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RÉSUMÉ

Aujourd’hui, la conception de réseaux est une problématique cruciale qui se pose dans beau-
coup de domaines tels que le transport ou l’énergie. En particulier, il est devenu nécessaire
d’optimiser la façon dont sont conçus les réseaux permettant de produire de l’énergie. On se
concentre ici sur la production électrique produite à travers des parcs éoliens. Cette énergie
apparait plus que jamais comme une bonne alternative à la production d’électricité via des
centrales thermiques ou nucléaires.

Nous nous intéressons dans cette thèse à la conception du câblage collectant l’énergie dans les
parcs éoliens. On connaît alors la position de l’ensemble des éoliennes appartenant au parc
ainsi que celle du site central collecteur vers laquelle l’énergie doit être acheminée. On con-
naît également la position des câbles que l’on peut construire, leurs capacités, et la position
des nœuds d’interconnexion possibles. Il s’agit de déterminer un câblage de coût minimal
permettant de relier l’ensemble des éoliennes à la sous-station, tel que celui-ci soit résistant
à un certain nombre de pannes sur le réseau.

Mots clés: Recherche opérationnelle, Optimisation combinatoire, Conception de réseaux ro-
bustes, Théorie des graphes, Programmation en nombres entiers, Câblage de parcs éoliens.
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ABSTRACT

Nowadays, the design of networks has become a decisive problematic which appears in many
fields such as transport or energy. In particular, it has become necessary and important to
optimize the way in which networks used to produce, collect or transport energy are designed.
We focus in this thesis on electricity produced through wind farms. The production of energy
by wind turbines appears more than ever like a good alternative to the electrical production
of thermal or nuclear power plants, giving that both of those production can have harmful
consequences on the environment. It has then become necessary to optimize the design and
construction of such networks.

We focus in this thesis on the design of the cabling network which allows to collect and route
the energy from the wind turbines to a sub-station, linking the wind farm to the electrical
network. In this problem, we know the location of each wind turbine of the farm and the one
of the sub-station. We also know the location of possible inter-connection nodes which allow
to connect different cables between them. Each wind turbine produces a known quantity of
energy and with each cable are associated a cost and a capacity (the maximum amount of
energy that can be routed through this cable). The optimization problem that we consider
is to select a set of cables of minimum cost such that the energy produced from the wind
turbines can be routed to the sub-station in the network induced by this set of cables, without
exceeding the capacity of each cable. We focus on cabling networks resilient to breakdowns.

Keywords : Operations Research, Combinatorial optimization, Robust networks design,
Graph theory, Mixed integer programming, Wind farm cabling networks.
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CHAPTER 1 INTRODUCTION

1.1 General introduction

In the 21st century, it appears that the biggest challenge that will face our population is the
global warming. The air temperature has been increased by 1.5 degrees since preindustrial
era and this rise has been linked to human activities. Almost all specialists among the com-
munity agree that the major cause of this global warming can be attributed to the increasing
production of greenhouse gas (caused by carbon monoxide emission or methane principally).
The consequences could be diverse and terrible: for the climate (for example extreme heat
in some parts of the globe or increase of extreme weather events like storms, floods, cyclones
and droughts); for the ecosystem and the biodiversity (increase of ocean levels, destruction
of fragile ecosystems like coral reef and Amazon rainforest and several extinctions of species);
on our society and its economy (infrastructures to adapt like medical ones or housings, public
health and capacity to feed the population). Many forces appear to fight the global warm-
ing and involve ecology in our way of life (reducing our consumption of energy, limiting the
food waste, optimizing the management of resources, avoiding to consume products with a
high carbon print). Sustainable development, which aims to exploit natural and biological
resources at a rhythm which does not lead impoverishment or even exhaustion but makes
possible the sustain of biological productivity of resources in the biosphere, comes out as a
valid orientation in order to limit those consequences. Regarding the electrical production,
wind farms, photo-voltaic panels and hydro-electrical facilities appear to be interesting di-
rections in order to reduce greenhouse gas emissions.

Nowadays, the design of networks has become a decisive problematic which appears in many
fields such as transport, telecommunications or energy. In particular, it has become impor-
tant and even necessary to optimize the way in which networks used to produce, collect
or transport energy are designed. We are interested in this thesis on electricity produced
through wind farms. The production of energy by wind turbines appears more than ever like
a good alternative to the electrical production of thermal or nuclear power plants, giving that
both of those productions can have harmful consequences on the environment. The develop-
ment of wind farms is then a global issue and hence it has become necessary to optimize the
design and construction of such networks.

We focus in this thesis on the design of the cabling network which allows to collect and route
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the energy from the wind turbines to a sub-station, linking the wind farm to the electrical
network. In this problem, we know the location of each wind turbine of the farm and the one
of the sub-station. We also know the location of possible inter-connection nodes which allow
to connect different cables between them. Each wind turbine produces a known quantity of
energy and with each cable are associated a cost and a capacity (the maximum amount of
energy that can be routed through this cable). The optimization problem that we consider
is to select a set of cables of minimum cost such that the energy produced from the wind
turbines can be routed to the sub-station in the network induced by this set of cables, without
exceeding the capacity of each cable. Hence there must exist a path using cables between
each turbine and the substation, but not necessarily with inter-connection nodes, which are
optional points in the network.

In this context, breakdowns can occur on cables or devices of the network (caused by the
environment or by a problem with a turbine or inter-connexion node for example). We focus
more precisely on the design of robust (or resilient) networks for several robust notions that
will be defined in this thesis. We take into account some data incertitude: we consider the
case of breakdowns on cables or nodes once the network is built (in this thesis we focus on
breakdowns on cables, but breakdowns on nodes can be reduced to breakdowns on cables
after a transformation of the graph). We then aim to minimize the cost of the network to
build while respecting robustness constraints allowing to limit the damaging repercussions in
case of a breakdown on one or several cables in the network.

In the context of this thesis, we have been in contact with EDF (Électricité de France), first
producer and supplier of electricity in France, via PGMO (Programme Gaspard Monge pour
l’Optimisation de la Fondation Mathématique Jacques Hadamard) and engineers working in
the field of renewable energy networks. It appears that combinatorial and discrete aspects
of those problems have been sparsely studied until now at EDF. Although the design of the
cabling networks presents high economic stakes, robustness and resilience to breakdowns are
important criteria too. Some work has also been done with the Canadian company Hatch,
which led us to test our work on real data (we can underline that the French wind farms we
have been working on with EDF are offshore whereas Canadian wind farms are onshore). In
offshore environment, each wind turbine produces about the same quantity of electricity, so
we can make the assumption that the energy produced by the wind turbines is uniform.

In this thesis, we alternate between more theoretical problems related to the design of wind
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farm cabling networks by reformulating the set of electricity constraints into classical flow
constraints (like Chapters 2, 3 and 4) and practical problems with real data and technical
constraints related to electricity (Chapter 5). We study problems which are generalizations
of the Steiner tree problem: given a graph with a set of vertices, a set of edges and a subset
of vertices called terminals, this problem aims at finding a tree of minimum cost spanning all
the terminals. The vertices which are not terminals are called Steiner vertices. We introduce
a root vertex in our problems. In our wind-farm application, the wind turbines correspond
to the terminals, the substation to the root, and the inter-connection nodes to the Steiner
vertices. We aim at solving generalizations of Steiner tree problems taking robustness and
edge capacities into account.

In Chapter 1.2, we introduce and define some notions, notations and methods used in this
thesis. We also define the studied problematics. We present some preliminary results and
summarize some previous works found in the literature.

Following discussions with EDF engineers, it appeared that the electrical constraints can be
formulated as classical flow constraints if the solution network is an arborescence. Hence, in
Chapter 2, we reduce the problem to the search for a Steiner arborescence which respects
the capacity constraints. We focus on the design of Steiner arborescences for which we try
to reduce the damaging impact of an arc deletion in the arborescence solution, according to
several optimization criteria, at a reasonable cost. We give complexity results and propose
several formulations tested on real data.

In our wind farm applications, the terminals produce energy, so the energy flow should be
routed from the terminals to the root. However, it is equivalent to consider that we route the
energy from the root to the terminals (in a digraph, we just have to take the opposite arcs
whereas there are no changes in an undirected graph). Furthermore, in offshore wind farm
applications, we often consider that the energy produced by the wind turbines is uniform,
which is equivalent to consider a unit demand and an arc capacity can then be seen as the
number of terminals that can be linked to the root through this arc.

In Chapter 3, we define the Capacitated Rooted k-Edge Connected Steiner Network: given
a connected graph with a root vertex, a set of terminals and integer capacity and cost on
each arc of the graph, we aim to find a subset of arcs of minimum cost such that there
exists a feasible flow (i.e. respecting the capacities) routing one unit of flow from the root
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to each terminal in the subgraph induced by those arcs, even if a given number k of arcs
is deleted. This problem is equivalent to finding a robust cabling network in a wind farm,
when the electricity constraints are formulated as classical flow constraints. We give several
formulations, including a new bilevel formulation, study the relations between the different
formulations, and test them in order to compare their efficiency.

In Chapter 4, we focus on planar graphs for the Capacitated Rooted k-Edge Connected
Steiner Network. We present a method to check whether a network is resilient or not to
the deletion of any set of k arcs using planar graph duality and shortest paths problems.
We propose and describe a tabu search algorithm derived from this method. We test our
algorithm and compare its efficiency to exact methods presented in Chapter 3.

In Chapter 5, we study the real-life problem of designing a wind farm cabling network with
electrical constraints of load flow. We explain the load flow study, which corresponds to a
numerical analysis of the flow of electric power in an interconnected system. We must ensure
that the power routed through each cable respects the electric capacities of the cable using
the load flow equations to analyze the state of the electric network once the network is built.
Since the load flow analysis is a non-linear system, we use an approximation in order to
include them into a mixed-integer linear program. We test our algorithm on real data and
give numerical results.

In a concluding chapter, we give some perspectives and future work leads.

1.2 Preliminaries

1.2.1 General notions in graph theory

In this section, we recall some notions from graph theory that will be used in this thesis. For
more information about graph theory, the reader is referred to [12, 63].

Formally, a directed graph (or digraph) G = (V,A) is defined by a set of vertices V and a
set of arcs A ⊆ V × V . The set of predecessors (respectively successors) of a vertex v in
G is defined by Γ−G(v) (respectively Γ+

G(v)). For a subset of vertices S ⊂ V in G, we define
δ−G(S) = {(i, j) ∈ A | i ∈ V \S, j ∈ S} (respectively δ+

G(S) = {(i, j) ∈ A | i ∈ S, j ∈ V \S})
as the set of arcs entering (resp. leaving) S. When there are no ambiguities about the related
graph G, we can refer to those sets as Γ−(v), Γ+(v), δ−(S) and δ+(S), respectively.
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An undirected graphG′ = (V,E) is defined by a set of vertices V and a set of edges E ⊆ V×V .
The set of neighbors of a vertex v ∈ V is denoted by ΓG′(v). For a subset of vertices S ⊂ V

in G′, we define δG′(S) as the set of edges [u, v] incident to S in G′ (u ∈ S and v ∈ V \ S).
When there are no ambiguities about the related graph G′, we can refer to those sets as Γ(v)
and δ(S) respectively.

Two paths p1 and p2 in a graph are said to be arc-disjoint (edge-disjoint in an undirected
graph) if there is no arc a which appears both in p1 and p2. In this thesis, we will consider a
special vertex r of a graph G, which is the root of the graph (i.e. there exists a path between
r and every vertex of G). A graph is said to be connected if there is an undirected path
between u and v for each pair of vertices u, v ∈ V 2. In a digraph G = (V,A) (resp. an
undirected graph G = (V,E)), an (i, j)−disconnecting set, with i and j two distinct vertices
of V , is a set of arcs D ⊆ A (resp. a set of edges D ⊆ E) such that there are no path from i

to j in the graph G′ = (V,A \D) (resp. G′ = (V,E \D)). A graph (respectively digraph) is
said to be k-edge-connected (resp. k-arc-connected) if it remains connected (resp. strongly
connected) whenever fewer than k edges (resp. arcs) are removed.

Theorem 1.2.1 (k-edge-connectivity [48]) If i and j are two vertices of a digraph (resp.
undirected graph), the minimum size of an (i, j)−disconnecting set is equal to the maximum
number of pairwise arc-disjoint (resp. edge-disjoint) paths from i to j. Moreover, a graph G
is k-edge-connected if and only if there exist k pairwise arc-disjoint paths (resp. edge-disjoint)
between each pair of vertices in G.

1.2.2 Flows and networks

We introduce here different notions about network flows; the reader is referred to [2] for more
information about this topic. We define a network as a digraph G = (V,A) with a non-
negative capacity uij on each arc (i, j) ∈ A, a distinguished root r ∈ V (also called source
vertex) and a sink vertex s ∈ V . A flow x is a function that assigns a value xij to each arc
(i, j) ∈ A. A feasible flow satisfies the capacity constraints 0 ≤ xij ≤ uij for each arc (i, j) ∈ A
and the conservation constraints ∑u∈Γ−(v) xuv = ∑

w∈Γ+(v) xvw for each vertex v ∈ V \ {r, s}.
The value of such a flow is equal to ∑v∈Γ+(r) xrv −

∑
u∈Γ−(r) xur = ∑

i∈Γ−(s) xis −
∑
j∈Γ+(s) xsj.

In this thesis, we assume without loss of generality that, in any network we consider, there
are no arcs entering the root r and no arcs leaving the sink s. Thus, the value of a flow
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x is equal to ∑v∈Γ+(r) xrv = ∑
i∈Γ−(s) xis. A maximum flow is defined as a feasible flow of

maximum value.

In a network, for a given subset of vertices S ⊂ V with r ∈ S and s ∈ V \ S, we refer to the
partition [S, V \S] of V as an r−s cut. The cut-set associated with S is the set of arcs going
from a vertex of S to a vertex of V \ S, i.e. the cut-set corresponds to δ+(S) or δ−(V \ S).
The capacity of a cut (or the capacity of a cut-set) is defined as the sum of the capacities of
the arcs of its cut-set, i.e. ∑(i,j)∈δ+(S) uij. We recall the well-known following theorem:

Theorem 1.2.2 (Max-flow min-cut theorem [29]) In a network with a root r and a sink
s, the minimum capacity of a r− s cut is equal to the maximum value of a feasible flow from
r to s.

The problem of searching for a maximum flow (respectively a minimum r−s cut) in a network
is called the maximum flow problem (respectively the minimum cut problem). The flow xij

on each arc (i, j) ∈ A is not constrained to be integer. However, in this thesis we will work on
integer flows because of the applications we are considering. Thus, we remind the following
theorem:

Theorem 1.2.3 (Integrality Theorem [2]) If all capacities in a network are integer, then
there exists a maximum flow in which the amount of flow on each arc is integer. Furthermore,
a maximum flow can be partitioned into flows of integer values along paths from the root to
the sink.

Theorem 1.2.3 allows to relax the integrality constraint on the value of the flow when searching
for a maximum flow. We introduce the following well-known linear formulation for the
maximum flow problem:

(MAX − FLOW )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

max
x

∑
v∈Γ+(r)

xrv

s.t.
∑

i∈Γ−(j)
xij −

∑
k∈Γ+(j)

xjk = 0 ∀j ∈ V \{r, s}

0 ≤ xij ≤ uij ∀(i, j) ∈ A

(1.1a)

(1.1b)

where the variable xij defines for each arc (i, j) the amount of flow routed through (i, j). We
introduce Remark 1.2.1:
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Remark 1.2.1 If there exist two vertices i and j in V \ {r, s} such that {(i, j), (j, i)} ⊂ A

and a flow defined by x such that xij > 0 and xji > 0, then there always exists a flow x′ of
equal value with either x′ij = 0 or x′ji = 0.

Proof: Let us suppose that a given feasible flow x assigned to a network G = (V,A) is
such that there exist two vertices i and j in V such that (i, j), (j, i) ∈ A and there is a
positive amount of flow on both arcs (i.e. xijxji > 0). By reducing the flow on both arcs
by min(xij, xji), we find a flow x′ with either x′ij = 0 or x′ji = 0. The capacity constraints
are obviously satisfied because we only reduce the amount of flow on two arcs and they were
satisfied by x. The conservation constraints are also satisfied since we reduce the amount of
flow entering and leaving both i and j by min(xij, xji). Finally, the value of the flow defined
by x remains the same because ∑i∈Γ−(s) xis is not changed. 2

A matrix A is said to be totally unimodular if each square submatrix of A has a determinant
equal to −1, 0 or 1 (see [58]). In particular, we have that each entry of A is −1, 0 or 1.

Theorem 1.2.4 (Theorem 5.20 in [58]) Let A be a totally unimodular m×n matrix and
let b ∈ Zm. Then the polyhedron

P = {x|Ax ≤ b}

is integer.

We have the following property and theorem on the totally unimodular matrices:

Property 1.2.1 Let A be a totally unimodular m × n matrix and Im the m × m identity
matrix. We have that −A, A> and [A|Im] are totally unimodular matrices.

The matrixM associated with the left-hand side of Constraints (1.1a) is a sub-matrix of the
node-arc incidence matrix (we remove the rows associated to r and s) of a digraph. Each
column of the matrix corresponds to an arc (i, j): there is a 1 in the ith row and a −1 in the
jth row and the rest of the entries of the column are 0.

Theorem 1.2.5 (Theorem 11.12 in [2]) The node-arc incidence matrix M of a directed
network is totally unimodular.

Following Theorems 1.2.4 and 1.2.5, we do not have to ensure that x is integer since M is
totally unimodular, which yields a proof of Theorem 1.2.3.
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The dual of (MAX − FLOW ) corresponds to a formulation of the minimum-cut problem
and can be written as follows:

min
µ,λ

∑
(i,j)∈A

uijλij

s.t. µv + λrv ≥ 1 ∀v ∈ Γ+(r)

µv − µu + λuv ≥ 0 ∀(u, v) ∈ A, u 6= r, v 6= s

− µu + λus ≥ 0 ∀u ∈ Γ−(s)

λij ≥ 0 ∀(i, j) ∈ A, µv ∈ R ∀v ∈ V \ {r, s}

(1.2a)

(1.2b)

(1.2c)

It can be reformulated, with the addition of variables µr and µs, as follows:

(MIN − CUT )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
µ,λ

∑
(i,j)∈A

uijλij

s.t. µv − µu + λuv ≥ 0 ∀(u, v) ∈ A

µr = 1

µs = 0

λij ≥ 0 ∀(i, j) ∈ A, µv ∈ R ∀v ∈ V

(1.3a)

(1.3b)

(1.3c)

In any optimal solution we have µv ∈ [0, 1] ∀v ∈ V , which implies λij ≤ 1 ∀(i, j) ∈ A.
From Property 1.2.1, the transpose of a totally unimodular matrix is totally unimodular,
so the matrix of constraints of (MIN − CUT ) is totally unimodular, and thus there exists
an optimal solution (λ∗, µ∗) with µ∗ ∈ {0, 1}|V | and λ∗ ∈ {0, 1}|A|. The dual problem then
formulates the minimum cut problem in this way: µ defines the partition associated with the
cut (we have µv = 1 if v is in the same part as the root and µv = 0 if v is in the same part
as the sink) while λ defines the cut-set (we have λij = 1 if the arc (i, j) is in the cutset, i.e.
µi = 1 and µj = 0).

In this thesis, we will consider arc-deletions in flow networks. However, vertices-deletion can
be considered using the same methods by a simple transformation of the input graph. The
graph transformation is the following: we replace each vertex v of the input graph G by two
vertices v1 and v2 and an arc (v1, v2) in the transformed graph and each arc (u, v) is replaced
by an arc (u2, v1). The deletion of the vertex v in the input graph then corresponds to the
deletion of the arc (v1, v2) in the transformed graph (as illustrated in the example in Figure
1.1). For the non-oriented case, we can apply the transformation to the bi-directed graph
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associated to the input graph.

v

i

j

w

z

(a) The vertex v in the input graph

v1 v2

i2

j2

w1

z1

(b) The arc (v1, v2) in the transformed graph

Figure 1.1 Example of graph transformation for the vertex v

1.2.3 Steiner trees and networks

We introduce in this subsection the concepts of Steiner trees and Steiner networks (see
[25, 40, 52]). A tree is defined as a connected graph which is acyclic. Given an undirected
graph G = (V,E) and a subset of vertices T ⊆ V , a subgraph S of G is called a Steiner
tree if S is a tree containing all vertices of T . A vertex t ∈ T is called a terminal vertex
(or terminal) whereas a vertex v ∈ V \ T is called a Steiner vertex (or Steiner point). The
minimum Steiner tree problem can be defined as follows:

Minimum Steiner Tree Problem

INSTANCE: A graph G = (V,E) and a set of terminals T ⊆ V .

PROBLEM: Find a minimum Steiner tree spanning T in G. That is, find a Steiner tree S =
(VS, ES) such that |ES| = min{|ES′| | S ′ = (VS′ , ES′) is a Steiner tree spanning T in G}.

Given a positive cost ce for each edge e ∈ E, we define similarly theMinimum-Cost Steiner
Tree Problem as the problem of finding a Steiner tree S = (VS, ES) for which the sum of
the costs ce′ for e′ ∈ ES is minimum. The Minimum-Cost Steiner Tree problem is NP-hard
and generalizes both the Minimum Spanning Tree problem and the Shortest Path problem:
if T = V , the Minimum Steiner Tree Problem is equivalent to the Minimum Spanning Tree
Problem whereas if |T | = 2, it is equivalent to the Shortest Path problem.

In this thesis, we consider Steiner problems with a root and a capacity uij on each edge [i, j]
in the graph. We consider that each terminal t ∈ T has the same demand and we want
to find a feasible flow (i.e. respecting the capacities defined by u and the flow conservation
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constraints) such that a unit of flow is routed from the root to each terminal: each terminal
can hence be seen as a sink. We say that a feasible flow x routes one unit of flow from the
root r to each terminal if the flow conservation constraints are as follows:

∑
k∈Γ+(j)

xjk −
∑

i∈Γ−(j)
xij =


|T | if j = r

−1 if j ∈ T
0 otherwise

∀j ∈ V

If we add to the graph a fictive sink s with an edge (t, s) of capacity uts = 1 for each terminal
t ∈ T , our problem is equivalent to finding a feasible (r − s)-flow of value |T |.

1.3 Previous work

We summarize in this section the existing results in the literature for problems which are
related to the ones studied in this thesis.

1.3.1 Wind farm cable layout optimization

The design of wind farms brings several challenges in optimization: one can think of the op-
timization of the location of each wind turbine (a literature review for this kind of problems
is proposed by Gonzalez et al. [37]) or of the connection between the electric network and
the wind farm [53], for example. In this thesis, we will only consider the problem of designing
the cabling network that collects the energy produced by the wind turbines and route it to
the sub-station, once the locations of the different wind turbines are known.

Problems of designing the wind farm cabling network have already been studied in the litera-
ture. Hertz et al. [39] study a real-life problem with real data for onshore wind farms, where
several cable types are available (subterranean or not). Furthermore, the energy produced by
the wind turbines and routed to the sub-station is non-splittable: once the energy is routed
through a same cable, it cannot be split and must be routed to the sub-station through the
same path (i.e. if a "chunk" of energy E is routed from u to v through the same cable with
v different from the substation, there exists a node w such that the "chunk" E is entirely
routed from v to w). The authors give mixed integer formulations and propose a cutting
plane generation method allowing to evaluate their algorithm on real data.

Other authors propose mixed integer formulations for the design of wind farm cabling [14, 27].
Regarding offshore wind farms, Pillai et al. [51] propose a set of algorithms computing ap-
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proximate solutions in order to optimize successively the location of the wind turbines and
the design of the wind farm cabling network considering natural obstacles related to the
environment. Fischetti and Pisinger [28] also consider natural obstacles related to the envi-
ronment but they additionally consider the power losses related to the routing of electricity.
They propose a mixed-integer formulation and a method allowing to find good approximate
solutions using matheuristics.

To the best of our knowledge, there does not exist literature proposing a method that could be
applied to the problem of designing wind farm cabling networks with resilience to breakdowns
on cables and load flow constraints. In this thesis, we are interested in the design of wind
farm networks with such constraints.

1.3.2 Steiner arborescence problems

In some cases, production rules and electrical constraints related to the routing of electricity
imply that the problem of designing such a wind farm cabling can be seen as the search for
a Steiner arborescence with capacity constraints and unitary demands. More precisely, the
problem can be defined as follows: we are given a graph with a subset of vertices T and a
root r, where each arc has a cost and a capacity. We look for an arborescence rooted at r
which contains each vertex of T , and such that, for each arc (i, j) of the arborescence, the
number of terminals in the sub-arborescence rooted at j is at most equal to the capacity of
(i, j). The problem is then a generalization of the Steiner arborescence problem, but also a
particular case of the generalized Steiner arborescence, in which there is a fixed demand at
each terminal and each arc capacity corresponds to the quantity of demands which can be
routed through this arc.

The minimum-cost (or weighted) Steiner tree problem (without capacity constraints) has
been widely studied in the literature; the reader is referred to [25, 40, 52]. It has also many
applications in industry; see [22, 26]. This problem is NP-hard even if all edge costs are
equal (it corresponds to the Minimum Steiner Tree Problem) and if G is planar [32].
However, if the number of terminals is fixed, this problem can be solved in polynomial time
[24].

When taking into account the arc capacities, Papadimitriou shows that the problem is NP-
Hard in the spanning case (i.e. all vertices except the root are terminals) [49]. The problem
has been studied in the spanning case, and branch-and-bound as well as branch-and-price
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algorithms have been proposed [21, 62]. Jothi and Raghavachari [41] and Arkin et al. [4]
propose approximation algorithms when capacities are uniform.

Regarding Steiner arborescence problems with capacity constraints, Bentz et al. study the
complexity and approximation considering several parameters like the number of terminals,
the arc costs and the capacities [10]. Goemans and Myung propose several Steiner tree for-
mulations [36]. Bousba et al. solve the Steiner arborescence problem with capacities and
demands, which is a generalization of the Steiner tree problem with capacities [20]: each ter-
minal has a specific amount of demand that must be routed from the root to this terminal,
and the capacity of an arc corresponds to the maximum amount of demands that can be
routed through this arc.

To the best of our knowledge, the design of Steiner trees with constraints of robustness, i.e.
where we aim to design trees which are not too much impacted by arc deletions, has not been
studied. However, different problems with arc deletions on trees have been studied. Bazgan
et al. [8] study the problem of finding in a graph a subset of k edges whose deletion causes
the largest increase in the weight of a minimum spanning tree: they propose an enumeration
algorithm and a MIP to solve the problem. This problem has been shown to be NP-hard,
and approximation algorithms have been proposed [30, 45]. However, this problem considers
the arc deletions before the design of the tree, whereas we consider the arc deletions during
the design of the tree.

1.3.3 Robust Steiner networks

Robust problems have been widely studied in continuous optimization [9, 15, 43] and can be
seen as problems modeling uncertainty, where the description of uncertainty is a deterministic
variability of data or parameters. In this thesis, we consider an uncertainty on the arcs (or
cables in our application on wind farms): an arc can be deleted or not. The robust aspect
of "worst-case minimization" that we consider can be seen as the one proposed by Bertsimas
and Sim [13], who set an upper bound on the total data uncertainty (budget of uncertainty).

More precisely, we address problems of designing networks in which we consider the possi-
bility of arc deletion: in our application, it corresponds to taking into account the risk of a
breakdown on one or several cables after the construction of the wind farm cabling network.
We estimate a budget of arc deletions k: there can be at most k simultaneous arc deletions in
the network (i.e. k breakdowns at the same time). The problem is then to design a network
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which is still functional after the deletion of any set of k arcs.

In the literature, problems of designing survivable networks have been studied; the term has
been introduced by Steiglitz et al. [60]. Given a graph G = (V,E) and a cost function on
E, the problem consists in finding a subgraph of G of minimum cost which respects some
connectivity constraints. However, these connectivity constraints can be defined in several
ways in the literature.

