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RÉSUMÉ 

 

Face aux ratés auxquelles fait face l'industrie du développement logiciel et l'incapacité des 

différentes approches de processus logiciels à régler ces problèmes, il s‘avère intéressant de se 

baser, d‘une part, sur les acquis du domaine des processus logiciels et, d‘autre part, de 

s‘inspirer des innovations de domaines connexes. En particulier, la gestion des connaissances 

appliquée au génie logiciel est un sujet présentement en émergence. Une meilleure 

compréhension des mécanismes de création et de conversion de connaissances au sein d'un 

projet de développement logiciel est une avenue de recherche prometteuse. L'objectif 

principal de cette thèse de doctorat est donc de caractériser les projets de développement 

logiciel dans une perspective de flux de connaissances.  

Cette thèse par articles propose d'atteindre l'objectif de recherche par la présentation de trois 

articles en plus d'un chapitre détaillant des résultats complémentaires. 

Le premier article présente et justifie la méthodologie utilisée dans le cadre des travaux de 

recherche de cette thèse. Plus précisément, l'article détaille la méthodologie ATS (activity 

time slip), une approche à partir de laquelle des développeurs logiciels doivent enregistrer 

leurs activités dans une perspective de connaissances. Les données recueillies sont ensuite 

codifiées selon le modèle de flux de connaissances, qui est inspiré du modèle de création de 

connaissances de Nonaka & Takeuchi (1995) et qui définit six facteurs cognitifs dans le cadre 

d'un projet de développement logiciel: l'acquisition, la cristallisation, la validation, la 

réalisation, la vérification et l'organisation du travail. Une étude de cas multiples est 

présentée, afin de démontrer l'originalité et la pertinence de la méthodologie proposée. 

Le second article présente l'utilisation du modèle de flux de connaissances, dans le cadre 

d'une étude de cas, afin d'analyser les conséquences de la qualité de la documentation lors de 

la réutilisation de composants FLOSS (free/libre open source software). L'analyse de l'étude 

de cas permet de déterminer les conséquences négatives d'une documentation inadéquate sur 

le flux de connaissances au sein d'un projet de développement logiciel.  

Le troisième article vise à comprendre les mécanismes menant aux divergences observées 

entre la conception et l'implémentation d'un projet de développement logiciel. L'utilisation de 
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la méthodologie ATS et du modèle de flux de connaissances facilite l'analyse de l'étude de 

cas. Ainsi, les discordances entre les artefacts de conception et l'implémentation s'expliquent 

par le fait que la conception n'est qu'une image de possibilités. 

Les résultats de recherche complémentaires permettent de caractériser trois projets 

intégrateurs de développement logiciel, à la manière d'une étude de cas multiples de type 

exploratoire reposant sur la méthodologie ATS et la modélisation par flux de connaissances. 

Ainsi, l'analyse des jetons d'activité (ATS) permet de porter un jugement sur la rigueur des 

développeurs et donc sur la fiabilité des jetons, selon les trois profils identifiés. De plus, les 

facteurs cognitifs sont caractérisés selon leur caractère individuel et participatif. Par ailleurs, 

le séquencement cognitif permet l'identification de quatre profils de développeurs: le 

cristallisateur, le codeur, le polyvalent et l'agent libre. Finalement, une forte corrélation a été 

observée entre un effort d'acquisition élevé et une productivité du code source faible, ce qui 

constitue une contribution majeure, de par son originalité et ses conséquences théoriques et 

pratiques.  

Les contributions de cette thèse sont de trois ordres: méthodologiques, théoriques et pratiques. 

Les contributions méthodologiques sont relatives à la méthodologie ATS. Le principal 

avantage de la méthodologie ATS est qu'elle permet l'analyse du développement logiciel sous 

une perspective différente de ce qui est possible avec les autres méthodologies utilisées en 

développement logiciel. De plus, la méthodologie offre l'avantage supplémentaire de 

sensibiliser les développeurs à ce qu'ils font, dans le cadre de projets intégrateurs. Parmi les 

contributions théoriques, deux ressortent du lot, soit le développement d'un modèle de flux de 

connaissances et la forte corrélation observée entre un effort d'acquisition élevé et une 

productivité du code source faible. Finalement, étant donné que les expérimentations ont été 

faites dans le cadre de projets intégrateurs, les contributions pratiques permettront d'abord et 

avant tout d'améliorer ces projets sous quatre aspects: la formation des équipes, le choix du 

projet, le choix du processus et la supervision des équipes. 

La principale limitation de cette thèse est au niveau de sa validité externe. En effet, 

l'expérimentation étant basée sur des projets intégrateurs développés par des étudiants, il est 

légitime de se questionner sur la validité des résultats dans d'autres conditions, notamment en 

milieu industriel. Face à cette limitation potentielle, il est recommandé de conduire les mêmes 
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expérimentations dans un contexte industriel, de manière à prouver la validité externe des 

résultats. 

Une avenue de recherche recommandée concerne l'extension de la méthodologie. En effet, il a 

été démontré que la méthodologie ATS permet d'analyser le développement logiciel dans une 

perspective de flux de connaissances et il serait très intéressant d'observer la symbiose de cet 

aspect avec d'autres problématiques complémentaires telles que les interactions ad hoc au sein 

d'une équipe de développement logiciel et la nature des interactions entre un développeur et 

son ordinateur, au cours du développement logiciel. 
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ABSTRACT 

 

Given the failures faced by the software development industry and the inability of different 

software process approaches to solve these problems, it is interesting to rely, on the one hand, 

on achievements in the software process field and, on the other hand, learn from innovations 

in related fields. In particular, knowledge management applied to software engineering is a 

subject currently emerging. A better understanding of knowledge creation and conversion's 

mechanisms in software development projects is promising. The main objective of this thesis 

is to characterize software development projects from a knowledge flow perspective. 

This doctoral thesis intends to achieve the research goal by presenting three papers and 

additional complementary results.  

The first paper presents and justifies the methodology used in this thesis. The paper details the 

ATS (activity time slip) methodology, where software developers must log their activities 

from a knowledge perspective. Data are then codified based on the knowledge flow model, 

which is related to Nonaka and Takeuchi‘s (1995) knowledge creation model and which 

defines six cognitive factors: acquisition, crystallization, validation, implementation, 

verification and work organization. A multiple case study is presented to demonstrate the 

originality and relevance of the proposed methodology. 

The second paper presents a case study using the knowledge flow model to analyze the 

consequences of documentation quality in FLOSS components reuse. The case study's 

analysis allows the identification of negative consequences on a software development 

project's knowledge flow resulting from inadequate documentation.  

The third paper focuses on understanding the mechanisms leading to discrepancies between 

design and implementation in a software development project. The use of the ATS 

methodology and the knowledge flow model facilitates the case study's analysis. The 

discrepancies between design artifacts and implementation can be explained by the fact that 

design is an image of possibilities.  

Complementary research results allow the characterization of three software development 

capstone projects by means of an exploratory multiple case study based on the ATS 
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methodology and the knowledge flow model. The analysis of the activity time slips (ATS) 

allows to judge the developers' rigor and therefore the reliability of their activity time slips, 

according to three identified patterns. Also, cognitive factors are characterized from a 

individual and participative viewpoint. Furthermore, cognitive sequencing allows the 

identification of four developers profiles: the crystallizer, the coder, the "versatile", and the 

free agent. Moreover, a strong correlation was observed between high acquisition effort and 

low source code productivity, which is a major contribution, because of its theoretical and 

practical implications.  

Contributions of this thesis are threefold: methodological, theoretical and practical. The 

methodological contributions are related to the ATS methodology. Its main advantage is 

allowing software development's analysis from a different perspective of what is possible 

from other  software development methodologies. In addition, in the context of capstone 

projects, the methodology educates developers on what they are doing. Among theoretical 

contributions, two stand out: the development of a knowledge flow model and the strong 

correlation between high acquisition effort and low source code productivity. Moreover, 

because the experiments were made in the context of capstone projects, practical contributions 

will first and foremost allow to enhance these projects in four areas: team creation, project 

selection, software process selection, and teams supervision.  

The main limitation of this thesis is its external validity. Since experimentation is based on 

capstone projects developed by students, it is legitimate to question the validity of results in 

other conditions, especially in industrial setting. Given this potential limitation, it is 

recommended to conduct the same experiments in an industrial setting in order to prove the 

external validity of results.  

Further research should focus on the methodology's extension. Since the ATS methodology 

allows software project analysis based on a knowledge flow perspective, it would be 

interesting to examine this aspect's symbiosis with other complementary issues such as ad hoc 

interactions within a software development team and the nature of interactions between a 

developer and his computer during software development. 
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1 

INTRODUCTION 

 

La dénomination « génie logiciel » est née de la Conférence du génie logiciel de l‘OTAN tenue 

en 1968 pour répondre au besoin de mieux définir et encadrer les pratiques relatives au 

développement de systèmes logiciels (Naur & Randell, 1969). Malgré les diverses innovations au 

cours des années subséquentes, près de trois décennies plus tard, le Standish Group (1994) a 

publié le dévastateur rapport Chaos qui conclut que plus de la moitié (53%) des quelque 175 000 

projets en technologie de l‘information entrepris chaque année aux États-Unis n‘atteignent pas les 

objectifs fixés (d‘échéancier, de coût et de qualité), qu'environ le tiers (31%) sont tout 

simplement annulés avant d‘être complétés et qu'uniquement le sixième (16%) des projets atteint 

les objectifs fixés. Face à cette situation alarmante, la réaction de l‘industrie a été plus musclée 

que par le passé. Notamment, la gestion de projet et la gestion des exigences ont été renforcées. 

De plus, les processus basés sur l‘ingénierie ont été popularisés. Toutefois, dans sa mise à jour du 

rapport Chaos en 2009, le Standish Group rapporte que, comparativement à 1994, les projets 

n'atteignant pas les objectifs sont en baisse de 9% (44%), les projets annulés sont en baisse de 7% 

(24%), alors que les projets atteignant les objectifs fixés sont en hausse de 16% (32%) (Eveleens 

& Verhoef, 2010). Force est de constater que, malgré une amélioration considérable de la 

situation en 15 ans, beaucoup de progrès reste à faire. 

Au fil des années, plusieurs modèles de développement logiciel on été élaborés. Or, qu'on pense 

au modèle en cascades, au modèle en spirale ou un modèle itératif, force est de constater que le 

développement logiciel est difficile à modéliser. Des années 1970 à 2000, les processus 

développés étaient principalement prédictifs et basés sur la production d‘artefacts, souvent dans 

le but de satisfaire des normes. À l‘opposé, principalement depuis le début du XXI
e
 siècle, les 

méthodologies agiles, qui sont réactives et qui mettent l‘accent sur les ressources humaines, 

gagnent en popularité. Toutefois, ce mouvement soulève le scepticisme dans les milieux où la 

traçabilité est essentielle (processus fortement basé sur les normes, systèmes critiques, etc.).  

Face à la problématique des différentes approches de processus logiciels, il s‘avère intéressant de 

se baser, d‘une part, sur les acquis du domaine des processus logiciels et, d‘autre part, de 

s‘inspirer des innovations de domaines connexes. En particulier, la gestion des connaissances 

appliquée au génie logiciel est un sujet présentement en émergence. Une meilleure 
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compréhension des mécanismes de création et de conversion de connaissances au sein d'un projet 

de développement logiciel est une avenue de recherche prometteuse. 

L'objectif principal de cette thèse de doctorat est donc de caractériser les projets de 

développement logiciel dans une perspective de flux de connaissances. L'objectif sera atteint par 

la présentation de trois articles complémentaires en plus d'un chapitre détaillant des résultats 

complémentaires. 

Le chapitre 1 présente une revue de la littérature relative au contexte de l'objectif de recherche. 

Ainsi, les différents types de processus logiciels sont détaillés, les concepts d‘amélioration de 

processus logiciels sont expliqués et la perspective de connaissances est étudiée. 

Le chapitre 2 détaille la démarche de l'ensemble du travail de recherche et l'organisation générale 

du document.  

Les chapitres 3 à 5 présentent 3 articles soumis pour publication à des revues avec comité de 

lecture.  

Plus précisément, le chapitre 3 introduit le premier article de revue. Cet article a pour principal 

objectif la présentation et la justification de la méthodologie utilisée dans le cadre des travaux de 

recherche présentés dans cette thèse.  

Le chapitre 4 présente le second article de revue. Cet article expose une étude de cas permettant 

d'analyser les conséquences de la qualité de la documentation lors de la réutilisation de 

composants FLOSS (free/libre open source software).  

Le chapitre 5 introduit le troisième et dernier article de revue. Cet article a pour but de 

comprendre les mécanismes menant aux divergences observées entre la conception et 

l'implémentation d'un projet de développement logiciel.  

Le chapitre 6 présente des résultats de recherche complémentaires, pas encore soumis pour 

publication. L'objectif du chapitre est de caractériser 3 projets intégrateurs, à la manière d'une 

étude de cas multiples de type exploratoire.  

Le chapitre 7 propose une discussion générale des apports méthodologiques, théoriques et 

pratiques de l'ensemble des travaux de recherche présentés dans ce document. 
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En annexe se trouvent deux articles de conférences publiés antérieurement à la soumission des 

articles de revue. Le premier vise à établir les bases du sujet de recherche. Le second vise à 

introduire le modèle de flux de connaissances, soit la contribution théorique principale de cette 

thèse de doctorat.  
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CHAPITRE 1  

 

REVUE CRITIQUE DE LA LITTÉRATURE 

 

Ce chapitre vise à présenter la littérature relative à l'objectif de recherche, soit la caractérisation 

de projet de développement logiciel dans une perspective de flux de connaissances. Or, la 

littérature précisément reliée à l'objectif de recherche étant très limitée, quelques éléments 

théoriques pertinents sont présentés. 

Dans un premier temps, les différents types de processus logiciels sont détaillés (section 1.1). Par 

la suite, les concepts d‘amélioration de processus logiciels sont expliqués (section 1.2). Puis, la 

perspective de connaissances est étudiée (section 1.3). Finalement, une synthèse des écrits 

(section 1.4) conclut ce chapitre. 

1.1 Processus logiciel 

Depuis environ une décennie, deux types d‘approche de développement logiciel se démarquent 

soit celle dite traditionnelle (Kettunen & Laanti, 2005; Nerur, Mahapatra, & Mangalaraj, 2005), 

ou basée sur l‘ingénierie (Fowler, 2005; Germain & Robillard, 2005) et l‘autre dite agile 

(Cockburn, 2002; Fowler, 2005) ou légère (Zettel, Maurer, Munch, & Wong, 2001; Nawrocki, 

Walter, & Wojciechowski, 2002).  

La première soutient que le développement logiciel doit être un processus discipliné incorporant 

des notions de mathématiques, de science et d‘ingénierie (Bailetti & Liu, 2003). La seconde 

suggère que le développement logiciel est un processus créatif et agile (Rifkin, 2001).  

Certains croient que la tendance actuelle en développement logiciel est de délaisser les imposants 

processus organisationnels rigides au profit des processus agiles et adaptables (Kettunen & 

Laanti, 2005).  

Neill (2003) croit que les méthodes agiles dépendent grandement du talent des développeurs, ce 

qui constitue un risque considérable pour une organisation. Les méthodes agiles préconisent les 

individus et les interactions plutôt que les processus et les outils, un logiciel fonctionnel plutôt 
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qu‘une documentation efficace, la collaboration du client plutôt que la négociation de contrat, 

ainsi que la réponse au changement plutôt que la poursuite d‘un plan. Toutefois, l‘auteur met en 

garde contre l‘absence d‘universalité des méthodes agiles en particulier pour les applications 

critiques et les grosses organisations.  

Pour sa part, Fowler (2005) résume la différence fondamentale des méthodes agiles par rapport 

aux processus traditionnels à deux caractéristiques: elles sont adaptatives plutôt que prédictives et 

elles sont orientées ressources humaines plutôt qu‘orientées processus. 

Par ailleurs, il importe de souligner l‘existence de plusieurs processus propriétaires, centrés sur la 

gestion, qui sont utilisés dans certains grands projets de développement informatique 

(gouvernements, banques, etc.). Ces processus, dont Macroscope (Fujitsu, 2006) est un exemple, 

sont en fait des adaptations des méthodes génériques discutées dans la littérature scientifique et 

ne seront donc pas considérés dans le cadre de cette thèse.  

1.1.1 Processus basés sur l’ingénierie 

Les processus basés sur l‘ingénierie visent la production d‘artefacts pour supporter la prise de 

décision concernant les exigences et la conception; le principe de base étant que les efforts 

d‘activités de planification de production d‘artefacts résulteront en un coût global plus bas, une 

livraison de produit à temps et une meilleure qualité logicielle  (Germain & Robillard, 2005). 

Les processus traditionnels sont surtout utilisés au sein d‘entreprises devant respecter des normes 

pour des raisons d‘affaires. D‘ailleurs, ces organisations se forgent souvent un processus à partir 

des normes auxquelles elles doivent se conformer. Il existe aussi des modèles de processus à 

partir desquels il est possible d‘adapter un processus selon les besoins de l‘organisation, dont le 

Rational Unified Process¸ le Unified Process for Education et Model-Based Architecting and 

Software Engineering. 

1.1.1.1 Rational Unified Process 

Le Rational Unified Process (RUP) (Kruchten, 2000) est un modèle de processus basé sur les cas 

d‘utilisation, centré sur l‘architecture, itératif et incrémental, développé par Rational Software 

Corporation (maintenant IBM). L‘objectif du RUP est d‘assurer le développement de logiciel de 

haute qualité qui respecte les besoins des utilisateurs, l‘échéancier et le budget. Plus précisément, 
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le RUP est un cadre de référence (framework) d‘un cycle de développement logiciel. Il oriente 

l‘équipe de développement autant pour les activités de gestion que pour les activités techniques. 

 

Figure 1.1 Vue d‘ensemble du RUP 

(Tiré de RUP) 

 

La Figure 1.1 présente une vue d‘ensemble des éléments de base du RUP. D‘abord, le processus 

logiciel est organisé par disciplines, qui regroupent des activités de même type. Puis, ces 

disciplines sont exprimées par des flux de travail (workflow), qui sont des séquences d‘activités 

produisant des résultats observables. À leur tour, ces flux de travail sont décrits par des détails de 

flux de travail qui sont représentés par des activités faites par des rôles, en utilisant des outils, 

dans le but de générer des artefacts. Pour leur part, les activités sont des unités de travail décrites 

en étapes concrètes. En ce qui a trait aux rôles, ils définissent le comportement et les 

responsabilités d‘individus ou de groupes d‘individus dans le contexte d‘une organisation 

logicielle. Finalement, un artefact est un produit de travail issu du processus logiciel. 

Les disciplines sont des ensembles d‘activités reliées à un type de problème au sein d‘un projet. 

Le RUP en possède neuf soit la modélisation d‘affaires, les exigences, l‘analyse et conception, 

l‘implémentation, les tests, le déploiement, la gestion de la configuration et des changements, la 

gestion de projet et l‘environnement. 
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1.1.1.2 Unified Process for Education 

Le Unified Process for Education (UPEDU) (Robillard, Kruchten, & d'Astous, 2003) est un 

modèle de processus dérivé du RUP. La particularité du UPEDU est qu‘il a été adapté au 

domaine académique. Par exemple, trois des neuf disciplines ont été supprimées du RUP parce 

qu‘elles s‘appliquaient mal au contexte académique.  

 

Figure 1.2 Modèle bidimensionnel du UPEDU 

(Tiré de Germain (2004))  

 

La figure 1.2 explicite le modèle bidimensionnel de processus et de cycle de vie du UPEDU. Les 

quatre phases d‘un cycle de développement sont situées en abscisse et sont divisées en huit 

itérations, tandis que les six disciplines se trouvent en ordonnées. Pour leur part, les six courbes 

représentent une possibilité de répartition de l‘effort au sein de disciplines selon l‘itération. 

1.1.1.3 Model-Based Architecting and Software Engineering 

Le Model-Based Architecting and Software Engineering (MBASE) (Boehm, Port, Egyed, & Abi-

Antoun, 1999) est un modèle de processus qui se veut une extension du RUP axée sur 

l‘ingénierie système utilisant intensément le logiciel (software-intensive system engineering). À 

ce sujet, les quatre caractéristiques principales sont l‘évitement de conflit de modèles (model 

clash avoidance); l‘intégration de modèles et le cadre de processus (framework process); les 
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négociations gagnant-gagnant des exigences des intervenants; les jalons de point d‘ancrage de 

cycle de vie et les critères de réussite-échec (Boehm, Port, & Basili, 2002). 

En somme, MBASE est une autre mouture de processus basé sur l'ingénierie, avec la particularité 

d'être axée sur l'ingénierie système. 

1.1.2 Méthodes agiles 

Les méthodes agiles s‘inscrivent en opposition aux méthodes traditionnelles qui sont mal 

adaptées trop lourdes pour répondre assez rapidement aux fréquents changements 

d‘environnement (Erickson, Lyytinen, & Keng, 2005). À ce propos, un manifeste pour le 

développement agile de logiciels (Agile Manifesto) a été développé par les promoteurs et leaders 

des méthodes agiles (Beck, K., et al., 2001).  

Afin de parvenir à s‘adapter aux changements d‘environnement, les méthodes agiles divisent le 

projet en sous-projets fonctionnels réalisés en incréments relativement courts (3 à 12 semaines) et 

mettent l‘accent sur la gestion des connaissances tacites au lieu de la documentation externe 

(Cockburn, 2002). 

Les méthodes agiles possèdent toutes les caractéristiques suivantes : itératives, incrémentales, 

autoorganisées et émergentes (Lindvall, M., et al., 2002).  

Il existe un grand nombre de méthodes agiles dont les plus importantes sont : Extreme 

Programming, Scrum, Dynamic Systems Development Method, Adaptive Software Development, 

Crystal, Lean Development et Feature-Driven Development. 

1.1.2.1 Extreme Programming 

Certainement la plus populaire des méthodes agiles, le Extreme Programming (XP) est destiné 

aux équipes de petite ou moyenne taille évoluant dans un environnement de développement où 

les exigences sont vagues ou changent rapidement (Beck, 1999a). 

XP est constitué de quatre valeurs – communication, simplicité, rétroaction et courage – et de 

douze pratiques : jeu de planification, courts délais de livraison, métaphores, conception simple, 

tests, refactorisation, programmation par paire, intégration continue, propriété collective, client 

sur le site, semaines de 40 heures et espace de travail ouvert (Beck, 1999b). 
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XP propose un cycle incrémental de développement qui suit des itérations très courtes (quelques 

semaines), dans le but de tirer parti du coût du changement d‘un logiciel au cours du cycle de vie. 

Une itération typique est déterminée par le client qui choisit les caractéristiques, sous forme 

scénarios utilisateurs (user stories) qu‘il désire voir implémentées, selon leur valeur et leur coût. 

Par la suite, les histoires sont divisées en tâches, qui sont distribuées aux programmeurs par 

équipe de deux (programmation par paire, aussi appelée programmation par binôme). Pour 

chaque tâche, les tests unitaires sont implémentés et exécutés préalablement à l‘implémentation 

de la tâche, de manière à constituer une base automatique de tests du système. Ce type de 

développement basé sur les tests donne aux développeurs, au fil du temps, confiance au 

comportement de leur système (Beck, 1999a).  

1.1.2.2 Scrum 

Scrum est une méthode agile pour la gestion de projet, qui préconise la construction par 

incrément pour les environnements complexes au sein d'équipes de moins de 10 développeurs 

(Schwaber & Beedle, 2002). Les sprints, qui s‘étendent sur une à quatre semaines, constituent les 

itérations de développement. Chaque sprint possède une date fixe de livraison et le produit livré 

constitue un incrément par rapport au sprint précédent. Les tâches à faire au cours d‘un sprint 

sont consignées dans le backlog et sont réparties au sein de l‘équipe, qui est dirigée par le scrum 

master (Rising & Janoff, 2000). Scrum est principalement axé sur la gestion de projet, 

notamment par le développement itératif et le contrôle accru à l‘aide de réunions quotidiennes 

(appelées scrum) (Fowler, 2005). 

1.1.2.3 Dynamic Systems Development Method 

Le Dynamic Systems Development Method (DSDM) (Stapleton, 1997) se concentre sur une 

modélisation holistique du développement logiciel en mettant l‘accent sur les boucles de 

rétroaction, donc sur la gestion des connaissances. L‘essentiel de l‘argumentation repose sur une 

vision du développement caractérisée par des systèmes intimement reliés à leur environnement et 

ayant tendance à évoluer de pair avec ceux-ci. Le modèle correspond à un ensemble de boucles 

d‘interactions et de rétroactions contrôlant la production de logiciel sous une perspective continue 

et dynamique. Une telle modélisation est dynamique, rétroactive, centrée sur la gestion de 

risques, multidimensionnelle, continue, en plus d‘inclure la connaissance et l‘incertitude 
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(Dalcher, 2003). Or, bien que la modélisation du DSDM soit impressionnante, le cadre très 

théorique rend son application complexe. 

