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RÉSUMÉ

L’usage des Polymères Renforcés en Fibres de Carbone (PRFC) s’est répandu grâce notam-
ment à leur important rapport résistance/poids, leur résistance à la corrosion et à la fatigue,
et à la flexibilité qu’ils permettent lors de la conception, par rapport aux métaux. Ils sont com-
posés de plaques de matrice polymère, renforcées par des fibres de carbone, qui peuvent être
empilées et orientées arbitrairement de façon à atteindre les propriétés mécaniques désirées.
En revanche, du fait de leur anisotropie mécanique élevée, les PRFC possèdent des modes
de rupture qui leur sont propres. En particulier, la fatigue du matériau et un impact à basse
énergie peuvent se traduire par le phénomène de délaminage, soit le décollement des plaques
du matériau. Comme cette dégradation ne peut pas être détectée par inspection visuelle,
la fiabilité des structures en PRFC s’en trouve réduite. Il est donc essentiel de développer
une méthode automatique de détection du délaminage. Plusieurs techniques non-destructives
existent déjà, parmi lesquelles figurent les ultrasons, les fibres optiques, les ondes de Lamb et
les courants de Eddy. Cependant, la plupart de ces méthodes requièrent l’utilisation de cap-
teurs coûteux et ne peuvent être appliquées lors de l’opération de l’appareil, ou nécessitent
l’intervention sur place de personnel qualifié.

La Tomographie d’Impédance Électrique (TIE) a été envisagée pour la détection du délami-
nage en raison de son faible coût et de sa capacité à fournir des informations en temps réel
sur la santé du matériau. Cette méthode consiste à reconstituer une carte de la conductivité
d’un matériau en injectant des courants et en mesurant les différences de potentiel résultantes.
Cependant, d’importantes incertitudes demeurent dans l’estimation de la position et de la
taille du délaminage. Il est donc nécessaire de développer un outil qui permette, d’une part,
de déterminer les mesures qui apportent le plus d’information vis-à-vis des paramètres du
délaminage, et d’autre part, de tirer de ces mesures une estimation stable de ces paramètres.
Dans ce document, nous étendons les méthodes d’apprentissage supervisé au traitement des
données de TIE.

L’objectif général est l’optimisation de la configuration des électrodes pour l’application de
la TIE à la détection de délaminage dans les PRFC. Ce projet s’articule en deux étapes.
Dans un premier temps, il faut comprendre et formuler le modèle mathématique associé au
problème direct ; nous reprenons le modèle d’électrode proposé par Somersalo et al. [41]. Cela
implique aussi de caractériser et paramétrer le délaminage, ainsi que d’identifier les erreurs
associées au modèle et aux mesures expérimentales. Cette étape mène à la génération de
données synthétiques de mesures de potentiels à l’aide d’un logiciel d’éléments finis. Lors
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de la deuxième phase, le problème inverse est abordé du point de vue de la classification
binaire, l’inférence portant sur la présence de délaminage. Un bruit multiplicatif Gaussien est
ajouté aux tensions mesurées. Plusieurs algorithmes issus de l’apprentissage automatique sont
utilisés : la méthode des forêts aléatoires, la méthode des plus proches voisins, et la méthode
des machines à vecteurs de support. Nous utilisons la performance de ces algorithmes en
fonction des paramètres expérimentaux pour comprendre les relations existantes entre ces
derniers. Nos résultats indiquent qu’une forte anisotropie ne rend pas toujours les prédictions
plus difficiles ; cela peut même donner lieu à de meilleures prédictions lorsque l’espacement
des électrodes est très supérieur à l’épaisseur du matériau. Ceci nous pousse à recommander
des recherches plus approfondies au sujet de l’influence jointe des paramètres géométriques
et électriques du matériau sur le positionnement optimal des électrodes.
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ABSTRACT

Materials made of Carbon Fiber Reinforced Polymer (CFRP) are increasingly used in various
engineering domains due to their high strength-to-weight ratio. However, they are subject to
delamination, a mode of failure which can cause layers to separate. Since this type of failure
is not visually observable, detection with non destructive testing is essential. The aim of
Electrical Impedance Tomography is to reconstruct the conductivity distribution of a medium
by injecting current through electrodes and measuring resulting voltages. More precisely, in
the context of damage detection, the aim is to detect voltages anomalies that betray the
presence of delamination. Research has already been done about statistical inference on
delamination size and location. However, the inverse problem was always tackled from a
regression point of view, and its study failed to provide insights about the joint influence
of measurement noise and samples properties, such as geometry and electrical conductivity
anisotropy, on the prediction performance. In this document, we generate synthetic data
using a finite element software and borrow algorithms from the supervised learning field for
the solution of the inverse problem. We study the impact of anisotropy, electrode positioning,
and measurement noise on the prediction performance in a classification setting. We also
show that cavities are easier to detect than delamination. Our results indicate that high
anisotropy might not necessarily make inferring the presence of delamination more difficult.
This leads us to recommend further research on the joint influence of geometry and anisotropy
on optimal electrode spacing.
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CHAPTER 1 INTRODUCTION

CFRP laminates are increasingly used in various engineering fields due to their high strength
to weight ratio. However, they are subject to delamination, a mode of failure which can cause
layers to separate. Since this type of failure is not visually observable, detection with non-
destructive testing is essential. The aim of EIT is to reconstruct the conductivity distribution
of a medium by injecting current through electrodes and measuring resulting voltages. Our
objective is to assess whether EIT can be used for detection of delamination between plies
of a laminated composite. In other words, we want to design an algorithm that recognizes
patterns that betray the presence of damage.

1.1 Context and Definitions

The subject of the present document deals with the monitoring of delamination in composites
using EIT data. CFRP laminates are stacks of several laminae. Each lamina is composed
of carbon fibers aligned in a single direction and held together by a binding polymer, which
is often a thermoset resin such as epoxy. The laminas are stacked in different directions to
obtain the desired mechanical properties.

Because of the brittle nature of the matrix material, failure modes in CFRP include in-
tralaminar matrix cracking and interlaminar delamination cracks, caused by material fatigue
and low energy impacts. Delaminations are impossible to detect from visual inspection and
yield uncertainties about the material state. An efficient and reliable non destructive testing
method is therefore needed. Several methods already exist: among them are ultrasounds,
optic fibers, Lamb waves and Eddy currents [21]. However, those methods either require
expensive sensors or cannot be used during operation (in flight, for example) and need the
intervention of highly qualified personnel on site.

EIT is envisioned for delamination detection because of its low cost and its potential to yield
real time information. This method consists in recovering the conductivity map of a material
by injecting currents and measuring resulting voltages on the boundary using a network
of electrodes. It has already been applied with success in medical imagery and geophysics
[35], but the low thickness and high anisotropy of the CFRP make it difficult to use it
for delamination detection [40]. The electrical conductivity of the CFRP is exclusively due
to the highly conductive carbon fibers, the polymer matrix being an electric insulator. The
conductivity observed in the directions normal to the fibers is caused by fiber interaction, due
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to fiber waviness. As a consequence, the ratio of the conductivities in the fiber and normal
to fiber directions lies well above 10: this ratio is about 25 for a 62% fiber volume fraction,
and can be much higher for a lower volume fraction [44]. Since no fiber fracture is involved in
a delamination, resistance changes are likely caused by reduction in the number of electrical
conduction points between fibers due to ply separation. These changes are relatively small
and hard to detect. A robust method remains to be developed to efficiently detect and locate
delamination cases in CFRP using EIT.

In this document, it is assumed that the injected currents are at low frequencies, so the quasi-
static approximation to the electric potential distribution can be used. This approximation
allows us to reduce Maxwell’s equation to a Laplace’s equation (Cheney et al., 1999). The
latter is linear and symmetric with respect to the injected currents, which lets us use fewer
electrode injection schemes to gather the necessary data. Gathering real measurements data
is a long, tedious and expensive process, so we propose to generate synthetic data using
a finite element software: the modelization problem, or forward problem, is run multiple
times to generate these voltage measurement data from varying values of the delamination
parameters.

EIT is the problem that consists of recovering the material conductivity from these boundary
voltage measurements. It is an inverse problem. As stated by Tarantola [42], “the inverse
problem consists of using the actual results of some measurements to infer the values of the
parameters that characterize the system”. Here, the parameters that characterize the system
are the size and location parameters of the delamination. However, the inevitable loss of
information that happens during the measuring process makes EIT an ill-posed problem. A
well-posed problem was defined by Hadamard [23] as a problem that consists of finding a
solution of a mathematical model of a physical phenomenon that satisfies the three following
properties: a solution exists, it is unique, and the solution’s behavior changes continuously
with the initial conditions. Problems that are not well-posed in the sense of Hadamard
are termed ill-posed. Although the forward problem has a unique solution, given complete
model data, the inverse problem only has partial data and hence more than one solution to the
forward problem can satisfy the incomplete data available to the inverse problem. The EIT
problem thus transgresses Hadamard’s second property of a well-posed problem. Moreover,
the remaining information is blurred by the noise inherent to the measurement process, and
by limited numerical accuracy. We remark that in practice, delamination detection may be
difficult to achieve with electrodes placed on one side of the laminate only [6]. One way to
ease the parameter identification task is to place electrodes on both sides of the composite
structure [18].
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Due to the intrinsic difficulties of solving the EIT inverse problem, we propose in this work
to use tools of machine learning in order to tackle the EIT problem on CFRP. A machine
learning algorithm is “an algorithm that is able to learn from data” [22]. As stated by
Mitchell [33], “a computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P , if its performance at tasks in T , as measured
by P , improves with experience E”. Machine learning enables computers to act and make
data-driven decisions rather than being explicitly programmed to carry out a certain task.
The present document is a preliminary study of the feasibility of damage detection in CFRP
using EIT combined with supervised learning. The methodology described in the following
chapters can also be extended to other inverse problem applications.

1.2 Literature review

EIT has been widely examined in the literature for detecting anomalies inside electric con-
ductive bodies. We begin with the literature review of the modeling of the forward problem,
before highlighting some problems specific to CFRP. We then review statistical tools that
have been considered by other researchers for the solution of the inverse problem and provide
an overview of some methods from the machine learning field.

