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RÉSUMÉ 

 Lorsque l’on est confronté à des indicateurs de coûts et d’impacts environnementaux, prendre des 

décisions s’avère assez difficile, surtout lorsque l’atténuation des impacts se fait au détriment d’un 

coût additionnel. Malgré cela, notre monde fait face à une augmentation des gaz à effet de serre et 

par la suite, un changement pragmatique dans notre manière de penser et de concevoir nos systèmes 

est primordial. L'industrie aéronautique est responsable d’environ 2% des émissions mondiales de 

gaz à effet de serre et a reconnu la nécessité d'adopter une vision cycle de vie afin de réduire ses 

impacts sur l'environnement. Dans ce contexte-là, les partenaires industriels de ce projet ont misé 

leur attention sur le potentiel de l'écoconception de pièces d'avions produites par fabrication 

additive. Par conséquent, l'objectif général de cette recherche est d’intégrer l’analyse d’incertitude 

à une approche d'écoconception basée sur le concept d'éco-efficience, afin de soutenir et d’éclairer 

la prise de décision. La méthodologie est développée autour d'une étude de cas sur la fabrication 

additive de pièces d'avions comparée à une technique de fabrication conventionnelle, l’usinage.  

Une analyse du cycle de vie (ACV) de type distance par rapport à l’objectif par facteur de réduction 

est utilisée pour calculer les impacts environnementaux potentiels en termes d'émissions de 

dioxyde de carbone, oxydes d'azote et particules fines. Ces émissions font l’objet de l’attention du 

secteur aéronautique qui s’est fixé des objectifs de réduction sur des horizons de temps bien définis. 

L’analyse environnementale des coûts du cycle de vie est utilisée pour calculer les coûts générés 

tout au long du cycle de vie de l’avion en les actualisant à l’année de référence (2018).  

Les résultats de l’ACV et des coûts du cycle de vie sont intégrés dans un diagramme d’éco-

efficience afin d’identifier et de choisir les alternatives de conception les plus éco-efficientes. Étant 

donné qu’une décision implique toujours un certain niveau de risque, nous intégrons à cette 

approche une évaluation quantitative de l’incertitude basée sur une méthode probabiliste afin 

d'estimer le niveau de confiance donné aux résultats. Ces-derniers sont comparés en évaluant la 

différence statistique significative qui existe entre les scores d’ACV, de coûts et d’éco-efficience 

des alternatives de conception. Finalement, une analyse de sensibilité globale est réalisée afin 

d’identifier les paramètres d’entrée du modèle qui contribuent le plus à l’incertitude des résultats.  

L’étude de cas montre, à travers les résultats, que la fabrication additive est une technologie 

prometteuse pour le secteur de l’aéronautique puisqu’elle permet à la fois une amélioration 

environnementale et une réduction des coûts donc une meilleure éco-efficience comparée à 
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l’usinage. Ces avantages sont principalement dus à l'optimisation topologique; en effet, la 

probabilité que cette pièce soit plus éco-efficiente que celle fabriquée de manière conventionnelle 

est significative. L'analyse de sensibilité globale montre que la variabilité de paramètres tels que la 

distance parcourue par l'avion tout au long de sa durée de vie, la consommation de carburant, le 

coût de production et le taux d'actualisation, contribue le plus à l’incertitude des résultats. Par 

conséquent, raffiner ces paramètres contribuerait à faciliter la prise de décision. L'ACV de type 

distance par rapport à l’objectif par facteur de réduction est pertinente pour l'industrie aéronautique, 

car elle soutient l'atteinte des objectifs de réduction fixés. Néanmoins, les résultats ne tiennent pas 

compte du profil environnemental global car la méthode est limitée aux émissions de certaines 

substances uniquement. Afin de veiller à la bonne opérationnalisation de l’écoconception pour la 

fabrication additive, la prise en compte de l’ensemble des émissions orienterait des choix plus 

durables. 

Enfin, il faudrait saisir l'écoconception comme une opportunité de guider des choix plus éco-

efficients, tôt dans le processus de développement de produits. La fabrication additive est une 

technologie en pleine évolution. Par suite, il faudrait s’assurer d’intégrer l’écoconception de façon 

cohérente et adaptée, afin de s’assurer que les choix, côté technique, génèrent le moins d’impacts 

possible tout en restant rentables. L'incertitude peut être minimisée tout au long du processus et le 

temps de calcul pour son évaluation est court. Cependant, les résultats de l’analyse sont liés aux 

choix des distributions des paramètres d’entrée. Le travail préliminaire de définition de ces 

distributions dépend de notre connaissance de la variabilité des paramètres. La collecte de telles 

données pourrait en effet limiter les efforts pour mettre en œuvre une telle approche. 
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ABSTRACT 

When confronted with cost and environmental indicators, making a decision is very often 

complicated. This is mostly true when improving the environment is at the expense of an additional 

cost. Nevertheless, with a world experiencing an increase of greenhouse gas (GHG) emissions, a 

shift in the way we operate our processes and design our systems is needed. The aircraft industry 

emits about 2% of the world GHG emissions and has acknowledged the need for a life-cycle 

perspective in order to reduce its environmental impacts, eventually ensuring a safer environment 

and cleaner air quality for humans. In this context, the industrial partners of this project have drawn 

their attention to the potential of eco-design in additively manufactured aircraft parts. 

Consequently, the general objective of this project is to integrate uncertainty knowledge into an 

eco-design approach built on the eco-efficiency (EE) concept, in order to support informed and 

robust decisions from a life-cycle perspective. The methodology is developed around a case study 

on Additive Manufacturing (AM) of aircraft parts compared to Conventional Manufacturing (CM).  

A distance-to-target Life-Cycle Assessment (LCA) is used to calculate the potential environmental 

impacts in terms of Carbon dioxide (CO2), Nitrogen Oxides (NOx) and Particulate Matter (PM) 

emissions. In fact, these are the emissions of interest for which the aeronautical industry has set 

reduction targets. In parallel to the LCA, the environmental Life-Cycle Costing (LCC) is used to 

calculate cash flows occurring throughout the aircraft lifetime by discounting them to the reference 

year (2018). LCA and LCC results are combined into an eco-efficiency diagram in order to identify 

and choose the most eco-efficient design alternative. Because making decisions always implies a 

given level of risk, a stochastic uncertainty assessment is integrated into the eco-design approach 

in order to evaluate the confidence given to results. The scenarios are compared under uncertainty 

by calculating the probability of a scenario being better than another in terms of LCA, LCC and 

EE scores. Finally, a global sensitivity analysis is performed in order to identify the input 

parameters contributing the most to the results uncertainty.  

The case study results show that AM is a promising technology for the aircraft sector in terms of 

the environmental, economic and eco-efficiency improvements it enables. These benefits are 

mostly achievable through topology optimization; the probability of such part being more eco-

efficient than the conventionally manufactured one is found to be significant. The global sensitivity 

analysis shows that the variability of parameters such as the distance travelled by the aircraft 
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throughout its lifetime, the fuel consumption, the production cost and the discount rate contribute 

the most to the results uncertainty. Therefore, refining these parameters would help increase the 

ease of decision-making. 

The distance-to-target LCA is a relevant approach for the aeronautical industry because it helps 

achieve the reduction targets set for the emissions of interest. However, the results do not account 

for global emissions. In order to successfully integrate eco-design for AM, accounting for the 

complete environmental profile of parts would guide potential improvements towards areas of 

protection such as ecosystems quality. 

Finally, implementing eco-design is a good opportunity to guide eco-efficient choices as the 

technology evolves, yet still needs to be integrated consistently with “Design for Additive 

Manufacturing” to ensure each technical choice generates the lowest possible impacts while 

remaining cost-efficient. Uncertainty can be minimized throughout the process and can be 

evaluated in a short computation time. However, the assessment results are related to the input 

parameters distributions used; the preliminary work of defining these distributions depends on our 

knowledge about input parameters variability. Thus, data collection could limit the efforts to 

implementing such an approach.  
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 INTRODUCTION 

The world has experienced an increase of about 60% of CO2 emissions between 1990 and 2013 

(Oak Ridge National Laboratory [ORNL], 2017). The aviation sector alone emits 2% of the 

greenhouse gas (GHG) emissions (European Commission, 2015) and is the second largest fuel 

consumer worldwide (International Energy Agency [IEA], 2010). This sector has been showing a 

willingness to reduce its environmental impact by adopting new strategies for sustainability. As 

described in the International Air Transport Association Technology Roadmap (IATA, 2013), the 

emissions of main concern for this sector are carbon dioxide (CO2), nitrogen oxides (NOx) and 

particulate matter (PM). In fact, the roadmap has set a 50% CO2 reduction target by 2020 and 75% 

by 2050; 80% NOx reduction by 2020 and 90% by 2050 and 65% PM reduction by 2050. 

Furthermore, the International Civil Aviation Organization Council (ICAO, 2017) elaborated a 

standard for aircraft designs in order to reduce the environmental impact of the aviation industry 

in terms of CO2 emissions. The aircrafts “in-production which by 2028 do not meet the standard 

will no longer be able to be produced unless their designs are sufficiently modified” (ICAO, 2017). 

Additive manufacturing (AM) arises as one of the opportunities to reaching these ambitious targets. 

This technology has experienced a growing interest from manufacturers since the beginning of the 

twenty first century, because of its potential for functional integration1 (Attaran, 2017; Tang, Mak, 

& Zhao, 2016). It also broadens design opportunities through innovation, increasing its 

competitiveness compared to Conventional Manufacturing (CM) (Wohlers, 2014). 

In fact, many studies have shown that AM could address sustainability challenges when compared 

to CM. For example, AM has the ability to produce lightweight components, therefore saves fuel 

during the use phase and potentially lowers the carbon footprint over the entire life-cycle. Actually, 

it has been shown that over 90% of an aircraft potential environmental impacts originate from its 

use phase (CIRAIG, 2018). Mitigating these impacts can be done by adopting a life-cycle 

perspective. In fact, aircraft components are designed early in the product and development phase. 

Rethinking their design and their production can help anticipate their damage to the environment, 

and can be achieved through eco-design. It is an approach aiming to guide the product development 

                                                

1  functions achieved by multiple components can be merged and achieved by one component 
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process and support the design of environmental-friendly products (Bhander, Hauschild, & 

McAloone, 2003). As a matter of fact, it derives from sustainable development. The latter sets the 

focus on stimulating change in manufacturing, technological and social organization management, 

in order to create economic growth where humans are able to meet their “present needs without 

compromising the ability of future generations to meet theirs” (Wrisberg, Haes, Triebswetter, & 

Eder, 2002). Therefore, it implies making difficult choices and requires that the industrial activity 

be reconfigured.  

This research is realized as part of the Aerospace Additive Manufacturing Initiative (AAMI) lead 

by the Consortium for Aerospace Research and Innovation in Canada (CARIC). Two leaders of 

the aeronautical industry, Bell Helicopter Textron Canada Limited and Pratt & Whitney Canada, 

have carried out projects on AM processes and faced similar challenges, translating their mutual 

interest for collaboration. The purpose of this project, Manu-710, is to bring together most actors 

of the AM value chain in order to participate in the progress of this technology, compared to CM. 

The collaboration aims to better understand how a part produced by AM can meet technical 

requirements. Some expected benefits from this project are “CO2 emissions reduction via weight 

reduction and cost reduction through part assembly integration, lead time reduction, reduced buy-

to-fly ratio, reduced inventory and optimized batch size” (CIRAIG, 2018). 

The project is developed around a case study on the design of an aircraft engine component by 

conventional and additive manufacturing technologies. The aim is to compare them, assess their 

environmental and economic performances and identify improvement paths for research and 

development. 

In this context, the importance of an eco-design approach to integrate environmental aspects early 

in the design stages is acknowledged. This is possible through decision-making support tools, such 

as the Life-Cycle Assessment (LCA). It allows one to quantify the potential environmental impacts 

of products, processes or services throughout their complete life-cycle, i.e. from raw material 

extraction to their end-of-life (International Organization for Standardization [ISO], 2006a, 2006b). 

LCA enables the identification of “hot spots” and impact displacement, making it one of the most 

powerful eco-design tools. 
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Nevertheless, alone, LCA is not enough to influence the choice of scenario because the costs are 

predominant. The concept of eco-efficiency is key in order to combine the environmental and 

economic dimensions. 

Moreover, uncertainty is prevalent in life-cycle impacts and costs (Gregory, Noshadravan, Swei, 

Xu, & Kirchain, 2017). It is inherent to long lifetimes (such as that of an aircraft) and the evolutions 

of both the economic and environmental data over time. This underlying uncertainty limits the 

conclusions of such assessments. It needs to be evaluated systematically in order to provide 

confidence and robustness to the results and therefore, support decisions. 

Consequently, the general objective of this project is to integrate uncertainty knowledge into an 

eco-design approach built on the eco-efficiency concept in order to help industrial partners make 

informed and robust decisions from a life-cycle perspective. This approach is built around a case 

study on additive manufacturing applied to the aeronautical industry. 
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 LITERATURE REVIEW 

2.1 Additive Manufacturing 

This section describes AM, its environmental and cost challenges along with its limitations for the 

aeronautical industry. 

2.1.1 Definition and process overview 

Additive Manufacturing was initially called “Rapid Prototyping” (RP). It was used to define 

processes which resulted in prototypes, from which other models were derived. Afterwards, the 

term “additive manufacturing” appeared to group all technologies “using the additive approach”: 

a Three Dimensional Computer Aided Design (3D CAD) system is used to generate a 3D model 

that is further fabricated by adding material layer by layer (Gibson, Rosen, & Stucker, 2010; 

International Organization for Standardization [ISO/ASTM], 2015).  

Most of these processes include eight steps represented in Figure 2.1 (adapted from Gibson et al. 

(2010)). First, the three-dimensional solid is constructed on a CAD system. It is then converted to 

the stereolithography (STL) format, which is the standard for almost all AM machines. Afterwards, 

the file is transferred to the machine and manipulated in order to setup the component size, 

orientation and position. Next, the machine is setup, meaning all parameters required for the 

building are configured. The printing can take place without any major supervision and only needs 

to be checked on from time to time in case any error occurs. Once done, the component is separated 

from the build plate (also called platform) and cleaned. If any support structure was added, it is 

removed (the plate separation and support removal steps are sometimes done after post-

processing). The post-processing steps aim to adjust mechanical properties and reduce internal 

stresses resulting from the printing (because of voids or bubbles trapped inside the part, links 

between layers may not be bonded in an optimum way). 

These steps are achieved by processes such as stress relief heat treatment and hot isostatic pressing 

(HIP). Additionally, post-AM activities (drilling, milling, i.e. conventional techniques) can be 

done to subtract additional material thickness (called machining allowance). Finally, the 

component goes through surface finishing and painting if needed, before the parts are ready to be 

used (Gibson et al., 2010). All these activities should ensure that in the end, surface quality meets 
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the product requirements (Brandt, 2016).  

 

Figure 2.1: Generic process of additive manufacturing (adapted from Gibson et al. (2010)) 

The three main inputs of the AM process are material (metallic, non-metallic or composite 

materials), energy (laser, light or electron beam) and the CAD model. The amount of energy to 

use depends on the beam type (e.g. laser or electron beam), the power of the beam source, the 

material, the cooling unit and the layer thickness (Burkhart & Aurich, 2015). 

2.1.2 Topology Optimization 

Topology optimization (Figure 2.2) rethinks the material distribution within a given space, for a 

given set of loading and boundary conditions, in order to find an optimal load path for the particular 

loading and boundary conditions. It is the most general structural optimization technique enabling 

a weight reduction and is mainly considered at a conceptual design stage of AM (Bendsøe & 

Sigmund, 2004).  
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Figure 2.2: Topology optimization carried out on a component at the Laboratoire sur les alliages 

à mémoire et systèmes intelligents (LAMSI) 

2.1.3 Additive manufacturing technologies 

Additive manufacturing technologies differ depending on the materials used, the layers production 

and the bonds between them. These parameters lead to differences in the accuracy of the final part, 

its mechanical properties, the time needed for its production, the need for post-processing, the size 

of the machine, and the overall cost of the machine and process (Gibson et al., 2010). The 

environmental impacts and costs are expected to vary according to the technology and material 

selected.  

Although the terminology for the different technologies has very often been debated (Mota, Puppi, 

Chiellini, & Chiellini, 2015), the ISO/ASTM (2015) standard breaks them down into 7 groups: 

material extrusion (material is selectively distributed through a nozzle), material jetting (droplets 

of material are deposited), powder bed fusion (the powder bed is fused by region with thermal 

energy), direct energy deposition (materials are fused by thermal energy as they are being 

deposited), photo polymerization (the liquid photopolymer undergoes light-activated 

polymerization), sheet lamination (sheets of material are bonded), and finally binder jetting 

(powder materials are joint by a liquid bonding agent) (ISO/ASTM, 2015; Réseau-Québec-3D, 

2016). In this project, only powder bed fusion is addressed. 

2.1.4 Additive manufacturing versus conventional manufacturing 

AM distinguishes itself from conventional techniques by the reduced amount of material needed 

for the product (Morrow, Qi, Kim, Mazumder, & Skerlos, 2007). While conventional 

manufacturing includes a wide set of processes, the ones addressed here are subtractive methods 

such as milling, cutting, turning. In other words, the term “conventional manufacturing” or 

“machining” will be used to define the process of removing material from a bounding volume 
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using subtractive tools. Table 2.1 below provides a technical comparison summary between both 

types of technologies (Gibson et al., 2010). 

Table 2.1: Comparison between AM and CM (summarised from Gibson et al., (2010)) 

 Additive Manufacturing Conventional Manufacturing 

Material 
× Polymeric material, waxes, paper 

laminates, composites, metals, 
ceramics 

× Voids, anisotropy, unpredictable 
quality 

× Soft materials, foams, waxes, 
polymers, steel, metal alloys 

× Homogeneous, predictable quality 

Production 

volume 
× Single part production possible 
× Batch production limited to the 

surface of the build platform 

× Single production discouraged 
× Batch production adequate 

Geometry 

Complexity 
× Very adequate for complex and 

customized geometries 
× No need for additional tooling 

× Not compatible with very complex 
components  

× Additional tooling required 

Accuracy × Resolution varies in all directions 
× Function of the properties of the 

build material 

× Resolution varies in the 3 
directions 

× Function of the properties of the 
build material 

Programming 
× Less complex program sequence 

than CM 
× Incorrect programming only leads 

to imperfect parts 

× Very complex program sequence 
(speed, tool selection, approach 
position, angle, etc.) 

× Incorrect programming damages 
the machine, endangers user, and 
leads to imperfect components  

 

It is clear that these two types of technologies rely on multiple parameters affecting their overall 

technical and, with no doubt, economic and environmental performances. 

2.1.5 Potential of additive manufacturing for the aeronautical industry 

Sustainability of additive manufacturing along with the advantages and challenges of its adoption 

have been reviewed exhaustively by many authors (Malshe, Nagarajan, Pan, & Haapala, 2015). 

However, only three main trends of interest in this project are highlighted below. 

On one hand, the greatest potential and trend of AM for the aeronautical industry is due to the high 

demand for lightweight structures, interior customization and fuel reduction (Pinkerton, 2016). In 
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fact, topology optimization is the major benefit offered by AM which leads to weight reduction of 

parts (Huang et al., 2016) and therefore a decrease in the amount of fuel consumed (9-33% 

reduction) during the use phase of an aircraft (Gebler, Uiterkamp, & Visser, 2014). Approximately 

1.2 to 2.8 billion GJ of primary energy and 92 to 215 million metric tons of greenhouse gas 

emissions are estimated to potentially be saved in the United States by 2050 using AM for 

lightweight metallic aircraft parts instead of the conventional methods (Huang et al., 2016).  

On another hand, the use of additive manufacturing as a rapid production technology has increased 

significantly (Pinkerton, 2016) mostly for its material and tool efficiency (Huang et al., 2016): 

thousands of tons of aluminum, titanium and nickel alloys could potentially be saved per year by 

2050 (Huang et al., 2016). This is because additive manufacturing helps decreasing metal losses 

during the production process. Although there is still some powder lost during AM, the part is 

printed using just the amount of powder needed (instead of subtracting material from a metal 

stock). AM also avoids the production of multiple components and the need for joining them 

together. In consequence, single components can be produced while still meeting the required 

function (Atzeni, Iuliano, & Salmi, 2011).   

This technological benefit is attractive for the aeronautical industry because it helps reducing the 

buy-to-fly ratio (Mahamood, Shukla, & Pityana, 2014). In fact, the latter is an indicator used to 

estimate the material losses during manufacturing. It is defined as (Huang et al., 2016) (equation 

1): 

 
!"# − %& − '(#	*+%,& = .+//	&'	*+0	.+%1*,+(	211313

"2,%	.+//	&'	',2,/ℎ13	5*&3"6% 

 
(1) 

 

The buy-to-fly ratio usually ranges from 12:1 to 33:1 for aircraft parts with CM, and can be 

significantly reduced (Kianian & Larsson, 2015) if AM is used, sometimes reaching 1:1 

(Holshouser et al., 2013). Indeed, the higher this ratio is, the greater material scrap will be 

generated during production. Keeping this indicator high not only affects the costs and 

environmental impacts of the production phase (Oak Ridge National Laboratory [ORNL], 2010; 

Allwood, Ashby, Gutowski, & Worrell, 2011; Dornfeld, 2010; Holshouser et al., 2013), but also 

those associated to the waste management approach.  
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Finally, colleagues from our industrial partner, Bell Helicopter, mentioned that AM is useful to 

answer the fast production of on-demand parts in case of an emergency (for example the 

replacement of a part in an aircraft). This reduces the necessity to stock parts and eases the logistics 

of aircraft maintenance.  

2.1.6 Environmental and economic assessments of additive manufacturing 

The environmental impacts of additive manufacturing have been modelled by some authors 

(Baumers, Tuck, Hague, Ashcroft, & Wildman, 2010; Kianian & Larsson, 2015; Mognol, Lepicart, 

& Perry, 2006; Morrow et al., 2007; Yoon et al., 2014). They only consider process parameters 

such as electrical, material, fluids consumption, thus limiting their studies to one type of resource 

consumption and disregarding the complete life cycle. Nevertheless, it is undeniable that the efforts 

to integrate the complete life-cycle are present, although limited (Faludi, Bayley, Bhogal, & 

Iribarne, 2015; Huang et al., 2016; Paris, Mokhtarian, Coatanéa, Museau, & Ituarte, 2016). Most 

of these studies consider the environmental aspects of AM and evaluate the potential 

environmental impacts in order to identify hot spots. Mognol et al. (2006) and Tang et al. (2016) 

go further in their methodologies by suggesting an iterative optimization of the design process, 

thus closing the loop with feedback after the environmental evaluation step.  