1.1.2.4 Adaptive Software Development 

Highsmith (1997) a développé le Adaptive Software Development (ASD) afin de faire face au 

développement de logiciels complexes imprédictibles et non linéaires. Le concept clef de cette 

théorie est l‘émergence comme réponse à l‘absence de déterminisme, donc à l‘impossibilité de 

déterminer le lien entre cause et effet. En somme, ASD est principalement centré sur la gestion 

du changement.  

1.1.2.5 Crystal 

Les méthodologies Crystal ont été développées par Cockburn comme un groupe d‘approches 

adaptées à différentes tailles d‘équipe et différents degrés de criticité de systèmes logiciels 

(Fowler, 2005). 

Malgré leurs variations, toutes les approches Crystal partagent des caractéristiques communes 

dont les trois priorités sont la sûreté (de l‘issue du projet), l‘efficacité et l‘habitabilité (possibilité 

pour les développeurs de coexister avec Crystal). Elles ont aussi des propriétés communes dont 

les trois plus importantes sont les livraisons fréquentes, l‘amélioration réflective et une solide 

communication.  

En somme, les méthodologies Crystal mettent l‘emphase sur la planification et la gestion de 

projet afin de gérer notamment les communications déficientes au sein d‘un processus de 

développement. 

1.1.2.6 Lean Development  

Le Lean Development (LD) est une stratégie provenant de la gestion de production qui vise à 

continuellement améliorer les processus d‘affaires en mettant l‘accent sur les activités générant 

de la valeur aux yeux du client (Poppendeick & Poppendeick, 2003). Le LD et le XP ont 

plusieurs points en commun: méthodologie utilisée, adaptation aux besoins changeants, travail 

d‘équipe, itérations et contrôle de la qualité. À l‘opposé, les deux approches possèdent des 
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différences : transfert de la connaissance, méthodes de mesures et répartition des coûts 

(Dall'Agnol, Janes, Succi, & Zaninotto, 2003).  

En somme, le LD vise à réduire la complexité au cours du processus en retardant les décisions 

aux lourdes conséquences le plus tard possible. 

1.1.2.7 Feature-Driven Development 

Le Feature-Driven Development (FDD) (Palmer & Felsing, 2002) est centré sur les intervenants 

et l‘architecture. Comme son nom l‘indique, le FDD est basé sur les caractéristiques, de la même 

manière que le RUP est basé sur les cas d‘utilisation. Le cycle de vie est composé de cinq étapes : 

développer un modèle global, produire une liste de caractéristiques, planifier par caractéristiques, 

concevoir par caractéristique et construire par caractéristique. Les itérations sont d‘une durée de 

deux semaines ou moins.  

En somme, le FDD concentre le développement logiciel sur les caractéristiques du produit. 

1.2 Amélioration de processus logiciels 

L‘amélioration de processus logiciels (software process improvement) est née d‘un mouvement 

pour la qualité initiée par Crosby (1979), Deming (1986) et Juran (1988). 

Une organisation qui désire améliorer son processus logiciel peut utiliser deux types d'approche 

soit l'approche traditionnelle, dite par plan (blueprint) et l'approche par lignes directrices, dite par 

recette (recipe). L'approche traditionnelle met l'accent sur le formalisme et la conformité d'un 

processus à des modèles de référence, alors que l'approche par recette met l'accent sur les 

connaissances des utilisateurs du processus.  

1.2.1 Approche traditionnelle  

Les organisations désirant améliorer leur processus logiciel par l'approche traditionnelle tentent 

de se conformer à des modèles de référence de processus. Les quatre modèles de référence les 

plus connus sont ISO 9001, SW-CMM, CMMI et ISO/IEC 15504. 



12 

 

1.2.1.1 ISO 9001 

ISO 9000 est une série de normes internationales conçues pour la gestion et l‘assurance de la 

qualité qui spécifie les exigences de base pour le développement, la production, l‘installation et la 

mise en service au niveau du système et au niveau du produit. En particulier, ISO 9001 (avec les 

lignes directrices de ISO 9000-3) est applicable au développement et à la maintenance de 

systèmes logiciels (Jung & Hunter, 2001). La détermination de la capacité d‘une organisation se 

fait à partir d‘une liste de points de contrôle et tous les points doivent être satisfaits afin que 

l‘organisation en question soit considérée comme respectant la norme de qualité ISO 9000 

(Wang, Y., et al., 1997).  

Le principal problème avec ce modèle de référence est, d‘une part, qu‘il est mal adapté au 

domaine logiciel et, d‘autre part, qu‘il ne permet qu‘une évaluation globale de la qualité. 

1.2.1.2 Software Capability Maturity Model (SW-CMM) 

Le SW-CMM (Paulk, Curtis, Chrissis, & Weber, 1993), développé par le Software Engineering 

Institute (SEI), catégorise un ensemble de pratiques clefs de développement logiciel en 18 

secteurs clefs, qui sont eux-mêmes regroupés en 5 niveaux de capacité cumulatifs. L‘atteinte d‘un 

niveau de capacité est associée à un niveau de maturité de processus, ce qui survient lorsque tous 

les buts associés à tous les secteurs clefs d‘un niveau sont respectés.  

Le principal avantage de ce modèle est la simplicité de comparaison que procurent les 5 niveaux 

de capacité. En d'autres mots, deux organisations possédant un même niveau de maturité seront 

considérées comme ayant des processus de même qualité. Or, le caractère étagé (staged) du 

modèle est simpliste. Par exemple, une organisation qui respecte tous les secteurs clefs du 

niveau 2, sauf un but d'un secteur clef, sera considérée comme de niveau 1 (initial), soit le même 

niveau de maturité qu'une entreprise n'ayant qu'un processus aléatoire. 

1.2.1.3 Capability Maturity Model Integration (CMMI) 

Le Capability Maturity Model Integration (CMMI) est basé sur le CMM-SW, mais se distingue 

par le fait qu‘il intègre quatre disciplines (au lieu d‘une seule) soit l‘ingénierie système (system 

engineering), l‘ingénierie logicielle (software engineering), le développement intégré de produit 
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et processus (integrated product and process development) et l‘approvisionnement (supplier 

sourcing). 

De plus, le CMMI corrige le principal inconvénient du SW-CMM, en ajoutant la représentation 

continue (continuous). Ainsi, un niveau de capacité, sur une échelle de 0 à 5, est associé à chaque 

secteur clef. Le profil d‘une organisation peut donc être déterminé selon le niveau de capacité de 

chaque secteur clef, au lieu d'être réduit à représentation étagée (staged).  

1.2.1.4 ISO/IEC 15504 

ISO/IEC 15504 (ISO, 2003) est une norme internationale aussi connue sous le nom de Software 

Process Improvement and Capability Determination (SPICE). Elle possède une architecture 

d‘évaluation de processus à deux dimensions : les processus et la capacité. Dans la dimension 

processus, les différents processus (au sens d‘ensemble de pratiques), qui sont associés au 

développement et à la maintenance du logiciel, sont divisés en cinq catégories soit client-

fournisseur, ingénierie, support, gestion et organisation. Pour sa part, la dimension capacité est 

représentée par des attributs de processus (PA) et est divisée en 6 niveaux. 

SPICE remédie aussi au principal inconvénient de SW-CMM en déterminant la capacité propre à 

chacune des cinq catégories de processus. Ainsi, les résultats de l‘évaluation sont plus détaillés 

pour SPICE que pour SW-CMM. 

1.2.2 Approche par recette 

Un défi important de l‘amélioration de processus est de s‘assurer que les utilisateurs de processus 

logiciels partagent une compréhension commune du processus. L‘amélioration de processus 

nécessite le transfert et la construction de connaissances de processus des individus et de 

l‘organisation, ce que l‘on peut traduire par une problématique de gestion des connaissances. 

Souvent, l‘amélioration de processus traditionnelle met l‘accent sur la description et la 

prescription au détriment de la compétence et du comportement. 

L'approche par recette propose des lignes directrices insistant sur le rôle central des 

connaissances tacites dans le partage et la création d'informations, ainsi que sur l'importance de la 

modélisation de ce que les utilisateurs de processus font (processus réel) plutôt que ce qu‘ils 

devraient faire (processus prescrit) (Aaen, 2003).   
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1.3 Perspective de connaissances 

Il y a déjà deux décennies, Alvin Toffler (1990) prédisait l‘imminence d‘une société basée sur les 

connaissances comme source de pouvoir. En ce début de XXI
e
 siècle, les connaissances 

s‘avèrent, en effet, une arme stratégique cruciale pour les entreprises en quête de productivité 

accrue, d‘où l‘importance de la gestion des connaissances (Choi & Lee, 2002). 

Les informations et les connaissances sont les forces vitales des organisations d‘aujourd‘hui 

(Trandsen & Vickery, 1998) et particulièrement des organisations logicielles. En effet, les 

connaissances sont primordiales au cours du cycle de développement d‘un produit logiciel, 

particulièrement lors de la conception.  

1.3.1 Données, informations et connaissances 

D‘entrée de jeu, il est important de bien faire la distinction entre données, informations et 

connaissances. En effet, les connaissances sont composées d‘informations qui, elles, sont 

composées de données (Williams, 2006). De plus, la connaissance est spécifique au contexte, car 

elle dépend du temps et de l‘espace. L‘information devient connaissance lorsqu‘elle est 

interprétée par un individu, associée à un contexte et ancrée dans les croyances et engagements 

d‘un individu (Nonaka & Takeuchi, 1995). 

Il existe deux types de connaissances : les connaissances explicites et les connaissances tacites 

(Polanyi, 1997). Les connaissances explicites peuvent être exprimées en langage formel et 

systématique. Elles peuvent être traitées, transmises et conservées relativement facilement 

(Williams, 2006). À l‘opposé, les connaissances tacites sont hautement personnelles et difficiles à 

formaliser. Les connaissances tacites sont profondément ancrées dans les actions, procédures, 

routines, engagements, idéaux, valeurs et émotions d‘individus (Schon, 1983).  

1.3.2 Modèles de connaissances 

En sciences cognitives, plusieurs modèles ont été développés afin de représenter les 

connaissances, mais quatre modèles sont particulièrement reconnus (Bjornson & Dingsoyr, 

2008). Il s'agit du modèle d'apprentissage expérientiel de Kolb, de la théorie d'apprentissage par 

double boucle d'Argyris & Schon, de la théorie des communautés de pratique de Wenger et du 

modèle de création de connaissances de Nonaka & Takeuchi.  
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Kolb (1984) décrit l'apprentissage expérientiel par quatre modes d'apprentissage répartis dans 

deux dimensions. Une dimension réfère à l'appropriation d'expérience et inclut deux modes: la 

compréhension par conceptualisation abstraite et l'appréhension par expériences concrètes. 

L'autre dimension réfère à la conversion d'expérience et inclut également deux modes: l'intention 

par observation réflective et l'extension par expérimentation active. Selon Kolb, les quatre modes 

doivent être utilisés afin de maximiser l'apprentissage. 

Argyris & Schön (1978) différentient l'apprentissage par simple et par double boucle. 

L'apprentissage par simple boucle implique la génération de nouvelles stratégies d'action sans 

modification de valeurs de gouvernance, alors que l'apprentissage par double boucle implique 

l'adaptation et la modification de stratégies et de valeurs de gouvernance. 

Face au processus traditionnel d'apprentissage individuel, Wenger (1998) propose un processus 

d'apprentissage social qu'il appelle la communauté de pratique. Les membres d'une communauté 

de pratique s'impliquent dans un processus d'apprentissage collectif par le partage de 

connaissances issues d'une même pratique. 

Selon Nonaka & Takeuchi (1995), la connaissance est créée par l‘interaction entre les 

connaissances explicites et tacites. Ils proposent un modèle, le processus SECI, définissant quatre 

types de conversion de connaissances : socialisation, externalisation, combinaison et 

internalisation. Le tableau 1.1 présente les types de conversion impliqués selon les connaissances 

initiales et finales. 

Tableau 1.1: Processus SECI 

Connaissances 

initiales 

Connaissances 

finales 

Type de conversion 

de connaissances 

Tacites Tacites Socialisation 

Tacites Explicites Externalisation 

Explicites Explicites  Combinaison  

Explicites Tacites Internalisation 
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La socialisation est le processus de conversion de nouvelles connaissances tacites lors 

d‘expériences partagées. Elle survient typiquement dans le cadre de relation maître-apprenti où 

l‘apprentissage des connaissances tacites se fait par l‘expérimentation plutôt que par la lecture de 

manuels. Certaines organisations tirent d‘ailleurs profit des connaissances tacites détenues par 

leurs fournisseurs et leurs clients en interagissant avec eux. 

L‘externalisation est le processus d‘articulation des connaissances tacites en connaissances 

explicites. Lorsque les connaissances tacites sont explicitées, les connaissances sont cristallisées, 

leur permettant d‘être partagées, devenant ainsi la base de nouvelles connaissances. La création 

de concepts dans le développement d‘un nouveau produit en est un exemple. 

La combinaison est le processus de conversion de connaissances explicites en d‘autres 

connaissances explicites plus complexes ou systématiques. L‘agrégation et la fragmentation de 

concepts font partie du processus de combinaison. 

L‘internalisation est le processus d‘incorporation de connaissances explicites en connaissances 

tacites. La formation est l‘exemple par excellence de l‘internalisation, où des individus 

s‘approprient au sein de leurs connaissances tacites des connaissances explicites de 

l‘organisation.  

1.3.3 Gestion des connaissances et processus logiciels 

La gestion des connaissances est un vaste champ interdisciplinaire (Bjornson & Dingsoyr, 2008). 

Earl (2001) suggère une taxonomie de stratégies de gestion de connaissances, qu'il nomme des 

écoles (schools), selon trois catégories: technocratiques, économiques ou comportementales. Les 

écoles technocratiques incluent: l'école système, insistant sur le partage de connaissances; l'école 

cartographique, s'intéressant à la cartographie des connaissances organisationnelles; l'école 

d'ingénierie, mettant l'accent sur les processus et le flux de connaissances dans les organisations. 

L'école économique s'intéresse à l'exploitation commerciale des connaissances et du capital 

intellectuel. Les écoles comportementales incluent: l'école organisationnelle, se concentrant sur 

les réseaux pour le partage des connaissances; l'école spatiale, se concentrant sur la façon dont les 

bureaux peuvent être conçus afin de promouvoir le partage des connaissances; l'école stratégique, 

considérant la gestion de connaissances en tant qu'outil stratégique. 
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L'école d'ingénierie, se concentrant principalement sur le processus, est l'école de gestion de 

connaissances recevant la plus importante attention empirique (Bjornson & Dingsoyr, 2008). 

Deux catégories peuvent être identifiées au sein de cette école. La première s'intéresse au 

processus logiciel complet en ce qui concerne la gestion des connaissances. La seconde considère 

les possibilités d'amélioration d'activités spécifiques au sein d'un processus logiciel. 

Par rapport à la première catégorie, Alavi & Leidner (2001) croient que le principal défi de 

gestion des connaissances est de faciliter le flux de connaissances entre les individus de manière à 

maximiser la quantité de connaissances transférées. 

Arent & Norbjerg (2000) ont étudié l'amélioration de processus logiciels d'une perspective de 

connaissances basée sur le modèle de création de connaissances de Nonaka & Takeuchi. Ils ont 

conclu qu'autant les connaissances tacites que les connaissances explicites sont cruciales au 

succès de l'amélioration de processus logiciels. Les connaissances tacites sont nécessaires pour 

modifier les pratiques, alors que les connaissances explicites sont nécessaires afin de créer une 

mémoire organisationnelle. 

Nerur & Balijepally (2007) affirment que le type de processus logiciel a un impact sur la manière 

de gérer les connaissances. L'approche traditionnelle repose essentiellement sur la gestion de 

connaissances explicites, tandis que les méthodes agiles se fondent principalement sur la gestion 

de connaissances tacites. 

Dahkli & Chouikha (2009) suggèrent un processus de développement logiciel orienté 

connaissances conçu de manière à réduire l'écart entre les connaissances réellement intégrées 

dans les systèmes logiciels et les connaissances détenues par les acteurs organisationnels. 

Par rapport à la seconde catégorie, Melnik & Maurer (2004) s'intéressent au rôle de la 

conversation et de l'interaction sociale en tant qu'éléments clés de l'efficacité du partage des 

connaissances dans un processus agile. Ils concluent que le partage des connaissances explicites 

est inefficace lorsque des artefacts cognitifs complexes sont utilisés. Plus le niveau de complexité 

est élevé, plus un partage interactif de connaissances est nécessaire, par le biais de 

communications verbales directes. 

Bjornson & Dingsoyr (2005) ont étudié le partage des connaissances par le tutorat dans une petite 

entreprise de consultation dans le domaine logiciel. Afin d'améliorer le mentorat, ils proposent 

d'introduire des méthodes pour augmenter le niveau de réflexion des employés. 
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Desouza, Awazu, & Wan (2006) ont examiné les facteurs qui contribuent à l'utilisation de 

connaissances explicites dans une organisation de génie logiciel. Ils ont constaté que la 

complexité perçue, l'avantage relatif perçu, ainsi que les risques perçus sont les facteurs affectant 

les connaissances explicites. 

En somme, la littérature relative à l'école d'ingénierie de la gestion de connaissances s'intéresse 

aux pratiques et au processus logiciels dans une optique de gestion de connaissance, mais pas 

spécifiquement dans une perspective empirique de flux de connaissances.  

1.4 Synthèse de la littérature 

Les processus logiciels sont principalement catégorisés selon deux types d‘approches. D‘une part, 

on retrouve les processus basés sur l‘ingénierie tels que RUP, UPEDU et MBASE. D‘autre part, 

se trouvent les processus agiles tels que  XP, Scrum, DSDM, ASD, Crystal, LD et FDD.  

Une organisation qui désire améliorer son processus logiciel peut utiliser deux types d'approche 

soit l'approche traditionnelle, dite par plan (blueprint) et l'approche par lignes directrices, dite par 

recette (recipe). À ce sujet, on remarque plusieurs similitudes entre d‘une part, les processus 

traditionnels et l‘amélioration de processus traditionnelle et, d‘autre part, les processus agiles et 

l‘amélioration de processus par recette. 

Face à cette dualité entre les approches traditionnelles et agiles/par recette, il s‘avère intéressant 

d'explorer d'autres alternatives en s‘inspirant des innovations de domaines connexes, notamment 

la perspective de connaissances relative à la gestion de connaissances. 

L'école d'ingénierie, se concentrant principalement sur le processus, est l'école de gestion de 

connaissances recevant la plus importante attention empirique. À ce sujet, le modèle de création 

de connaissances de Nonaka & Takeuchi étant le plus utilisé. Or, bien que la littérature s'intéresse 

aux pratiques et au processus logiciels dans une optique de gestion de connaissance, il existe un 

vide quant à la perspective empirique de flux de connaissances.  

Conséquemment, l'objectif principal de cette thèse, étant de caractériser les projets de 

développement logiciel dans une perspective de flux de connaissances, est original et s'inscrit en 

continuité avec la l'état de la littérature. 
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CHAPITRE 2  

 

DÉMARCHE DE L'ENSEMBLE DU TRAVAIL DE RECHERCHE ET 

ORGANISATION GÉNÉRALE DU DOCUMENT 

 

Le type de présentation retenu pour ce document est la thèse par articles. Ainsi, les trois 

prochains chapitres présentent trois articles soumis à des revues avec comité de lecture. De plus, 

le chapitre 6 contient des résultats de recherche complémentaires, pas encore été soumis pour 

publication. 

Par ailleurs, deux articles de conférences ont été publiés antérieurement à la soumission des 

articles de revue. Ces 2 articles se trouvent en annexe. D'abord, l'article intitulé "Knowledge 

Conversion in Software Development" a été présenté dans le cadre de la Nineteenth International 

Conference on Software Engineering and Knowledge Engineering (SEKE'2007) à Boston, aux 

États-Unis, en juillet 2007. Cet article visait à établir les bases du sujet de recherche. Plus 

précisément, l'article suggère une perspective de connaissances, basé sur le processus SECI de 

Nonaka & Takeuchi, comme moyen d'analyse d'un projet de développement logiciel. Pour sa 

part, l'article intitulé "Exploring Knowledge Flow in Software Project Development" a été 

présenté dans le cadre de la 2009 International Conference on Information, Process, and 

Knowledge Management (EKNOW'09) à Cancun, au Mexique, en février 2009. Cet article visait 

à introduire le modèle de flux de connaissances, soit la base théorique de cette thèse de doctorat. 

Cet article est d'ailleurs une version préliminaire de l'article de revue présenté au chapitre 4. 

Le chapitre 3 présente le premier article de revue. Intitulé "A qualitative and quantitative data 

collection methodology for knowledge analysis in software engineering", et écrit par Olivier 

Gendreau et Pierre N. Robillard, il a été soumis pour publication dans un numéro spécial sur la 

recherche quantitative en génie logiciel de la revue Empirical Software Engineering. Cet article a 

pour principal objectif la présentation et la justification de la méthodologie utilisée dans le cadre 

des travaux de recherche de cette thèse. Plus précisément, l'article détaille la méthodologie ATS 

(activity time slip), une approche à partir de laquelle des développeurs logiciels doivent 

enregistrer leurs activités dans une perspective de connaissances. Les données recueillies sont 
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ensuite codifiées selon le modèle de flux de connaissances, qui est inspiré du modèle de création 

de connaissances de Nonaka & Takeuchi. Une étude de cas multiples est présentée, afin de 

démontrer l'originalité et la pertinence de la méthodologie proposée. 

Le chapitre 4 présente le second article de revue. Intitulé "Consequences of Documentation 

Quality in FLOSS Reuse: A Case Study", et écrit par Olivier Gendreau et Pierre N. Robillard, il a 

été soumis pour publication à la revue Information and Software Technology. Cet article présente 

l'utilisation du modèle de flux de connaissances, dans le cadre d'une étude de cas, afin d'analyser 

les conséquences de la qualité de la documentation lors de la réutilisation de composants FLOSS 

(free/libre open source software). L'analyse de l'étude de cas permet de déterminer les 

conséquences négatives d'une documentation inadéquate sur le flux de connaissances au sein d'un 

projet de développement logiciel.  

Le chapitre 5 présente le troisième et dernier article de revue. Intitulé "Is Design Useful in Small 

Software Projects? An Exploratory Case Study", et écrit par Olivier Gendreau et Pierre N. 

Robillard, il a été soumis pour publication à la revue Journal of Systems and Software. Cet article 

a pour but de comprendre les mécanismes menant aux divergences observées entre la conception 

et l'implémentation d'un projet de développement logiciel. L'utilisation de la méthodologie ATS 

et du modèle de flux de connaissances facilite l'analyse de l'étude de cas.  

Finalement, le chapitre 6 présente des résultats de recherche complémentaires, pas encore soumis 

pour publication. L'objectif du chapitre est de caractériser trois projets intégrateurs de 

développement logiciel, à la manière d'une étude de cas multiples de type exploratoire reposant 

sur la méthodologie ATS et la modélisation par flux de connaissances. D'abord, les 

caractéristiques générales des projets sont présentées. Par la suite, les développeurs sont 

caractérisés par l'analyse de leur production de jetons (time slip). Puis, l'effort est caractérisé sous 

plusieurs perspectives: la répartition de l'effort global, la répartition et l'évolution du travail 

individuel et participatif, le séquencement cognitif, ainsi que la relation entre l'effort et le code 

source. 
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CHAPITRE 3  

 

A QUALITATIVE AND QUANTITATIVE DATA COLLECTION 

METHODOLOGY FOR KNOWLEDGE ANALYSIS IN SOFTWARE 

ENGINEERING 

3.1 Abstract 

To better understand the complexity of software development, it could be useful to analyze 

software activities from a knowledge perspective. However, the nature of knowledge offers a 

methodological challenge, since knowledge is the result of various cognitive activities and mostly 

resides in a software developer‘s mind. This paper proposes the activity time slip (ATS) 

methodology, which is an approach in which software developers record their activities from a 

knowledge viewpoint. The ATS methodology is designed to support the grounded theory 

approach. We present a multiple-case study analysis from four industrial capstone projects 

conducted between 2006 and 2009. Data are codified based on the knowledge flow model, which 

is related to Nonaka and Takeuchi‘s knowledge creation model. The level of accuracy obtained 

with the ATS methodology is sufficient to explore various knowledge perspectives in software 

development. The methodological challenges presented by both the participants and the 

researchers are discussed.   

3.2 Introduction 

Software engineering is a knowledge-intensive activity (Henninger, 1997; Robillard, 1999; Xu, 

Rajlich, & Marcus, 2005; Bjornson &Dingsoyr, 2008; Ras & Rech 2008), and software artifacts 

constitute an accumulation of knowledge owned by organizational stakeholders (Baetjer, 1998). 