1.2.1 EIT for damage detection in CFRP

Delamination in CFRP can grow quickly and cause structure failure. For that reason, they
must be detected early. Giurgiutiu [21] provides a survey of Non-Destructive Evaluation
(NDE) methods for laminated composites. Several NDE techniques are being studied for
delamination detection. Among them are ultrasonics [5], thermography [49], radiography
[16], electromagnetic testing [20], acoustic emissions [30], modal analysis [50], and electric
resistance based methods. The latter use carbon fibers as sensors to detect electric resistance
changes caused by the presence of delamination. Electrode attached on the composite surface
are used to inject electric current and to measure resulting potential differences. We provide
an overview of the available literature that addresses the modeling of the forward problem,
the difficulties encountered in applying Electrical Resistance Tomography (ERT) to CFRP,
and the statistical tools investigated for the inverse problem.

Modeling of the forward problem

Modeling of the forward problem has been extensively addressed since the 1980s, beginning
in the medical field. Barber and Brown [3] first used electrodes to monitor the changes of
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conductivity inside the human body. Somersalo et al. [41] proved the existence and uniqueness
of the Complete Electrode Model (CEM). Using this model, they were able to predict
experimentally measured voltages to within 0.1 percent, using a water-filled tank. Fouchard
et al. [19] showed how to implement the CEM using Comsol Multiphysics.

Difficulties with CFRP

Wang and Chung [47] found that through-thickness electrical resistance measurements could
be used to sense delamination in real-time during fatigue. Todoroki et al. [44] measured
the effect of fibre volume fraction on electric conductance of CFRP laminates, and found
experimentally that electric conductances in the transverse direction and thickness direction
increase significantly with the fiber volume fraction. He also observed that delamination
detection using the electric resistance change method is harder, for lower electric conductance
in the thickness direction, i.e. when fiber volume fraction is low. However that study did not
provide an electrical anisotropy threshold for delamination detection.

Schueler et al. [38] found that electrode positions must be changed in high anisotropy sit-
uations, and recommended using greater electrode density in the direction perpendicular
to carbon fibers. Angelidis and Irving [2] found that delamination could be detected only
when the surface current flow was parallel to the fiber direction and that surface potential
fields are most sensitive to delamination damage located in the interface between the top
and second laminae. They also observed that damaged areas consist of fiber breaks and intra
laminar cracks as well as inter laminar delaminations, and concluded that the influence of the
additional failure modes must be included in models before accurate prediction is achieved.

An analysis of potential measure sensibility to tranverse cracks in CFRP in presented in
Selvakumaran et al. [40]. Recent work has allowed us to identify the limits of data from a
numerical model when compared to data from a real experiment [6].

Statistical methods

Todoroki [43] found that response surfaces with quadratic polynomials are more efficient
than artificial neural networks as an inverse problem tool for delamination detection. Then
Todoroki et al. [45] used response surfaces to infer delaminations size and location from Finite
Element Method (FEM) data and found that standardization of measured electrical resistance
changes improves the prediction accuracy. Iwasaki and Todoroki [26] used the same method
to detect delamination using experimental data from artificial delamination on real cross-ply
and quasi-isotropic laminates. However these studies did not assess the impact of noise on
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inference on the delamination size and location. They also did not provide a lower bound on
the minimum number of samples needed to obtain satisfying prediction results, since they
used a fixed number of finite element analysis samples (193 exactly). These experiments only
concerned shallow delaminations, i.e. delaminations located between the 1st and 2nd plies
from the electrodes.

Kammer [28] introduced the Effective Independence (EI) method for selecting an optimum
set of sensor locations for the identification of a set of target vibration modes using finite
element models, in the field of structural dynamics. Escalona-Galvis et al. [17] used this
method to perform optimum electrode pair selection for ERT based damage detection using
the two-probe method. They generalized this technique in Escalona-Galvis et al. [18] for the
four-probe and multi-probe resistance methods. They also confirmed that using electrodes
on both sides of the laminate provides better damage identification than using electrodes on
one face only, and further stated that the most informative voltage measurements were that
of neighboring electrodes. Some hypothesis were confirmed by the results found in Escalona-
Galvis et al. [18] and Montiel [34]. However, this work was not used as a reference for our
study since we discovered it during the summer of 2018.

While damage detection in CFRP using EIT has been studied, other methods are still pre-
ferred in the industry due to its lack of robustness. Our objective here is an attempt at
improving its capabilities by coupling it with algorithms from the machine learning field.
While artificial neural networks and response surfaces have been investigated for use in EIT
field, many machine learning algorithms have yet to be studied for delamination detection.
Also, to the best of our knowledge, EIT has not been studied from a classification point of
view.

1.2.2 Machine learning

With the development of computers and the subsequent fall of computing price, a lot of
attention has been given to the design of computer-intensive statistical methods since the
1950s. Rosenblatt [36] first published an example of a classification algorithm. Samuel
[37] coined the tern “machine learning”. Numerous algorithms and variants of these were
subsequently developed. Our study will focus on the k-Nearest Neighbors (kNN), the random
forest, and the Support Vector Machine (SVM) algorithms, as they are some of the most
popular and effective methods currently available.

The k-Nearest-Neighbor rule [11] is one of the oldest and simplest methods for pattern clas-
sification. It assigns to an unclassified point the class most significantly represented among
vote by its k nearest neighbors in the training set. It is possible to show that asymptotically
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the error rate of the k-NN rule is bounded by twice the Bayes rate.

Breiman [7] introduced Classification and Regression Trees (CART). Efron [14] introduced
the bootstrap. Both were later combined in Breiman [8]. The most popular random forest
algorithm appeared in Breiman [9]. Liaw et al. [31] provides an R interface to the random
forest method, which we used.

Support Vector Machines were introduced by Cortes and Vapnik [10]. The SVM algorithm
separates classes by constructing linear boundaries in a transformed version of the feature
space. Meyer and Wien [32] provides an R interface to the C++ support vector machine
library which will be used in our study.

1.3 Goals

The overall goal of this study is to define the feasibility criteria, i.e. the domain of experi-
mental parameters space in which we can detect delaminations using EIT data with sufficient
accuracy. This goal encompasses the following specific objectives:

• Determine which machine learning algorithm is best suited for detecting the voltage
anomalies that betray the presence of damage in laminated composites. We will need
to assess global range of accuracy, misclassification errors specific to certain algorithms,
and improved accuracy for specific subsets of problems;

• Evaluate how many training samples are required to achieve a near optimal prediction
accuracy. If each sample is expensive, the feasibility of real world delamination detec-
tion might be compromised if e.g. thousands of samples are needed to obtain sufficient
accuracy. Thus damage detection must not only be theoretically feasible but also ne-
cessitate a reasonable amount of data. The asymptotic behavior of the test error will
be monitored for that purpose;

• Point out the differences between detection of delaminations and other failure modes.
Delaminations are notoriously hard to detect, in comparison with damages such as intra
laminar cracks which cause fiber breakage. In this study small cavities will be used to
represent loss of conductivity caused by fiber breakage;

• Perform optimal experimental design. We want to identify the electrode positions
and current patterns that provide the most information about the delamination. The
electrodes will be located on both sides of the laminate, since in our experience [6]
the information provided by electrodes placed on one side only is insufficient. The
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distribution of the electric potential is provided by a linear model and few electrodes
are used (four on the two-dimensional experiment), so we can afford to use all linearly
independent current patterns (maybe not on the 3D model). As some work has already
been done about the selection of the optimal current injection when electrodes are at
fixed positions [17], the study will focus on choosing the optimal electrode positions.

In order to simplify the study, but without loss of generality, the analysis will be performed
on simplified configurations of the laminated composite. Several parameters will be held fixed
throughout this document, but will be assigned values that are nonetheless comparable to
those found in other studies on the topic. The study will thus focus on the anisotropy level
(ratio of the conductivities in the fiber direction and in the through thickness direction), and
on the noise intensity.

1.4 Methodology and Hypothesis

The quality of the training data is the most important criterion of success of any machine
learning algorithm. Taking this fact into account, this project can be decomposed in two
main stages. The first concerns the definition and implementation of the forward problem.
This stage implies gaining a solid understanding of the equations describing the electric
potential distribution, and is necessary to produce synthetic data that are as close to real
life data as possible. To begin with, the mathematical model of the forward problem must
be studied. The equations that characterize the distribution of the electric potential are
derived from Maxwell’s equations under the hypothesis that the current is quasi-static. The
CEM proposed by Somersalo et al. [41] is presented. Its weak formulation is derived and
implemented in Comsol Multiphysics with the method proposed by Fouchard et al. [19]. The
mathematical model for the delamination is also discussed and its parameters are identified:
these parameters will be the ones to be inferred when solving the inverse problem. The
convergence of the resulting finite element code is studied: the mesh must be fine enough
so that the numerical errors remain inferior to the voltage perturbations incurred by the
presence of a significant delamination, but the computational cost must remain low enough
to be able to generate a lot a data. The set-ups for our case studies, including the choice of
the number of electrodes, current injection patterns, and type of CFRP, are discussed. They
are simplified as much as possible to limit the data generation cost, using repetitions in the
geometry and the symmetry of the mathematical model with respect to injected currents. The
work on the forward problem implementation allows us to generate synthetic data used for
the training and testing of machine learning algorithms. These data take the form of a feature
matrix, with each row containing the voltage values corresponding to a single delamination
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parameter value.

The second stage is concerned with developing a method for solving the inverse problem.
To begin with, several preprocessing steps are considered. The first step consists in adding
noise to the measured voltages, to account for the measurement uncertainties on one hand,
and the material uncertainty (randomness during manufacturing) on the other hand. Subse-
quent preprocessing steps transform the data, and can feed different representations of the
data to the machine learning algorithms in order to ease the parameter identification task.
Several common machine learning algorithms are then trained on the generated EIT data:
the k-nearest neighbors, random forests, and support vector machines with radial basis ker-
nel. In contrast to other researchers, we will treat the inverse parameter identification as a
binary classification problem, with a positive prediction indicating the presence of harmful
delamination. The accent is put on non-parametric methods, since the main goal is predic-
tion instead of explanation. The performance results attained by machine learning methods
are then leveraged to specify the subset of the experimental set-up parameters that allow us
to find a solution with a reasonable accuracy. Apart from the training distribution on the
delamination parameters, several parameters of the experimental set-up also have a profound
impact on the performance of the algorithms. The noise intensity plays an important role
since no detection is possible if it is greater than the voltages changes incurred by the pres-
ence of a significant delamination. As a consequence, the performance of the algorithms will
be assessed with various noise intensities.