On another hand, the costs of additive manufacturing go beyond the production of parts and can 

make a real difference in the product design and value chain (Direct Manufacturing Research 

Centre [DMRC], 2015). In fact, the selection of a part adequate for AM and its design are key 

parameters which can ensure the economic success of the technology (Lindemann, Jahnke, Moi, 

& Koch, 2013). Additionally, the life-cycle approach is important in AM in order to inform the 

designer of the impacts of their decisions on the total life-cycle cost (Reeves & Mendis, 2015). 

According to Ehrlenspiel, Kiewert, & Lindemann (1998), having a look at the cost of AM is similar 

to looking at an iceberg: “a customer sees the purchase price as the main criteria, but there are 

many other aspects where costs occur, for example during the usage of the product”. Other aspects 

regarding the life cycle are not often considered by customers investing in AM. 

Some of the main outcomes of these studies are: 

- AM is more advantageous because it gives opportunities to update, repair and 

remanufacture tooling. The energy consumption may be reduced. AM also enables the 
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reduction of emissions such as CO2, SOx, NOx, CO, PM and the reduction of manufacturing 

costs (Morrow et al., 2007). 

- Topology optimization in AM lowers the fuel consumption and environmental emissions 

during the use phase because of the possible weight reduction (Huang et al., 2016). 

- The AM process is more efficient in terms of material ending up in the final product 

(Holshouser et al., 2013; Kianian & Larsson, 2015). The resources depletion and the 

toxicity on human health are reduced because of the lower proportions of metal quantity 

needed to produce a component. Also, the costs are decreased because of the reduction in 

manufacturing time (Serres, Tidu, Sankare, & Hlawka, 2011). In addition, because the parts 

orientation is flexible, many parts can be added on the build platform of AM, thus reducing 

the costs (Holshouser et al., 2013). 

- The costs of AM are reduced when multiple components are printed on the same build 

plate (Ruffo & Hague, 2007; Yoon et al., 2014). However, it is not convenient for large 

production volumes when compared to CM (Hopkinson & Dicknes, 2003; Ruffo & Hague, 

2007; Massimiliano Ruffo, Tuck, & Hague, 2006). 

- One very important parameter in costing is the build time estimated because its 

significantly impacts the costs of the build job. Three other factors influencing production 

costs are material costs, machine costs and utilization rate (Brandt, 2016).  

- Although inevitable in AM, post-processing steps are often excluded from the scope of 

these studies. They are significantly influential and could result, with quality control costs, 

in 50% of the final part cost (Brandt, 2016). In fact, a study has shown that in cases where 

functional integration is possible, post-processing efforts could be reduced leading to lower 

costs (Reiher, Lindemann, Jahnke, Deppe, & Koch, 2017). Also, according to Gebbe et al. 

(2015), cleaning of the parts after the process has been found to be very energy consuming 

(50% of total energy demand on a production line). 

- Because of confidentiality issues, many studies faced the challenge implied by the lack of 

reliable data which were collected by external LCA experts. In consequence, processes for 

which not enough practical information was known were modelled using generic data. The 

results therefore are less representative of the reality. 
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- No article except that of Mami et al. (2017) combines the LCA with an economic 

assessment in an eco-efficiency framework. The cost is always integrated in the design 

process, but not always elaborated from a life-cycle perspective. Nevertheless, post-

processing aspects are not considered in Mami et al. (2017) although they affect the eco-

efficiency. 

2.1.7 Limitations of AM in the aeronautical industry 

Although AM has been identified as a sustainable technology compared to CM, Kianian and 

Larsson (2015) state that more energy is consumed in AM to create the final product when high 

production volumes are required. Moreover, authors such as Hopkinson & Dicknes (2003), Ruffo 

& Hague (2007) and Ruffo et al. (2006) have agreed that AM is more efficient in terms of energy 

and cost at low production volumes compared to CM, where tooling is very expensive. This limits 

the application of AM to small batch sizes.  

Additionally, the AM metal powder is usually more expensive than metal plates or cylinders 

(Holshouser et al., 2013), setting obstacles to invest in AM technologies. Very often, the 

production of parts by AM is only prioritized versus CM when the costs are competitive enough 

or that functional benefits cannot be achieved with conventional methods. 

Finally, some safety measures and challenges apply to AM (Pinkerton, 2016). Some materials such 

as metallic powder should be handled with care (gloves, mask, use of filters), avoiding their contact 

with contaminants, moisture or excessive light. Moreover, there is a risk of explosion due to 

possible static electricity and powder in the air. The powder which remains or may be lost (losses 

are lower than in CM, but are not negligible) from a printing may not be reused because only high 

quality powder may be required to print parts. The excess material is considered as hazardous 

waste and should be taken care of to match the properties requirements for recycling. Otherwise, 

it should be disposed responsibly because of its toxicity (Gibson et al., 2010). 

These are few examples showing that AM may not be that more “sustainable” than CM after all. 

Also, there are many parameters influencing the potential environmental impacts of AM, which 

may not affect the costs in the same way. In other words, some environmental benefits may imply 

additional costs and vice versa. It becomes difficult to identify trade-offs when such cases arise.  

As a summary of this section, the following needs are identified:  
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• Account for the complete life-cycle of components in the aeronautical industry, ensuring the 

approach is relevant for this sector 

• Integrate environmental aspects in the early design stages in order to support R&D and have 

an influence on decision-making  

• Elaborate life-cycle environmental aspects in parallel with the costs to ensure a harmonised 

integration 

• Represent trade-off situations between costs and potential environmental impacts 

 

2.2 Eco-efficiency as a tool to support eco-design 

This section introduces the eco-design process and some available tools used to integrate 

environmental aspects into product development. LCA is presented as one of these tools and its 

limitations are highlighted. Afterwards, the eco-efficiency framework is described to show how 

environmental and economic dimensions can be combined to support decision-making.  

2.2.1 Eco-design definition and procedure 

Eco-design is an approach guiding designers or engineers with the implementation of 

environmental decisions early in the design and development phase of a product. This approach 

integrates environmental aspects in the design process as one of many other constraints: 

environmental impacts generated throughout the entire life cycle (from raw materials extraction to 

the end of life management) are considered. In opposition to traditional design, eco-design aims 

to improve the environmental performance, i.e. to reduce the damages on the environment that 

may be caused by the product along its life-cycle (Knight & Jenkins, 2009). 

However, efforts must be made to systemically integrate environmental aspects in the traditional 

design process. To do so, eco-designers usually go through six steps, presented in Figure 2.3 

(adapted from ISO/TR (2002) and Lewandowska and Kurczewski (2010)). These steps help 

conceive systems that meet specific functions, performances and needs (Wood & Greer, 2001). 

According to Lewandowska and Kurczewski (2010), one of the major steps is planning, during 

which the input point and target point are defined. The input point definition indicates on the 
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reference object selected (for example an existing product). This starting point represents a basic 

technological level (technical, functional, cost, social, environmental, etc.), quantified for instance 

by the assessment of its life-cycle environmental effects (LCA), costs (LCC) and social indicators 

(Social Life-Cycle Assessment SLCA). The evaluation of environmental effects should result in 

information about the reference object, the life-cycle stages contributing the most to the 

environment deterioration, the main environmental issues, and the elements accounted responsible 

for this degradation.  

The target point definition varies whether an entirely new product is designed, or an existing 

product is improved. The third parties requirements are considered. Afterwards, conclusions and 

recommendations for the eco-design process are formulated based on the target point definition 

(for example, steps which should be followed to improve the environmental performance). 

 

Figure 2.3: Eco-design procedure (adapted from ISO/TR (2002) and Lewandowska and 

Kurczewski (2010)) 

The tests and prototypes step is followed by additional assessments aiming to dress a sustainability 

profile for the suggested detailed designs. These assessments are made to guide the decision and 

the explicit selection of the design to be produced. This decision results from a transparent response 

relatively to various requirements and multiple areas of interest (social, environmental, economic, 

technical criteria, etc.). Nevertheless, it is difficult to decide when there are too many key elements 

to understand, a wide knowledge of systems design to mobilize, plus a quick and simple approach 
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What already exists? What should be there? What is the product function and

specifications? What is the reference object? What are the target and requirements? 

Conceptual design 
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to adopt. Therefore, there is clearly the need for decision-support tools during the tests and 

prototypes step of the eco-design process. 

In addition, the need to handle the significant uncertainty inherent in the early design stages leads 

our thinking to the eco-design paradox, elaborated in the following section. 

2.2.2 Eco-design paradox 

The time spent in the early design stages is significant because design variables are highly 

uncertain. They depend on the design choices which are influenced by the product needs and 

requirements. However, the preliminary design stages are key in product development. In fact, it 

has been shown that the greatest opportunity to improve the environmental performance of a 

product or service with significant results happens during these stages: 80% of environmental 

impacts are linked to decisions made during that period (Bhamra et al., 1999; Bhander et al., 2003; 

Graedel, 1998). Furthermore, these decisions can influence up to 70% of the life-cycle cost 

(Scaravetti, Nadeau, Pailhes, & Sebastian, 2005; Zimmer & Zablit, 2001). Hence, the capability 

of reducing life-cycle costs is also possible during these preliminary stages. 

Nevertheless, this is contradictory in the way that the preliminary design stages indicate a very 

limited knowledge of the product. Criteria are usually poorly defined; the possible alternatives for 

design are multiple and the freedom for improvement is high. Though, the closer we get to 

implementation (finished product), the more details are elaborated, the lower the freedom of design 

and opportunities for environmental improvements (Bhander et al., 2003).  

This concept is called the eco-design paradox, represented in Figure 2.4 (adapted from Bhander et 

al. (2003)). 
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Figure 2.4: The eco-design paradox (adapted from Bhander et al. (2003)) 

2.2.3 Eco-design tools 

Eco-design tools are employed either to evaluate or to improve the environmental performance of 

a product, process or service throughout its complete life-cycle. Many authors have listed and 

classified these tools (Bovea & Pérez-Belis, 2012; Knight & Jenkins, 2009; Le Pochat, 2005; 

Rossi, Germani, & Zamagni, 2016; Wrisberg et al., 2002). They are usually either distinguished 

as qualitative or quantitative, and single or multi-criteria approaches.  

2.2.3.1 Qualitative tools  

They allow users to evaluate and improve environmental aspects of products based on non-detailed 

information (Bovea & Pérez-Belis, 2012; Knight & Jenkins, 2009; Le Pochat, 2005; Rossi et al., 

2016; Wrisberg et al., 2002), and include: 

-  Guidelines, helping through the complete development process, partial or global life-cycle 

(for example ISO/TR 14062, ISO 14006, Design for X approach) (Rossi et al., 2016). They 

suggest broad support to improve the environmental profile of a product or service but are 

too general to help with design choices and decision making. 
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- Checklists are very often used during the preliminary design phases as they allow questions 

and suggestions to solve problems. They are powerful in the way they emphasize on points 

requiring attention and avoid missing important information (Wrisberg et al., 2002). 

- Diagrams, (may be semi-quantitative), include matrices, which usually show in the 

vertical, the different life stages, and in the horizontal, the human interventions or 

environmental concerns, such as extractions or emissions, materials choice, energy 

consumption, etc. They give an overview of the hot spots and highlight opportunities to 

mitigate the environmental impacts of a product (Material Energy and Toxicity Matrix, 

Life-cycle design strategy wheel (Brezet, 1997), Environmentally Responsible Product 

Assessment (Graedel & Allenby, 1995)). 

2.2.3.2 Quantitative tools  

They enable the quantification of a product environmental aspects. They include broad scope 

assessments such as the detailed life-cycle assessment, the simplified life-cycle assessment, and 

assessments focused on single criterion such as carbon or water footprints. Here, the focus is on 

LCA and simplified LCA. 

2.2.3.2.1 Life-cycle assessment 

It is a holistic approach which evaluates and quantifies the potential environmental impacts 

associated with a product, service or process along its life-cycle (ISO, 2006a, 2006b). Thus, it 

provides an understanding of the complete system and avoids impact displacement. It also supports 

the decision-making process by identifying hot spots along the life-cycle. 

The LCA methodology enables the comparison between different products fulfilling the same 

function, and is broken down into 4 steps (ISO, 2006a, 2006b): 

1) Goal and scope definition, to define the product system and its boundaries, the scope and 

objectives of the study, the functional unit to quantify the performance of the product system. 

Systems boundaries are either set from cradle-to-gate (raw material acquisition to factory gate), 

gate-to-gate (from a factory gate to another), gate-to-grave (factory gate to waste management) or 

cradle-to-grave (raw material acquisition to waste management). 
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2) Life-cycle Inventory (LCI) for the quantification of resource extractions and polluting emissions, 

in which data related to processes is collected and scaled to the functional unit. Data for elementary 

flows and product systems may be collected from real case studies or generic databases such as 

eco-invent (Wernet, 2016). 

3) Life-cycle Impact Assessment (LCIA) to evaluate the potential impacts linked to emissions. In 

fact, the inventory data is linked to an impact category through a characterization factor, in order 

to quantify its contribution to the total value of its impact category.  

Several impact assessment methods may be adopted. They vary depending on the geographic 

context of the study and the environmental mechanisms, cause-effect chains which are accounted 

for. Also, they depend on the way results are communicated. These may either be presented as 

midpoints (acidification, eutrophication, ozone depletion, etc.) or endpoints (damages to human 

health, ecosystem quality, resource consumption, climate change). Endpoints are easier to 

communicate to an non-LCA expert audience (Kägi et al., 2016). ReCiPe (Goedkoop et al., 2009), 

Impact 2002+ (Jolliet et al., 2003) and Impact World+ (Bulle et al., 2018) are examples of both 

midpoint and damage oriented methods. 

Furthermore, optional steps in LCIA are grouping, normalization and weighting. Single score 

weighting may be done depending on the relative importance given to the damage categories, but 

is not recommended by ISO14044 (2006b) because it implies very subjective choices based on 

value judgement (Jolliet et al., 2004). In general, there are 5 weighting principles (Goedkoop & 

Spriensma, 1995): i) weighting based on social evaluation (amount of money society is willing to 

pay for healthcare), ii) preventing costs (amount of money to invest in technology to improve 

processes), iii) energy consumption (to remediate to environmental impacts by technical means, 

for example to purify CO2 in air), iv) experts evaluation or panel (scientists give their judgement 

based on their experience and opinion), v) degree to which a target is exceeded (targets based on 

scientific data or policies). 

The example of ReCiPe (Goedkoop et al., 2009) 

This method provides consistent modelling principles and choices, and a harmonised 

implementation of cause-effect pathways for the calculation of midpoint and endpoint 

characterisation factors (Goedkoop et al., 2009). ReCiPe considers the knowledge uncertainty of 

environmental mechanisms, by offering three cultural perspectives (based on differences in 
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choices and assumptions), in accordance with the Cultural Theory by Thompson (1990). First, the 

Individualist perspective (I) has short-term interest, is optimist, believes that humans can adapt 

and avoid many problems with the help of technology, and considers only proven effects. The 

Hierarchist (H) (recommended perspective by the method authors) has an interested balanced 

between the short and long term which relies on proper policies to potentially avoid problems. The 

Egalitarian (E) considers the very long term, and all possible impacts even if they are not fully 

established. Therefore, results will vary with the perspective selected. Europe and the world are 

the normalization references in ReCiPe; weighting methods applied are experts’ panel or the 

cultural perspectives triangle at endpoints, and prevention costs at midpoints. 

One must note that the results representation has underlying uncertainty. It is commonly accepted 

that as one moves from midpoint to endpoint, the relevance of interpretation increases but the 

model uncertainty also increases (Weidema, 2009). 

4) Interpretation, to understand the meaning of results in the decision-making context. This step 

requires LCA expertise. It includes contribution analyses: these help identify the elements which 

contribute the most to the environmental impacts. They also help understanding how the impact 

scores are generated. Sensitivity and uncertainty analyses should be conducted to provide 

robustness to the results, in other words completeness, coherence, sensibility and quality (ISO, 

2006a, 2006b; Jolliet, Saade-Sbeih, Shaked, Jolliet, & Crettaz, 2015). 

Nevertheless, LCA requires an extensive and complex analysis of underlying processes, for which 

data collection is time and resource consuming. This aspect may discourage the willingness to 

design alternative scenarios (Bhander et al., 2003). Additionally, LCA is usually done to compare 

the environmental performance of existing or well-defined products at the final stages of product 

development, making it less relevant for eco-design (Millet, Bistagnino, Lanzavecchia, Camous, 

& Poldma, 2007). This is why Poudelet, Chayer, Margni, Pellerin, and Samson (2012) suggest 

using LCA as a prospective tool integrated in the early design stages, i.e. planning, conceptual and 

detailed design. However, detailed LCA necessitates the understanding of various environmental 

aspects and is hard to interpret for non-LCA experts (Bhander et al., 2003). This limits its use for 

designers and for strategic decision-making. 
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2.2.3.2.2 Simplified life-cycle assessment 

Because detailed LCA is less convenient for the technical, strategic and economic aspects of 

product development (Jolliet, Saadé, & Crettaz, 2010), and because of its complex system 

modeling, simplified LCA may be adopted to facilitate the integration of environmental impacts 

in the eco-design process.  

Simplified-LCA is easier to develop and focuses on restrained parameters and processes, 

accounting mainly for hot spots. Simplifications can be made regarding the goal and scope (system 

boundaries), the life-cycle inventory (parameters and data considered) and the impacts assessment 

(impact categories presented) (Fugère, 2009; Poudelet et al., 2012). 

While remaining consistent and rigorous in the communication and presentation of simplified LCA 

results (Alton & Underwood, 2003), one must make a compromise between their simplicity and 

their reliability (Figure 2.5) (Graedel, 1998). In fact, uncertainty levels in simplified-LCA will tend 

to increase and should therefore be evaluated. 

 

Figure 2.5: Complexity and uncertainty levels for two types of LCA (adapted from Graedel 

(1998)) 

In conclusion, LCA is a powerful tool to support eco-design because of its comprehensive 

approach and inclusion of diverse environmental aspects. It allows the comparison between 

alternative products. Thus, it provides support in decisions by highlighting improvement 

opportunities. Yet, none of the eco-design tools, not even LCA, takes into consideration economic 

aspects. These are primary in product development because the associated costs will directly vary 

with design choices. As a conclusion, eco-design tools, alone, do not back up decisions from a 

strategic point of view, and need to be completed by considering costs in an eco-efficiency (EE) 

framework. 

As a summary of this section, the following needs are identified. Some have been addressed by 

Mami et al. (2017), except for uncertainty evaluation:  



 20 

• Develop an eco-design approach based on LCA or simplified LCA to quantify the 

environmental dimension 

• Communicate LCA results using indicators which are easy to interpret, and which are 

relevant to the industry of concern 

• Evaluate the uncertainty resulting from the LCA model choices (lacking) 

• Integrate cost aspects into eco-design by building on an eco-efficiency framework 

2.2.4 Eco-efficiency definition 

Comparable to the sustainable development concept, eco-efficiency (EE) was initially intended for 

the business world in order to “create value while decreasing environmental impact" (Huppes & 

Ishikawa, 2005a, 2005b; WBCSD, 2000). It considers environmental, economic and social aspects. 

This means producing efficiently while maintaining a high level of price competitiveness. Also, 

leading a quality life is important while reducing resource consumption and environmental impacts 

(Schmidheiny, 1992).  

ISO14045 (2012) defines EE as a decision support tool to quantify and relate the value of a product 

with its environmental performance. It is commonly viewed as a ratio between the economic and 

environmental performances. Accordingly, the definition given to value is very subjective and 

specific to the needs of third parties (Huppes & Ishikawa, 2005b). Furthermore, the ISO standard 

brings guidance to the development of an eco-efficiency assessment. It is described in the 

following section. 

2.2.5 Eco-efficiency framework 

The eco-efficiency assessment is broken down into five steps (ISO, 2012): i) goal and scope 

definition, ii) environmental assessment, iii) product system value assessment, iv) quantification 

of eco-efficiency, v) interpretation of eco-efficiency. 

2.2.5.1 Objectives, goal and scope  

As required by ISO (2012), the goal of the study first describes the purpose and objectives of the 

study, the intended audience and the intended use of results. 
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2.2.5.1.1 Product systems compared 

The product systems compared are described along with the place, time and stakeholders involved 

in the assessment. One product system is the reference or base scenario, to which alternative 

scenarios are compared. The product systems are described and compared based on their function 

and functional unit.  

2.2.5.1.2 Function and functional unit 

The function identifies in a qualitative way the use of the product. To compare product systems, 

their function must be equivalent. The functional unit quantifies the function, i.e. it clearly 

measures the performance of the product system, by scaling the reference flows (quantities of 

products or services needed) to meet the functional unit. 

2.2.5.1.3 System boundaries of the product system 

They are equivalent for the environmental and product system value assessment. They are set by 

defining which life-cycle stage is included or not in the assessment. The inclusion or exclusion of 

any stage depends on the goal of the study. The assessment can be cradle-to-gate (processes 

involved for the production of the same product are compared), cradle-to-grave (all processes are 

compared, from extraction of raw material to end-of-life management), gate-to-gate (only one 

process in the entire chain is considered and compared), or gate-to-grave (the production and use 

of the product are the same, only the end-of-life management is compared). When setting the 

boundaries of the system, the processes which are identical for the compared products can be 

excluded, only if they do not affect the equivalence between scenarios. 

2.2.5.1.4 Allocations to external systems 

When a process is multifunctional, it produces more than one product (co-product) or service. 

Thus, it has more than one function. Consequently, the inputs/outputs must be distributed or 

allocated to these different functions. The co-products are part of external product systems. These 

must be identified and the allocation principles applied must align with ISO14044 (2006b).  

This means to avoid at first the allocation, by sub-dividing the process into two or more sub-

processes. Also, the system boundaries can be extended, by subtracting the avoided effects of a 

real existing alternative process for the co-product. If the allocation cannot be avoided, then the 
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inputs and outputs must be distributed by taking into account the physical relationships between 

them. Finally, a mass allocation, economic allocation, or any other type of allocation can be 

applied. In addition to that, the waste management approach must be specified. The cut-off 

recycled content approach allocates the recycling process to the system which uses recycled 

material as an input. The recycling at the end-of-life is excluded from the system boundaries and 

its impacts are not considered. On another hand, when the recycling is included in the approach, 

the inputs are considered as 100% raw material. In this case, the recycling process at the waste 

management step avoids the production of raw material. Its associated impacts can be subtracted 

(credit is given to recycling). In this case, the allocation principle requires to use substitution and 

boundary extension. 

2.2.5.2 Environmental assessment 

As seen previously, there are many existing tools supporting the evaluation of environmental 

aspects. However, the focus is set here on the Environmental Life-Cycle Assessment (ISO, 2006a, 

2006b) because of the holistic vision it enables. 

The LCA goal and scope should align with those described in the eco-efficiency framework. 

Therefore, the environmental assessment starts here with the life-cycle inventory, followed by the 

impact assessment method. One must note that inventory flows may be used as only input to the 

eco-efficiency assessment. For example, if a process shows predominant emissions of CO2 due to 

fuel consumption, the latter may be used as the only environmental input. 