Software development requires programmers to gather and absorb large amounts of knowledge 

distributed over several domains, such as application and programming (Clayton, Rugaber, & 

Wills, 1998), and to encode that knowledge in the software (Xu et al., 2005).  

In order to better understand the complexity of software development, Ko, DeLine, & 

Venolia (2007) suggest analyzing software activities from a knowledge perspective. However, 
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the nature of knowledge offers a methodological challenge. Since knowledge is the product of 

various cognitive activities and mostly resides in a software developer‘s mind, it would perhaps 

be better described by the developers. Therefore, we propose an approach where software 

developers record their activities from a knowledge viewpoint. 

Qualitative data can come from three sources: interviews, observations (live or audio-video), and 

artifacts. Interviews are limited and time-consuming for both the researchers and the participants 

involved. Live observation is often less invasive for the participants, but observation time is 

limited. Audio-video may be less invasive still, but a formal protocol analysis from scripts could 

be very time-consuming.  Artifacts are often produced by the participants as part of their usual 

tasks.   

This paper‘s main objective is to detail the activity time slip (ATS) methodology, a qualitative 

and quantitative research data collection technique, which allows the analysis of software 

development from a knowledge perspective. The ATS methodology is inspired from the work 

diary (Lethbridge, Sim, & Singer, 2005), and provides a good tradeoff between data accuracy and 

data analysis effort. It makes it possible to capture complex information in a flexible way, on an 

ongoing basis, and in the developers‘ real environment.  

The ATS methodology is designed to support the grounded theory approach, which supposes that 

theory is ‗‗grounded‘‘ in the data, rather than presumed at the outset of the research. In pure 

grounded theory, there would be no preconceptions with respect to the concepts of importance. 

Often researchers adapt grounded theory, by using prior software engineering knowledge based 

on expert opinion and the scientific literature as a starting point for domains and probes in the 

preliminary study proposal. Grounded theory is based on two major principles: first, that 

phenomena are not conceived as static, but rather constantly changing in response to evolving 

conditions; and second, that people have, although do not always use, the means to control their 

destinies by their response to conditions (Corbin, 1990). 

Although it is not the purpose of this paper to provide an in-depth and comprehensive review of 

grounded theory, some of its basic tenets should be understood, as they provide the scientific 

rationale for an approach such as the ATS methodology.  
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These tenets are the following: 

 Data collection and analysis are interrelated and concurrent processes, rather than linear 

ones; analysis begins as soon as the first bit of data is collected.  

 Concepts are the basic units of analysis. Thus, data collected from subjects are given 

conceptual labels.  

 Specificity of the concept is achieved by understanding the qualifiers of the concept (e.g. 

what factors impact the concept, such as the input artifact, the type of activity, 

interaction).  

 Analysis is achieved through constant comparison of similarities and differences in the 

data, and the search for both supportive and disconfirming evidence. Throughout the 

research process, hypotheses are revised based on the ongoing assessment of both 

qualifying and disqualifying evidence derived from partial data analysis, until they can be 

fully supported by all the data, facilitating a robust analysis. 

 Sufficient data must be collected to reach "conceptual saturation", the complete 

elaboration of the properties, dimensions, and variations that constitute each category or 

theme. 

The ATS methodology is developed to gain an understanding of how knowledge needs evolve 

throughout a software project‘s development. This methodology is illustrated with a multiple-

case study analysis from four industrial capstone projects conducted between 2006 and 2009 at 

the École Polytechnique de Montréal. 

The structure of this paper is as follows. Section 2 presents the ATS methodology. Section 3 

details knowledge concepts. Section 4 offers a knowledge flow analysis of software development. 

Section 5 provides a discussion of our research.  Finally, our conclusions are presented in 

section 6.  

3.3 Methodology 

3.3.1 Case study 

Software engineering involves real people in real environments (Lethbridge et al., 2005). 

Conducting empirical research on real-world issues implies a tradeoff between level of control 
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and degree of realism. Case studies are, by definition, conducted in real-world settings, and thus 

have a high degree of realism, mostly at the expense of the level of control, which makes them 

suitable candidates for a software engineering research methodology (Runeson & Höst, 2009). 

According to Yin (2003), a case study involves a how or why form of research question, does not 

require control of behavioral issues, and focuses on contemporary events.  

Since we want to understand the flow of knowledge throughout a software project‘s 

development, we need to accept a lower level of control in order to better seize the realism of the 

process. Therefore, the case study is the appropriate research methodology for our purpose. 

It is important to use several data sources in a case study, in order to limit the effects of one 

interpretation of a single data source (Runeson & Höst, 2009). A single study will have a large 

number of parameters, some controlled and some completely unconstrained (Miller, 2008). 

However, the evidence from multiple cases is often considered more compelling, and the overall 

study is therefore regarded as more robust (Herriot & Firestone, 1983). Moreover, multiple cases 

allow consideration of replication logic, which is analogous to that used in multiple experiments 

(Hersen & Barlow, 1976). Yin (2003) states that more than two cases can already make a strong 

argument. Therefore, we chose to analyze four different projects as part of a multiple-case study. 

Robson (2002) distinguishes four research purposes: exploratory, descriptive, explanatory, and 

improving. Exploratory research aims to find out what is happening, seeking new insights and 

generating ideas and hypotheses for new research. Descriptive research is designed to portray a 

situation or phenomenon. Explanatory research seeks an explanation of a situation or a problem, 

mostly in the form of a causal relationship. Improving research tries to enhance some aspect of 

the phenomenon studied. 

Case study methodology was originally used primarily for exploratory purposes, and some 

researchers still limit case studies for this purpose (Flyvbjerg, 2006). By trying to better 

understand the knowledge flow in software development, our research purpose is exploratory. 

Other research methodologies related to case studies include the survey, the experiment, and 

action research (Runeson & Höst, 2009). A survey is a collection of standardized information 

from a specific population. Its primary objective is descriptive and its primary data are 

quantitative. An experiment is characterized by measuring the effects on one variable of 

manipulating another variable. Its primary objective is explanatory and its primary data are 
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quantitative. Action research aims to influence or change some aspect of the focus of the research 

(Robson, 2002), and is closely related to the case study. Its primary objective is improvement and 

its primary data are qualitative. 

Data collected in an empirical study may be quantitative or qualitative. Quantitative data involve 

numbers, while qualitative data are represented as words and/or pictures (Gilgun, 1992). 

Qualitative research has been designed mostly by educational researchers and other social 

scientists to study the complexities of human behavior (Taylor & Bogdan, 1984). It could be 

argued that the study of human behavior is one of the few phenomena that is complex enough to 

require qualitative methodologies. In software engineering, the blend of technical and human 

behavioral aspects requires a combination of qualitative and quantitative methodologies, in order 

to take advantage of the strengths of both (Seaman, 1999). 

The ATS methodology makes use of both qualitative and quantitative data. For instance, a 

description of software activities from a knowledge perspective (qualitative data) and the time 

spent on these activities (quantitative data) are important aspects of our methodology.  

Theory generation methodologies are generally used to extract a statement or proposition from a 

set of field notes that is supported in multiple ways by the data (Seaman, 1999). These 

methodologies are often referred to as grounded-theory methodologies, because the theories, or 

propositions, are grounded in the data (Glaser & Strauss, 1967). To illustrate the potential of the 

ATS methodology for developing grounded theory, we have developed a knowledge flow model 

(cf. section 3.5).   

3.3.2 Data collection techniques 

Field studies provide empirical study researchers with a unique perspective on software 

engineering, and are particularly useful in understanding practices and in developing theories. 

Lethbridge et al. (2005) provide a taxonomy of data collection for software engineering field 

studies based on the degree of human contact required. First degree contact techniques, such as 

interviewing and shadowing, require direct access to a participant population. Second degree 

contact techniques, such as fly-on-the-wall, allow researchers to observe work without needing to 

communicate directly with participants. Finally, third degree contact techniques, such as tool 

analysis, use logs, and documentation analysis, require access only to work artifacts. 
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Of course, close contact with subjects (first-degree techniques) requires a stronger working 

relationship than the unobtrusive study of work artifacts (third-degree techniques). However, 

first-degree techniques are invaluable because of their flexibility and the phenomena they can be 

used to study, which are mainly related to cognition. However, their two major drawbacks are 

that they are less reliable and consume more resources than third-degree techniques. 

First-degree techniques can be either inquisitive or observational (Lethbridge et al., 2005). Each 

type is appropriate for gathering a different kind of information from software engineers. 

Inquisitive first degree techniques allow the experimenter to obtain a general understanding of the 

software engineering process, such as brainstorming, interviews, questionnaires, and conceptual 

modeling. Observational first degree techniques provide a real-time portrayal of the phenomena 

studied, such as work diaries, think-aloud protocols, shadowing, and participant observation. 

However, it is more difficult to analyze the data, both because they are dense and because they 

require considerable knowledge to interpret correctly. 

The ATS methodology is based on a data collection technique which can be employed for the 

entire duration of projects (without sampling). We want to achieve the best tradeoff between data 

accuracy and data analysis effort. Observational first degree techniques are the most likely to 

meet this requirement. Indeed, Lethbridge et al. (2005) conclude that interviews and 

questionnaires (inquisitive techniques) are the most straightforward instruments, but the data they 

produce typically present an incomplete picture. Bonke (2005) compared diary information 

(observational technique) to questionnaire information, and found that time-use information is 

preferentially obtained from diaries, as this methodology is considered more reliable than 

information from questionnaires. 

Several studies aimed at understanding software development work practices have employed 

different methodologies. Perry et al. (1994) used time diaries (13 developers in one year) to 

understand how technology affects software process. Singer, Lethbridge, Vinson, & 

Anquetil (1997) studied the work practices of software engineers by surveying, observing (14 

half-hour sessions), and interviewing developers. LaToza, Venolia, & DeLine (2006) conducted 

two surveys and a semi-structured interview to understand code-related activities and the 

motivation behind those activities. Chong & Siino (2006) explored interruption patterns among 

software developers who program in pairs versus those who program solo by analyzing 40 hours 



27 

 

of direct observation data. Ko et al. (2007) also analyzed work interruptions by employing the 

shadowing technique with seventeen developers and transcribed their activities minute by minute 

in 90-minute sessions, for a total of 25 hours of work. The analysis of shadowing data is very 

time-consuming. But, the work diary technique presents a good tradeoff between data accuracy 

and data analysis effort. 

3.3.2.1 Work diary 

Work diaries require respondents to record events that occur during the day. This may involve 

filling out a form, recording specific activities as they occur or at the end of the day, or noting a 

current task occurring at a preselected time (Lethbridge et al., 2005). 

The main advantage of time diary information is that very complex information is provided in a 

very flexible way (Bonke, 2005). Diary studies have high ecological value, as they are carried out 

in situ in the users‘ real environments (Czerwinski, 2004). Work diaries can provide better event 

self-reporting, because they record tasks on an ongoing basis rather than in retrospect. Moreover, 

this method gives researchers a way of understanding how software engineers spend their time 

without undertaking a great deal of observation or shadowing (Lethbridge et al., 2005). Perry et 

al. (1994) were able to validate the time diary as a low-cost, effective way to determine how 

people spend their time. 

However, there are three major drawbacks associated with work diary entries. They rely on self-

reporting, which may not always represent reality. They can interfere with the activity of 

respondents as they work. Participants may fail to record certain events, or may not record events 

with sufficient detail (Lethbridge et al., 2005). 

The next section describes how these drawbacks are managed in the ATS methodology. 

3.3.2.2 Activity Time Slip (ATS)  

The ATS data collection technique is inspired from the traditional work diary. Analyses based on 

the preliminary ATS methodology were first published by Germain & Robillard (2005) and 

improved by Gendreau & Robillard (2007, 2009). The meaning of work (from work diary) is 

different from that of activity (from the ATS). On the one hand, work is related to a task, as 

usually defined by a project manager. Examples of tasks reported in a work diary could be: 
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coding module A, testing B, etc. It is often part of a schedule and is related to project resources. 

On the other hand, an activity is a personal endeavor undertaken while a developer is executing a 

task. Examples of an activity reported in an ATS are: browsing the Web, reading API-X, talking 

to John about ABC, etc. A task may include many activities, but an activity only relates to one 

task. An activity relates to the real effort invested in software development, while a task relates to 

what is prescribed. 

The ATS methodology requires that, each time a developer executes an activity, details must be 

logged in an ATS token. Table 1 details the token fields.  

Table 3.1: Activity Time Slip (ATS) Token Content 

Field Description 

ID Unique token identifier 

Date Activity date 

Start time Activity start time 

End time Activity end time 

Effort Activity duration (computed from the start/end time fields) 

P1 .. Pn P1 to Pn participants involved in executing the activity 

It Activity iteration identifier 

Input artifact  Activity main input artifact  

Output artifact Activity main output artifact 

Discipline Process discipline related to the activity 

Role Process role of the developer who executed the activity 

Process activity Process activity related to the activity 

Activity description Detailed description of the activity 

 

The ATS methodology is more reliable than the work diary approach, because it deals with its 

drawbacks. While work diaries mainly compute task duration (elapsed time often on days scale), 

the ATS method aims to record actual effort expended on activities (time duration on hours 

scale). Each developer uses a preformatted spreadsheet to detail activities on an ongoing basis, 

providing a precision of roughly one token per hour. This approach minimizes interference with 

work, and encourages participants to record every activity without affecting accuracy. Moreover, 

a member of the research team regularly validates tokens by making sure the developers fill out 

each field of the token completely. This was done in order to closely represent the real effort 
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expended on the various activities. Interviews were conducted with the participants to understand 

their difficulties in meeting the requirements of the ATS methodology, and short training sessions 

were provided when required. Furthermore, a consistency validation was also conducted on the 

meaning of the token.  

3.3.3 Research data 

Data for our research were collected from four industrial capstone projects conducted between 

2006 and 2009 at the École Polytechnique de Montréal. The capstone project is an elective 

project-oriented course for senior software engineering students. The four projects were based on 

requirements supplied by a single avionics industrial partner. An engineer from the participating 

organization met with the students once a week to assist them in developing the software product. 

The collocated software development team had access to a private development room on campus 

for the duration of the project, equipped with a meeting table, a whiteboard, and five 

workstations. 

The team was formed based on four criteria: current number of cumulated credits, internship 

experience in industry, current grade point average (GPA), and grades for software design and 

software process courses.  

The capstone project was conducted by a team of 4 or 5 developers over one semester (14 weeks) 

on a fixed schedule of three half-day collocated sessions and a flexible schedule of up to three 

extra half-days per week.  

3.3.4 Ethical considerations 

According to Runeson & Höst (2009), research involving key ethical factors include: informed 

consent, review board approval, confidentiality, handling of sensitive results, inducements, and 

feedback. 

Students participating in a capstone project signed a consent form explaining the ATS 

methodology and ensuring the confidentiality and proper handling of their personal data. The 

research methodology and the consent form were previously approved by the École 

Polytechnique de Montréal‘s ethics committee (certificate CÉR-05/06-15). 
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3.4 Knowledge Perspective 

The subjects presented in this section show that knowledge is complex. It can be viewed from 

many perspectives and modeled accordingly. Knowledge management, which is largely 

interdisciplinary, is becoming a real concern in software engineering. New methodologies must 

be explored to enable us to better capture data related to knowledge flow.   

3.4.1 Knowledge models 

In the cognitive sciences, there are four knowledge models that are referred to widely: Kolb‘s 

model of experiential learning, Argyris and Schön‘s double-loop learning theory, Wenger‘s 

theory of communities of practice, and Nonaka and Takeuchi‘s theory of knowledge creation 

(Bjornson & Dingsoyr, 2008). 

Kolb (1984) describes learning from experience as involving four learning modes that can be 

placed in two dimensions. One dimension relates to how people grasp experience and includes 

two modes: comprehension (abstract conceptualization) and apprehension (concrete experience). 

The other dimension relates to how people convert experience, and also includes two modes: 

intention (reflective observation) and extension (active experimentation). Kolb stresses the 

importance of taking advantage of all four modes for learning to be effective.  

Argyris & Schön (1978) differentiate single- and double-loop learning. Single-loop learning 

involves the generation of new action strategies to achieve existing governing values, while 

double-loop learning involves adaptation and modification of the governing values themselves 

(Dick & Dalmau, 1990). 

Wenger (1998) opposes the traditional individual learning process in favor of a social type of 

learning process, which he refers to as communities of practice (CoP). The members of a CoP 

engage in a process of collective learning through the action of sharing knowledge related to a 

common practice. 

Nonaka & Takeuchi (1995) claim that knowledge creation occurs through the interaction between 

tacit and explicit knowledge, which is called knowledge conversion. Polanyi (1967) categorized 

knowledge as either explicit or tacit. Explicit knowledge can be expressed in formal and 

systematic language, and can be processed and stored relatively easily (Williams, 2006). Tacit 
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knowledge is deeply rooted in an individual‘s actions, experience, and values, making it highly 

personal and difficult to formalize (Schon, 1983). There are four types of knowledge conversion: 

socialization (from tacit knowledge to tacit knowledge), externalization (from tacit knowledge to 

explicit knowledge), combination (from explicit knowledge to explicit knowledge), and 

internalization (from explicit knowledge to tacit knowledge). Socialization relates to the 

conversion of new tacit knowledge from past experiences. Externalization is the process of 

crystallizing knowledge by making tacit knowledge explicit. Combination relates to converting 

explicit knowledge to more complex or systematic explicit knowledge. Internalization occurs 

when someone embodies explicit knowledge in tacit knowledge. 

3.4.2 Knowledge management 

Knowledge management is a large interdisciplinary field (Bjornson & Dingsoyr, 2008). Earl 

(2001) proposes taxonomy of strategies, or ―schools‖, categorized as: technocratic, economic, 

and behavioral. The technocratic schools are: the systems school, focusing on technology for 

knowledge-sharing; the cartographic school, which is concerned with mapping organizational 

knowledge; and the engineering school, which focuses on processes and knowledge flows in 

organizations. The economic school is concerned with commercial exploitation of knowledge and 

intellectual capital. The behavioral schools are: the organizational school, focusing on networks 

for sharing knowledge; the spatial school, which focuses on how office space can be designed to 

promote knowledge-sharing; and the strategic school, which sees knowledge management as a 

dimension of competitive strategy.  

The engineering school, focusing mainly on process, is the knowledge management school 

receiving the most empirical attention (Bjornson & Dingsoyr, 2008). Two major categories can 

be identified within this school. The first investigates the entire software process with respect to 

knowledge management. The second considers possibilities of specific activity improvement to 

the software process. 

As part of the first category, Alavi & Leidner (2001) believe the major challenge in knowledge 

management is to facilitate the flow of knowledge between individuals in order to maximize the 

amount of knowledge transfer.  
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Arent & Norbjerg (2000) studied software process improvement (SPI) from a knowledge 

perspective based on the knowledge creation model (Nonaka & Takeuchi, 1995). They concluded 

that both tacit and explicit knowledge are crucial to SPI success. Tacit knowledge is necessary to 

change practices, and explicit knowledge is necessary to create an organizational memory.  

Nerur & Balijepally (2007) argue that the type of software process affects how knowledge is 

managed. The traditional (engineering-based) approach relies primarily on managing explicit 

knowledge, while agile methodologies primarily rely on managing tacit knowledge.  

Dahkli & Chouikha (2009) propose a knowledge-oriented software development process 

designed to reduce the knowledge gap resulting from the discrepancy between the knowledge 

integrated in software systems and the knowledge owned by organizational actors.  

As part of the second category, Melnik & Maurer (2004) discuss the role of conversation and 

social interaction as the key elements of effective knowledge-sharing in an agile process. They 

conclude that explicit knowledge-sharing is inefficient when complex cognitive artifacts are used. 

The higher the level of complexity, the more need there is for interactive knowledge-sharing 

through direct verbal communication.  

Bjornson & Dingsoyr (2005) investigated knowledge-sharing through mentoring in a small 

software consultancy company. In order to improve mentoring, they propose introducing 

methods to increase the employees‘ level of reflection. 

Desouza, Awazu, & Wan (2006) examined what factors contribute to the use of explicit 

knowledge in a software engineering organization. They found that perceived complexity, 

perceived relative advantage, and perceived risk are factors affecting the use of explicit 

knowledge. 

To sum up, knowledge management‘s engineering school literature investigates software process 

and practices with respect to knowledge management, but not from a knowledge flow 

perspective. 

3.5 Knowledge Flow in Software Projects 

The following section illustrates the uses of the ATS methodology to derive a conceptual model 

based on the grounded theory, as well as to validate the model with multiple-case studies.  
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Based on the grounded theory, the ATS tokens of the 2006 capstone project provided the 

concepts on which we can develop a knowledge flow model (Figure 3.1), which is related to 

Nonaka and Takeuchi‘s knowledge creation model. We then used this knowledge flow model to 

codify each token of the four capstone projects, in order to analyze software development from a 

knowledge perspective. 

 

Figure 3.1: Knowledge Flow Model 

The four rounded-corner boxes in Figure 3.1 represent knowledge sources. External information 

can be general or specific to the project under development. General information may come from 

various sources, such as the Web, a paper, or a book. Specific information comes from any of the 

project‘s pre-existing documentation. A development artifact is a physical representation of 

knowledge, such as a software requirement specification (SRS), a design specification, or a test 

plan. Source code strictly includes executable statements and comments. Tacit knowledge is 

individual knowledge built from interacting with other knowledge sources.  

The arrows in Figure 3.1 represent the cognitive factors, which constitute the knowledge flow 

between knowledge sources. Real-life examples (based on the 2006 project) of all six cognitive 

factors are detailed in Table 3.2. The acquisition cognitive factor is involved when a developer 

needs to increase his tacit knowledge from external information. The crystallization cognitive 

External 

information 

Source code 

Tacit 

knowledge 
Acquisition 

C
ry

st
al

li
za

ti
o

n
 

R
ealizatio

n
 

V
al

id
at

io
n

 

V
erificatio

n
 

Work planning  

Development 

artifact 



34 

 

factor is the translation of a developer‘s mental representation of a concept (tacit knowledge) into 

an artifact (explicit knowledge), such as a use-case diagram or an architectural plan. The 

realization cognitive factor also involves the translation of tacit knowledge into explicit 

knowledge, but requires, in addition, technical know-how, which is related to source code 

production. The validation cognitive factor involves bidirectional knowledge flow between tacit 

knowledge and development artifacts (explicit knowledge), in order to validate the consistency of 

those two knowledge sources. The verification cognitive factor is like validation, except that 

source code is the knowledge source, thus involving technical know-how. The work planning 

cognitive factor mostly involves developers‘ synchronization of the project‘s planning and 

progress knowledge. 

This knowledge flow model is limited to software development activities. The management 

activities related to the software project are not taken into consideration in this model, because 

they are not specific to software development and they frequently involve several projects. 

Writing a software development plan is an example of a management activity. 

Table 3.2: Token examples 

Cognitive factor Token Description 

Acquisition Read Qt website documentation to better understand drag-and-drop functions. 

Crystallization Define use cases 1 and 2 in the Use Case Specification. 

Realization Code CGraphicComponents and CGraphicDesign classes for drag-and-drop functionalities. 

Verification Fix drag-and-drop bug in CGraphicComponents and CGraphicDesign classes. 

Validation Conduct team peer review of the architecture document. 

Work planning Conduct team meeting for iteration 3 task planning.  

 

In order to extract knowledge behavior from ATS tokens, a coding scheme, based on the 

knowledge flow model, has been designed. An ATS token is codified according to the cognitive 

factor concerned. However, some tokens involve more than one cognitive factor. Therefore, the 

coder needs to determine the dominant cognitive factor, mainly based on the description of the 

token and its context (input artifact, role, process, etc.). For instance, fixing a code defect 

involves both the verification and realization cognitive factors. First, it requires locating the 

defect in the code, which is related to the verification cognitive factor. Then, the actual fixing of 
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the code involves the realization cognitive factor. In this situation, the dominant cognitive factor 

remains verification. 

All the tokens of the four capstone projects were codified by two independent coders, who 

had to decide which cognitive factor was dominant. However, tokens related to academic and 

technical activities were not accounted for in the codification, since they were not specific to 

project development. Academic activities are related to the academic course, such as teamwork 

training and project presentation. Technical activities are related to tasks which can be performed 

by technicians, such as configuring the network or setting up and maintaining the development 

environment.  

From a coding scheme viewpoint, there are 6 possible software development (SD) 

categories: acquisition, crystallization, verification, validation, realization, and work planning. 

There are also 3 possible categories not related to software development: management, academic, 

and technical. Table 3.3 presents the software development (SD) effort, the number of SD tokens, 

and the token-per-hour ratio.  