On the one hand, it is possible to define a matrix R = [rij]: a feasible solution must then
contain rij disjoint paths between each pair of vertices i and j. On the other hand, connec-
tivity requirements can be defined by a connectivity value rv given for each vertex v, and we
have to ensure that we have min(ri, rj) disjoint paths for each pair of vertices i and j. In
order to well dissociate the two problems, we refer to the first one as the Network Design
Problem with Connectivity Requirements (NDC) [47] and to the second one as the Surviv-
able Network Problem (SNP) [60]. SNP is trivially a special case of NDC. Furthermore,
the definition of both problems can vary if we consider vertex-disjoint or edge-disjoint (or
arc-disjoint in directed graphs) paths. Those problems generalize well-studied problems such
as the minimum spanning tree (when all requirements are equal to 1), the minimum Steiner
tree (when all requirements are equal to either 1 or 0) or the design of k-connected graphs
at minimum cost (when all requirements are equal to 0 or a given integer k).

Goemans and Bertsimas consider SNP in the case of edge-disjoint paths when the input
graph is complete [35]. They give problem formulations and properties on the structure of
the continuous relaxation. They also propose a heuristic which is based on solving several
Steiner tree problems. This heuristic ensures a cost value of at most 2 min(logR, p) times
the cost of an optimal solution, where R is the highest connectivity requirement and p is the
number of non-zero values in the connectivity requirements.

Raghavan [54] proposes a dual-ascent algorithm and new formulations for NDC in the case
of both vertex-disjoint and edge-disjoint paths. Williamson et al. [64] give an approximation
algorithm running in polynomial time with an approximation radio equal to 2R (where R is
defined as previously), which has been enhanced afterward by Gabow et al. who propose an
algorithm with a better time complexity [31]. Agrawal et al. [1] propose an approximation
algorithm for NDC in the case of arc-disjoint paths with a ratio equal to 2 logR when con-
sidering that an arc of the input graph can be selected several times in a solution.
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Grötschel et al. [38] give properties on the structure of an optimal solution for NDC allowing
to design efficient heuristics. They also study the polyhedral structure of the problem and
propose a cutting plane algorithm based on those results.

Mixed Integer Linear Programs for solving those problems often consist in formulations based
on the cut-sets of the input graphs. Magnanti and Raghavan [47] propose a formulation for
NDC in the case of edge-disjoint paths based on multi-commodity flows. They show that
this formulation is stronger than the one using cut-set. A method based on Benders decom-
position is proposed by Botton et al. for a problem with hop-constraints (the lengths of the
different paths between vertices with connectivity requirements should not exceed a given
parameter) [19]. Kerivin and Mahjoub give a survey on this type of problems [42].

One of the main problems we study is called the Capacitated Rooted k-Edge Connected
Steiner Network Problem: we aim to design a network of minimum cost in which, after the
deletion of any set of k arcs, we can still find a feasible flow (i.e. a flow respecting the
capacities) routing one unit of flow from the root to each terminal. Grotschel et al. study
this problem but do not take into account capacities, and use the connectivity requirement
function r like in SNP [38]. In our case, the connectivity requirement can be seen as using
the requirement matrix R = [rij] as in the case of NDC, with the restriction that for each
terminal t, we have rrt = k + 1 (where r denotes the root vertex), and the value of each
other entry in R is 0. Several authors take into account capacities by considering a cost
of allocation, whereas we consider fixed capacities [16, 55]. Studies on more generalized
problems with multi-commodity flows have also been considered [23, 61]. There also exist
studies of those problems in particular graphs without the existence of root or the capacity
constraints [6, 17]. In this thesis we study the design of networks resilient to a given number
of arc-deletions and a single-source defined by the root, while taking fixed capacities into
account, whereas in the literature capacity allocation has been studied.

1.3.4 The k most vital arcs in flow networks and network interdiction problems

Given a network with arc capacities, a root (or source) vertex r and a sink vertex s, the
problem of finding a subset of k arcs such that the deletion of these k arcs results in the
maximum decrease of the value of the maximum flow between r and s can be referred as the
k Most Vital Arcs Problem in Flow Networks (k-MVAPFN).
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Lubore et al. [46] and Wollmer [65] give fast algorithms for the case where k = 1 using a
sequence of maximum flow problems. Barton [7] proposes more efficient algorithms to solve
the same problem for particular graphs like acyclic graphs.

Ratliff et al. [56] introduce the problem for a non-fixed value of k. The problem has been
generalized into the network interdiction problem by Wood [66]: he considers a deletion cost
associated with each arc and a budget B of deletion, the sum of the deletion costs of the arcs
which are deleted must not exceed the budget B. Obviously, k-MVAPFN is a special case of
the network interdiction where B = k and all deletion costs are equal to 1. He shows that the
problem is strongly NP-hard for both k-MVAPFN and the network interdiction problem,
and proposes a mixed-integer formulation. This problem has several applications [5, 33, 57].

On planar graphs, the problem becomes weakly NP-complete: Phillips [50] and Zenklusen
[68] propose algorithms using planar graph duality to solve the problem in pseudo-polynomial
time. We present in this thesis a tabu search using an extension of those results in order to
check whether a solution is feasible or not.
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CHAPTER 2 ROBUST ARBORESCENCES

2.1 Introduction

In this chapter, we focus on finding a robust Steiner or spanning arborescence covering the
root and the terminals of G. Here, the robustness consists in finding a solution which mini-
mizes the number of terminals disconnected from the root in the worst case of an arc failure.

This setting arises in some wind farm cabling problems, when technical constraints impose
that all electrical flows arriving at any device except the substation must leave it through one
and only one cable: an inclusion-wise minimal sub-network of G respecting those constraints
then corresponds to a Steiner anti-arborescence. The wind turbines are identical, and the
wind is assumed to blow uniformly, so we can assume without loss of generality that each
turbine produces one unit of energy. Then, A is the set of all possible cable locations, r is
the sub-station collecting the energy and delivering it to the electric distribution network, T
represents the set of nodes where a wind turbine lies, and V \ ({r} ∪ T ) is the set of Steiner
nodes, corresponding to possible junction nodes between cables. In that case, the flow is
routed from the vertices of T to r, and we search for an anti-arborescence. However, the
problem is easily seen to be equivalent to the Steiner arborescence problem, by reversing the
flow circulation in the solution.

We begin by defining the problem and giving some complexity results, and then we propose
mathematical formulations which are tested on real wind farm instances.

2.2 Definition of problems and complexity results

We assume in this section that the graph G = (V,E) is undirected. We define the robust
problem without capacity constraints as follows:

Robust Steiner Arborescence problem (RStA)

INSTANCE: A connected graph G = (V,E, r, T ) with r ∈ V and T ⊆ V \ {r}.

PROBLEM: Find an arborescence S = (VS, AS) such that VS ⊆ V , AS ⊆ E and T ⊂ VS,
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which is rooted at r and minimizes the number of terminals disconnected from r when an
arc a is removed from AS, in the worst case.

We also consider the spanning version of the problem (i.e., T = V \ {r}). In this case,
the problem is to minimize the number of vertices in the largest (regarding the number of
vertices) subarborescence not containing r. We define it as follows:

Robust Spanning Arborescence problem (RSpA)

INSTANCE: A connected graph G = (V,E, r) with r ∈ V .

PROBLEM: Find a spanning arborescence S of G, rooted at r, which minimizes the size of
the largest subarborescence of S not containing r.

Obviously, the largest subarborescence not containing r is rooted at a vertex v ∈ ΓG(r), and
the worst case is the failure of an arc incident to the root. We have the following property:

Property 2.2.1 a) There is an optimal solution S∗ of RSpA containing (r, v) for all v ∈
ΓG(r) (ΓG(r) = Γ+

S∗(r)).

b) There is an optimal solution S∗ = (V ∗, A∗) of RStA containing (r, v) for all v ∈ V ∗∩ΓG(r).

Proof: Let S = (V,AS) be an optimal solution of RSpA such that there is v ∈ ΓG(r) with
(r, v) /∈ AS, and let w be the predecessor of v in the path from r to v in S. If we remove
(w, v) from AS and add (r, v), we obtain a new spanning arborescence at least as good as S,
since we have replaced a subarborescence by two subarborescences of smaller sizes. Doing so
for each v ∈ ΓG(r) with (r, v) /∈ AS yields a solution S∗ verifying the property.

The proof is similar for RStA, by replacing ΓG(r) by V ∗S ∩ ΓG(r): if we remove (w, v) from
AS and add (r, v), we obtain a new Steiner arborescence at least as good as S, since we have
replaced a subarborescence by two subarborescences spanning at most the same number of
terminals. 2

Notice that the property does not hold if we have capacity constraints, because the capacity
of (r, v) can be smaller than the one of (w, v) in the proof above. Let us now introduce the
feasibility problem associated with RSpA:

Robust Spanning Arborescence Feasibility problem (RSpAF)
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INSTANCE: A connected graph G = (V,E, r) with r ∈ V and an integer β with 1 ≤ β ≤
|V | − 1.

QUESTION: Is there a spanning arborescence S = (VS, AS) of G, rooted at r, such that the
size of any subarborescence of S not containing r is at most β?

Theorem 2.2.1 RSpAF is NP-Complete.

Proof: We introduce the 3-Partition problem [32] in order to transform an instance of this
problem into a RSpAF one.

3-Partition problem

INSTANCE: A finite set D of 3m positive integers di, i = 1, .., 3m, and a positive integer B
such that ∑i=1,...,3m di = mB and B/4 < di < B/2 ∀i = 1, ..., 3m.

QUESTION: Can D be partitioned intom disjoints subsetsM1,M2, ...,Mm of three elements
such that the sum of the numbers in each subset is equal to B?

To obtain an instance of RSpAF from an instance of 3-Partition, we set β = B + 1 and
we construct the following graph G = (V,E): we define a root r and m vertices vj with an
edge [r, vj] for j = 1, ...,m, each vertex vj corresponding to a set Mj. We add 3m vertices wi
and the edges [vj, wi] for all j = 1, ..,m and all i = 1, .., 3m, each vertex wi corresponding to
the element di of D (the subgraph induced by the vertices vj and wi is complete bipartite).
Finally, for each i = 1, .., 3m, we add di − 1 vertices adjacent to wi : the subgraph induced
by those vertices and the vertices wi is made of 3m disjoint stars. See Figure 2.1 for a graph
representation of a 3-Partition instance with m = 2, B = 11 and D = {5, 3, 4, 3, 4, 3}. Notice
that |V | = 1 +m+mB.

Solving RSpAF on G with β = B + 1 amounts to finding an arborescence where the size
of the subarborescence rooted at each vj is smaller than or equal to B + 1. If there is a
solution to RSpAF on G, then, from the proof of Property 2.2.1, there is a solution S

such that (r, vj) ∈ S ∀j = 1, ...,m, and each wi is connected to exactly one vj, otherwise
there is a cycle. Given a vertex v ∈ S, let S(v) be the subarborescence of S rooted at v:
∀j = 1, ...,m, we have |S(vj)| ≤ B + 1 and ∑j=1,..,m |S(vj)| = |V \ {r}| = mB + m. Thus,
∀j = 1, ...,m, |S(vj)| = B + 1 and S(vj) contains vj and several vertices wi, each having
di − 1 successors in S. Finally, the constraints B/4 < di < B/2 imply that, ∀j = 1, ...,m, vj
is connected to exactly 3 vertices wi denoted in the following by wj1 , wj2 and wj3 , and such
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that |S(wj1)|+ |S(wj2)|+ |S(wj3)| = |S(vj)| − 1 = B.

Then, it is easy to obtain a solution to the 3-Partition instance. For each j = 1, ..,m, we set
Mj = {|S(wj1)|, |S(wj2)|, |S(wj3)|} = {dj1 , dj2 , dj3}. We have m disjoint sets, each of size B,
which cover exactly D. For the instance given in Figure 2.1, a solution to 3-Partition can be
associated with the arborescence given in thick: M1 = {5, 3, 3} and M2 = {4, 4, 3}.

Moreover, from a solution to the 3-Partition instance, it is easy to obtain a solution S to
RSpAF for the associated graph G, using similar arguments.

The 3-Partition problem is NP-Complete in the strong sense, meaning that it remains NP-
Complete even if the integers in D are bounded above by a polynomial in m. Thus, the
reduction can be done in polynomial time and RSpAF, which is clearly in NP, is NP-
Complete. 2

RSpAF being NP-Complete, RSpA is NP-Hard, and so is RCStA because it is a gener-
alization of RSpA. Let us now consider capacity constraints on the edges. RSpAF can be
seen as a special case of the general capacitated spanning arborescence problem where the
demand at each node is an integer (our demands are all equal to 1), and hence from Theorem
2.2.1 we obtain the following corollary:

Corollary 2.2.2 Given a graph G = (V,E, r, d, u) where d represents the (integral) demands
at each node and u the capacities of the edges, the problem of deciding whether there exists a
spanning arborescence of G, rooted at r and respecting the capacities, is NP-Complete (even
if u is a uniform function and all demands are equal to 1).

This extends the following result due to Papadimitriou [49]: given two positive values C
and K and a graph G = (V,E, r, c) where c is a cost function on the edges, the problem of
deciding whether there exists a spanning arborescence S of G rooted at r, such that each
subarborescence of S not containing r contains at most K vertices, and with total cost at
most C, is NP-Complete.

The complexity results given in this section concern undirected graphs, and so the more
general case of directed graphs too, since an undirected graph can be transformed into a
directed one by replacing each edge by two opposite arcs. If we consider problems with ca-
pacity constraints, we give the same capacity to both opposite arcs: since we search for an
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Figure 2.1 Graph and RSpAF solution resulting from the 3-Partition instance in which
m = 2, B = 11, D = {5, 3, 4, 3, 4, 3}

arborescence, only one of them will appear in the solution.

In the following, we study the more general following problem, which is hence also NP-hard:

Robust Capacitated Steiner Arborescence problem (RCStA)

INSTANCE: A connected graph G = (V,E, r, T, u) with r ∈ V , T ⊆ V \{r} and u a positive
integer function on E.

PROBLEM: Find an arborescence S = (VS, AS) with VS ⊆ V and AS ⊆ E, rooted at r and
spanning the terminals of T , which respects the arc capacities and minimizes the number of
terminals disconnected from r when an arc a is removed from AS, in the worst case.

2.3 Mathematical formulations and tests

In this section we propose formulations for robust Steiner problems where the robustness is
considered either as a constraint with the objective of minimizing the cost, or as an objective
with or without constraints on the cost. Moreover, we study two kinds of robustness by
considering worst or average consequences of breakdowns.

Let G = (V,A, r, T, u, c) be a directed graph with a vertex set V , an arc set A, a root r, a
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set of terminals T , and capacity and cost functions, respectively denoted by u and c, on the
arcs. As seen before, if G is undirected, then we replace each edge by two opposite arcs with
the same capacity and cost. To formulate the different problems, for each arc (i, j) ∈ A we
introduce the 0-1 variable yij and the integer variable xij, where yij equals 1 if and only if the
arc (i, j) is selected in the solution, and xij represents the number of terminals connected to
the root through the arc (i, j), or equivalently the number of terminals in the subarborescence
rooted at j.
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We introduce the following polyhedron T :

T =


x ∈ N|A|, y ∈ {0, 1}|A|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
(i,j)∈A

xij −
∑

(j,k)∈A
xjk =


|T | if j = r

−1 if j ∈ T
0 otherwise

∀j ∈ V

∑
(i,j)∈A

yij ≤ 1 ∀j ∈ V \ {r}

xij ≤ uijyij ∀(i, j) ∈ A



In the following, we write (x, y) ∈ T when we consider a couple of variables verifying the
constraints of T . The first set of constraints in T ensures both the conservation of the
number of terminals connected through each Steiner vertex j ∈ V (flow conservation) and
the connection of the root to all terminals. The second set of constraints ensures that the
solution is an arborescence, i.e., that each vertex has at most one predecessor. Finally, the
third set ensures that there is no flow on a non existing arc, and that the number of terminals
connected through an arc (i, j) ∈ A does not exceed its capacity. In the following, the relative
gap between two costs will be denoted by ∆. The well-known problem of the Capacitated
Steiner Arborescence (CStA) can be formulated as follows [20]:

CStA

∣∣∣∣∣∣ min
(x,y)∈T

∑
(i,j)∈A

cijyij

As explained previously, we evaluate the robustness of a Steiner tree by considering the
number of terminals disconnected from the root in the worst scenario, that is, the maxi-
mum number of terminals connected through an arc incident to the root, which is equal to
maxj∈Γ+

G(r) xrj. Let R be a fixed bound on this value: we may disconnect at most R terminals
from the root by deleting an arc. We propose the following formulation for the Capacitated
Steiner Arborescence with bounded robustness (CStAbounded−robust):

CStAbounded−robust

∣∣∣∣∣∣∣
min

(x,y)∈T

∑
(i,j)∈A

cijyij

s.t. xrj ≤ R ∀j ∈ Γ+(r)

Let us now consider the robustness as an objective. Note that the default objective function
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is to minimize the cost of the solution. If a model uses another objective function, then its
name will start by a given letter, e.g., R if we want to optimize the worst-case robustness.
We propose the following formulation for RCStA:

RCStA
∣∣∣∣∣ min

(x,y)∈T
max
j∈Γ+

G(r)
xrj

The max function is handled in our formulation with the addition of a variable η with
η ≥ xrj ∀j ∈ Γ+

G(r): the objective function is then to minimize η. Since this formulation
does not take the cost into account, we also propose a new formulation where we bound the
cost of a solution by a given value C:

RCStAbounded−cost

∣∣∣∣∣∣∣∣
min

(x,y)∈T
max
j∈Γ+

G(r)
xrj

s.t. ∑
(i,j)∈A

cijyij ≤ C

The max function is handled in RCStAbounded−cost in the same way than in RCStA.

However, the previous models only consider the worst-case of a breakdown. It appears that
it could also be interesting to "balance" the tree in order to reduce the loss due to an "average
breakdown". To this end, we consider arc failures at each vertex and not only at the root,
i.e., for each i ∈ V , we consider the worst case of a breakdown of an arc leaving i. This cor-
responds, for each i ∈ V , to the maximum number of terminals that cannot be reached from
the root in case of a breakdown of an arc (i, j), j ∈ Γ+

G(i), or equivalently to the maximum
flow on an arc (i, j), j ∈ Γ+

G(i). We define the "balanced robustness" as the sum of these
values: ∑i∈V maxj∈Γ+

G(i) xij. This function appears to be an alternative formulation of the
losses in both the worst and the average breakdown robustness.

We will use the letters BR to refer to models where one wants to optimize the balanced
robustness. We propose formulations similar to the previous ones for the Capacitated Steiner
Arborescence with bounded balanced robustness, where we bound the balanced robustness
of a solution by a given value BR:
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CStAbounded−balanced_robust

∣∣∣∣∣∣∣∣
min

(x,y)∈T

∑
(i,j)∈A

cijyij

s.t. ∑
i∈V

max
j∈Γ+

G(i)
xij ≤ BR

The max function in the constraint is handled in CStAbounded−balanced_robust with the addition
of |V | variables βi for each vertex i of V with βi ≥ xij ∀j ∈ Γ+

G(i): the sum of the variables
βi with i ∈ V must then not exceed BR.

The following formulation aims at computing the best balanced robustness:

BRCStA
∣∣∣∣∣ min

(x,y)∈T

∑
i∈V

max
j∈Γ+

G(i)
xij

The max function is handled in BRCStA in a similar way than inCStAbounded−balanced_robust:
we minimize the sum of the variables βi instead of setting an upper bound to this sum.

Moreover, we can keep this latter objective while bounding both the worst-case robustness
(by R) and the cost of the solution (by C). We obtain:

BRCStAbounded−robust−cost

∣∣∣∣∣∣∣∣∣∣∣

min
(x,y)∈T

∑
i∈V

max
j∈Γ+

G(i)
xij

s.t. xrj ≤ R ∀j ∈ Γ+
G(i)∑

(i,j)∈A
cijyij ≤ C

The max function in the objective function of BRCStAbounded−robust−cost is handled in the
same way than in BRCStA.

We tested those formulations on real wind farm data sets. Even if the number of instances
is small, the results are interesting to analyze, and we can compare the robustness, costs and
structures of the solutions. Data parameters and results are available respectively in Tables
2.1a and 2.1b. Figures 2.2, 2.3, 2.4 and 2.5 allow to visually compare the arborescences ob-
tained according to the different models for the fourth data set (the filled circles correspond
to terminals).
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Figure 2.2 gives an optimal (non robust) capacitated Steiner arborescence (optimal solution
of CStA); let us denote its cost by C∗. This arborescence cannot be qualified as robust
since, in the worst case, all terminals can be disconnected by deleting the only arc incident to
the root. Furthermore, the tree has a large depth, and hence the balanced robustness is not
good either. This proves the importance of searching for a more robust solution. We consider
first the worst case, RCStA, and we denote by R∗ the best robustness, i.e., the minimum
value of the loss of terminals in the worst case of a single arc deletion. See Figure 2.3 for
the associated solution on the test instance. Then, to obtain the minimum cost of a most
robust solution, denoted by C∗R∗ , we solve CStAbounded−robust with R = R∗: notice that the
constraint is saturated in any feasible solution. Then, ∆Crob = (C∗R∗ −C∗)/C∗ represents the
"cost of robustness", i.e., the percentage of augmentation of the cost to get a robust solution.

In the same way, let BR∗ be the best balanced robustness (optimal value of BRCStA, not
given in the table); see Figure 2.4 for the associated solution on the test instance. The cost
of a solution with the best balanced robustness, denoted by C∗BR∗ , is obtained by solving
CStAbounded−balanced_robust with BR = BR∗, and ∆Cbrob = (C∗BR∗ − C∗)/C∗ represents the
"cost of balanced robustness", i.e., the percentage of augmentation of the cost of a non robust
arborescence to get a balanced robust solution.

We also study the behavior of the robustness when we bound the cost to a value close to the
one of an optimal non robust arborescence : R8 (resp. R12) corresponds to the optimal value
of RCStAbounded−cost with a bound C = 1.08C∗ (resp. C = 1.12C∗).

We now analyze the results. The cost of robustness is quite variable on those instances (from
9 to 24%) but remains rather low. On the contrary, we can see that the optimization of the
average robustness is way more expensive (raise from 33% to 64% of the cost) because it
involves significantly more edges (see Figure 2.4).

As we can see on Table 2.1b, a cost augmentation of 8% or 12% on the optimal cost can
result in a solution with a good value of worst-case robustness for some instances: instances
2 and 4 present an excellent value of such robustness with only a cost augmentation of 8%,
while instances 1 and 3 have a rather good one with a cost augmentation of 12%.

Finally, we compare the optimal robustness R∗ to the robustness of the balanced arbores-
cence Sb obtained by solving BRCStA, i.e., we compute in Sb (see Figure 2.4) the maximum
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number of terminals which are disconnected after the deletion of an arc incident to the root.
Let RBR∗ be this number, shown in the last column of Table 2.1b. For the test instances,
the values of R∗ and RBR∗ are the same, which means that Sb is a good solution for both
the worst and balanced robustness, but we have seen before that its cost is high. Indeed,
for these instances, we see that forcing a solution with R = R∗ to be optimally balanced
increases the cost by at least 33 %. Nevertheless, there is no guarantee in the general case
that the best balanced solution also has the best robustness in the worst case, although the
arcs incident to the root are involved in the computation of the balanced robustness.

Table 2.1 Results on robust arborescences and data parameters

Set |V| |E| |T|
1 91 220 42
2 143 382 40
3 220 510 88
4 255 662 73

(a) Data parameters

Set R∗ R8 R12 ∆Crob ∆Cbrob RBR∗

1 21 35 29 0.18 0.56 21
2 20 21 20 0.09 0.64 20
3 22 32 30 0.24 0.33 22
4 37 41 38 0.19 0.37 37

(b) Results on robust arborescences

When trying to minimize the number of disconnected terminals in the worst case (see RC-
StA in Figure 2.3), we have seen that the associated solutions have a reasonable cost, but
the average robustness is not good, since the tree remains too deep. When finding the Bal-
anced Steiner arborescence (see BRCStA in Figure 2.4), the balanced robustness is optimal
and the robustness in the worst case is fine, but the cost can be really high (a raise of the
optimal cost to 64% on those data sets). Adding bounds on both cost and worst-case ro-
bustness, while minimizing the balanced robustness (see BRCStAbounded−robust−cost in Figure
2.5), yields a solution which has both a reasonable cost and a really good worst-case and
balanced robustness, and hence it seems that it actually yields the best compromise between
the three optimization criteria (the cost and the two types of robustness considered here).
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Figure 2.2 Resulting arborescence for the fourth data set for CStA
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Figure 2.3 Resulting arborescence for the fourth data set for RCStA
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Figure 2.4 Resulting arborescence for the fourth data set for BRCStA
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Figure 2.5 Resulting arborescence for the fourth data set for BRCStAbounded−robust−cost
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CHAPTER 3 CAPACITATED ROOTED k-EDGE CONNECTED STEINER
NETWORK PROBLEM (CRkECSN)

3.1 Definitions and notations

In this section, we study the problem of designing networks which are resilient to a given
number of arc-failures. A feasible solution to the problem we consider is a network rooted at
a given root and covering a given set of terminals, and such that, after deleting any set of k
arcs, it is still possible to route a unit of flow from the root to each terminal (see Subsection
1.2.3 in the introduction), while respecting given capacities on the arcs. Formally, we define
the following problem:

Capacitated Rooted k-Edge Connected Steiner Network problem (CRkECSN)

INSTANCE: A connected digraph G = (V,A, r, T, u, c) with a set of vertices V , a set of arcs
A, a root r ∈ V , a set of terminals T ⊆ V \ {r}, an integer capacity function u on A, a cost
function c on A, an integer k with 1 ≤ k ≤ |A| − 1.

QUESTION: Find a subset A′ ⊆ A of minimum cost such that there is a feasible flow (i.e.
respecting the arc capacities) routing a unit of flow from r to each vertex of T in the subgraph
of G induced by A′, even if any set of k arcs in A′ is deleted.

Since we consider that we route one unit of flow from the root to each terminal, it is equiva-
lent to consider that the capacity uij corresponds to the maximum number of terminals that
can be linked to the root through the arc (i, j).

Property 3.1.1 For k ∈ N∗, there are at least k + 1 arc-disjoint paths between the root
and each terminal in any feasible solution. Furthermore, any inclusion-wise minimal feasible
solution induces at least a 2-edge-connected graph in the underlying undirected graph.

Proof: The first part of the property is a consequence of Theorem 1.2.1 ([48]), in Subsection
1.2.1. Let G′ be an inclusion-wise minimal feasible solution and assume that G′ is not 2-edge-
connected in the underlying undirected graph. Then there exists at least one edge e whose
removal cuts G′ into two parts. If the part that does not include the root contains terminals,
then G′ is clearly not a feasible solution because, if we remove e, then at least one terminal
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cannot be reached from the root. Otherwise, G′ is not inclusion-wise minimal because, if
we remove e, then the resulting graph is still a feasible solution. Hence, any inclusion-wise
minimal feasible solution induces at least a 2-edge-connected graph. 2

Remark 3.1.1 Property 3.1.1 implies that a necessary condition for the existence of a feasi-
ble solution is that there are at least k+1 arc-disjoint paths between the root and each terminal
in G. We assume without loss of generality that this is always verified in G, otherwise there
is no feasible solution.

In order to simplify the formulations proposed in the next sections, we add to the input graph
a vertex s (which corresponds to a fictive sink) connected to every terminal t ∈ T by a fictive
arc (t, s) with cts = 0 and uts = 1. Then, s is added to V and the fictive arcs are added to
A, and we denote by AI the set of initial arcs (see Figure 3.1 for an example). We have the
following fact:

Fact 3.1.1 Finding a flow which routes one unit of flow between r and each terminal in the
input graph is equivalent to finding a flow of value |T | from r to s in the transformed graph
with the sink and the fictive arcs.