In this study, it is assumed that the electrode contact impedances are known. This is consid-
ered realistic in the context of an intelligent CFRP laminate with built-in electrodes. In other
EIT applications, the electrode contact impedance must usually be inferred. For example,
in cancer detection, there is a layer of unknown conductivity at the skin–electrode interface
[13]. The through-thickness conductivity will be assumed constant at all points of the mate-
rial, so this study also applies to intra-laminar cracks. In reality, inter-laminar delaminations
are harder to detect than intralaminar cracks because a thin fiber free (matrix rich) zone
is observed at ply-ply interfaces in real samples [44]. Another important parameter is the
electrode density. The electrode density is defined as the ratio between the inter-electrodes
distance and the laminate thickness. As mentioned earlier, electrodes will be placed on both
sides of the laminate in the following analysis, as opposed to previous studies that examined
the applicability of EIT to CFRP using electrodes placed on one side only. The electrode
density will be held fixed throughout this document. An experimental design part will close
the study, as the damage detection accuracy will be computed for several electrodes positions.
Though the electrode density will remain fixed, an electrode shift parameter is introduced as
in Beck et al. [4] to account for the positional shift between the upper and lower electrodes.
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1.5 Outline

Chapter 2 is concerned with the data generation method. First of all, the mathematical
model for the electric potential distribution is presented. It is justified based on preliminary
experiments. At the end of the chapter, several case studies will be used to demonstrate our
method. The first is based on delamination data generated using a simple two-dimensional
geometry, and is used to get a good understanding of the problem and to test the code. The
second experiment is similar to the first, except that delaminations are replaced by cavities.

Chapter 3 deals with how to leverage the EIT data to infer the delamination parameters
using machine learning algorithms. It begins with a short introduction to basic machine
learning concepts before embarking on the theme of data preprocessing. Three standard
machine learning algorithms are then presented. The model selection problem is addressed
at the end of this chapter.

Chapter 4 focuses on presenting the results and providing answers about the feasibility.
Inference accuracy of the different algorithms is compared for several electrode positions and
anisotropy levels. We attempt to give an answer about the amount of data necessary for
successful damage detection for various failure modes. The delamination detection problem
by EIT is very difficult, and many of our results confirm the difficulties others have identified
in past studies, but this research additional information about what can and cannot be done.
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CHAPTER 2 FORWARD PROBLEM

The efficiency of data analysis methods depends heavily on the quality of the data at hand.
In other words, we need data that is representative of the true underlying population. We do
not have the means to obtain real data, since it requires having access to specific instruments
and experimental set-up. Instead we generated the data by numerical simulation. We need
a mathematical model that yields numerical data that is close enough to real world data. In
this chapter, we describe the mathematical model that governs the electric field in a damaged
laminated composite, along with its implementation.

We have seen that much research has already been invested in accurate modelling of electric
potential distribution in EIT context. In this chapter, we begin by presenting the model
geometry and the equations of the Complete Electrode Model (CEM). We then go through
the delamination parametrization and the difficulties encountered in implementing the CEM
with the Finite Element Method (FEM). We end the chapter with the description of the
simplified case studies that we will analyse thoroughly in the following chapters.

2.1 Mathematical model

The electrical potential u is governed by the Poisson equation resulting from the low frequency
quasi-static approximation of Maxwell’s equation:

∇ · (σ∇u) = 0, in Ω, (2.1)

where σ is the 3× 3 conductivity tensor of a ply.

Let L be the number of electrodes, with E` the surface covered by the `-th electrode. The
current injecting condition on the electrode area is given by

∫
E`

n ·σ∇u ds = I`, on E`, ` = 1, 2, . . . , L, (2.2)

where n ·σ∇u is the current density through the domain boundary. Equation (2.2) forces
the integral of the current density on an electrode to equal I`, the inward current intensity
on electrode `.
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The rest of the boundary acts as an insulator, i.e. we have

n ·σ∇u = 0, on ∂Ω \
L⋃
`=1

E`. (2.3)

Let U` be the potential provided by the `-th electrode and z` the contact impedance between
the `-th electrode and the composite. The potential jump at the electrode-composite interface
is given by

u+ z` n ·σ∇u = U`, on E`, ` = 1, 2, . . . , L. (2.4)

Equation (2.4) involves z`, preventing the “shunting effect“, i.e. the tendency of the current
to take the shortest path between injecting electrodes by flowing exclusively through the
closest electrode extremities [41]. z` can represent, for example, the impedance of the glue
used to attach the electrode to the composite material under study, or the lack thereof. U` is
constant on the `-th electrode area (on electrode side), while u (on composite side) can vary
considerably.

The existence and uniqueness of the solution is ensured by Kirchhoff’s current law,

L∑
`=1

I` = 0, (2.5)

and the specification of a potential ground:

L∑
`=1

U` = 0. (2.6)

2.2 Parametrization

We now discuss the parametrization of the experiment. We start with the description of
a typical geometry and of the conductivity parameters. We then characterize mathemat-
ically the delamination and introduce a simple parametrization for its identification. The
parameters, and typical values when applicable, are summarized in Table 2.1.

2.2.1 Geometry

The following geometry is taken from preliminary experiments described in Billet et al. [6].
The composite sample used for our preliminary experiments is a quasi-isotropic laminate
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Table 2.1 List of parameters for EIT experiment.

Symbol Definition Value Source
Geometry

w Width of domain 150 mm Billet et al.
[6]

h Thickness of domain 2 mm Billet et al.
[6]

L Number of electrodes 16 Billet et al.
[6]

|E`|
Area covered by the `-th

electrode 7 mm × 7 mm Billet et al.
[6]

∆e Distance between electrodes 27 mm, center to
center

Billet et al.
[6]

Electrical conductivity

σ0
Conductivity in fiber

direction 5500 S ·m Todoroki
et al. [44]

σ90
Conductivity in in-plane,
normal-to-fiber direction 203.5 S ·m Todoroki

et al. [44]

σt
Conductivity in

through-thickness direction 20.9 S ·m Todoroki
et al. [44]

z`
`-th electrode contact

impedance 10−4 Ω ·m2 [40]

Delamination

{ξ1, ξ2}
In-plane coordinates of
delamination center {75, 75} mm Billet et al.

[6]

ζ Delamination height 1.75 mm Billet et al.
[6]

ρ Delamination radius 25 mm Billet et al.
[6]
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with stacking sequence [0◦
/45◦

/90◦
/− 45◦ ]s. Each ply has thickness 0.25 mm. 16 electrodes

are stuck on one side of the laminate. Figure 2.1 displays the composite dimensions as well
as the electrode positions.

2.2.2 Laminate conductivity tensor

The homogenized orthotropic conductivities of a neat CFRP with a fiber volume fraction of
0.62 were chosen for the purpose of the preliminary simulations. These values were found
in Todoroki et al. [44], who justified the use of homogeneous orthotropic conductivities as
follows: “Since the diameter of a typical graphite fiber is much smaller than the size of FEM
elements adopted here, the inhomogeneous orthotropic graphite/epoxy composite material is
assumed to be a homogeneous orthotropic material for present FEM analysis”.

2.2.3 Delamination

The previous section was concerned with introducing common values of orthotropic conduc-
tivities for an undamaged CFRP. Now we specify how delamination changes the electrical
properties of the laminate. In a given new CFRP, fibers are not perfectly straight. Instead
they are wavy, allowing multiple fiber to fiber contacts everywhere in the laminate, and thus
allowing non zero conductivity in the normal to fibers plane. When a delamination appears
between two laminae, they are locally separated, preventing electric current to flow through.

Though it may be possible that a real delamination only partially stops the current, we
assume for simplification purposes that it is a perfect insulator. Mathematically, it means
that the current density through the crack is zero, i.e. σ∂u

∂n
= 0, where n is the direction

perpendicular to the delamination, such that the electric current is forced to flow around the
crack. In reality, delaminations can have complicated shapes, and can even be comprised
of multiple tiny delaminations. We further simplify the study by imposing a circular shape,
with radius ρ. The main motivation for such a delamination is that it should be artificially
reproducible in a controlled environment by e.g. inserting a thin layer of teflon between two
plies. A delamination can then be completely identified with only the following parameters:

• ξ1, ξ2 : delamination center in-plane coordinates;

• ζ : delamination height;

• ρ : delamination radius.

We should remark that all of our modeling choices were biased towards making the delam-
ination either as easy to detect, or easier to detect, than a real delamination. Therefore,
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Figure 2.1 Geometry of the sample. All dimensions are expressed in [mm].

any conclusion about the detectability, through various means, will be an overestimate; in
fact, this is the type of bias one would expect given the inherent complexity in the prob-
lem. Having defined the mathematical model for EIT with CFRP, we can now describe its
implementation using the FEM.

2.3 Finite element simulation

This section is concerned with the implementation of the mathematical model presented in
Section 2.1. We should note that the purpose of those simulations was to develop a numerical
model for experiments referenced in the technical report Billet et al. [6].

We use the AC/DC module in COMSOL Multiphysics R© to build the application. We begin
by mentioning some issues encountered in the implementation, such as having to rewrite
equation (2.4), the creation of a specific domain for each ply, and specific meshing. We then
make some remarks about convergence and cost, and display preliminary results.

2.3.1 Boundary conditions

In COMSOL Multiphysics AC/DC module, the implementation of the Robin equation (2.4)
is not straightforward. We thus chose to consider the alternative condition as derived in
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Fouchard et al. [19]:
− n · J = 1

z`|E`|

(
z`I` − |E`|u+

∫
E`

u ds
)
, (2.7)

where −n · J is the electric current density on the `-th electrode, and |E`| the area of the
`-th electrode.