Table 3.3: Software development effort and tokens 

Project SD effort (h) SD tokens Token/hour 

P06 997 1426 1.4 

P07 750 1408 1.9 

P08 810 887 1.1 

P09 628 621 1.0 

 

The codification of ATS tokens allows the analysis of effort distribution, which makes it easier to 

understand a project‘s knowledge flow.  

Every project studied had two deadlines. The first required the development team to present their 

system architecture to the industrial partner. It occurred at between 30% and 45% of project 

completion, depending on the project. The second deadline occurred at the end of the semester, 

when the product was delivered to the client. 

Figures 3.2 to 3.5 present the total effort expended on each cognitive factor in relation to project 

completion for projects P06, P07, P08, and P09. Each of the 6 curves of the graphs represents the 
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total effort expended (Y-axis) for a given cognitive factor with respect to the percentage of 

project completion (X-axis). For example, in P06 (Figure 2), at 20% of project completion (X-

axis), 11% of the total effort (Y-axis) had been expended on crystallization. Validation 

represented 5% of the total effort and acquisition 3%, realization and work planning both 

accounted for 1%, and no verification effort had been expended to that point. The analysis of the 

slopes of the 6 curves in Figure 2 provides a better understanding of the relationship between 

cognitive factors throughout the project. 

 

 

Figure 3.2: Project P06 total effort distribution 

As depicted in Figure 3.2, at the end of the first phase of project P06 (30% of project 

completion), crystallization was the project‘s most important cognitive factor (14% of total 

effort), requiring an almost constant effort, as can be observed from the linear part of the 

cumulative effort curve. This behavior is typical of disciplined software processes, because many 

development artifacts are produced during that timeframe, such as SRS, use case documentation, 

and architecture and design documentation. Between 85% and 95% of project completion, 

crystallization is an important cognitive factor. This behavior can be explained by the developers‘ 
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need to update artifacts to fit the software product before delivery, which we refer to as 

retrofitting.  

Throughout project P06, validation is closely related to crystallization, which is typical of 

software projects, since validation mostly depends on reviewing crystallized development 

artifacts.  

Acquisition is an important cognitive factor at between 25% and 65% of project completion. It is 

related to new knowledge needed from developers in order to understand the project‘s domain or 

elaborate the system architecture.  

Work planning is not a significant part of the project‘s total effort, but it requires an almost 

constant effort for the duration of the project, as can be seen from the cumulative effort curve 

throughout the project, which is almost linear.  

Realization and verification are closely related throughout the project. Both start by being 

important cognitive factors at around 35% of project completion, which is close to the end of the 

first phase of the project. Realization is the most important cognitive factor from 35% to 85% of 

completion, while verification is very important from 35% until the end of the project. The 

relation between the two cognitive factors is due to code verification and testing being 

complements to code implementation. 

Figure 3.3 illustrates the cognitive factor effort distribution for project P07. The effort 

distribution for the first phase of this project (35% of project completion) is very similar to that of 

P06: crystallization was the project‘s most important cognitive factor (13% of total effort), 

validation is closely related to crystallization, acquisition is moderately important (5% of total 

effort), and realization and verification are unimportant (2% and 1% of total effort respectively). 

However, by the end of the project, P07 and P06 were noticeably different. Work planning added 

up to 11% of total effort, and crystallization added up to 26% of total effort, a particularly high 

figure. Moreover, even though realization and verification were closely related throughout the 

project, verification surpassed realization at 90% of project completion, which is atypical. These 

observations can be explained by the team‘s development philosophy. Artifact production and 

work planning were considered as goals to achieve at ―any cost‖. Consequently, the essence of 

software development – to develop a quality product – was overshadowed.   
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Figure 3.3: Project P07 total effort distribution 

 

Figure 3.4: Project P08 total effort distribution 

Figure 3.4 shows cognitive factor effort distribution for project P08. As was the case for projects 

P06 and P07, at the end of the first phase of P08 (45% of project completion), crystallization was 

the project‘s most important cognitive factor (16% of total effort). Like P06 and P07, throughout 
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the P08, validation was closely related to crystallization, and realization was closely related to 

verification. Work planning also required an almost constant effort for the duration of the project. 

However, P08‘s acquisition (9% of total effort of the project‘s first 25%) was completed sooner 

than in P06 and P07. This behavior can be explained by the developers‘ lack of domain-specific 

knowledge. 

  

 

Figure 3.5: Project P09 total effort distribution 

Figure 3.5 details cognitive factor effort distribution for project P09. As was the case for P06, 

P07, and P08, at the end of the first phase of P09 (35% of project completion), crystallization was 

the project‘s most important cognitive factor (12% of total effort). However, unlike the other 

projects, realization was already important (8% of total effort), and a crystallization plateau was 

reached at around 20% of project completion. Like the other projects, throughout P09, validation 

was closely related to crystallization, and realization was closely related to verification. But P09‘s 

realization (37% of total effort) is very important compared to that of P06, P07, and P08 

(respectively 23%, 19%, and 28% of total effort). These observations can be explained by the 

team‘s development philosophy, which was very different from that in P07. The P09 developers 

rightly produced artifacts and planned their work in order to help software development. In other 
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words, the development of a quality product was the main focus of the project, and this was 

complemented by supporting activities, which was not the case for P07.   

3.6 Discussion 

In this section, we discuss the methodological challenges and results of the knowledge flow 

analysis. 

3.6.1 Methodological challenges 

The ATS methodology offers participant (project developer), researcher, intercoder reliability 

and external validity challenges. 

3.6.1.1 Participant 

The participant must understand what an activity is in order to accurately log its details in a token 

(cf. Table 3.1). A short training session provided to participants prior to the project by the 

researchers is usually enough. One difficulty for the participant is to identify an activity switch 

and log it accordingly. For example, the implementation of a feature mostly involves coding and 

testing/debugging activities that are intertwined in time. The participant must understand what he 

is doing and correctly log these activities. 

3.6.1.2 Researcher 

The researcher must consider three methodological challenges: continuous project 

methodological supervision, consistency validation, and an adequate coding scheme. 

The researcher must provide the participant with continuous methodological supervision 

throughout the project. He has to regularly ensure that the tokens were correctly filled in by 

participants. The most common problems are an incomplete activity description and an 

inappropriate token duration. The first occurs mostly at the beginning of a project, and is easily 

fixed by appropriate participant training. The second is influenced by a participant‘s personality, 

as participants with a rigorous mind pay greater attention to activity switching than others. Close 

supervision is therefore required to motivate those participants to correctly fill in tokens.  
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Consistency validation is another critical aspect to consider. The researcher must validate tokens 

to ensure that they do not overlap. Two types of validation are performed: start/end time and 

participants. The start time and end time fields of each token are analyzed to make sure that they 

do not overlap. Also, fields P1 to Pn (participants involved in the execution of an activity) are 

validated to make sure that every participant mentioned in a token did, in fact, complete a token 

confirming the same activity. For example, if participant A completes a token stating that he was 

in a meeting with participant B, and then a token from participant B must state that he was in a 

meeting with participant A.  

The definition of the coding scheme is a methodologically critical aspect of any methodology 

based on protocol analysis.  Our coding scheme is based on the cognitive factors of the 

knowledge flow model, which was developed using grounded theory. However, some tokens 

involve more than one cognitive factor. Therefore, the coder has to determine the dominant 

cognitive factor based on the token‘s description and context. To ensure the reliability of coding 

decisions, two independent coders were asked to codify the tokens of the four capstone projects. 

Thereafter, an intercoder reliability measure allowed assessment of the convergence of their 

coding.  

3.6.1.3 Intercoder reliability 

With judgment-based coding schemes, the best approach for validating the reliability of the 

quality of data is to rely on intercoder agreements (Perreault & Leigh, 1989). 

When researchers use multiple coders and evaluate the convergence of their coding, the most 

commonly used measure of intercoder reliability is the simple percentage of agreement between 

two (or more) coders (Bettman & Park, 1980). Although easy to use, simple percentage 

agreement statistics are likely to be influenced heavily by the number of coding 

categories (Cohen, 1960).  

The next most frequently used intercoder reliability measure is Cohen‘s kappa. However, this is a 

conservative measure because of the way it estimates interceders‘ agreement related to chance 

(Perreault & Leigh, 1989). It is difficult to operate in practice because it requires an estimate of 

the number of chance codings (Clark, 1999). The Perreault & Leigh reliability index (Ir) is 
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preferable to other methodologies, since it accounts for differences in reliability as a function of 

the number of categories (Kolbe & Burnett, 1991).  

Table 3.5: Project reliability index 

Project Ir 

P06 0.95 

P07 0.93 

P08 0.94 

P09 0.93 

 

Table 3.5 presents Perreault & Leigh‘s reliability index for the four projects based on two 

independent coders. The indices presented (all above 0.9) show a strong project coding 

reliability. 

3.6.1.4 External validity  

The external validity of empirical studies with students is a commonly raised concern. According 

to Carver, Jaccheri, Morasca, & Shull (2003), more and more students are employed during the 

summer or for complete internships in industrial environments, which brings an expanded set of 

skills to many upper-level courses. Höst, Regnell, & Wohlin (2000) conclude that only minor 

differences exist between students and professionals regarding their ability to perform relatively 

simple tasks requiring judgment. Moreover, their studies do not contradict the assumption that 

final-year software engineering students are qualified to participate in empirical software 

engineering research. Similar results were obtained in a study about detection methodologies for 

software requirement inspection conducted by Porter, Votta, & Basili (1995) with students and 

then replicated with professionals (Porter & Votta, 1998). Consequently, the external validity of 

our study is increased by relying on senior students who have some internship experience in the 

industry.  
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3.6.2 Knowledge flow results 

As the ATS methodology enables representation of a model of knowledge flow throughout a 

software development project, the cognitive activity diagrams presented here serve to illustrate 

proofs of concept for the methodology.  

The ATS methodology is a software activity measure which is independent of the software 

process used. It is related to recorded cognitive activities, which allow a better understanding of 

knowledge needs throughout a software project. A detailed analysis of these results is outside the 

scope of this paper.  

3.7 Conclusions 

There is a growing need to consider the knowledge perspective in software development, since 

developers‘ activities are mostly cognitive. Knowledge cannot be measured directly, since it is 

mostly tacit in the developer‘s mind. Techniques have been developed in the social sciences, like 

think-aloud protocols, to explore the participant thinking process. Such techniques can only be 

applied for a short period of time on very specific cognitive activities, however, and they are not 

well suited for studying the knowledge flow in a whole software development project.   

The ATS methodology presented in this paper is a compromise between short duration, very 

accurate data (think-aloud) and project span self-reported data on participant cognitive activities. 

The level of accuracy obtained with the ATS methodology is sufficient to explore various 

knowledge perspectives in software development.   

The ATS methodology offers challenges to researchers: appropriate project methodological 

supervision, consistency validation, and an adequate coding scheme.  

This methodology is actually most useful when combined with other measurement approaches. 

Future work is needed in various directions. Tools can be built to ease the capture of data and to 

perform some of the validation online.  ATS tokens can be combined with audio-video recording 

to increase the reliability and the content of the measure.  ATS tokens can also be combined with 

records of technical activities performed on a computer.     
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CHAPITRE 4  

 

CONSEQUENCES OF DOCUMENTATION QUALITY  

IN FLOSS REUSE: A CASE STUDY 

4.1 Abstract 

Context: Many software development projects reuse free/libre open source software (FLOSS) 

components for various reasons. However, FLOSS projects evolve quickly and the 

documentation does not always keep up. 

Objective: This paper aims to assess the consequences of documentation quality for FLOSS 

component reuse.  

Method: Data were gathered from an industrial capstone project, carried out over a 14-week 

period by five senior students, which required a total effort of roughly 1800 hours. The project‘s 

development was analyzed from a knowledge flow perspective, based on a professional 

constructivism approach, which integrates Nonaka and Takeuchi‘s knowledge creation model and 

Wertsch‘s social constructivist learning theory. The data gathering technique used was the effort 

time slip method. 

Results: The main issues encountered in the industrial project were related to the ambiguous 

documentation of the reused FLOSS components. The industrial project helped to confirm that, 

in free/libre open source applications, effort is expended in software development, but not so 

much in documentation. 

Conclusion: We suggest that the enforcement of a reusable code validation practice would lower 

FLOSS component reuse effort. 

4.2 Introduction 

Many software development projects reuse free/libre open source software (FLOSS) components 

for various reasons. Integrating software components which have been developed separately 

entails more than gathering such components from the marketplace and combining them 

(Merilinna & Matinlassi, 2006). It requires selection and evaluation of potential component 
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candidates. Component documentation has become a key issue in component reuse, because it is 

often the only way to assess the applicability, credibility, and quality of a third-party component 

(Taulavuori, 2002). However, the lack of documentation is one of the five fundamental problems 

associated with the current FLOSS development trend (Levesque, 2004). 

FLOSS projects evolve differently from closed-source systems (CSS) (Koch, 2005). The total 

number of lines of code in FLOSS projects does not grow more rapidly than in CSS projects, but 

functions are added and modified more often in FLOSS projects over time (Paulson, Succi, & 

Eberlein, 2004).. This means that FLOSS projects evolve quickly and the documentation, when 

decent documentation is available, does not always keep up. 

This paper aims to assess the consequences of documentation quality for FLOSS reuse 

components. Section 2 details the methodological approach, the knowledge flow perspective, and 

the effort time slip method. Section 3 presents the capstone project case study. Section 4 analyzes 

FLOSS documentation issues. Finally, section 5 extends our analysis by discussing the 

distribution of extra effort and recommending a software practice designed to minimize the 

consequences of inadequate documentation. 

4.3 Methodological Approach 

4.3.1 Capstone Project 

Data for this study were gathered from an industrial capstone project carried out at the École 

Polytechnique de Montréal. A capstone project is a project-oriented course for senior software 

engineering students based on requirements supplied by an industrial partner. In this case, an 

engineer from the participating organization met with the students once a week to assist them in 

developing the software product. The collocated software development team had access to a 

dedicated room on campus for the duration of the project, furnished with a conference table, a 

whiteboard, and five workstations. 

The team was formed based on four criteria: current number of accumulated credits, past 

internship experience in industry, and current grade point average, as well as software design and 

process course grades.  
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The capstone project was conducted over one semester (14 weeks) on a fixed schedule of three 

half-day team working sessions per week. The team workload was initially estimated to be 1800 

hours. 

The external validity of empirical studies performed by students is a commonly raised concern. 

According to Carver et al., more and more students are employed during the summer or in full 

internships in industrial environments, which brings an expanded set of skills to many upper-

level courses (Carver et al., 2003). Höst et al. (2000) conclude that only minor differences exist 

between students and professionals regarding their ability to perform relatively simple tasks 

requiring judgment. Moreover, their study supports the assumption that final-year software 

engineering students are qualified to participate in empirical software engineering research. Also, 

a study on detection methods for software requirements inspection conducted by Porter et 

al. (1995) with students and then replicated with professionals produced similar results (Porter & 

Votta, 1998). Consequently, the external validity of our study is increased by relying on senior 

students who have some internship experience in the industry. 

Precautions were taken to meet ethical requirements for research involving humans, particularly 

regarding informed consent and confidentiality. In this regard, an ethics certificate was issued for 

this research by the École Polytechnique de Montréal‘s ethics committee. 

4.3.2 Knowledge Flow Perspective 

The project‘s development was analyzed from a knowledge flow perspective, based on a 

professional constructivism approach integrating Nonaka & Takeuchi‘s (1995) knowledge 

creation model and Wertsch‘s (1985) social constructivist learning theory. 
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Figure 4.1: Knowledge Flow Model 

The four rounded corner boxes in Figure 4.1 represent knowledge sources. External information 

can be either general or specific to the project under development. General information may 

come from various sources, such as the Web, a paper, or a book. Specific information can come 

from any preexisting documentation on the project. Development artifacts are physical 

representations of knowledge, such as software requirements specifications (SRS), design 

specifications, or test plans. Source codes are executable statements and comments. Tacit 

knowledge is individual knowledge constructed through interaction with other knowledge 

sources.  

The arrows in Figure 4.1 represent the cognitive factors, which are the knowledge flow between 

knowledge sources. The acquisition cognitive factor is involved when developers need to 

increase their tacit knowledge from external information. The crystallization cognitive factor is 

the translation of developers‘ mental representation of a concept (tacit knowledge) into an artifact 

(explicit knowledge), such as a use-case diagram or an architectural plan. The realization 

cognitive factor also involves the translation of tacit knowledge into explicit knowledge, but 
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requires, in addition, technical know-how, which is related to programming skills. The validation 

cognitive factor involves bidirectional knowledge flow between tacit knowledge and 

development artifacts (explicit knowledge), in order to validate the consistency of those two 

knowledge sources. The verification cognitive factor is like validation, except that source code is 

the knowledge source, thus involving technical know-how. The work organization cognitive 

factor mostly implies developers‘ synchronization of project planning and progress knowledge. 

This knowledge flow model is limited to software development activities. The management 

activities related to software projects are not taken into consideration in this model, as 

management activities are not specific to software development and frequently involve several 

projects.  

4.3.3 Effort Time Slip Method 

The data gathering technique used is the effort time slip method, which is a more detailed version 

of the work diary (Perry et al., 1994). The effort time slip method was proposed by Germain & 

Robillard (2005) and improved by Gendreau & Robillard (2007, 2009). Each time a developer 

executes a task, details must be logged in a time slip token. Table 4.1 details the token fields.  

Table 4.1: Time Slip Token Content 

Field Description 

ID Unique token identifier 

Date Task date 

Start time Task start time 

End time Task end time 

Duration Task duration (computed from the start/end time fields) 

P1 .. Pn P1 to Pn participants involved in the execution of the task 

It Task iteration identifier 

Input artifact  Task main input artifact  

Output artifact Task main output artifact 

Discipline Process discipline related to the task 

Role Process role of the developer who executed the task 

Activity Process activity related to the task 

Task description Detailed description of the task 
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In a state-of-the-art review on data collection techniques for software field studies, Lethbridge et 

al. (2005) present the advantages and disadvantages of the work diary approach. Work diaries can 

provide better self-reports of events, because they record activities on an ongoing basis rather 

than in retrospect. Moreover, they give researchers a way of understanding how software 

engineers spend their time without undertaking a lengthy observation process or shadowing. 

However, there are three major drawbacks associated with work diary entries. They rely on self-

reporting, which may not always represent reality, and they can interfere with respondents as they 

work. Participants may fail to record some events, or they may record them with insufficient 

detail. 

The effort time slip method is more reliable than the work diary approach, because it deals with 

its own drawbacks. While work diaries are primarily used for accounting purposes, recording 

assigned task durations (elapsed time), the effort time slip method aims to compute actual effort 

expended on a professional activity with maximal precision. A task is assigned by the project 

manager, design package ABC, for example, and is part of the project planning work breakdown 

structure. Assigned task durations are measured in days. Activities are performed by developers 

as part of their task, look on the Web for XYZ information, design component A classes, or code 

method B, for example. Activities are measured in hours or parts of hours, each developer using a 

preformatted spreadsheet to detail activities on an ongoing basis, providing a precision of roughly 

one token per hour. This approach minimizes interference with work and encourages participants 

to record every activity without affecting accuracy. Moreover, a member of the research team 

regularly validates token contents for coherence and accuracy, and a consistency validation is 

also conducted after the project has been completed.  

4.3.4 Independent Data Codification 

In order to facilitate effort time slip analysis, a coding scheme, based on the knowledge flow 

model, is designed. A time slip token is codified according to the cognitive factor concerned. 

However, some tokens involve more than one cognitive factor. In such a case, the dominant 

cognitive factor is determined based on the description of the token and its context (task, process, 

etc.). For instance, fixing a code defect implies both the verification and realization cognitive 

factors. First, the defect in the code, which is related to the verification cognitive factor, must be 
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found. Then, the realization cognitive factor is used to actually fix the code. In this situation, 

verification is usually the dominant cognitive factor. 

With judgment-based coding schemes, the best approaches for improving the quality of data rely 

on evaluating the judgments of two (or more) independent coders (Perreault & Leigh, 1989). 

When researchers use multiple coders and evaluate the convergence of their coding, the most 

commonly used measure of intercoder reliability is the simple percentage of agreement between 

two (or more) coders (Bettman & Park, 1980). Although easy to use, simple percentage 

agreement statistics are likely to be influenced heavily by the number of coding 

categories (Cohen, 1960).  

Other than the simple percentage of agreement, the most frequently used intercoder reliability 

measure is Cohen‘s kappa. However, this is a conservative measure, because of the way it 

estimates intercoder agreement related to chance (Perreault & Leigh, 1989). It is difficult to 

operate in practice, because it requires an estimate of the number of chance codings (Clark, 

1999). The Perreault & Leigh reliability index is preferable to other methods, since it accounts for 

differences in reliability as a function of the number of categories (Kolbe & Burnett, 1991).  

The Perreault & Leigh reliability index will be discussed further in section 4.5.1. 

4.4 FLOSS Component Reuse: The Case of the SFLphone Capstone Project 

4.4.1 Project Context 

The industrial partner for the capstone project was Savoir-Faire Linux (SFL), a company created 

to assist organizations wishing to take advantage of Linux‘s potential for their information 

systems. They specialize in Linux-based applications, such as Oracle, MySQL, Apache, Samba, 

Iproute2, Squid, OpenVPN, and Asterisk. 

The main goal of the SFL project is to add videoconferencing capabilities to the SFLphone, 

which is an SIP/IAX2-compatible softphone for Linux. The SFLphone project's main goal is to 

create a robust enterprise class desktop phone. While it can serve home users as well, it has been 

designed to manage hundreds of calls per day. The SFLphone was released under Version 3 of 

the GNU General Public License. It is being developed by the global community and is 

maintained by SFL. 
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For the capstone project, SFL requested the addition of 33 functional requirements and 13 non 

functional requirements to the existing SFLphone application. In order to help the development 

team with prioritization, the functional requirements were classified as essential (24), desirable 

(8), or optional (1). 

The requested requirements can be summarized as 6 features: two-way video conversation; three-

way audio and video conferencing; audio and video flow synchronization; encoding and 

decoding of incoming and outgoing flows; multiple-flow mixing; compliance with H.263, 

SIP/SDP, RTP, IAX standards.  

The project was developed in C/C++ on the Linux platform. Many open source tools were used, 

such as GIT for code version management, Eclipse as a development environment, and TRAC as 

a project managing and bug/issue tracking system. Skype, xChat, and emails were also used to 

communicate. 

4.4.2 Disciplined Software Process 

The development team followed a disciplined software process based on the Unified Process for 

EDUcation (UPEDU) (Robillard et al., 2003). Figure 4.2 depicts a generic process practice. A 

role is responsible for the outcomes of an activity. An activity needs at least one artifact as an 

input and will generate an artifact as an output. 

 

 

Figure 4.2: Generic Process Practice 

Table 4.2 details the 7 disciplines, 20 activities, 8 roles, 12 main input artifacts, and 15 output 

artifacts of the process followed by the capstone project development teams. 
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Table 4.2: Capstone Project Process 

Discipline Activity Role 
Main input 

artifact 
Output artifact 

Requirements 

Formalize 

requirements 
System engineer Vision document 

Software 

Requirements 

Specification (SRS) 

Model 

specifications 
Analyst SRS 

Use case and user 

interface document 

Analysis & 

design 

Analyze use 

cases 
Software 

engineer 

Use case and user 

interface document 
Use case realization 

Define the 

architecture 
Use case 

realization 

Architecture & 

design document 
Design classes 

Implementation 

Implement 

components 

Implementer 

Architecture & 

design document 
Components Fix defects 

Implement unit 

tests 

Execute unit 

tests 
Components Unit test results 

Testing 

Plan tests 

Tester 

SRS Test plan 

Describe tests Test plan Test cases 

Execute tests Test cases Test results 

Evaluate tests Test results Change record 

Project 

management 

Plan phases and 

iterations 
Project manager 

SRS Iteration plan 

Plan meetings 
Work Breakdown 

Structure 
Meeting agenda 

Configuration 

management 

Plan 

configuration 

management Configuration 

manager 

Vision document 
Configuration 

management plan 

Manage 

product 

configuration 

Components 
Code management 

tool repository 

Reuse 

Find code 

Reuser 
Component 

documentation 

Validated component 

document 

Understand 

code 

Prototype code 

 

4.5 Analysis and Results 

4.5.1 Time Slip Tokens 

The developers of the SFLphone project produced 1930 validated time slip tokens for a workload 

of 1813 hours. However, tokens related to academic and technical activities were not accounted 

for in this analysis, since they were not specific to project development. Academic activities are 

related to the academic course, such as teamwork training and project presentation. Technical 
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activities are related to tasks which can be performed by technicians, such as configuring the 

network or setting up and maintaining the development environment. Consequently, 1591 

development tokens were retained for an analysis totaling 1560 hours. A coding scheme was 

defined based on knowledge flow model cognitive factors. For each development token, two 

independent coders had to decide which cognitive factor was dominant. With a total of 1472 

agreements on 1591 judgments, the Perreault & Leigh reliability index was 0.96, which indicates 

a very strong categorization reliability based on the coding scheme. 