For any partition of V \ {s} into two parts S1 and V \ ({s}∪S1) with r /∈ S1 and S1∩T 6= ∅,
we must have that ∑(i,j)∈δ−(S1) uij ≥ |S1 ∩ T | in order to allow the routing of a unit of flow
from the root to each terminal (we remind that δ−(S1) is the set of arcs entering S1, see
Subsection 1.2.1). In the transformed graph, for any partition of V into two parts S2 and
V \ S2 with r /∈ S2 and s ∈ S2, we must have that ∑(i,j)∈δ−(S2) uij ≥ |T | (any cut must have
a capacity at least equal to |T | or equivalently there exists a r− s flow of value |T |) in order
to be able to route a unit of flow from the root to each terminal. In the example proposed
in Figure 3.1, we have T = {t1, t2, t3} and we call ui the capacity of the arc ei for i = 1, .., 8.
If we take S1 = {r, v1, t1}, in the input graph we must have that u3 + u4 ≥ 2 while in the
transformed graph we must have u3 + u4 + u8 ≥ 3. Since e8 is a fictive arc, we have u8 = 1,
thus the constraints are equivalent.

3.2 Formulations

3.2.1 Cutset formulation

We introduce, for each (i, j) ∈ A, a binary variable yij equal to 1 if the arc (i, j) is selected
in A′, 0 otherwise. In this chapter, the variable y is defined for different formulations and for
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Figure 3.1 Example of addition of a sink to the input graph

each one, yts is set to 1 for each terminal t ∈ T : the fictive arcs will always be selected in the
final network (furthermore their cost is equal to 0 and they cannot fail).

Consider the r − s cuts [V \ VS, VS] with VS ⊂ V , r ∈ V \ VS, s ∈ VS and VS 6= {s}, and let
S be the set of all the associated cut-sets S in A, i.e. S = δ−(VS) for each VS. S is the set
of r− s cutsets except the one containing only fictive arcs. Notice that if S ∈ S then S ∩A′

is a cut-set in the selected network. For any set S ∈ S, let CS
k be the set of subsets of S of

size k of non-fictive arcs. Please note that there are always at least k + 1 non-fictive arcs in
S because, from Remark 3.1.1, CS

k cannot be empty. For each S ∈ S, we define MS as the
maximum capacity of a subset of k selected arcs of S:

MS = max
C∈CS

k

∑
(i,j)∈C

uijyij (3.1)

MS corresponds to the maximum capacity that can be lost in the cut-set S after the deletion
of k arcs. We propose the following cutset formulation:

(CUT )

∣∣∣∣∣∣∣∣∣∣∣∣∣

min
y

∑
(i,j)∈A

cijyij

s.t.
∑

(i,j)∈S
uijyij − MS ≥ |T | ∀S ∈ S

yij ∈ {0, 1} ∀(i, j) ∈ A

(3.2)

Constraints (3.2) ensure that, for each cut, the capacity of the cut after the worst-case dele-
tion of k arcs of the cut-set is at least equal to the number of terminals, i.e., one can still route
|T | units of flow from r to s while respecting the capacity constraints. They are necessary to
every feasible solution. Indeed, they ensure that, for each cut-set in the graph induced by the
arcs (i, j) such that yij = 1, the capacity of the cutset minus the k maximal arc capacities
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of the cut is greater than or equal to the number of terminals. If a constraint (3.2) is not
satisfied for some S, it means that, the capacity of a cut (and consequently of a min-cut) in
the graph induced by y after removing k arcs becomes smaller than |T |. Constraints (3.2)
are also sufficient to ensure a feasible solution: if they are satisfied for each cut-set S ∈ S,
it means that you cannot find a set of k arcs whose removal will induce a min-cut with
capacity smaller than |T | (which from Theorem 1.2.2 [29] in Subsection 1.2.1 is a necessary
and sufficient condition for the existence of a flow of value |T |).

Constraints (3.2) are non linear because of the use of the maximum operator in the definition
of MS. To linearize it, we can rewrite (3.2) as follows:

∑
(i,j)∈S\C

uijyij ≥ |T | ∀S ∈ S, ∀C ∈ CS
k (3.3)

The number of Constraints (3.3) is obviously bigger than the number of Constraints (3.2).
The number of Constraints (3.3) being exponential, we propose a constraints generation
algorithm. We begin with a small number of Constraints (3.3), associated with a small
subset of S. We obtain a lower bound for our problem. Then we search for a cut-set that
does not verify some constraint (3.3) by solving the following subproblem: given a network
induced by the arcs (i, j) such that ŷij = 1 (where ŷ is the current value of y), we aim to
find a cut-set S of minimum residual capacity once we delete its k most capacitated arcs.
If this capacity is smaller than |T |, we add the constraints associated with S, otherwise the
algorithm terminates. For small values of k, one straightforward method to find this cut of
minimum residual capacity is the following: for each combination C of k arcs in AI which
are selected in the current solution, compute the min-cut on the graph where the capacity
of each arc (i, j) is defined as uij ŷij, except for the k arcs of C whose capacities are set to 0.
Otherwise, if k is too big, we use the following MIP, where Â = {(i, j) ∈ A | ŷij = 1} and
Ĝ = (V, Â) corresponds to the current solution:
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(CUT − SEP )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
s,b,v

∑
(i,j)∈Â

uijsij

s.t sij + bij − vi + vj ≥ 0 ∀(i, j) ∈ Â

vr = 1

vs = 0∑
(i,j)∈Â

bij ≤ k

∑
t∈T

bts = 0

sij, bij ∈ {0, 1} ∀(i, j) ∈ Â, v ∈ {0, 1}|V |

(3.4a)

(3.4b)

(3.4c)

(3.4d)

(3.4e)

(3.4f)

In this MIP, the variable v defines a r − s-cut on the network: any vertex j with vj = 1 is
in the same part of the cut as r, and any vertex i with vi = 0 is in the same part as s. The
variables bij and sij are binary and we have bij = 1 if and only if arc (i, j) is deleted, whereas
sij defines the selection of (i, j) in the cut-set: sij = 1 if and only if the arc (i, j) is selected in
the cut-set. Constraints (3.4a) ensure that S̃ = {(i, j) s.t. sij = 1 or bij = 1} defines a cutset
in the current network Ĝ (if bij = 1, we have sij = 0 in any optimal solution because of the
minimization of the objective function), and the objective function ∑(i,j)∈Â uijsij represents
the residual capacity of S̃, i.e., the capacity of the undeleted arcs of S̃. Constraints (3.4b)
and (3.4c) ensure that the root and the sink are not in the same part of the cut. Constraints
(3.4d) and (3.4e) ensure that there are no more than k arc deletions, and that no fictive arc
can be deleted. If the solution provides a cutset with a residual capacity at least equal to
|T |, then the solution is feasible. Otherwise, we add the associated constraint to the main
MIP.

In the case of a uniform capacity U on each arc a ∈ AI , MS in Constraints (3.2) becomes a
constant equal to kU and hence these constraints are linear, which implies that Constraints
(3.3) are useless. The number of constraints is still exponential, but highly reduced compared
to the non-uniform case. The formulation can be rewritten as follows:

min
y

∑
(i,j)∈A

cijyij

s.t.
∑

(i,j)∈S
uijyij ≥ |T | + kU ∀S ∈ S

yij ∈ {0, 1} ∀(i, j) ∈ A

(3.5)
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Undirected graphs

Adapting the formulation to the undirected case where we are given a set of edges E instead of
a set of arcs A is quite straightforward. Indeed, it can be done by considering the undirected
cut-sets of the graph instead of the directed ones.

3.2.2 Flow formulation

In this section, we introduce a formulation based on flow variables. We define F as the set
of all possible arc-failure scenarios: it corresponds to the set of all k-combinations in AI .
We introduce the variable xFij which represents the amount of flow routed through the arc
(i, j) ∈ A when the scenario F ∈ F occurs (we have xFij = 0 if (i, j) ∈ F ). The variable y is
defined as in the previous formulation (see Subsection 3.2.1). We propose the following flow
formulation:

(FLOW )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
x,y

∑
(i,j)∈A

cijyij

s.t.
∑

i∈Γ−(j)
xFij −

∑
k∈Γ+(j)

xFjk = 0 ∀j ∈ V \ {r, s}, ∀F ∈ F
∑

t∈Γ−(s)
xFts = |T | ∀F ∈ F

xFij ≤ uijyij ∀(i, j) ∈ A, ∀F ∈ F

xFij = 0 ∀F ∈ F , ∀(i, j) ∈ F

x ∈ R|A|×|F|+ , y ∈ {0, 1}|A|

(3.6a)

(3.6b)

(3.6c)

(3.6d)

x ∈ R|A|×|F|+ , y ∈ {0, 1}|A|

Constraints (3.6a) and (3.6b) ensure that there is a flow of value |T | for each arc-failure sce-
nario F ∈ F , meaning that we can still route a unit of flow to each terminal after any k arc
failures. Constraints (3.6c) ensure that the arc capacities are respected for each arc-failure
scenario F ∈ F . Constraints (3.6d) ensure that, in each scenario F ∈ F , no flow is routed
through deleted arcs. One can notice that the variable x must be an integer (because it cor-
responds to a number of terminals). However, we relax this integrality constraint. Indeed,
for any value of y ∈ {0, 1}|E|, setting the value of x corresponds to routing a set of flows
of value |T | on |F| different networks with integer capacities. Then, for any given value of
y ∈ {0, 1}|E|, there exists a solution where x is integer (see Theorem 1.2.3 in the Subsection
1.2.2 of the introduction), and hence there exists an optimal solution with x integer.
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The number of variables and constraints being exponential for arbitrary values of k, we pro-
pose a constraints-and-columns generation algorithm to solve the problem. We begin with
a small subset of F . The separation problem is the problem of the k most vital links in a
flow network which is NP-hard [56]: we search for the k arcs which, once simultaneously
deleted, reduce the most the value of a maximum s− t flow. We use a procedure similar to
the one used in Subsection 3.2.1: for small values of k, we compute a maximum s− t flow for
each combination of k selected arcs of AI . If there is a combination of arcs whose deletion
results in a maximum s− t flow lower than |T |, we add this arc-failure scenario, else the solu-
tion is feasible. If k is too big, we use the auxiliary MIP (CUT − SEP ), see Subsection 3.2.1.

Undirected graphs

In order to adapt the formulation to the undirected case with a set of edges E instead of a
set of arcs A, one can define for each [i, j] ∈ E the variables yij, xFij and xFji. The function Γ+

and Γ− are replaced by the function Γ in Constraints (3.6a) and (3.6b), while Constraints
(3.6c) and (3.6d) are replaced by:

xFij + xFji ≤ uijyij ∀[i, j] ∈ E, ∀F ∈ F

xFij + xFji = 0 ∀F ∈ F , ∀[i, j] ∈ F

(3.7a)

(3.7b)

A feasible solution induced by y and x implies a flow of value |T | for each scenario F ∈ F .
Then, if a given solution yields a strictly positive flow on both xFij and xFji for a given edge [i, j]
and a given scenario F , there exists another flow at least as good as this one in which the flow
verifies either xFij = 0 or xFji = 0 (see Remark 1.2.1 in Subsection 1.2.2 of the introduction).

3.2.3 Bilevel formulation

The bilevel formulation proposed here is particular in that the second level is a min max
problem. It can be seen as a game with a defender and an attacker (corresponding respec-
tively to the leader and the follower).

For each (i, j) ∈ A, we introduce a variable xij which corresponds to the amount of flow
that the defender chooses to route through the arc (i, j). The variable y is defined as in
Subsection 3.2.1. We also introduce the binary variables bij, ∀(i, j) ∈ A: bij = 1 if and only if
the attacker chooses to delete the arc (i, j). Moreover, we assume without loss of generality
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that there is no arc entering r. Then, we can define the following polyhedron:

X (y, b) =



∑
i∈Γ−(j)

xij −
∑

k∈Γ+(j)
xjk = 0 ∀j ∈ V \ {r, s}

xij ≤ uijyij ∀(i, j) ∈ A

xij ≤ uij(1− bij) ∀(i, j) ∈ A

xij ≥ 0 ∀(i, j) ∈ A



(3.8a)

(3.8b)

(3.8c)

This polyhedron X (y, b) corresponds to the set of possible flows on the subgraph of G induced
by the arcs (i, j) ∈ A such that yij = 1, provided they have not been deleted, i.e. bij = 0. The
polyhedron X (y, b) is defined by the flow conservation constraints, the capacity constraints
and the constraints imposing a flow equal to 0 on any arc which is deleted. We also define
the following polyhedron:

B = { b ∈ {0, 1}|A| | ∑(i,j)∈A bij ≤ k ; bts = 0 ∀t ∈ T }

The polyhedron B defines the set of possible scenarios of arc failures (it ensures that no fictive
arc can be deleted). We propose the following bilevel program:

(BILEV EL)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
y∈{0,1}|A|

∑
(i,j)∈A

cijyij

s.t. f(y) ≥ |T |

where f(y) = min
b∈B

max
x∈X (y,b)

∑
j∈Γ+(r)

xrj

(3.9a)

(3.9b)

where {(i, j) s.t. yij = 1} defines the set of selected arcs. At the upper level, the defender
selects the set of arcs to be added to the network, by choosing a value of y in {0, 1}A. The
attacker then deletes some arcs by setting the variable b ∈ B in order to minimize the max-
imum flow that the defender will compute by setting the variable x in the flow polyhedron
X (y, b). The aim of the defender is to ensure that this flow is at least equal to |T | (see
Constraint (3.9a)).

Consider the max problem in the lower level: at this stage, y and b are already fixed; we
refer to their values as ŷ and b̂ respectively. The problem is a max-flow problem from r to s,
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with two sets of capacity constraints. In our problem, the flow must be integral since it cor-
responds to a number of terminals. However, it is well-known that the matrix of coefficients
M in the arc-formulation of a max-flow is totally unimodular (see Subsection 1.2.2 in the
introduction). Then, adding the second set of capacity constraints is equivalent to appending
the identity matrix to M : the matrix remains totally unimodular and, since the capacities
are integers, we ensure that the extreme points of the polyhedron defined by X (y, b) have
integral coordinates. Thus, we can relax the integrality constraints on x.

In the max problem of the lower level (i.e. maxx∈X (y,b)
∑
j∈Γ+(r) xrj), there always exists a

feasible flow of value 0 and the problem is also trivially upper bounded by |T | (because of the
cut-set with only the fictive arcs). Hence, the strong duality holds and we can introduce the
dual of the lower level problem, where µ is the variable associated with Constraints (3.8a)
while λ and γ are respectively associated with Constraints (3.8b) and (3.8c). After a slight
reformulation due to the addition of µr and µs, the dual problem can be written as follows
(see Subsection 1.2.2 in the introduction):

(Φ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
λ,µ,γ

∑
(i,j)∈A

uij ŷijλij + ∑
(i,j)∈A

uij(1− b̂ij)γij

s.t λij + γij − µi + µj ≥ 0 ∀(i, j) ∈ A

µr = 1

µs = 0

λ, γ ∈ [0, 1]|A|, µ ∈ [0, 1]|V |

(3.10a)

(3.10b)

(3.10c)

(3.10d)

Because (Φ) is the dual of the problem maxx∈X (y,b)
∑
j∈Γ+(r) xrj, we have that the matrix of

constraints of (Φ) is totally unimodular (because it is the transpose of a totally unimodular
matrix, see Property 1.2.1 in Subsection 1.2.2 in the introduction). Thus, the extreme points
of (Φ) are integer. This problem is a special formulation of a min-cut problem: µ defines the
two parts of the cut (sets of vertices i ∈ V such that either µi = 0 or µi = 1), an arc (i, j) is
in the corresponding cut-set if µi = 1 and µj = 0. The variables γ and λ define the cut-set
of the corresponding cut: for each arc (i, j) in the cut-set, we have either λij = 1 or γij = 1.
If an arc (i, j) is not in the cut-set, because we minimize the objective function with positive
coefficients and µj−µi ≥ 0, we have γij = λij = 0 in an optimal solution. Moreover, because
of the economic function and the positive capacities, we have that γij is equal to 1 for at
least all arcs (i, j) in the cut-set with b̂ij = ŷij = 1 (i.e., the arcs selected but deleted), while
λij is equal to 1 for at least all arcs (i, j) in the cut-set with b̂ij = ŷij = 0 (i.e., the arcs that



40

are neither selected nor deleted). For other arcs in the cut-set, it does not matter which one
is set to 1. We denote by D the polyhedron defined by dual Constraints (3.10a)−(3.10d).

Since the lower level can be reformulated as a min−min function by using the dual described
above, it can then be rewritten as follows:

(LL)

∣∣∣∣∣∣∣∣∣∣
min
b,λ,µ,γ

∑
(i,j)∈A

uij ŷijλij + uij(1− bij)γij

s.t b ∈ B
(λ, µ, γ) ∈ D

At this point, b is a variable, so the objective function is non-linear. We linearize the terms
bijγij in a classical way by introducing variables lij = bijγij where lij verifies the set of
constraints defined by L(b, γ):

L(b, γ) =


l ∈ R|A|

∣∣∣∣∣∣∣∣∣∣∣∣

lij ≤ bij ∀(i, j) ∈ A
lij ≤ γij ∀(i, j) ∈ A
lij ≥ γij − (1− bij) ∀(i, j) ∈ A
lij ≥ 0 ∀(i, j) ∈ A



The lower level can then be rewritten as follows:

(LL)

∣∣∣∣∣∣∣∣∣∣∣∣∣

min
b,λ,µ,γ

∑
(i,j)∈A

uij ŷijλij + uijγij − uijlij

s.t b ∈ B
(λ, µ, γ) ∈ D
l ∈ L(b, γ)

We define the following function g:

g(y, λ, γ, l) =
∑

(i,j)∈A
uijyijλij + uijγij − uijlij

We can then rewrite the bilevel program as:
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min
y∈{0,1}|A|

∑
(i,j)∈A

cijyij

s.t f(y) ≥ |T |
where f(y) = min

b,λ,γ,µ,l
g(y, λ, γ, l)

s.t. b ∈ B
(λ, µ, γ) ∈ D
l ∈ L(b, γ)

We can then consider the convex hull of the lower-level polyhedron defined by B, D and
L(b, γ), and denote by H the set of its extreme points. One can notice that this convex hull
does not depend on y (only g(·) does): the set of extreme points H remains the same for
every y ∈ {0, 1}A. We denote by (λ̂h, γ̂h, l̂h) the respective values of (λ, γ, l) at the extreme
point h ∈ H. We can then reformulate the bilevel formulation as a single-level one as follows:

min
∑

(i,j)∈A
cijyij

s.t. g(y, λ̂h, γ̂h, l̂h) ≥ |T | ∀h ∈ H

y ∈ {0, 1}|A|

(BP) b ∈ B

(λ, µ, γ) ∈ D

l ∈ L(b, γ)

(3.11a)

(3.11b)

(3.11c)

(3.11d)

(3.11e)

Constraints (3.11a) ensure that, for each extreme point of H, f(y) is greater than |T | (thus
the minimum value of f(y) over the polyhedron defined by Constraints (3.11b)−(3.11e) is
greater than |T |), meaning that the value of a maximum flow cannot become smaller than
|T |, even after any k breakdowns.

Remark 3.2.1 One may think that the sets of constraints xij ≤ uijyij and xij ≤ uij(1−bij)
could be replaced by xij ≤ uij(yij − bij) in the polyhedron X (y, b) to make the resulting
polyhedron X̃ (y, b) more compact. However, if for a given (i, j), we have bij > yij (i.e.
bij = 1 and yij = 0), then X̃ (y, b) is empty and hence minb∈Bmaxx∈X̃ (y,b)

∑
j∈Γ+(r) xrj is

not defined because there are some values of b for which X̃ (y, b) is empty. Furthermore the
dualization of this polyhedron leads (LL) to be unbounded in this case.
A solution to this issue could be to add the set of constraints bij ≤ yij in the polyhedron B
but it would lead to the presence of constraints which depend on y in the lower level.
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Remark 3.2.2 In (BP), g(y, λ, γ, l) is non-linear because of the products yijλij, but they
can be linearized as it has been done for bijγij above.

However, there is an exponential number of Constraints (3.11a). To tackle this issue, we
use a constraints generation algorithm where we relax Constraints (3.11a) and use (LL)
as the separation problem: while the optimum value of (LL) is smaller than |T | for the
current solution ŷ (integer solution to (BP) with a subset of Constraints (3.11a)), we generate
Constraints (3.11a) associated with the extreme point whose coordinates are the optimal
values of (b, λ, γ, µ, l) in (LL).

Property 3.2.1 Let ŷ1 and ŷ2 be two feasible solutions of (BP) such that ŷ1 ≥ ŷ2, i.e.,
ŷ1
ij ≥ ŷ2

ij for each arc (i, j). If adding a constraint g(y, λ̂a, γ̂a, l̂a) ≥ |T | makes any solution
with y = ŷ1 infeasible, then it also makes any solution with y = ŷ2 infeasible.

Proof: For any value (λ̂a, γ̂a, l̂a) of (λ, γ, l), we have g(ŷ1, λ̂a, γ̂a, l̂a) ≥ g(ŷ2, λ̂a, γ̂a, l̂a)
since ŷ1 ≥ ŷ2 (recall that u and λ are positive). Hence, if g(ŷ1, λ̂a, γ̂a, l̂a) ≤ |T | − 1, then
g(ŷ2, λa, γa, la) ≤ |T | − 1. 2

To improve the cut added to (BP) to forbid the current non-feasible solution ŷ obtained by
solving (LL) for each constraint generation, we search for an unfeasible solution y such that
y ≥ ŷ in order to generate a stronger constraint, as explained in Property 3.2.1. To get these
values, we first solve the following problem, and then we compute the new ŷ accordingly (as
explained later). Given a starting solution ŷ, we propose to find a cut-set in the support
network (i.e., in the initial digraph G) with a minimum number of arcs such that this cut-set
is non-valid in the network induced by Â (i.e. the arcs (i, j) such that ŷij = 1), meaning
that, if we remove k given arcs of the cut-set in Â, its remaining capacity is smaller than |T |.
This can be modeled as follows:

min ∑
(i,j)∈A λij

s.t
∑

(i,j)∈A
uij ŷijλij ≤ |T | − 1∑

(i,j)∈A
γij = k

γts = 0 ∀t ∈ T

(λ, µ, γ) ∈ D, µ ∈ {0, 1}|V |

(3.12a)

(3.12b)

(3.12c)

(λ, µ, γ) ∈ D, µ ∈ {0, 1}|V |

The variables (λ, µ, γ) define a cut in the input graph since they belong to D (recall that
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D is the set of Constraints (3.10a)−(3.10d)): µ defines the two parts of the cut, while λ
and γ define the arcs in the cut-set; in particular γ defines the arcs in the cut-set that are
deleted. However, adding the other constraints makes the constraints matrix not unimodular
anymore: thus, we have to set µ as a 0-1 variable. When µ is binary, there always exist an
optimal solution with γ and λ binary: for an arc (i, j), if µi = µj or µi = 0 and µj = 1, we
have that λij = γij = 0; if µi = 1 and µj = 0, we must have λij + γij ≥ 1, and because of
the minimization of the objective function, there always exists an optimal solution such that
exactly one between λij and γij is equal to 1. Constraint (3.12a) ensures that the cut-set se-
lected is non-valid (i.e. has insufficient capacity). Constraint (3.12b) ensure that the number
of deleted arcs is equal to k, while Constraints (3.12c) forbid the deletion of fictive arcs.

Then, the new values of the ŷij are computed as follows: we set ŷij to 1 for all (i, j) with
λij = γij = 0 and let the others to their current value. Indeed, we want to include as many
arcs as possible in the solution, while ensuring that there exists a cut with capacity at most
|T|-1: hence, any arc not associated with this cut can be included in the solution. It implies
that, for each arc (i, j), the new value of ŷij cannot be smaller than the old one, and, using
Proposition 3.2.1, we generate a better constraint than the original one by computing the
extreme points associated with this new value of ŷ.

Undirected graphs

In order to obtain a formulation that works for the undirected case, we define for each edge
[i, j] the variables yij, bij, xij and xji. The only modification appears in the polyhedron
X (y, b), which can be modified as follows:

X (y, b) =


x ∈ R|E|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
i∈Γ(j)

xij −
∑

k∈Γ(j)
xjk = 0 ∀j ∈ V \ {r, s}

xij ≤ uijyij ∀[i, j] ∈ E
xji ≤ uijyij ∀[i, j] ∈ E
xij ≤ uij(1− bij) ∀[i, j] ∈ E
xji ≤ uij(1− bij) ∀[i, j] ∈ E
xij, xji ≥ 0 ∀[i, j] ∈ E



Again, since this polyhedron is associated with a maximum flow problem (when the values
of y and b are fixed), we can always find a maximum flow where either xij = 0 or xji = 0
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for each edge [i, j] ∈ E. Once this polyhedron has been modified, one can use the method
proposed for the directed case to solve the formulation.

3.3 Relations between the formulations

3.3.1 Relations between the bilevel and the cutset formulations

Let us formulate (SL) the second level of the bilevel formulation by replacing Constraints
(3.8b) and Constraints (3.8c) by the constraint xij ≤ uij(ŷij − bij) ∀(i, j) ∈ A (see the
polyhedron X̃ (y, b) in Remark 3.2.1 in Subsection 3.2.3). We introduce the polyhedron
B̃(y) = {b ∈ B | b ≤ y} to ensure that X̃ (y, b) is non-empty for each possible value of
b ∈ B̃(y), i.e. the second level is defined. We obtain:

(SL)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
b∈B̃(y)

max
x

∑
j∈Γ+(r)

xrj

s.t
∑

i∈Γ−(j)
xij −

∑
k∈Γ+(j)

xjk = 0 ∀j ∈ V \ {r, s}

0 ≤ xij ≤ uij(ŷij − bij) ∀(i, j) ∈ A

(3.13a)

(3.13b)

We introduce a reformulation of (SL), moving the variable b to the objective function:

(RSL)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
b∈B̃(y)

max
x

∑
j∈Γ+(r)

xrj −
∑

(i,j)∈A
bijxij

s.t
∑

i∈Γ−(j)
xij −

∑
k∈Γ+(j)

xjk = 0 ∀j ∈ V \ {r, s}

0 ≤ xij ≤ uij ŷij ∀(i, j) ∈ A

(3.14a)

(3.14b)

Property 3.3.1 (SL) and (RSL) have the same optimal values.

Proof: Let f 1(b̂, x̂) (respectively f 2(b̂, x̂)) be the value of the objective function of (SL)
(respectively (RSL)) when (b̂, x̂) is a feasible solution of (SL) (respectively (RSL)).

Let x1 be an optimal solution of the max problem of (SL) associated with b′ ∈ B̃(y). We have
that x1 is obviously a feasible solution of (RSL). Furthermore, Constraints (3.13b) imply
that x1

ij = 0 if b′ij = 1. Then b′ijx1
ij = 0 for all arcs (i, j) and f 1(b′, x1) = f 2(b′, x1).
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Let x2 be an optimal solution of the max problem of (RSL) associated with b′′ ∈ B̃(y).
If b′′ijx2

ij = 0 for all arcs (i, j), x2 is a feasible solution of the max problem of (SL) and
f 2(b′′, x2) = f 1(b′′, x2). Otherwise there is at least one arc (u, v) such that b′′uvx2

uv > 0 (thus
x2 is not feasible for the max problem of (SL)). Let x3 be a new solution of (RSL) such that
x3
uv = 0, x3

ij ≤ x2
ij for each arc (i, j) 6= (u, v) and the value of the flow defined by x3 is equal

to the value of the flow defined by x2 minus x2
uv (i.e. ∑

j∈Γ+(r)
x3
rj = ∑

j∈Γ+(r)
x2
rj − x2

uv). Such a

flow always exists: we reduce by x2
uv the value of the flow by reducing the amount of flow on

one or several paths from r to s containing (u, v).