The impact categories and weighting methods should align with the goals of the study and will 

result in the environmental dimension of eco-efficiency. If several indicators are used, results of 

eco-efficiency should be considered in parallel. Weighting is not recommended by ISO (2012). 

Though, if it is used, the weighting principle and factors should be determined. 

Indeed, having multiple indicators for the environmental dimension avoids subjective choices and 

shows a complete environmental profile. However, using them as such for eco-efficiency may tend 

to confuse the decision-maker, confronted to an additional value indicator. Also, priorities become 

harder to set when environmental indicators do not have the same trend (they show the same trend 

if they all describe improved environmental impacts for a scenario compared to another). 
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Furthermore, because there is no absolute eco-efficiency but rather eco-efficiencies of products 

compared to one another, eco-efficiency models can be limited considering that both product 

compared could be “bad”. Thus, sustainability would not necessarily be reached (Huppes & 

Ishikawa, 2005c). For that, Mami et al. (2017) suggest using the distance-to-target weighting 

approach. The method considers an actual scenario compared to a reference for which 

environmental impacts are quantified with respect to reduction targets set by the aeronautical 

industry. Indeed, this method accounts only for specific emissions and disregards others emissions 

which might have significant impacts. Nevertheless, the environmental assessment is more 

relevant to meet the industry needs and the approach is more probable to be adopted for decision-

making. In fact, it is recommended by ISO14001 (2015) to consider products within the 

environmental policy of enterprises and the objectives and targets of their environmental 

management system (therefore to analyze impacts linked to a very specific environmental aspect) 

(ISO, 2015).  

2.2.5.3 Value assessment 

The value is described as a specific stakeholder value (producer, consumer, investor). Similarly to 

LCA, it is quantified to meet the functional unit (Wrisberg et al., 2002) defined in the goal and 

scope of the eco-efficiency framework (ISO, 2012).  

The product system value can be monetary (cost, price, willingness to pay, profit, etc.) , functional 

(performance, product desirability), and of other types (cultural, historical, etc.).  In the context of 

this study, the aeronautical industry wishes to reduce the costs of additive manufacturing compared 

to conventional manufacturing. Therefore, the monetary value in terms of cost over the complete 

life-cycle would be the most convenient. 

Cost assessment methods have been reviewed by many authors in the literature (Gluch & 

Baumann, 2004; Hunkeler, Lichtenvort, & Rebitzer, 2008a; Klöpffer, 2003; Wrisberg et al., 2002). 

However, the environmental Life-Cycle Costing (LCC) (Hunkeler et al., 2008a) is highlighted here 

because it considers the physical product life-cycle. It broadens the boundaries of conventional 

life-cycle costing by accounting for the system externalities. Also, it is the most widespread 

approach for an eco-efficiency context (Kloepffer, 2008). The LCC method analyses the financial 

flows (internal and external costs) over the complete life-cycle of a product, service or process 

(Wrisberg et al., 2002). The internal costs are influenced by the market and are directly handled 
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by actors involved in the life cycle, either during production, use or end-of-life. External costs are 

less predictable because they are not directly paid by a stakeholder; they are priced in monetary 

units, thus linked to the monetization of social, financial or environmental impacts (Hunkeler & 

Rebitzer, 2003). The internalization of external costs in an eco-efficiency framework might be 

considered as double counting since they are a way of expressing environmental impacts. 

In general, five stages are included in LCC: research and development, production of materials 

and components, manufacturing, use phase and maintenance, and end-of-life management. These 

stages are managed by four actors: materials or component suppliers, product manufacturers, 

consumers or users and end-of-life actors. Hence, one must describe the life-cycle stages and actors 

included. The exact timing of LCC in the product development process must be specified. The cost 

perspective should correspond to the concerned actors. 

Also, in an eco-efficiency framework, the system boundaries of LCC must be equivalent to those 

set in the LCA. For example, environmental LCC may start by considering the R&D phase. The 

latter may also be included in LCA (for the system boundaries to be identical), but is usually 

assumed to have negligible environmental impacts (because  they can be allocated to a high 

quantity of products) (Rebitzer, 2002). Elements with a negligible contribution to environmental 

impacts can be of interest to assess the costs (or vice versa). Hence, they can still be included or 

excluded from the assessment, as long as they do not violate the condition of boundary 

equivalence.  

While the cost usually accounts for the expenses incurred for a product or service (includes raw 

material costs and manufacturing), the price translates an aggregation of the upstream costs. 

Consequently, it can be used when the details on upstream processes are not know (Hunkeler et 

al., 2008a).   

Data collected for the LCA can be used to elaborate the LCC for most of the costs; the physical 

flows (energy and material) are multiplied by the unit cost paid by the company (Jolliet et al., 

2015). Other costs such as labour costs, research and development costs, are handled separately. 

Accordingly, to dress the economic inventory, the LCA provides the quantities of flows which are 

accounted for in the processes of the different product systems. Then, equation 2 below is applied 

(Jolliet et al., 2015): 
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 7'8 = 	+8 × 7: (2) 

 

With: 

7'8 : Cost for the flow of input/output i 

+8: Amount of input/output i  

7:: Unit cost of input/output i  

Furthermore, the cost model adapted must explain how costs are aggregated (Huppes et al., 2004). 

Unlike environmental impacts, costs can be summed, and it must be specified if: 

- discounting is done, if the cash flows occur at different moments in the lifetime of the 

assessed product 

- the total life-cycle cost required to meet the functional unit is normalized. 

Finally, uncertainty should not be neglected in LCC since cost results are highly influenced by the 

market, the discount rate, the price changes, the competition, the space and time (Schmidt, 2003). 

Thus, it is important to carry out this kind of analysis to provide consistency to results. 

2.2.5.3.1 Discounting 

If the system involves costs occurring in the mid-to-long-term future, or at different times within 

a product life cycle, costs cannot be compared or summed without taking into consideration the 

value of time. The discount rate can range from 0% to 15% (Hunkeler et al., 2008a) and may be 

higher depending on the organizations at stake. A sensitivity analysis is recommended to evaluate 

the influence of applying a discount rate; a critical discussion is recommended if the choice of 

discounting rate changes the ranking of the compared systems. 

2.2.5.3.2 Environmental Life-Cycle Costing for the aeronautical industry 

A first traditional structure of cost aligned with the production of AM parts in the aeronautical 

industry is suggested by (Brandt, 2016) (Figure 2.6). It was strongly influenced by authors such as 

Ruffo et al. (2006), Hopkinson and Dicknes (2003), Gibson et al. (2010). The author distinguishes 

three phases: the production costs, the self-costs and the life-cycle costs. The production costs in 
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Figure 2.7 are useful during the design process to compare alternatives, whereas the self-costs are 

not always considered for comparison (DIN, 2004; Pahl, Beitz, Feldhusen, & Grote, 2006). In 

chronological order, production costs are first estimated. Then, based on production costs (because 

they are the main aspect of decision-making), if AM is still considered as an option compared to 

CM, self-costs are calculated. Finally, life cycle costs are considered.  

Cost calculations are usually based on activities and time. Although this three phases approach 

seems the most logical and applied in the industry, it is disadvantageous in the way that it does not 

directly put forward AM as an option for sustainability.  

Figure 2.6: Phases of costs in AM lifecycle (adapted from Brandt (2016)) 

 

Figure 2.7: Costs during AM production (adapted from DIN (2004); Pahl et al. (2006)) 
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An alternative evaluation of costs for such context is the environmental life-cycle costing 

(Hunkeler et al., 2008a) developed and adapted by authors such as Khan and Houston (2000), 

Mami et al. (2017) (Figure 2.8). 

Research and development consider the labour hours and tests needed to operationalize the studied 

system. Production includes direct, indirect costs, and the transport cost from the production site 

to the assembly facility. 

The acquisition cost is the cost of the system before being assembled. If production costs upstream 

are calculated, the acquisition cost is equal to 0. The assembly accounts for materials, direct, 

indirect costs, and the transport cost of the system from the assembly site to the operator. 

The acquisition cost of the use phase is also equal to 0 if upstream costs are already calculated. 

During the aircraft lifetime, spare parts are needed for maintenance. Therefore, their production, 

insurance and storage costs are included. In addition to these, the use phase considers crew cost 

and the fuel cost due to the weight of the system. 

The end-of-life includes waste treatment costs (materials, labour, transport, etc.) and the resale of 

the system (the latter is considered when system boundaries are extended in the LCA).  
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Figure 2.8: Life-cycle costing categories for the manufacturing of aircraft components 

(adapted from Khan and Houston (2000), Mami et al. (2017)) 
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2.2.5.4 Eco-efficiency quantification 

The eco-efficiency quantification indicates on the relationship between the environmental and 

value assessment results. A product which is more eco-efficient than another should show an 

improvement on either of the two dimensions (ISO, 2012). 

 ISO14045 (2012) suggests different methodologies to derive the EE indicator resulting from the 

combination of both dimensions. It can be applied depending on the study context and objectives. 

There are three types of eco-efficiency indicators: i) single scores derived from ratios, ii) single 

scores derived resulting from the sum of indicators, and iii) eco-efficiency profile. They are 

explained below. 

The most common single indicator representation (i) is the ratio of value over environmental 

impacts, or vice versa depending on the aspect which primes (the product value or the 

environment) (Huppes & Ishikawa, 2007). Environmental impacts presented through multiple 

indicators will result in more than one eco-efficiency indicator. Another example of a single score 

indicator is the “Factor-X”. It is the ratio of a product eco-efficiency to that of another compared 

product. However, this ratio is criticized because both product may have very low absolute eco-

efficiencies. Hence, the eco-efficiency is not necessarily improved with respect to greater 

sustainability objectives (Bjørn & Hauschild, 2013). Nevertheless, ISO14045 (2012) does not 

restrict the use of ratios. Yet, they must be interpreted with care because they do not show 

variations of both dimensions distinctly and might lead to confusions. 

Moreover, single scores can be derived from the monetization of environmental impacts or a 

weighted sum (ii). Finally, the eco-efficiency profile (iii) is an XY diagram that allows the 

distinction between both the value and environment dimensions and is therefore more transparent 

when trade-off situations arise.  

Specifically to answer the needs of the aeronautical industry, the eco-efficiency indicator 

suggested by Mami et al. (2017) is based on the concept of getting closer to the objectives set by 

the industry. In other words, the distance between the current and target state must be minimized. 

Thus, the indicator is calculated as the sum of the normalized environmental impacts and the 

product between the normalized cost and the trade-off value (refer to equation 17 in section 4.4.9). 

The normalization reference is an aircraft life-cycle impacts and costs. The trade-off value is 

subjective. It expresses the compromise one is ready to make between the damages to the 
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environment and the costs. The highest eco-efficiency indicator represents the most eco-efficient 

alternative. 

2.2.5.5 Eco-efficiency interpretation 

The eco-efficiency XY diagram (Figure 2.9) enables the distinction between both dimensions. It 

helps identifying possible trade-offs. The environmental assessment generates an impact score, 

whereas the environmental LCC generates a cost. Afterwards, the normalization is done to obtain 

dimensionless values, making it possible to place them on an eco-efficiency graph using the same 

scale for both axes. For the aeronautics context example, both dimensions would be expressed as 

percentages of increase or decrease of the aircraft life-cycle cost/impact. The diagram is explained 

below.  

 

Figure 2.9: Eco-efficiency diagram 

 

Environmental improvement 

Cost reduction

Base scenario

High EE

Low EE
Additional cost to reduce 

environmental impacts

Cost reduction at the 
expense of 
environmental impacts

A

1

1

Trade-off = 1

Eco-efficiency line
!! = # + %	×	(

B

C

D



 30 

The representation based on the work of Mami et al. (2017) evaluates the distance between the 

reference (or base) scenario and an alternative. The distance, for the economic dimension, is 

defined as the difference between the cost of the reference scenario and that of an alternative: a 

positive score shows a cost reduction for the alternative compared to the reference. Similarly, the 

difference between the environmental impact of the reference scenario with the alternative is 

calculated: a positive score shows an environmental improvement. 

The dotted lines represent iso-eco-efficiency lines for a trade-off of 1, meaning that all scenarios 

located on the same line have an equivalent eco-efficiency. They will be more eco-efficient than 

any other scenario located under the dotted line. A trade-off of 1 means that the cost reduction and 

environmental improvement have the same importance in decision-making. 

Nevertheless, three cases are addressed when comparing eco-efficiency assessment results (ISO, 

2012): i) improvement or superiority in both dimensions (economic and environmental), ii) 

improvement or superiority in only one dimension, iii) no improvement or superiority in either 

dimension.  

- Scenario A is in the upper right side of the diagram: it has a high eco-efficiency compared 

to the base scenario. Also comparing it to scenarios B, C and D, it dominates (or is superior 

to) them all, i.e. it has a more significant cost reduction and environmental improvement. 

- Scenario C is in the lower left side of the diagram: it has a lower eco-efficiency compared 

to the base scenario (it is worse on both dimensions and should directly be eliminated). 

- Scenario B is in the lower right side of the diagram, and scenario D is in the upper left side 

of the diagram: they both are examples of trade-off situations compared to the base 

scenario. Following the iso-eco-efficiency dotted line, the base scenario is more eco-

efficient than B, C and D. Scenario B, however, shows an improved environmental profile 

compared to the base scenario. Although its cost is higher, ISO14045 (2012) recommends 

that scenario B be claimed more eco-efficient than the reference, because it demonstrates 

an improved environmental performance.  

- While Scenario D shows a more significant cost reduction than the base scenario, it should 

be eliminated because the cost reduction is at the expense of the environment (ISO, 2012). 
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- The base scenario and scenario B have an equivalent eco-efficiency for a trade-off of 0.5 

(Figure 2.10). In other words, B is more eco-efficient than the base scenario if the 

environmental dimension is at least two times more important than the cost.  

 

Figure 2.10: Eco-efficiency diagram with trade-off situations 

ISO14045 (2012) recommends completing the eco-efficiency assessment with an evaluation of the 

completeness, sensitivity, uncertainty and consistency of the results. Also, in this step, the 

conclusions, limitations, and recommendations should be discussed.  

2.2.6 Limitations in the eco-efficiency framework 

The conclusions of Mami et al. (2017) have proven, using “one-at-a-time” sensitivity analyses 

(one parameter at a time is changed to see how it influences the outcome result), that parameters 

included in the LCA, LCC and eco-efficiency models could significantly change conclusions. In 

such complex models, there is clearly the need to evaluate the influence of a wider set of 
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parameters varying at the same time. It is also essential to evaluate the reliability of results and 

conclusions, by communicating the uncertainty of deterministic results. 

Additionally, cases might arise where two scenarios seem to be very close to each other on the 

eco-efficiency diagram. This limits the results interpretation: one can’t really tell if one scenario 

is significantly more eco-efficient than another in order to make a decision. This will mostly be 

true if there is indeed an environmental improvement, but it is not significant enough to convince 

the decision-maker when additional costs are at stake. 

ISO14045 (2012) recommends undergoing an uncertainty assessment to complete the eco-

efficiency framework, by assessing the precision, completeness and representativeness of the 

results. Additionally, the standard suggests evaluating the significance of the differences found 

between scenarios. Nevertheless, among all the studies reviewed and to the best of our knowledge, 

only Faludi et al. (2015) and Mami et al. (2017) carried out sensitivity and uncertainty analyses. 

Yet, none have evaluated it in a probabilistic approach. Also, to the best of our knowledge, no 

article was found regarding uncertainty representation in eco-efficiency diagrams. 

As a summary of this section, the following needs are identified:  

• Evaluate the uncertainty in the LCA and LCC quantitatively to increase the confidence 

given to results, using probabilistic approaches 

• Combine these uncertainty assessments to obtain the uncertainty of the eco-efficiency 

indicator 

• Represent the resulting uncertainty on the eco-efficiency XY diagram 

• Evaluate the significance of the difference between scenarios in order to support decision-

making 

2.3 Uncertainty in eco-efficiency and decision-making 

As shown in the previous section, the eco-efficiency framework needs to be improved to support 

decision-making. This section presents how eco-efficiency as a decision-aid tool can be improved 

by accounting for the uncertainties. It also highlights existing methods to handle uncertainty.  
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2.3.1 Importance of knowing uncertainty 

The LCA and LCC methods result in deterministic values assigned to two distinct scenarios (or 

more), such as those presented at the left the figure below.  

 

 

 

 

Figure 2.11: Deterministic (a) versus probabilistic (b) scenarios 

If scenario A and B are either compared in terms of environmental impacts or costs, the 

deterministic results at the left do not indicate to which extent A is better than B. Analyzing 

uncertainty in such assessments should support decision-making by determining the significance 

of difference between these two scenarios. This is possible with stochastic representations 

supported by statistical tests: the probability that a scenario is better or worse than another may be 

evaluated (figure on the right). These outcomes in greater confidence given to statements and 

conclusions. In fact, if the uncertainty is ignored, misguided decisions may be encouraged 

(Budnitz, Apostolakis, & Boore, 1997). 

LCA is a simplified, known, predictable model used to represent the reality in a decision-making 

context. In general, there are three principal issues facing the decision-maker (Morin, 2017; 

Patouillard, 2018): (i) the problem complexity (multiple considered dimensions), ii) the 

uncertainty (inherent to unknown consequences of decisions), and iii) the issues and challenges 

(importance of decision consequences on several aspects of society). According to Patouillard 

(2018), problem complexity in LCA is found in results uncertainty affecting decision-making and 

a) b) 
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the priorities setting with respect to the protection of human health and the environment. Hence,  

reducing uncertainty in LCA is important to lower decision uncertainty and the risk of omitting an 

environmental aspect (due to its significant uncertainty). 

Therefore, supporting decision-making means providing transparent and robust results to third 

parties to help them make informed choices depending on their priorities and preferences.  This is 

usually ensured by delivering precise (reliable) and accurate (representative) results (Brandão, 

Clift, Cowie, & Greenhalgh, 2014) (Figure 2.12).  

 

Figure 2.12: Distinction between precision and accuracy (adapted from Brandão et al. (2014)) 

2.3.2 Uncertainty types and sources 

There are two types of uncertainty found in LCA (Huijbregts, 1998) and presented in Figure 2.13. 

Aleatory or stochastic uncertainty (called variability in LCA), is inherent to variations in the real 

natural world which are out of our control as humans. They can’t be reduced (temporal, spatial, 

between sources and objects). Epistemic uncertainty (called uncertainty in LCA) derives from our 

lack of knowledge about the true value of a quantity (parameter, scenario, model, inaccurate 

measurements, lack or irrelevant data, assumptions, etc.). It results from our limited capabilities to 

perfectly measure and model our surrounding world (Li, Chen, & Feng, 2013; Steinmann, Hauck, 

Karuppiah, Laurenzi, & Huijbregts, 2014). 
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Figure 2.13: Uncertainty types and sources 

In LCA, only uncertainty resulting from the lack of human knowledge may be reduced. It is treated 

by the theory of possibilities, based on the apparition probability of an event as per our knowledge 

of it. Therefore, a specific focus will be set on epistemic uncertainty here. 

As part of epistemic uncertainty, parameter uncertainty is derived from the lack of knowledge on 

the exact value of a parameter, whereas scenario uncertainty is associated with choices in the LCA 

model construction. Finally, model uncertainty derives from simplifications and assumptions made 

in the model about its validity in the real world (Huijbregts, 1998). These three uncertainty sources 

are difficult to differentiate because they overlap (Gregory et al., 2017). Thus, they are often 

aggregated and expressed using the uncertainty on a parameter value (De Koning, Schowanek, 

Dewaele, Weisbrod, & Guinée, 2010). 

2.3.3 Uncertainty evaluation 

2.3.3.1 Distinction between interaction and correlation 

As mentioned by Patouillard (2018), interactions between input data in LCA should be 

distinguished from correlation. Both should be taken into account in uncertainty and sensitivity 

analyses in order to avoid biased results (Groen, Bokkers, Heijungs, & de Boer, 2017). While 

interactions describe the causal relationship within a model, correlation shows to which extent the 

link between variables is strong (a similar variation tendency, i.e. strength and direction of 

relationship, will indicate a strong correlation). The interaction degree within a model is defined 

by the maximum number of variables being multiplied. In LCA, multiple input variables are 

correlated and are described by high number of interactions (relationship between intermediary 

flows, elementary flows, and characterization factors).  
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2.3.3.2 Measuring uncertainty: uncertainty and sensitivity analyses 

 Uncertainty and sensitivity analyses are both examples of uncertainty evaluations that “shall be 

conducted for studies intended to be used in comparative assertions intended to be disclosed to the 

public” ISO14044 (2006b). Uncertainty analysis is conducted to inform the decision-maker on the 

conclusions degree of certainty, whereas sensitivity analysis helps identifying parameters with the 

most significant influence on results uncertainty. 

2.3.3.2.1 Uncertainty analysis in LCA and LCC 

Evaluating uncertainty in LCA usually focuses on statistical approaches to quantify uncertainty in 

a reasonable time (Heijungs & Huijbregts, 2004; Patouillard, 2018). If a statistical approach is not 

possible, qualitative (expert judgement) or semi-quantitative (Pedigree) methods can be applied. 

Existing studies in the literature have focused on uncertainty in LCA (Gregory et al., 2017) and 

LCC (Battke, Schmidt, Grosspietsch, & Hoffmann, 2013; Gregory et al., 2017; Ilg, Scope, 

Muench, & Guenther, 2017). 

Statistical methods are broken down into three steps: i) input, ii) propagation, iii) output. One very 

well-known example is the Monte Carlo analysis. It is a sampling method which computes 

repeated calculations in order to generate probabilistic results. In other words, probability density 

functions are used to define input parameters. Afterwards, the model runs for a specific number of 

times, resulting in a distribution of outcomes (Heijungs & Huijbregts, 2004). The higher the 

number of iterations, the more statistically significant the outcome. Nevertheless, calculations can 

become very time-consuming if the number of input parameter is high. 

An illustrative example for conducting probabilistic LCA and LCC assessments was found in the 

literature (Gregory et al., 2017). The authors suggest the following steps: 

i. Identify uncertain parameters and categorize them as empirical (measurable with a true 

value, for example quantity of material input), model domain (appropriate value 

aligned with the scope, for example product lifetime) and value parameters (appropriate 

value aligned with the preferences of analyst, for example, discount rate). The 

categorization is not necessary. 

ii. Characterize uncertainty: weighted probability distributions (normal or lognormal) are 

used to represent empirical quantities (because they have a true value), from 
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measurements and data estimates, whereas ranges of continuous or discrete values with 

equal likelihood (unweighted or uniform distribution) are used for model domain and 

value parameters, because there is a lack of knowledge on the likelihood of quantities 

(Gregory et al., 2017). Minimum, mean and maximum values may be used to derive 

the distributions (Battke et al., 2013). It is important to note that the shape of the input 

distribution highly influences the probabilistic method outcomes (Boussabaine & 

Kirkham, 2008). 