The expression (2.7) is obtained as follows. If we integrate (2.4) on the area covered by one
electrode, we obtain ∫

E`

(u+ z` n ·σ∇u) ∂Γ = U` |E`|, (2.8)

and simplifying using (2.2), we get

1
|E`|

∫
E`

u ∂Γ + z` I`
|E`|

= U`. (2.9)

Replacing U` by the above expression in (2.4) and isolating the current density, we finally
get

− n · J = n ·σ∇u = 1
z` |E`|

(∫
E`

u ∂Γ + z` I` − |E`|u
)

(2.10)

that we can prescribe in Multiphysics as a Neumann condition.

2.3.2 Conductivity tensors

Since fiber direction changes with each ply, a specific domain must be created for each of
them in order to assign them the appropriate conductivity tensors. The latter are summed
up in Table 2.2. They are given relative to the coordinate system of the 0◦ ply.

Table 2.2 Conductivity tensor σ (in S ·m) for each ply orientation.

0◦-ply 90◦-ply 5500 0 0
0 203.5 0
0 0 20.9


 203.5 0 0

0 5500 0
0 0 20.9


45◦-ply -45◦-ply 2852 2648 0

2648 2852 0
0 0 20.9


 2852 −2648 0
−2648 2852 0

0 0 20.9





16

2.3.3 Meshing

For the numerical simulation, the geometry is the same as that presented in Billet et al. [6].
We proceeded by first designing a 2D geometry, featuring the domains for the electrodes and
the delamination region, by creating a triangulation of this 2D model with small elements
near the electrodes and around the delamination boundary, and by extruding the latter by
0.25 mm in order to obtain the first ply. The complete geometry was eventually generated
by repeating the extrusion process 8 times, i.e. one for each ply. This process yielded 17,936
prisms elements and 76,925 degrees of freedom for the entire model, shown in Figure 2.2.

Figure 2.2 Meshing of the 8-ply quasi-isotropic laminate, using Comsol Multiphysics. The
whole laminate is shown on the left, while a close-up on a corner is shown on the right.

2.3.4 Convergence study

A simple test case is considered here. It consists of the composite plate without delamination.
The injected current is 10 mA for the upper left corner electrode. In order to satisfy Eq. (2.5),
the injected current is −10 mA at the bottom right corner electrode. We assume that the
contact impedance z` is the same for both electrodes, with value 10−4 Ω ·m2. A top-view of
the results for the potential distribution on the electrode side is shown in Figure 2.3.

One hypothesis we made is to assume that U` is constant on the `-th electrode, ` = 1, . . . , L.
Since in Comsol Multiphysics this constraint is implemented indirectly using equation (2.7),
we decided to check if it is verified after computation. The solution on the coarse mesh was
unsatisfactory. The mesh was then modified in two ways. Firstly, we kept the refinement
along the boundaries of the two active electrodes only. Secondly, we increased the number of
elements in the ply below the electrodes in the normal direction to the ply. Figure 2.4 shows
the resulting values of U across an electrode area. U seems to converge to a constant value
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Figure 2.3 Electric potential on top surface obtained for the test case (with coarse mesh).

on the whole electrode area.

Figure 2.4 Influence of the number of elements in the normal direction to the ply. Left: 2
elements across ply. Right: 5 elements across ply.

The observation that the value of U` tends to converge to a constant led us to the next study.
For different meshes, we calculated U `, the mean value of U` defined by:

U ` = 1
|E`|

∫
E`

U`ds. (2.11)
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To verify the convergence of this quantity, we calculated the relative L2-norm of the error:

‖U` − U `‖ =

(∫
E`

(
U` − U `

)2
ds
) 1

2

(∫
E`
U

2
`ds

) 1
2

, (2.12)

where the constant value of U ` is taken from the most refined mesh. The results of the study
are presented in Figure 2.5.

Figure 2.5 Results of convergence study. Top left: U ` vs total number of degrees of freedom.
Top right: U ` vs length of smallest element in [mm]. Bottom left: relative error in U` vs
total number of degrees of freedom. Bottom right: relative error in Ul vs length of smallest
element [mm].

2.3.5 Example

As an example, we present the perturbation of the electric potential caused by the presence
of a delamination. An artificial delamination with a diameter of 50 mm is introduced in the
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laminate. Figure 2.7 shows the difference between solution u of an undamaged laminate and
solution u0 with defect in 2nd ply. These results are obtained using a mesh with ∼ 2.8× 106

degrees of freedom (3 minutes of run time). A convergence study shows that the numerical
errors are below 2%.

Figure 2.6 Geometry (150mm× 150mm× 2mm) and mesh with 2,800,000 DoFs.

Figure 2.7 Left: streamlines of u0 on the top of the 2nd ply. Right: u − u0, the potential
difference between undamaged laminate and laminate with delamination under 1st ply.
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Figure 2.8 u − u0, the potential difference between undamaged laminate and laminate with
delamination under 1st ply, along the diagonal from bottom left to top right (see Figure 2.7).
Relative voltage change on measuring electrodes is 1.34%.

2.4 Generation of surrogate data

Simple case studies will be considered to demonstrate the application of the method developed
in this document. The objective is to define simple model problems on which we will be able
to use the methods considered in this work and analyze a variety of test cases. Hence the
effort will be centered on leveraging the symmetries of the mathematical model to find a
geometry and a probability density function on the delamination parameters that are, on the
one hand, as simple as possible to minimize the cost of data generation, yet general enough
so the analysis can remain relevant for realistic configurations.

The first model uses a simple two-dimensional sample geometry, consisting of a single lamina.
Having only a single lamina will allow us to better evaluate the effect of λ, the ratio between
in-plane and through-thickness conductivities, on the classification performance in Chapter
4. The second model is the same as the first, except that delaminations are substituted by
cavities.
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2.4.1 2D experiment with delamination

First, we present a simple two-dimensional composite sample. We justify the choice of our
example geometry.

Experimental setup Let us consider a two-dimensional composite consisting of a single
lamina of infinite width, shown in Figure 2.9 with regularly spaced electrodes on each side.
Using the symmetries and periodicity of the boundary data, it is argued that a generic 4-
electrode two-dimensional example is sufficient to study the detectability of a delamination.
That choice is also supported by the study of Escalona-Galvis et al. [18], who found that the
most informative voltage measures were that of neighboring electrodes.

The detectability task is the same, whether the delamination is located between electrodes
1, 2, 5, and 6, or between electrodes 2, 3, 6, and 7. Furthermore, from our experience, if the
delamination is located inside a polygon whose vertices consist of a group of four neighboring
electrodes, e.g. electrodes 1, 2, 5, and 6, the information provided by electrodes farther from
the delamination, e.g. electrodes 3 and 7, is negligible [6]. This observation was also made
in Escalona-Galvis et al. [18] and Todoroki [43]. Hence an analysis conducted on a sample
with two electrodes on each side should be sufficient to understand the behavior for a larger
geometry and multiple electrodes.

Although we could also study the influence of the electrode size Ee and spacing Esp on the
detectability problem, we preferred to concentrate on the case where the electrodes on one
side are shifted by a shift with length Esh. Hence we will use the constant values from past
experiments (preliminary studies), i.e. Ee = 7 mm and Esp = 20 mm. If the electrode density
was higher, the detectability would likely increase, so that our hypothesis of constant Ee and
Esp should not affect the applicability of the machine learning methods.

The sample must be much larger than the electrode spacing Esp. This allows the electric
current to flow well outside the zone between the electrodes, instead of being forced in that

e1 e2 e3 e4

e5 e6 e7 e8

Ee Esp

Esh

Figure 2.9 2D schematic representation of an infinite laminate.
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zone, so as to simulate the “infinite lamina” situation. It also allows us to neglect edge
effects. This allows us to conclude that a sample of 150 mm in width should be reasonable.
The chosen lamina thickness is 2 mm; it is the same as the thickness of the whole laminate
in our preliminary experiment. We fix the contact impedance z` to 10−4 Ω ·m2, based on
the value seen in Selvakumaran et al. [40]. Although we have observed large variations in
the published values, this order of magnitude is within the middle of the range of values we
have found. Although it is well-known that the higher the contact impedance, the lower the
detectability, since it causes the internal resistance changes to have a lower relative impact
on the outer voltage increases, its influence on the results will not be studied in this work.
A representation of the final geometry of the sample under study is shown in Figure 2.10.

Probability density functions of delamination parameters Let Θ be a vector con-
taining all the delamination parameters, i.e. ΘT = (ρ, ξ, ζ), where ρ, ξ, and ζ are the
delamination radius and the coordinates of the delamination center, respectively.

The probability density function for the parameters Θ must be chosen so that they are
relevant to the cases of delaminations observed in practice. For example, some layers might
be more susceptible to delamination, and delamination might often occur jointly with other
defects. This is important because if the chosen distribution for Θ is far from its true
distribution, the test error may be misleading. However, as no such data is available in
the literature, we follow the usual scientific ansatz and choose a non informative (maximum
entropy) distribution on the parameters.

Figure 2.11 shows the parametrization of the delamination. The delamination center location,
parametrized by ξ and ζ, follows a uniform distribution inside the dotted rectangle,

ξ ∼ U (ξmin, ξmax),

ζ ∼ U (hmin, hmax).

Since lamina thickness is often around 0.25 mm, we assume that delaminations are at least

w

h
e1 e2

e3 e4

Ee Esp

Figure 2.10 2D geometry. All dimensions are given in millimeters.
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0.25 mm from the laminate surface. We choose a continuous uniform distribution instead
of a discrete distribution for the delamination depth. The delamination radius ρ is drawn
uniformly from 0 mm to ρmax = (Ee + Esp)/2 = 13.5 mm, i.e.

ρ ∼ U (0, ρmax).

ξ, ζ, and ρ are assumed independent. The forward problem described earlier then maps Θ
to the voltages. The geometrical and electrical parameters used for the computation are
summarized in Table 2.3.

The numbers of degrees of freedom for each configuration vary between 8,000 and 13,000
degrees of freedom, depending on the delamination size and position. It took approximately
90 minutes to generate data corresponding to 1,000 delaminations with COMSOL on a new
but standard desktop.