We have f 2(b′′, x3) = ∑
j∈Γ+(r)

x3
rj −

∑
(i,j)∈A

b′′ijx
3
ij = ( ∑

j∈Γ+(r)
x2
rj − x2

uv) −
∑

(i,j)∈A
bijx

3
ij. Because

x3 ≤ x2 and x3
uv = 0, we have that ∑

(i,j)∈A
b′′ijx

2
ij ≥

∑
(i,j)∈A

b′′ijx
3
ij + x2

uv and thus f 2(b′′, x3) ≥∑
j∈Γ+(r)

x2
rj − x2

uv − ( ∑
(i,j)∈A

bijx
2
ij − x2

uv) which leads to f 2(b′′, x3) ≥ f 2(b′′, x2): since x2 is op-

timal we have f 2(b′′, x3) = f 2(b′′, x2). We have found an optimal solution x3 of the max
problem of (RSL) with x3

uv = 0 and x3 ≤ x2. By using this method iteratively, we obtain a
solution xh with ∑

(i,j)∈A
b′′ijx

h
ij = 0. Thus, xh is optimal for (RSL) and feasible for (SL) and

f 2(b′′, x2) = f 2(b′′, xh) = f 1(b′′, xh).

The optimal values of (SL) and (RSL) are then the same considering we can transform an
optimal solution for (SL) to a solution for (RSL) of same value and vice versa. 2

In an optimal solution of (RSL), the defender will then route no flow through arcs which
had been deleted by the attacker because it would reduce the value of his objective function.
We can also replace the constraint b ∈ B̃(y) by b ∈ B in (RSL) (i.e. deleting the constraint
b ≤ y) since the polyhedron of the max problem is defined for each b ∈ B. This does not
affect the optimal value of (RSL) since, for an arc (i, j), xij = 0 if yij = 0 and thus bijxij = 0
no matter the value of bij.

Property 3.3.1 can also be seen as a consequence of a Wood’s result [67]. Wood considers
the following generic bilevel network interdiction model:

(BNI1)

∣∣∣∣∣∣∣∣∣
min
z∈Z

max
w

c>w

s.t Aw ≤ a

0 ≤ w ≤ U(1− z)
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where Z = {z ∈ {0, 1}n | Hz ≤ h} is the polyhedron of the attacker variable z (for a facility
f , zf = 1 if the facility f is attacked, 0 otherwise). The defender operates the network to
maximize his objective function by setting the variable w, considering the damages made by
the attacker (if zf = 1, there cannot be any activity on the facility f , i.e. wf = 0 because of
the constraint 0 ≤ w ≤ U(1− z)). We have U = diag(u) where u is the upper bound vector
of w (for example a capacity).

Let rf be an upper bound on the optimal dual variable for the constraint wf ≤ uf (1 − zk)
in (BNI1). We introduce r = (r1...rn)> and R = diag(r). Wood defines the following
formulation:

(BNI2)

∣∣∣∣∣∣∣∣∣
min
z∈Z

max
w

(c> − z>R)w

s.t Aw ≤ a

0 ≤ w ≤ u

In Wood [67, Proposition 1], Wood shows that (BNI1) and (BNI2) are equivalent in the
sense that their optimal values are equal and z∗ is an optimal solution for (BNI2) if and
only if it is an optimal solution for (BNI1). Using this proposition on (SL), we re-obtain
the formulation (RSL) (R corresponds to the identity matrix in our case since dual variables
can be bounded by 1 similarly to Subsection 3.2.3).

Again, at this point, the variable ŷ and b̂ are fixed. The defender subproblem (RSL) can
then be dualized in this way:

min
λ,µ

∑
(i,j)∈A

uij ŷijλij

s.t λij − µi + µj ≥ − b̂ij ∀(i, j) ∈ A

µr = 1

µs = 0

λ ∈ [0, 1]|A|, µ ∈ [0, 1]|V |

(3.15a)

(3.15b)

(3.15c)

(3.15d)

The lower level can be reformulated as a min−min function by using the dual described
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above, thus it can be rewritten as follows:

(DRSL)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
b,λ,µ

∑
(i,j)∈A

uij ŷijλij

s.t b ∈ B

λij + bij − µi + µj ≥ 0 ∀(i, j) ∈ A

µr = 1

µs = 0

λ ∈ [0, 1]|A|, µ ∈ [0, 1]|V |

(3.16a)

(3.16b)

(3.16c)

(3.16d)

(3.16e)

We can then rewrite the bilevel program as:

min
y∈{0,1}|A|

∑
(i,j)∈A

cijyij

s.t f(y) ≥ |T |
where f(y) = min

(b,λ,µ)∈D

∑
(i,j)∈A

uijyijλij

where D is the polyhedron defined by Constraints (3.16a-3.16e).

One can notice that (DRSL) is strictly equivalent to the separation problem of the cut-set
formulation (3.4a-3.4e). Let us rewrite Constraint (3.3) from the cut-set formulation:

∑
(i,j)∈S\C

uijyij ≥ |T | ∀S ∈ S, ∀C ∈ CS
k

where S is the set of r − s cutsets except the one implying only fictive arcs and CS
k is the

set of subsets of S of non-fictive arcs of size k, for any set S ∈ S. We can see that using
the method generating the inequalities associated with the extreme points of the convex hull
of (DRSL) proposed in Subsection 3.2.3 generates the same inequalities as (3.3), since the
extreme points of (DRSL) represented by the values (b̂, λ̂, µ̂), which are integer because of
the total unimodularity of the matrix of constraints of (DRSL), will represent cuts on the
graph given by µ̂: a vertex v is in the same part as the root if µv = 1 and in the same part
as the sink if µv = 0. The residual cut-set S \ C is represented by the arcs (i, j) such that
λ̂ij = 1, the deleted arcs C in the cut-set are represented by the arcs (i, j) such that b̂ij = 1.
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It is then clear that the bilevel formulation collapses with the cut-set formulation, as stated
in Theorem 3.3.1.

Theorem 3.3.1 The optimal values of the continuous relaxations of (BILEV EL) and (CUT )
are equal.

Thus, we will only give the numerical results obtained for the cut-set and the flow formula-
tions.

3.3.2 Relations between the flow and the cutset formulations

Let us introduce the continuous relaxation of the cutset formulation:

(RCF )

∣∣∣∣∣∣∣∣∣∣∣

min
y

∑
(i,j)∈A

cijyij

s.t ∑
(i,j)∈S\C

uijyij ≥ |T | ∀S ∈ S,∀C ∈ CS
k

0 ≤ yij ≤ 1 ∀(i, j) ∈ A

We remind that S is the set of cut-sets associated with the r − s cuts [V \ VS, VS] with
VS ⊂ V , r ∈ V \ VS, s ∈ VS and VS 6= {s} and that for any S ∈ S, CS

k is the set of subsets
of non-fictive arcs of S of size k.

We also introduce the continuous relaxation of the flow formulation:

(RFF )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
x,y

∑
(i,j)∈A

cijyij

s.t. ∑
i∈Γ−(j)

xFij −
∑

k∈Γ+(j)
xFjk = 0 ∀j ∈ V \ {r, s}, ∀F ∈ F∑

t∈Γ−(s)
xFts = |T | ∀F ∈ F

xFij ≤ uijyij ∀(i, j) ∈ A, ∀F ∈ F
xFij = 0 ∀F ∈ F , ∀(i, j) ∈ F
x ∈ R|A|×|F|+ , y ∈ [0, 1]|A|

Let us call (y1, x1) a feasible solution for (RFF ). Setting y = y1 for (RCF ) would give a
solution with the same value. Let us check that such a solution is feasible for (RCF ). Since
(y1, x1) is feasible for (RFF ), there exists a flow of value |T | for each scenario of breakdown
of k arcs, considering the capacity uijy1

ij on each arc (i, j), except obviously the arcs which
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are attacked in this scenario which have a capacity equal to 0. Let us assume that y1 is not a
feasible solution for (RCF ). Then there is at least one constraint of type ∑

(i,j)∈S\C
uijy

1
ij ≥ |T |

which is violated for some S ∈ S and C ∈ Cs
k. If such a constraint is violated, it means that

there is a r− s cut-set for which the capacity is lower than |T | if we delete k arcs (again the
capacity of each arc (i, j) here is uijy1

ij). Then, the scenario of breakdown F ∈ F in which
those k arcs are deleted would not admit a feasible flow of value |T |: a contradiction. So y1

is a feasible solution for (RCF ) with the same value than (y1, x1) for (RFF ).

Now let us call y2 a feasible solution for (RCF ). Setting y = y2 for (RFF ) would give a solu-
tion with the same value. Assume there does not exist any x2 such that (y2, x2) is a feasible
solution for (RCC). It means that there exists at least a scenario of breakdown F ∈ F such
that there is no feasible flow of value |T | on the residual network (where we delete the arcs
in F ) with capacities equal to uijy2

ij for each arc (i, j). As before, this is impossible since this
would involve a residual r − s cut-set with a capacity lower than |T |. So there always exists
at least one x2 such that (y2, x2) is a feasible solution for (RFF ).

We can then transform any solution of (RFF ) in a solution of same value in (RCF ) and vice
versa and deduce Theorem 3.3.2.

Theorem 3.3.2 The optimal values of the continuous relaxations of the flow formulation
(RFF ) and the cut-set formulation (RCF ) are equal.

3.4 Addition of protected arcs

Let us now define another version of the problem, where we add the possibility of protecting
k′ arcs. In this version, in addition to A′, we also select a subset A′p ⊂ A′ with |A′p| ≤ k′;
those arcs are called protected arcs and cannot be deleted by the attacker. The corresponding
problem is called Capacitated Protected Rooted k-Edge Connected Steiner Network problem
(CPRkECSN). In the wind farm application, protecting arcs can be seen as doubling a set
of cables under a given budget for example, or protecting cables from a difficult environment
(like extreme cold).

Remark 3.4.1 With the addition of protected arcs, Property 3.1.1 in Section 3.1 does not
hold anymore: if some arcs are protected, a feasible solution does not necessarily imply that
there are k + 1 arc-disjoint paths between the root and each terminal t. For example, k + 1
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paths which are pairwise arc-disjoint except for the fact that they share a common arc (u, v)
can be sufficient to ensure that the terminal t can be reached from the root even after any k
arc-deletions if the arc (u, v) is protected and capacities are sufficient. Hence, Remark 3.1.1
can also be ignored.

For each non-fictive arc (i, j) ∈ AI , we define the variable pij as a binary variable equal to 1
if the arc (i, j) is protected, and to 0 otherwise. We also define the following polyhedron:

P = { p ∈ {0, 1}|AI | | ∑
(i,j)∈AI

pij ≤ k′ ; pij ≤ yij ∀(i, j) ∈ AI }

This set ensures that there are at most k′ protected arcs, and that we cannot protect arcs
which are not selected in the final network. In the following, we propose small modifications
to each one of the previous formulations in order to include the possibility of protecting arcs.

3.4.1 Cut-set formulation

In order to include the possibility of protecting arcs to the cut-set formulation proposed in
Subsection 3.2.1, Constraints (3.3) can be replaced by the following ones:

∑
(i,j)∈S

uijyij −
∑

(i,j)∈C
uij(yij − pij) ≥ |T | ∀S ∈ S, ∀C ∈ CS

k (3.17)

Constraints (3.17) ensure that the capacity of each cut-set minus the capacity of k unpro-
tected arcs of this cut-set is always larger than |T |. We also add to the cut-set formulation
the constraint p ∈ P .

We solve the resulting MIP using the same constraints generation algorithm as in Subsection
3.2.1. The separation problem is slightly modified to take into account the fact that the
capacity of the protected arcs cannot be removed to compute the residual capacity of the
cut-set. For small values of k, for each combinations of k selected but non-protected arcs, we
compute the min-cut (in Subsection 3.2.1, we take into account all selected arcs). Considering
the MIP CUT − SEP (see Subsection 3.2.1) used to solve the subproblem, we have to modify
the objective function to find a cut-set that is violating some Constraint 3.17, which results
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in:

(CUT − SEP − PROT )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
s,b,v

∑
(i,j)∈Â

(uijsij + uij p̂ijbij)

s.t sij + bij − vi + vj ≥ 0 ∀(i, j) ∈ Â

vr = 1

vs = 0∑
(i,j)∈Â

bij ≤ k

∑
t∈T

bts = 0

sij, bij ∈ {0, 1} ∀(i, j) ∈ Â, v ∈ {0, 1}|V |

(3.18a)

(3.18b)

(3.18c)

(3.18d)

(3.18e)

(3.18f)

where p̂ corresponds to the current value of p. We remind that v defines the partition of the
vertex set while s and b define the arcs of the cut-set, in particular b defines all the arcs of
the cut-set which are deleted. The objective value is equal to the sum of the capacity of the
arcs of the cut-set which are not deleted plus the capacity of the arcs which are deleted but
were protected. There always exists an optimal solution where bij p̂ij = 0 for each arc (i, j):
if there is some p̂ijbij > 0, we can set sij = 1 and bij = 0 which results in a solution with the
same objective value which still satisfies all the constraints. Thus, we can add the constraints

bij ≤ 1− p̂ij ∀(i, j) ∈ Â (3.19)

and set the objective function to
min
s,b,v

∑
(i,j)∈Â

uijsij

Thus, protected arcs cannot be deleted.

Remark 3.4.2 When arcs can be protected, the case of uniform capacities equal to U does
not admit the reformulation (3.5) anymore. For example, for a cut-set S ∈ S, if all arcs of
S are protected, we must just ensure that their capacity is at least equal to |T |, whereas if no
arc is protected we must ensure that ∑(i,j)∈S uijyij − kU is at least equal to |T |.
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3.4.2 Equivalence between cut-set and bilevel formulations in the protected case

The bilevel formulation introduced in Subsection 3.2.3 can be adapted to the protected case
as follows:

(BIL− PROT )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
y∈{0,1}|A|

∑
(i,j)∈A

cijyij

s.t. f(y) ≥ |T |

where f(y) = min
b∈B(p)

max
x∈X (y,b)

∑
j∈Γ+(r)

xrj

where b ∈ B(p) with

B(p) = { b ∈ {0, 1}|A| |
∑

(i,j)∈A
bij ≤ k ;

∑
t∈T

bts = 0 ; bij ≤ 1− pij ∀(i, j) ∈ A }

forbids the attacker to delete some protected arcs.

The reformulation of the second level results in:

(RSL−Prot)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
b∈B̃(p)

max
x

∑
j∈Γ+(r)

xrj −
∑

(i,j)∈A
bijxij

s.t
∑

i∈Γ−(j)
xij −

∑
k∈Γ+(j)

xjk = 0 ∀j ∈ V \ {r, s}

0 ≤ xij ≤ uij ŷij ∀(i, j) ∈ A

(3.21a)

(3.21b)
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This leads to the dual reformulated second level problem:

(DRSL−Prot)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
b,λ,µ

∑
(i,j)∈A

uij ŷijλij

s.t λij + bij − µi + µj ≥ 0 ∀(i, j) ∈ A

µr = 1

µs = 0∑
(i,j)∈A

bij ≤ k

∑
t∈T

bts = 0

bij ≤ 1− p̂ij ∀(i, j) ∈ A

λ ∈ [0, 1]|A|, µ ∈ [0, 1]|V |, b ∈ {0, 1}|A|

(3.22a)

(3.22b)

(3.22c)

(3.22d)

(3.22e)

(3.22f)

(3.22g)

which is equivalent to (CUT − SEP − PROT ) in Subsection 3.4.1. Similarly to Subsection
3.3.1, the two formulations are equivalent as in the unprotected case.

3.4.3 Flow formulation

In the flow formulation, in addition to the constraint p ∈ P , we can replace Constraints
(3.6d) by the following ones:

xFij ≤ uijpij ∀F ∈ F , ∀(i, j) ∈ F (3.23)

Those constraints ensure that in a scenario F where an arc (i, j) ∈ F , we can route some
flow through this arc (i, j) only if this arc is protected. Again, we can use the same columns-
and-constraints generation algorithm as in Subsection 3.2.2, in order to find the most vital
arcs in the separation problem among the non-fictive and non-protected arcs (we consider
only combinations of selected but non-protected arcs when computing the set of maximum
flows).

3.5 Valid and strengthening inequalities

In this section, we propose some valid or strengthening inequalities for both formulations
to enhance the quality of the lower bound obtained by solving the continuous relaxation.
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We first consider the case where we are not allowed to protect some arcs of the network.
Secondly, we propose modifications of those inequalities to take the possibility of protecting
arcs into account.

3.5.1 Case without the possibility of protecting arcs

Inequalities (3.24a) ensure that there are at least k + 1 arcs entering each terminal. Indeed,
if there are less than k+1 arcs entering it, then it is possible to delete all of them and thus to
prevent one unit of flow from reaching the sink. Inequality (3.24b) states the same constraint
for the arcs leaving the root.

∑
(i,t)∈A

yit ≥ k + 1 ∀t ∈ T

∑
(r,i)∈A

yri ≥ k + 1

(3.24a)

(3.24b)

Both Inequalities (3.24a) and (3.24b) are valid and cut some non-integer solutions. In Figure
3.2, we have T = {t1} and let ui be the capacity of ai for i = 1, .., 5 and yi be the variable
associated with the selection of ai. The constraints associated with this graph for the cut-set
formulation with k = 1 are u1y1 ≥ 1, u2y2 ≥ 1, u3y3 ≥ 1, u4y4 ≥ 1 and y5 = 1. If we set
ui = 2 for all i = 1, .., 4 (u5 = 1 because a5 is a fictive arc), we have that the solution in
which y1 = y2 = y3 = y4 = 0.5 and y5 = 1 is optimal for the continuous relaxation since
we consider positive costs in the objective function. Inequalities (3.24a) are then violated
and impose that y3 + y4 ≥ 2 (i.e. y3 = y4 = 1). Similarly, Inequalities (3.24b) impose that
y1 + y2 ≥ 2 (i.e. y1 = y2 = 1). In this case, the addition of both inequalities results in the
cut of non-integer solutions (here, it even results in an optimal value of the integer problem
equal to the optimal value of the continuous relaxation).

r

v1

v2

t1 s

a1

a2

a3

a4

a5

Figure 3.2 Graph where Inequalities (3.24a) and (3.24b) cut some non-integer solutions

Inequalities (3.25a) state that, for each Steiner vertex j, if an arc entering j is selected, then
at least one arc leaving j must be selected, since all arc costs are assumed to be positive.
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Inequalities (3.25b) state the same for arcs leaving a Steiner vertex j. Notice that these
inequalities cut some integer but non-optimal solutions.

yij ≤
∑

k∈Γ+(j)
yjk ∀j ∈ V \ {T ∪ {r}}, ∀i ∈ Γ−(j)

yjk ≤
∑

i∈Γ−(j)
yij ∀j ∈ V \ {T ∪ {r}}, ∀k ∈ Γ+(j)

(3.25a)

(3.25b)

3.5.2 Case with the possibility of protecting arcs

The two families of Inequalities (3.24a) and (3.24b) are only true for the case without pro-
tection (k′ = 0). Since one arc may be sufficient to ensure that one of the terminals is not
isolated if it is protected, we can replace Inequalities (3.24a) and (3.24b) by (3.26a-3.26b)
and (3.26c-3.26d) in this case. Inequalities (3.26a-3.26b) state that, for any terminal t, if
there are no protected arcs entering t, there must be at least k+ 1 arcs entering t, otherwise
there must be at least one. Inequalities (3.26c-3.26d) state the same constraint for the arcs
entering the root.

∑
(i,t)∈A

yit ≥ 1 + (k(1−
∑

(i,t)∈A
pit)) ∀t ∈ T

∑
(i,t)∈A

yit ≥ 1 ∀t ∈ T

∑
(r,i)∈A

yri ≥ 1 + (k(1−
∑

(r,i)∈A
pri))

∑
(r,i)∈A

yri ≥ 1

(3.26a)

(3.26b)

(3.26c)

(3.26d)

Inequalities (3.27) state that at least one arc entering a terminal t must be protected if there
are less than k + 1 arcs entering t.

∑
(i,t)∈A

pit ≥ 1 ∀t ∈ T with |Γ−(t)| ≤ k (3.27)

Inequalities (3.25a) and (3.25b) are still valid inequalities for the case with the possibility of
protecting arcs.
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3.6 Results analysis

In this section, we present the results of the tests for the formulations proposed previously.
All experiments were performed on a computer with a 2.40GHz Intel(R) Core(TM) i7-5500U
CPU and a 16GB RAM, using the solver CPLEX version 12.6.1, interfaced with Julia 0.6.0.
We used in particular the package JuMP, a tool allowing mathematical modeling. For each
test, the algorithm has been stopped after 3000 seconds if it has not terminated yet.

Table 3.1 Instance parameters

I |V| |T| |E|
1 20 4 46
2 20 6 45
3 20 12 46
4 20 19 46
5 25 5 59
6 25 8 61
7 25 15 61
8 25 24 59
9 30 3 74
10 30 6 73
11 30 9 74
12 30 18 74
13 30 29 74
14 35 4 89
15 35 7 87
16 35 10 91
17 35 21 89
18 35 34 88
19 40 4 104
20 40 8 103

I |V| |T| |E|
21 40 12 100
22 40 24 104
23 40 39 103
24 45 4 119
25 45 9 118
26 45 14 118
27 45 27 114
28 45 44 119
29 50 5 133
30 50 10 133
31 50 15 131
32 50 30 133
33 50 49 130
34 60 6 160
35 60 12 157
36 60 18 161
37 60 36 161
38 60 59 161
39 70 7 188
40 70 14 189

I |V| |T| |E|
41 70 21 188
42 70 42 190
43 70 69 189
44 80 8 221
45 80 16 219
46 80 24 216
47 80 48 213
48 80 79 223
49 90 9 249
50 90 18 248
51 90 27 250
52 90 54 248
53 90 89 247
54 100 10 281
55 100 20 279
56 100 30 278
57 100 60 277
58 100 99 282

Table 3.1 shows for each instance its number I, as well as the number of vertices |V |, termi-
nals |T |, and edges |E|. All instances have been generated in the following way: the vertices
have been randomly generated in the plane, and the capacity of an arc is more likely to be
high if this arc is close to the root. We compute 5 instances for each different value of |V |
selected (except for |V | = 20 and |V | = 25 because the number of vertices is too small):
for each one we assign a different value of |T | selected in { 1

10 |V |,
2
10 |V |,

3
10 |V |,

6
10 |V |, |V | − 1}.

The graph associated with each instance is parse, corresponding to the wind-farm application
where graphs are not dense. Also, the formulations are very dependent on the number of
arcs and graphs which are too dense would be too difficult to solve (for similar reasons, the
number of vertices is bounded by 100). The arc capacities are high enough to ensure that
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there is at least one feasible solution to our problem, but low enough to keep the problem
difficult enough to solve. More precisely, the capacities are chosen randomly among four
values: 0.8|T |, 0.6|T | and, except for the edges with endpoints at distance 1 or 2 from the
root, 0.4|T | and 0.2|T |. Furthermore, the cost of an arc depends on both its length and its
capacity, and hence is not necessarily integral.

Table 3.2 presents the results for the cutset and flow formulations for one possible arc deletion
and no protection allowed (i.e. k = 1 and k′ = 0) on instances with non-uniform capacities.
The column I gives the number of the instance on which the formulation is tested, the col-
umn gapLR gives the gap between the optimal value of the initial continuous relaxation with
the valid inequalities and the optimal integer value (please remind that the relaxations of
the flow and cutset formulations are equal, see Theorem 3.3.2). For each formulations, the
column gapf gives the final gap between the best lower bound bestLB and the best integer
solution found bestI (if the gap is equal to 0, we have found an optimal solution, other-
wise we give the gap obtained after 3000 seconds of computation): formally we have that
gapf = (bestI − bestLB)/bestI ; the column time gives the time in seconds needed to find an
optimal solution or 3000 if the algorithm has not terminated yet; the column it gives the
number of iterations performed by the algorithm (i.e. the number of times the algorithm of
constraints generation is executed); the column nodes gives the number of nodes explored in
the branch-and-cut.

In Table 3.2, we can observe that both formulations manage to find an optimal solution to
the problem within 3000 seconds for instances with a number of vertices smaller than or equal
to 45, except for two instances for the flow formulation. However, the cutset formulation has
a better solving time for almost all instances, although it performs more iterations of con-
straints generation and has a higher number of nodes explored in the branch-and-cut. This
can be explained by the fact that although the number of constraints that can be generated in
the cutset formulation is importantly higher than the family of constraints that can be gener-
ated in the flow formulation for k = 1 (whose number is bounded by |E|), at each constraint
generation in the flow formulation, we add at least |E| variables to the formulation. On
instances having 50 to 100 vertices, the cutset formulation allows to find a feasible solution
which is often optimal or has a value close to the optimal one. The algorithm associated with
the cutset formulation finds the optimal solution for 39 instances out of 52 tested. For the
other instances, the mean final gap is equal to 0.07. The algorithm associated with the flow
formulation finds the optimal solutions for 27 instances out of 38 tested (all those instances
have been optimally solved by the cutset formulation except Instance 38 which presents a
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Table 3.2 Results for non-uniform capacities, k = 1 and k′ = 0
Cutset Flow

I gapLR gapf time (s) it nodes gapf time (s) it nodes
1 0.15 0 0.4 13 0 0 0.1 2 32
2 0.25 0 1.7 46 800 0 0.9 13 279
3 0.28 0 5.8 113 4859 0 6.3 15 2237
4 0.18 0 4.2 92 4423 0 6.2 20 1995
5 0.19 0 3.0 61 554 0 1.4 14 273
6 0.16 0 3.6 79 5194 0 9.5 12 2426
7 0.24 0 8.8 127 19143 0 28.6 30 2290
8 0.1 0 0.4 13 179 0 0.5 7 35
9 0.2 0 5.7 106 4141 0 28.6 24 866
10 0.21 0 8.8 126 11361 0 64.6 23 8408
11 0.17 0 8.5 115 13161 0 41.3 16 7995
12 0.07 0 0.5 13 13 0 0.38 4 13
13 0.28 0 18.1 243 18441 0 87.4 26 3488
14 0.25 0 10.0 143 8188 0 23.2 13 4070
15 0.1 0 5.5 67 552 0 8.9 17 1316
16 0.22 0 6.7 129 4318 0 20.8 15 1540
17 0.17 0 6.4 93 3586 0 41.2 24 2961
18 0.26 0 710 391 15.104 0 1947 34 35683
19 0.15 0 13.6 116 20339 0 251 37 5016
20 0.08 0 10.7 98 1964 0 9.16 5 1432
21 0.16 0 3.4 70 601 0 4.9 11 363
22 0.18 0 32.4 217 50927 0 384 16 28156
23 0.19 0 19.6 149 21588 0 466 22 7129
24 0.24 0 2050 766 57.104 0.09 3000 36 21610
25 0.13 0 31.1 182 62060 0 353 20 22834
26 0.28 0 21.2 188 24570 0 1642 27 8680
27 0.21 0 1335 533 19.104 0.1 3000 34 8513
28 0.29 0 20.0 155 22125 0 1812 29 12645
29 0.08 0 8.6 66 1880 0 159.7 21 1431
30 0.34 0 2950 557 14.104 0.3 3000 45 2015
31 0.19 0 300.7 319 26.103 0.05 3000 29 32515
32 0.24 0 130.0 301 16.103 0.09 3000 44 7547
33 0.16 0 127.8 302 21.103 0.03 3000 38 5995
34 0.33 0 223.6 369 20.103 0.15 3000 51 4065
35 0.27 0 1102 667 10.104 0.26 3000 56 937
36 0.17 0 73.1 304 65183 0.12 3000 49 2057
37 0.16 0 791.4 386 13.104 0.12 3000 50 2234
38 0.13 0.02 3000 580 99.104 0.13 3000 55 1458
39 0.18 0 245.3 436 16.103 - - - -
40 0.27 0.09 3000 939 19.104 - - - -
41 0.17 0.03 3000 1050 35.104 - - - -
42 0.1 0.02 3000 827 59.104 - - - -
43 0.32 0.18 3000 928 11.104 - - - -
44 0.25 0.11 3000 957 11.104 - - - -
45 0.26 0.15 3000 1142 12.104 - - - -
46 0.17 0.08 3000 1227 30.104 - - - -
47 0.1 0.01 3000 799 77.104 - - - -
48 0.27 0.1 3000 1155 10.104 - - - -
49 0.26 0.1 3000 909 10.104 - - - -
50 0.26 0.12 3000 1190 12.104 - - - -
51 0.13 0 964.2 558 89.103 - - - -
52 0.12 0.01 3000 672 80.104 - - - -
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final gap equal to 0.02). For the other instances, the mean final gap is equal to 0.13.