In cases where there is not clear value or distribution for a parameter, Gregory et al. 

(2017) suggest defining a rough distribution although increasing the tendency to 

overestimate uncertainty. If this parameter highly influences the outcome, discrete 

scenarios may be defined within a uniform distribution. 

The characterization of initial and future costs is important because they are influential 

(Gregory et al., 2017); forecasting techniques may be used to estimate prices and their 

probabilistic uncertainty (Swei, Gregory, & Kirchain, 2016). 

iii. Conduct and interpret uncertainty analysis by comparing products under uncertainty. 

The probability of a scenario being better than another may be evaluated using multiple 

comparison metrics (Gregory et al., 2017): the difference between the mean value of 

two compared scenarios, the difference between their 90th percentile or the frequency 

that a scenario has a lower impact or cost than that of another scenario. 

2.3.3.2.2 Sensitivity analysis in LCA and LCC 

Sensitivity analysis evaluates the effect of a choice on the outcome. The latter may be either a 

result or the uncertainty of a result (therefore called contribution to uncertainty). The choice of a 

continuous parameter (mass of component, emission, characterization factor) helps answering the 

question: How do a change in parameter value affect the outcome? The choice of a discontinuous 

parameter (allocation method, characterization approach) helps to show how a change in model or 

scenario may affect the outcome. 

Several types of sensitivity analyses may be carried out to identify key parameters affecting results 

uncertainty (Borgonovo & Plischke, 2016). Here, the local sensitivity analysis is distinguished 

from the global sensitivity analysis. 
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Local sensitivity analysis is a deterministic approach carried out to understand the influence on the 

results of slight input data variations. Most approaches are “one-at-a-time” techniques (Borgonovo 

& Plischke, 2016), where we vary one parameter value (deterministic) while keeping all other 

parameters value constant. Results are calculated and compared to the baseline results in tornado 

diagrams; the greater the difference, the higher the sensitivity. This is done for each parameter, 

one at a time, and usually requires expert judgement for the choice of parameters. For 

discontinuous parameters, discrete scenarios should be compared. Nevertheless, local sensitivity 

analyses are recognized as “flawed” because they fail to consider interactions and correlations 

between parameters (they assume the effect is linear). Also, they are based on subjective choices, 

shedding the light upon a few parameters and disregarding others that could still affect the 

outcome. 

Global sensitivity analysis (GSA) is a probabilistic approach which considers the complete input 

parameter set, by defining probability distributions to each of them.  

Existing methods to perform GSA in LCA can be broken down into three categories (Borgonovo 

& Plischke, 2016): analytical methods, methods based on correlation, and methods based on the 

output variance. According to Groen et al. (2017), for most of the methods they consider, “it is not 

known under which conditions they perform optimally or if a method performs better than another 

in LCA”. 

The focus here is to advance correlation methods because they address sensitivity indicators which 

can directly be generated from Monte Carlo simulations. Two examples of correlation methods 

are: i) Pearson product moment correlation and ii) Spearman rank order correlation. 

The Pearson product moment correlation evaluates the linear relationship between two continuous 

variables (Minitab, 2017), i.e. the change in one variable is proportional to the change in the other 

variable. It is not convenient for non-linear models. 

The Spearman rank order correlation describes a monotonic relationship between two variables, 

i.e. variables change together but not necessarily at a constant rate. It considers the ranked values 

instead of raw values (as in the Pearson product moment coefficient). It is convenient for non-

linear models (Altman & Krzywinski, 2015) and is said to perform best when the input uncertainty 

is large (Groen et al., 2017). Nevertheless, conclusions derived using this coefficient might be 
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misleading because low effect may be over-estimated when interactions between variables are high 

(Saltelli, Tarantola, & Chan, 1999).  

2.3.3.3 Limitations of uncertainty assessment for eco-design 

Uncertainty assessment is needed to provide decision-makers with a measure of the confidence 

levels given to the results. It avoids misleading conclusions (Refsgaard, van der Sluijs, Højberg, 

& Vanrolleghem, 2007). Also, according to Hare, Cope, & Warde (2015), uncertain data is 

important to guide good decisions in the early design stages of the eco-design process. This is 

possible using appropriate data and tools which offer proper and useful guidance without requiring 

excessive efforts.  

Despite the imprecision and inaccuracy of data, firm conclusions can be done if uncertainty is 

communicated along with the probability of a scenario being better than another (if a statistical 

approach is adopted). In other words, products can be compared under uncertainty, by showing 

the percentage of Monte Carlo iterations where one alternative has a lower outcome than that of 

another product it is compared to (Gregory et al., 2017; Lesage, Mutel, Schenker, & Margni, 2018; 

Mattila, Kujanpää, Dahlbo, Soukka, & Myllymaa, 2011). Indeed, “uncertainty does not tell us that 

we are right but the chances of being wrong” (Krzywinski & Altman, 2013). Therefore, the 

decision remains in the hands of the decision-maker. Yet, it will be more informed and robust and 

will help managing the risk of the eco-design approach. 

The need for ease-of-use, simple and time-efficient calculations for eco-design tools have been 

identified by Lesage et al. (2018). However, as seen previously, one challenge of treating 

uncertainty by sampling methods is to provide data on the probability distributions of input 

parameters. This information is not always available, yet could be provided using the Pedigree 

approach (Weidema & Wesnaes, 1996). Also, in comparative LCA, inventory flows or LCIA 

scores of aggregated datasets are usually presented using probability distributions that account for 

the uncertainty of underlying parameters in the technology and environmental matrices. Though, 

it implies that the distributions of the aggregated datasets are independent while they usually aren't. 

As a solution to this issue, the use of pre-calculated stored Monte Carlo simulation results, rather 

than the use of distributions, is suggested by Lesage et al. (2018). The authors’ approach consists 

in building a database of presampled aggregated datasets that are stored in a given order to account 

for dependencies. In other words, it means that: 
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- They work on terminated LCI datasets, i.e. aggregated system processes (cradle-to-gate) 

which do not give access to information on the links between activities in the processes. 

Aggregated system processes, opposed to unit processes, mask information and do not 

provide an understanding of the underlying structure and model of the LCA (Broadbent et 

al., 2011). Nevertheless, they preserve data integrity and increase calculation efficiency.  

- The precalculated results can be stored in eco-design tools, to increase the calculation speed 

without doing deep analyses of product systems (unit process data would be required). 

They can easily be used by non LCA experts. Finally, they avoid the need to solve the large 

system of linear equations usually required in an LCA, because the aggregated datasets are 

based on the solutions to this system (Lesage et al., 2018)  (expressed as LCI with ; or 

LCIA with ℎ).  

 < × / = ' (3) 

 ; = ! × / (4) 

 ; = ! × <=> × ' (5) 

 ℎ = 6 × ! × <=> × ' (6) 

 Where:  

<: technological matrix, i.e matrix with inputs/outputs from/to the technosphere  

/ : Scaling vector 

' : Demand vector 

;: Life-cycle inventory vector 

!: Environmental matrix, i.e. matrix vith inputs/outputs from/to the environment 

ℎ: Impact score vector (for a given impact category)  

6: Characterization factors vector 

First, the number of iterations 2 is specified. The end result of the code is 2 LCIA results for a 

specified number of final demands (i.e. number of products for which aggregated datasets are 
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required; products are converted into final demand vectors) and LCIA methods. For each Monte 

Carlo iteration, random values are sampled for A and B based on their probability density 

functions. Then, the LCI is calculated for each final demand using equation 5. The resulting LCI 

vectors are piled in order and their dimension is equal to the product of elementary flows in the 

database and the number of iterations 2. The LCIA array can be derived from the LCI using 

equation 6, choosing a specific number of impact categories (depending on the LCIA method 

chosen and the characterization factor vectors). This results in arrays of one dimension containing 

2 cradle-to-gate LCIA scores. 

To sum up, the results are precalculated Monte Carlo iterations; each Monte Carlo iteration uses 

the same samples for parameters from matrices A and B (Figure 2.14, personal illustration). 

Accounting for dependent sampling is important and more pronounced when high correlations 

exist within the model. 

 

       

Figure 2.14: Dependent sampling 

2.3.3.4 Uncertainty in LCA and LCC for the aeronautical industry 

Most of the existing studies on LCA, LCC and eco-efficiency for additive manufacturing in the 

aeronautical industry have been reviewed. The degree of variability in technological, 

environmental and economic data is found to be high. It is also the case for the variability of input 

parameters taken into consideration. However, a systematic assessment of the underlying 

uncertainty is lacking. Additionally, uncertainties in LCC have a strong influence on results when 

long time horizons are considered (Ammar, Zayed, & Moselhi, 2012). Therefore, the credibility 
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of LCC results may be questioned (Ilg et al., 2017). This could be the case for the aeronautical 

industry, where aircraft and products lifetimes are significant. As a summary of this section, the 

following needs are identified: 

• Facilitate the integration and handling of uncertainty in eco-design tools in order to make 

them easy to use by non LCA experts 

• Evaluate the uncertainty in LCA, LCC and eco-efficiency results to support decision-making 

• Adopt an approach based on global sensitivity analysis in order to account for the wide set 

of parameters within the LCA, LCC and eco-efficiency models  

• Compare products under uncertainty by showing the probability of a scenario being better 

than another, and support decision-making by communicating uncertainty levels 

• Show the contribution of these parameters to the overall uncertainty, in order to identify 

where to put efforts to reduce uncertainty and refine data collection. 
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 PROBLEM STATEMENT AND OBJECTIVES 

In the context of the Manu-710 project involving industrial partners from the aeronautics and 

manufacturing sectors, the need to acknowledge the real benefits of AM compared to CM was met 

by considering the environmental dimension of these technologies. “Easy-LCA”, a simplified LCA 

tool, was developed by CIRAIG (2018). Its aim was to help industrial partners understand the 

underlying potential impacts of these two technologies, in order to support decision-making in the 

detailed design phase. Also, this tool was developed to help them reduce their environmental 

impacts to meet the reduction targets set by the aeronautical industry. The potential environmental 

impacts were presented using IMPACT 2002+ (Jolliet et al., 2003), in terms of damage to human 

health, ecosystem quality, resource consumption and climate change. However, these four 

indicators are likely to make difficult the results interpretation and the industrial partners decisions. 

This is because the results do not necessarily have the same trend (i.e. one scenario can show lower 

impacts in terms of CO2 eq compared to another scenario but additional impacts in terms of DALY-

Disability Adjusted Life Year). Although industrial partners may be comfortable enough with the 

term “kg CO2 eq”, they are not very familiar with units such as DALY, PDF.m2.yr (Potentially 

Disappeared Fraction of species over a certain amount of m2 during a certain amount of years) and 

MJ (Mega Joules- amount of energy extracted or needed to extract the resources). In general, the 

complexity of LCA indicators limits its implementation in the early design stages. Moreover, the 

aeronautical industry has set reduction targets for emissions of CO2, NOx and PM. Thus, the focus 

is shifted to consider these emissions only, in order to stay relevant to the needs of the industry. 

Because we are dealing with the detailed design phase of product development, environmental 

aspects may be addressed using an eco-design approach. However, environmental impacts are 

rarely included in decision-making at the early design stages because the cost is predominant in 

strategical decisions. Decision-making becomes difficult when combining both worlds. This is true 

in the context of parts produced by AM for the aeronautical industry: the technology presents trade-

offs between the cost and the environment. Thus, in order to use LCA in a prospective and efficient 

way, environmental aspects need to be elaborated in parallel with the costs to ensure a harmonised 

integration and an influence on decisions. The eco-efficiency approach developed by Mami et al. 

(2017) has proven to consistently and systematically combine both dimensions. 
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Moreover, cost analyses elaborated by profit-making enterprises in the aerospace industry do not 

necessarily take into consideration the costs over the complete life-cycle. Hence, the global benefits 

of AM are not highlighted. For example, production costs of AM due to the machine and material 

costs are high. Yet, they can be offset during the use phase of the airplane, because of the fuel 

consumption reduction. This clearly emphasizes the need for a life-cycle perspective of costs. 

On another hand, at the detailed design phase of product development, the uncertainty is high. 

There is no way of ensuring that the initial product designed will be the same as the one launched 

on the market. Also, LCA has been used in most of the cases as a retrospective tool, comparing 

products only once they have already been launched. This is mainly due to time and resource 

consuming efforts to model the systems and is a strong limit of LCA. It can be palliated using 

simplified LCA. Nevertheless, the former may be developed at the expense of an increased 

uncertainty. If this uncertainty is not evaluated in the early-design, decision-making may be 

misguided because of erroneous results interpretation. In fact, each of the LCA and LCC models 

leads to uncertainties: the uncertainty of data collected, the uncertainty of generic processes used 

from databases, the uncertainty of parameters, scenarios and models selected, the uncertainty of 

impact assessment methods and finally the uncertainty of weighting and value choices. These are 

moreover increased by the uncertainty of the eco-efficiency model (normalization references, 

reduction targets). Among all of the studies reviewed on environmental and economic aspects of 

AM, none evaluates the uncertainty systematically. Also, to the best of our knowledge, no study 

has addressed uncertainty representation in eco-efficiency diagrams. This gap in the literature 

needs to be filled by quantifying uncertainty in LCA, LCC and eco-efficiency for communication 

purposes. In fact, doing so provides transparent and robust results to the third parties. This will help 

them make informed choices, depending on the confidence given to results. Communicating 

uncertainty would also indicate whether or not the uncertainties are high to the point that no 

conclusions or decisions can be made. Furthermore, the uncertainty assessment needs to evaluate 

the probability that a decision is wrong. It should also help identifying the parameters which 

contribute the most to the results uncertainty. This would highlight where to focus data collection 

efforts.  
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Objectives definition 

The general objective of this project is to integrate uncertainty knowledge into an eco-design 

approach built on the eco-efficiency concept, in order to help industrial partners make informed 

and robust decisions from a life-cycle perspective. This approach is built around a case study on 

additive manufacturing applied to the aeronautical industry. 

This general objective is based on the following research questions: 

1. How can the confidence level and robustness of eco-efficiency results be evaluated? 

2. How can eco-efficiency be used to improve the eco-design of AM parts in the aeronautical 

industry? 

3. How can transparency be increased and data collection efforts guided for eco-efficiency 

and decision-making? 

In order to answer these questions, specifics objectives are defined: 

1. Develop a stochastic eco-efficiency approach to evaluate the confidence level given to eco-

efficiency results, building on the eco-efficiency framework of Mami et al. (2017) and by 

filling gaps found in their environmental and cost models (refine use phase data, improve 

production costs modelling, include post-processing steps). 

2. Develop the eco-efficiency approach for AM of aircraft components, by accounting for the 

needs and targets of the aeronautical industry, and evaluate the eco-efficiency of different 

design alternatives. 

3. Identify the major uncertainty contributors in order to refine data collection and decrease 

the uncertainty of decisions. 
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 METHODOLOGY AND CASE STUDY 

4.1 Overview 

The methodology is developed around a case study about the design of an aircraft engine 

component by conventional and additive manufacturing technologies. The aim is to compare them, 

assess their environmental and economic performances, and identify improvement paths for 

research and development. 

The methodology builds on the ISO 14045 (2012) framework on eco-efficiency analysis and the 

approach suggested by Mami et al. (2017) to account for specific emission reduction targets 

relevant for the aeronautical industry (i.e. CO2, NOx, PM). The Environmental Life-cycle 

Assessment aligns with ISO (2006a, 2006b) and adopts a distance-to-target approach for the 

characterization, normalization and weighting phase. Costs are calculated using environmental 

LCC (Hunkeler et al., 2008b) on a consistent system boundary as for LCA. The marginal eco-

efficiency approach of Huppes & Ishikawa (2005c) is adapted to quantify and interpret the eco-

efficiency as trade-offs scenarios between the normalized costs and impact scores.  

In addition to the approach proposed by Mami and colleagues (2017), an uncertainty assessment 

step is added to evaluate the confidence level given to the eco-efficiency results. A dependent 

presampled uncertainty approach is implemented using aggregated datasets. This method has 

proven to provide identical results to those obtained by Monte Carlo analysis using unit process 

datasets, with a very short computation time (Lesage et al., 2018). This novel approach has the 

advantage of being implementable in simplified eco-design tools. Finally, a global sensitivity 

analysis is performed to identify the most contributing parameters to results uncertainty (Groen et 

al., 2017; Saltelli et al., 1999). 

4.2 Description of the case study 

The aircraft part designed by the industrial partners is made from metal (Inconel 718 alloy) (Figure 

4.1). 
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Figure 4.1: Part selected for the case study 

Such metallic parts are usually either produced conventionally, i.e. material is subtracted from an 

initial metal stock (also called « semi-finished product »), or 3D printed, i.e. material is added by 

layers (Gibson et al., 2010). From an initial detailed drawing of the part, one can know its 

dimensions, tolerances2 and surface roughness3 required to meet its mechanical properties.  

If this part were to be manufactured, both CM and AM processes would lead to a part with the 

same shape, however, the resulting surface roughness would not be the same. AM requires 

additional post-processing steps, such as stress relief thermal treatment (done to reach mechanical 

properties which could have been altered during the printing) and surface finishing. The latter is 

carried out to subtract machining allowances4 by conventional technologies.  

In a context where different processes are involved in the production of parts, it becomes 

interesting to evaluate the economic and environmental performances of different design scenarios 

in order to decide whether or not they align with the interests of the industry. The case study 

provides a real framework to test and apply our eco-design methodology in order to support an 

eco-efficient design of aircraft components. 

                                                

2 Permitted limit of variation of the dimensions in the drawing. 

3 Predicts the texture of the surface. 

4 Thickness of additional material 
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4.3 Methodological Framework 

Figure 4.2 below describes the general framework of the eco-efficiency based eco-design 

methodology. Each of the steps, from the goal and scope definition, to the results interpretation, is 

adapted to answer the objectives set in the previous chapter. It includes the objectives, goal and 

scope definition, the environmental life-cycle assessment and life-cycle costing, the eco-efficiency 

quantification and results interpretation. The uncertainty assessment is integrated and happens in 

parallel with the LCA, LCC, eco-efficiency assessment, and must align with their objectives, goal 

and scope. 

 

Figure 4.2: Eco-design methodology 
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4.4 Eco-efficiency  

4.4.1 Objectives, goal and scope  

The eco-efficiency assessment is applied to the life-cycle of an engine part produced by 

conventional and additive manufacturing technologies. Its objective is to evaluate the 

environmental and economic performances of the selected engine part. Then, it aims to combine 

both dimensions in an eco-efficiency XY diagram to evaluate the most eco-efficient manufacturing 

alternative. More specifically, the methodology applied to the case study, aims to: 

- Compare the potential life-cycle environmental impacts of an aircraft part made by additive 

manufacturing (AM) versus conventional manufacturing (CM) 

- Compare the life-cycle cost of an aircraft part made by additive manufacturing versus 

conventional manufacturing 

- Identify the “hot spots” in the environmental impact and cost assessments 

- Combine the environmental and economic dimensions using the eco-efficiency concept 

developed by Mami et al. (2017), evaluate and identify the most eco-efficient scenario 

- Highlight the potential of topology optimization enabled by AM in terms of environmental 

impact, life cycle cost, and eco-efficiency 

- Understand and assess the underlying uncertainties to evaluate the confidence on the results 

and the conclusions. Allow a better risk management in the eco-design process. 

- Compare the product systems under uncertainty and identify the most contributing 

parameters to the uncertainty. 

4.4.2 Product systems compared 

The product systems compared are the following (Figure 4.3) (the circular base is further separated 

from the part): 

1) Part 1 (P1) is the typical CM scenario. The part is entirely machined from the cylinder stock. 
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2) Part 2 (P2) has the same geometry than P1 but is designed for AM, with machining allowances 

for the functional surfaces5. The part is manufactured using Laser Powder Bed Fusion 

Additive Manufacturing technology (LPBF-AM). After AM, the functional surfaces are 

machined (conventional manufacturing) and the part results in the same shape and mass as 

P1. 

3) Part 3 (P3) is designed for AM, but has an optimized topology6, which enables a weight 

reduction; this part is manufactured using LPBF-AM with machining allowances for the 

functional surfaces; after AM, the functional surfaces are machined. 

 
 
 
 
 
 
 
 
 
 

Figure 4.3: Design scenarios of the selected part 

P1 is made from Inconel 718 stock, whereas P2 and P3 are made from IN718 powder. At the end 

of the production stage, P1 and P2 have the same geometry and weight 90 g each, whereas P3 is 

lighter (77 g) and highlights the technological benefits of AM (i.e. around 15% weight reduction). 

One must note the major differences between the three parts: going from P1 to P2, the 

manufacturing technology changes. Going from P2 to P3, the technology is the same however, the 

geometry changes. 

P1 is considered as the reference or base scenario to which P2 and P3 are compared.  

                                                

5 Surfaces of contact between two components 

6 The material distribution is optimized within the design space, thus reducing the quantities of powder required to 

produce the part by additive manufacturing. Topology optimization was realized by Pratt & Whitney Canada. 

Source: P&WC 
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The framework is representative of the Quebec, Canada context in 2018. The assessment is 

considered as starting at the tests and prototype step in the eco-design process (refer to section 

2.2.1 in the literature review), i.e. after the planning, conceptual design and detailed design stages. 

This means that the research and development are excluded, because they have already taken place 

and they are no longer part of the decision-making process: their associated environmental impacts 

(although negligible) and costs do not affect the overall eco-efficiency of the compared product 

systems.  

All the actors in the life-cycle process are considered, even thought they might not be part of the 

decision-making process (example: end-of-life is not directly managed by any of our industrial 

partners, but it is still taken into consideration in the assessment).  

4.4.3 Function and functional unit 

Although P1, P2 and P3 result from different designs and manufacturing processes, the parts fulfil 

the same function which is “ensuring the assembly of other components in an aircraft’s turbine 

engine”. It is limited to the part relatively to an aircraft. Therefore, the lifetime of an aircraft is 

used to quantify the function: the functional unit is “ensuring the assembly of other components in 

an aircraft engine during the aircraft lifetime" (90 000 hours of operation, (Bombardier, 2016)).  

4.4.4 System boundaries of the product system.  

The product systems are compared from cradle-to-grave. Thus, the assessment includes all stages 

from the extraction of raw material used to produce the part to its end-of-life (Table 4.1). 

The boundaries are equivalent for LCA and LCC. However, they differ depending on their 

significance relatively to the environmental and economic dimensions respectively. For example, 

while labour is negligible in LCA (not included), its associated costs are significant in LCC and 

cannot be excluded. Finally, the processes which are identical for the compared products are 

excluded. Only those differing from a scenario to another are taken into account.  

Description of product systems 

The detailed description of the products systems for parts P2 and P3 (AM) and for part P1 (CM) 

is provided in Appendix A   . The AM life-cycle starts with the pre-production phase. It considers 
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commodity production, i.e. all material needed for the production of parts: metal powder, metal 

platform, autocad file and argon. For CM, the production of a metal cylinder is used instead.  