4.5.2 Knowledge Flow Analysis 

The effort distribution analysis from time slip tokens allows a better understanding of a project‘s 

knowledge flow. The SFLphone project had two milestone deadlines. The first (at 40% of project 

completion) required the development team to present their system architecture to the industrial 

partner. The second deadline was system delivery at the end of the semester. 

Figure 4.3 presents the total effort expended on each cognitive factor in relation to project 

completion. Each of the 6 curves on the graph represents the total effort expended (Y-axis) for a 

given cognitive factor with respect to the percentage of project completion (X-axis). For example, 

at 20% of project completion (X-axis), 7% of the total effort (Y-axis) had been expended on 

crystallization. Validation and acquisition each represented 5% of total effort, verification and 

work organization both accounted for 1%, while realization corresponded to 0% of the total 

effort. The analysis of the slopes of the 6 curves in Figure 3 provides a better understanding of 

the relationship between cognitive factors throughout the project. 

As depicted in Figure 4.3, at the end of the first phase (40% of project completion), 

crystallization is the most important cognitive factor of the project (19% of the total effort), 

requiring an almost constant effort, as can be observed from the linear part of the cumulative 

effort curve. This behavior is typical of disciplined software processes, because many 

development artifacts are produced in this timeframe, such as the software requirements 

specification (SRS), a use case document, and an architecture and design document. Validation 

accounts for 9% of the total effort. At this point, validation effort distribution varies, depending 

on the crystallized development artifact to review. Acquisition represents 7% of the total effort. 

This is related to new knowledge needed from developers in order to understand the project‘s 
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domain or elaborate the system architecture. Work organization is not a significant cognitive 

factor, accounting for only 2% of the total effort. However, it is worth noting that this cognitive 

factor requires an almost constant effort for the duration of the project, as can be demonstrated 

from the linear part of the cumulative effort curve throughout the project. Realization and 

verification are unimportant, with both accounting for only 1% of the total effort. The effort 

invested at that point relates to prototyping and reviewing code for reuse. 

 

Figure 4.3: Cognitive Factor Effort Distribution in the SFLphone Project 

4.5.3 FLOSS Library Issues 

The main issues encountered in the SFLphone project were related to FLOSS library 

documentation: libavcodec, video4linux, and ccRTP. 

4.5.3.1 Libavcodec 

Several new features of the project required the system to encode and decode video images 

captured by the webcam. The libavcodec library, a popular open source LGPL-licensed library of 
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codecs, helped fulfill this requirement. It could be used in two ways: through the command line 

or as an integrated part of a software project.  

Three different strategies were tested to learn how to use the library. First, online documentation 

was available through the library‘s website. Second, a user/developer mailing list could be added 

and used to ask questions. Third, an IRC chat channel made direct interaction possible between 

users and developers. 

The online documentation was mainly used by direct users, who are individuals using 

libavcodec‘s encode and decode functions. It was composed of a frequently asked questions 

(FAQ) section and an online general documentation section providing answers to most of the 

users‘ direct questions. The general documentation also covered the development of the open 

source library, its development policies (coding conventions), and a review process. Developers 

wanting to use the library as part of their software were invited to refer to a small API code 

example and look at the source code. If they had more questions, they were encouraged to 

subscribe to the library‘s mailing list and participate in chat sessions. 

The API code example is a page created by a user willing to share his knowledge with other 

developers (Böhme, 2004). It shows the main function calls without much explanation of why 

they were called in that particular order. Moreover, most of the functions in this example were no 

longer recommended in the source code‘s comments. The source code only pointed out what new 

functions should be used without specifying how to use them.  

At one point in the SFLphone project, a developer wanted to convert the color format of each 

pixel from RGB to YUV. The function invoked in the code example was rejected and a new, 

completely independent library was recommended instead. The documentation was ambiguous, 

and, consequently, the developer blindly tested the new functions suggested in the source code 

comments.  

As pointed out in the online documentation, a developer could use the mailing list available to 

developers. Many questions were asked, but most developers did not know the answers. The few 

experts willing to take the time to respond (mainly the developer in charge of the project) had to 

answer almost all the questions. Sometimes, they could only speculate on how a given 

component was supposed to be used since they were not always directly involved in its 
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development. Moreover, experts capable of answering very specific questions were usually hard 

to contact, since they were not using the mailing list.  

Also, experts commonly suggested searching through the mailing list archive, which was 

considered by many as the main documentation for developers wanting to integrate the library 

into their software. This suggestion involved reading each and every existing mailing list thread 

to find relevant information as the mailing list archive search function was not very effective. 

The other method allowing interaction with experts was online chatting, which seemed at first to 

be the quickest way to find answers. However, only basic questions were answered quickly, and 

the more difficult ones were left, presumably because the expert on that particular matter was not 

online. The SFLphone project developers found that browsing the mailing list archive was more 

effective than asking questions via online chatting, which tended to remain unanswered. 

4.5.3.2 Video4linux 

Many features of the SFLphone project required video capture from the webcam. The industrial 

partner strongly suggested using the video4Linux (V4L) library, which is a video capture API 

now integrated into Linux‘s kernel. More specifically, V4L is an abstract layer between video 

software and hardware. It allows both image and video capture from external devices, such as a 

TV tuner or a webcam. 

The industrial partner provided a small, homemade prototype to show the basic usage of the 

library. The team‘s strategy regarding reusing V4L consisted of a prototyping strategy. Since 

every requirement related to the video features obviously involved being able to capture images 

from the webcam, the team realized that developing a more complete prototype was a top 

priority, in order to validate required functionalities before integrating V4L into the SFLphone. 

This strategy was aimed at acquiring better V4L behavioral knowledge before integration, thus 

minimizing problems. It also focused on technological risk management by allowing a better 

estimate of the integration effort.  

Unfortunately, V4L integration did not occur as planned, mainly because of ambiguous 

documentation, a problem which was not fixed because of incomplete validation prototyping. For 

instance, a V4L function was announced as being able to change a webcam‘s frame per second 

(FPS) rate. However, the FPS setting was not supported by many webcams. The developers were 
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unaware of this until they encountered a segfault resulting from an incorrect use of the FPS 

setting function. Of course, this problem could have been avoided if proper prototyping 

validation had been performed, or if the V4L documentation had been clearer.  

4.5.3.3 ccRTP 

The Real-time Transport Protocol (RTP) defines a standardized packet format for delivering 

audio and video over the Internet. The ccRTP library is a C++ implementation of RTP.  

The initial version of SFLphone, which required enhancement with video capabilities by the 

capstone project team, already used the ccRTP library for audio transportation. RTP was 

designed for both audio and video transportation, and ccRTP documentation seemed to confirm 

that it supported both transportation types. Consequently, no prototyping effort was invested in 

ccRTP functionalities. This decision had major consequences for the outcome of the project. It 

turned out that ccRTP was designed to support video, but had not yet been implemented in the 

library.  

Once again, inaccurate documentation led to false assumptions, which could have been mitigated 

or avoided if proper prototyping validation had been performed.  

4.5.4 Consequences of Ambiguous Library Documentation 

The consequences of library documentation ambiguities were analyzed based on the time slip 

tokens and interviews with the developers that validated our assignment of those tokens. The 

interviews were conducted on a voluntary basis after the project had been completed and graded. 

The documentation for libavcodec and video4linux was partially ambiguous. Specifically, the 

behavior of both library functionalities was sometimes difficult to predict. In the two cases, the 

strategy used to fix the problem was black box unit testing, which allowed better understanding 

of how functions should be invoked.  

In the end, libavcodec integration required a total effort of 103 hours. Forty-four hours were 

considered a normal effort on libavcodec integration. The remaining 59 hours were considered 

extra effort expended due to inaccurate documentation. Consequently, this problem added 

substantial effort (134%) to the integration of this library.  
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Video4linux integration required a total effort of 82 hours. Forty-five hours were considered 

normal activities, while the remaining 37 hours would not have been required if the 

documentation had been appropriate. This problem increased the integration effort by 82%. 

The ccRTP library issue is linked to the serious consequences of the false assumption that ccRTP 

supported video transportation. Architectural choices were made based on erroneous 

assumptions. Since the issue was discovered very late in the project, there was not enough time 

left to implement another solution, although this possibility was considered. The only viable 

solution was to downsize the project by not implementing all the functionalities.  

Nevertheless, a great deal of effort was expended in reaching the conclusion that the 

documentation was not up to date. ccRTP integration required a total effort of 132 hours. Only 24 

hours were considered normal activities, while the remaining 108 hours would not have been 

required with appropriate understanding of the library functionalities. This problem increased the 

integration effort of the library by 450%.  

Table 4.3 summarizes the normal and extra effort expended on libavcodec, video4linux, and 

ccRTP library integration. The three documentation-related issues increased the total project 

effort by at least 204 hours, representing the equivalent of 5 full-time man-weeks. 

This quantitative evaluation represents only one aspect of the repercussions of ambiguous 

documentation. Another major drawback is the quality of the delivered product, which can be 

difficult to evaluate.   

Table 4.3: Component effort distribution 

Component Normal (h) Extra (h) Extra added (%) 

Libavcodec 44 59 134 

V4L 45 37 82 

ccRTP 24 108 450 

Total 113 204 181 

4.6 Discussion 

Since the project was developed as a capstone project, the schedule was non negotiable. 

Whatever happened, the development team had no choice but to deliver a functional product after 

14 weeks of development. Both the schedule and the human resources (5 developers) were fixed, 
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so the only flexibility left was with the product functionalities. The industrial partner and the 

development team agreed that it was preferable to cut down on these. Consequently, the 

requirements related to the three-way audio and video conferencing features were not 

implemented as part of this project. However, other requirements were successfully developed.  

4.6.1 Extra Effort Distribution 

The following figures (4.4, 4.5, and 4.6) present quantitative analysis of the cognitive factors 

(acquisition, verification, and realization) affected by the documentation issues of FLOSS 

components (libavcodec, video4linux, and ccRTP). The crystallization, validation, and work 

organization cognitive factors were not measurably affected by the documentation issues.   

Figure 4.4 shows the cumulative effort expended on the acquisition cognitive factor during the 

real project (dark line) and the adjusted curve (light line), and represents the expected effort given 

appropriate documentation. The revised curve was obtained by removing from the time slip 

tokens all entries related to the extra effort required by the documentation problems, based on 

interviews with two of the project‘s developers. 

The real acquisition cognitive factor effort increased around mid-project (60% towards the end), 

which means that unusual effort was expended after mid-project to acquire new knowledge. This 

indicates that something went wrong, as it is unusual after mid-project to expend any significant 

effort on the acquisition of new knowledge. The adjusted curve is representative of measurements 

on successful projects. 

Figure 4.5 shows the real and adjusted verification cognitive factor cumulative effort. The 

verification cognitive factor involves mainly test-related activities. Usually, this curve is almost 

linear from mid-project to the end of the project, which can be observed as a constant slope for 

the project duration, which is the behavior represented by the adjusted curve. The SFLphone 

project ("real‖ curve) put an extra burden on the verification activities, as observed by the 

increase in the slope starting at 55% of project completion.  
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Figure 4.4: Real and Adjusted Acquisition Cognitive Factor Cumulative Effort 

 

 

Figure 4.5: Real and Adjusted Verification Cognitive Factor Cumulative Effort 
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Figure 4.6 shows that extra effort on the realization cognitive activities started at the 55% point of 

the coding effort. A strong level of coding activities was maintained until the very end of the 

project. The adjusted curve of the coding activity shows a smoothing at 80% of project 

completion, which is observed in successful projects.   

These curves provide only a partial picture of the extra effort attributable to the documentation 

issues. Unimplemented functionalities required a significant effort expended on design, test 

plans, test cases, and meetings with the industrial partner, which were not taken into 

consideration in this analysis.   

Moreover, the team‘s disappointment when they realized that the desired product could not be 

delivered, as well as the client‘s frustration when they received a different product than expected, 

were not incorporated into this analysis. 

 

 

Figure 4.6: Real and Adjusted Realization Cognitive Factor Cumulative Effort 
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To maximize reuse benefits, we recommend adding a stronger process practice enforcing 

reusable code validation and including a feedback loop. 

Figure 4.7 details the reusable code validation practice. The reusable component is used by the 

reuser as the input artifact. The reuser is responsible for validating the component‘s reusability. 

This activity produces a reusability report as the output artifact. Then, a reviewer will revise the 

reusability report to ensure that it is reliable. The revised reusability report will be sent to the 

reuser, if needed. This strong feedback loop will prevent improper enforcement of component 

reusability validation, as was the case in the SFLphone project. 

 

 

Figure 4.7: Reusable Code Validation Practice 

The reusable code validation practice must be completed prior to architectural and design 

activities, because important information will come out of the practice which could influence 

architectural and design decisions. Moreover, this practice will help in managing technological 

risk, because a better understanding of a component‘s functionalities will facilitate subsequent 

effort estimation.  

4.7 Conclusions 

The reuse of free/libre open source software components is a recommended strategy. However, it 

is important to understand the possible consequences of such a choice. Based on the literature and 

the results of this case study, FLOSS documentation appears ambiguous, imprecise, and out of 
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date. This leads to effort being expended fixing preventable issues. In the case of the SFLphone 

project, at least 200 hours were lost due to the ambiguity of FLOSS documentation. We suggest 

that the enforcement of a reusable code validation practice would lower free/libre open source 

component reuse effort. 
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CHAPITRE 5  

 

IS DESIGN USEFUL IN SMALL SOFTWARE PROJECTS? 

AN EXPLORATORY CASE STUDY 

5.1 Abstract 

It is generally accepted that there are discrepancies between design artifacts and implementation. 

These discrepancies have been studied from the design erosion or software evolution 

perspectives. Many approaches have been proposed to retrofit or reverse engineer the source code 

in lieu of design. Other approaches recognize the discrepancies and focus on keeping the best of 

design and implementation. Other approaches insure information continuity from the design to 

the source code. The purpose of this study is to understand the mechanisms leading to 

discrepancies by analyzing a case study of a software development project based on a disciplined 

software development process. Unlike design in traditional engineering where the blueprint 

artifacts are abstract models of products to be implemented, software design artifacts are rather 

images of product possibilities. We found that discrepancies between the designed and the 

implemented classes are a consequence of the implementation activities rather than the result of a 

design evolution.  

5.2 Introduction 

Design activity is a major component of any software process approaches. It is generally accepted 

that there are discrepancies between design artifacts and resulting implementations. Many works 

have been interested in finding relationship between design and code. This paper analyses the 

emergence of discrepancies between design activities and resulting implementation.   This work 

sheds some light on this aspect by analyzing the data collected during an industrial software 

development project.   

Some authors call design erosion the drift between design and implementation (van Gurp & 

Bosch, 2002). They have found that software designs tend to erode over time to the point that 

redesigning from scratch becomes a viable alternative compared to prolonging the life of the 

existing design. They demonstrate that design erosion is inevitable because of the way software is 
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developed. They have found evidence of architectural drift, vaporized design decisions and 

design erosion. An important conclusion is that even an optimal design strategy for the design 

phase does not deliver an optimal design.  

Others prefer to call it software evolution (Li, Etzkorn, Davis, & Talburt, 2000).  In this study, 

three metrics—System Design Instability, Class Implementation Instability, and System 

Implementation Instability—are used for the purpose of measuring object-oriented (OO) software 

evolution. The metrics are used to track the evolution of an OO system in an empirical study. 

They performed a study of design instability that examines how the implementation of a class can 

affect its design. This study determines that some aspects of OO design are independent of 

implementation, while other aspects are dependent on implementation. 

Many researchers have proposed to bridge the gap between design artifacts and implementation 

by reverse engineering the implementation into design artifacts. The software engineer might use 

a reverse engineering system to derive a high-level model from the source code. These derived 

models are useful because they are, by their very nature, accurate representations of the source. 

Although accurate, the models created by these reverse engineering systems may differ from the 

models sketched by engineers.   

Many studies have investigated the relationships between these so-called design metrics and 

product quality in terms of fault-proneness (Yuming & Hareton, 2006; Briand, Wu, & Lounis, 

2001).  Other studies have used OO design metrics to evaluate the testability of the resulting 

designed software units (Subramanyan & Krisnan, 2003). Almost all facets of OO software have 

been analyzed in terms of OO design metrics, such as predicting effort (Baudrya & Le Traon, 

2005) and predicting maintenance (Alshayeb & Li, 2003). Some researchers, however, are 

questioning the prediction capabilities of OO metrics and their usefulness (Fioravanto & Nesi, 

2001). Most of these studies capture the results yielded by what their authors call design metrics. 

In fact, it is the modeled representation of the design of the implemented classes that they are 

capturing, those classes being retrofitted into UML representations. 

For many developers the original design artifacts are important and effort must be made to bridge 

the gap between design and implementation. The software reflection model technique permits an 

engineer to summarize structural information extracted from the source within the framework of 

a high-level model (Murphy, Notkin, & Sullivan, 2001). It provides a means of bridging the gap 
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between the high-level models commonly used by engineers to reason about a software system 

and the system artifacts that are the software system. 

Another approach is to check the compliance of OO design with respect to source code 

(Antoniol, Caprile, Potrich, & Tonella, 2000). They recover an "as is" design from the code and 

compare the recovered design with the actual design. Verification of the design-code compliance 

is the basic step to produce an updated version of a design. Since the design represents an 

abstraction of the implementation, relations between classes in the design are expected to be all 

present in the code, while additional relations in the code can be regarded as implementation 

details. Our study shows that it is not as simple. 

Another approach is to insure information continuity. Each software artifact along the software 

development cycle should be the refinement of the artifacts of the previous phase. It should be 

consistent with the previous artifact and it should be possible to trace information along the 

phased development process. Many approaches try to limit the discontinuity of information 

across different models used in the software process.  

A model connectors approach is proposed as ways for bridging information across models in the 

software life cycle (Medvidovic, Grunbacher, Eegyed, & Boehm, 2003). In particular, they have 

devised a set of techniques for bridging different design models, both at the same level and across 

levels of abstraction. Connectors between models satisfy two primary goals: to transform model 

information or to compare model information.  

Another paper describes an integrated traceable software development approach in the context of 

a use case design methodology (Kim & Carlson, 2001). The foundation for these approach lies in 

partitioning the design schemata into a layered architecture of functional components called 

design units. The proposed code generation technique focuses on creating a skeletal code 

framework at the design stage to get control over the quality of the code and establish a 

manageable relationship between design and the actual implementation. The proposed design 

concept provides a framework for supporting traceability through the software development 

lifecycle. There are many software tools that tend to preserve the continuity between the class 

designs and the implementation.  

The purpose of this study is to understand the emergence of discrepancies between the software 

design activities in a plan-driven software development process and its implementation. Section 2 



67 

 

describes the industry-based software project on which this study is based.  Section 3 presents a 

model for the cognitive activities involved in the design process. Section 4 discusses the finding 

of this research and its validity. 

5.3 Description of the Project 

The requirements for the project came from a collaborating avionics industry. The objective of 

the project was to build a software tool for editing and configuring systems based on ACS 

(Avionics Core Software) architecture. The ACS Library is a set of C++ classes, which are the 

building blocks for developing large-scale avionics systems. The functionalities of the new tool 

had to be based on class structures taken from the ACS libraries, and had to improve the 

productivity associated with building systems based on this library. This new software tool also 

had to be capable of integration into existing tools.  

This project was carried out by senior (fourth-year) students in the Studio course in software 

engineering at the École Polytechnique de Montréal, which is an elective capstone, project-

oriented course offered during the last term. Teams of Studio course students must follow a 

prescribed plan-driven software engineering process.  Previous empirical studies on Studio 

activities concerned such topics as cognitive activities (Germain & Robillard, 2003) and 

comparing the strengths of engineering-based processes to those of the agile methodologies 

(Germain & Robillard, 2005). 

The Unified Process for EDUcation (UPEDU) (Robillard et al., 2003), is an adapted version of 

the Rational Unified Process (RUP) (Kruchten, 2000). Its objective is to define a software 

process which is appropriate to the project and only the activities and artifacts relevant to the 

targeted projects are retained. The software process for the Studio is well defined, and all the 

activities and artifact templates can be viewed on the UPEDU website.   

All data used for this observational study were collected through online effort slips filled out by 

participants. The data collection scheme was adapted from a core framework which included the 

following data elements for each effort slip: 

 Participant ID 

 Date  

 Activity performed (one short sentence in free format) 

 Input and output artifacts  
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 Effort expended (with a 45 minutes granularity) 

  

The participants had been trained to fill out the effort slips correctly, and the slips were checked 

regularly by the instructors in order to ensure their validity. Ethical issues were handled 

according to Canadian policy for research involving humans (NSERC, 2005). 

This analysis takes into account only the effort that is relevant to software process activities. 

Examples of effort not considered are the effort expended on training, on setting up the 

development environment and on preparing the project presentations for design and product 

deliveries. 

The parameters of the 14-week project are the following: The students form a team of five 

members.  They are assigned a dedicated room and are required to spend a day and a half of 

teamwork on the project. They are coached by an expert from the industry, who visits them once 

a week, and by an instructor from the school, who visits them often during their weekly working 

sessions to coach them on software process issues. The instructor is not involved in the resolution 

of any design or coding issues. The team is required to present a design of the new product to the 

client before starting the programming activities. In the case reported here, the client was 

satisfied with the design presented and stated that it was consistent with the level of design 

expertise in his organization. The effort expended exclusively on the design activities accounts 

for 10% of the total effort.    

5.3.1 Class Categories 

The software product delivered by the Studio students is made up of 163 classes.  This product, 

like most real industrial software products, was not built from scratch.  The project involved 

adding functionalities to an existing software product. The 163 classes fall into 6 categories of 

design activities:  

1. The reused category contains 121 classes reused from an existing library.  

2. The modified category contains 6 classes that were partially reused, since they were 

modified during the implementation phase without being documented during the design 

phase.  

3. The adapted category contains 9 classes that were designed to be partially reused. 
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4. The added category contains 5 new classes that were designed specifically for the 

product. 

5. The created category contains 22 new classes that were created during the 

implementation phase without any previous design.  

6. The deleted category contains 3 classes that were designed, but were not implemented. 

 

Figure 5.1 presents a model of the class categories. The box on the right hand-side of the figure 

represents the implemented product made up of the 163 classes. The box at the top represents the 

library, which is the source of the 136 classes (121 reused + 6 modified + 9 adapted), and the 

illuminated cloud at the bottom represents the mind resource for the 27 new added (5) or created 

(22) classes. Design activities represented by the broken line box in the middle were involved in 

the 14 adapted (9) or added (5) classes.  

 

Figure 5.1: Model of class origin 

On a class basis, the design activities take into account only 14 classes out of the 42 implemented 

classes, which accounts for little more than 30% of the product‘s implemented classes.   
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Figure 5.2: Size in number of executable statements of the implemented classes 

The class perspective must be complemented with the size perspective. Figure 5.2 shows the size 

in number of executable statements for each of the implemented classes in decreasing order of 

number of executable statements. The largest class contains more than 850 executable statements, 

while almost 60% of the classes have fewer than 30 executable statements. The designed classes 

account for almost 80% of the executable statements.   

 

Figure 5.3: Size in number of executable statements of the designed classes  

that have been added and adapted 
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Figure 5.3 shows that the design activities are concentrated in large classes that have been 

adapted from existing classes or in the design of new added classes. A static analysis of the 

source code reveals a very high correlation between the number of executable statements and 

cyclomatic complexity.   

Figure 5.4 presents the model of the product structure in terms of total size and number of classes 

percentage for the four categories of implemented classes.  It is observed that more than 75% 

(35% + 42%) of the total number of executable statements involves design activities, and that 

these account for only a third (12% + 22%) of the total number of classes. It is important to stress 

that these statements were not designed, but they implement classes that have been designed. A 

more detailed analysis shows, for example, that some features must have been designed, although 

we cannot find any corresponding classes in the design artifact and that some features were 

designed, but implemented in different classes than the one designed. These are cases of 

mismatches between designed modifications and class implementations.   

 

Figure 5.4:  Product perspectives in terms of executable statements and number of classes for the 

designed classes and the classes not designed 
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We found that these class discrepancies between the designed and the implemented classes are a 

consequence of the implementation activities rather than the result of a design evolution. Design 

analysis based only on the implemented class names could be misleading.  

5.4 Design Process Activities 

In software engineering, design refers to a process discipline, or series of activities.  Software 

design artifacts are different from the technical blueprints  found in the civil or mechanical 

engineering, which must be strictly followed.  Software engineering design activities address how 

the system will accomplish the functional requirements, and these include algorithms, 

input/output formats, interface descriptions and data definitions. Defining architecture is part of 

the design process.  