Table 3.3 Results for non-uniform capacities, k = 2 and k′ = 0

Cutset Flow
I gapLR gapf time (s) it nodes gapf time (s) it nodes
1 0.06 0.0 0.6 23 35 0.0 0.6 3 5
2 0.15 0.0 1.2 27 104 0.0 4.7 22 377
6 0.13 0.0 4.4 90 5405 0.0 172 55 5110
7 0.17 0.0 6.0 106 3602 0.0 196 52 5968
11 0.15 0.0 6.4 97 3150 0.0 664 83 12249
16 0.18 0.0 11.7 161 3989 0.0 878 75 9969
19 0.22 0.0 22.5 291 16159 0.0 2710 74 14376
21 0.22 0.0 160 495 332748 0.13 3000 94 14827
23 0.04 0.0 5.4 40 435 0.0 194 18 1621
24 0.11 0.0 6.0 123 1843 - - - -
25 0.12 0.0 25.6 211 32959 - - - -
26 0.12 0.0 24.2 216 15778 - - - -
29 0.24 0.0 59.3 267 72991 - - - -
30 0.16 0.0 1085 582 2039248 - - - -
31 0.21 0.0 79.4 250 152911 - - - -
34 0.28 0.07 3000 1339 1524965 - - - -
36 0.17 0.0 229 406 249593 - - - -
37 0.12 0.0 52.6 202 54918 - - - -
39 0.25 0.0 193 541 143432 - - - -
40 0.18 0.0 966 650 944465 - - - -
44 0.22 0.04 3000 945 1236272 - - - -
49 0.26 0.15 3000 1542 1027765 - - - -
50 0.18 0.08 3000 966 1750500 - - - -
51 0.2 0.1 3000 1536 2051800 - - - -
52 0.13 0.06 3000 1232 3777198 - - - -
53 0.04 0.0 37.7 70 7970 - - - -
54 0.27 0.13 3000 1717 1097985 - - - -
55 0.25 0.14 3000 1670 1156704 - - - -
57 0.09 0.0 149 257 66364 - - - -
58 0.03 0.0 49.3 95 4253 - - - -

Table 3.3 presents the results of the cutset and flow formulations for k = 2 and k′ = 0 on
instances with non-uniform capacities. The columns are defined similarly to the ones in Ta-
ble 3.2. For some instances, the instance does not admit any feasible solution for k = 2 and
k′ = 0, thus we remove from the table those instances (the formulations determine when no
solution exists within a few seconds for this set of instances). Again, the cutset formulation
is way more efficient than the flow formulation. The flow formulation still presents a smaller
number of constraints generation iterations but the difference with the number of iterations
of the cutset formulation is less important than for k = 1, due to the fact that we now may
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Table 3.4 Results for non-uniform capacities, k = 3 and k′ = 0

Cutset Flow
I gapLR gapf time (s) it nodes gapf time (s) it nodes
6 0.1 0.0 6.5 121 1409 0.0 1209 68 4326
7 0.06 0.0 3.0 29 136 0.0 98.4 19 255
16 0.12 0.0 88.1 78 1041 0.04 3000 69 1365
19 0.21 0.0 63.5 380 82935 - - - -
25 0.08 0.0 10.2 130 2526 - - - -
34 0.27 0.12 3000 1474 1972379 - - - -
39 0.26 0.03 3000 1028 2651353 - - - -
40 0.19 0.0 1194 770 1578225 - - - -

have to generate up to
(
|E|
2

)
constraints, whereas the number of iterations for the cutset

formulations is only slightly higher for k = 2 than for k = 1.

In Table 3.3, the cutset formulation manages to find an optimal solution for most of the in-
stances of at most 70 vertices, and does not appear to be as sensitive to the value of k as the
flow formulation. For instances with 80 vertices and more, the cutset formulation manages
to find a feasible solution which is optimal or has a value reasonably close to the optimal
one. The algorithm associated with the cutset formulation finds the optimal solution for 22
instances out of 30 tested. For the other instances, the mean final gap is equal to 0.9.

Table 3.4 presents the results of the cutset and flow formulations for k = 3 and k′ = 0 on
instances with non-uniform capacities. The columns are defined similarly to the previous
tables. Again, some instances do not admit any feasible solution for k = 3 and k′ = 0, thus
we remove from the table those instances. Similarly to the previous results for k ∈ {1, 2},
the cutset formulation is more efficient. Furthermore, the number of constraints generated
in the flow formulation is closer to the one of the cutset formulation than in k ∈ {1, 2}.

Tables 3.5, 3.6 and 3.7 present results for our problem with the possibility of protecting some
arcs. In real applications, protecting an arc can correspond to double the cable or adding
devices protecting the cables against the environment (like extreme cold). Since those mod-
ifications can be expensive, we only consider small values of k′.

Table 3.5 presents the results of the cutset and flow formulations for k = 1 and k′ ∈ {1, 2, 3}
on instances with non-uniform capacities. The column I gives the set of the instances on
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Table 3.5 Results for non-uniform capacities, k = 1 and k′ ∈ {1, 2, 3}

Cutset Flow
I k’ gapLR gapf time(s) it n gapf time (s) it n

1-10 1 0.24 0.0 5.0 92 6941 0.0 25.9 17 2826
- 2 0.27 0.0 7.9 114 12897 0.0 59.1 29 3017
- 3 0.3 0.0 11.1 125 20934 0.0 66.4 31 4052

11-20 1 0.23 0.0 12.0 141 13319 0.0 201 35 3734
- 2 0.25 0.0 16.0 158 19726 0.0 337 41 5099
- 3 0.28 0.0 24.2 182 40042 0.0 642 52 7656

21-30 1 0.22 0.01 727 346 8.104 0.07 2308 38 11728
- 2 0.24 0.01 937 388 9.104 0.06 2290 47 7198
- 3 0.26 0.02 945 424 9.104 0.08 2561 55 8795

31-40 1 0.26 0.01 952 402 5.104 0.19 2740 46 3764
- 2 0.28 0.01 1207 494 7.104 0.23 3000 58 3514
- 3 0.3 0.02 1321 531 6.104 0.23 3000 62 2532

41-50 1 0.24 0.08 2176 818 11.104 - - - -
- 2 0.27 0.1 2590 932 13.104 - - - -
- 3 0.29 0.13 2755 1028 14.104 - - - -

51-58 1 0.2 0.1 3000 1237 17.104 - - - -
- 2 0.23 0.14 3000 1564 14.104 - - - -
- 3 0.24 0.15 3000 1466 15.104 - - - -

Table 3.6 Results for non-uniform capacities, k = 2 and k′ ∈ {1, 2, 3}

Cutset Flow
I k’ gapLR gapf time (s) it n gapf time (s) it n

1-10 1 0.14 0.0 7.5 108 9088 0.0 384 48 7971
- 2 0.2 0.0 14.6 152 21575 0.02 1047 64 10902
- 3 0.22 0.0 28.2 190 53192 0.05 1238 78 14521

11-20 1 0.19 0.0 18.7 167 17192 0.04 1818 69 11621
- 2 0.22 0.0 37.7 261 42657 0.12 2598 86 14564
- 3 0.24 0.0 80.4 291 100650 0.15 2533 98 12030

21-30 1 0.17 0.0 450 397 590660 - - - -
- 2 0.19 0.0 606 491 829507 - - - -
- 3 0.22 0.02 1066 531 1148662 - - - -

31-40 1 0.23 0.02 1275 699 856019 - - - -
- 2 0.26 0.06 1514 746 726194 - - - -
- 3 0.28 0.08 1592 797 796008 - - - -

41-50 1 0.2 0.08 1719 908 1298931 - - - -
- 2 0.23 0.1 1909 1113 902446 - - - -
- 3 0.3 0.16 2503 1367 1295592 - - - -

51-58 1 0.23 0.05 1842 929 733356 - - - -
- 2 0.24 0.07 1924 1209 944623 - - - -
- 3 0.3 0.1 2632 1406 1343762 - - - -

which the formulation is tested, the column gapLR gives the mean value of the gap between
the optimal value of the continuous relaxation and the optimal value of the integer formu-
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lation for each instance of the data set tested. For each formulation, the column gapf gives
the mean value of the final gap of each instance of the data sets between the best lower
bound and the best integer solution found (if the gap is equal to 0, we have found an optimal
solution, otherwise we give the gap obtained after 3000 seconds of computation); the column
time gives the mean solving time to find an optimal solution or 3000 if the algorithm has
not terminated yet for the data set; the column it gives the mean number of iterations per-
formed by the algorithm (i.e. the number of times the algorithm of constraints generation
is executed) for the data set; the column n gives the mean number of nodes explored in the
branch-and-cut for the data set.

One can see that the cutset formulation is also more efficient with the addition of the pos-
sibility of protecting arcs. The solving time is higher in the case with k′ > 0 than in the
case with k′ = 0 and it increases as well as the gaps and the number of iterations and nodes
when k′ becomes bigger. It appears that the flow formulation is slightly less impacted by the
variation of k′.

Table 3.6 presents the results of the cutset and flow formulations for k = 2 and k′ ∈ {1, 2, 3}
on instances with non-uniform capacities; the columns are similar to the ones in Table 3.5.
The flow formulation is logically still importantly slower when k increases in the protected
case, and the mean number of iterations is around the double of the one for k = 1. Again,
the cutset formulation appears to be less impacted by the increase of k in the protected case:
the gaps are equivalent, the solving times appear to be even better for some sets of instances
(sets 41-50 and 51-58), and the number of iterations does not increase as much as the ones
of the flow formulation.

Table 3.7 presents the results of the cutset and flow formulations for k = 3 and k′ ∈ {1, 2, 3}
on instances with non-uniform capacities; the columns are similar to the ones in Table 3.5.
Similar remarks as the ones of Table 3.6 can be made: the flow formulation is much slower
when k = 3 whereas the cutset formulation is not as much impacted by the incrementation
of k.

Table 3.8 presents the results of the cutset formulations for k = 1 and k′ = 0 on instances
with uniform capacities. We compute the tests on the Regular-Cutset formulation (which
corresponds to the classic cutset formulation proposed in Equation (3.2) in Subsection 3.2.1)
and the Uniform-Cutset formulation (which corresponds to the modification of the formula-
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Table 3.7 Results for non-uniform capacities, k = 3 and k′ ∈ {1, 2, 3}

Cutset Flow
I k’ gapLR gapf time it n gapf time it n

1-10 1 0.14 0.0 16.7 234 9584 0.08 1835 114 4384
- 2 0.21 0.0 16.6 186 25975 0.06 1910 132 3757
- 3 0.23 0.0 29.9 221 53703 0.15 1992 136 3948

11-20 1 0.21 0.0 117 372 108708 0.13 3000 66 588
- 2 0.21 0.0 234 359 247729 0.18 3000 90 914
- 3 0.3 0.01 472 503 340496 0.25 2869 76 1413

21-30 1 0.16 0.0 149 364 272985 - - - -
- 2 0.28 0.02 1078 715 1182379 - - - -
- 3 0.3 0.03 990 827 678130 - - - -

31-40 1 0.31 0.07 1843 1127 1038762 - - - -
- 2 0.36 0.11 2021 1392 994130 - - - -
- 3 0.37 0.14 2049 1512 975210 - - - -

41-50 1 0.31 0.08 3000 1580 1950209 - - - -
- 2 0.27 0.11 2430 1683 824006 - - - -
- 3 0.35 0.21 2451 2246 680713 - - - -

51-58 2 0.26 0.0 1174 350 1189524 - - - -
- 3 0.36 0.0 2150 674 1156240 - - - -

tion to reduce the number of constraints in the case of uniform capacities, see Equation (3.5)
in Subsection 3.2.1). For each instance, we test the formulations when uniform capacities are
equal to 0.4|T |, 0.6|T | and 0.8|T |. Column I gives the instance on which the formulations
are tested; column time gives the solving time of the instance for each formulation; column
it gives the number of iterations of the constraints generation algorithm for the instance for
each formulation; column nbn gives the number of nodes generated for the instance for each
formulation. We did not give the final gap since each instance has been optimally solved by
both formulations within the 3000 seconds given to the algorithms.

The results are impressive in comparison to the case with non-uniform capacities. The solv-
ing times are much smaller, as well as the mean number of nodes and the mean number of
iterations for both Regular-Cutset and Uniform-Cutset formulations. The Uniform-Cutset
formulation appears to be more efficient, which appears to be logical since the number of
constraints of the formulation is highly reduced and the number of variables remains the
same. The number of iterations is always smaller than the one of the Regular-Cutset for-
mulation and the number of nodes is often smaller than the one of the regular formulation too.

Table 3.9 presents the results obtained with the Regular-Cutset and Uniform-Cutset formu-
lations for k = 2 and k′ = 0 on instances with uniform capacities. Columns are defined as
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Table 3.8 Results for uniform capacities and k = 1
Uniform-Cutset Regular-Cutset

I time(s) it nbn time(s) it nbn
1 0.07 2 0 0.11 4 0
2 0.28 6 2 0.65 28 184
3 4.98 32 1215 5.39 44 978
4 0.24 5 0 0.32 9 2
5 0.36 8 0 0.9 29 285
6 0.44 10 46 0.64 22 146
7 0.43 8 0 1.1 28 138
8 0.28 3 0 0.37 7 0
9 0.25 5 28 0.31 11 67
10 0.59 14 23 1.02 32 234
11 0.39 8 0 0.89 24 111
12 0.61 11 21 1.44 36 399
13 0.46 7 1 0.87 16 44
14 0.23 5 0 0.34 10 15
15 0.35 5 0 0.51 15 57
16 0.54 9 32 1.96 45 445
17 0.74 10 0 2.01 37 254
18 0.36 4 0 0.33 5 0
19 0.53 8 208 1.11 30 539
20 0.36 5 3 0.6 13 22
21 0.72 10 55 1.47 28 608
22 1.2 14 124 2.78 41 691
23 0.55 5 2 0.82 11 21
24 0.36 5 2 0.57 15 69
25 0.7 8 118 1.12 19 270
26 1.62 17 276 3.58 49 937
27 2.55 24 146 7.19 81 1606
28 1.42 11 4 1.83 17 23
29 1.39 17 589 3.34 57 3329
30 2.07 21 853 5.4 71 2904
31 1.2 12 12 4.81 59 2174
32 0.54 4 0 0.87 8 0
33 2.65 15 33 4.3 29 193
34 3.25 33 1009 8.79 86 9662
35 1.42 13 185 2.07 24 274
36 3.78 31 642 10.37 95 5146
37 3.32 19 111 7.2 48 1967
38 2.38 9 50 3.41 17 58
39 2.98 27 1273 7.8 88 4958
40 3.14 25 406 6.57 60 2351
41 3.22 22 709 6.82 60 1011
42 1.27 5 19 2.74 15 114
43 3.76 12 112 12.69 52 482
44 6.39 43 2325 25.06 140 27009
45 5.85 40 1772 13.56 92 8873
46 7.76 36 1409 16.07 84 6268
47 6.32 25 217 10.25 45 1034
48 8.47 26 481 34.09 113 2946
49 11.72 56 5350 76.47 134 85820
50 10.18 37 1244 24.34 127 9320
51 12.99 51 2975 65.37 181 53467
52 15.06 40 1247 33.08 99 5027
53 13.43 20 198 26.14 46 646
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Table 3.9 Results for uniform capacities and k = 2

Uniform-Cutset Regular-Cutset
I time(s) it nbn time(s) it nbn
1 0.31 7 5 0.65 20 57
2 0.33 8 6 1.27 44 405
5 0.49 10 61 2.02 56 585
6 0.84 16 134 2.69 68 923
7 0.77 11 10 1.51 34 265
9 0.28 4 2 1.14 30 134
10 1.44 26 111 5.25 106 2122
11 0.82 14 0 3.58 71 1027
16 0.68 9 19 2.94 52 418
19 1.44 22 859 6.85 116 7179
20 3.25 34 1310 8.77 108 4528
21 2.6 31 463 8.97 121 4061
22 2.19 16 99 5.06 47 639
23 0.73 4 1 0.85 8 2
24 0.97 16 85 4.4 85 1996
25 3.84 43 567 9.56 120 4451
26 2.59 22 228 11.56 111 3082
28 0.85 4 0 0.77 6 0
29 3.86 42 2783 37.0 260 45720
30 7.09 68 2328 33.25 236 33383
31 4.73 39 1338 38.18 233 48585
32 1.55 7 24 1.59 11 2
33 0.41 1 0 0.36 2 0
34 30.24 85 43667 2720.92 645 3252043
36 6.79 42 2504 34.65 189 28947
37 4.27 19 150 28.48 132 3862
38 1.96 6 0 2.59 10 0
39 4.95 43 1789 40.9 276 35710
40 14.27 78 7095 198.69 344 284762
41 6.79 36 505 16.62 102 1704
42 8.03 27 1210 25.26 97 3832
43 3.81 9 94 5.0 15 42
44 50.38 118 73169 2656.92 744 1733895
49 68.69 110 65440 1536.17 421 1310976
50 59.39 108 90681 1450.07 460 1657034
51 46.41 108 27507 2678.41 533 3052695
52 37.85 67 6070 222.36 270 341739
53 17.27 23 1214 30.83 55 2869

in Table 3.8. For k = 2, the uniform formulation appears to be way more efficient than the
regular one. The mean solving time and number of iterations and nodes have only slightly
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increased with the incrementation of k for the uniform formulation (the mean solving time
for each instance is bounded by 70 seconds) whereas it has consequently increased for the
regular one (the mean solving time is around 2678 seconds for Instance 51 for example).

Table 3.10 Results for uniform capacities and k = 3

Uniform-Cutset Regular-Cutset
I time(s) it nbn time(s) it nbn
1 0.19 5 0 0.46 13 0
6 0.74 9 18 1.72 36 184
7 0.43 3 0 0.66 8 0
9 0.66 7 0 2.42 53 711

16 0.77 9 5 4.32 58 495
19 1.88 21 220 8.51 115 3565
20 0.79 6 0 6.71 68 575
24 0.75 9 0 3.63 55 428
34 14.39 73 3669 594.06 635 720890
39 7.91 45 1692 71.66 349 48393
40 11.37 39 593 87.91 320 28594
44 16.17 66 1635 197.38 581 108704
49 38.66 76 5924 644.54 553 358451

Table 3.10 presents the results obtained with the Regular-Cutset and Uniform-Cutset for-
mulations for k = 3 and k′ = 0 on instances with uniform capacities. Columns are defined
as in Tables 3.8 and 3.9. Again, the uniform formulation appears to be a consequent up-
grade of the regular one, and the solving times are really smaller than in the non-uniform case.

We also compute the results obtained by both formulations, without the addition of the valid
inequalities proposed in Subsection 3.5, on a subset of instances with k ∈ {1, 2, 3}, k′ = 0,
and non-uniform capacities. Let ∆C

time (respectively ∆F

time) be the mean augmentation of the
solving time when these valid inequalities are removed from the cut-set (respectively flow)
formulation. On the test instances, ∆C

time is equal to 3.24 (meaning that the solving time is
multiplied by 3.24 on average without the valid inequalities), while ∆F

time is equal to 10.78.
Hence, adding these valid inequalities has a huge impact on the solving time, especially on
the flow formulation. Furthermore, let ∆CR be the mean augmentation of the optimal value
of the continuous relaxation when these valid inequalities are added to the formulation. On
the test instances, ∆CR is equal to 1.28 (meaning that the optimal value of the continuous re-
laxation is multiplied by 1.28 on average with these valid inequalities). The optimal value of
the continuous relaxation is then consequently increased when we add these valid inequalities.
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Figure 3.3 Cost of the solutions for different instances

Figure 3.3 deals with the cost of designing failure-resilient networks; the number of the
corresponding test instance is displayed on the x-axis. Each subfigure shows the cost of an
optimal solution for the case where k equals 0 (no arc deleted), 1, 2 and 3. The subfigure
(a) corresponds to the case where k′ = 0 (no protection allowed), whereas (b), (c) and
(d) correspond to the case where k′ is equal to 1, 2 and 3, respectively. This figure shows
that designing a network resilient to even a small number of arc-failures can be costly (the
cost increases greatly with the value of k). However, on subfigure (d), we can see that, by
protecting a sufficiently large but still small subset of arcs on the test instances, one can
obtain networks that are resilient to 1 or 2 arc deletions while maintaining a cost close to the
optimal value of the case with no arc failures.
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CHAPTER 4 A TABU SEARCH FOR THE DESIGN OF CAPACITATED
ROOTED k-EDGE CONNECTED STEINER PLANAR NETWORKS

4.1 Introduction

In this chapter, we focus on the design of networks which are resilient to one or several
breakdowns, studying the Capacitated Rooted k-Edge Connected Steiner Network Problem
(CRkECSN) defined in Chapter 3 in the case of planar networks. We recall that G = (V,A)
is a directed input graph, that c and u are respectively a cost and a capacity function on
A, and that r and |T | are respectively the root and the terminals. We say that G has a
feasible flow if it is possible to route one unit of flow from the root to each terminal while
respecting the arc capacity constraints. Given an integer k ≥ 0, a subgraph G′ = (V,A′) of
G is said to be k-survivable if every subgraph obtained from G′ by removing at most k arcs
of A′ has a feasible flow. We aim at selecting a minimum cost subset A′ ⊆ A of arcs such
that G′ = (V,A′) is k-survivable.

In this chapter, we focus on planar graphs which are useful in practice since many underlying
graphs in real-world networks are planar. In the next section, we describe a procedure that
determines in polynomial time whether a given planar graph is k-survivable. In Section 4.3,
we embed this procedure into a tabu search. Computational experiments and comparisons
with the exact algorithm introduced in Chapter 3 are presented in Section 4.4.

4.2 Testing survivability

Given a subset A′ of the original arc set A, we present in this section a method to test whether
G′ = (V,A′) is k-survivable, based on a method proposed in [68]. Every arc a = (i, j) ∈ A′

has an associated upper bound ua = uij (called capacity) on the amount of flow that can
traverse it, while the lower bound la = lij is equal to zero since there is no imposed flow on
any arc of G′ (we introduce lower bounds here because they will be used later for other arcs).

The first step of the procedure consists in determining a subset of arcs S in the complete
graph associated with V such that S corresponds to a tree rooted at r spanning all terminals
of T and S does not break the planarity of the input graph G′ (i.e. if we add the arcs of S
to G′, the graph G′′ = (V,A′ ∪ S) is still planar), which is an easy task. Note that such a
tree necessarily exists since r is a root and we do not forbid the graph G′′ = (V,A′ ∪ S) to
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be a multigraph (i.e. we can select in S arcs from A′): an easy solution to find S is then to
compute a tree using arcs of A′ (and this is what we will do).

For every vertex v in S, let nv be the number of terminals in the subtree rooted at v. For
each arc (i, j) in S, we add the reverse arc (j, i) in G′ and set lji = uji = nj (there is no issue
if (j, i) is already in A′ since the resulting graph can be a multigraph). We denote by AR the
set of arcs added to G′ and by G̃′ the resulting graph. An example is depicted in Figure 4.1.
The left graph G′ has two terminals t1 and t2. The directed tree S with arc set {(r, u), (u, t1),
(u, v), (v, t2)} induces the graph G̃′ on the right, the arcs in AR being represented by bold
lines. Since nr = nu = 2 while nv = nt1 = nt2 = 1, all arcs (j, i) in AR have lji = uji = 1,
except the arc (u, r) for which lur = uur = 2.

t1

t2
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v

ut1

t2

r

v

u

[2,2]

[1,1]

[1,1]

[1,1]

.

Figure 4.1 Construction of G̃′ from G′

The circulation problem is a generalization of the network flow problem where flow conser-
vation is required for all vertices (i.e. there are no source and sink). It is easy to observe
that the original graph G′ has a feasible flow routing a unit of flow from r to each terminal
if and only if the extended graph G̃′ has a feasible circulation: the flow sent from the root to
the terminals travels back to r using the arcs in AR.

The problem of determining whether G′ is k-survivable was shown to be NP-complete in the
general case [66], but can be solved in polynomial time if the graph G′ + t obtained from G′

by adding a sink t to which all terminals are linked is planar [50]. Since the addition of a
sink to a planar graph G′ does not necessarily preserves planarity, Zenklusen [68] has shown
how to solve the problem in polynomial time when G′ (and not necessarily G′ + t) is planar.
His procedure is described here below.
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Notice first that if G′ is planar, then G̃′ is also planar. We can therefore consider its dual.
By convention (see [44] for more details), the dual of a directed planar graph is obtained by
creating a vertex for each face of the original graph, and by connecting two vertices by an arc
if they correspond to faces in the original graph sharing an arc. Every dual arc is oriented
so that it corresponds to a 90◦ anticlockwise turn from the corresponding primal arc. As
proposed by Zenklusen [68], we consider here an extended dual graph that contains not only
the standard dual arcs, but also the arcs with the opposite direction. More precisely, we
build a graph D

G̃′
from G̃′ as follows. We first create a vertex in D

G̃′
for every face in G̃′.

Then, for every arc (i, j) in G̃′, we consider the two faces F1 and F2 that (i, j) separates (see
Remark 4.2.1), where F1 is the face below (i, j) when (i, j) is drawn horizontally with an
arrow going from left to right. We create an arc (F1, F2) of length uij and an arc (F2, F1) of
length −lij in DG̃′

. Note that (F1, F2) is the standard dual arc associated with (i, j), while
(F2, F1) is the opposite one. We also denote by adij the standard dual arc (F1, F2) in order to
distinguish it from its opposite. Note that the arc (F2, F1) has length 0 if (i, j) ∈ A′ (since
there is no imposed flow on any arc of G′), while its length is −nj if (i, j) ∈ AR.

The construction of D
G̃′

from G̃′ is illustrated in Figure 4.2. The general arc creation pro-
cedure appears on the left, while the dual graph associated with the graph G̃′ of Figure 4.1
is drawn on the right with dashed lines. To simplify the drawing, arcs with arrows on both
sides represent two oppositely directed arcs.

t1

t2

r

v

u
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e
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g hfb[lij,uij]

face F2

i j

face F1

vertex associated

with F2
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with F1

uij- lij

(the arc of length uij corresponds to the standard dual arc)

Figure 4.2 Illustration of the construction of D
G̃′

from G̃′

Remark 4.2.1 If an arc (i, j) does not separate two faces, it means that (i, j) is a bridge.
If we delete (i, j), G′ is then non-connected: we call G1 (resp. G2) the component with the
vertex i (resp. j). Since the arc is from i to j, we have that r is in G1, otherwise the arc
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(i, j) is useless. If there is at least one terminal t in G2, then there does not exist a path from
r to t after the deletion of (i, j) and hence G′ is not k-survivable. Otherwise, the arc (i, j) is
useless because G2 can be disconnected from the graph without impacting the feasibility of the
solution. Hence, we consider that there are no bridges in G′.

Zenklusen [68] has shown that there exists a feasible circulation in G̃′ if and only if there is
no negative circuit in D

G̃′
. Indeed, there is a correspondence between the circuits in D

G̃′
and

the cutsets in G̃′. In a circuit of D
G̃′
, the total length of the standard dual arcs corresponds

to the available capacity, while the absolute value of the total length of the other arcs cor-
responds to the demand. A circuit of negative total length means that the demand cannot
be satisfied. For example, consider the circuit (f, d, h, g, f) in the graph D

G̃′
of Figure 4.2:

the standard dual arcs (f, d) and (h, g) give a total capacity uut1 + ut2t1 , while the other arcs
(d, h) and (g, f) induce a demand of 1 unit (since |ldh + lgf | = | − 1 + 0| = 1), which means
that uut1 + ut2t1 must be at least equal to 1 to satisfy the demand of terminal t1.