Following is the production phase during which the part is 3D printed using a laser sintering system 

EOSINT M280. The latter follows regular maintenance (its filters are replaced and internal 

compartment is cleaned with vacuum cleaner). Then, once the part is printed, it undergoes post-

processing (stress relief heat treatments in an industrial electric oven under argon protective 

atmosphere). The platform and supports are removed and the platform rectified. Finally, the part 

surface is finished. The printing process generates waste which is included in the assessment 

(collected from the process, in the filters and by a vacuum cleaner). For CM, the metal cylinder is 

introduced in a 5-axes machining center: material is subtracted, generating waste which is also 

included in the assessment. After that, the part can also undergo additional surface finishing.  

Afterwards, the parts are shipped to the factory where the aircraft is assembled. This stage is 

excluded from the study because it is considered to be the same for all scenarios. 

The use phase is limited to the fuel consumption during aircraft operation. The aircraft 

maintenance activities are also excluded from the study because they are considered to be the same 

for all scenarios. 

The end-of-life or waste management considers different types of waste and waste management 

options. First, the waste from parts: these are either landfilled or recycled when they reach their 

lifetime. Then there is the waste from the metal powder or metal cylinder lost during the AM or 

CM processes. The metal powder collected from the filters or the vacuum cleaner is considered as 

hazardous and treated as such (conditioned and stored underground). The metal powder lost in 

support in AM, the metal lost from the metal cylinder in CM, and the waste from the platform, 

may either be landfilled or recycled. Here, landfilling is considered as the default scenario. As for 

the waste management, when landfilling is considered, the waste is modeled as inert material. For 

recycling, ecoinvent processes are chosen to represent the recycling activity and the avoided 

products (if credit is given for avoiding virgin material production). 
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Table 4.1: Included/excluded processes for eco-efficiency 

Life-cycle 
stage Case study LCA LCC Comments 

Research & 
Development Labor & tests Excluded Excluded 

It is considered as 
already carried out and 
does not affect decision 

making 

Pre-
production 

Extraction of raw material and 
production of all other materials 

needed for the production of the parts 
Included 

Included, 
accounted for 

in the purchase 
price of the 

material 

Material and alloy 
production (metal 

powder for P2 and P3, 
metal stock for P1) 

Infrastructures are not 
included because of the 

lack of data 

Transport to semi-finished product 
site and production of semi-finished 

products 
Included 

Transport of semi-finished products 
to production site Included 

Production 

Infrastructures Included Included 

3D printer, CM 
machine (and their 
maintenance) are 
included but the 

infrastructures hosting 
them are not 

Production equipment Included Included 
Fluids, equipment and 
tooling for machines, 

electricity, etc. 
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Table 4.1: Included/excluded processes for eco-efficiency (Continued) 

Life-cycle 
stage Case study LCA LCC Comments 

 

Post-processing Included Included 

Post-AM stress relief 
thermal treatment and 

machining of AM parts 
are included 

Transport from production to 
assembly site Included Included  

Assembly 

Infrastructures Excluded Excluded Not relevant for the 
comparative assessment 

Aircraft production Excluded Excluded 

It is the installation of 
the part into the aircraft. 
It is not relevant for the 

comparative 
assessment. 

Use 

Acquisition of spare parts Included Included 
Already accounted for 
in the pre-production 
and production stages 

Storage and insurance of spare parts Excluded, because 
considered negligible Included  

Aircraft operation Included Included 
Included, limited to 

aircraft fuel 
consumption 
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Table 4.1: Included/excluded processes for eco-efficiency (Continued and end) 

Life-cycle 
stage Case study LCA LCC Comments 

 Aircraft maintenance Excluded Excluded Not relevant for the 
comparative assessment 

End-of-life 

Transport from disassembly site to 
treatment site (landfill or recycling) Included Included  

Product recycling or landfilling Included Included 

Waste management of 
Powder/metal stock lost 
during the production 

phase, 
build plate end-of-life, 
initial part installed and 
spare parts end-of-life 

Avoided production Included or excluded Included or 
excluded 

100% credit rate given 
for avoided production 
of virgin material. This 

rate is applied to 
prevent double counting 
of the recycling benefits 

between the recycled 
material provider and 

user 

Resale gain of recycled material Not relevant for LCA Included or 
excluded 

Applied if boundaries 
are extended in LCA 
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4.4.5 Allocations to external systems 

The potential environmental impacts and costs associated with each life-cycle stage must have 

their responsibility assigned to processes which are multifunctional. Machines and equipment are 

allocated to the studied part. There are two options for allocating the kerosene consumption (for 

calculations, refer to section 4.4.6):  

i) the kerosene consumption allocated to the part is calculated as a fraction proportionally 

to the kerosene consumed by the aircraft. This means that, if the aircraft mass is 

increased, the fuel consumption will increase proportionally. Thus, the kerosene 

consumption is evaluated based on the total fuel consumed by the aircraft, its weight 

and the weight of the part,  

ii) the kerosene consumption is calculated as a function of the marginal change in weight 

compared to an existing baseline (the current aircraft). This means that if the aircraft 

mass is increased, the fuel consumption will increase marginally.  

 At the end-of-life, waste materials can be recycled into new materials. Even though this is true, 

the recycling process is excluded from the system boundaries because the recycling of nickel alloys 

is considered to be difficult (Corrotherm, 2018). Therefore, the part is assumed having zero value 

for recycling and zero economic value; it is considered as completely landfilled. Nevertheless, for 

the purpose of sensitivity analyses, recycling processes and credit for recycled materials avoiding 

virgin material production are included. 

4.4.6 Life cycle environmental and economic inventory 

The life-cycle inventory is built on the data collection related to all the processes included in the 

system boundaries. In other words, materials, energy consumption, waste and emissions generated 

for AM and CM processes respectively are considered.  

This project relies on the life cycle assessment model developed at CIRAIG (2018) in the context 

of the Manu-710 project. It provides a comparative assessment of the potential environmental 

impacts of parts P1, P2 and P3 along their life-cycle. The extractions and emissions from and to 

the environment are translated into impacts on human health, climate change, ecosystems quality 

and resource consumption. Data collection (building of product systems) was supported by 
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members7 of the CRIAQ (Consortium de recherche et d’innovation en aérospatiale du Québec) 

involved in this project. 

Additional practical data was generated (e.g. manufacturing time, parts volumes, quantities of 

metal powder or cylinder - Appendix B) and was used by the LCA and LCC models. This was 

done through numerical simulations of the manufacturing processes resulting in parts P1, P2 and 

P3. They were performed by Victor Urlea8 and Olivier Boudreau-Rousseau9 (LAMSI). These 

simulations were carried out for different batch sizes (1, 9 and 90 parts). A sensitivity analysis is 

done further to show the influence of the batch size on the environmental impacts and production 

costs. 

Model hypotheses 

To compute the emissions associated to the parts during the use phase, the following parameters 

are determined: 

a. Number of parts (as seen in the function and functional unit section, 7 parts are required to 

fulfill the functional unit) 

The parts, once installed in the aircraft, wear and must be replaced. Their average lifetime is 

estimated around 15 000 hours. Thus, in addition to the original part installed, 6 replacement or 

spare parts are needed for maintenance. Consequently, all inputs and outputs are normalized to the 

total number of parts over the aircraft lifetime (equation 7). 

 !" = !$%	 + !(% 

 

(7) 

With: 

                                                

7 Laboratoire sur les alliages à mémoire et systèmes intelligents (LAMSI) (École de Technologie Supérieure, ETS), 

CRIQ (Centre de Recherche Industrielle du Québec), Fusia, Pratt & Whitney Canada, and Bell Helicopter. 
8 Simulation of AM parts (P2, P3). Procedure illustrated in Appendix B 

9 Simulation of CM part (P1). Procedure illustrated in Appendix B 
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!": Total number of parts over aircraft lifetime 

!$%: Number of initial parts installed  

!(%: Number of spare parts used for maintenance 

The value of !$% is set to one. Furthermore, the part volume was identified as a key parameter for 

the reference flows because it has an important influence on reference flows and life-cycle impacts 

of parts (CIRAIG, 2018; industrial partners). Consequently, it must be carefully evaluated to 

compare the manufacturing scenarios, because of its important influence on the life cycle impacts 

and costs. 

b. Airplane traveled distance: the average airplane speed (829 km/h) is used to compute the 

traveled distance of airplanes during their lifetime. Thus, the airplane traveled distance over its 

whole life cycle is 74 610 000 km.  

c. Aircraft kerosene consumption:  

Dandres (CIRAIG, 2018) calculated the marginal kerosene consumption factor for a marginal 

increase of weight being 4×10-5 kg-fuel/km/kg (CIRAIG, 2018). To do so, he used the fuel 

consumption data as a function of the number of passengers using the airplane transport process 

of ecoinvent v3.3 “Transport, freight, aircraft (RoW)| intracontinental”, the Bombardier EPD use 

case for airplanes (Bombardier, 2016; Oudjehani, 2015) and the technical sheets of Bell Helicopter 

models found on the company website.  

For example, if P3 (AM optimized) is compared to the reference scenario P1 (CM), the fuel 

consumption due to the weight of part P1 is first calculated (equation 8): 

 )*+ = ,*+ × )./	0123
.4../

× 6 

 

(8) 

Then the fuel consumption for P3 is calculated using the differential consumption (equation 9): 

 )*7 = )*+ − (,*+ − ,*7) × );$002<2="$>3 × 6 

 

(9) 

Where:  

)*+ : Fuel consumption for P1 
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 ,*+: Mass of P1 

)?@	ABCD
?E.?@

 : Fuel consumption per km.kg (4×10-4 kg-fuel/km/kg) 

6 : Traveled distance 

);$002<2="$>3  : Differential fuel consumption due to airplane weight increase by 1 kg (4×10-5 kg-

fuel/km/kg) 

Since P2 and P1 have equal masses, their associated fuel consumption is the same. 

The following table shows the major hypotheses made for the production cost model.  

Table 4.2: List of major hypotheses for the production cost model (source: LAMSI) 

General hypothesis 

i. The cost of P2 and P3 amounts to the sum of their AM and post-AM machining 

operations costs. 

ii. The cost of P1 amounts to the machining cost of the part from the metal cylinder. 

Hypotheses established for the AM simulations 

i. The cost of each AM part is first calculated for the AM processing only (as-built 

part) and then, for the combined AM and post-AM machining. 

ii. The cost to produce one as-built component takes into consideration the costs of 

powder feedstock, electricity and protective gas supplies, machine exploitation 

and maintenance, labor (programming, setup, monitoring), processing time, and 

the number of parts per plate. 

iii. The volume of powder lost during AM in the filters and vacuum cleaner 

represents 20% of the sum of the part and supports volumes. 

Hypotheses established for the CM simulations  

i. The cost of machining of a given number of parts ²n²  greater than 1 corresponds 

to the sum of the costs of the first part and the (n-1) parts in production. 

ii. The cost of machining takes into consideration the labor costs (programming, 

setup, monitoring), machine exploitation and maintenance costs, coolant and 

tooling (mounting template) supplies, machining time, and the batch size. 
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Table 4.2: List of major hypotheses for the production cost model (source: LAMSI) 

(Continued and end) 

iii. Time invested in programming machining operations is almost 4 times longer 

than that invested in programming AM processing. 

iv. Time invested to machine a first part is almost 4 to 5 times longer than that to 

machine subsequent parts (these are produced in volume, once the production is 

stabilized). 

 

4.4.7 Life-Cycle Assessment 

ISO 14045 (2012) on eco-efficiency recommends that the LCA be aligned with ISO 14040 (2006a) 

and ISO 14044 (2006b) to assess the environmental dimension of the eco-efficiency framework. 

This study relies on the LCA model and results of Dandres (CIRAIG, 2018) providing the 

environmental profile for each of the scenarios considered in our case study. The life cycle 

inventory relies on the ecoinvent v3.3 database. The impact scores are characterized here through 

the ReCiPe 2008 (Goedkoop et al., 2009) and IPCC 2013 (Stocker et al., 2013) methods. ReCiPe 

2008 includes 18 midpoint categories and 3 endpoint categories (damage to human health, 

ecosystems quality, resources). In this method, the impacts of climate change at the midpoint level 

contribute to the damages on human health and ecosystems quality. Therefore, its contribution to 

these two endpoints is subtracted and IPCC 2013 is directly used to present climate change results. 

Climate change results are chosen to be presented separately because: i) they are easier to 

understand when expressed in terms of “CO2 eq” rather than “DALY” or “species.yr”, ii) they are 

used further in the distance-to-target approach (explained in the paragraph below). 

For the case study, the results obtained through ReCiPe 2008 and IPCC 2013 are first presented 

and a contribution analysis by midpoint impact category is performed. Additionally, to meet the 

aeronautical industry interests, the distance-to-target weighting approach elaborated by Mami et 

al. (2017) is applied. It specifically addresses criteria pollutants and reduction goals set by the 

aeronautical industry for the carbon dioxide (CO2), nitrogen oxides (NOx) and particulate matter 

(PM) use phase emissions compared to 2005 levels: 50% CO2 reduction by 2020 and 75% by 2050; 

80% NOx reduction by 2020 and 90% by 2050; 65% PM reduction by 2050 (IATA, 2013). 

However, the model of Dandres (CIRAIG, 2018) does not provide the life cycle inventory of 



61 

emissions. Therefore, IPCC 2013 (Stocker et al., 2013) is used to represent the CO2 emissions, and 

ReCiPe 2008 (Goedkoop et al., 2009) for the NOx and PM emissions. In fact, the ReCiPe midpoints 

are used to calculate the NOx emissions10, dividing each midpoint impact score by the NOx emission 

corresponding characterization factor. The particulate matter formation midpoint is used to represent 

the PM emissions. 

The calculations are translated by equations 10,11,12 and 13 (Mami et al., 2017). The distance-to-

target approach includes a weighting factor which accounts for the distance between a current state 

(current emissions of an aircraft) and a target state (target emissions of an aircraft). Also, the time 

left to reach targets is considered, i.e. more or less importance is given to emissions which must 

be reduced in a shorter time. Finally, an ecological factor is added to set the equivalency of 

damages at the aircraft target levels.  

In equation 10, the emissions are first characterized per impact category, using the characterization 

factor of the selected impact assessment method, then normalized by the corresponding impact 

category score of the aircraft life-cycle. Finally, they are aggregated into a single score using the 

weighting factor FG
∑ FG?
GIJ

.  

KL is the product of factors (a), (b) and (c) in equation 11 (all three factors and normalized to 1, 

i.e. the ratio is comprised between 0 and 1). (a) is the distance to target factor, it links the current 

aircraft emissions to the target aircraft emissions. The impact category with the highest factor is 

given a stronger weight, i.e. the gap between the current and target state is the greatest, and a higher 

importance is given to the seriousness of that impact category.  (b) is the time to target factor: the 

impact category with the highest factor is given a stronger weight, i.e. the time to reach the targets 

for that impact category is the shortest. (c) is the damage equivalency at target level factor which 

is included to "make corrections in the case that the distance-to-target approach does not 

sufficiently represent the seriousness" (Goedkoop & Spriensma, 1995) of damages at target levels 

(similar to experts panel). 

                                                

10 The assumption on which relies this calculation might overestimate the real value of the NOx emissions. 
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 ML =NWP × QPL
P

 (12) 

 SL =N SP × QPL
P

 (13) 

Where: 

M$: Aggregated environmental impacts score for the assessed scenario i 

O$P: Emissions of inventory substance j for the assessed scenario i 

QPL : Characterization factor of inventory substance j to impact category c 

KL: Weighting factor of impact category c 

ML: Impact score of the aircraft life cycle for impact category c 

WP: Current emissions of the aircraft life cycle for inventory substance j 

SL: Aggregated target emissions of the aircraft life cycle for impact category c 

SP: Target emissions of the aircraft life cycle for inventory substance j 

TUL: Mean of the reverse of the years left to reach target reductions of impact category c 

VL: Damage at target value for impact category c 

The normalization reference is defined as the life-cycle impacts of an aircraft meeting the target 

values. Therefore, an alternative scenario compared to the base scenario would contribute to 

improving or deteriorating x% of the environmental impacts of an aircraft. This normalization step 

is done because the impact of the studied component itself is not so relevant but rather the degree 

(a) (b) (c) 
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to which the impact contributes to the total problem (the impacts of an aircraft) (Goedkoop & 

Spriensma, 1995).  

As the use phase (kerosene combustion) represents more than 95% of the aircraft environmental 

impacts (CIRAIG, 2018), the aircraft fuel consumption is used as a reference process to generate 

the corresponding life cycle emissions. The damage equivalency at target level is set to 1, meaning 

that equal weighting is given to damages at target levels (mutually comparable reduction objectives 

and target values can be formulated only if all damage levels are equal, Goedkoop & Spriensma 

(1995)). 

A sensitivity analysis to the distance-to-target approach is done by ranking the manufacturing 

scenarios of the case study by endpoints (ReCiPe 2008) and by emission score, i.e. the amounts of 

CO2, NOx and PM (Mami et al., 2017). A comparison can be made to show whether the obtained 

ranking is the same when the indicator is changed. 

Additionally, the part lifetime in an aircraft is of 15000 hours. Spare parts are needed to replace 

the original one at the end of its lifetime. Consequently, it is interesting to evaluate the impacts 

and costs of a batch production (more than 1 part can be produced). Hence, a sensitivity analysis 

for batch sizes of one and 9 parts is performed (i.e. one part is placed alone on the build plate and 

9 parts are placed in a batch on the same build plate for AM, Figure 4.4). 

 
Figure 4.4: 9 parts placed on the build plate for AM (seen from above) 

4.4.8 Environmental Life-cycle costing 

The Environmental Life-Cycle Costing (Hunkeler et al., 2008a) is used to evaluate the economic 

performance of parts P1, P2 and P3. This method aligns with the goal and scope of the eco-
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efficiency framework. The system function stays the same. Costs are quantified to meet the same 

functional unit as in the LCA.  

The company costs (or market prices when data is not available) are used rather than the value or 

profit. Although usually included in life-cycle costing, the research and development costs are not 

calculated because they are considered as past costs (Kuosmanen, 2005) (the eco-efficiency 

assessment happens in this study after the R&D phase, and the scenarios have already been 

designed). They are thus, not relevant anymore for the decision-making process. Pre-production is 

not included because there was not enough information on the cost of upstream processes. 

Accordingly, the price of material is taken as an aggregated data. During the production phase, we 

take into consideration: the price of raw material and energy, the machine cost, the maintenance 

cost for the machine and equipment, the labour cost, the post-processing cost, and finally the cost 

of transport from the manufacturing facility to the assembly site. Post-processing is very rarely 

considered in cost and environmental studies but its contribution to overall costs is estimated to be 

the 3rd largest after the machine and materials costs (Lindemann et al., 2012). Therefore, it is 

considered here. The production cost is based on the calculations developed by Timercan (2017). 

They are updated and completed to consider the complete life-cycle of parts usually printed in the 

laboratory (LAMSI). The assembly phase is not relevant for the comparative assessment and is 

therefore not considered. The use phase accounts for the cost of fuel (2.75 CAD/gal11) consumed 

throughout the aircraft lifetime. The waste management cost is based on the cost of landfilling or 

recycling. Due to lack of data, this cost is considered the same.  

The present value of all costs is calculated at the reference year, 2018, accounting for the inflation 

and discount rate, set to 3% and 9% respectively. A sensitivity analysis is performed to evaluate 

the influence of discounting on the life-cycle cost (discount rates of 0% and 15%, (Willcox, 2004)). 

The choice of a discount rate is done to evaluate a society cost. A discount rate of 0% indicates 

that time does not influence the value of money (the value of a dollar tomorrow is equal to that of 

a dollar today); accordingly, the equivalency between the LCA and LCC is strengthened because 

the temporal boundaries are the same (the LCA carried out here is static). 

                                                

11 https://www.iata.org/publications/economics/fuel-monitor/Pages/index.aspx 
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In order to consider discounting, the costs are first evaluated on a yearly basis. A timeline is set, 

starting from the reference year, which is the year where the LCC assessment initiates, until the 

lifetime end period of the system (here, the aircraft lifetime). 

The annual cost increases each year with inflation (equation 14): 

 XY2><	P	 = 	XY2><	$ ×	 (1 + [)P\$ 

 
(14) 

With: 

XY2><	$ : Cost at year i (reference year) 

XY2><	P : Cost at year j (must be greater than year i) 

[: inflation rate 

Then, the annual cost is discounted as following (equation 15): 

 
]XY2><	$ = 	

)XY2><	P
(1 + 6)P\$

	 

 
(15) 

With: 

]XY2><	$ : Present cost at year I (reference year) 

)XP : Future cost at year j (must be greater than i) 

6 : Discount rate  

At this point, all the costs over the complete life-cycle of the product are future costs expressed as 

the corresponding amount to pay today. They can be summed up into the total life-cycle cost. 

Finally, the latter is normalized with reference to the life-cycle cost of an aircraft as per equation 

16. Therefore, an alternative scenario compared to the base scenario would contribute to reduce or 

increase x% of the life-cycle cost of an aircraft. 

 
^XX=_<4>3$`2; = 	

^XX%><"
^XX<202<2=L2

	 

 
(16) 

The price of the aircraft is considered to be equal to 25% of the life-cycle cost, and is therefore 

extrapolated in order to be used as the normalization reference (Glade, 2005; Haggerty, 2004; 

Mami et al., 2017; Défense nationale, 2014).  
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Additionally, since the part lifetime in an aircraft is of 15000 hours, and that spare parts are needed 

to replace the original one once it wears, the analysis of four production cases for AM is suggested 

to show their influence on the life-cycle cost (refer to Figure 4.4):  

a) Spare parts are produced on-demand, batch 1, i.e. for AM, each part is printed alone on the 

build plate; for CM, one part is made from a metal cylinder. 

b) Spare parts are produced on-demand, batch 9, i.e. for AM, each part is printed along with 

other components (for other applications) in the same batch (on the same build plate); for 

CM, 9 parts, each made from a metal cylinder, are manufactured in series. 

c) Spare parts are produced at first, batch 1, i.e. for AM, each part is printed alone on the build 

plate; for CM, one part is made from a metal cylinder. 

d) Spare parts are produced at first, batch 9, i.e. for AM, each part is printed along with the 

others in the same batch (on the same build plate); for CM, one part is made from a metal 

cylinder and is part of a batch (9 parts manufactured in series). 

4.4.9 Eco-efficiency representation and interpretation 

The distance-to-target LCA elaborated beforehand generates a normalized impact score. The 

environmental LCC generates a normalized cost. It is possible to place this data on an eco-

efficiency graph, since both dimensions are expressed in percentage of increase or decrease of the 

aircraft life-cycle cost/impact. The representation in a XY diagram allows the identification of 

possible compromises to be made between both dimensions. The X-axis is defined as an 

environmental improvement, or the difference between the normalized environmental impact of 

the reference scenario with that of an alternative. The Y-axis is defined as a cost reduction, or the 

difference between the normalized cost of the reference scenario and that of an alternative.  