Injection patterns Here, an injection pattern refers to the electric current intensities sent
through the electrodes. It is represented by a vector I of length L, the number of electrodes,
with each entry corresponding to a single electrode. A positive value indicates that the
current flows in the inward direction, i.e. from electrode to composite. Hence we have

I =


I1

I2

I3

I4

 where I` =
∫
El

n ·σ∇u ds, ` = 1, 2, 3, 4. (2.13)
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Figure 2.11 Delamination parameterization. Vertical dimensions are exagerated.
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Figure 2.12 Prior constraints and electrode positions. Vertical dimensions are exagerated.

Table 2.3 2D experiment parameters list

Symbol Definition Value
Geometric parameter of the composite sample

w Composite sample width 150 mm
h Composite sample thickness 2 mm
n Number of laminæ 1

Delamination parameters
ρ Delamination radius 0 < ρ < 13.5 mm

ξ
Absciss of delamination center w.r.t. left

side
61.5 < ξ < 88.5 mm

(when Esh = 0)
ζ Delamination ordinate 0.25 < ζ < 1.75 mm

Electrical conductivities and resistances
σ0 Conductivity in fiber direction 5 500 S ·m

λ
Ratio of in-plane and through-thickness

conductivities λ = σ0
σt

λ ∈ {1, 101, 102, 103}

z` Electrode contact impedance 1× 10−4 Ω ·m2

Injection parameters
L Number of electrodes 4
|E`| Electrode size 7 mm

Esp
Distance between neighboring electrodes

(side to side) 20 mm

Esh
Shift of bottom electrodes to the right w.r.t.

upper electrodes Esh ∈ {0, 6.75, 13.5} mm
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Since the forward problem is linear with respect to the injected currents, using more than
three injection patterns would not increase the predictive power of the supervised learning
methods. Also, since Kirchhoff’s current law states that the sum of the currents flowing
through all electrodes must be equal to zero, i.e.

L∑
`=1

I` = 0, (2.14)

only up to L− 1 voltages per injection can be linearly independent, and thus the last entry
corresponding to the Lth electrode can be dropped, yielding

I =


I1

I2

I3

 . (2.15)

Since the currents are applied at low frequencies, the distribution of the potential is governed
by a Laplace equation. Because of the linearity of the latter, it is useful to write each injection
pattern I as a linear combination of 3 base patterns:

I = a


1
0
0

+ b


0
1
0

+ c


0
0
1

 , with a, b, c ∈ R. (2.16)

2.4.2 2D experiment with cavity

The set-up for the 2D cavity experiment is the same as that used for the 2D delamina-
tion experiment, except that the (zero-thickness) delamination is replaced by a rectangle
of thickness 0.25 mm, whose boundaries are perfect insulators. Hence the electric current
is prevented from flowing not only through the delamination, i.e. in the through thickness
direction, but also horizontally around the delamination center. This aims at simulating the
added resistance induced by fiber breakage in the delamination area. An example with such
a cavity is shown in Figure 2.13.
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Figure 2.13 2D laminate with cavity. Generated cavities are always 0.25 mm thick.
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CHAPTER 3 PARAMETER IDENTIFICATION USING SUPERVIZED
LEARNING

The purpose of this chapter is to describe the methods that will be used to infer the presence
of delamination in composite materials from voltages measured on the boundary. In machine
learning, such a task is called classification, whose objective is in particular to specify which
of k categories some input belongs to [22]. To solve this problem, the algorithm must produce
a mapping f : X 7→ Y that assigns to each input vector x ∈ X , a category identified by
numeric code y = f(x) ∈ Y . The task in our problem consists of a binary classification
problem, i.e. a classification problem with two classes: the positive class, labelled 1, which
indicates the presence of a delamination, and the negative class, labelled 0, which is given to
a sample when no delamination is present in the laminate.

An experience E denotes here the number of training samples, i.e. the observations the
algorithm is trained with. The training dataset cannot be used to assess the performance of
the machine learning model. For that purpose, a test dataset is held out during the training
process, and then used to measure the performance P of the trained algorithm. This is
because we are interested in how well the model generalizes, i.e. how well it performs on data
the model has not yet seen nor been trained with.

In classification, the performance measure is often the model accuracy, which is defined as
the proportion of inputs that are correctly labelled by the model. An equivalent measure is
the error rate, namely the proportion of inputs that are incorrectly labelled by the model.
The error rate is also referred to as the expected 0− 1 loss, because it assigns a loss of one to
incorrect predictions and zero to correct predictions. In some binary classification problems,
the two classes are not well balanced – one class might include most of the samples. In that
case, we might be interested in the relative proportion of different types of errors rather than
in overall accuracy. For example, in failure detection, a false positive (detecting a failure
when it is not present) is valued differently from a false negative (not detecting a failure
when it is present), for objective or subjective reasons.

In this chapter, we begin with describing how data must be preprocessed before it is fed to
a learning algorithm. Preprocessing involves several steps:

1. Learning algorithms are designed to run in a specific framework and thus require the
data to be structured accordingly. This process is known in the machine learning
literature as data tidying [48];
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2. While the forward problem is deterministic, uncertainties are inherent to real life mea-
suring processes. These uncertainties are thus incorporated to the generated data in
the form of noise;

3. When a large number features are involved, especially when dealing with three-dimensional
data, training and prediction time can become a problem. In that situation, dimension
reduction techniques may be needed to reduce the computational load.

Afterwards, we provide a brief but explicit description of the classification algorithms we will
use:

• k-Nearest Neighbors;

• Random Forests;

• SVM with Radial Basis Function.

These three algorithms were chosen because they are non-parametric and constitute a rep-
resentative sample of some of the most established algorithms in machine learning. Other
learning algorithms could come to mind for solving this problem, but were rejected for dif-
ferent reasons. Linear Discriminant Analysis and Quadratic Discriminant Analysis [24] were
discarded as they both assume that each class follows a Gaussian distribution. As classes
are not linearly separable, using Logistic Regression [12] would necessitate to work within an
enlarged data representation, which SVMs do more efficiently by using kernels to implicitly
work within the enlarged representation. Artificial Neural Networks [22] are expensive in the
training phase and require many choices to be made for their architecture.

3.1 Data preprocessing

This section is concerned with the actions that are performed on the data before it is fed to
a learning algorithm.

3.1.1 Structure of the predictors matrix

In order to use supervised learning algorithms, the data is collected into a matrix where each
column is a variable and each row an observation [48]. For the EIT problem, it means that,
for each realization Θi of the delamination parameters, the computed electric potential data
must be converted to a features vector xi that contains the voltages measured at each current
injection sites.
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For a fixed injection Ik, we obtain potential Ui at the i-th electrode and thereby the voltages

V1 = U1 − U2, (3.1a)

V2 = U1 − U3, (3.1b)

V3 = U1 − U4, (3.1c)

V4 = U2 − U3, (3.1d)

V5 = U2 − U4, (3.1e)

V6 = U3 − U4, (3.1f)

where U1, . . . , U4 are the electric potentials measured at the electrodes 1, . . . , 4, respectively.
Since we use 4 electrodes, there are 3 degrees of freedom, so we will retain the first 3 voltages
only. Hence the feature matrix takes the form

X(Θ) =


xT1

xT2
...
xTN

 , where Θ =


ΘT

1

ΘT
2
...

ΘT
N

 and xi = x(Θi) =


V(i)

1

V(i)
2

V(i)
3

 (3.2)

where for Θi, the ith realization of Θ, and the kth pattern injection (cf Section (2.4.1)),
the vector V(i)

k = (V (i)
k,1 , V

(i)
k,2 , V

(i)
k,3) contains the measured voltages. Each row xTi thus has

p = (4− 1)2 = 9 entries.

3.1.2 Data splitting: Training and Test sets

The resulting data is split into two sets, namely the training set and the test set. The training
set involves the data that the learning algorithms will use to learn about the structure of the
data, i.e. to infer the delamination parameters from the voltage data. The test set is used to
assess the performance of the algorithms, and in particular to evaluate how much we were
able to learn from the training data.

The training observations indices are selected at random from the set of all the data indices,
i.e. from one to N , the total number of rows in X. We denote by Xtrain the Ntr × p matrix
containing the p predictors of the Ntr training observations, and Xtest the Nts × p matrix
containing the p predictors of the Nts test observations, with Nts ≤ N −Ntr.
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3.1.3 Modeling noise

The introduction of noise to the data aims at simulating measurement errors due to both
the voltage measurement process and the intrinsic laminate properties. The first includes,
for instance, small electrode displacements, contact resistance uncertainties at each of the
probes, and differing injection intensities. The second concerns the uncertainty about the
material conductivities due to material imperfection, i.e. the actual conductivities might
differ slightly from the nominal values. It follows that the noise should be applied to the
voltages. We directly use the measured voltages as predictors. Training data include many
tiny delaminations, so the data span a small range of values around those of a pure undamaged
laminate. In practice, these small variations on the training data are equivalent to noise.
Multiplicative Gaussian noise is added to the data according to the formula

Xij ← Xij (1 + εij) , with εij ∼ N (0, ν2) (3.3)

where ν2 denotes the noise variance. We choose multiplicative noise based on the fact that
voltages are linearly related to material resistivity (V = RI), so that uncertainties about R
give rise to proportional uncertainties about V (the injected currents I being held fixed). It
also takes into account the limited number of significant digits of measurement instruments.
The εij are assumed to be identically and independently distributed. This assumption appears
to be reasonable if we suppose that the uncertainties are associated to the path taken by
the current and that the paths are essentially distinct. Also, as the tensions measured on an
intact sample and on a sample with delamination are very close, see Figure 2.7, we assume
that it is reasonable to reject negative values of 1 + εij.

Other researchers [44, 18] used voltages or resistance changes with respect to the undamaged
laminate (or normalized changes) as predictors. However, they did not add noise to their
data obtained from FEM computations.

3.1.4 Normalizing the predictors matrix

For some machine learning algorithms, especially in the case of instance-based methods such
as kNN and SVM where the distance between training and query data points holds a primary
importance, predictor scaling can have a significant influence on the prediction performance.