The above construction shows how to determine if G′ = (V,A′) has a feasible flow, which is
equivalent to deciding whether G̃′ has a feasible circulation. By definition, G′ is k-survivable
if and only if there is no subgraph G′′ of G′, obtained by removing at most k arcs of A′,
so that G̃′′ has no feasible circulation. Every arc removal is equivalent to paying one unit
of a budget of k units, and we therefore try to find a subgraph G′′ of G′ so that G̃′′ has
no feasible circulation, without exceeding the budget. Zenklusen [68] (who considers more
general budget constraints) shows how this can be done by solving a multi-objective shortest
path problem. In our simpler case, we propose to consider a graph (k+1)D

G̃′
that is built as

follows. We make k+ 1 copies of D
G̃′
, and for every arc (i, j) in A′, we consider its standard

dual arc adij = (x, y) in D
G̃′
, and add links of length 0 from the s-th copy of x to the (s+1)-th

copy of y (s = 1, . . . , k). Note that if a vertex v is not the tail of any standard dual arc (v, w)
in D

G̃′
, then each of its neighbors in D

G̃′
is the tail of at least one standard dual arc (since if

(v, w) is not a standard arc, then (w, v) is). The resulting graph is denoted by (k+1)D
G̃′
. An

example for k = 1 and the graph D
G̃′

of Figure 4.2 is given in Figure 4.3. Since A′ contains
seven arcs, there are seven arcs linking the first to the second copy of D

G̃′
.

We now prove that it is possible to test the k-survivability of G′ by solving a series of shortest
path problems in (k + 1)D

G̃′
.

Theorem 4.2.1 A graph G′ = (V,A′) is k-survivable if and only if all shortest paths linking
a first to a (k + 1)-th copy of a vertex in (k + 1)D

G̃′
have a non-negative length.



72

c

a

e

d

g hfb

c

a

e

d

g hfb

.

Figure 4.3 Construction of 2D
G̃′

for the graph G̃′ of Figure 4.1

Proof: Assume G′ = (V,A′) is not k-survivable. As explained previously, this means that
there is a circuit C in D

G̃′
and a subset AC of its arc set such that |AC | ≤ k, all arcs in AC are

standard dual arcs, and the total length L of the other arcs on C is strictly negative (because
deleting an arc in the primal graph corresponds to contracting the two vertices associated in
the dual graph). Let v be a vertex on C which is the tail of at least one standard dual arc
(not necessarily on C) in D

G̃′
(note that there always exists such v since we showed that if v

is not the tail of any standard dual arcs then each of its neighbors is the tail of at least one
standard dual arc). Consider the path P in (k+1)D

G̃′
that links the first to the (|AC |+1)-th

copy of v, and uses arcs (x, y) that link consecutive copies of D
G̃′

whenever an arc (x, y) of C
belongs to AC . Clearly, the total length of P is L. Consider any standard dual arc (v, w) in
D
G̃′
. Note that its opposite arc (w, v) exists and has a non-positive length. We now extend

P by adding an arc from the s-th copy of v to the (s + 1)-th copy of w and an arc for the
(s + 1)-th copy of w to the (s + 1)-th copy of v, s = |AC | + 1, · · · , k. Clearly the resulting
path P ′ links the first to the (k + 1)-th copy of v and has length L < 0 in (k + 1)D

G̃′
.

Suppose now there is a path P of strictly negative length L linking a first to a (k + 1)-th
copy of a vertex v in (k + 1)D

G̃′
. Let us consider that P contains a proper subpath linking

two copies of a vertex w: it covers the case where two arcs in the path linking one copy of
D
G̃′

to the next one represent the deletion of the same arc in the input graph.

Suppose that P admits at least one proper subpath linking two copies of a vertex and whose
length is strictly negative, and consider a minimal (inclusion-wise) such subpath P ′ (i.e., no
proper subpath of P ′ links two copies of a vertex). If the total length L′ of P ′ in (k + 1)D

G̃′

is strictly negative, then P ′ corresponds to a circuit C in D
G̃′
, and the set AC of arcs on

P ′ that link two vertices in different copies of D
G̃′

is such that |AC | ≤ k, all arcs in AC are
standard dual arcs, and the total length of the other arcs on C is L′ < 0. Hence G′ is not
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k-survivable.

So assume all proper subpaths of P that link two copies of a vertex w have a non-negative
length. Let (v = x1, x2, . . . , xp = v) be the sequence of vertices visited by P . If P contains
two copies xi and xj (j > i) of a vertex with i 6= 1 or j 6= p, then assume xi belongs to
the s-th copy of D

G̃′
, while xj belongs to the s′-th copy (s′ > s). We build a new path P ′

from P by considering the new sequence (v = x1, . . . , xi, xj+1, xj+2, . . . , xp = v) where each
xq = w with q ≥ j + 1 that belongs to the sq ≥ s′-th copy of D

G̃′
is replaced by the copy

of w lying in the (sq + s − s′)-th copy of D
G̃′
. Hence, P ′ is a path linking the first to the

(k + s − s′ + 1)-copy of v, and its length is at most L since we have removed a subpath of
P of non-negative length. By repeating this process, we obtain a path P ∗ linking the first to
the k′-th copy of v such that k′ ≤ k, whose length is at most L < 0 in (k + 1)D

G̃′
, and that

does not contain any proper subpath linking two copies of a vertex. Hence, P ∗ corresponds
to a circuit C in D

G̃′
and the set AC of arcs on P ∗ that link two vertices in different copies

of D
G̃′

is such that |AC | ≤ k, all arcs in AC are standard dual arcs, and the total length of
the other arcs on C is strictly negative, which means that G′ is not k-survivable. 2

For illustration of the above theorem, consider the path (f, d, h, g, f) in the graph 2D
G̃′

of
Figure 4.3, with (h, g) as unique arc in this path linking the first to the second copy of D

G̃′
.

The length of this path in 2D
G̃′

is uut1 − 1 + 0 + 0 = uut1 − 1, while the corresponding circuit
(f, d, h, g, f) in D

G̃′
has length uut1 − 1 + ut2t1 + 0 = uut1 + ut2t1 − 1. Requiring that the

total length of the arcs on P must be non-negative is equivalent to impose uut1 ≥ 1, which
corresponds to the fact that the arc (t2, t1) is possibly removed from A′, and the flow reaching
t1 can then only come from vertex u.

Theorem 4.2.1 provides an easy way to test k-survivability. Indeed, it is sufficient to deter-
mine all shortest paths in (k+ 1)D

G̃′
linking a first to a (k+ 1)-th copy of a vertex. If one of

these paths has a strictly negative length, then the second part of the proof of Theorem 4.2.1
provides a procedure to determine a set A′′ of at most k arcs whose removal transforms G′

into a graph with no feasible flow. This is summarized in Procedure TestSurvivability
which, given an arc set A′, either determines a subset A′′ of A′ such that |A′′| ≤ k and
G′ = (V,A′ \ A′′) has no feasible flow, or produces the message “The graph is k-survivable”.

4.3 Tabu Search

As shown in [11], CRkECSN is NP-hard, and exact methods can only solve instances of rela-
tively small size. This justifies the use of metaheuristics for larger instances. We propose to
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Procedure TestSurvivability(A′)
Input : A subgraph S = (V,A′) of G;
Output: A subset A′′ ⊆ A′ with |A′′| ≤ k such that G′ = (V,A′ \ A′′) has no feasible flow,

or the message “G′ = (V,A′) is k-survivable”
1 Construct (k + 1)D

G̃′
and set survivable = true;

2 foreach vertex x in (k + 1)D
G̃′

do
3 if survivable then
4 Determine a shortest path P linking the first to the (k + 1)-th copy of x in

(k + 1)D
G̃′
;

5 if the total cost of the arcs on P is strictly negative then
6 Apply the procedure used in the second part of the proof of Theorem 4.2.1 to

determine a set A′′ such that |A′′| <= k and G′ = (V,A′ \ A′′) has no feasible
flow;

7 Set survivable = false;
8 Go to 12;
9 end

10 end
11 end
12 if survivable then write the message “S = (V,A′) is k-survivable”;
13 else Return A′′;

apply to this problem a tabu search, which is one of the most frequently used metaheuristics
in combinatorial optimization [34]. The method can be summarized as follows. Let S be the
solution space (set of feasible solutions) to a combinatorial optimization problem, and let F
be a function to be minimized over S. For a solution s ∈ S, let N(s) denote the neighborhood
of s, which is defined as the set of solutions in S obtained from s by performing a local
change, called move. A tabu search generates a sequence s0, · · · , sq of solutions in S where s0

is an initial solution and each si (i = 1, · · · , q) belongs to N(si−1). In order to avoid cycling,
the algorithm uses a tabu list that contains forbidden moves. Hence, a move m from si to
si+1 can only be performed if m does not belong to the tabu list, unless F (si+1) is strictly
smaller than the value F (s∗) of the best solution encountered so far. A move belonging to
the tabu list has a tabu status until is is removed from it. As stopping criterion, one may
use a fixed amount of CPU time, a fixed number of iterations, a fixed gap to a lower bound
value or a fixed number of consecutive iterations without improvement of the value F (s∗).
More details are given in [34].

The proposed adaptation of tabu search to CRkECSN can be roughly described as follows.
A k-survivable graph is said to be inclusion-wise minimal if the removal of any of its arcs
makes it non k-survivable. The solution space S explored by the tabu search is the set of
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inclusion-wise minimal k-survivable subgraphs G′ of the input graph G = (V,A). A move
from a solution G′ = (V,A′) to a solution in its neighborhood is performed as follows. We
first remove an arc from A′ and put a tabu status on this arc in order to avoid the possibility
of cycling, by forbidding to select this arc too early in the current solution again. Since G′

is inclusion-wise minimal, this means that the resulting graph is not k-survivable, and we
therefore repair it by adding arcs (different from the arcs which have been recently deleted
if those are not necessary to a feasible solution) until we obtain a k-survivable subgraph of
G. We then remove arcs in order to get a new inclusion-wise minimal k-survivable subgraph.
More details about each phase of such a move are given in the next subsections. We will
then be ready to give a more precise description of the proposed tabu search.

4.3.1 A repair procedure

In what follows, we denote by ca the cost of arc a in the input graph G, and by G′ + t

the graph obtained from a subgraph G′ of G by adding a sink t to which all terminals are
linked. Let G′ = (V,A′) be a subgraph of G which has to be repaired in order to become
k-survivable. We use the TestSurvivability procedure in order to determine a subset A′′

of at most k arcs in A′ whose removal transforms G′ into a subgraph G′′ = (V,A′ \A′′) of G
with no feasible flow. We then determine a maximum flow f in G′′+ t . This maximum flow
has a value fr→t strictly smaller than |T | (since it is not feasible). In the next step, we build
a graph H from G+ t as follows:

• all arcs a ∈ A′\A′′ for which the flow f(a) is equal to the capacity ua of a (i.e. saturated
arcs) are removed from H; the other arcs of A′ \ A′′ are kept in H, but with a zero
cost cH(a) = 0. This can be explained by the fact that we do not reroute existing and
non-deleted flow, the repair procedure increases the existing flow.

• all arcs a ∈ A \ A′ are kept in H. Those with no tabu status have their original cost
cH(a) = ca, while the others have a cost cH(a) = ca+M , where M is an integer greater
than the total cost of the arcs in G.

• all arcs a linking a terminal to the sink t are kept in H and have cost cH(a) = 0.

We next determine a path P of minimum cost linking r to t in H, using cost function cH .
Every arc a on P which does not belong to A′ is added to G′, which means that by sending
one unit of flow on P , the value of the new flow in G′′ + t (where G′′ = (V,A′ \ A′′) uses
the updated arc set A′) is exactly one unit larger than the previous one. The idea behind
the definition of cost function cH is to only pay for the addition of arcs not in A′: if an arc
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a ∈ A \ A′ has no tabu status, then the cost of its addition is its original cost ca, while a
penalty M is added to ca if a has a tabu status (the arc is then only added if it is necessary
for the solution to be feasible, otherwise its cost is too high to be selected).

We repeat this process until we get a flow of |T | units in G′′+ t, which means that, with this
new set A′ of arcs, the removal of the arcs in A′′ does not transform G′ = (V,A′) into a graph
with no feasible flow. There is however possibly another set A′′′ so that G′′ = (V,A′ \ A′′′)
has no feasible flow. We therefore repeat the complete process until we obtain a k-survivable
subgraph of G. The whole repair procedure is summarized in Procedure Repair. Note that,
if the original graph G is k-survivable, then Procedure Repair necessarily produces a set A′

so that (V,A′) is a k-survivable subgraph of G, since the graph (V,A\A′′) has a feasible flow
for all subsets A′′ containing at most k arcs of A.
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Procedure Repair(A′)
Input : A set A′ ⊆ A of arcs such that G′ = (V,A′) is not k-survivable;
Output: An updated set A′ ⊆ A of arcs such that G′ = (V,A′) is k-survivable;

1 Set ToBeRepaired = true;
2 Set A′′ =TestSurvivability(A′) and G′′ = (V,A′ \ A′′);
3 while ToBeRepaired do
4 Determine a maximum flow f in G′′ + t and set H equal to G+ t;
5 foreach a ∈ A′ do
6 if (a ∈ A′′ or f(a) = ua) then remove a from H;
7 else set cH(a) = 0;
8 end
9 foreach a ∈ A \ A′ do

10 if a has a tabu status then set cH(a) = ca +M ;
11 else set cH(a) = ca;
12 end
13 for i = 1 to |T | − fr→t do
14 Compute a minimum cost path P (using cH) linking r to t in H
15 foreach a ∈ P do
16 if a /∈ A′ then
17 Add a to A′;
18 if ua > 1 then set cH(a) = 0 and f(a) = 1;
19 else remove a from H;
20 else
21 if f(a) < ua − 1 then set f(a) = f(a) + 1;
22 else remove a from H;
23 end
24 end
25 if the output of TestSurvivability(A′) is an arc set A′′ then set G′′ = (V,A′ \ A′′);
26 else set ToBeRepaired = false;
27 end

4.3.2 Inclusion-wise minimal solutions

Given a k-survivable subgraph G′ = (V,A′) of G, we now explain how to remove arcs from
A′ in order to obtain an inclusion-wise minimal solution. Following the notations of Section



78

2, let D
G̃′

be the graph that contains a negative circuit if and only if G′ has no feasible flow.
For every arc (i, j) ∈ A′, we consider its standard dual arc adij = (x, y) and determine a
shortest path P linking the first copy of y to the (k + 1)-th copy of x in (k + 1)D

G̃′
. Let P ′

be the path in (k + 2)D
G̃′

obtained from P by adding the arc linking the (k + 1)-th copy of
x to the (k + 2)-th copy of y. Clearly, P and P ′ have the same length. Hence, if P has a
negative length, this means that there is a path of negative length in (k + 2)D

G̃′
linking the

first to the last copy of y, and this path contains an arc linking x to y in different copies of
D
G̃′
. In other words, the negative length of P ′ means that there is a graph obtained from G′

by removing (i, j) and k additional arcs which does not contains a feasible flow. This means
that, if (i, j) is removed from G′, then the resulting graph is not k-survivable.

If follows that a procedure that transforms G′ into an inclusion-wise minimal k-survivable
subgraph of G simply consists in considering all standard dual arcs adij = (x, y) in D

G̃′
and

determining a shortest path P linking the first copy of y to the (k + 1)-th copy of x in
(k+1)D

G̃′
: if P has a negative length, this means that (i, j) must stay in A′ since its removal

would make G′ not k-survivable; if P has a non-negative length, then (i, j) can be removed
from G′.

The procedure that transforms G′ into an inclusion-wise minimal solution is called MakeM-
inimal and is described here below.

Procedure MakeMinimal(A′)
Input : A subset A′ ⊆ A of arcs so that G′ = (V,A′) is k-survivable;
Output: An updated subset A′ so that G′ = (V,A′) is k-survivable and inclusion-wise

minimal;
1 foreach (i, j) ∈ A′ do
2 Consider the standard dual arc adij = (x, y) of (i, j) and compute a shortest path P from

the first copy of y to the (k + 1)-th copy of x in (k + 1)D
G̃′
;

3 if P has a non-negative total length then remove (i, j) from A′ ;
4 end

Note that there are possibly more than one inclusion-wise minimal subgraphs of G′, and the
order in which the arcs are considered for possible deletion may therefore have an impact on
the resulting graph. We suggest an ordering that gives preference to large costs, but with a
random component to bring diversity. More precisely, we suggest to first multiply each cost
ca by a random number ρa uniformly chosen in ]0, 1], which gives a new cost c′a = ρaca, and
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to then order the arcs by non-increasing values of c′a.

Remark 4.3.1 In Procedure MakeMinimal, at each iteration on an arc (i, j) ∈ A′, if P
has a negative length, it means that there is a set of k arcs Ak such that if Ak ∪ {(i, j)} is
removed from G′ there does not exist a feasible flow between the root and the terminals. It is
useless then to visit in the foreach all arcs of ak ∈ Ak because they are obviously necessary
to a solution. Therefore, the algorithm is modified in this case to not visit them after.

4.3.3 The proposed tabu search for the CRkECSN

We now describe in more details the proposed tabu search procedure. In what follows, we
denote by c(A) = ∑

a∈A ca the total cost of an arc set A.

We first determine whether the input graph G = (V,A) is k-survivable, using the Test-
Survivability procedure. If it turns out that G = (V,A) is not k-survivable, then there is
obviously no feasible solution to the CRkECSN instance, and we therefore stop the proce-
dure. Otherwise, we start the tabu search. The initial solution G′ = (V,A′) is generated by
applying the MakeMinimal procedure to A′ = A.

Then, given any solution G′ = (V,A′) visited by the tabu search, we select a subset SA′ of
dλ|A′|e arcs in A′, where λ is a parameter whose value belongs to ]0, 1]. For every arc a in SA′ ,
we create a new set SaA′ by first removing a from A′, then applying the Repair procedure,
and finally running the MakeMinimal procedure to get a set SaA′ so that (V, SaA′)) is an
inclusion-wise minimal k-survivable subgraph of G. In order to avoid the presence of the arc
a in SaA′ , we add a temporary penalty M to its cost ca, this penalty being removed when
moving to the next arc in SA′ . Note that it may happen that a necessarily belongs to SaA′ .
For example, if G = (V,A) contains only two vertices, one being the root r and the other a
terminal t1, and if only two parallel arcs of capacity 1 link r to t1, then G is 1-survivable since
it contains a feasible flow, even if one of its arcs is removed. However, no proper subgraph
of G is 1-survivable. Hence, if one of its arc is removed, the Repair procedure has to add it
again to recover 1-survivability. This is the reason why we penalize the insertion of a in SaA′
instead of forbidding it. For the same reason, the arcs with a tabu status can be required
to repair A \ {a}, and they are therefore also considered for insertion into SaA′ , but with a
penalty M .

Once all arcs in SA′ are treated, the algorithm moves from A′ to the set SaA′ with lowest total
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cost, and the arc a that was removed from A′ to produce SaA′ gets a tabu status for the next
τ iterations, where τ is a parameter of the method. The algorithm stops when a stopping
criterion is met (which will be a time limit in our case). A detailed description of the whole
process appears in Procedure TabuSearchCRkECSN.

In order not to always choose the same subset SA′ of arcs while giving preference to arcs with
a large cost, we suggest to use the same kind of techniques as the one proposed for ordering
the vertices before applying the MakeMinimal procedure. More precisely, we suggest to
compute a value c′a = ρaca for each a ∈ A′, where ρa is a random number uniformly generated
in ]0, 1] (this is done in the computations in Section 4.4). We then sort the arcs a of A′ by
non-increasing values of c′a, and include the dλ|A′|e first ones in SA′ .
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Procedure TabuSearchCRkECSN
Input : A graph G = (V,A) with capacity and cost functions on the arc set u and c

respectively, four parameters λ, τ , ρ and M , a positive integer k;
Output: A set A∗ of arcs so that (V,A∗) is inclusion-wise minimal k-survivable, or the

message “G = (V,A) is not k-survivable”;
1 if the output of TestSurvivability(A) is an arc set then
2 write the message “G = (V,A) is not k-survivable”
3 end
4 else
5 Set A′ = A, apply MakeMinimal(A′) and set A∗ = A′;
6 while no stopping criterion is met do
7 Generate a subset SA′ of dλ|A′|e arcs in A′ and set BestCost = +∞ (the arcs in SA′

are the dλ|A′|e first arcs a of A′ when the arcs of A′ are sorted by decreasing value
of ρaca);

8 foreach a ∈ SA′ do
9 Set SaA′ = A′ \ {a} and ca = ca +M ;

10 Apply Repair(SaA′);
11 Apply MakeMinimal(SaA′);
12 if c(SaA′) < BestCost then set BestCost = c(SaA′) and abest = a;
13 Set ca = ca −M ;
14 end
15 Set A′ = Sabest

A′ and assign a tabu status to abest for τ iterations;
16 if c(A′) < c(A∗) then set A∗ = A′;
17 end
18 end

4.4 Computational Experiments

Several exact algorithms for CRkECSN based on an integer programming formulation is de-
scribed in Chapter 3. It applies to all graphs, hence also to non planar ones. We compare it
to our TabuSearchCRkECSN procedure. All experiments are performed on a computer
with a 2.40GHz Intel(R) Core(TM) i7-5500U CPU and 16Gb of RAM, and the integer pro-
grams are solved using CPLEX (v12.2).

Tests are performed on instances with |V | ∈ {20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100}
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vertices, and with |T | ∈ {d0.1|V |e , d0.2|V |e , d0.3|V |e , d0.6|V |e , |V |−1} terminals. To create
them, we have generated |V | random vertices in the Euclidean plane [0, 1] × [0, 1], and the
edges are those of a Delauney triangulation. One vertex, chosen at random, is defined as the
root r, while |T | other vertices, chosen at random, are considered as terminals. This gives a
total of 60 undirected planar graphs. To get oriented graphs, we have replaced every edge
linking two vertices i and j by two arcs (i, j) and (j, i).

Since arcs that are close to the root r typically require larger capacities than the other ones,
the capacity uij of an arc (i, j) is chosen at random in {d0.8|T |e , d0.6|T |e} if there is a path
with at most 2 arcs linking r to i, and in {d0.8|T |e , d0.6|T |e , d0.4|T |e , d0.2|T |e} otherwise.
According to our experiments, these capacities are high enough to ensure, in most cases,
the existence of a 1-survivable subgraph, but are also low enough to make the CRkECSN
instances difficult to solve.

For the costs, we have chosen values that depend on the length (in the Euclidean plane) and
the capacities of the arcs. More precisely, for two vertices i and j with coordinates (xi, yi)
and (xj, yj), we have set cij = 1

|T |uij
√

(xj − xi)2 + (yj − yi)2, which means that the Euclidian
distance is multiplied by 0.8, 0.6, 0.4 or 0.2.

Seven of these 60 instances did not pass the test of 1-survivability at the first line of Proce-
dure TabuSearchCRkECSN. These instances therefore do not appear in our experiments.
The tabu search was run 10 times on the 53 remaining instances and each execution was
stopped after 45 seconds, while we have allocated 3000 seconds to each run of the exact
methods described in Chapter 3. Based on preliminary experiments, we have used λ = 0.4
and τ =

⌈√
|A|/2

⌉
respectively at lines 7 and 15 of TabuSearchCRkECSN (see Subsection

4.3.3).

Results for k = 1 appear in Table 4.1. The |V | and |T | columns indicate respectively the
number of vertices and terminals of each instance. Columns Copt and Topt indicate the cost
of an optimal solution and the time (in seconds) needed by the exact method to find it,
respectively. If no proof of optimality was obtained after 3000 seconds, we indicate the cost
of the best feasible solution found as well as, in brackets, the best lower bound on the value
of an optimal solution. Column Cb indicates the best cost obtained after 10 runs of the tabu
search, while column Tb gives the best time needed to find such a solution, and column nb
shows the number of runs for which a solution of that cost was found. Gray boxes in column
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Cb mean that we could reach the proven optimal solution, while gray boxes in column nb

indicate that the 10 runs of our tabu search all ended with the same cost. Column Ca gives
the average cost produced by our tabu search, over the 10 runs. While each run was stopped
after 45 seconds, column Ta indicates the average time at which the best solution A∗ was last
improved (line 16 of Procedure TabuSearchCRkECSN). Column Ia indicates the average
number of iterations of our tabu search in 45 seconds.

We observe that TabuSearchCRkECSN found the optimal solution for all instances solved
to optimality by the exact method. Moreover, these optimal solutions were obtained for
each of the 10 runs, except in one case. Indeed, for the instance with |V | = 45 vertices
and |T | = 44 terminals, our tabu search has found the optimal solution in only 3 of the
10 runs, but the average cost Ca = 28.03 is very close to the optimal value Copt = 27.90
(which corresponds to an increase of around 0.5% of the cost). We also note that, when the
exact method has produced a proven optimal solution (i.e., Topt < 3000), the average time
Ta needed by TabuSearchCRkECSN to obtain the same optimal cost is significantly smaller
than Topt. For the instances not solved to optimality (i.e., Topt = 3000), the average cost
produced by our tabu search is always strictly better than the best cost found by the exact
method. We observe that the average number Ia of iterations of the tabu search decreases
when the number |T | of terminals or the number |V | of vertices increases. For graphs with
100 vertices, less than 100 iterations could be performed, in average, which indicates that
more time should probably be allocated so that the tabu search has more chance to find
solutions of good quality.

Similar results appear in Tables 4.2 and 4.3 for k = 2 and k = 3, respectively. Among the
53 1-survivable instances, only 31 instances passed the 2-survivability test, and 8 of them
passed the 3-survivability test of line 1 in Procedure TabuSearchCRkECSN. Again, we
observe that our tabu search found the optimal solution for all instances solved to optimality
by the exact method, and these optimal solutions were obtained for each of the 10 runs,
except in one case: the instance with |V | = 45 vertices, |T | = 14 terminals and k = 2, where
our tabu search has found the optimal solution in only 7 of the 10 runs. Again in this case,
the average cost Ca = 25.71 is very close to the optimal value Copt = 25.63 (which corre-
sponds to an increase of around 0.3% of the cost). For these larger values of k, we see that
TabuSearchCRkECSN is able, in 45 seconds, to get very big improvements when compared
to the best solutions produced by the exact method in almost one hour. For example, for the
instance with |V | = 100 vertices, |T | = 20 terminals and k = 3, the exact method stopped
with a best upper bound equal to 54.79, while our tabu search has generated a solution of
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value Cb = 35.82, and the average cost Ca is equal to 36.43.

Up to this point, all instances had an arc (i, j) in A if and only if (j, i) ∈ A, while in practice,
it often happens that only one of them exists in the given graph G = (V,A). We have thus
decided to also test our tabu search on instances where each edge of the original undirected
graphs is oriented in exactly one of the two possible directions. For each of the 53 1-survivable
instances ot Table 4.1, we have deleted one of the two arcs (i, j), (j, i) for each pair of adjacent
vertices. The chosen directions were made so that the resulting oriented graphs remained
1-survivable. We have then run our algorithm on these new instances. Clearly, the optimal
value for each new instance is at least as large as the value of the same instance where all
edges were associated with two arcs with opposite directions. Results appear in Tables 4.4,
4.5 and 4.6. While 53 new instances were 1-survivable, only 26 of them were 2-survivable,
and 4 were 3-survivable. We can observe that the removal of exactly one of the two arcs (i, j),
(j, i) for each pair of adjacent vertices has a big impact on the optimal value. For example,
for |V | = 35 vertices, |T | = 10 terminals, and k = 3, the optimal solution in Table 4.3 has
value 34.76, while the optimal cost Copt is 55.91 in Table 4.6. When comparing Copt with Cb
we again observe that our tabu search was always able to determine an optimal solution when
the exact method stopped with a proven optimal one, except in one case: for the instance
with |V | = 90 vertices, |T | = 54 terminals and k = 2, the optimal cost Copt is 93.78, while
the best solution produced by our tabu search has cost Cb = 94.05 (increase of around 0.2%
of the cost), and the average cost is Ca = 94.25 (increase of around 0.5% of the cost). Note
however that both Ta and Tb are larger than 40, which means that our tabu search improved
the best solution A∗ less than 5 seconds before the process was stopped. For this particular
instance, we have determined that 25 additional seconds would have been sufficient to reach
the optimal solution. By allocating 120 seconds instead of 45, we have even been able to
reach the optimum in 7 of the 10 runs.