The eco-efficiency indicator is calculated as per equation 17:  

 WW$ = X$ × S + M$ (17) 

Where: 

WW$: Eco-efficiency indicator for the assessed scenario i 

X$: Aggregated cost for the assessed scenario i (normalized) 
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S: Cost-to-environment trade-off factor, defined as a subjective value expressing the importance 

of the cost relatively to the environment. 

M$: Aggregated environmental impacts score for the assessed scenario I (normalized). 

The highest eco-efficiency indicator represents the most eco-efficient alternative. 

4.5  Uncertainty Assessment 

The uncertainty assessment aims first to inform on the degree of certainty of conclusions 

(uncertainty analysis). On another hand, it aims to identify the key parameters having the greatest 

influence on the results uncertainty (sensitivity analysis). The general approach is summarized in 

Figure 4.5 (adapted from Saltelli et al. (1999), Groen et al. (2017)). 

Only parameter uncertainty is evaluated (scenario and model uncertainty are not considered). The 

approach is based on a stochastic analysis of the life-cycle impacts, costs and eco-efficiency of 

scenarios P1, P2 and P3.
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Figure 4.5: Uncertainty assessment (adapted from Saltelli et al. (1999), Groen et al. (2017))
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4.5.1 Uncertainty analysis for Life-Cycle Assessment 

The uncertainty analysis for LCA is based on the use of presampled aggregated datasets (Lesage 

et al., 2018). These precalculated iterations are generated for a specific number of final demands 

(i.e. number of products in the LCA model for which aggregated datasets are required) by 

calculating the LCIA score using the selected LCIA method (ReCiPe 2008 and IPCC 2013). They 

are then stored as background data in order to be used in Monte Carlo simulations (this procedure 

is illustrated in Appendix C). These precalculated results only account for LCI uncertainty; the 

uncertainty of impact assessment method is not considered (although it is inherent to 

characterization and normalization factors). 

 The LCIA result array is expressed by (equation 18): 
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(18) 

Where: 

>: Number of Monte Carlo iterations  

? : Number of aggregated datasets used in the system 

, : Scaling factor 

4 : Aggregated result for dataset j 

The scaling factor is generated > times using random sampling from the probability density 

functions attributed to each uncertain input parameter (foreground data). The uniform distribution 

is used as a rough estimation of the variability of input parameters (an equal probability is given to 

minimum and maximum values) (step 1, Figure 4.5). 

This method is applied to each of the case study scenarios, making sure that the iterations for 

common scenario parameters are the same. The uncertainty is propagated through the LCA model 

(step 2, Figure 4.5). Then, the LCA results are presented as in step 3 of Figure 4.5. 
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Afterwards, the probability of a scenario being better than another is calculated (step 4, Figure 4.5). 

In other words, the scenarios are compared under uncertainty, by counting the share of Monte Carlo 

iterations where one scenario has a lower/higher LCIA score than another scenario. 

4.5.2 Uncertainty analysis for Life-Cycle Costing 

LCA and LCC require different calculation steps. While a set of ordered arrays generated from the 

ecoinvent v.3 cut-off database are used in LCA uncertainty analysis, only probabilistic input data 

on cost and input parameters is needed for the LCC uncertainty analysis. Random values are first 

sampled for input parameters based on their attributed probability density function (step 1, Figure 

4.5). The uniform distribution is used. Then, the uncertainty is propagated through the LCC model 

(step 2, Figure 4.5): for each iteration >, the life-cycle cost is calculated by using the corresponding 

probabilistic parameters values. Afterwards, the uncertainty is represented (step 3, Figure 4.5). 

Finally, the scenarios are compared under uncertainty by calculating the probability of a scenario 

being better than another (as done in the LCA uncertainty analysis) (step 4, Figure 4.5). 

4.5.3 Uncertainty analysis for eco-efficiency 

Probabilistic data on the eco-efficiency input parameters is needed for the eco-efficiency 

uncertainty analysis. Random values are sampled for these parameters based on their attributed 

probability density function (for example, the normalization references) (step 1, Figure 4.5). The 

uniform distribution is used. Then, the uncertainty is propagated through the eco-efficiency model, 

using dependent sampling of the distance-to-target LCA and LCC uncertainty results (step 2, 

Figure 4.5): for each iteration >, the eco-efficiency indicator is calculated using equation 17 (refer 

to section 4.4.9). If the trade-off is considered to be stochastic (it is not always equal to one), it is 

given random values which are sampled based on a uniform distribution. The scenarios are 

compared under uncertainty by calculating the probability of a scenario being better than another 

(step 4, Figure 4.5). For the eco-efficiency uncertainty representation, the thousand Monte Carlo 

(x,y) coordinates (environmental improvement and cost reduction uncertain results) are located on 

the eco-efficiency diagram. 
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4.5.4 Global sensitivity analyses for Life-Cycle Assessment, Life-Cycle Costing 

and eco-efficiency 

A global sensitivity analysis is performed to determine the contribution of each input parameter to 

the results uncertainty. As a consequence, this step supports information gathering and data 

collection. Thus, it would help improve and refine the environmental impact and cost results, by 

decreasing the parameter value uncertainty. 

The analysis is carried out using the Spearman rank order coefficient (equation 19). 

 
@(B, C) = 1 −

6 × ∑ (-(BJ) − -(CJ)):K
J67

LM − L
 

Where: 

@ (X,Y): Spearman coefficient for the correlation of parameters X and Y 

-(BJ): rank of ith value of X in the distribution X1 …. XN 

-(CJ): rank of ith value of Y in the distribution Y1 …. YN 

L: Number of samples in the distribution  

(19) 

In other words, for each input parameter, the 1000 corresponding Monte Carlo values are ranked. 

Also, for the life-cycle impact, the 1000 corresponding values are ranked. Then, the Spearman rank 

order coefficient for the correlation between each input parameter and the life-cycle impact is 

calculated. The latter is also done for the correlation between the input parameters and the life-

cycle cost and ultimately the eco-efficiency. 

Finally, the Spearman rank order coefficient for each of the input parameters is plotted in a 

horizontal column bars chart (step 5, Figure 4.5). This representation helps identifying the 

parameters contributing the most to the results uncertainty.  

4.5.5 Local sensitivity analyses 

Local sensitivity analyses are performed in order to evaluate how a variation in one input parameter 

at a time influences the outcome (LCA, LCC or eco-efficiency results) (Table 4.3). 
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Table 4.3: Local sensitivity analyses performed 

Parameter LCA LCC Production cost EE 

Standard / distance-to-target LCA x    

Batch size x x x x 

Production scenario (initial or on-demand)  x   

Discount rate  x   

Recycling and credit to recycling x x   

Fuel consumption modelling x x   
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 RESULTS AND DISCUSSION 

This chapter presents at first the results of the life-cycle assessment and the life cycle costing. Then, 

the eco-efficiency is represented in an XY diagram. Afterwards, the uncertainty and sensitivity 

analyses results are described. Finally, the strengths, limits and outcomes of the case study results 

are discussed, followed by a general discussion on the stochastic eco-efficiency methodology. As 

a reminder of the case study, P1 is the conventional manufacturing scenario (CM). The part is 

completely machined from a metal cylinder. P2 has the same geometry as P1 but is additively 

manufactured (AM). P3 is additively manufactured with topology optimization (AM Optimized). 

P1 and P2 have the same mass whereas P3 is 15% lighter. 

5.1 Life-Cycle Assessment 

This section presents the results of the LCA, assuming parts are produced in a batch of 9. 

5.1.1 Environmental profile at damage level (ReCiPe 2008, IPCC 2013) 

The environmental profile of the three parts is presented in Figure 5.1 in terms of impacts on human 

health, ecosystems quality and resources consumption using ReCiPe 2008 (Goedkoop et al., 2009). 

The contribution of climate change to human health and ecosystems quality is subtracted and IPCC 

2013 (Stocker et al., 2013) is used instead to represent the impacts on climate change. 
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Figure 5.1: Environmental profile of P1 (CM), P2 (AM) and P3 (AM Optimized) in terms of 

human health, ecosystems quality, climate change and resources consumption 

 

Figure 5.1 shows that the use phase contributes to more than 95% of the environmental impacts on 

either of the four environmental indicators. This is due to the kerosene combustion during aircraft 

operation, and is true for all three manufacturing scenarios P1, P2 and P3. Nevertheless, the 

comparison between the parts is difficult when looking at absolute results, because the use phase 

impacts are dominant and do not allow us to compare the other life-cycle stages. 

Therefore, Figure 5.2 presents the relative change in the environmental impacts of P2 and P3 

relatively to P1. The reduction or increase percentage in terms of the four previous indicators is 

observed. A negative percentage shows an environmental improvement. 
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Figure 5.2: Environmental profile of P2 (AM) and P3 (AM Optimized) relatively to P1 (CM), in 

terms of impacts on human health, ecosystems quality, resources consumption and climate 

change 

The figure is described in details for each life-cycle stage: 

- For the metal production, the impacts of P1 are the highest for the 4 indicators (because of 

the larger amount of metal required to produce the part compared to P2 and P3). 

- For the commodities (P1 is considered not having any commodities), P2 and P3 show 

additional impacts on each of the 4 indicators. Commodities for AM include argon and the 

build platform. 

- For the manufacturing stage, P1 shows the highest impacts on climate change, human 

health, resources, but not on ecosystems quality, where P2 and P3 have higher impacts. 
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This is due to the impacts of the printer, filter and printing in AM which are more damaging 

to ecosystems quality than the manufacturing of P1 (CM). 

- For the post-treatment, P2 and P3 show additional impacts compared to P1 for all indicators. 

The post-treatment of AM parts (P2 and P3) includes the electricity consumed for the heat 

treatment stress relief, base separation, surface finishing and platform rectification. The 

post-treatment of P1 (CM) only includes the electricity consumed for the surface finishing. 

- For the use phase, P3 has lower impacts compared to P1 and to P2 on all indicators (because 

of weight reduction). 

- For the waste management, P2 and P3 show additional impacts compared to P1 for all 

indicators (because of the impacts of hazardous waste treatment). 

To follow on the previous description, the main observation is that in terms of total environmental 

impacts, P2 and P3 show an improved profile on human health and resources compared to P1, but 

not on ecosystems quality. For the former damage category, the shift of ranking between scenarios 

observed is mainly due to the impacts related to the AM technology. In fact, the electricity 

consumed is more important for P2 and P3 because AM is more energy intensive. Also, the 

electricity production shows that land transformation is the highest elementary flow contributing 

to the damages on ecosystems quality. It is also the case for the forest transformation elementary 

flow contributing to the printer impacts on ecosystems quality. Additionally, it is important to note 

the following: Dandres (CIRAIG, 2018) initially modelled most of the processes as occurring in 

Quebec. The results were characterized through IMPACT 2002+ (Jolliet et al., 2003) and did not 

show any shift in the ranking for P1, P2 and P3 in terms of damages to ecosystems quality. 

However, the LCA model constructed for the purpose of this project used deterministic and 

probabilistic values from the precalculated aggregated datasets (Lesage et al., 2018) characterized 

through ReCiPe 2008. For technical reasons only, some processes were substituted by other 

processes from the “RER” and “GLO” regions (mostly for the AM printer and commodities 

modelling, for example “hot rolling steel (CA-QC) processing). Although IMPACT 2002+ and 

ReCiPe 2008 are two different impact assessment methods, the use of processes from different 

regions could be the main reason why P2 and P3 have greatest impacts on ecosystems quality 

compared to P1.   
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The second important point is that human health impacts present the highest reduction potential. 

They are dominated by the impacts of metal production. These are lessened in AM parts (P2 and 

P3) because of the reduction in metal required for their production compared to P1. The 

environmental improvement due to metal saving is supported by the calculation of the buy-to-fly 

ratio (mass of raw material used over mass of final component, refer to the literature review, section 

2.1.5). It is found to be around 4:1 for AM parts (P2 and P3) whereas around 20:1 for P1 (CM). 

Third, P3 is 15% lighter in weight compared to P2 and P1 because of its optimized topology. 

Therefore, it shows an improvement for each of the indicators due to the lower use phase impacts. 

Since P2 has the same mass as P1, it consumes the same amount of fuel throughout the aircraft 

lifetime (there is no impact reduction due to the use phase compared to P1). 

5.1.2 Environmental profile at midpoint level (ReCiPe 2008, IPCC 2013) 

As a reminder, the contribution of climate change to human health and ecosystems quality from 

ReCiPe is subtracted and IPCC 2013 is used instead to represent the impacts on climate change. 

In Figure 5.3, the environmental profile at midpoint level shows that the natural land transformation 

is the most important contributor to damages on ecosystems quality for P3 (AM Optimized). It is 

due to inputs from nature such as "transformation from forest", mostly from the "on-shore oil and 

gas production" process. The PM formation midpoint contributes the most to damages on human 

health, because of NOX, SO2 and particulates emissions. Finally, the fossil depletion midpoint 

contributes the most to damages on resources, because of crude oil and natural gas. The midpoints 

contributions to damages for P2 and P3 plotted relatively to P1 are presented in Appendix F.  
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Figure 5.3: Midpoint contribution to damages for P3 (AM Optimized) 

5.1.3 Distance-to-target Life-Cycle Assessment 

The distance-to-target LCA considers the three emissions of interest for the aeronautical industry: 

CO2, NOx and PM. The results over the complete life-cycle are presented in Figure 5.4. We can 

also see that the use phase contributes to more than 95% of the environmental impacts on either 

three of these indicators. 
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Figure 5.4: Environmental profile of P1 (CM), P2 (AM) and P3 (AM Optimized) in terms of 

emissions of interest for the distance-to-target approach: nitrogen oxides (NOx), particulate 

matter formation (PM) and climate change 

 

Figure 5.5 shows the environmental improvement of scenarios P3 and P2 compared to the base 

scenario P1. The results show a similar trend to those of the previous section. We first note that P3 

contributes to lower emissions of CO2 , NOx and PM during the use phase; this is due to its lower 

(-15%) weight. Moreover, these three emissions also translate an environmental improvement 

relatively to P1 because of the metal reduction in AM parts (P2 and P3). The total impacts for each 

indicator show the same ranking for P1, P2 and P3 except for climate change where P2 is slightly 

worse than P1 (because it has the same use phase emissions, but additional impacts due to 

commodities and waste management of hazardous waste). 
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Figure 5.5: Environmental profile of P2 (AM) and P3 (AM Optimized) relatively to P1 (CM), in 

terms of emissions of interest for the distance-to-target approach: nitrogen oxides (NOx), 

particulate matter formation (PM) and climate change. 

5.2 Life-cycle Costing 
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Figure 5.6: Life-cycle cost of scenarios P1 (CM), P2 (AM) and P3 (AM Optimized). Parts are 

assumed to be made in a batch of 9 and on-demand. 

The waste management contribution here includes the waste generated from the manufacturing 

processes and the waste parts at the end of their lifetime. We can see that waste management is 

more costly for P1 (CM) than for the P2 and P3 (AM parts), because manufacturing P1 from an 

initial metal cylinder generates more waste to treat. At end-of-life, the parts are considered to be 

landfilled. Nevertheless, a sensitivity analysis is performed to see how opting for recycling (and 

eventually resale of recycled material) may affect the life-cycle impacts and cost (refer to section 

5.5.1.1.7). 
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Figure 5.7: Life-cycle cost reduction potential of P2 (AM) and P3 (AM Optimized) relatively to 

the base scenario P1 (CM) 

P2 is 290$ cheaper than P1, whereas P3 is 366$ cheaper compared to P1 because it shows an 

additional cost reduction due to the use phase and waste management. In fact, because of topology 

optimization, P3 is lighter in weight than P1 and P2. Thus, it consumes less fuel during the aircraft 

operation (15$ cost reduction). Its associated life-cycle waste quantity (from the production and at 

its end-of-life) is lower.  

Furthermore, as the production cost almost equals half of the life-cycle cost (Figure 5.6), we look 

further into the production phase in the next section. 
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Additive manufacturing production costs here are broken down into 6 categories (Figure 5.8). 
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programming time needed to convert the CAD file into a EOSJZ file (file adapted for the printer), 

the setup of the build plate, and the monitoring of the printing process. Stress relief heat treatment 

are part of the post-process cost and finally, post-AM machining includes the aggregated cost of 
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refer to Figure 5.9). 
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Figure 5.8: Production cost repartition for the additive manufacturing parts P2 (AM) and P3 (AM 

Optimized) 

 

We can see that half of the production cost is due to post-printing activities. As the technology 

reaches higher maturity levels on the market, this cost is expected to decrease, hence reducing the 

total production cost of AM parts. Additionally, the powder is currently expensive because of its 

long and costly production process but is expected to decrease with technology advancements. 

Figure 5.9 shows the contribution of material, labor and machine costs to the production cost of 

completely conventionally manufactured parts.  
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Labor cost takes into consideration the programming time, the production of the 1st component 

(takes more time than components produced in series because the production is not yet stabilized), 

and the setup. Machine cost accounts for the hourly rate of the machine (including maintenance), 

the cost per manufacturing operation obtained with the Walter online GPS tool12 (Appendix B). 

Finally, material costs include raw material and mounting template costs (coolant is also considered 

but found to be negligible). 

5.3 Eco-efficiency 

The eco-efficiency diagram below combines the environmental and economic dimensions (Figure 

5.10). Points P2 and P3 are placed relatively to the diagram centre representing the base scenario 

P1. The environmental dimension builds on distance-to-target results and the cost dimension uses 

life-cycle costing results. Each score is normalized with reference to the aircraft life-cycle impacts 

and costs, respectively. Therefore, the diagram shows on the x-axis percentage units of 

environmental improvements, and on the y-axis percentage units of cost reduction.  

We can see that the AM optimized part (P3) dominates the two others scenarios, i.e. it is “better” 

on both dimensions. Therefore P3 is more eco-efficient than P1 and P2. This is true for a trade-off 

of 1 and for all other possible trade-offs. Although P2 is dominated by P3, it is more eco-efficient 

than P1.  

                                                

12 https://gps.walter-tools.com/touchtime/walter#/home 
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Figure 5.10: Eco-efficiency diagram 
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uncertainty. Figure 5.11 represents the box and whiskers chart comparing P1, P2 and P3 in terms 

of climate change (kg CO2 eq). The use phase distributions predominate over the other life-cycle 

stages because of its contribution to more than 95% of the total life-cycle impacts (as seen in 

deterministic results). Deterministic results presented in the previous section indicate that P3 has 

lower impacts than P2 and P1. However, due to their uncertainty, this ranking should not be 

validated. In addition to that, the life-cycle impact distributions show a similar spread for the three 

scenarios. Hence, one cannot make a difference about the superiority of an option over the other in 

terms of CO2 eq. 

 

Figure 5.11: Box and whisker chart representing life-cycle impact in terms of kg CO2 eq 

distribution for the complete life-cycle (left) and the distribution by life-cycle stage (right). 

Results are presented with a confidence interval of 95%. The whiskers represent the 2.5e and 

97.5e centile. The box is split by the median and its bottom and top represent the 2nd and 3rd 

quarters respectively. Outliers are excluded. 
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of P1 and P2. Also, the CO2 emissions of P2 are 85% of the time lower than those of P1. Therefore, 

despite the CO2 emissions uncertainty, communicating this significance percentage gives reliability 

for the scenarios comparison and ranking.  

 

Figure 5.12: Probability of a scenario being better than another in terms of environmental impact 

(CO2 eq) for P1 (CM), P2 (AM) and P3 (AM Optimized)  

The box and whiskers results show the same trend for the human health, resources, ecosystems 

quality, NOx and PM indicators. The significance of the difference analysis confirms the 

deterministic results (P3 and P2 are more environmentally performant than P1 on all indicators 

except ecosystems quality) (Appendix E).  

5.4.1.2 Significance of the difference between scenarios in life-cycle costing 

5.4.1.2.1 Life-cycle cost 

The probabilistic distributions obtained from 1000 Monte Carlo life-cycle cost results are presented 

in Figure 5.13. This figure shows that the datasets are evenly distributed. Therefore no conclusion 

may be drawn on the best cost option on neither of the life-cycle stages. Consequently, the 

significance of the difference between P1, P2 and P3 (Figure 5.14) is performed. 
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Figure 5.13: Box and whisker chart representing life-cycle cost distribution for the complete life-

cycle (left) and the distribution by life-cycle stage (right). Results are presented with a confidence 

interval of 95%. The whiskers represent the 2.5e and 97.5e centiles. The box is split by the median 

and its bottom and top represent the 2nd and 3rd quarters respectively. Outliers are excluded. 

 

 

Figure 5.14: Probability of a scenario being better than another in terms of life-cycle cost (CAD) 

for P1 (CM), P2 (AM) and P3 (AM Optimized) 
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We can see that there are 71% chances of P3 having a lower life-cycle cost compared to P1 and 

57% chances of being lower than P2.  

Although these percentages are not discriminatory, the decision is left to the decision-maker’s risk 

tolerance. Performing a global sensitivity (section 5.5.1.2.3) analysis can help identify the main 

uncertainty contributors in order to try reducing their uncertainty; in doing so, the significance 

between results is expected to become more decisive. 

5.4.1.2.2 Production cost 

The production cost distributions (Figure 5.15) also do not allow the formulation of conclusions 

and is followed by a calculation of the significance of the difference between P1, P2, and P3 (Figure 

5.16). 

 

Figure 5.15: Box and whisker chart representing production cost distributions. Results are 

presented with a confidence interval of 95%. The whiskers represents the 2.5e and 97.5e centiles. 

The box is split by the median and its bottom and top represent the 2nd and 3rd quarters 

respectively. Outliers are excluded. 
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Figure 5.16: Probability of a scenario being better than another in terms of production cost 

(CAD) for P1 (CM), P2 (AM) and P3 (AM Optimized) 

The results shows that the probability of P3 being advanced as a more cost-efficient scenario 

compared to P2 and P1 on 1000 Monte Carlo iterations is lower than 50%. This is important to 

underline because the production cost variability affects the overall life-cycle cost uncertainty. The 

former statement is further confirmed in the global sensitivity analysis section. 

5.4.1.3 Significance of the difference between scenarios in eco-efficiency 

The eco-efficiency diagrams usually present deterministic results for the points coordinates 

representing different alternatives. As a reminder, each point located on the diagrams here uses as 

x-coordinate, the environmental impact improvement relatively to the base scenario P1 

(normalized with reference to the aircraft life-cycle impacts), and as y-coordinate, the cost 

reduction relatively to P1 (normalized with reference to the aircraft life-cycle cost). Nevertheless, 

in a probabilistic approach, a distribution of possibilities for each dimension can be observed from 

the 1000 Monte Carlo iterations. Therefore, the deterministic results presented disregard the risks 

that another scenario may be more eco-efficient than the one claimed by its deterministic location 

on the graph. Presenting the uncertainty in the eco-efficiency diagram helps visualizing such 

variability of results and supporting decisions made while considering the uncertainty. 