Often, when all the variables used for prediction are measured in the same units, we may
choose not to scale them to have all the same standard deviation [27]. However, in the present
case, the noise is multiplicative and hence proportional to each variable value, so information
is not lost when scaling each column of X in order to have a variance equal to unity.
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When scaling is required, each predictor is transformed using the formula

V k
j ←

(V k
j − V

k

j,tr)
sd(V k

j,tr)
, where V

k

j,tr = 1
Ntr

Ntr∑
i=1

V
k(i)
j (3.4)

and sd(V k
j,tr) =

√√√√ 1
Ntr − 1

Ntr∑
i=1

(V k(i)
j − V k

j,tr)2. (3.5)

Note that the mean and standard deviation are always taken on the training data, whether
the data that are being scaled are in the training set or in the test set. Scaling the predictors
has no impact on the performance of tree-based methods. It should be noted that, if instead
of being multiplicative, the noise had a log-normal distribution, using the logarithm of the
predictors would make more sense than scaling them.

3.1.5 Dimensionality reduction

As we focus on mainstream methods rather than trying to optimize each algorithm for the EIT
application, we did not consider dimension reduction. Instead, we simplified the case study as
much as possible, keeping only four electrodes. Some researchers sought to minimize the cost
of the analysis by reducing the number of measurements used to solve the inverse problem.
Escalona-Galvis et al. [17] used the Effective Independence measure, see e.g. Kammer [28],
to select an optimal subset of resistance measurements by eliminating redundant electrode
pairs. Another approach is to reduce the dimensionality of the data after collecting the
voltage (or resistance) measurements. One common way to do this is to retain only the top
principal components. However, Principal Component Analysis (PCA) only captures linear
dependencies between predictors. Auto encoders have the advantage of being capable of
capturing non linear dependencies between predictors [25].

3.2 Supervised learning methods for inference on the presence of delamination

In this section, we address the problem of binary classification. We begin by creating a new
target variable Y , taking the value 1 when the delamination size ρ is greater than a given
threshold a, and the value 0 otherwise. In other words, for a given observation xi:

yi =

1 if ρi ≥ a;

0 if ρi < a.
(3.6)

We thus create the vector ytr of the yi’s, i = 1, . . . , Ntr, associated with the training set
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and the vector yts of the yi’s, i = 1, . . . , Nts, associated with the test set. For a given
test observation x0, the goal is to estimate the conditional probabilities P (Y = 1|x0) and
P (Y = 0|x0). The predicted class ŷ0 is generally given as the one maximizing the likelihood,
hence

ŷ0 = argmax
y

P (Y = y |x0). (3.7)

In practice, the value of a would be given by experts who determined when the composite
needs attention. We chose a to be the expected width of the delamination so as to obtain
well-balanced classes. Furthermore, the classification problem would have been as difficult
for any value of a in a reasonable range around the mean because the variations in the signal
are very weak with respect to the delamination width. For these reasons, it was not useful
to search for an optimal threshold a.

We now proceed to describe the machine learning algorithms that we shall compare in this
study.

3.2.1 k-Nearest-Neighbors

The k-NN method is an example of instance-based learning: rather than fitting a model,
its predictions are based on the labels of the k points in the training set whose features are
the closest to the query point’s features. This method is also described as “lazy“, since no
generalization about the data structure is made until a new observation needs to be labelled
[24]. More precisely, given a positive integer k and a test observation x0, the kNN classifier
first identifies the k points in the training data that are the closest to x0, represented by N0.
It then estimates the conditional probability for class j as the fraction of points in N0 whose
response values equal j [27]. In other words, the conditional probability for class j at x0 is
estimated by

P (Y = j|X = x0) = 1
k

∑
i∈N0

I(yi = j), (3.8)

where I(yi = j) is the indicator function taking value one when yi = j and zero otherwise. The
test observation x0 is then classified to the class with the largest probability. Since predictions
rely entirely on the distance measure between test or training observations, this method is
highly sensitive to variables preprocessing, including rescaling and features selection. In our
case, the distance between the query point and the points in the training set is the Euclidian
distance on features previously scaled to all have variance one (since the noise is Gaussian
multiplicative). If the noise followed a log-normal distribution, the Euclidian distance on the
predictors logarithm would be more appropriate.
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The choice of the hyperparameter k, also called tuning parameter, is a model selection prob-
lem. In statistics, common techniques for assessing the adequacy of a model include the
Akaïke Information Criterion (AIC) [1] and the Bayesian Information Criterion (BIC) [39],
which use a penalty term for the number of parameters in the model. However, those es-
timates require a precise evaluation of the number of model parameters, which is hard for
methods such as kNN. Hence, an estimate k̂ of k∗ (the true optimal k) is chosen based on
an estimate of prediction error, computed using cross-validation. The latter is described in
section 3.3.2.

3.2.2 An estimate of the Bayes rate lower bound

The Bayes error is the lowest possible error rate for a given classification problem [46]. It is
the error associated with the Bayes classifier, namely the classifier that assumes knowledge of
the true class probabilities at all points x ∈ X . It is non-zero if the classification labels are not
deterministic, i.e. there is a non-zero probability of a given instance belonging to more than
one class. According to Tumer and Ghosh [46], “such information is helpful in determining
whether it is worthwhile to try a different classifier, or a different set of parameters with the
chosen classifier with the hope of getting better classification rates“. The Bayes error is given
by

EBayes = 1−
K∑
i=1

∫
Ki

p(ki|x)dx, (3.9)

where p(ki|x) is the posterior for class ki at point x, and Ki is the domain where ki is the
dominant class, i.e. the class with the largest posterior. However, the Ki and p(ki|x) are not
known, so an estimate is needed.

We estimate a lower bound on the Bayes rate using the one-nearest-neighbor rule. Cover and
Hart [11] showed that asymptotically

EBayes ≤ E1NN ≤ 2EBayes(1− EBayes) ≤
1
2 (3.10)

where E1NN denotes the classification error obtained if using the k-nearest-neighbor with
k = 1 to make predictions on test data. Hence

E2
Bayes − EBayes + E1NN

2 ≤ 0

⇐⇒ 1−
√

1− 2E1NN

2 ≤ EBayes ≤
1 +
√

1− 2E1NN

2 .
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The upper bound is useless since we already know that EBayes ≤ 1
2 , but we plot the lower

bound together with the error rates of the machine learning algorithms in Chapter 4 to get
an idea of how close the latter are to optimality.

3.2.3 Random forests

A random forest is defined by Breiman [9] as “classifier consisting of a collection of tree-
structured classifiers {h(x,Θk), k = 1, . . .} where the Θk are independent and identically
distributed random vectors and each tree casts a unit vote for the most popular class at
input x”. We describe here its most popular form, which consists in applying the ensemble
method known as “Bagging” (Bootstrap aggregating) to fully grown (i.e. not pruned) trees,
while keeping the latter as independent as possible from each other by using only a subset
of the features at each step of the tree-growing process. We begin with a description of
the classification tree algorithm and the bagging ensemble method, before explaining the
improvement brought by random forests over simple bagged trees.

The tree-structured classifier

Classification and Regression Trees (CART) were first proposed by Breiman [7]. Whether
they are used for classification or regression, tree-based methods consist in partitioning the
feature space into a set of blocks, and then fitting a simple model in each one. Contrary
to instance-based methods, they have the advantage of being immune to scaling, and are
particularly popular in data analysis because of their simplicity of interpretation [24].

For a number Ntr of observations, our data consists of p inputs xi = (xi1, xi2, . . . , xip) and a
response yi, i = 1, . . . , Ntr, for each of Ntr observations. Suppose that we have a partition of
X = Rp into M regions R1, R2, . . . , RM .

For a node m representing a region Rm with Nm observations, let

p̂mk = 1
Nm

∑
xi∈Rm

I(yi = k) (3.11)

be the proportion of class k observations in node m. We classify the observations in node m
to class k(m) = argmaxk p̂mk, the class that collects the most votes in node m.

A greedy, top-down recursive partitioning algorithm is used to find the partition. Starting
with all the data, consider a splitting variable j and split point s, and define the pair of
half-planes

R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj > s} (3.12)
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Choosing the Gini index [24] as measure of node impurity, we seek the splitting variable j
and split point s that solve

min
j,s

p̂11p̂12 + p̂21p̂22, (3.13)

which can also be written

min
j,s

p̂11(1− p̂11) + p̂21(1− p̂21). (3.14)

Other measures of node impurity exist, like the misclassification error 1−p̂mk and the entropy
−∑K

k=1 p̂mk log p̂mk.

As opposed to misclassification error, entropy and Gini index are differentiable, and thus more
suitable for numerical optimization. They are also more sensitive to changes in probability
than the misclassification rate. Experimentally, entropy and Gini index yield similar results.
Here, the Gini index is used as the splitting criterion.

Having found the best split, the splitting process is repeated on each resulting region. When
growing a single (non-bagged) tree, the preferred strategy is generally to grow a large tree
T0, stopping the splitting process only when some minimum node size is reached, and then
“pruning“ the tree, i.e. choosing the optimal tree size using cross-validation. However, this
last step is not applied when growing a forest, since we want each tree to have a low bias.

Bootstrap

The bootstrap method consists of randomly drawing datasets with replacement from the
training data, each sample being of the same size Ntr as that of the training dataset T .
This is done B times, producing B bootstrap datasets, the model being fit on each of the
bootstrap datasets.

Let the empirical distribution function F̂ be the distribution that assigns a probability mass
ω = 1

Ntr
on xi, i = 1, 2, . . . Ntr. It can be shown that F̂ is the non parametric maximum

likelihood estimate of the true underlying population F [15]. Since drawing with replacement
from the training set T is the same as drawing samples from F̂ , the non parametric bootstrap
can be seen as maximum non parametric likelihood inference.

The method we just described is called the non-parametric bootstrap, because it uses the
raw data and not a specific parametric model to generate new datasets [24].
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Bagging

Bagging [8], short for bootstrap aggregating, makes use of the bootstrap to reduce the vari-
ance of an estimated prediction. Each derivative “bootstrapped” data set is used to construct
a new model and the models are gathered together into an ensemble.