For four instances with k = 1, four with k = 2, and one with k = 3, our tabu search had at
least one run out of 10 which did not end with a proven optimal solution. But for all these
instances, the mean cost Ca is always very close to the optimal cost Copt.
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Table 4.1 Results for k = 1 where (i, j) ∈ A if and only if (j, i) ∈ A.
|V| |T| Copt Topt Cb Tb nb Ca Ta Ia
20 4 9.61 1.0 9.61 0.0 10 9.61 0.1 8613
20 6 14.26 5.6 14.26 0.0 10 14.26 0.1 3666
20 12 18.29 29.9 18.29 0.0 10 18.29 0.7 1912
20 19 21.79 13.1 21.79 0.2 10 21.79 0.9 1867
25 5 12.43 12.1 12.43 0.1 10 12.43 0.2 2776
25 8 14.27 13.9 14.27 0.2 10 14.27 0.4 2482
25 15 17.50 42.8 17.50 0.6 10 17.50 1.5 1126
30 3 8.49 1.7 8.49 0.0 10 8.49 0.1 5653
30 9 12.49 14.1 12.49 0.1 10 12.49 0.9 1603
30 18 16.40 47.7 16.40 0.5 10 16.40 2.3 1067
30 29 20.65 40.2 20.65 0.8 10 20.65 3.3 401
35 4 5.91 1.6 5.91 0.0 10 5.91 0.1 3998
35 7 14.25 127.7 14.25 0.3 10 14.25 1.2 1114
35 10 15.49 44.4 15.49 0.4 10 15.49 1.0 1063
35 34 19.18 16.8 19.18 2.1 10 19.18 3.7 256
40 4 11.43 48.6 11.43 0.1 10 11.43 0.8 2174
40 8 14.44 27.0 14.44 0.8 10 14.44 3.5 805
40 12 19.96 1971.7 19.96 2.3 10 19.96 16.2 501
40 24 17.14 104.0 17.14 0.8 10 17.14 6.3 350
40 39 20.45 55.5 20.45 6.0 10 20.45 16.4 183
45 4 7.90 112.8 7.90 0.2 10 7.90 1.0 1919
45 9 12.72 848.0 12.72 1.4 10 12.72 14.3 739
45 14 16.54 91.6 16.54 1.8 10 16.54 4.1 389
45 27 24.84 (24.34) 3000 24.78 6.5 4 24.83 22.4 219
45 44 27.90 186.5 27.90 11.5 3 28.03 19.9 131
50 5 12.65 1507.1 12.65 0.9 10 12.65 5.8 700
50 10 18.07 (13.73) 3000 17.31 4.8 8 17.31 13.6 329
50 15 13.78 1090.7 13.78 2.2 10 13.78 10.6 419
50 30 17.19 420.5 17.19 3.5 10 17.19 10.7 192
60 6 20.49 (10.45) 3000 16.75 2.1 7 16.81 15.8 452
60 12 20.04 (15.83) 3000 18.20 2.9 10 18.20 15.6 225
60 18 18.70 (15.33) 3000 17.14 12.6 9 17.14 23.1 192
60 36 25.39 (21.58) 3000 24.16 5.7 2 24.21 18.7 103
70 7 12.98 (10.12) 3000 12.35 2.4 9 12.35 9.7 404
70 14 22.09 (9.28) 3000 18.14 25.6 2 18.25 19.3 147
70 21 19.79 (17.02) 3000 19.21 31.1 1 19.34 21.5 108
70 42 26.60 (18.62) 3000 23.34 14.3 3 23.47 28.4 78
70 69 29.99 (21.59) 3000 26.34 40.9 1 26.61 35.2 41
80 8 14.82 (9.04) 3000 12.34 4.2 9 12.34 16.3 208
80 16 23.72 (9.49) 3000 16.83 9.5 6 16.95 24.5 125
80 24 27.70 (11.91) 3000 21.96 32.9 1 22.12 27.8 82
80 48 25.92 (14.77) 3000 21.75 39.3 1 21.88 30.8 59
80 79 32.76 (18.02) 3000 27.50 30.6 1 28.78 39.4 31
90 9 25.24 (9.59) 3000 18.85 40.2 1 19.09 33.5 103
90 18 28.10 (9.84) 3000 18.61 17.1 2 18.77 28.2 99
90 27 33.90 (7.80) 3000 23.14 34.8 1 23.48 34.0 62
90 54 34.49 (12.07) 3000 24.92 41.5 1 25.41 40.8 45
90 89 32.34 (21.02) 3000 29.36 43.0 1 30.25 41.6 36
100 10 26.21 (9.70) 3000 16.45 25.3 1 16.75 26.5 89
100 20 21.34 (11.10) 3000 16.60 15.1 1 16.66 27.0 82
100 30 31.27 (8.76) 3000 19.96 34.3 1 20.40 34.7 44
100 60 33.68 (14.15) 3000 25.03 40.7 1 25.53 40.6 27
100 99 34.04 (12.59) 3000 31.38 41.2 2 32.69 43.6 19
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Table 4.2 Results for k = 2 where (i, j) ∈ A if and only if (j, i) ∈ A.

|V| |T| Copt Topt Cb Tb nb Ca Ta Ia
20 4 15.23 1.0 15.23 0.0 10 15.23 0.1 4929
20 6 20.93 5.6 20.93 0.0 10 20.93 0.1 2069
25 8 22.03 17.6 22.03 0.2 10 22.03 0.9 1309
25 15 26.49 94.6 26.49 0.4 10 26.49 1.1 616
30 9 19.46 17.1 19.46 0.2 10 19.46 1.6 1021
35 10 23.06 38.6 23.06 1.2 10 23.06 2.7 567
40 4 16.59 154.2 16.59 0.2 10 16.59 1.3 914
40 12 29.05 894.4 29.05 2.5 10 29.05 6.8 257
40 39 35.57 13.3 35.57 2.1 10 35.57 15.4 119
45 4 12.69 164.9 12.69 0.8 10 12.69 2.3 703
45 9 19.00 1425.4 19.00 0.5 10 19.00 4.1 327
45 14 25.63 138.2 25.63 5.9 7 25.71 15.0 175
50 5 17.56 991.7 17.56 2.2 10 17.56 5.5 338
50 10 28.57 (19.43) 3000 25.53 6.5 6 25.57 12.2 139
50 15 23.95 (22.27) 3000 23.33 2.0 10 23.33 7.0 177
60 6 25.72 (16.98) 3000 23.25 11.0 3 23.31 25.2 142
60 18 29.29 (21.97) 3000 26.92 17.4 7 26.92 28.1 100
60 36 40.59 (35.31) 3000 39.29 24.6 2 39.55 32.6 52
70 7 21.19 (10.81) 3000 17.59 3.9 9 17.60 23.7 189
70 14 33.25 (16.96) 3000 27.05 9.1 3 27.16 24.3 74
80 8 26.17 (12.56) 3000 18.84 11.1 8 18.86 21.8 89
90 9 41.56 (12.47) 3000 25.10 23.6 7 25.12 30.9 59
90 18 38.52 (11.56) 3000 28.05 29.0 1 28.40 36.1 47
90 27 47.35 (10.42) 3000 34.85 34.5 1 35.38 40.4 38
90 54 51.67 (10.85) 3000 41.16 41.5 1 41.79 41.3 22
90 89 52.89 (29.09) 3000 51.03 42.8 1 52.35 43.2 17
100 10 36.55 (12.06) 3000 23.29 15.1 1 23.64 33.6 47
100 20 39.24 (11.77) 3000 25.37 29.5 1 25.51 30.3 48
100 30 42.82 (11.99) 3000 32.04 39.6 1 32.80 39.7 31
100 60 50.52 (14.65) 3000 40.51 44.3 1 41.82 42.9 22
100 99 53.51 (26.76) 3000 51.02 45 1 52.55 44.6 16

Table 4.3 Results for k = 3 where (i, j) ∈ A if and only if (j, i) ∈ A.

|V| |T| Copt Topt Cb Tb nb Ca Ta Ia
35 10 34.76 42.4 34.76 1.2 10 34.76 3.2 320
40 4 23.51 356.1 23.51 0.9 10 23.51 3.6 423
45 4 18.64 335.1 18.64 1.0 10 18.64 2.4 335
60 6 35.78 (22.18) 3000 32.83 7.0 9 32.89 19.0 95
70 7 29.54 (15.36) 3000 25.96 14.9 3 26.03 17.1 74
70 14 44.53 (23.60) 3000 37.93 13.8 3 37.99 22.8 53
100 10 42.54 (15.31) 3000 32.12 38.8 2 32.60 40.7 27
100 20 54.79 (15.89) 3000 35.82 36.9 1 36.43 39.8 24
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Table 4.4 Results for k = 1 where (i, j) /∈ A if (j, i) ∈ A.
|V| |T| Copt Topt Cb Tb nb Ca Ta Ia
20 4 12.63 11.5 12.63 0.0 10 12.63 0.0 4912
20 6 17.48 9.4 17.48 0.1 10 17.48 0.3 2293
20 12 24.94 16.0 24.94 0.0 10 24.94 1.6 1004
20 19 42.57 11.3 42.57 0.0 10 42.57 0.1 963
25 5 14.33 20.8 14.33 0.0 10 14.33 0.1 1748
25 8 20.45 28.2 20.45 0.0 10 20.45 0.5 1713
25 15 24.24 21.9 24.24 0.3 10 24.24 0.7 665
30 3 8.61 2.3 8.61 0.0 10 8.61 0.0 5479
30 9 20.18 77.0 20.18 0.3 10 20.18 0.9 907
30 18 30.40 23.5 30.40 0.1 10 30.40 0.4 520
30 29 41.76 20.0 41.76 0.3 10 41.76 0.8 312
35 4 9.03 10.2 9.03 0.1 10 9.03 0.2 2984
35 7 20.76 32.2 20.76 0.2 10 20.76 0.4 669
35 10 24.68 (22.46) 3000 24.07 0.4 10 24.07 3.7 538
35 34 50.56 57.2 50.56 1.2 3 50.56 1.6 213
40 4 13.28 116.2 13.28 0.1 10 13.28 0.9 1649
40 8 25.23 199.9 25.23 0.3 10 25.23 0.8 635
40 12 26.82 850.1 26.82 1.1 4 26.83 1.3 352
40 24 31.97 120.3 31.97 1.5 10 31.97 2.3 207
40 39 55.09 62.0 55.09 3.0 10 55.09 4.6 131
45 4 9.06 78.0 9.06 0.2 10 9.06 1.2 1036
45 9 18.14 241.3 18.14 0.8 10 18.14 1.7 449
45 14 26.20 440.5 26.20 5.4 10 26.20 10.9 267
45 27 44.85 162.6 44.85 2.3 10 44.85 4.1 191
45 44 59.17 126.8 59.17 5.5 10 59.17 8.6 102
50 5 13.87 373.5 13.87 0.1 10 13.87 1.1 690
50 10 25.40 (21.34) 3000 24.93 1.4 8 24.93 11.8 296
50 15 26.9 (19.37) 3000 25.85 2.3 7 25.96 3.4 238
50 30 37.74 183.3 37.74 2.5 10 37.74 6.2 141
60 6 24.75 (13.12) 3000 21.73 8.4 9 21.74 17.4 286
60 12 29.93 (26.64) 3000 29.41 5.0 2 29.53 9.1 198
60 18 32.33 (17.13) 3000 29.91 8.1 5 29.93 18.2 169
60 36 44.04 2487.4 44.04 14.3 7 44.06 25.6 101
70 7 19.03 (10.85) 3000 16.93 1.9 10 16.93 10.1 239
70 14 35.52 (7.81) 3000 28.71 19.7 3 28.79 29.4 121
70 21 34.28 (24.00) 3000 32.18 9.9 8 32.19 15.8 94
70 42 54.11 (45.45) 3000 52.23 19.6 1 52.45 24.6 63
70 69 64.24 731.2 64.24 35.6 2 64.32 39.1 52
80 8 20.51 (11.69) 3000 17.04 5.0 6 17.06 18.8 177
80 16 33.52 (5.36) 3000 26.20 22.0 1 26.75 16.6 99
80 24 45.90 (30.29) 3000 39.77 16.1 1 40.49 21.2 68
80 48 49.84 (38.38) 3000 48.61 39.6 1 48.77 37.5 46
80 79 65.31 (64.00) 3000 65.76 44.1 1 66.58 42.4 37
90 9 30.81 (8.32) 3000 23.40 9.7 2 23.51 27.8 83
90 18 41.73 (12.94) 3000 32.29 38.1 1 32.67 32.2 63
90 27 44.92 (17.07) 3000 38.07 26.9 1 38.43 34.0 48
90 54 51.14 (32.73) 3000 48.83 41.1 1 49.68 41.3 31
90 89 73.08 (73.08) 3000 73.94 40.7 1 74.92 42.4 27
100 10 24.27 (9.71) 3000 21.84 11.4 3 22.00 24.8 95
100 20 35.93 (8.98) 3000 27.38 34.3 1 27.71 30.9 70
100 30 46.31 (12.97) 3000 36.78 33.7 1 37.55 39.9 44
100 60 57.19 (37.17) 3000 56.38 40.5 1 57.12 42.7 37
100 99 75.05 (70.55) 3000 76.98 45 1 78.03 44.1 24
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Table 4.5 Results for k = 2 where (i, j) /∈ A if (j, i) ∈ A.

|V| |T| Copt Topt Cb Tb nb Ca Ta Ia
20 4 26.99 15.8 26.99 0.1 10 26.99 1.8 2084
20 6 29.39 5.9 29.39 0.0 10 29.39 0.0 1343
25 8 34.98 12.0 34.98 0.0 10 34.98 0.1 817
25 15 47.06 18.9 47.06 0.0 10 47.06 0.1 425
30 9 35.88 46.5 35.88 0.4 10 35.88 0.7 451
35 10 41.52 (38.61) 3000 41.34 1.0 4 41.34 2.6 292
40 4 21.51 515.6 21.51 0.5 10 21.51 1.2 749
40 12 43.32 75.0 43.32 1.6 4 43.43 5.7 216
45 4 17.40 (17.23) 3000 17.40 0.5 10 17.40 2.2 527
45 9 35.64 281.2 35.64 1.9 10 35.64 3.3 222
45 14 47.78 190.5 47.78 2.8 8 47.78 13.9 179
50 5 24.84 2313.6 24.84 1.0 10 24.84 3.4 325
50 10 43.90 (38.19) 3000 41.97 2.9 9 42.04 8.6 181
60 6 38.68 (17.79) 3000 33.81 12.2 1 33.91 19.2 124
60 18 52.55 (50.97) 3000 52.23 9.0 10 52.23 18.2 99
60 36 85.78 438.2 85.78 10.4 6 85.80 21.9 51
70 7 32.38 (18.46) 3000 29.82 6.8 4 29.93 11.8 119
70 14 56.24 (9.56) 3000 47.52 16.6 2 47.66 27.7 71
80 8 33.42 (19.38) 3000 29.58 7.1 7 29.63 15.2 84
90 18 61.59 (22.79) 3000 51.37 33.9 1 51.83 38.7 45
90 27 71.56 (46.51) 3000 68.61 40.8 1 68.94 41.8 36
90 54 93.78 1983.3 94.05 42.4 2 94.25 41.4 25
100 10 52.01 (12.48) 3000 36.29 34.6 1 36.94 37.3 36
100 20 58.46 (6.43) 3000 44.51 41.6 1 45.06 41.4 28
100 30 77.10 (40.09) 3000 65.17 43.1 1 65.55 43.3 19
100 60 106.62 (105.55) 3000 106.45 44.9 1 107.35 44.3 10

Table 4.6 Results for k = 3 where (i, j) /∈ A if (j, i) ∈ A.

V T Copt Topt Cb Tb nb Ca Ta Ia
35 10 55.91 121.8 55.91 18.8 1 56.92 16.5 222
40 4 33.59 988.4 33.59 1.0 9 33.64 11.2 379
45 4 28.54 2165.7 28.54 0.6 10 28.54 1.8 311
60 6 52.69 (32.67) 3000 49.12 13.2 1 49.24 12.8 109
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CHAPTER 5 WIND FARM CABLE LAYOUT OPTIMIZATION WITH
CONSTRAINTS OF LOAD FLOW AND ROBUSTNESS

5.1 Introduction

5.1.1 Presentation of the problem

The design of wind farm networks involves many challenges in optimization, see Subsection
1.3.1 in Chapter 1. In this chapter, we consider the problem of designing a robust cabling
network of an offshore wind-farm, at minimal cost, once the location of the turbines has al-
ready been decided. The work presented here was carried out in collaboration with an EDF
engineer.

More precisely, given a set of offshore wind turbines producing a known quantity of energy,
we look for an optimal network able to route the energy produced by all the wind turbines
to the point of common coupling (PCC), called root node thereafter in this chapter, that will
collect the energy and dispatch it to the grid. One of the main characteristics of our network
is that it should be robust, i.e. resilient to the failure of one or several cables: hence, we aim
to build the cheapest network that will be able to route, for a given number of any possible
breakdowns, all the produced energy from the wind turbines to the root node. An important
constraint of our problem is that the flow of energy routed in the network must satisfy the
Load Flow equations. We will explain these constraints in the next section.

We model the problem by using an undirected graph G = (V ∪ {r}, E), where r is the root
node, each vertex in V represents either a wind turbine or a junction node between two or
more cables, and E is the set of all possible "edges" on which a cable can be installed. The
location of the root, of the wind turbines and of the possible junction nodes are known, so
the lengths of the edges of E are given. There are different types of electric cables: the cost
and capacity of a cable depend on the type of cable chosen and on the length of the cable,
and each type is defined by a cost per meter and a capacity.

The design of cabling networks of wind farms has been recently investigated, see Subsection
1.3.1 in Chapter 1.
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In this chapter, we first consider the problem when no breakdown can occur: we present a
mathematical model to solve the problem exactly. We give some results obtained on real data.
Then we consider the problem in its full generality and present two mathematical formula-
tions for the robust case: the first one, derived from the problem without any breakdowns,
is a mixed-integer linear program that considers the case where the number of breakdowns
that can occur is 1; the second one is a bi-level mixed integer linear program which is a
compact formulation with few variables and constraints. We first explain briefly the Load
Flow equations and how to take into account these constraints.

5.1.2 The Load Flow constraints

Approximation of the load flow equations

Load flow studies, also known as power flow studies, are power system analysis. We briefly
explain them in this section but we refer the reader to [59] for more information about elec-
trical power system planning, especially Appendix A for the load flow problem. We define a
bus as a node of an electrical network (for example circuit breakers, transformers, conductors
or capacitors); in our application, a bus is either an inter-connection node or a wind turbine
or the substation. In this chapter, buses are referred to as nodes, and cables between two
buses as lines.

Given the production capacities of the different generators (in our application, the generators
will correspond to the wind turbines), the load flow equations allow to calculate the electrical
state of the network i.e. to determine the voltages, real and reactive power flows, and currents
in a system (at each node or cable) under given load conditions. They are used in planning
studies to determine if and when electrical devices will become overloaded. They can be
used for example to verify that demands are met without overloading the different network
facilities or to ensure that maintenance plans (for example taking off a line for replacement)
can proceed without undermining the security of the system.

The load flow problem consists in finding the voltage magnitude and phase angle at each
node, and the real and reactive power flowing through each line of the network. We define
n as the number of nodes in the network. The formulation of the load flow problem requires
to consider four variables at each node v = 1, .., n of the network:

• Pv: the net active power injection in MW (Mega Watts), which is the difference between
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active power generation and active power demand at node v

• Qv: the net reactive power injection in MVAr (Mega Volt Ampere reactive), which is
the difference between reactive power generation and reactive power demand at node v

• Uv: the voltage magnitude in pu (per unit) at node v

• θv: the voltage angle in radians at node v.

We can apply Kirchhoff’s law (see Chapter 2.4 in [3]) to each node, which results in:

I = Y U (5.1)

Iv = Pv − ιQv

|Uv|
eιθv , ∀v = 1, .., n (5.2)

where

• ι2 = −1

• Iv is the net injected current at node v and I is the vector (Iv)v=1,..,n

• U is the vector of node voltages

• Y is the nodal admittance matrix of the system, which represents the admittance
(measure in Siemens of how easily a device will allow a current to flow) at each node.

I, U and Y have complex components, and Uv = |Uv|eιθv is the vth element of U . Using (5.1)
and (5.2), we have:

Pv − ιQv

|Uv|
eιθv =

n∑
w=1

YvwUw

The Y matrix is symmetrical. The diagonal elements Yvv of Y (self admittance of node v)
are equal to the sum of admittances of all nodes w connected to v. The off diagonal elements
Yvw (mutual admittance) are equal to the negative sum of the admittances between v and w,
and we have

Yvw = Ywv = |Yvw|eιδvw = Hvw + ιBvw = |Yvw| cos δvw + ι|Yvw| sin δvw
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where Hvw and Bvw are respectively called conductance and susceptance at [v, w], and where
δvw is the argument of Yvw. Using (5.1) and (5.2), one can derive with some calculations the
so-called Load Flow equations (see Appendix A in [59]) for each node v = 1, .., n :

Pv =
n∑

w=1
|Yvw||Uv||Uw| cos(θv − θw − δvw) (5.3)

Qv =
n∑

w=1
|Yvw||Uv||Uw| sin(θv − θw − δvw) (5.4)

To solve these equations, two of the four variables (P , Q, U and θ) must be known in
advance at each node. This formulation results in a non-linear system of equations which re-
quires iterative solution methods. However, for such methods, convergence is not guaranteed.

In order to introduce these constraints in the optimization model, we consider the Direct
Current (DC) estimations of the load flow. If we consider the Direct Current Load Flow, it
is customary to make the following assumptions [59]:

Assumption A

Line resistances (inducing active power losses) are negligible i.e. H � B, and we can assume
that Hvw = 0 for all [v, w] or equivalently that Yvw = ιBvw and |Yvw| = Bvw. Notice that,
since Yvw = |Yvw|(cos(δvw) + ι sin(δvw)), the previous assumption implies cos(δvw) = 0 and
thus we have δvw ≈ π/2.

Assumption B

Voltage angle differences are small i.e. sin(θv − θw) ≈ θv − θw and cos(θv − θw) ≈ 1, for all
v, w = 1, .., n.

Assumption C

Magnitudes of node voltages are equal to 1.0 per unit (flat voltage profile) i.e. |Uv| = 1 for
all v = 1, .., n.

Using Assumptions A and C and 5.3, we have for each v = 1, .., n:
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Pv =
n∑

w=1
|Yvw||Uv||Uw| cos(θv − θw − δvw) =

n∑
w=1

Bvw cos(θv − θw −
π

2 )

Using cos(θv − θw − π
2 ) = sin(θv − θw) and Assumption B we have for each node v in the

system:

Pv =
n∑

w=1
Bvw(θv − θw) (5.5)

Integration of the Load Flow equations in our problem

Regarding the design of a wind farm, we consider here a non-directed graph G = (V,E)
where V is the set of n nodes of the network (i.e. the substation r, the wind turbines and
the interconnection nodes) and E is the set of edges where we can build a cable. In the
following, we will refer to the substation r as the root. We are given for each edge [v, w] ∈ E
a susceptance Bvw. However, if we do not build a cable on the edge [v, w] in the final network,
we can set Bvw to 0. We also consider ~G = (V, ~E) which is the bi-directed graph associated
with G (i.e. for each edge [v, w] ∈ E in G, there are the arcs {(v, w), (w, v)} ⊂ ~E in ~G).

For each node v different from the root node (i.e. v ∈ V \ {r}), it is known that Pv ≥ 0:
either Pv > 0 if v provides some power injection in the network (i.e. v is a wind turbine in
our case), or Pv = 0 if v is a junction node. If v is a wind turbine, Pv is known and gives the
estimation of the production of energy of the wind turbine v. For the root r, the load flow
equations imply that Pr = −∑v∈V \{r} Pv. For each (v, w) ∈ ~E, we define:

Πvw := Bvw(θv − θw)

as the active power flow through [v, w] from v to w, and thus we have Πvw = −Πwv and
Pv = ∑n

w=1 Πvw.

Property 5.1.1 If the load flow equations 5.5 are satisfied at each node of a subgraph Ĝ =
(V, Ê) of G = (V,E), with Ê ⊆ E and Bvw set to 0 if no cable is built on the edge [v, w] (i.e.
[v, w] /∈ Ê), then there exists a chain in Ĝ between each node v producing a positive active
power flow (i.e. such that Pv > 0) and the root.

Proof: Assume that there exists v′ ∈ V such that Pv′ > 0 and v′ is not connected to the



94

root node r. Let G(v′) = (V ′, E ′) be an inclusion-wise maximal connected subgraph of G
that contains v′. By assumptions r /∈ V ′. Let us consider the sum

S =
∑
v∈V ′

Pv

Since Pv′ > 0, Pv ≥ 0 ∀v ∈ V \ {r}, and r /∈ V ′, we have S > 0. However, using Equation
(5.5), we also have:

S =
∑
v∈V ′

Pv =
∑
v∈V ′

∑
w∈V ′

Πvw = 0

since Πvw = −Πwv. Hence a contradiction. 2

Property 5.1.1 ensures that if Constraints 5.5 are satisfied in a mathematical program, we
do not have to add connectivity constraints to ensure that there exists a path between the
root and each wind turbine, since load flow equations will not be satisfied otherwise.

The approximation of the load flow analysis will be used to ensure that, for each feasible
solution, the power routed through the cables will not exceed its capacity.

5.2 The problem without breakdowns

In this section, we present the problem when no breakdown can occur on the cables. We
first give a mixed-integer linear model to solve the problem, then we present a heuristic to
get a good feasible solution. In the following, we are given Pv for every node different from
the root node. We recall that if v ∈ V represents a wind turbine, then Pv corresponds to the
active power produced and collected through the network by the wind turbine, otherwise v
is either a junction node and Pv = 0 or the root node r and Pr is not defined (technically it
is equal to −∑v∈V \{r} Pv).

5.2.1 Mathematical formulation

In practice, the given undirected support network, G = (V,E) is often the union of a partial
grid on n nodes, of some diagonal edges and of the root node linked to a subset of vertices of
the grid. Let (i, j) be the position of a vertex v in the grid, a diagonal edge incident to v is
an edge linking v to another vertex at the position (i+ 1, j + 1), (i+ 1, j − 1), (i− 1, j + 1)
or (i − 1, j − 1); see Figure 5.1 for an example. The set of wind turbines is denoted by



95

T ⊂ V \ {r}. Hence V \ (T ∪ {r}) denotes the set of junction nodes. We also consider Q
different types of electrical cables numbered by q ∈ [1, ..., Q]; Q is generally a small number
(≤ 3). For each q ∈ [1, ..., Q] and each [v, w] ∈ E, we denote by cqvw, the cost of installing a
cable of type q on [v, w]. This cost depends on the type of cable chosen and on the length of
[v, w]. The capacity of a cable of type q on [v, w] is denoted by uqvw (cqvw = cqwv and uqvw = uqwv

). Hence, we aim to design the cheapest network such that the capacity on each installed
cable is greater than the active power flow routed through this cable, i.e. Πuv ≤ uquv and
Πvu ≤ uquv for each edge [u, v] where a cable of type q is installed. Notice that the network
must verify the load flow equations.

r

e2 e1

Figure 5.1 A network buildt on a grid 4× 3

For technical constraints given by EDF, there is a set I ⊂ E × E of pairs of edges {e, e′}
such that it is not allowed to install a cable on both e and e′. In practice, the set I is used to
avoid installing cables on two edges that intersect each other, and hence to ensure that the
resulting network is planar (on Figure 5.1, we would have for example {e1, e2} ∈ I because
e1 and e2 are crossing diagonal edges).