Software design is found to be a cognitive opportunistic process leading to the crystallization of 

an entity, which is the "image of possibility".  

Cognitive activities refer to the mental process by which knowledge is acquired and recorded. A 

set of cognitive actions is opportunistic when we must explore further and find missing 

information to complete the task. Knowledge is partially and incrementally gathered as 

opportunities present themselves, which in turn depend on the cognitive availability of the 

necessary material. This is not a well-planned process (Robillard, 2005). 

Figure 5.5 presents the relationship between cognitive activities and knowledge sources in 

software development. This knowledge flow model is related to Nonaka & Takeuchi‘s (1995) 

knowledge creation model. 

The four rounded-corner boxes in Figure 5.5 represent knowledge sources. External information 

can be general or specific to the project under development. General information may come from 

various sources, such as the Web, a paper, or a book. Specific information comes from any of the 

project‘s pre-existing documentation. A development artifact is a physical representation of 

knowledge, such as a software requirement specification (SRS), a design specification, or a test 

plan. Source code strictly includes executable statements and comments. Tacit knowledge is 

individual knowledge built from interacting with other knowledge sources. 
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Figure 5.5: Knowledge flow model 

The arrows in Figure 5.5 represent the cognitive activities and the percentage next to an arrow 

represents the effort expended in a cognitive activity relatively to the project's total effort. The 

acquisition cognitive activity (15% of total effort) is involved when a developer needs to increase 

his tacit knowledge from external information. The crystallization cognitive activity (24% of total 

effort) is the translation of a developer‘s mental representation of a concept (tacit knowledge) 

into an artifact (explicit knowledge), such as a use-case diagram or an architectural plan. 

Crystallization, by means of design artifact, is the representation of the "image of possibility".  

Without this representation, the original "image of possibility" becomes an undefined artifact, 

and in time can vanish altogether. This is not to say that the crystallized image does not change 

during the subsequent implementation process, for it does, and often quite drastically. The 

realization cognitive activity (23% of total effort) also involves the translation of tacit knowledge 

into explicit knowledge, but requires, in addition, technical know-how, which is related to source 

code production. The validation cognitive activity (14% of total effort) involves bidirectional 

knowledge flow between tacit knowledge and development artifacts (explicit knowledge), in 

order to validate the consistency of those two knowledge sources. The verification cognitive 

activity (21% of total effort) is like validation, except that source code is the knowledge source, 
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thus involving technical know-how. The work planning cognitive activity (4% of total effort) 

mostly involves developers‘ synchronization of the project‘s planning and progress knowledge. 

 

Figure 5.6: Model of cognitive activities performed during the design process 

Figure 5.6 illustrates the cognitive activities specific to the design process as observed in this 

exploratory case study. Acquisition activities, which account for 13% of the design effort, mainly 

involve reading and searching on the Web for information that is relevant for the design. 

Crystallization activities, which account for 56% of the design effort, involve diagramming 

(mostly with the software tool Together Control Center) and producing the design artifacts. 

Validation activities, which account for 25% of the design effort, involve review and inspection 

of the design artifacts. Work planning activities, which account for 6% of the design effort, 

involve design planning and progress tracking. All retrofitting or refactoring activities based on 

the implemented classes are excluded from the design activities category.  

The design phase is mainly collaborative (56% of the design effort), unlike other project 

development phases (requirements, implementation, tests), with 39% of the total effort being 

collaborative.  
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more explicit than others. Professional software design is inherently complex to study for the 

following reasons: 

 It is mainly a cognitive activity which cannot be measured directly; 

 It is performed by team of developers, and it is difficult to know who is doing what; 

 The activity boundaries between requirements, design and implementation are fuzzy; 

 Design artifacts are often not implemented as designed, and some implemented artifacts 

have not been designed. 

 There is a wide variability in design environments and constraints regarding the nature of 

the application, the team‘s experience and the project parameters.  

For all these reasons and many others, any study based on a case study is one of a kind. Data 

values are only indicative of one very specific case. However, many successful software products 

are being made by teams of developers involved in some design activity. We believe that studies 

like this one are important because they shed light on an essential process which might not differ 

fundamentally from team to team.   

The whole process of developing software is a complex endeavor because it involves mainly 

cognitive activities, and the final product is a set of instructions to enable a computer to 

implement some functionality. There are four major cognitive steps that must be performed by 

the team of developers at the project level:  

1. to understand the requirements,  

2. to understand the product to be developed, 

3. to implement the code instructions, and 

4. to test the resulting computer program.  

These cognitive steps are combined and performed concurrently to varying degrees, depending 

on the software process adopted. The design process observed in this case study is essentially the 

second cognitive step, which is to understand the product to be developed.   

This exploratory case study provides some insight into the design process. The various values 

obtained from the measurements based on this case study quantify to some extent the 

characteristics of the design process, which are summarized below.  
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Designers concentrate on the major features to be implemented, which are grouped together in a 

few software units with little concern as to the size of the software unit. The important concern is 

the relationships among the various features. The design effort, which is the effort expended to 

understand the product to be implemented, is found to be of the same order of magnitude as the 

effort expended to understand the requirements. Excluding the deleted and reused classes, four 

class categories are involved in software projects:  

1. classes created during the implementation phase (without design) because they could not 

be foreseen during the design phase or are small utility classes;  

2. classes added as designed;  

3. reused classes redesigned to be adapted for the new applications; and 

4. reused classes modified during the implementation phase without any previous design.   

The design process, which concentrates on the added and adapted classes, targets most (75%) of 

the implemented executable statements.  

The design process is made up of four major cognitive activities, which are: 

1. the acquisition of knowledge, 

2. the processing of this knowledge by exchanging information with teammates,  

3. the crystallization of this knowledge on appropriate design artifacts, and,  

4. the validation of the crystallized knowledge by inspecting the artifacts.  

The process is opportunistic and depends on the knowledge available at any given time.  

Design activities have two purposes. One is to provide design artifacts and the other is to 

synchronize the mental models of the developers on the product to be implemented. Design 

artifacts were not realized as blueprint in this case study. They were rather the crystallization with 

the UML notation of an incomplete image of the product.  These artifacts were used to improve 

teammates understanding of the product to be implemented.  

In this study, we found the design process to be most useful as a set of cognitive activities 

performed to enable the understanding of the product to be implemented.   

Regardless of the software process, disciplined or agile, teammates need to synchronize their 

mental image of the product to be developed. In order for teammates to do so on the same mental 

model, some design artifacts are needed to crystallize ideas in the mind. Starting the 
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implementation phase by ensuring that all teammates have the same image of the product in mind 

reduces the risks of worthless implementation effort.  

This study has led to two major observations that have an impact on any software process 

paradigm. 

OBSERVATION A: Design is shared learning. 

The whole design process is found to be a mechanism for cognitive synchronization of the 

teammates on their understanding of the perceived product. Indeed, more than half (56%) of the 

design effort is expended in collaborative activities (crystallization, validation and work 

planning). These activities are opportunistic in the sense that they occur in a just-in-time or on an 

as-needed basis.  

OBSERVATION B: Software design constitutes the elaboration of an "image of possibility". 

This study shows that design is not performed as in the traditional engineering process. Software 

design artifacts constitute an intermediate crystallization of a model of the product, or, more 

poetically, an "image of possibility".  

Discrepancies between design artifacts and implementation can be characterized as either 

undocumented design improvements or redesign related to better requirements understanding.  

In the analyzed project, the three-tier MVC (Model-View-Controller) architectural pattern was 

employed to isolate business logic from user interface. For the View tier, discrepancies are 

related to minor design improvements. For the Controller tier, discrepancies are related to 

significant design improvements, especially to the most significant class of the project (853 

executable statements). Significant discrepancies reveal that designed "images of possibility" 

were not adequate for implementation. For the Model tier, 17 classes were created during 

implementation, without prior design. However, the changes are related to minor redesign due to 

better understanding of requirements and to design optimization. Even though a significant 

number of classed were created during implementation, only 443 new executable statements were 

added. Moreover, we observed that developers will not design small classes, and that the big 

design classes will be implemented more conveniently in smaller classes. We believe that this 

behavior is acceptable because the team mentally constructed more or less the same model during 

the design activity.  
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5.6 Conclusion 

This study explores the design process with respect to the classes, the executable statements and 

the activities performed. Data were captured from an industrial project realized by a team of five 

senior students as part of their capstone project.  The resulting software product was of good 

quality, and has been integrated into the participating industry‘s software environment.  The 

project was successful and all the milestones were achieved on schedule. One of these was to 

deliver and present the design of the product before the implementation iterations began.   

We make two observations, which are that design activities are primarily used to share the 

learning on the product to be implemented, and that software design artifacts, unlike traditional 

engineering artifacts, are actually images of possibilities.   

It is reasonable to believe that these observations may hold for a certain number of software 

projects which are similar to the one addressed in this case study.   

Studies with students can be criticized on the basis of their degree of external validity, and this is 

a subject which has been discussed in the literature. The degree of validity of this study has been 

increased by relying on senior students enrolled in their last semester and who have had some 

internship experience in industry. The line between these students and novice professionals is 

becoming blurred. From studies that have been conducted to evaluate the difference between 

software engineering students and the professional software developers used as subjects in 

empirical studies, it has been found that the differences are only minor. It has, in fact, been 

concluded that software engineering students may substitute for professional software developers 

under certain conditions (Carver et al., 2003).   

Research areas that flow from this study can be divided into two categories. The first relates to 

the generality of the findings of this case study. The impacts of our study regarding design 

activities should be validated in a variety of industrial settings.  The second relates to process 

activities and the expected content of a design artifact. 
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CHAPITRE 6  

 

RÉSULTATS COMPLÉMENTAIRES 

 

6.1 Introduction 

L'objectif de ce chapitre est de présenter des résultats complémentaires permettant de caractériser 

les projets intégrateurs finaux en génie logiciel C6, C7 et C8. Cette caractérisation repose sur la 

méthodologie ATS et la modélisation par flux de connaissances (section 6.2). D'abord, les 

caractéristiques générales des projets seront présentées (section 6.3). Par la suite, les 

développeurs seront caractérisés par l'analyse de leur production de jetons (section 6.4). Puis, 

l'effort sera caractérisé sous plusieurs perspectives (section 6.5). Finalement, une discussion 

présentera les contributions issues de ce chapitre (section 6.6). 

6.2 Modèle de flux de connaissances 

Afin de permettre la caractérisation de projets logiciels selon une perspective de flux de 

connaissances, un modèle de flux de connaissances a été développé selon l'approche de théorie à 

base empirique (grounded theory). Selon cette approche, un modèle est élaboré à partir de 

données, jusqu'à l'atteinte d'une saturation conceptuelle, c'est-à-dire que le modèle représente 

adéquatement les concepts observés à partir des données. Ces données proviennent des jetons 

ATS consignés par les développeurs des projets intégrateurs entre 2006 et 2009. Un échantillon 

des ces jetons est présenté à l'annexe C. 

Avant de parvenir à la saturation conceptuelle, plusieurs itérations du modèle ont été nécessaires. 

D'abord, des "types de connaissances" ont été proposés dans un article de conférence SEKE'07 

(annexe A).  Ces "types de connaissances" s'inspirent du modèle organisationnel de création de 

connaissances de Nonaka et Takeuchi (1995). Ainsi, 8 types de connaissances sont définis pour 

représenter le flux de connaissances en développement logiciel: la conversion collaborative 

tacite-tacite (CTT), la conversion tacite-explicite (TE), la conversion collaborative tacite-explicite 

(CTE), la conversion explicite-explicite (EE), la conversion collaborative explicite-explicite 
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(CEE), la conversion explicite-tacite (ET), la conversion collaborative explicite-tacite (CET) et le 

savoir-faire (KH). 

Par la suite, l'article de conférence eKNOW'09 (annexe B) regroupe les 8 types de connaissances 

présentés précédemment en 5 facteurs cognitifs pour représenter le flux de connaissances dans un 

projet logiciel: synchronisation (conversion TT), cristallisation (conversion TE d'artefacts), 

réalisation (conversion TE de code source), acquisition (conversion ET) et validation (conversion 

EE). En fait, pour des fins de simplification, ce modèle ne différencie pas les activités cognitives 

collaboratives des activités cognitives individuelles. De plus, une différenciation de conversion 

TE est introduite entre la cristallisation d'artefacts et la réalisation de code source. 

Puis, un autre modèle de flux de connaissances a été développé et présenté dans l'article soumis à 

la revue Empirical Software Engineering (chapitre 3). Ce modèle définit désormais 6 facteurs 

cognitifs: cristallisation (conversion TE d'artefacts), réalisation (conversion TE de code source), 

validation (conversion EE d'artefacts), vérification (conversion EE de code source), acquisition 

(conversion ET) et organisation du travail. Comparativement à la version précédente du modèle, 

la synchronisation est répartie dans les autres facteurs cognitifs, la vérification de code source est 

introduite afin de la différencier de la validation d'artefacts et l'organisation du travail est ajoutée, 

pour différencier les activités cognitives relatives à la planification et à l'avancement du projet. 

Finalement, la dernière itération du modèle de flux de connaissances, présentée à la figure 6.1, 

met l'accent sur les connaissances tacites individuelles, qui sont centrales au modèle de flux de 

connaissances. Le facteur cognitif d'organisation du travail a été supprimé puisqu'il n'est pas lié 

strictement au développement logiciel, mais plutôt à la gestion de projet. Ainsi, le modèle 

représente les possibilités de conversion de connaissances explicites et tacites au sein d'un projet 

de développement logiciel sur une base individuelle.  
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Figure 6.1 : Modèle du flux de connaissances d'un développeur logiciel 

Les trois boîtes aux coins arrondis de la figure 6.1 représentent des sources de connaissances 

explicites, alors que le nuage au centre représente les connaissances tacites d'un développeur. 

L'information externe peut être générale ou spécifique au projet à développer. L'information 

générale peut provenir de diverses sources telles que le Web, un article ou un manuel. 

L'information spécifique provient de toute documentation préexistante du projet. Un artefact de 

développement est une représentation physique de connaissances telles qu'un SRS, ou un plan de 

tests. Le code source n'inclut que les déclarations (statements) et les lignes de commentaires. Les 

connaissances tacites sont construites par l'interaction entre un développeur et des sources 

d'information ou d'autres développeurs.  

Les flèches de la figure 6.1 représentent les facteurs cognitifs, qui constituent le flux de 

connaissances entre les sources de connaissances explicites et les connaissances tacites. 

L'acquisition survient lorsqu'un développeur doit augmenter ses connaissances tacites à l'aide 

d'information externe. La cristallisation est la traduction du modèle mental d'un concept 

(connaissance tacite) par un développeur en artefact (connaissance explicite) tel qu'un diagramme 

de cas d'utilisation ou document d'architecture logicielle. La réalisation implique aussi la 

traduction de connaissances tacites en connaissances explicites, mais nécessite également un 

savoir-faire (know-how) technique, ce qui est relié à la production de code source. La validation 

implique un flux de connaissances bidirectionnel entre des connaissances tacites et des artefacts 
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de développement (connaissances explicites), de manière à la valider la cohérence de deux 

sources de connaissances. La vérification est similaire à la validation à l'exception que le code 

source est la source de connaissances, impliquant donc un savoir-faire (know-how) technique.  

Le modèle de flux de connaissances est limité aux activités de développement logiciel. Les 

activités de gestion de projet ne sont pas prises en considération dans le modèle puisqu'elles ne 

sont pas spécifiques au développement logiciel. Rédiger un plan de développement logiciel est un 

exemple d'activité de gestion de projet. 

Afin de faciliter la compréhension, le tableau 6.1 présente l'interprétation de mots-clefs de 

description d'un jeton ATS,  en termes de facteur cognitif du modèle de flux de connaissances. 

Tableau 6.1 : Mots-clefs des facteurs cognitifs 

Facteurs cognitifs Mots-clefs de la description d’un jeton 

Acquisition 
apprentissage, compréhension, lecture, 

réflexion, clarification 

Cristallisation 

élaboration, rédaction, ébauche, 

développement, modification, mise à jour 

(sauf code source) 

Validation 

révision, validation, correction 

(d‘artefact) et discussion 

(synchronisation ou validation) 

Réalisation 
implémentation, codage, documentation 

(code), prototypage 

Vérification 

débogage, correction (de code), test 

(coder les tests, exécuter les tests), 

discussion (technique) 

 

6.3 Caractéristiques des projets analysés 

Cette section présente, aux tableaux 6.2 à 6.4, les caractéristiques principales des projets C6, C7 

et C8. Ces informations faciliteront l'analyse des résultats. 

Toutes les équipes comportent cinq membres. 
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Tableau 6.2 : Caractéristiques du projet C6 

Caractéristique Détails 

Objectifs 

 Offrir un environnement graphique de conception de systèmes 

avioniques. 

 Générer le code source et les fichiers reliés au modèle conçu. 

Processus 

logiciel 
Traditionnel, adapté du UPEDU 

Système de  

saisie de jetons 

Outil web TSCT, très structuré et simple à saisir, sans flexibilité de 

saisie 

Équipe 

 Utilisation formelle de la programmation par paire (2 développeurs). 

 Chef d'équipe apprécié et efficace. 

 Un membre est particulièrement porté sur la cristallisation. 

 Un membre peu impliqué dans le projet. 

 

Tableau 6.3 : Caractéristiques du projet C7 

Caractéristique Détails 

Objectifs 
 Permettre de modifier les hiérarchies de groupes Doxygen de projets 

de documentation à partir d‘une interface graphique conviviale. 

Processus 

logiciel 
Traditionnel, adapté du UPEDU 

Système de  

saisie de jetons 
Fichier Excel semi-structuré offrant une flexibilité de saisie. 

Équipe 

 Chef d‘équipe exerçant un fort leadership. 

 Trois membres très motivés et consciencieux. 

 Un membre particulièrement porté sur la cristallisation. 

 Un membre moins impliqué dans le projet. 
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Tableau 6.4 : Caractéristiques du projet C8 

Caractéristique Détails 

Objectifs 
 Extraire les valeurs de champs alphanumériques et de champs 

symboliques à partir d‘une vidéo présentant des écrans de tableaux 

de bord. 

Processus 

logiciel 
Traditionnel, adapté du UPEDU 

Système de  

saisie de jetons 
Fichier Excel semi-structuré offrant une flexibilité de saisie. 

Équipe 

 Membres aux personnalités très différentes. 

 Changement de chef d‘équipe après la mi-projet. 

 Un membre particulièrement portée sur la cristallisation. 

 Un membre à la personnalité très discrète. 

 

6.4 Caractérisation des développeurs 

Il est possible de caractériser la rigueur des développeurs grâce à l'analyse de leurs jetons. Les 

identificateurs des développeurs ont été anonymisés par les lettres A, B, C, D, E, précédées de 

l'identificateur du projet (C6, C7 ou C8). Les tableaux 6.5 à 6.7 présentent les principales 

caractéristiques des jetons individuels des projets C6 à C8. Ainsi, pour chaque développeur, le 

nombre de jetons individuels, l'effort individuel, la médiane de la durée des jetons et la médiane 

du nombre de caractères de description des jetons sont spécifiés. La médiane de la durée des 

jetons individuels est un indicateur aussi appelé granularité de jetons, permettant de juger de la 

représentativité des jetons. Une médiane plus faible indique une plus grande représentativité des 

jetons d'un développeur. La médiane du nombre de caractères de description de jetons permet de 

juger de la précision d'un jeton. Dans ce cas, une médiane plus élevée indique une plus grande 

précision des jetons d'un développeur. 
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Tableau 6.5 : Caractéristiques des jetons individuels du projet C6 

Développeur Jetons Effort (h) 
Médiane durée 

jeton (h) 

Médiane 

caractères 

C6A 338 218 0,50 90 

C6B 304 204 0,50 84 

C6C 266 172 0,50 79 

C6D 243 174 0,50 78 

C6E 108 112 0,92 39 

Tableau 6.6 : Caractéristiques des jetons individuels du projet C7 

Développeur Jetons Effort (h) 
Médiane durée 

jeton (h) 

Médiane 

caractères 

C7A 233 93 0,33 55 

C7B 245 123 0,42 62 

C7C 243 159 0,58 97 

C7D 108 88 0,83 36 

C7E 65 69 1,00 32 

Tableau 6.7 : Caractéristiques des jetons individuels du projet C8 

Développeur Jetons Effort (h) 
Médiane durée 

jeton (h) 

Médiane 

caractères 

C8A 152 107 0,54 38 

C8B 110 108 0,67 59 

C8C 80 77 0,83 49 

C8D 102 102 0,75 38 

C8E 151 207 1,25 66 

 

À la lumière de l'analyse des tableaux 6.5 à 6.7, il est possible de caractériser la rigueur relative 

des développeurs. Par exemple, C6A, avec une granularité de 0,5 heure et une précision de 90 

caractères est plus rigoureux que C6E, avec une granularité de 0,92 heure et une précision de 39 

caractères. 

Il est possible de pousser plus loin l'analyse en étudiant la distribution de la durée des jetons 

individuels de chaque développeur. Les figures 6.2 à 6.4 présentent ces distributions pour les 

développeurs des projets C6, C7 et C8. 
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Figure 6.2 : Distribution de la durée des jetons individuels du projet C6 

 

 

Figure 6.3: Distribution de la durée des jetons individuels du projet C7 
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Figure 6.4 : Distribution de la durée des jetons individuels du projet C8 

En observant les figures 6.2 à 6.4, on remarque qu'il existe principalement 3 types de profil de 

distribution de jetons. Ces profils sont présentés à la figure 6.5. 

Les profils de distribution de jetons α, β et γ, présentés à la figure 6.5, offrent un outil d'analyse 

de la représentativité des jetons et de la rigueur des développeurs. Ainsi, les développeurs de 

profil α portent une attention prioritaire à la production de jetons, alors que les développeurs de 

profil β y portent une attention importante. Ces deux profils de développeurs produisent des 

jetons très représentatifs de leurs efforts, donc très fiables. Les développeurs de profil γ 

considèrent les jetons comme un mal nécessaire, ce qui ne veut pas dire que leurs jetons ne sont 

pas représentatifs de leur effort investi, mais ils sont moins fiables que ceux des deux autres 

profils. Grâce aux efforts de validation en cours de projet de la part de l'équipe de recherche, les 

jetons du "pire" profil sont suffisamment fiables pour les besoins de cette recherche. 
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Figure 6.5 : Profils de distribution de jetons α, β et γ 
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Le tableau 6.8 résume les profils par équipe de développeur. 

Tableau 6.8 : Caractéristiques des jetons individuels du projet C8 

Projet 
Développeurs 

au profil α 

Développeurs 

au profil β 

Développeurs 

au profil γ 

C6 C6C, C6D C6A, C6B C6E 

C7 C7A, C7B C7C C7D, C7E 

C8 C8B C8A, C8D C8C, C8E 

 

L'analyse du tableau 6.8, permet de confirmer une relative uniformité des jetons des 3 projets. 

Conséquemment, il raisonnable d'utiliser la totalité des jetons pour les analyses subséquentes. 

6.5 Caractérisation de l'effort 

Cette section vise à caractériser l'effort investi dans les projets C6, C7 et C8. Pour ce faire, la 

répartition de l'effort global sera analysée (section 6.5.1), la répartition et l'évolution du travail 

individuel et participatif seront étudiées (section 6.5.2), le séquencement cognitif sera expliqué 

(section 6.5.3) et la relation entre l'effort et le code source sera analysée (section 6.5.4) . 

6.5.1 Effort global 

Afin de parvenir à caractériser l'effort investi dans les projets C6, C7 et C8, il importe d'abord de 

comprendre la répartition d'effort global. Les tableaux 6.9 à 6.11 présentent l'effort investi, ainsi 

que la répartition relative des 6 facteurs cognitifs du modèle de flux de connaissances dans les 

projets C6, C7 et C8.  

Tableau 6.9 : Effort investi par facteur cognitif pour le projet C6 

Facteur cognitif Effort (h) Répartition 

Acquisition 150 15% 

Cristallisation 236 24% 

Vérification 207 21% 

Validation 141 14% 

Réalisation 228 23% 

Organisation du travail 36 4% 

Total 997 100% 
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Tableau 6.10: Effort investi par facteur cognitif pour le projet C7 

Facteur cognitif Effort (h) Répartition 

Acquisition 60 8% 

Cristallisation 192 26% 

Vérification 163 22% 

Validation 106 14% 

Réalisation 143 19% 

Organisation du travail 85 11% 

Total 750 100% 

Tableau 6.11 : Effort investi par facteur cognitif pour le projet C8 

Facteur cognitif Effort (h) Répartition 

Acquisition 100 11% 

Cristallisation 186 21% 

Vérification 209 24% 

Validation 104 12% 

Réalisation 180 20% 

Organisation du travail 108 12% 

Total 887 100% 

 

Les tableaux 6.9 à 6.11 permettent d'observer plusieurs tendances concernant la répartition 

d'effort dans un projet intégrateur.  