The eco-efficiency diagram in Figure 5.17 shows the thousand Monte Carlo (x,y) coordinates for 

P3. The deterministic coordinates of P3 are defined as the mean value of the cost and environment 

distributions distinctly. First, the results distribution for the environmental improvement indicate 

that P3 is always more environmentally performant than P1. Second, we can observe that the 

uncertainty on the y-axis is greater than the uncertainty on the x-axis. In other words, the spread of 

the cost reduction results is greater than that of the environmental improvement. Refining the 
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variability of input parameters involved in the life-cycle cost calculation would decrease the spread 

of results and would increase the ease to make a decision. 

 

Figure 5.17: Eco-efficiency diagram illustrating the probabilistic and deterministic eco-efficiency 

results of P3 (AM) relatively to P1 (CM) 

Consequently, accounting for the uncertainty, it is clear that P3 is not always the most eco-efficient 

scenario. Nevertheless, we count the number of iterations where P3 has a greater eco-efficiency 

than P1, for a trade-off of 1 (the eco-efficiency value is calculated using equation 17) (Figure 5.18). 

 

Figure 5.18: Probability of a scenario being better than another in terms of eco-efficiency for P1 

(CM), P2 (AM) and P3 (AM Optimized) when the trade-off is set to 1 

The results show that throughout 1000 Monte Carlo iterations, P3 has 79% chances of being more 
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If we consider the trade-off value to be stochastic, the environmental and cost dimensions do not 

necessarily have the same importance in decision-making, because the trade-off value is not always 

equal to 1. Nonetheless, P3 is still more eco-efficient than P1 74% of the time (Figure 5.19). 

 

Figure 5.19: Probability of a scenario being better than another in terms of eco-efficiency for P1 

(CM), P2 (AM) and P3 (AM Optimized) when the trade-off is considered stochastic 

5.5 Sensitivity analyses 

5.5.1.1 Local sensitivity analyses 

5.5.1.1.1 Comparison between standard and distance-to-target LCA approaches: ranking 

between scenarios in deterministic results 

Table 5.1 shows scenarios P1, P2 and P3 in function of the 4 damage indicators presented in the 

LCA section and the 3 emissions indicators used in the distance-to-target approach. This is done 

in order to confirm whether scenarios keep the same ranking using different environmental 

indicators. Also, it allows discussing whether the CO2, NOx and PM emissions considered by the 

aeronautical industry are representative enough of the complete environmental profile of the parts.  
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Table 5.1: Ranking of scenarios in terms of environmental performance, in function of the 

environmental indicator used (deterministic results) 

Indicator Scenario P1  
(CM) 

P2  
(AM) 

P3  
(AM Optimized) 

Human health 3 2 1 

Ecosystems 1 3 2 

Resources 3 2 1 

Climate change (CO2) 2 3 1 

NOx 3  2 1 

PM 3 2 1 

A ranking of 1 means that the corresponding scenario is the most environmentally performant, i.e. 

shows the lowest impacts compared to the other scenarios. 

Climate change is the only indicator in common in both approaches and shows impact scores 

ranked as follow: P3 < P1 < P2. In addition, P1 results last in the ranking of the remaining indicators 

except for ecosystems quality where it shows the lowest impacts. This may be explained as per 

section 5.1.1; some elementary flows are in fact severely characterized in ecosystems quality 

compared to other damage categories. Therefore, we can conclude that P1, P2 and P3 do not show 

the same ranking using different environmental indicators such as ecosystems quality. Also, the 

CO2, NOx and PM emissions considered by the aeronautical industry are not representative enough 

of the complete environmental profile of the parts.    

5.5.1.1.2 Sensitivity analysis of the life-cycle impacts to the batch size 

Figure 5.20 shows the effect of batch size on the life-cycle impacts of P2 and P3 relatively to P1. 

The results presented are for a batch size of 1. We can see that the commodities, manufacturing 

and post-treatment impacts are significantly increased for P2 and P3 relatively to P1. This is mainly 

because these impacts are only allocated to one part instead of 9. A small batch size emphasizes 

the life-cycle impacts per part, and is therefore not desirable at the production level for AM. In 
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addition, P1, P2 and P3 keep the same ranking towards the 4 environmental indicators (compared 

to the impacts for a batch of 9).  

 

Figure 5.20: Sensitivity of the life-cycle impacts to the batch size (1 instead of 9). The impacts of 

P2  (AM) and P3 (AM Optimized) are plotted relatively to P1 (CM) 

5.5.1.1.3 Sensitivity analysis of the production cost to the batch size 

A local sensitivity analysis of the production cost to the batch size is performed. We consider batch 

sizes of 1, 9 and 90 and break the production cost (unit cost) as following (Figure 5.21): 

- For AM parts (P2 and P3), the production cost is equal to the cost of printing (AM) and 

post-AM machining operations (CM). 

- For the CM part (P1), the production cost is equal to machining operations.  
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- Machining operations include the machining of the 1st component and that of the other 

components. In fact, the 1st machined component is assumed to take up to the quadruple of 

the time spent to manufacture the parts in series (parts in series are the parts produced in 

volume once the production is stabilised). 

 

Figure 5.21: Unit production cost variation with batch size for P1 (CM), P2 (AM), P3 (AM 

Optimized) 

It is noticeable that batch production decreases the cost because infrastructure and labor costs are 

distributed over the number of parts, therefore the bigger the batch size, the lower the costs (for 

both AM and CM). It is also the case for the 1st component machining cost which is palliated with 

an increasing production volume. 

We can see that at low production volumes (batch size=1), the AM parts cost (P2 and P3) would 

be significantly lower if the post-AM machining operations could be reduced. Also, we can note 

that with an increasing batch size, the machining cost per part, for either AM (P2 and P3) or CM 
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(P1), decreases. Nevertheless, for the AM parts, this decrease in the cost of machining is more 

significant than the decrease in the cost of AM. 

5.5.1.1.4 Sensitivity analysis of the life-cycle cost to the batch size and production scenario  

A sensitivity analysis of the life-cycle cost to the production scenario is carried out (Figure 5.22). 

The part, once installed in the aircraft, wears after a specific period of time. Therefore, spare parts 

must be produced to replace the original one when needed. The production of all parts required for 

maintenance may be produced at the same time (at reference year 2018), or they may be produced 

on-demand, i.e. whenever needed. Therefore, 4 production cases for AM are compared to 

understand how they affect the life-cycle cost: 

a) Spare parts are produced on-demand, batch 1. For AM, each part is printed alone on the build 

plate. For CM, one part is made from a metal cylinder. 

b) Spare parts are produced on-demand, batch 9. For AM, each part is printed along with other 

components in the same batch (on the same build plate). For CM, one part is made out of a metal 

cylinder and is part of a batch (9 parts manufactured in series). 

c) Spare parts are produced at first, batch 1. For AM, each part is printed alone on the build plate. 

For CM, one part is made from a metal cylinder. 

d) Spare parts are produced at first, batch 9. For AM, each part is printed along with the others in 

the same batch (on the same build plate). For CM, one part is made from a metal cylinder and is 

part of a batch (9 parts manufactured in series). 
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Figure 5.22: Sensitivity analysis of the life-cycle cost to the production scenario for P1 (CM), P2 

(AM), P3 (AM Optimized) 

Figure 5.22 shows a great difference in magnitude between a batch size of 9 and 1, explained 

previously as per section 5.5.1.1.3. In addition, in the AM industry, parts are very rarely placed 

alone on the build plate. Therefore cases (a) and (c) are not very representative of the reality.  

Now, comparing scenarios (b) and (d): manufacturing the spare part only when the original one 

needs to be replaced (b) helps avoiding storage and insurance costs, which are included in the use 

phase (although not shown in the graph); these costs are inevitable when the parts are produced at 

first (d) and may be distinguished in Figure 5.23 (P2 usually has the same use phase cost than P1, 

however we can see a slight contribution of the use phase to the life-cycle cost of P2 in scenario 

(d), due to storage and insurance costs). Furthermore, the production of spare parts on-demand 

lowers the net present value of such an expenditure made at a later time. 

In the aeronautical industry, parts are more likely to be printed on-demand, therefore it is more 

relevant if a spare part is produced at the time of replacement rather than at first (along with the 

production of the original part). 
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Figure 5.23: Sensitivity on the life-cycle cost of production scenarios (batch size and timing of 

the production of spare parts). The relative difference of P2 (AM) and P3 (AM Optimized) is 

plotted relatively P1 (CM). 

5.5.1.1.5 Sensitivity analysis of life-cycle cost to the discount rate  

A sensitivity analysis to the discount rate is performed in order to evaluate the influence of time on 

the life-cycle cost results. The reference scenario is set at a discount rate of 12% (including 

inflation), and the production of parts is defined in this section as an on-demand production, i.e. 

occurs at different moments in the aircraft lifetime. 

Discounting accounts for the fact that a dollar today worth more than a dollar in ten years from 

now (even if inflation is disregarded), and that is because more importance is given to the present 

time and to the productive uses we can make of an invested dollar. Also, amounts of money paid 

today do not have uncertainty as is the case for future expenses. Because future cash flow carry a 

risk that present expenditures do not, we must discount future cash flow to compensate us for the 

risk we take in future payments. Thus, Figure 5.24 shows that when the discount rate is set to 0%, 
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the costs, though reducing the relative life-cycle cost difference between P1, P2 and P3. The latter 

can be observed in Figure 5.25. 

 

Figure 5.24: Sensitivity analysis of the life-cycle cost to the discount rate for P1 (CM), P2 (AM), 

P3 (AM Optimized) 
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Figure 5.25: Sensitivity analysis of the life-cycle cost of P2 (AM) and P3 (AM Optimized) 

relatively to P1 (CM) to the discount rate 

We notice that setting the discount rate to 0% increases the cost reduction potential of P3 and P2 

compared to P1 (additional 430$ reduction for P2 and 532$ for P3 compared to the scenario with 

a 12% discount rate). For a discount rate of 15%, the ranking of P1, P2 and P3 stays the same 

although the cost reduction enabled relatively to P1 is less significant. 

5.5.1.1.6 Sensitivity analysis of eco-efficiency to the batch size 

The batch size during production changes the eco-efficiency results such as presented in Figure 

5.26. We can see that for a trade-off of 1, the most-eco-efficient scenario is the base scenario P1. 

Nevertheless, P3 demonstrates an improved environmental performance compared to P1 and 

according to ISO 14045 (2012), P1 shall not be claimed as more eco-efficient, because of its worse 

environmental performance. The figure also indicates that P1 and P3 are iso-eco-efficient for a 

trade-off of 0.2. This means that P3 would be the most eco-efficient scenario if at least 5 times 

more importance was given to the environmental dimension compared to the economic one. 
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Figure 5.26: Eco-efficiency diagram for a batch size of 1 (instead of 9) 

5.5.1.1.7 Sensitivity analysis of life-cycle impacts and costs to recycling and credit to recycling  

A sensitivity analysis to recycling and credit to recycling is performed. The life-cycle impacts and 

costs are slightly improved when recycling is included and that credit is given to the avoided virgin 

material production (Appendix E). 

5.5.1.1.8 Sensitivity analysis to the fuel consumption model approach 

The difference in the fuel consumption modelling affects indeed the results. In fact, adopting the 

approach of saying that the fuel consumption increases proportionally to the increase in aircraft 

mass increases the cost and environmental impacts of the parts and would further emphasize the 

improvement of P3 compared to P1 (Appendix E).  
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5.5.1.2 Global sensitivity analyses 

Global sensitivity analyses (GSA) results show a ranking of influential parameters in LCA, LCC 

and EE in order to inform on which ones to select for data refinement.  The analyses are based on 

the Spearman rank order coefficient, which measures the strength of the correlation between the 

ranked iterations of input parameters and the ranked iterations of the outcome (LCA, LCC, EE). 

The coefficient may either be positive or negative, describing an increasing or decreasing 

relationship between each input parameter and the outcome. The closer the coefficient is to -1 or 

1, the more sensitive is the outcome uncertainty to the corresponding input parameter. 

Although the figures show sorted parameters, this is only done in order to easily distinguish the 

parameters with high Spearman coefficients. In no case do we attempt to compare parameters 

among each other. In fact, because it is based on the rank rather than raw data, the Spearman 

coefficient does not indicate the relationship between input parameters, but only their respective 

relationship with the outcome. Additionally, it may underestimate or overestimate this relationship. 

Conclusions derived using this coefficient might be misleading because low effect may be over-

estimated as interactions between variables may be high (Saltelli et al., 1999). Therefore, a 

conservative approach is adopted; only parameters with a Spearman rank order coefficient greater 

than 0.2 and lower than -0.2 (medium and high correlations) are considered. 

5.5.1.2.1 Global sensitivity analysis of the  life-cycle assessment 

Figure 5.27 shows a Spearman rank order coefficient of 0.93 for the distance travelled by the 

aircraft. It is the only parameter indicating a significant enough coefficient value for interpretation. 

Therefore, the number of kilometres travelled by the aircraft over its lifetime is clearly the priority 

parameter to refine in order to reduce the uncertainty on the life-cycle impacts results. The analysis 

is done for the climate change impacts but yields the same conclusion for the impacts on the other 

environmental indicators. 



103 

 

Figure 5.27: Spearman rank order coefficient calculated between input parameters and life-cycle 

impacts of P3 (AM Optimized) 
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5.5.1.2.2 Global sensitivity analysis of the life-cycle cost 

The GSA performed on the life-cycle cost uncertainty (Figure 5.28) shows that the latter is sensitive 

to the production cost, the aircraft travelled distance, the fuel consumption and the inflation rate 

(increasing relationship). However, it is also sensitive to the average part lifetime in the aircraft 

and the discount rate (at the bottom of the figure) but is illustrated by a decreasing relationship. 

These parameters should be evaluated and refined in priority in order to reduce life-cycle cost 

results uncertainty.  

 

Figure 5.28: Spearman rank order coefficient calculated between input parameters and the life-

cycle cost of P3 (AM Optimized) 

5.5.1.2.3 Global sensitivity analysis of the production cost 

The GSA in Figure 5.29 indicates that the production cost of AM parts is sensitive to the 
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Figure 5.29: Spearman rank order coefficient calculated between input parameters and unit 

production cost of P3 (AM Optimized) 

In addition, Figure 5.30 shows a decreasing relationship between the production cost and the 
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Figure 5.30: Spearman rank order coefficient between input parameters and unit production cost 

of P3 (AM Optimized) 

Finally, Figure 5.31 also shows that the production cost is sensitive to the programming time in 

CM. It is also the case for the cost of raw material (metal cylinder) and the cost per machining task 

generated by the Walter online GPS tool (Appendix B). 
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Figure 5.31: Spearman rank order coefficient between input parameters and unit production cost 

of P1 (CM) 

5.5.1.2.4 Global sensitivity analysis of  EE 

The Spearman rank order coefficient illustrated in Figure 5.32 indicates that the eco-efficiency 

indicator is sensitive to the life-cycle cost and the trade-off value.  
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Figure 5.32: Spearman rank order coefficient between input parameters and eco-efficiency of P3 

(AM Optimized)
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5.6 Case study discussion: main outcomes, strengths and limits 

The environmental dimension of eco-efficiency is evaluated using the life-cycle assessment 

methodology. It is done to compare AM parts to a conventionally manufactured one, all fulfilling 

the same function. Results show that P3 (AM Optimized) has lower life-cycle environmental 

impacts than P1 (CM), except for the impacts on ecosystems quality. These are due to some of the 

AM technology aspects (manufacturing, post-processing, commodities). From a life-cycle 

perspective, the main advantage of AM is its potential for topology optimization. The latter enables 

a reduction in fuel consumption during the use phase. Therefore, the part mass is a key parameter 

of its environmental performance. Now, comparing P2 (AM) and P1 (CM), the main difference 

between the two is that P2 (AM) helps improving environmental impacts due to the reduced 

quantities of metal used in the AM process.  

The "Easy-LCA" tool developed by Dandres (CIRAIG, 2018) is a valuable tool for supporting the 

eco-design of AM parts. It allows engineers and designers to yield environmental impacts results 

in a short time using very basic information about the parts design. The comparative LCA results 

provided by the study of Dandres (CIRAIG, 2018) and used in this research work could be 

improved on multiple points.  

First, the accuracy of the fuel consumption marginal increase, which is used to calculate the 

difference in fuel consumption between parts with different weights, should be improved as it is 

one of the most sensitive parameter. It has been calculated by Dandres (CIRAIG, 2018) for one 

specific aircraft and would be improved by considering possible variations in different aircraft 

fleets. 

Secondly, the product system of P1 (CM)  is not quite equivalent to that of P2 (AM) and P3 (AM 

Optimized) because there was not enough technical data on machining and equipment. It is 

modelled using generic data on average metal machining. Increasing the level of detail of this 

process would help improving the conventional manufacturing results. 

 In addition to that, the ReCiPe 2008 impact method (Goedkoop et al., 2009) used here to 

characterize the environmental emissions into midpoints is no longer maintained and has been 

updated into ReCiPe 2016 (Huijbregts et al., 2017). Since some adaptations and corrections have 

been made, results generated through ReCiPe 2016 should not be compared to those obtained 
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through ReCiPe 2008 (Huijbregts et al., 2017). Nevertheless, because the aggregated presampled 

datasets used in the LCA uncertainty analysis were generated through ReCiPe 2008, we choose to 

stay consistent throughout the impact assessment method of deterministic results. However, it is 

recommended to generate new deterministic results using ReCiPe 2016, and support them by a 

stochastic uncertainty assessment using aggregated presamples also generated through this LCIA 

method. 

The LCA assessment results generated for climate change, ecosystems quality, resource 

consumption and human health show that P3 (AM Optimized) is more environmentally performant 

than P1 (CM) on all indicators except ecosystems quality. However, this shift in scenarios ranking 

is not observed using the distance-to-target approach, which considers CO2, NOx and PM 

emissions. The latter approach is used to evaluate the environmental dimension of eco-efficiency, 

instead of a standard analysis using damage indicators. This is because the number of indicators to 

interpret for decision-making is reduced. Also, the approach considers emissions which are relevant 

for the aeronautical sector reduction targets. Nevertheless, it does not account for other emissions 

potentially contributing to the damages on ecosystems quality. Consequently, it is clear that the 

environmental indicator choice remains a challenge. The LCA results need to be adapted to the 

industry. This means they should guide design choices which help reaching reduction targets. 

However, the LCA method is usually done to account for the complete environmental profile of 

parts. Therefore, one should consider looking at a wider set of emissions which could potentially 

be harmful for the environment. It is recommended that a standard eco-efficiency analysis using 

damage indicators be carried out in parallel to the one using the distance-to-target approach. A 

comparison of scenarios under uncertainty can help strengthening the decision by indicating the 

percentage of the time where a damage indicator is compromised. 

The life-cycle costing shows that AM with topology optimization enables a reduction in fuel 

consumption and therefore the use phase cost is lessened. Although benefits are observed during 

the use phase, it is not always the case when shedding the focus on the production cost. In fact, AM 

is most performant when multiple parts are printed on the same platform. The batch size has a 

significant influence on the cost (as well as on environmental impacts and eco-efficiency). 

Therefore, increasing the batch size assigns the cost responsibility to more than just one part. This 

being said, the first limit to highlight here is that the main conclusions of the study were drawn for 

a batch size of 9. This choice was initially made because 9 parts were designed and placed on the 
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build platform when converting the CAD model of the part into a file supported by the AM printer. 

Nevertheless, the number of parts could have been greater than 9, probably reaching 12 parts on 

the same platform. This could have possibly decreased the AM cost. In addition to that, the local 

sensitivity analysis to batch size made for the production cost of CM are based on production 

volumes of 1, 9 and 90. In reality, much more than 90 parts are usually machined for series 

production, and in consequence, the cost calculated for 90 parts may have been overestimated. 

Another point of discussion is the CM cost calculated using Walter online GPS tool13; the cost per 

machining operation was judged to be good estimation by one of our industrial partners. However, 

it represents a cost for a part in production (series production) and may not be representative of our 

case study project scale. Increasing the level of details of the CM process would improve the cost 

analysis for R&D scale.  

Furthermore, in the production cost calculations, the post-processing costs of AM (stress relief, 

heat treatment) are included. Although data has been extrapolated from real costs encountered in 

the case study, a more precise and accurate modelling of the gas consumption in function of the 

volume of the part and time needed to reach the required mechanical properties would improve the 

production cost results. Although production cost could tend to be higher for AM, the alternative 

scenarios part designs could change and be adapted specifically in order to put forward the AM 

technology and reduce the production cost. 

One big question which arises through this case study is about the economies of scale. At the 

product development phase, tests and prototypes are done in order to iteratively improve the design 

of parts. It is true that the data used in the calculations are based on the laboratory scale. However, 

they may still be representative of the product and development context. Although an analysis has 

not been carried out to compare the outcomes in an industrial context, the reality of product 

development is very close to the one we have attempted to model with the exception of machines 

impacts and costs which may be in fact allocated to a larger production volume in the R&D 

department of manufacturing companies. Moreover, the study is limited to the systems boundaries 

set in the goal and scope definition and the Quebec context. However, different enterprises with 

                                                

13 https://gps.walter-tools.com/touchtime/walter#/home 
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different geographical locations might suggest different part design alternatives; accounting for 

these variations could be done as a sensitivity analysis to evaluate the influence of scenario 

uncertainty. 

Specifically aligned with the aeronautical industry context, the buy-to-fly ratio has been calculated 

and found to be lower for AM parts than for CM (4:1 versus 20:1). This means that a higher 

proportion of raw material ends up in the final AM parts than in CM. This engineering metric 

confirms the environmental results generated through the LCA since it is a good indicator for the 

scrap produced. It is also a good economic indicator in terms of the cost necessary to treat different 

waste quantities. Nevertheless, the buy-to-fly ratio has a limited cradle-to-gate scope because it 

only covers the production stage. Therefore it should not solely be used to claim that one scenario 

is more environmentally performant than another.  

The eco-efficiency results show that the AM optimized part is the most eco-efficient compared to 

the CM part. In fact, the AM optimized part has a 100 % probability of being more environmentally 

performant than CM, mostly because of the impacts reduction associated to the use phase. 

Nevertheless, it has been shown that it is not the case for the life-cycle cost (because of higher 

production costs depending on the batch size). This underlines the clear existing link between 

production costs and their direct influence on eco-efficiency results. In fact, this is also confirmed 

by the GSA, showing that the eco-efficiency is sensitive to the life-cycle cost uncertainty. Therefore 

refining this data would improve the suggested approach to support decision-making, by decreasing 

the uncertainty results, and thus increasing the communicated confidence level. 