5.2.2 Variables and constraints

Recall that the power injection Pv at node v ∈ V is given for each vertex v. Moreover, Bq
vw,

corresponding to the susceptance of a cable of type q between v and w, is also given for each
[v, w] ∈ E and each q ∈ [1, .., Q].

We introduce the following variables:

• For each q ∈ [1, ..., Q] and for each e = [v, w] ∈ E, let yqe be the binary variable such
that yqe = 1 if and only if a cable of type q is installed on e = [v, w]. Notice that, in the
following, for each e = [v, w] ∈ E, yqe can be written indifferently yqe , yqvw or yqwv.

• For each v ∈ V , let θv be the voltage angle at v.



96

We now introduce the different constraints associated with our problem:

Cable types constraints:

For each e ∈ E, we cannot install more than one type of cable:

Q∑
q=1

yqe ≤ 1, ∀e ∈ E (5.6)

Constraints of incompatibility between edges:

The set I ⊂ E × E contains every pair {e1, e2} such that there cannot be a cable on
both edges e1 and e2:

Q∑
q=1

(yqe1 + yqe2) ≤ 1, ∀(e1, e2) ∈ I (5.7)

Voltage angles constraints:

In the load flow equations, we only consider the differences of angles θv − θw for each
pair (v, w) ∈ V 2 with v 6= w, i.e. the value of θv alone is useless. Using this fact and As-
sumption B, which states that voltage angles are assumed to be small, we can fix arbitrarily
and without loss of generality the value of the angle at the root node r:

θr = 0 (5.8)

Therefore, since, by Assumption B, for any v, w ∈ V , θv− θw is very small, we have that, for
all v ∈ V , −ε ≤ θv − θr ≤ ε for some small ε > 0, which implies:

− ε ≤ θv ≤ ε ∀v ∈ V

Differences of voltage angles are assumed to be less than 10−1, hence we have ε ≈ 10−1.
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Load Flow constraints:

For all v ∈ V , the load flow equations are given by:

Pv =
Q∑
q=1

∑
w:[v,w]∈E

Bq
vwy

q
vw(θv − θw) (5.9)

where
Q∑
q=1

Bq
vwy

q
vw(θv − θw) = Πvw

corresponds to the active power sent through (v, w) ∈ ~E. In other words, the load flow
constraints ensure that each wind turbine is connected to the root, and allow to calculate
the power routed through each cable.

Power line constraints:

For each e ∈ E, the power flow Πe routed through e must be smaller than the capac-
ity of the cable installed on e:

Q∑
q=1

Bq
vwy

q
vw(θv − θw) ≤

Q∑
q=1

uqvwy
q
vw ∀(v, w) ∈ ~E (5.10)

One can notice that, if
Q∑
q=1

Bq
vwy

q
vw(θv − θw) < 0 (resp. > 0), then

Q∑
q=1

Bq
wvy

q
wv(θw − θv) > 0

(resp. < 0), depending on whether the energy is routed from v to w or from w to v.

5.2.3 Mathematical program

We aim to minimize the total cost of the resulting network, i.e.:

min
∑
e∈E

Q∑
q=1

cqey
q
e

We introduce EI the set of edges e with at least one constraint of incompatibility with another
edge, i.e. e ∈ EI if there exists at least one edge e′ such that {e, e′} ∈ I. The mathematical
program to solve can be written as follows:
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(LFF)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
y,θ

∑
e∈E

Q∑
q=1

cqey
q
e

s.c.
Q∑
q=1

yqe ≤ 1, ∀e ∈ E \ EI

Q∑
q=1

(yqe1 + yqe2) ≤ 1, ∀(e1, e2) ∈ I

θr = 0
Q∑
q=1

∑
w:[v,w]∈E

Bq
vwy

q
vw(θv − θw) = Pv, ∀v ∈ V \ {r}

Q∑
q=1

Bq
vwy

q
vw(θv − θw) ≤

Q∑
q=1

uqvwy
q
vw, ∀(v, w) ∈ ~E

y ∈ {0, 1}|E|Q, θ ∈ [−ε, ε]|V |

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

Using Property 5.1.1, Constraints 5.9 ensure the connectivity between the root and the wind
turbines, while Constraints 5.10 ensure that no cable is overloaded.

5.2.4 Linearization of the program

One can notice that the above program have non-linear terms, yqvwθv and yqvwθw in Constraints
5.9 and 5.10. Since −ε ≤ θv ≤ ε ∀v ∈ V , we have that 0 ≤ θv + ε ≤ 2ε for each v ∈ V \ {r}.
We can now propose a well-known solution, to linearize each term yqvw(θv + ε) which is the
product of a binary variable by a non-negative bounded real variable, see for instance [18].
For all (v, w) ∈ ~E, q ∈ [1, ..., Q], we introduce a non-negative variable ρqvw and the following
polyhedron:

L(θ, y) =

ρ ∈ R| ~E|Q

∣∣∣∣∣∣∣∣∣
ρqvw ≤ θv + ε ∀(v, w) ∈ ~E, ∀q ∈ [1, .., Q]
ρqvw ≤ 2εyqvw ∀(v, w) ∈ ~E, ∀q ∈ [1, .., Q]
ρqvw ≥ θv + ε− 2ε(1− yqvw) ∀(v, w) ∈ ~E, ∀q ∈ [1, .., Q]


We have:

ρ ≥ 0, ρ ∈ L(θ, y) ⇒ ρqvw = yqvw(θv + ε) ∀(v, w) ∈ ~E, ∀q ∈ [1, .., Q]

Notice that, for each edge [v, w] and each cable type q ∈ [1, .., Q], we have ρqvw = yqvw(θv + ε)
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while ρqwv = yqvw(θw + ε). Products between θ and y only appear in our problem in the form
yqvw(θv − θw) with (v, w) ∈ V 2. Since we have yqvw(θv − θw) = yqvwθv − yqvwθw = yqvw(θv + ε)−
yqvw(θw + ε), we also have

yqvw(θv − θw) = ρqvw − ρqwv

.

We can then linearize the mathematical program:

(LLFF)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
y,θ,ρ

∑
e∈E

Q∑
q=1

cqey
q
e

s.c.
Q∑
q=1

yqe ≤ 1, ∀e ∈ E \ EI

Q∑
q=1

(yqe1 + yqe2) ≤ 1, ∀(e1, e2) ∈ I

θr = 0
Q∑
q=1

∑
w:[v,w]∈E

Bq
vw(ρqvw − ρqwv) = Pv, ∀v ∈ V \ {r}

Q∑
q=1

Bq
vw(ρqvw − ρqwv) ≤

Q∑
q=1

uqvwy
q
vw, ∀(v, w) ∈ ~E

ρ ∈ L(θ, y)

y ∈ {0, 1}|E|Q, θ ∈ [−ε, ε]|V |, ρ ≥ 0

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

5.3 Robust approach

In this section we consider that a breakdown may occur on one or several installed cables.
We denote by k the maximal number of breakdowns that may occur simultaneously in the
network.

5.3.1 The case k = 1

Let us denote by ξ ∈ E the cable where the breakdown occurs. We introduce the following
variables:

• For each q ∈ [1, ..., Q] and for each e ∈ E, let yqe be the binary variable such that yqe = 1
if and only if a cable of type q is installed on e.
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• For each v ∈ V and each ξ ∈ E, let θξv be the voltage angle at v in the network where
no power can transit through ξ.

We introduce ~ξ for ξ ∈ E as the set of bi-directed arcs associated with the edge ξ. We
propose the following mathematical program to design an optimal network which is robust
to one breakdown:

(κ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
y,θ

∑
e∈E

Q∑
q=1

cqey
q
e

s.c.
Q∑
q=1

yqe ≤ 1, ∀e ∈ E \ EI

Q∑
q=1

(yqe1 + yqe2) ≤ 1, ∀(e1, e2) ∈ I

θξr = 0 ∀ξ ∈ E
Q∑
q=1

∑
[v,w]∈E\{ξ}

Bq
vwy

q
vw(θξv − θξw) = Pv ∀v ∈ V \ {r}, ∀ξ ∈ E

Q∑
q=1

Bq
vwy

q
vw(θξv − θξw) ≤

Q∑
q=1

uqvwy
q
vw ∀ξ ∈ E, ∀(v, w) ∈ ~E \ {~ξ}

y ∈ {0, 1}|E|Q, θ ∈ [−ε, ε]|V ||E|

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

In this formulation, θξv represents the voltage angle at the node v in the current network when
there is a breakdown on the cable built on the edge ξ: we aim to ensure that the load flow
equations are satisfied when we cannot route any power flow through this cable. Constraints
(5.11) and (5.12) are identical to (5.6) and (5.7), while Constraints (5.13) ensure that θr is
equal to 0 for each case of breakdown ξ ∈ E. Constraints (5.14) ensure that the load flow
is respected (and so each turbine is connected to the root) for any breakdown ξ ∈ E by not
considering the active power on ξ in this case. Indeed, for each scenario of breakdown on a
cable built on the edge ξ ∈ E, we do not consider in Constraints (5.14) the edge ξ in the
calculation of the sum of energy leaving v, which is equivalent to not considering the cable
built on ξ. Constraints (5.15) then ensure that, for any breakdown on ξ ∈ E, the capacities
in the resulting network are high enough to support the active power through the cables. The
program above hence computes a network of minimal cost which is robust to one breakdown.

Again, we have a product of variables θ and y, which we linearize in a similar way as in the
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non-robust model. We introduce Lξ(θ, y), which is the linearization of the product yquv(θξv+ε),
where yquv is a binary variable and (θξv + ε) is a non-negative variable, considering the robust
case:

Lξ(θ, y) =

ρ ∈ R| ~E||E|Q

∣∣∣∣∣∣∣∣∣
ρq,ξvw ≤ θξv + ε ∀(v, w) ∈ ~E,∀q ∈ [1, .., Q],∀ξ ∈ E
ρq,ξvw ≤ 2εyqvw ∀(v, w) ∈ ~E,∀q ∈ [1, .., Q],∀ξ ∈ E
ρq,ξvw ≥ θξv + ε− 2ε(1− yqvw) ∀(v, w) ∈ ~E,∀q ∈ [1, .., Q],∀ξ ∈ E


The linearized problem becomes:

(Lκ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
y,θ,ρ

∑
e∈E

∑
q∈Q

cqey
q
e

s.c.
Q∑
q=1

yqe ≤ 1, ∀e ∈ E \ EI

Q∑
q=1

(yqe1 + yqe2) ≤ 1, ∀(e1, e2) ∈ I

θξr = 0 ∀ξ ∈ E
Q∑
q=1

∑
[v,w]∈E\{ξ}

Bq
vw(ρq,ξvw − ρq,ξwv) = Pv, ∀v ∈ V \ r, ξ ∈ E

Q∑
q=1

Bq
vw(ρq,ξvw − ρq,ξwv) ≤

Q∑
q=1

uqvwy
q
vw ∀(v, w) ∈ ~E, ξ ∈ E

ρ ∈ Lξ(θ, y)

y ∈ {0, 1}|E|Q, θ ∈ [−ε, ε]|V ||E|, ρ ≥ 0

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

When we allow an arbitrary number of breakdowns, the number of variables and constraints
becomes exponential: with k breakdowns, we would have to consider (|V ||E|k + |E|Q) vari-
ables before linearization and (Q| ~E||E|k + |V ||E|k + |E|Q) after. Therefore we end up with
an intractable model to solve.

Even for k = 1, the number of constraints and columns of (Lκ) can be very high depending
on the size of the graph. We propose a constraints generation algorithm similar to the one
described in Subsection 3.2.2 in Chapter 3 to deal with this case. We initialize (Lκ)ES

which
corresponds to (Lκ) with only a small subset of edges ES ⊂ E in Constraints (5.13)-(5.15), i.e.
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we define those constraints only for ξ ∈ ES. We begin to solve the reduced problem (Lκ)ES
.

When a relevant integer feasible solution (ŷ, θ̂, ρ̂) is found, we solve a set of sub-problems
(κ-sub)e with continuous variables. We define the set of edges selected in the current integer
solution (ŷ, θ̂, ρ̂)

ÊC = {e ∈ E |
Q∑
q=1

ŷqe = 1}

and ~EC corresponds to the set of bi-directed arcs associated to ÊC . We define

ÊS = ES ∩ ÊC

corresponding to the intersection between the set of edges which are in the solution (ŷ, θ̂, ρ̂)
and the set of edges for which the scenario of breakdown has been taken into account at this
moment in the algorithm. Finally, we define:

B̂vw =
Q∑
q=1

Bq
vwŷ

q
vw ∀(v, w) ∈ ~EC

ûvw =
Q∑
q=1

uqvwŷ
q
vw ∀(v, w) ∈ ~EC

where B̂vw (respectively ûvw) corresponds to the susceptance (respectively capacity) on the
cable built on [v, w]. For the integer feasible solution (ŷ, θ̂, ρ̂), we introduce the following
sub-problem (κ-sub)e for each e ∈ ÊC \ ÊS:

(κ-sub)e

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
θ

0

s.c. θr = 0∑
w:[v,w]∈EC\{e}

B̂vw(θv − θw) = Pv ∀v ∈ V \ r

B̂vw(θv − θw) ≤ ûvw ∀(v, w) ∈ ~EC \ {e}

θ ∈ [−ε, ε]|V |

(5.16)

(5.17)

(5.18)

The formulation (κ-sub)e allows to determine whether if the load-flow constraints are still
satisfied if we remove the edge e from the current integer solution, i.e. to ensure that the
solution is resilient to a breakdown on e. Indeed, if there is no feasible solution to (κ-sub)e,
it means that there are no solutions respecting both the load-flow equations and the capacity
constraints if we remove the cable on the edge e. We already ensure that the energy is still
routed to the sub-station even in the event of a breakdown on any edge in ÊS, and we have
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to ensure that this is the case for edges in ÊC \ ÊS. When an integer solution better than
the current one is found, we then solve the set of sub-problems (κ-sub)e for e ∈ ÊC \ ÊS. If
one subproblem (κ-sub)ē for a given ē ∈ ÊC \ ÊS does not have any feasible solution, we add
ē to ES and we add the constraints associated to (Lκ)ES

. Otherwise, if all subproblems have
feasible solutions, the integer solution is feasible for the general problem. Please note that
the subproblems (κ-sub)e have only continuous variables.

5.3.2 Bilevel formulation

In this subsection, we give a bilevel formulation for the general case where the number of
breakdowns is bounded by k, which is similar to the one proposed in Subsection 3.2.3 of
Chapter 3. The bilevel formulation proposed here is also particular in that the second level
is a max min problem (it can be seen as a game with a defender and an attacker).

For each [i, j] ∈ E, we introduce a binary variable bij where bij = 1 if and only if the attacker
chooses to delete the arc (i, j). The variables y and θ are defined as in Subsection 5.2.2. We
also introduce the variables ηv for each v ∈ V \ {r}, which correspond to penalty variables
used to satisfy the load flow equations. We define the following polyhedron:

B(y) = { b ∈ {0, 1}|E| | ∑[i,j]∈E bij ≤ k ; bij ≤
∑
q∈Q y

q
ij ∀[i, j] ∈ E }

which defines the set of possible scenarios of edge deletions (i.e. the set of constraints of the
attacker): at most k edges can be deleted, and those edges must belong to the ones selected
by the defender. We also introduce for each [i, j] ∈ E and q ∈ Q the notation

βqij = Bq
ij(y

q
ij − bij)

where βij is equal to Bq
ij if a cable of type q is built by the defender on the edge [i, j] and

not deleted by the attacker, and to 0 otherwise (since we have bij ≤
∑
q∈Q y

q
ij).
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We then define another polyhedron:

X (y, b) =



θr = 0
Q∑
q=1

∑
[v,w]∈E

βqvw(θv − θw) + ηv = Pv ∀v ∈ V \ r

βqvw(θv − θw) ≤ uqvw ∀(v, w) ∈ ~E, ∀q ∈ Q

η ∈ R|V |−1
+ , θ ∈ [−ε, ε]|V |



(5.19a)

(5.19b)

(5.19c)

This polyhedron X (y, b) corresponds to the set of load flow and capacity constraints with
penalty variables for a given value of y and b, i.e. once the network has been built and the
attacker has deleted some edges. We have that β corresponds to the susceptances in the
residual network defined by (y, b). Furthermore, at this point we consider that y and b have
already been fixed, so β is not a variable. The variables ηv are penalty variables which ensure
that the polyhedron is non-empty: the solution where we have θv = 0 and ηv = Pv for each
vertex v is always feasible. The load flow and capacity constraints are satisfied if there exists
a feasible solution with ∑v∈V ηv is equal to 0.

We propose the following bilevel program:

(BIL)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
y∈{0,1}|A|

∑
(i,j)∈A

cijyij

s.t.
Q∑
q=1

yqe ≤ 1 ∀e ∈ E \ EI

Q∑
q=1

(yqe1 + yqe2) ≤ 1 ∀(e1, e2) ∈ I

f(y) = 0

where f(y) = max
b∈B(y)

min
(θ,η)∈X (y,b)

∑
v∈V

ηv

(5.20a)

(5.20b)

(5.20c)

(5.20d)

The defender first builds a network considering the constraints on the number of cables
between two nodes and the planarity constraints given by Constraints (5.20a) and (5.20b)
respectively. Then, the attacker deletes a set of at most k edges that the defender has built.
Then, the defender ensures that the load flow and capacity constraints are still satisfied: he
minimizes ∑

v∈V
ηv, which is a sum of positive variables. If this sum is equal to 0, it means that
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the load flow and capacity constraints are still satisfied; if it is strictly positive, it means that
the load flow constraints and the capacity constraints cannot be satisfied at the same time.

An intuition for the solving method is to dualize the min problem in the second level in order
to reformulate the max min problem into a max problem and use a constraints generation
algorithm similar to the one proposed in Subsection 3.2.3 in Chapter 3.

5.4 Results analysis

In this section, we present the results of the formulations proposed for the design of wind
farm cabling networks with load flow constraints. All experiments were performed on a com-
puter with a 2.40GHz Intel(R) Core(TM) i7-5500U CPU and 16GB RAM, using the solver
CPLEX version 12.6.1, interfaced with Julia 0.6.0. We used in particular the package JuMP,
a tool allowing mathematical modeling. For each test, the algorithm has been stopped after
3000 seconds if it has not terminated yet.

We introduce five real or subpart of real data sets data10, data23, data28, data35 and data53.
Each data set data|T | contains a set of the |T | wind turbines, their geographical location as
well as the one of the sub-station. The graphs are partial grids with some diagonal edges.
For each type of cable, we are given a cost per meter, a capacity and a susceptance.

Table 5.1 gives the results of the tests for the non-robust case (with the formulation (LLFF))
and for the robust case with k = 1 (with the formulation (Lκ)). The column I gives the
instance on which the formulations are tested. The column |Q| gives the number of types of
cables that we consider for the instance. The column gapf gives the final gap between the
best integer solution found and the best lower bound (i.e. 0 if an optimal solution has been
found). The column gapr gives the gap between the best integer solution found and the best
lower bound at the root node of the branch-and-cut. Finally, the column time(s) gives the
time to find the optimal solution (or 3000 if an optimal solution has not been found in 3000
seconds).

In Table 5.1, the formulation for the non-robust case allows to solve exactly the problem for
all instances with a number of wind turbines of at most 35, except for data35 with |Q| = 3
where it founds an integer solution within a gap of at most 0.04 to the optimal solution. For
data53, the final gap is 0.02 for |Q| = 1, 0.06 for |Q| = 2 and 0.14 for |Q| = 3. The solving
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Table 5.1 Results of the tests for the non-robust case and for the robust case with k = 1
Non-Robust Robust (k = 1)

I |Q| gapf gapr time(s) gapf gapr time(s)
data10 1 0 0.13 0.12 0 0 2.44

- 2 0 0.1 1.13 0 0.12 2.63
- 3 0 0.11 0.94 0 0.17 10.48

data24 1 0 0.07 3.07 0 0.04 84.3
- 2 0 0.17 6.33 0.003 0.34 3000
- 3 0 0.14 8.21 0.04 0.41 3000

data28 1 0 0.14 2.75 0 0.05 58.59
- 2 0 0.22 28.1 0 0.17 2349
- 3 0 0.26 77.9 0.02 0.29 3000

data35 1 0 0.21 74.9 0 0.18 553
- 2 0 0.17 375 0.1 0.37 3000
- 3 0.04 0.33 3000 - - -

data53 1 0.02 0.22 224 0.08 0.33 3000
- 2 0.06 0.2 3000 - - -
- 3 0.14 0.38 3000 - - -

time or the final gap logically increase with the number of types of cables available, but the
formulation still manages to find a solution within a reasonable gap from the optimum value.

For the robust case with k = 1, the formulation is efficient especially for |Q| = 1, where it
solves all the instances to the optimum except data53, where the gap between the best integer
solution and the optimal value is 8%, which sounds reasonable in this case. For |Q| = 2, the
formulation gets slower and is not efficient on data53. However, it allows to solve optimally
data10 and data28 and find an integer solution guaranteed to be within a really small gap of
the optimum (0.3 %). For data35, the final gap is 10%. For |Q| = 3, the formulation is not
efficient on data35 and data53 but find an integer solution which is optimal or at least close
to the optimal value (gaps of 4% and 2%).

The robust formulation has a number of variables |E| times bigger than the one of the
non-robust one, which logically explains why it is importantly slower. Furthermore, each
incrementation of |Q| adds 3|E| variables for the non-robust formulation and 2|E||E| + |E|
variables for the robust formulation with k = 1. Logically, the incrementation of |Q| has thus
a higher impact on the robust formulation. Furthermore, the case where |Q| = 1 corresponds
to the case with uniform capacities, which appears to be easier to solve.
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CONCLUSION AND RECOMMENDATIONS

This thesis originates from a joint work between the Conservatoire National des Arts et
Métiers (CNAM) in Paris, ENSTA ParisTech and Polytechnique Montréal, and addresses
the problems of designing networks subject to edge failures after their design. Our main
application being the design of wind farm cabling networks, we have been working with an
engineer from EDF (largest producer of electricity in France) through a PGMO project (Pro-
gramme Gaspard Monge pour l’Optimisation, la recherche opérationnelle et leurs interactions
avec les sciences des données) of the Fondation Mathématique Jacques Hadamard.

In the following we sum up the main contributions and we outline some future improvements
or research directions.

Main contributions

The problems addressed in this thesis take inspiration or revolve around the problem of
designing a cabling network of a wind farm with several notions of robustness. Sustainable
development being a major goal nowadays, it appears important to focus on several problems
concerning renewable energies, including the design of such cabling networks.

In Chapter 2, we focus on the design of arborescence (or rooted tree) networks. In this
context, electricity constraints can be formulated as classical flow constraints. We give a
complexity theorem and its proof which states that determining whether there is a rooted
spanning tree, respecting the capacity constraints (which states for each arc (i, j) that the
number of vertices in the subtree rooted at j must not exceed a given value uij), is NP-
Complete, even in the case of uniform capacities. This results extends a result from Pa-
padimitriou [49], where a cost of selection is associated with each arc of the graph, which
states that determining whether there exists a rooted tree respecting the capacity constraints
and under a given cost of selection is NP-Complete. We then study the design of Steiner
arborescences with various notions of robustness: we aim at designing Steiner arborescences
while considering the number of terminals disconnected from the root after an arc-deletion
in several scenarios. To the best of our knowledge, this problem has not been studied in the
literature. We give several formulations for different scenarios and test them on real wind
farm data in order to evaluate their impact on the network designed.
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In Chapter 3, we introduce a problem called CRkECSN: we aim at designing a minimum-cost
network where we are able to route a unit of flow from the root to each terminal respecting
the capacities (a limited amount of flow can be routed through each arc) even in the event of
the deletion of any subset of k arcs in the network built (k being a given integer). We pro-
pose several formulations, including a new bilevel one, where the second level is a min−max
problem. We also propose an algorithm based on constraints generation and give a method
to generate better constraints at each iteration of the algorithm (the enhanced constraint
forbids more non-feasible integer solutions than the initial one). We show that the bilevel
formulation is a reformulation of another one based on the cut-sets in the graph. We con-
sider the possibility of protecting arcs; those arcs cannot be deleted from the solutions. We
give some test results on generated instances and compare the performance of our algorithms.

In Chapter 4, we also study CRkECSN, but in the case of planar graphs. This is motivated
by the fact that the wind-farms in offshore environment can often be modeled by grid graphs.
The problem of determining whether a graph is k-survivable (i.e. resilient to the deletion
of any subset of k arcs) is NP-complete in the general case. However, we derive a theorem
which gives properties of the planar dual graph of a k-survivable graph and extend it to solve
this problem in polynomial time in planar graphs, by determining a series of shortest paths.
Exact methods for CRkECSN can only solve relatively small size instances. For this reason,
we also describe a tabu search algorithm that can handle much larger instances, provided
they are planar, and we have shown that it typically produces optimal solutions when these
are known. Our algorithm has very low computing times, which makes it particularly in-
teresting in practice, for example for the design of survivable wind farm collection networks
with hundreds of wind turbines.

In Chapter 5, we study the problem of designing a cabling network for offshore wind farms
while respecting the load flow equations. The load flow analysis corresponds to a non-linear
system which allows to determine the state of the network (computations of phase voltages,
powers and currents at each node or cable of the network), and then ensure that the power
routed through each cable is smaller than its maximum capacity. We use a DC current
approximation in order to obtain linear equations. Those equations are added to a Mixed-
Integer Program (MIP) and we show that, whenever these constraints are satisfied, the load
flow equations are satisfied and the final network is connected. We first give a MIP which
allows to solve the problem in the non-robust case (where we do not consider the possibility
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of breakdowns on the arcs). In a second time, we give a MIP for the case where k = 1
breakdown can occur and a constraints generation algorithm to solve it. We test those MIP
on real data given for an offshore wind farm. Finally, we give a bilevel formulation designed
to solve the problem for general values of k, and give ideas on how to solve it efficiently.

Research directions

The work presented in this thesis has lead to several questions or interesting research paths
that would be appealing to investigate in the future.

It appears that the electricity constraints we studied are easier to take into account when we
consider arborescence networks. One of the problems that could be worth studying is a more
constrained version of CRkECSN, where we want to design a network which is resilient to the
deletion of any subset of k arcs and such that the resulting flow must be routed from the root
to the terminals through an arborescent sub-network (after these k arcs have been deleted).
We have begun to investigate this problem for k = 1 on grid graphs with uniform capacity
constraints and have found several properties for particular cases. The problem appears to
be more difficult to solve than CRkECSN, since the constraint that the flow must be routed
through an arborescent sub-network for each scenario of arc deletions seems more difficult to
formulate than CRkECSN.

We can also investigate the bilevel program proposed in Chapter 5. This formulation pro-
poses interesting challenges. Bilevel programming formulations are currently widely used in
the literature, and our formulation for the second level using slack variables has a number of
variables smaller than the one we have tested in this thesis. Once that the min problem has
been dualized in the second level, it can be interesting to study different ways to solve this
formulation.

Another aspect of the real instances that could be interesting to investigate is the stochas-
ticity. For offshore wind farms with equivalent power, the energy produced by each wind
turbine is almost always the same, and hence we have considered a fixed energy production
at each turbine. However, the actual production depends partly on the demands or, in wind
farm networks, on the amount of wind, and it would be an interesting issue to take this
uncertainty into account.
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