Pour les projets C6, C7 et C8, le rapport entre la cristallisation et la validation est relativement 

constant soit de 1,7 à 1,9. De plus, le rapport entre la réalisation et la vérification est également 

relativement constant soit de 0,8 à 1,1. Les efforts de vérification et validation sont virtuellement 

constants à respectivement 35%, 36% et 36%. Finalement, les efforts de cristallisation et 

réalisation sont relativement constants à respectivement 47%, 47% et 41%. 

L'acquisition est variable d'un projet à l'autre passant de 8% à 15%. En fait, l'acquisition 

nécessaire est variable selon la différence entre les connaissances déjà acquises par les 

développeurs d'une équipe avant le début du projet et les connaissances qui seront nécessaires 

dans le cadre du projet.  

L'organisation du travail est aussi variable passant de 4% à 12%. Ce facteur cognitif dépend de 

plusieurs caractéristiques relatives au fonctionnement de l'équipe de développeurs dont le degré 

de maillage d'une équipe et le type de leadership exercé.  
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En somme, malgré les différences des 3 projets (nature du projet, composition de l'équipe, outils 

utilisés), il existe plusieurs constantes relativement à l'effort investi dans les différents facteurs 

cognitifs. Ce phénomène laisse présager la possibilité d'établir des modèles prédictifs. 

6.5.2 Travail individuel et participatif 

Au sein du développement d'un projet logiciel, les activités sont exécutées de manière 

individuelle (1 développeur) ou participative (2 développeurs ou plus). L'analyse de la répartition 

et de l'évolution de l'effort permet de mieux comprendre les besoins en travail participatif au sein 

d'un projet de développement logiciel. 

Le tableau 6.12 présente la répartition de l'effort individuel par rapport à l'effort participatif à 2 

développeurs et à 3 développeurs ou plus. 

Tableau 6.12 : Répartition de l'effort individuel et participatif des projets C6 à C8 

Projet 
Effort individuel 

(%) 

Effort participatif  

à 2 développeurs (%) 

Effort participatif à 3 

développeurs ou plus (%) 

C6 60 26 14 

C7 67 11 22 

C8 69 3 28 

 

On remarque que l'effort individuel totalise environ les deux tiers de l'effort total pour les projets 

C7 et C8, avec respectivement 67% et 69% d'effort individuel. En ce qui a trait au projet C6, 

l'effort individuel moins important (60%) s'explique par le fait que 2 des 5 développeurs ont 

pratiqué la programmation par paire. Ainsi, pour le projet C6, l'effort participatif à 2 

développeurs dépasse le quart (26%) d'effort total, contrairement aux projets C7 et C8 

(respectivement 11% et 3%). 

Les figures 6.6 à 6.8 présentent l'évolution de l‘effort individuel, participatif à 2 développeurs et 

participatif à 3 développeurs et plus des projets C6 à C8. 

Le type de représentation graphique choisi nécessite d'abord la division d'un projet en tranches 

d‘effort de 5%. Par exemple, pour un projet de 800 heures, les heures 0 à 40 correspondraient à la 

mesure d'avancement du projet (axe des abscisses) à 5%, les heures 40 à 80 correspondraient à la 

mesure à 10% et ainsi de suite. Pour chaque tranche de 5% d'avancement, les proportions 
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relatives à l'effort individuel, participatif à 2 développeurs et participatif à 3 développeurs et plus 

sont déterminées. Pour une mesure d'avancement de 5% (en abscisses), la somme des efforts 

totaux (effort à 1, à 2 ou à 3+ développeurs) totalise toujours 5% (en ordonnées). En d'autres 

mots, l'effort total (axe des ordonnées) est représenté de manière non cumulative. 

 

Figure 6.6 : Évolution de l'effort individuel et participatif du projet C6 

À titre d'exemple d'interprétation de la figure 6.6, on remarque qu'à 65% d'avancement du projet 

(correspondant à la tranche d‘effort de 60% à 65%), 3,8 % de l‘effort total a été effectué par 1 

participant, 1,0% par 2 participants et 0,2% par 3 participants ou plus. 

Les figures 6.6 à 6.8 nous permettent de dresser deux constats. D'une part, l'effort individuel est 

l'effort majoritaire tout au long du projet, sauf en ce qui a trait aux premiers 20% (C6 et C7) à 

40% (C8) d'avancement du projet. On remarque cependant une exception de 70% à 80% 

d'avancement du projet C6, ce qui s'explique par la programmation par paire pratiquée 

uniquement par cette équipe. D'autre part, l'effort participatif est surtout concentré dans les 

premiers 25% (C6) à 45% (C8) d'avancement du projet. Cela s'explique par la nécessité pour les 

différents développeurs d'une équipe de synchroniser leur modèle mental du produit à réaliser. 

Cette phase de synchronisation est surtout associée aux disciplines de requis et de conception. La 

stabilisation du modèle mental de l'équipe facilite la discipline d'implémentation. Pour le reste du 

projet, une synchronisation est nécessaire de manière sporadique, comme on peut le voir dans les 

trois précédentes figures.  
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Figure 6.7 : Évolution de l'effort individuel et participatif du projet C7 

 

Figure 6.8 : Évolution de l'effort individuel et participatif du projet C8 
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Figure 6.9 : Évolution de l'effort d'acquisition individuel et participatif des projets C6 à C8 
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Figure 6.10 : Évolution de l'effort de cristallisation individuel et participatif des projets C6 à C8 
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Figure 6.11: Évolution de l'effort de validation individuel et participatif des projets C6 à C8 
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Figure 6.12 : Évolution de l'effort de réalisation individuel et participatif des projets C6 à C8 
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Figure 6.13 : Évolution de l'effort de vérification individuel et participatif des projets C6 à C8 
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Figure 6.14 : Évolution de l'effort d'organisation du travail individuel et participatif  

des projets C6 à C8 
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La figure 6.9 présente l'évolution de l'effort d'acquisition du travail individuel et participatif des 

projets C6 à C8. D'une part, sans surprise, l'acquisition est très majoritairement individuelle. La 

seule portion notable d'effort participatif a lieu au tout début du projet (premiers 10% 

d'avancement), ce qui s'explique par la première rencontre de l'équipe avec le client, où celui-ci 

détaille ses besoins aux développeurs. D'autre part, on remarque que la plus grande partie de 

l'effort d'acquisition est investi dans la première moitié du projet. De plus, dépendamment de la 

nature du projet, donc des besoins en connaissances des développeurs d'un projet, l'effort 

d'acquisition évolue de manière opportuniste, dans une perspective juste-à-temps, ce qui 

confirme le comportement observé par Robillard (2005).  

La figure 6.10 présente l'évolution de l'effort de cristallisation du travail individuel et participatif 

des projets C6 à C8. On constate que la cristallisation comporte principalement deux phases. La 

première phase s'échelonne du début du projet et s'étend environ jusqu'à la mi-projet. Il s'agit de 

la phase où les développeurs cristallisent "l'image de possibilité" du logiciel en devenir (cf. 

chapitre 5). L'effort, au cours de cette phase, est à la fois autant participatif qu'individuel. La 

deuxième phase occupe les derniers 20% du projet. À ce stade, les développeurs procèdent au 

retrofitting des artefacts, c'est-à-dire qu'ils mettent à jour les artefacts pour qu'ils reflètent 

l'implémentation réelle du produit. Contrairement à la première phase, l'effort est très 

majoritairement individuel, puisqu'il n'y a que très peu de synchronisation à faire ce stade. 

La figure 6.11 présente l'évolution de l'effort de validation du travail individuel et participatif 

des projets C6 à C8. La validation est intimement liée à la cristallisation, ce qui explique 

plusieurs similitudes entre les évolutions respectives. En effet, au sein du développement 

logiciel, le facteur cognitif de validation regroupe les activités visant à assurer que les artefacts 

et les modèles mentaux de l'équipe sont valides. Par ailleurs, la validation est majoritairement 

participative et elle est concentrée dans la première moitié du projet, tout comme la 

cristallisation. De plus, une pointe d'effort à la fin du projet coïncide avec le retrofitting de fin de 

projet. Dans le cas du projet C8, l'absence de pointe à la toute fin du projet indique une 

validation déficiente. 

La figure 6.12 présente l'évolution de l'effort de réalisation du travail individuel et participatif 

des projets C6 à C8. La réalisation consiste tout simplement en la production du code source. La 

forte majorité de l'effort de réalisation se concentre entre 40% et 90% d'avancement du projet. 
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L'effort antérieur à 40% correspond à l'élaboration de prototypes. La réalisation est très 

majoritairement individuelle, sauf pour le projet C6, dans lequel deux développeurs 

programmaient en binôme. 

La figure 6.13 présente l'évolution de l'effort de vérification du travail individuel et participatif 

des projets C6 à C8. De la même manière que la validation est liée à la cristallisation, la 

vérification est intimement liée à la réalisation. En effet, le facteur cognitif de vérification fait 

principalement référence au débogage, au codage de tests et à l'exécution des tests. La 

vérification est fortement individuelle, à l'exception de l'équipe ayant pratiqué la programmation 

par paire (C6). 

La figure 6.14 présente l'évolution de l'effort d'organisation du travail individuel et participatif 

des projets C6 à C8. L'organisation du travail est virtuellement uniquement participative (3 

développeurs et plus) et est globalement de moindre importance comparativement aux 5 autres 

facteurs cognitifs. Par ailleurs, l'effort est plus important lors des premiers 30% d'avancement, ce 

qui est dû au besoin plus important de s'organiser en début de projet. 

6.5.3 Séquencement cognitif 

Le séquencement cognitif permet d'analyser l'effort investi par un développeur dans les différents 

facteurs cognitifs, en tenant compte de leur temporalité relative. À titre d'exemple, les figures 

6.15 et 6.16 présentent deux vues complémentaires du séquencement cognitif du développeur 

C7A. Ainsi, la vue A-CV-RV (figure 6.15) associe les valeurs suivantes sur l'axe des ordonnées: 

1 pour l'acquisition, 2 pour la cristallisation et la validation et 3 pour la réalisation et la 

vérification. Par ailleurs, la vue A-CR-VV (figure 6.16) associe les valeurs suivantes sur l'axe des 

ordonnées: 1 pour l'acquisition, 2 pour la cristallisation et la réalisation et 3 pour la validation et 

la vérification. Le choix de présenter deux vues complémentaires est d'ordre conceptuel. La vue 

A-CV-RV regroupe les facteurs cognitifs relatifs à la production d'artefacts (cristallisation et 

validation) ainsi que de code source (réalisation et vérification), alors que la vue A-CR-VV 

regroupe les facteurs cognitifs d'externalisation (cristallisation et réalisation) ainsi que de 

combinaison (vérification et validation). 
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Figure 6.15 : Vue A-CV-RV du séquencement cognitif du développeur C7A  

 

Figure 6.16 : Vue A-CR-VV du séquencement cognitif du développeur C7A 

Afin de faciliter la compréhension des graphiques de séquencement cognitif, les figures 6.17 et 

6.18 présentent un agrandissement des premiers 10% d'effort des figures 6.15 et 6.16.   
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Figure 6.17 : Vue partielle A-CV-RV du séquencement cognitif du développeur C7A  

 

Figure 6.18 : Vue partielle A-CR-VV du séquencement cognitif du développeur C7A  
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Pour permettre l'analyse du séquencement cognitif, il est nécessaire d'observer les deux vues 

complémentaires A-CV-RV et A-CR-VV. Par exemple, le segment a (figure 6.17) et son 

complément a' (figure 6.18) indiquent que le développeur C7A a consacré son premier pourcent 

d'effort en acquisition. Le segment c (figure 6.17) indique qu'entre 1,0% et 1,2% de l'effort total 

de C7A, le développeur était en cristallisation ou en validation. Le segment c' (figure 6.18)  

indique qu'entre 1,0% et 1,2% de l'effort total de C7A, le développeur était en cristallisation ou 

en réalisation. Par l'analyse complémentaire de c et c', on peut conclure qu'entre 1,0% et 1,2% de 

l'effort total de C7A, le développeur était en cristallisation. Ainsi, il est aussi possible de déduire 

qu'entre 1,2% et 2,0% (e et e'), C7A était en acquisition, qu'entre 2,0% et 2,4% (g et g'), C7A 

était en validation et qu'entre 2,4% et 2,7% (g et i'), C7A était en cristallisation. Par ailleurs, les 

segments b, b', d, d', f, f' et h' illustrent tous une transition entre deux facteurs cognitifs. 

Les vues complémentaires A-CV-RV et A-CR-VV présentent donc une "signature" du  

séquencement cognitif d'un développeur, permettant d'analyser son effort investi dans les 

différents facteurs cognitifs, en tenant compte de leur temporalité relative. 

6.5.3.1 Profils de développeurs 

À partir de la signature du séquencement cognitif des développeurs, il est possible de définir des 

profils de développeurs. 

Tableau 6.13 : Profils des développeurs 

Profil Caractéristiques 

Cristallisateur Priorité accordée à la cristallisation et à la validation des artefacts 

Codeur Priorité accordée à réalisation et à la vérification du code source 

Polyvalent Priorité varie selon les besoins du projet 

Agent libre Détachement par rapport au projet, comportement cognitif erratique 

 

Le tableau 6.13 présente les 4 profils de développeurs identifiés dans les projets intégrateurs C6, 

C7 et C8.  
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Le cristallisateur a d'abord et avant tout une préoccupation pour la production d'artefacts, soit la 

cristallisation et la validation des artefacts. Un exemple de ce profil est le développeur C7A 

(figures 6.15 et 6.16). On remarque que tout au long du projet, le développeur investit la majorité 

de son temps en cristallisation ou en validation. 

Le codeur investit globalement un effort très important en production de code source, soit la 

réalisation et la vérification. Un exemple de ce profil est le développeur C8E (figures 6.19 et 

6.20). On remarque que le codeur C8E commence la réalisation aussi tôt qu'à 9% (il s'agit en fait 

de prototypage), comparativement au cristallisateur C7A qui commence la réalisation à 38%. 

Globalement, C8E investit peu d'efforts en production d'artefacts, consacre la majorité de ses 

efforts en production de code source, tout en acquérant des connaissances de manière 

opportuniste. 

 

Figure 6.19 : Vue A-CV-RV du séquencement cognitif du développeur C8E  
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Figure 6.20 : Vue A-CR-VV du séquencement cognitif du développeur C8E 

 

 

 

Figure 6.21 : Vue A-CV-RV du séquencement cognitif du développeur C7C  
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Figure 6.22 : Vue A-CR-VV du séquencement cognitif du développeur C7C 
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Figure 6.23 : Vue A-CV-RV du séquencement cognitif du développeur C6E  

 

Figure 6.24 : Vue A-CR-VV du séquencement cognitif du développeur C6E 
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Le polyvalent investit ses efforts selon les besoins du projet. Un exemple de ce profil est le 

développeur C7C (figures 6.21 et 6.22). On remarque que le polyvalent C7C investi la grande 

majorité de ses efforts en production d'artefacts pour les premiers 30% d'effort. Pour le reste du 

projet, le polyvalent investit la majorité de ses efforts en production de code source, tout en 

investissant un effort non négligeable en production d'artefacts.  

L'agent libre ressent peu d'attachement pour le projet, ce qui a pour conséquences un 

comportement cognitif erratique. Un exemple de ce profil est le développeur C6E (figures 6.23 et 

6.24). On remarque, pour les premiers 35% d'effort, une production d'artefacts entrecoupée de 

relativement longues acquisitions, suivie d'une production de code source entrecoupée à la fois 

d'acquisition et de production d'artefacts. Cette signature témoigne d'un détachement du projet. 

6.5.3.2 Tendances globales du séquencement cognitif 

Outre les 4 profils déterminés, l'analyse du séquencement cognitif permet de découvrir deux 

tendances globales dignes de mention, soit l'approche opportuniste et le besoin continu de 

vérification et de validation. 

D'une part, en observant n'importe quelle signature de séquencement cognitif, bien que la 

figure 6.19 du développeur C8E soit particulièrement explicite à ce sujet, on remarque l'existence 

de l'approche opportuniste, à l'effet que l'acquisition se fait dans une perspective juste à temps. En 

d'autres mots, le développeur acquiert les connaissances qu'il croit nécessaires, au moment qu'il 

juge opportun. Cette observation confirme l'irréalisme du modèle de processus en cascades, 

introduit par Royce. En effet, il n'est pas possible pour un développeur d'acquérir toutes les 

connaissances nécessaires à un projet dès le début. Ainsi, les modèles de processus incrémental et 

itératif sont beaucoup plus proches de la réalité de développement logiciel. 

D'autre part, en observant n'importe quelle vue A-CR-VV, bien que la figure 6.22 du développeur 

C7C soit particulièrement explicite à ce sujet, on remarque le besoin continu de vérification et 

validation au sein d'un projet. En effet, tout développeur doit constamment s'assurer que la 

cristallisation et la réalisation sont conformes aux règles établies, d'où le très grand nombre 

d'oscillations entre CR (cristallisation et réalisation) et VV (vérification et validation) sur toute 

vue A-CR-VV. Il s'agit d'un comportement qui, bien qu'intuitif, n'avait jamais été démontré pour 

l'ensemble d'un projet. 
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6.5.4 Relation avec le code source 

Un des aspects intéressants de la caractérisation de l'effort concerne l'analyse de sa relation avec 

le code source réalisé. Afin d'établir cette relation, une mesure de productivité du code source 

s'avère nécessaire. À cet effet, la mesure du nombre de déclarations (exécutables et déclaratives) 

est plus précise que la mesure du nombre de lignes de code, car elle est moins influencée par le 

style de programmation des développeurs. Le tableau 6.14 présente, pour les projets C6, C7 et 

C8, le nombre de déclarations, l'effort de réalisation, le ratio de déclarations par heure (calculé en 

divisant le nombre de déclarations par l'effort de réalisation) et l'effort d'acquisition. 

Tableau 6.14 : Réalisation de code source et effort d'acquisition 

Projet Déclarations 
Effort de 

réalisation (h) 

Ratio de déclarations 

par heure 

Effort d'acquisition 

(% d'effort total) 

C6 3462 228 15 15 

C7 4268 143 30 8 

C8 3842 180 21 11 

 

Comme on peut le remarquer au tableau 6.14, le ratio de déclarations par heure varie du simple 

au double (15 à 30), inversement de l'effort d'acquisition (15% à 8%). La figure 6.25 illustre cette 

relation linéaire qui possède une forte corrélation. Conséquemment, il est raisonnable d'affirmer 

que l'effort d'acquisition a un impact majeur sur la productivité d'une équipe en terme de 

réalisation de code source. 

 

Figure 6.25 : Corrélation entre la réalisation de code source et l'effort d'acquisition 
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6.6 Discussion 

L'objectif de ce chapitre était de caractériser les projets intégrateurs C6, C7 et C8. Il s'agit en fait 

d'une étude de cas multiples de type exploratoire reposant sur la méthodologie ATS et la 

modélisation par flux de connaissances (cf. chapitre 3). Ainsi, pour permettre l'analyse des 

projets, leurs jetons ont été codifiés comme un des 6 facteurs cognitifs du modèle: acquisition, 

cristallisation, validation, réalisation, vérification ou organisation du travail.  

Au cours de la partie exploratoire de la recherche, l'effort s'est avéré être le vecteur le plus 

prometteur de caractérisation. L'effort a donc été étudié sous plusieurs angles soient la répartition 

de l'effort global, la répartition et l'évolution du travail individuel et participatif, le séquencement 

cognitif, ainsi que la relation entre l'effort et le code source. 

En ce qui a trait à l'analyse de l'effort global, trois tendances ressortent: 

1. La vérification et validation d'un projet comptent pour un peu plus du tiers de l'effort 

total. En d'autres mots, plus du tiers d'un projet est consacré à assurer la conformité des 

artefacts et du code source. 

2. La cristallisation et la réalisation d'un projet comptent pour un peu moins de la moitié de 

l'effort total. Autrement dit, près la moitié d'un projet est consacré à élaborer des artefacts 

et à coder du code source. 

3. La cristallisation est environ deux fois plus importante que la validation en terme d'effort. 

Par contre, la réalisation et la validation ont environ la même importance. Toute 

proportion gardée, deux fois plus d'effort est consacré à s'assurer de la conformité du 

code source, par rapport aux artefacts. 

Concernant la répartition et l'évolution du travail individuel et participatif, sept tendances 

ressortent: 

1. L'effort individuel d'un projet est d'environ les deux tiers, alors que l'effort participatif est 

d'environ le tiers de l'effort total. Cette affirmation est vraie seulement si la 

programmation par paire n'est pas pratiquée par une équipe de développeurs. 

2. L'acquisition est très majoritairement individuelle, est investie majoritairement dans la 

première moitié du projet et évolue de manière opportuniste dans une perspective juste à 
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temps. De plus, son importance relative est variable selon la différence entre les 

connaissances déjà acquises par les développeurs d'une équipe avant le début du projet et 

les connaissances qui seront nécessaires dans le cadre du projet. 

3. La cristallisation comporte principalement deux phases. Une phase autant individuelle que 

participative où les développeurs cristallisent "l'image de possibilité" du logiciel en 

devenir et une deuxième phase, individuelle, de retrofitting des artefacts. 

4. La validation est intimement liée à la cristallisation, est majoritairement participative et 

elle est concentrée dans la première moitié du projet. 

5. La réalisation est très majoritairement individuelle (sauf dans le cas de programmation par 

paire) et est concentrée entre 40% et 90% d'avancement du projet. En fait, le 

comportement majoritaire des développeurs suivant un processus discipliné consiste à 

compléter la cristallisation des artefacts avant de commencer la réalisation. Or, la 

cristallisation n'étant qu'une "image de possibilité" et pas nécessairement la solution qui 

sera implémentée, cette approche n'est pas optimale, puisqu'elle mènera à un décalage 

entre la conception et le produit final (cf. chapitre 5). 

6. La vérification est intimement liée à la réalisation, est majoritairement individuelle (sauf 

dans le cas de programmation par paire) et est concentrée dans la deuxième moitié du 

projet. 

7. L'organisation du travail est virtuellement uniquement participative (3 développeurs et 

plus) et est plus important lors des premiers 30% d'avancement, ce qui est dû au besoin 

plus important de s'organiser en début de projet. Ce facteur cognitif offre une indication 

sur la dynamique interne de l'équipe, notamment le degré de maillage d'une équipe et le 

type de leadership exercé. 

Le séquencement cognitif est une contribution significative, à l'effet qu'il n'existe aucune 

référence dans la littérature relativement à son application sur la totalité d'un projet, plutôt que 

des périodes de quelques heures. Il en résulte l'observation de quatre profils de développeurs: 

1. Le cristallisateur, qui investit la majorité de son temps en production d'artefact, soit en 

cristallisation ou en validation; 
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2. Le codeur, qui investit globalement un effort très important en production de code source, 

soit la réalisation et la vérification; 

3. Le polyvalent, qui investit ses efforts selon les besoins du projet; 

4. L'agent libre, qui est détaché du projet, ce qui implique un comportement cognitif 

erratique. 

Une telle compréhension des profils naturels des développeurs pourra faciliter la détermination 

de rôles au sein d'une équipe. 

Dans un autre ordre d'idées, en analysant la relation entre la production de code source et l'effort 

d'un projet, il a été déterminé qu'il existait une corrélation entre la réalisation de code source et 

l'effort d'acquisition. En effet, plus l'effort d'acquisition est grand, plus la productivité de 

réalisation de code source est faible. Ce phénomène s'explique par la complexité cognitive de 

l'acquisition. En effet, l'assimilation efficace de connaissances explicites en connaissances 

implicites est nécessaire avant la réalisation de code source (qui est en fait transformation de 

connaissances tacites en connaissances explicites). Un développeur qui aurait déjà assimilé les 

connaissances nécessaires à la réalisation serait avantagé en termes de productivité, 

comparativement à un développeur qui doit effectuer l'acquisition de manière opportuniste. 

Aucunes données concernant le lien entre les besoins d'acquisition et la réalisation de code source 

n'existe présentement dans la littérature en génie logiciel. Il s'agit donc d'une contribution 

importante. 

  



115 

 

CHAPITRE 7  

 

DISCUSSION GÉNÉRALE 

 

Les travaux présentés dans cette thèse offrent de multiples contributions relativement à la 

compréhension de l'aspect cognitif du développement logiciel et plus précisément sous une 

perspective de flux de connaissances. Les contributions sont de trois ordres: méthodologiques, 

théoriques et pratiques. 

7.1 Contributions méthodologiques 

Une contribution importante de cette thèse a trait à la méthodologie ATS, présentée en détail dans 

l'article méthodologique du chapitre 3. Le principal avantage de la méthodologie ATS est qu'elle 

permet l'analyse du développement logiciel sous une perspective différente de ce qui est possible 

avec les autres méthodologies utilisées en développement logiciel. En l'occurrence, elle permet la 

saisie de données cognitives menant à la compréhension du développement logiciel selon une 

perspective de flux de connaissances.  