Bagging averages the predictions produced by the models fit on a collection of bootstrap
samples. The bagging prediction f̂(x) is thus given by

f̂bag(x) = 1
NB

NB∑
b=1

f̂ b(x) (3.15)

where NB is the number of bootstrap samples. In classification, to make a prediction, all
models in the ensemble are polled and their results are averaged.

Since each tree generated in bagging is identically distributed (i.d.), the expectation (the
prediction) of an average of NB such trees is the same as the expectation of any one of them,
i.e. the bias of bagged trees is the same as that of the individual trees. The improvement
is left to variance reduction. Thus bagging works especially well for algorithms that have
high-variance and low bias, such as fully-grown trees. The latter have relatively low bias if
grown sufficiently deep, but suffer from high variance.

To further improve variance reduction, random forests add another parameter to bagging
trees.

Random forests

Random forests modify bagging by decorrelating the trees through random selection of the
input variables during the tree-growing process. When growing a tree on a bootstrapped
dataset, the following rule is observed:

Before each split, select mtry ≤ p of the input variables at random as candidates for splitting.

After NB such trees {T (x; Θb)}NB
1 are grown, the random forest (regression) predictor is

f̂NB
rf (x) = 1

NB

NB∑
b=1

T (x; Θb). (3.16)

where Θb characterizes the bth random forest tree in terms of split variables, cutpoints at
each node, and terminal-node values.

The number NB of trees grown on individual bootstrap samples does not need to be tuned.
This is due to the fact that a random forest cannot overfit the data: since the model is
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averaged over all the trees, the variance can only decrease. One must just make sure that
NB is large enough for convergence of the error rate. Random forests always converge [9].

The following parameters remain to be tuned:

• mtry, the number of variables to be tried at each split;

• the node size, i.e. the minimum number of observations contained in a terminal node.

Hastie et al. [24] report that, from experience, “using full-grown trees seldom costs much,
and results in one less tuning parameter”. This matches our experience with the data at
hand: the optimal tuning parameter combination almost always has a node size equal to one.
This can be explained by the fact that a fully grown tree has less bias than a shallow tree.
Thus we can set the node size to one and tune only mtry. This results in a much reduced
computational cost.

Being immune to scaling might not be such an advantage the random forest have over
instance-based methods when the noise distribution is known, since the latter is used to
decide whether the variables should be scaled or not. However, in situations where one is
unsure if the noise should be additive or multiplicative (or a mix of both), it can turn out to
be a decisive property. The randomForest package of Liaw et al. [31] provides an R interface
to the Fortran programs by Breiman and Cutler.

3.2.4 Support Vector Machines

The modern version of the SVM algorithm first appeared in Cortes and Vapnik [10]. The
SVM algorithm separates classes by constructing linear boundaries in a transformed version
of the feature space. Our training data consists of Ntr pairs (x1, y1), (x2, y2), . . . , (xNtr , yNtr),
with xi ∈ Rp and yi ∈ {−1, 1} such that:

yi =

 1 if ρi ≥ a;

−1 if ρi < a.
(3.17)

We follow the description found in Hastie et al. [24]. A hyperplane in Rp can be defined by

{x ∈ Rp : f(x) = xTβ + β0 = 0} (3.18)

where β is a unit vector, i.e. ‖β‖ = 1. The function f(x) gives the signed distance from point
x to the hyperplane xTβ + β0 = 0 and the sign can be used as a classification rule. When
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classes are linearly separable, we can find a function f(x) = xTβ + β0 with yif(xi) > 0,∀i.
To maximize the margin M ∈ R between the training points of both classes, define the
optimization problem

max
β,β0,||β||=1

M

subject to yi(xTi β + β0) ≥M, i = 1, . . . , Ntr,
(3.19)

which can be recast as:

min
β,β0

‖β‖

subject to yi(xTi β + β0) ≥ 1, i = 1, . . . , Ntr.
(3.20)

Minimizing ‖β‖ is equivalent to minimizing ‖β‖2, hence 3.20 is equivalent to the convex
optimization problem

min
β,β0

1
2‖β‖

2

subject to yi(xTi β + β0) ≥ 1, i = 1, . . . , Ntr.

(3.21)

To deal with classes overlapping, we can define the slack variables ηi, i = 1, . . . , Ntr and
rewrite (3.21) as follows:

min
β,β0

1
2‖β‖

2 + C
Ntr∑
i=1

ηi

subject to yi(xTi β + β0) ≥ 1− ηi,

ηi ≥ 0, ∀i,

(3.22)

where the parameter C controls the trade-off between the slack variable penalty and the size
of the margin. To find the optimal β, β0 we can minimize the corresponding Lagrange primal
function

LP (β, β0, η) = 1
2‖β‖

2 + C
Ntr∑
i=1

ηi −
Ntr∑
i=1

αi[yi(xTi β + β0)− (1− ηi)]−
Ntr∑
i=1

µiηi. (3.23)



39

Differentiating with respect to β, β0, and ηi, and setting the derivatives to zero, we get

∂LP
∂β

= 0 ⇒ β =
Ntr∑
i=1

αiyixi, (3.24a)

∂LP
∂β0

= 0 ⇒
Ntr∑
i=1

αiyi = 0, (3.24b)

∂LP
∂ηi

= 0 ⇒ C = αi + µi, ∀i, (3.24c)

together with positivity constraints αi, µi, ηi ≥ 0. By substituting these equations into (3.23),
we obtain the Lagrange dual objective function

LD =
Ntr∑
i=1

αi −
1
2

Ntr∑
i=1

Ntr∑
j=1

αiαjyiyjxixj, (3.25)

which we maximize subject to 0 ≤ αi ≤ C and ∑Ntr
i=1 ηiyi = 0. In addition, the Karush-Kuhn-

Tucker (KKT) conditions include the constraints

αi[yi(xTI β + β0)− (1− ηi)] = 0, (3.26a)

µiηi = 0, (3.26b)

yi(xTi β + β0)− (1− ηi) ≥ 0, ∀i = 1, . . . , Ntr. (3.26c)

Together, equations (3.24)-(3.26) uniquely characterize the solution to the primal and dual
problem. Until now, the method is limited to linear boundaries. To extend it to more complex
boundary shapes, one can define enlarged feature vectors h(x). From (3.24a) we see that the
solution function f(x) can be written

f(x) = h(x)Tβ + β0 = h(x)T
(
Ntr∑
i=1

αiyih(xi)
)

+ β0 =
Ntr∑
i=1

αiyi h(x)Th(xi) + β0. (3.27)

From (3.25) and (3.27) we see that h(x) is only involved through inner products. Hence we
do not need to specify h(x) but only the kernel function

K(x, x′) = h(x) ·h(x′). (3.28)

In this study, we use the radial basis function kernel

K(x, x′) = exp(−γ‖x− x′‖2). (3.29)
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The corresponding feature vector has an infinite number of dimensions but does not need
to be specified. The γ parameter defines how far the influence of a single training sample
selected by the model as support vector reaches, while the C parameter trades off correct
classification of training examples against maximization of the decision function’s margin.
The choice of these parameters is discussed in the next section. We use the R library described
in Meyer and Wien [32].

3.3 Model selection

Model parameters are learnt directly from data, while hyper-parameters are used in the model
parameter estimation process, and must be tuned using heuristics. The parameter γ in the
SVM radial basis kernel (cf (3.29)), the number of neighbors k in the k-nearest neighbors
method and the number mtry of variables among which to chose a split point during the
construction of each random forest tree, are examples of such hyper-parameters. The tuning
of these hyper-parameters amounts to a model selection problem. In this study, we will use
cross-validation, a popular method that allows us to use the training set to perform both
training and model selection, to select them.

This section begins with some comments about the metric used in this study. We then give
a brief description of cross-validation and provide a few details of its implementation for the
learning algorithms that are used in this work.

3.3.1 Performance metric

The performance of a classification algorithm can be completely summarized by a confusion
matrix. The confusion matrix is a K × K table collecting in each cell (i, j) the number
of observations that belong to class j that were predicted to belong to class i, for each
i, j = 1, . . . , K. Since we are doing binary classification, the confusion matrix here is 2× 2.

Many different performance measures can be computed from the confusion matrix, the choice
of the measure depending on the data at hand and on the goal of the data analysis. In this
study, we choose to report the error rate, defined as the ratio of misclassified test samples
over the total number of test samples. We sometimes also report false positives and false
negatives separately in order to provide a thorough analysis of these different error types.
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Table 3.1 Confusion matrix for binary classification

Predicted Positive Predicted Negative
Real Positive True Positive (TP) False Negative (FN)
Real Negative False Positive (FP) True Negative (TN)

3.3.2 Cross-validation

Cross-validation is used to estimate the test error of a model in order to perform model
selection. While some less expensive model selection procedures (Cp and BIC statistics) are
available, they all require the knowledge of the number of parameter. Cross-validation does
not require the latter to be known, and therefore is more appropriate in complicated settings
[15]. While using separate training and validation sets is better when we have plenty of data,
cross-validation is preferred in situations where data are rare or expensive to collect, as in
our case.

Cross-validation consists of using part of the training data to fit the model, and the rest to
test it. In V -fold cross-validation, we partition the training dataset

T = {(x1, y1), (x2, y2), . . . (xNtr , yNtr)}

randomly into V equally sized non-overlapping subsets indexed by v ∈ {1, . . . , V }. For the vth

part, we fit the model to the other V −1 parts of the data, and calculate the prediction error
of the fitted model when predicting the vth part of the data. We do this for v = 1, 2, . . . , V
and combine the estimates of prediction error: the cross-validation estimator of the prediction
error is defined as the average of the prediction errors obtained on each fold.

Let κ : {1, . . . , Ntr} 7→ {1, . . . , V } be an indexing function that indicates the partition to
which the observations are allocated by the randomization. Denote by f̂−v(x) the fitted
function, computed with the vth part of the data removed. Then the cross-validation estimate
of prediction error is

errCV (f̂) = 1
Ntr

Ntr∑
i=1

L(yi, f̂−κ(i)(xi)), (3.30)

where L(yi, f̂−κ(i)(xi)) is the loss incurred by estimating yi with f̂−κ(i)(xi). Given a set of
models f(x, α) indexed by a tuning parameter α, denote by f̂−v(x, α) the αth model fit with
the vth part of the data removed. Then for this set of models we define

errCV (f̂ , α) = 1
Ntr

Ntr∑
i=1

L(yi, f̂−κ(i)(xi, α)). (3.31)
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The function errCV (f̂ , α) provides an estimate of the test error curve, and we find the tuning
parameter α̂ that minimizes it. The final chosen model is f(x, α̂), which we then fit to all
the training data.