Finally, the probabilistic uncertainty analysis has shown that evaluating the uncertainty in LCA, 

LCC and EE is important in order to inform on the risk level of decisions. Based on the available 

data for input parameters, the sampling was based on the uniform distribution, which has the 

disadvantage of being bounded. Moreover, the variability ranges for these parameters have been 

defined with the help of the LAMSI for the technical information directly related to the AM 

process. Nevertheless, providing more information on data uncertainty is useful in order to avoid 

its overestimation. The Spearman rank order correlation used in the global sensitivity analyses 

directly depends on the model structure itself, i.e. in the way processes are interrelated and how 

calculations are made between parameters. It links the input parameter to the outcome, therefore 

depending on how the model is constructed, some information which could affect the uncertainty 
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may be lost. Others sensitivity methods could be identified in order to better measure the correlation 

between input parameters and the outcome results (Groen et al., 2017).  

5.7 General discussion 

One of the main strength of the approach suggested is its relevance to the decision-making context 

and its easy integration in eco-design tools. The eco-efficiency diagram built on the work of Mami 

et al. (2017) helps illustrating possible trade-offs between the environmental and economic 

dimensions in a consistent approach, relevant to the reduction targets set by the aeronautical 

industry. Nevertheless, these deterministic results do not show the robustness of results and 

conclusions. Therefore, the underlying risks of the decision are disregarded. By calculating the 

probabilistic impacts and costs for each scenario and then comparing them under uncertainty, we 

are able to support the decision by showing the significance of the difference between them. This 

may also be done for the eco-efficiency indicator. Presenting uncertainty on the eco-efficiency 

diagram can help decision-makers understand how, depending on their results distributions, there 

may be cases where the conclusions made on deterministic results are shifted. 

Measuring the uncertainty on LCA and LCC distinctly is necessary in order to refine the life-cycle 

data and reduce the conclusions uncertainty. This can be done through sensitivity analyses. Local 

sensitivity analyses are deterministic approaches showing the influence of a slight variation in a 

parameter value while keeping all other parameters value constant. However, they require expert 

judgement for the choice of parameters. Thus, they are supported here by global sensitivity analyses 

to consider the complete input parameter set (Borgonovo & Plischke, 2016). The Spearman rank 

order coefficient used is an example of global sensitivity method which is directly generated from 

the Monte Carlo simulations. It is is convenient for non-linear models (Altman & Krzywinski, 

2015) and can help identifying the main uncertainty contributors, thus, guiding data collection 

efforts.  

The uncertainty approach based on the precalculated aggregated LCA datasets adopted in the 

approach here is well suited to be implemented in eco-design tools, because of its limited 

calculation time. However, several limitations apply. It only considers LCI uncertainty, yet there 

is uncertainty associated to the characterization and normalization factors. One considerable 

improvement would be to account for the uncertainty in LCIA methods, by presampling 

characterization factors generated by dependent sampling of common model parameters (Lesage 
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et al., 2018). Furthermore, scenario and model uncertainty are not considered. Because results are 

also influenced by these two uncertainty sources, it is recommended to quantify them 

simultaneously with parameter uncertainty (Huijbregts et al., 2003). Distributions must be chosen 

for each input parameter, thus the results depend on the knowledge about the variability of input 

parameters modelled. Finally, the choice of correlation coefficient used in the global sensitivity 

analysis is debatable. In fact, using Spearman when there are too many interactions in the model 

may yield erroneous results (Saltelli et al., 1999). Because it is based on the rank rather than on 

raw data, the Spearman rank order coefficient is directly influenced by the model structure. 

The biggest challenge left to the decision-maker is to set their accepted uncertainty level (threshold 

percentage: for example, if A is better than B at least "80%" of the time, then A is chosen over B). 

In other words, even though the probability of A being better than B is shown, the decision will 

directly depend on their risk management approach. Increasing the number of Monte Carlo 

iterations can help improve the confidence given to results. 

One of the most important limit associated to an eco-design approach built on eco-efficiency is that 

the possible trade-offs to be made do not have the same importance over the value chain. For 

example, the production of AM compared to CM parts may not be encouraged if it does not show 

direct benefits to the manufacturer. Although this is true, AM parts may add value to the aircraft 

operator who directly benefits from the fuel reduction during the use phase. This also means that 

the manufacturer may sell their product at a higher price in order to increase their profits. 

As a result of this discussion, an ideal eco-design approach for AM would be a combination of 

LCA, LCC in an eco-efficiency framework integrating uncertainty. This framework would be a 

strong asset to AM and engineering design processes in general if an iterative design optimization 

approach is followed, as the one suggest by Tang et al. (2016). In other words, after each single 

step of the AM design process, the calculation of the environmental profile would be computed 

and supported by uncertainty in order to give feedback on the next step to take, while staying 

aligned with economic choices. 

In order to successfully integrate eco-design for AM, a good understanding of the AM design 

process in needed, because of the multiple technical conditions under which AM performs 

optimally. In fact, according to Lindemann and Jahnke (2017), “before thinking  about parts costs, 

one needs to address the strategic question of whether the use of additive manufacturing is 
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beneficial for the field of application”. In consequence, it is only if these benefits are clear that the 

decision-making process should be initiated. A part would be a good candidate for AM if the 

technical aspects are confirmed at first and if its design offers economic benefits. In addition to 

that, two major aspects contributing to decision-making are the part geometry and the batch size. 

In fact, the part geometry indicates the type of optimization required for the part (topology, shape, 

size), and each optimization type has criteria it must respect. Therefore, performing eco-design 

should be properly adapted to the AM design process in order to guide eco-efficient choices while 

respecting technical constraints.  

In addition to that, the environmental indicator used may be a challenge for implementing eco-

design. Using environmental indicators such as endpoints is a consistent way of representing the 

complete profile of a scenario in terms of its potential environmental impacts. However, if results 

show different trends from an indicator to another, it may become more difficult to make a decision. 

Regardless of the indicator choice, one should keep in mind the risks for the environment that are 

implied with each decision throughout the eco-design process. 

Finally, in order to ensure eco-design for AM is operational, strengthening the links between actors 

from the AM business ecosystem would be  necessary because it would increase collaboration 

efforts of AM technology induced businesses (Kage, Krüger, & Gausemeier, 2017) towards more 

eco-efficient products and services. 
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CONCLUSION AND RECOMMENDATIONS 

The general objective of this project was to integrate uncertainty knowledge into an eco-design 

approach built on the eco-efficiency concept, in order to help industrial partners make informed 

and robust decisions from a life-cycle perspective. This approach, built around a case study on 

additive manufacturing, was applied to the aeronautical industry. 

The eco-design methodology combines environmental and cost aspects based on the eco-

efficiency framework developed by Mami et al (2017). The main contribution of our project is 

the integration of uncertainty in order to measure the robustness of the results and the transparency 

of conclusions for a more informed decision-making. The confidence on results is strengthened 

by communicating the probability of a scenario being better than another one it is compared to. 

The transparency of conclusions is increased by identifying the parameters influencing the most 

the results uncertainty. The uncertainty is assessed in parallel to the LCA, LCC and EE results 

and integrated in an eco-design tool with short computation time. 

From the case study, it can be concluded that AM is a promising technology for the aeronautical 

sector. It improves the environmental, cost and eco-efficiency performances compared to CM. 

These improvements are mainly due to topology optimization, which shows subsequent benefits 

in light weighting and reduction of fuel consumed during the use phase. In fact, the probability of 

AM with topology optimization being better than CM is more significant than without topology 

optimization. 

This research work specifically focused on the potential of eco-design in AM relatively to the 

design of lightweight structures. Nevertheless, more research should be performed beyond 

incremental improvement. The AM technology allows to design complex parts, but also to redesign 

existing parts with potential benefits such as increased material and resource efficiency. 

A strong understanding of “Design for Additive Manufacturing” is needed to overcome some of 

current AM technological challenges such as the need for post-processing, post-AM machining, 

and the recyclability of the metal powder waste. Our stochastic ecoefficiency based approach 

provides an opportunity to improve the sustainability of the AM technology and increase its 

competitiveness compared to conventional methods. Yet, a tool is not enough; eco-design should 

ideally be applied by AM engineers, or alternatively by LCA practitioners working closely and 
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interactively with the AM engineering team. We explain below how this eco-design approach can 

be used for communication purposes. Also, some recommendations are formulated in order to 

support the implementation of the different elements of the stochastic eco-efficiency framework. 

The main advantage of the eco-design approach suggested here is that the underlying complexity 

of uncertainty interpretation is shorted by the way results are communicated. In fact, presenting the 

probability of a scenario being better than another it is compared to can help supporting the 

decision-making process. It is recommended to set a threshold value; if the results are above this 

threshold for a specific design alternative, one could choose this alternative as the most eco-

efficient scenario among the others. 

How can the eco-design approach be implemented into a decision-making structure? In the AM 

context, at first, a decision must be made at the mechanical level in order to confirm that the design 

alternatives respect technical requirements and constraints. Then, a life-cycle cost assessment is 

suggested to complete the traditional cost analysis usually performed to confirm the economic 

feasibility of the design alternatives. The scenarios which are compliant with the technical and 

economic aspects are retained. Afterwards, assessing the potential life-cycle impacts can help 

identifying "hot spots" and possible improvements as feedback loops early in the design stages. 

Finally, an eco-efficiency framework can be used to integrate both the cost and environmental 

dimensions. It helps identifying the most eco-efficient scenarios and eventually possible trade-offs. 

The uncertainty assessment gives the "go" to executing the decision which puts forward the 

scenario which has the highest probability of being the most eco-efficient. Additionally, the eco-

design approach must align with a well-defined structure. It should translate a shared responsibility 

throughout the different product development work levels and should be implemented as a decision 

support system (Poudelet et al., 2012). The first step to do so is to understand the current decision-

making process and the actors involved (consumer, engineering team, research and development, 

etc.). The current decision-making process should be diagnosed in order to evaluate each actor's 

current activities and analyze ways to account for eco-efficiency as a retrospective tool throughout 

the process. If a specific stochastic eco-efficiency tool is developed, it should be easy to use by non 

LCA experts and adapted to meet the needs and day-to-day reality of designers and engineers. It is 

recommended to continuously update it so that its use is ensured in the future (Poudelet et al., 

2012).
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APPENDIX A   DESCRIPTION OF PRODUCT SYSTEMS 

Table A.1: Descriptions of product systems used in the LCA (adapted from Dandres (CIRAIG, 2018)) 

LCA stage Process Sub-process Description 

Pre-
production 

Commodity 
production 

Metal powder/ 

cylinder 

Metal powder is produced through an atomization process in Finland (85% 
efficiency). The metal powder is packaged in metal cans for their transport. 
Packaging has been modeled using the weight of an empty can, its volume, and 
secondary data from the ecoinvent LCI database. The metal powder is 
transported from Finland to Germany and then to Canada, thus both road and 
water transports are used. The metal cylinder is selected from ecoinvent. 

Metal 
platform 

The platform is made in the same metal than the parts (here, Inconel 718) and 
is produced by APN in Quebec. 

AutoCAD file The autoCAD file is programmed in Quebec. 

Argon 
Argon is used during the printing is provided by Praxair in Quebec and the 
quantity is based on the EOSINT M280/290 technical sheets and confirmed 
with experimental measurements and expert judgement. 

Production Printing  

The technology used is LPBF-AM, and is modeled using data corresponding to 
a Renishaw AM2250 SLM Printer from the literature (Faludi, Baumers, 
Maskery, & Hague, 2016). The electricity consumed by the LAMSI during the 
printing of inconel parts has been measured at ETS. This data was used to 
model the power consumption to produce inconel parts. 
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Table A.1: Descriptions of product systems used in the LCA (adapted from Dandres (CIRAIG, 2018)) (Continued) 

LCA stage Process Sub-process Description 

 

Filters  
Filters are needed to operate EOSINT printers. Filters are assumed to be made 
of polyurethane foam, glass fibre and paper. The rate of replacement for these 
filters corresponds to the average time of filter replacement at the LAMSI. 

Post 
treatment 

Stress relief & 
thermal 
treatment 

The stress relief and thermal treatment consist in heating the part (including 
platform and support if not removed yet) using an industrial electric oven. The 
electric power of such oven is 1000 W (based on MLF Furnaces, 
http://www.mlfurnaces.com/bench-top-furnaces/ ).Corresponding heating up 
times and electric powers are included.  

Platform and 
support 
removals 

Removal is made with a power saw (sometimes it is made manually in LAMSI 
but here it has been modeled as always mechanically to better represent the 
industrial context). It is estimated the saws consumes 500 W during 30 seconds 
per removal. 

Surface 
finishing 

The surface finishing can be made with different tools depending on the part. It 
is estimated the surface finishing consumes 500 W during 5 minutes. 

Platform 
flattening 

The platform surface is flattened with a grinding machine. It is estimated that 
this operation consumes 1000 W during 30 seconds. Due to lack of data and 
because it is expected to have a negligible contribution to the part lifecycle, the 
manufacturing of post-treatment equipment was not included in the method. 
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Table A.1: Descriptions of product systems used in the LCA (adapted from Dandres (CIRAIG, 2018)) (Continued) 

LCA stage Process Sub-process Description 

 
Maintenance 
and waste 
management 

 

A vacuum cleaner (made in Germany, transported to Quebec) is used to clean 
the printer after each printing. This cleaner uses water and a filter to capture the 
metal powder. It has been modeled as a Ruwac NA35-110 using data from the 
literature (Faludi et al., 2016). The rate of replacement and duration of cleaning 
have been determined according to the maintenance rate observed at the 
LAMSI. The electric power consumption of the cleaner is based on the 
technical sheet of the cleaner. The consumption of water (volume and rate of 
filling the cleaner) is based on LAMSI cleaning activities. The mix of water 
and metal powder collected by the vacuum cleaner is regularly spilled into a 
plastic container with addition of antifoam and an anticoagulant. This 
container is made of polypropylene and manufactured in Quebec. In the absence 
of precise information, the antifoam has been modeled as a mix of fatty acid, 
fatty alcohol and oil, and the anticoagulant as a mix of activated silica, activated 
bentonite, and metal hydroxides and chlorides. When the plastic container is 
full, it is handled as a hazardous waste and sent with the used filters (that are 
also considered as hazardous wastes due to the presence of metal powder) to a 
specialized company in Quebec to process it. Because no information was 
available on the actual hazardous waste treatment, it was modeled with 
ecoinvent generic processes for hazardous waste. 

Use phase   
Airplane traveled distance: the average airplane speed (829 km/h) is used to 
compute the traveled distance of airplanes during their lifetime (90000 hours). 
Thus, the airplane traveled distance is 74 610 000 km.  
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Table A.1: Descriptions of product systems used in the LCA (adapted from Dandres (CIRAIG, 2018)) (Continued and end) 

LCA stage Process Sub-process Description 

End-of-life 

Types of 
waste 

Waste from 
parts 

At end-of-life, the parts may be landfilled or recycled. For both options, it is 
assumed that the waste management site is located at 50 km from the part user.  

Waste from 
metal loss 

The metal lost during the printing process is considered as hazardous waste.  
The support may be recycled or landfilled. The metal lost during the CM 
process may be recycled or landfilled. 

Platform 100 times platform reuse. Once it cannot be reused, landfilling or recycling. 

Machines and 
equipment 

The end of life of machines and equipment is not considered since it is expected 
to have a negligible contribution to part life cycle impacts. 

Waste 
management 
options 

Landfilling 
The wastes are sent to a landfill site (travelled distance assumed to be 50 km). 
It is modelled as an inert material (ecoinvent process). 

Recycling 

The cut-off approach of ecoinvent has been used. Recyling is excluded. For 
sensitivity analyses, recycling processes & credits for recycled materials 
avoiding virgin material production are included. 100% rate applied to the 
credit for avoiding the production of virgin material (if recycling included).  

 Hazardous 
wastes 

Filters, filled with metal powder. Barrel (polypropylene, 100 times reuse) 
containing water, additives and powder removed with the vaccum cleaner. 
Barrel capacity is 200 L & additives (antifoam and flocculant) are mixed with 
the water prior shipping the barrel to the hazardous waste treatment site 
(travelled distance assumed to be 50 km). Liquid and metal mix considered as a 
coolant and treated as such. Hazardous wastes stored underground. Filters 
contaminated with metal powder are assumed to be deposited underground 
and barrel of waste are processed as heat carrier liquid.  
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APPENDIX B   MANUFACTURING SIMULATIONS 

Additive manufacturing  

The simulation of the AM process, schematized in Figure C.1, was performed by Victor Urlea 

(LAMSI). 

 
Figure B.1: Build preparation flow chart (source: Victor Urlea, LAMSI) 

Machining  

The simulation of machining operations, schematized in Figure C.2, was performed by Olivier 

Boudreau-Rousseau (LAMSI). It was applied to P1(CM reference scenario), but also to P2 and P3 

for the post-AM machining operations. 

 
Figure B.2: Machining flow chart (Source: Olivier Boudreau-Rousseau, LAMSI) 



137 

Table B.1: Simulations made for a batch of 1 

Operation P3 (AM Optimized) P2 (AM) P1 (CM) 

AM One part placed on the build plate N/A 

Machining Functional surfaces Functional surfaces 1 cylinder stock 

 

Table B.2: Simulations made for a batch size of 9 

Operation P3 (AM Optimized) P2 (AM) P1 (CM) 

AM 9 parts placed on the build plate N/A 

Machining Functional surfaces Functional surfaces 9 cylinder stocks 

 

 

Table B.3: Simulations made for a batch size of 90 

Operation P3 (AM Optimized) P2 (AM) P1 (CM) 

AM 9 parts placed on each of the 10 build plates N/A 

Machining Functional surfaces Functional surfaces 90 cylinder stocks 
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Table B.4: : Build time of the AM parts (P2 and P3) for different batch sizes 

Batch size Part produced Build time 

1 
P3 6 h 08 min 

P2 6 h 15 min 

9 
P3 21h 29 min 

P2 22h 21min 

90 
P3 214.8 h 

P2 223.5 h 

 

For the machining simulation, Olivier Boudreau-Rousseau established a list of the operations 

needed for each of parts P1, P2 and P3. The Walter’s online GPS14 is used to simulate the tools 

needed for these operations. Using the tool-related search, the tool category depending on the 

category of the operation (drilling, milling, etc.) is selected first. The material classification 

corresponding to the actual case study, Inconel 718, is selected next. Finally, the required 

machining operations are selected from the list of suggested operations. The specifications included 

in this section vary with the tool category and operation selected. For example: 

i. Operation type: pre machining, finishing, or pre machining and finishing 

ii. Workpiece surface condition: pre-machined, light skin or heavy skin 

iii. System stability: excellent, good or high stability 

iv. Operation parameters: depth, width, length, interruption ratio 

v. Tool parameters: cutting edge diameter, minimum and maximum cutting edge diameter 

                                                

14 Walter GPS 4.2.1 (www.gps.walter-tools.com) 
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The GPS is then able to suggest a list of tools from Walter’s inventory which are able to conduct 

the machining operation. It also suggests the cost per task accomplished (Table C.5). The exchange 

rate used is 1.59 Canadian dollar for 1 euro.  

 

Table B.5: Machining operations estimated with Walter's tools 

  
P3 (AM 

Optimized) 
P2 (AM) P1 (CM) 

Operations 7 7 22 

Cutting tools 4 4 8 

Mounting template 1 or more 1 or more 1 or more 

Machining time 16 min 15 sec 16 min 15 sec 47 min 22 sec 

Cost per task (euro) 14.04 € 14.04 € 65.99 € 

Cost per task (CAD) 22.32 $ 22.32 $ 65.99 $ 
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APPENDIX C   PRESAMPLED AGGREGATED DATASETS (LCA) 

 

Figure C.1: Procedure to collect presamples and compute the uncertainty analysis 
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APPENDIX D   STOCHASTIC RESULTS 

 

 

Figure D.1: Probability of a scenario being better than another between P1 (CM), P2 (AM) and 

P3 (AM Optimized) in terms of NOx emissions 

 

 

Figure D.2: Probability of a scenario being better than another between P1 (CM), P2 (AM) and 

P3 (AM Optimized) in terms of PM emissions 

 

 

Figure D.3: Probability of a scenario being better than another between P1 (CM), P2 (AM) and 

P3 (AM Optimized) in terms of impacts on resources 
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Figure D.4: Probability of a scenario being better than another between P1 (CM), P2 (AM) and 

P3 (AM Optimized) in terms of impacts on human health 

 

 

Figure D.5: Probability of a scenario being better than another between P1 (CM), P2 (AM) and 

P3 (AM Optimized) in terms of impacts on ecosystems quality 
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APPENDIX E   SENSITIVITY ANALYSES 

 

 

Figure E.1: Sensitivity analysis of life-cycle impacts to recycling 
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Figure E.2: Sensitivity analysis of life-cycle impacts to recycling with credit to recycling 

The cost of landfilling and recycling is assumed to be the same. Therefore only the credit given to 

recycling contributes to lowering the life-cycle cost. 

 

Figure E.3: Sensitivity analysis of life-cycle cost to credit given to recycling. The cost of P2 

(AM) and P3 (AM Optimized) are plotted relatively to P1 (CM) 
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Figure E.4: Sensitivity of life-cycle impacts to the fuel consumption modelling (considered 

proportional to the mass transported) 

-4.08%

-3.83%

-0.55%

-0.51%

1.15%

1.18%

-14.51%

-13.67%

-14.15%

-14.42%

-20% -15% -10% -5% 0%

P3

P2

P3

P2

P3

P2

P3

P2

Cl
im

at
e 

Ch
an

ge
Hu

m
an

 H
ea

lth
Ec

os
ys

te
m

Re
so

ur
ce

s

Metal Commodities Manufacturing Post-treatment Use-Phase Waste Management Landfill
Total

P1-5% P1 



146 

 

Figure E.5: Sensitivity of life-cycle cost to the fuel consumption modelling. P3 (AM Optimized) 

is plotted relatively to P1 (CM) 
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APPENDIX F   MIDPOINTS CONTRIBUTION TO ENDPOINTS 

 

Figure F.1: Midpoints categories for P2 (AM) and P3 (AM Optimized) relatively to P1 (CM). 

The midpoints scores are expressed as their contribution to ecosystems quality 
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Figure F.2: Midpoints categories for P2 (AM) and P3 (AM Optimized) relatively to P1 (CM). 

The midpoints scores are expressed as their contribution to human health 

 

Figure F.3: Midpoints categories for P2 (AM) and P3 (AM Optimized) relatively to P1 (CM). 

The midpoints scores are expressed as their contribution to resources 

The results show that there is a shift in the total impacts of P1, P2 and P3 for the midpoint 

“agricultural land occupation” (P2 and P3 have greater impacts for this midpoint category than P1). 
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The impacts are mainly due to intensive forest occupation (for example, because of Inconel metal 

powder which is produced in Finland using electricity low voltage). 