Comme présenté à la section 3.3.2, les techniques de collection de données peuvent être classées 

en trois catégories, selon le degré de contact humain requis. La technique utilisée dépend bien sûr 

de l'objectif de mesure et le choix exige un compromis entre la précision des données recueillies 

et l'effort d'analyse des données. Ainsi, la méthodologie ATS est une technique de premier degré 

qui  a été développée pour pallier à l'absence de technique de saisie de données cognitives pour la 

durée totale d'un projet.  

Deux  techniques de collection de données attirent l'attention, car elles sont utilisées dans le cadre 

de problématiques complémentaires à cette thèse. Cherry & Robillard (2009) utilisent 

l'enregistrement audio-vidéo, dans le cadre d'une observation participative, afin de caractériser les 

interactions ad hoc au sein d'une équipe de développement logiciel. Or, la technique retenue, 

étant donné sa lourdeur d'analyse, oblige à procéder par échantillonnage, soit dans ce cas 34 

heures d'enregistrements audio-vidéo. Par ailleurs, Coman, Sillitti, & Succi (2009) utilisent un 

système AISEMA (Automated In-process Software Engineering Measurement and Analysis) afin 
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de parvenir à comprendre la nature des interactions entre un développeur et son ordinateur, au 

cours du développement logiciel. Cette technique de collection de données de troisième degré a 

l'avantage d'être non intrusive, tout en permettant de recueillir des données sur toute la durée du 

projet. Or, bien que cette technique permette une analyse comportementale des développeurs, 

l'aspect cognitif ne peut qu'être déduit, ce qui est caractéristique des techniques de troisième 

degré. En somme, les techniques de collecte de données utilisées en génie logiciel varient selon 

l'objectif de mesure et exigent un compromis entre la précision des données recueillies et l'effort 

d'analyse des données.  

En ce qui a trait à la précision et à la validité des jetons d'activité (ATS), la granularité offre une 

indication sur la rigueur des développeurs et donc sur la fiabilité des jetons. D'abord, l'utilisation 

de jetons d'activité comme technique de collecte de données est plus fiable et précise que 

l'utilisation de "feuilles de temps" (work diary). En effet, alors que les feuilles de temps 

s'intéressent principalement à la durée de tâches, les jetons d'activités visent à enregistrer les 

efforts réels déployés dans des activités cognitives. De plus, afin d'assurer une bonne fiabilité des 

jetons, les jetons d'activité ont été validés régulièrement, en cours de projet, en s'assurant de leur 

complétude et de leur représentativité auprès des développeurs. Finalement, une validation de la 

cohérence des jetons a été effectuée à la fin des projets.  

La fiabilité des jetons, compte tenu du facteur humain, qui peut être évaluée entre 80% (profil γ) 

et 95% (profil α) selon les développeurs, avec une moyenne de 85% à 90% selon l'équipe, a été 

prise en compte au sein de ces travaux de recherche. En effet, la grande majorité des analyses 

s'intéresse à des phénomènes plus généraux tels que la caractérisation de profils, de signatures et 

de tendances, plutôt qu'à des phénomènes de granularité fine. 

Finalement, la méthodologie ATS a été utilisée lors de projets intégrateurs en génie logiciel. Dans 

ce contexte, la méthodologie offre l'avantage supplémentaire de sensibiliser les développeurs à ce 

qu'ils font. En effet, les développeurs devant consigner dans des jetons d'activités (ATS) tout 

effort de développement logiciel, ils doivent nécessairement prendre conscience de ce qu'ils font, 

ce qui constitue un apport méthodologique supplémentaire. 
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7.2 Contributions théoriques 

La contribution théorique la plus importante de cette thèse est certainement le développement 

d'un modèle de flux de connaissances. À ce propos, les trois articles des chapitres 3, 4 et 5 

constituent autant d'exemples d'utilisation pertinente du modèle de flux de connaissances, 

permettant de mieux comprendre le développement logiciel sur le plan cognitif.  

Il est pertinent de rappeler que le modèle de flux de connaissances est une théorie à base 

empirique (grounded theory). Le modèle a été élaboré, au gré de multiples itérations, à partir des 

données des jetons d'activités. À ce sujet, il est possible de suivre en partie l'évolution du modèle 

en comparant les deux articles de conférence (cf. annexes A et B) et le modèle "final" présenté 

dans les articles des chapitres 3, 4 et 5. 

Outre les contributions théoriques déjà discutées dans les articles, la forte corrélation observée 

entre un effort d'acquisition élevé et une productivité du code source faible est particulièrement 

porteuse. En effet, une telle corrélation identifiée à l'aide d'une étude de cas multiples (3 cas) 

mérite d'être vérifiée à plus grande échelle. Des modèles prédictifs d'estimation d'effort 

pourraient éventuellement être développés grâce à cette découverte.  

7.3 Contributions pratiques 

Étant donné que les expérimentations ont été faites dans le cadre de projets intégrateurs, les 

contributions pratiques permettront d'abord et avant tout d'améliorer ces projets, et ce, sous quatre 

aspects: la formation des équipes, le choix du projet, le choix du processus et la supervision des 

équipes. 

7.3.1 Formation des équipes 

L'identification de quatre profils de développeur (cristallisateur, codeur, polyvalent, agent libre) 

au sein des projets étudiés permettra d'orienter la formation des équipes. Notamment, la 

complémentarité des profils dans une équipe est un aspect à considérer. À cet effet, une bonne 

compréhension des profils naturels des développeurs pourra faciliter la détermination de 

responsabilités au sein d'une équipe. 
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7.3.2 Choix du projet 

Les besoins d'acquisition d'une équipe par rapport à un projet constituent un facteur capital à 

considérer lors du couplage d'une équipe avec un projet intégrateur. En effet, il est crucial de bien 

évaluer les besoins d'acquisition, soit la différence entre le savoir et le savoir-faire nécessaires au 

développement d'un projet comparativement au savoir et au savoir-faire que possède 

préalablement une équipe. Des exemples de projets intégrateurs des dernières années démontrent 

que des besoins d'acquisition trop importants mènent à un échec du projet ou vers la livraison 

d'un produit ne répondant pas aux attentes du client. 

7.3.3 Choix du processus 

À la lumière des résultats présentés dans cette thèse, les développeurs devraient se voir proposer 

un processus logiciel favorisant le partage de connaissances.  

Plus précisément, il est suggéré: 

 D'inclure une boucle de validation de l'acquisition, ce qui constitue une généralisation de 

la pratique de validation de code réutilisation, présentée au chapitre 4. En effet, étant 

donné l'importance cruciale de l'acquisition dans le développement logiciel, une telle 

validation serait bénéfique à l'équipe. 

 De promouvoir la validation d'artefacts et la vérification de code source de manière 

participative, possiblement par l'introduction de programmation par paire. Il s'agit d'un 

moyen privilégié de partage de connaissances. Par ailleurs, l'introduction de séances de 

revue de code permettrait aux développeurs de détecter des défauts et d'assurer une 

uniformité dans le code, tout en synchronisant en équipe les connaissances relatives au 

produit développé. 

 Étant donné que les développeurs sous-estiment souvent l'importance de la boucle de 

rétroaction dans les moments critiques d'un projet, d'insister sur l'importance de la 

synchronisation et de la validation de connaissances, en particulier lors d'activités 

antérieures au code, soit principalement lors de la formalisation des exigences, de 

l'élaboration de l'architecture et de la conception.  
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 De bien faire comprendre que la conception n'est qu'une image de possibilités, ce qui 

implique que l'élaboration d'une conception "parfaite" n'a aucun intérêt puisqu'il est très 

probable que l'implémentation prendra ses distances de cette image de possibilités. 

7.3.4 Supervision des équipes 

Finalement, bien qu'ils soient généralement peu populaires auprès des développeurs, les jetons 

d'activité sont très utiles dans une perspective de supervision des équipes. En effet, les jetons 

fournissent au superviseur des informations détaillées de l'effort investi, facilitant ainsi le suivi de 

projet. Par ailleurs, comme mentionnée précédemment, l'obligation pour les développeurs de 

remplir les jetons d'activité les sensibilise à ce qu'ils font.  
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CONCLUSION ET RECOMMANDATIONS 

 

Les contributions originales de cette thèse à l‘avancement des connaissances concernant l'aspect 

cognitif du développement logiciel sont nombreuses.  

D'abord, la méthodologie ATS est détaillée, permettant la saisie de données cognitives et ainsi 

facilitant l'analyse du développement logiciel selon une perspective de flux de connaissances. En 

effet, le modèle de flux de connaissances est une théorie à base empirique (grounded theory), qui 

a été élaborée à partir des données des jetons d'activités (ATS), en se basant sur le modèle de 

création de connaissance de Nonaka & Takeuchi (1995). Un tel modèle facilite la compréhension 

du développement logiciel sur le plan cognitif. 

Puis, le modèle de flux de connaissances est mis à profit afin d'analyser les conséquences de la 

qualité de documentation dans le cadre de la réutilisation de composants FLOSS. Il en résulte que 

la documentation incomplète ou inexistante de certains composants FLOSS constitue un danger 

potentiel à leur réutilisation. Pour pallier à ce risque, une pratique de validation de code 

réutilisable est proposée. 

De plus, les discordances entre les artefacts de conception et l'implémentation de solution sont 

étudiées d'un point de vue cognitif. Il en résulte que la conception est une discipline opportuniste, 

majoritairement participative et incluant principalement trois activités cognitives soit l'acquisition 

de connaissances à partir de sources externes, la cristallisation des connaissances dans des 

artefacts, ainsi que la validation des connaissances cristallisées, par l'inspection des artefacts. 

Ainsi, les discordances entre les artefacts de conception et l'implémentation s'expliquent par le 

fait que la conception n'est qu'une image de possibilités. 

Par ailleurs, trois projets intégrateurs sont caractérisés relativement à la production de jetons et à 

l'effort investi. D'une part, l'analyse des jetons d'activité (ATS) permet de porter un jugement sur 

la rigueur des développeurs et donc sur la fiabilité des jetons, selon les profils α, β et γ. D'autre 

part, les facteurs cognitifs sont caractérisés selon leur caractère individuel et participatif. À cet 

effet, l'acquisition est très majoritairement individuelle et est investie majoritairement dans la 

première moitié du projet. La cristallisation comporte principalement deux phases. Une phase 

autant individuelle que participative où les développeurs cristallisent "l'image de possibilité" du 
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logiciel en devenir et une deuxième phase, individuelle, de retrofitting des artefacts. La validation 

est intimement liée à la cristallisation, est majoritairement participative et elle est concentrée dans 

la première moitié du projet. La réalisation est très majoritairement individuelle. La vérification 

est intimement liée à la réalisation, est majoritairement individuelle et est concentrée dans la 

deuxième moitié du projet. L'organisation du travail est virtuellement uniquement participative. 

Par ailleurs, le séquencement cognitif permet l'identification de quatre profils de développeurs: le 

cristallisateur, le codeur, le polyvalent et l'agent libre. Finalement, une forte corrélation a été 

observée entre un effort d'acquisition élevé et une productivité du code source faible, ce qui 

constitue une contribution majeure, de par son originalité et ses conséquences théoriques et 

pratiques.  

La principale limitation de cette thèse est au niveau de sa validité externe. En effet, 

l'expérimentation étant basée sur des projets intégrateurs développés par des étudiants, il est 

légitime de se questionner sur la validité des résultats dans d'autres conditions, notamment en 

milieu industriel. À ce sujet, Höst et al. (2000) concluent qu'il n'existe que des différences 

mineures entre les étudiants de dernière année de baccalauréat et les professionnels, concernant 

leur habileté à effectuer des tâches relativement simples requérant un jugement. De plus, Porter et 

al. (1995) ont obtenu des résultats similaires dans une étude des méthodes de détection pour 

l'inspection des requis logiciels conduits avec des étudiants et répliqués avec des professionnels 

(Porter & Votta, 1998). 

Face à cette limitation potentielle, il est recommandé de conduire les mêmes expérimentations 

dans un contexte industriel, de manière à prouver la validité externe des résultats. 

Une autre avenue de recherche recommandée concerne l'extension de la méthodologie. En effet, 

il a été démontré que la méthodologie ATS permet d'analyser le développement logiciel dans une 

perspective de flux de connaissances et il serait très intéressant d'observer la symbiose de cet 

aspect avec d'autres problématiques complémentaires telles que les interactions ad hoc au sein 

d'une équipe de développement logiciel et la nature des interactions entre un développeur et son 

ordinateur, au cours du développement logiciel. Ainsi, les développeurs devraient remplir des 

jetons d'activité, seraient enregistrés par des caméras audio-vidéo et un système AISEMA 

recueillerait des données comportementales. Cet amalgame de mesures a le potentiel d'offrir des 

données permettant de porter à un autre niveau la recherche empirique en génie logiciel.  
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Id Date H début H fin Effort P1 P2 P3 P4 P5 It Art. d'entrée Art. de sortie Discipline Rôle Activité de processus Description de l'activité

DM121 2007-02-05 11:40 11:50 00:10 B 3 CPA CPA Conception Ingénieur logiciel Concevoir les classes Début de la rédaction du CPA (adaptation du gabarit, écriture de la section 1).

DM123 2007-02-05 11:55 12:05 00:10 B 3 CPA CPA Conception Ingénieur logiciel Concevoir les classes Rédaction du CPA (suite de l'écriture de la section 1).

DM126 2007-02-05 12:20 12:30 00:10 B 3 CPA CPA Conception Ingénieur logiciel Concevoir les classes Rédaction du CPA (suite de l'écriture de la section 1).

DM127 2007-02-05 12:30 12:35 00:05 B E 3 RCU Connaissances Conception Analyste Réaliser les cas d'utilisation Discussion sur la méthode de parsage (conception et implantation).

PL120 2007-02-05 12:30 12:35 00:05 B E 3 RCU Connaissances Conception Analyste Réaliser les cas d'utilisation Discussion sur la méthode de parsage (conception et implantation).

DM128 2007-02-05 12:35 12:45 00:10 B 3 CPA CPA Conception Ingénieur logiciel Concevoir les classes Rédaction du CPA (suite de l'écriture de la section 1).

LC114 2007-02-05 13:30 14:00 00:30 A 3Documentation papierConnaissances Conception Ingénieur logiciel Formation Lecture et revision mentale des patron de conception (composite, Facade) dans le livre Design

LC115 2007-02-05 14:00 15:00 01:00 A 3 CUI CPA Conception Ingénieur logiciel Concevoir les classes Concevoir le diagramme de classe pour le cas critique et pour la logique et donnees sur Together

LC116 2007-02-05 15:00 15:30 00:30 A 3Documentation virtuelleConnaissances Conception Ingénieur logiciel Formation Lecture sur les patron de composite

LC117 2007-02-06 14:00 14:45 00:45 A 3 CPA Autre Conception Ingénieur logiciel Concevoir les classes effectuer un diagramme de sequence entre quelques classes du diagramme de classe pour determiner les methodes et les proprietes de chacune et verifier la pertinence de leur existence

JL83 2007-02-06 14:00 15:00 01:00 D 3 Autre Connaissances Formation Étudiant Formation Formation sur le drag and drop

LC118 2007-02-06 14:45 15:45 01:00 A 3 CPA CPA Conception Ingénieur logiciel Concevoir les classes Concevoir le diagramme de classe pour le cas critique et pour la logique et donnees sur Together

JL84 2007-02-06 15:30 16:30 01:00 D 3 Autre Prototype Implémentation Développeur Coder les composantes Travail sur le prototype

JL85 2007-02-06 16:30 17:30 01:00 D 3 Autre Prototype Implémentation Développeur Coder les composantes Travail sur le prototype

DM131 2007-02-06 22:00 22:25 00:25 B 3 RCU Documentation papier Requis Analyste Réaliser les cas d'utilisation Retranscrire le processus d'analyse des fichiers.

DM133 2007-02-07 10:55 11:10 00:15 B 3 RCU Documentation papierConception Analyste Réaliser les cas d'utilisation Retranscrire le processus d'analyse des fichiers.

DM134 2007-02-07 11:10 12:00 00:50 B 3 Processus Documentation papier Gestion Gestionnaire Réviser Dresser la liste des revues à effectuer.

DM135 2007-02-07 12:00 12:20 00:20 B 3 CPA CPA Conception Ingénieur logiciel Concevoir les classes Rédaction de la section 1.5 du CPA

DM136 2007-02-07 12:30 13:00 00:30 B 3 CPA CPA Conception Ingénieur logiciel Concevoir les classes Rédaction de la section 2.0 du CPA présentation général de l'architecture du système et de vue choisies pour la représenter.

DM137 2007-02-07 13:00 13:30 00:30 A B 3 CPA CPA Conception Ingénieur logiciel Concevoir les classes Discussion sur le diagramme de classe du cas d'utilisation

LC118b 2007-02-07 13:00 13:30 00:30 A B 3 CPA CPA Conception Ingénieur logiciel Concevoir les classes Discussion sur le diagramme de classe du cas d'utilisation

DM138 2007-02-07 13:30 13:40 00:10 B 3 CUI CUI Requis Analyste Modéliser les exigences Correction mineurs sur le CUI (modif. des points d'extension du cas d'utilisation critique

LC119 2007-02-07 13:50 14:20 00:30 A B D E 3 Discussion Connaissances Conception Ingénieur logiciel Réviser Discussion sur la méthode du drag and drop

JL87 2007-02-07 13:50 14:20 00:30 A B D E 3 Discussion Connaissances Conception Ingénieur système Réviser Discussion sur la méthode du drag and drop

PL121 2007-02-07 13:50 14:20 00:30 A B D E 3 Discussion Connaissances Conception Ingénieur logiciel Réviser Discussion sur la méthode du drag and drop

DM139 2007-02-07 13:50 14:20 00:30 A B D E 3 RCU Mémo Conception Analyste Réaliser les cas d'utilisation Discussion sur la méthode du drag and drop

LC120 2007-02-07 14:20 14:40 00:20 A B D E 3 Discussion Prototype Conception Ingénieur logiciel Réviser Revue sur la maquette d'interface 

JL88 2007-02-07 14:20 14:40 00:20 A B D E 3 Discussion Prototype Conception Ingénieur système Réviser Revue sur la maquette d'interface 

PL122 2007-02-07 14:20 14:40 00:20 A B D E 3 Discussion Prototype Conception Ingénieur logiciel Réviser Revue sur la maquette d'interface 

DM140 2007-02-07 14:20 14:40 00:20 A B D E 3 CUI Mémo Conception Analyste Modéliser les exigences Discussion préparatoire à la rencontre du client (sujet les maquettes d'interface).

DM141 2007-02-07 14:45 15:00 00:15 B 3 CPA CPA Conception Ingénieur logiciel Concevoir les classes Rédaction de la section 2.0 du CPA présentation général de l'architecture du système et de vue choisies pour la représenter.

JD120 2007-02-07 14:50 15:00 00:10 C 3 CUI CUI Requis Analyste Modéliser les exigences Liste de cas d'utilisation de vue

LC121 2007-02-07 15:05 15:50 00:45 A B C D E 3 Discussion Connaissances Requis Analyste Formaliser les besoins Discussion avec le client sur le parsing et la maquette d'interface

JD121 2007-02-07 15:05 15:50 00:45 A B C D E 3 Discussion Mémo Conception Réviseur Réviser Discussion avec le client principalement sur parsage et interfaces

JL89 2007-02-07 15:05 15:50 00:45 A B C D E 3 Discussion Connaissances Requis Analyste Formaliser les besoins Discussion avec le client sur le parsing et la maquette d'interface

PL123 2007-02-07 15:05 15:50 00:45 A B C D E 3 Discussion Connaissances Requis Analyste Formaliser les besoins Discussion avec le client sur le parsing et la maquette d'interface

DM142 2007-02-07 15:05 15:50 00:45 A B C D E 3 Connaissances Mémo Requis Analyste Réviser Rencontre avec le client (revue de maquette et du processus d'analyse des fichiers)

DM143 2007-02-07 15:50 16:00 00:10 A B 3 CPA Connaissances Conception Ingénieur logiciel Concevoir les classes Discussion sur la réalisation du CPA avec Liana

LC122 2007-02-07 15:50 16:00 00:10 A B 3 Discussion Connaissances Formation Étudiant Formation Discussion sur la réalisation du CPA

JD124 2007-02-07 16:20 16:40 00:20 C 3 SRS SRS Requis Ingénieur système Formaliser les besoins Modification du SRS suite à la rencontre du client

JD125 2007-02-07 16:40 17:00 00:20 A C D E 3Documentation virtuelleConnaissances Gestion Testeur Planifier les tests logiciels Discussion quant au test driven, choix de NUnit

PL126 2007-02-07 16:40 17:00 00:20 A C D E 3 PTL Mémo Tests Testeur Planifier les tests logiciels Prise de décision sur le choix de l'utilitaire de test

LC124 2007-02-07 16:40 17:00 00:20 A C D E 3 PTL Mémo Tests Testeur Planifier les tests logiciels Prise de décision sur le choix de l'utilitaire de test

JL92 2007-02-07 16:40 17:00 00:20 A C D E 3 Discussion Autre Tests Ingénieur système Planifier les tests logiciels Prise de décision sur l'utilitaire de test

JD126 2007-02-07 17:00 17:50 00:50 C 3 CUI CUI Requis Analyste Modéliser les exigences Début de rédaction des CU de vue, diagramme de CU dans Together

PL127 2007-02-07 17:00 17:20 00:20 E 3 Prototype Prototype Implémentation Programmeur Corriger les composantes corriger lancement exécutable

LC125 2007-02-07 17:15 18:15 01:00 A 3 CPA CPA Conception Ingénieur logiciel Concevoir les classes Concevoir le diagramme de classe pour le cas critique et pour la logique et donnees sur Together 

JL93 2007-02-07 17:20 17:50 00:30 D E 3 Prototype Autre Implémentation Ingénieur logiciel Coder les composantes implanter lancement exécutable avec add-in

PL128 2007-02-07 17:20 17:50 00:30 D E 3 Prototype Prototype Implémentation Programmeur Coder les composantes implanter lancement exécutable avec add-in

JD127 2007-02-07 17:50 18:10 00:20 C 3Documentation virtuelleConnaissances Conception Réviseur Réviser Pris connaissance / Révision du Diagramme de classes du cas critique

LC126 2007-02-08 21:00 22:00 01:00 A 3Documentation papier Autre Gestion Gestionnaire Gérer la configuration du produitlecture du document du client, le guide de programation.  Et creation de fichier resumant les plus importantes pratiques (Guidelines)

JD129 2007-02-09 08:35 09:15 00:40 C 3 CUI CUI Requis Analyste Modéliser les exigences Continué à détailler les CU de vue

JL95 2007-02-09 09:00 09:30 00:30 D 3 Connaissances Prototype Implémentation Ingénieur logiciel Coder les composantes Travail sur le lancement d'une application MS-Dev

JD130 2007-02-09 09:15 09:30 00:15 D E 3 Discussion Mémo Requis Analyste Modéliser les exigences Discussion sur l'interface, comment charger/sauvegarder

PL130 2007-02-09 09:15 09:30 00:15 D E 3 CUI CUI Requis Analyste Modéliser les exigences discussion sur chargement et interface

JD131 2007-02-09 09:30 09:55 00:25 C 3 CUI CUI Requis Analyste Modéliser les exigences Continué à détailler les CU de vue

LC129 2007-02-09 09:30 10:00 00:30 A D E 3 CPA Mémo Conception Ingénieur logiciel Réviser revision et discussion sur le diagramme de classe (memo sur des modifications a faire/scénario possible entre les objets) 

JL96 2007-02-09 09:30 10:00 00:30 A D E 3Documentation virtuelleConnaissances Conception Ingénieur système Réviser revision et discussion sur le diagramme de classe

PL131 2007-02-09 09:30 10:00 00:30 A D E 3 CPA Mémo Conception Ingénieur logiciel Réviser retour sur classes cas critique

LC130 2007-02-09 10:00 10:45 00:45 A 3 CPA CPA Conception Ingénieur logiciel Autre redaction de l'artefact CPA

JD133 2007-02-09 10:15 10:45 00:30 C 3 CUI CUI Requis Analyste Modéliser les exigences Continué à détailler les CU de vue

PL132 2007-02-09 10:30 11:30 01:00 E 3 CPA Produit logiciel Implémentation Programmeur Coder les composantes coder les classes d'analyse de fichiers

JD135 2007-02-09 11:00 11:50 00:50 C 3 CUI CUI Requis Analyste Modéliser les exigences Continué (et terminé) le détail les CU de vue

LC133 2007-02-09 11:15 12:15 01:00 A 3 CPA CPA Conception Ingénieur logiciel Autre Redaction de l'artefact CPA et mise en page de la section Vue logique


