'utilisation
Réaliser les cas d'utilisation
Réviser
Concevoir les classes
Concevoir les classes
Concevoir les classes
Concevoir les classes
Modéliser les exigences
Réviser
Réviser
Réviser
Réaliser les cas d'utilisation
Réviser
Réviser
Réviser

Modéliser les exigences
Concevoir les classes

Modéliser les exigences
Formaliser les besoins

Réviser
Formaliser les besoins
Formaliser les besoins

Réviser
Concevoir les classes

Formation
Formaliser les besoins

Planifier les tests logiciels

Planifier les tests logiciels

Planifier les tests logiciels

Planifier les tests logiciels

Modéliser les exigences

Corriger les composantes
Concevoir les classes

Coder les composantes

Coder les composantes

Réviser

Modéliser les exigences
Coder les composantes
Modéliser les exigences
Modéliser les exigences
Modéliser les exigences
Réviser
Réviser
Réviser
Autre
Modéliser les exigences
Coder les composantes
Modéliser les exigences
Autre

149

Description de I'activité

Début de la rédaction du CPA (adaptation du gabarit, écr
Rédaction du CPA (suite de I'écriture de la section 1).
Rédaction du CPA (suite de I'écriture de la section 1).
Discussion sur la méthode de parsage (conception et img
Discussion sur la méthode de parsage (conception et img
Rédaction du CPA (suite de I'écriture de la section 1).
Lecture et revision mentale des patron de conception (co
Concevoir le diagramme de classe pour le cas critique et
Lecture sur les patron de composite

effectuer un diagramme de sequence entre quelques clas
Formation sur le drag and drop

Concevoir le diagramme de classe pour le cas critique et
Travail sur le prototype

Travail sur le prototype

Retranscrire le processus d'analyse des fichiers.
Retranscrire le processus d'analyse des fichiers.

Dresser la liste des revues a effectuer.

Rédaction de la section 1.5 du CPA

Rédaction de la section 2.0 du CPA présentation général
Discussion sur le diagramme de classe du cas d'utilisatio
Discussion sur le diagramme de classe du cas d'utilisatio
Correction mineurs sur le CUI (modif. des points d'exten
Discussion sur la méthode du drag and drop

Discussion sur la méthode du drag and drop

Discussion sur la méthode du drag and drop

Discussion sur la méthode du drag and drop

Revue sur la maquette d'interface

Revue sur la maquette d'interface

Revue sur la maquette d'interface

Discussion préparatoire a la rencontre du client (sujet les
Rédaction de la section 2.0 du CPA présentation général
Liste de cas d'utilisation de vue

Discussion avec le client sur le parsing et la maquette d'i
Discussion avec le client principalement sur parsage et ir
Discussion avec le client sur le parsing et la maquette d'i
Discussion avec le client sur le parsing et la maquette d'i
Rencontre avec le client (revue de maquette et du proce
Discussion sur la réalisation du CPA avec Liana
Discussion sur la réalisation du CPA

Modification du SRS suite a la rencontre du client
Discussion quant au test driven, choix de NUnit

Prise de décision sur le choix de I'utilitaire de test

Prise de décision sur le choix de I'utilitaire de test

Prise de décision sur I'utilitaire de test

Début de rédaction des CU de vue, diagramme de CU da
corriger lancement exécutable

Concevoir le diagramme de classe pour le cas critique et
implanter lancement exécutable avec add-in

implanter lancement exécutable avec add-in

Pris connaissance / Révision du Diagramme de classes d

3rer la configuration du prodtlecture du document du client, le guide de programation.

Continué a détailler les CU de vue

Travail sur le lancement d'une application MS-Dev
Discussion sur l'interface, comment charger/sauvegardei
discussion sur chargement et interface

Continué a détailler les CU de vue

revision et discussion sur le diagramme de classe (memc
revision et discussion sur le diagramme de classe

retour sur classes cas critique

redaction de I'artefact CPA

Continué a détailler les CU de vue

coder les classes d'analyse de fichiers

Continué (et terminé) le détail les CU de vue

Redaction de I'artefact CPA et mise en page de la sectior