3.3.3 Application of cross-validation to the machine learning algorithms

We now give precisions concerning the implementation of cross-validation for the algorithms
used in this study.

k-NN For the k-NN method, the tuning parameter α is the number of neighbors of the
test observation to be taken into account in the prediction. Kohavi [29] recommends using
stratified 10-fold CV. In our case, we have two well-balanced classes with hundreds of samples
per class, so we choose V = 10 without stratification.

The loss function used is the misclassification rate, i.e.

L(y, f̂(x, α)) = I(y 6= f̂(x, α)) =

1 if f̂(x, α) 6= y,

0 otherwise.
(3.32)

Substituting (3.32) for f̂−κ(i)(xi, α) in (3.31), we obtain the cross-validation error estimate
for the k-nearest neighbors method:

errCV (f̂ , k) = 1
Ntr

Ntr∑
i=1

I(yi 6= f̂−κ(i)(xi, k)). (3.33)

The value of k that yields the smallest errCV (f̂ , k) is then chosen to make predictions on the
test set from the whole training set. In our case, k is an odd natural number chosen between
1 and 41, as preliminary results showed k was always under 41.

Random Forests A grid search is conducted over the parameter mtry, using the Out-Of-
Bag (OOB) error estimate. Recall that bootstrap samples are each generated by drawing
Ntr times with replacement from the Ntr training observations. Thus each observation has
probability (

1− 1
Ntr

)Ntr

= e−1 ≈ 0.368

of not being included in a given bootstrap sample. The training data that are not included
in a given bootstrap sample are called OOB observations. The OOB error is computed
by averaging, for each observation zi = (xi, yi), over only those trees grown on bootstrap
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samples which do not contain zi. The value of mtry that yields the smallest OOB error is
then used to fit the final model. The OOB error can also be used to assess when training
can be terminated. No more trees need to be constructed once the OOB error stabilizes. As
preliminary results showed the error stabilizes after about 500 trees are grown, we choose
to grow a conservative 1,000 trees. mtry is chosen between 1 and 9 (the total number of
predictors in our study).

Support Vector Machines As with the k-nearest-neighbor method, we use 10-fold cross-
validation to select the optimal hyper-parameters of the SVM method. However, this time,
two hyper-parameters must be selected, i.e. the kernel width γ and the cost C. A grid-search
is performed: we look for the best {γ, C} in {0.005, 0.05, 0.5} × {1, 10, 100, 1000}.
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CHAPTER 4 NUMERICAL RESULTS

In this chapter, we present the numerical results. We consider two cases: first, we use a
subset of our data containing only delaminations that are either clearly large or small, and
therefore easy to classify, to check if the results match our intuition. Secondly, using the full
dataset, we attempt to give answers to the questions raised in the introduction:

• Is there an algorithm that stands out as the most appropriate tool for solving the
inverse problem?

• How much impact has noise on the prediction performance?

• How many training samples are needed to achieve a near-optimal prediction perfor-
mance?

• Which electrode setting provides the most informative data?

• How much harder is delamination detection in comparison to detecting a cavity repre-
senting the added resistance change due to fiber breakage?

The results provide insights about the complex relationship between noise, anisotropy and
geometry, which motivates us to recommend further research on precise aspects of this sub-
ject.

4.1 Preliminary results with well separated classes

The objective in this section is to verify that the code was correctly implemented by comput-
ing the prediction error of all algorithms on subsets of data with well-separated classes. For
that purpose, we only keep the samples that have a delamination radius ρ that is either at
least three millimeters smaller than the threshold a = 6.75 mm, i.e. ρ ≤ 3.75 mm, or greater,
i.e. ρ ≥ 9.75 mm. The latter are considered to be damaged, while the first are considered
in good state. Data samples with 3.75 ≤ ρ ≤ 9.75 mm are not used in this section but
will be considered in Section 4.2.1. The motivation is that removing the ambiguous samples
will shed light on some trends that might otherwise be harder to observe and lead to clearer
results to interpret.
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4.1.1 Prediction performance on test data

We begin by plotting the error rates of each algorithm against the noise’s standard deviation.
Results are shown in Figure 4.1. The algorithms are trained on 400 samples and produce
predictions on 100 test samples, 10 times. Each point corresponds to the average of the 10
error rates obtained, and the error bars are the standard deviations computed over those 10
error rates. Each computation involves each of the steps described in Chapter 3, from the
addition of noise to cross-validation.

As expected, the error rates are equal or very close to perfect when data are noiseless, except
when the anisotropy is low, i.e. λ = 1 or λ = 10, and bottom electrodes are not shifted
to the right. Another observation is that the error rate is not a monotonic function of the
conductivity ratio λ. While it has been said on multiple occasions that the main difficulty in
delamination detection in CFRP is the high electrical anisotropy, our results seem to show
that the detection of damage is easier with a moderately high anisotropy, i.e. λ = 100, when
noise intensity is kept under a few percent.

When λ = 1000, the curves in Figure 4.1 have a parabolic profile for low values of the noise.
The prediction performance is ideal on deterministic data and remains good when ν = 1%,
but then worsens quickly. Since we are in the context of binary classification, as ν2 → ∞,
the average error rate cannot be greater than 1− pk∗ , where pk∗ is the proportion of k∗, the
most represented class in the data, and the derivative of the error rate with respect to ν must
vanish. Thus the error rate slowly starts to stabilize after an inflexion point is attained when
ν ∼ 2.5%. The same behavior is seen for λ = 100, except that this time the inflexion point is
attained much later, when ν ∼ 8%. However, for λ = 1 or 10 the error rate linearly increases
in the range visible in the graph, i.e. for ν < 10%.

SVM and random forests yield similar performance overall. k-NN prediction errors are gen-
erally a little greater. The Bayes rate estimate is only slightly smaller than SVM and random
forests prediction errors and often hardly distinguishable from the latter until a gap appears
after the noise standard deviation attains a few percent. Overall, these observations indicate
that using other machine learning algorithms would not lead to significantly more accurate
predictions.

4.1.2 Location of misclassified samples

To gain more insights about the predictions errors, we display the positions of false negatives
and false positives in Figure 4.2. In this graph, the electrode shift Esh is fixed at zero; the
solid horizontal black lines at each corner signal the electrode positions. Note that vertical
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Figure 4.1 Misclassification rate as a function of the noise standard deviation. 400 training
data, 100 test data, repeated 10 times, in the case of well-separated 2D delamination sizes.
Electrode shift values are shown on the right.
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distances are exaggerated: the geometry of the samples under study is still the one displayed
in Figure 2.10, but we only show the part of the geometry that is between the electrode in
order to obtain a better resolution.

We first notice is that for λ = 1 and ν close to zero, the locations of the two different error
types are well separated. On one hand, all the false positives (insignificant damage that were
predicted positive) are located close to the electrodes. As these delaminations stand right in
the path between electrodes, they force the current to take a path that is significantly longer
than the one it would follow without the presence of a (small) delamination. Furthermore,
the two closest electrodes are the ones that are most solicited by this delamination, and hence
are likely to lead to more sensitive measurements. Effectively, this leads to strong signals
from what should be negligibly small delaminations being detected between the two closest
electrodes.

On the other hand, false negatives (harmful delamination that went undetected) are all found
in the center, midway between left and right electrodes and thus far away from both. The
delaminations would cause increases in the voltage drops between the two most separated
electrodes, and hence would correspond to the least sensitive positions for delamination
detection. Although the larger delaminations are misclassified when they are in the middle,
this seems reasonable since they correspond to larger voltage drops (longer paths and more
path options) and thereby least available discrimination of the sources of these voltage drops.
However, the separation of these two error types becomes less clear as λ increases. When
λ = 1000 and ν > 3%, the locations of both error types seem uniformly distributed. While
Figure 4.2 only shows damage location for Esh = 0, we observe the same behavior for Esh =
25% and Esh = 25%.

Another general trend we notice is that as ν increases, a left-right bias seems to appear: false
positives occurs more frequently on the left side, while false negatives are more prominent
on the right side. We attempt to explain this observation in the next section.

4.1.3 Sources of left-right bias

To explain the left-right bias observed in Figure 4.2, we review choices we previously made
about features selection and noise distribution. We noticed that when σ > 0 the majority of
false negatives occur for delaminations located on the right part of the composite, while false
positives are more likely to happen on the left side. One source of bias is that we did not
use all possible electrode pairs for current injection. We only used three of the six possible
pairs: the pairs (1,2), (1,3), and (1,4). Since our measurements are more sensitive to damage
located on the path followed by the current between each of these electrode pairs, we are more
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Figure 4.2 Location of test delaminations misclassified by SVM algorithm, with Shift=0%,
ν from 0 to 0.05, 400 training data, 100 test data, repeated 10 times. Corresponding noise
intensities ν are shown on the right.
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susceptible to detect delamination between electrodes 1 and 3 than between electrodes 2 and
4. It is also worth mentioning that, as the paths taken by the electrical current depend on λ,
so does the correlation between voltage measurements, making the problem more complex.

Another cause for the bias is that V5 = U2 − U4 does not appear explicitly among the
predictors. Instead it is measured indirectly through voltages V1 = U1−U2 and V3 = U1−U4,
that is

V5 = U2 − U4 = (U1 − U4) + (U2 − U1) = V3 − V1, (4.1)

hence the variance of V5 is equal to the sum of the variance of V1 and V3. The same remark
can be made about voltages V4 and V6, but the data does not clearly show a bias in those
cases.

Recall that in equation (3.3), we supposed that the noise terms εij affecting each voltage
feature were all pairwise independent. In reality, paths taken by the current to go from
electrode 1 to electrodes 2, 3, and 4 overlap in the region surrounding electrode 1, and hence
voltages V1, V2, and V3 are correlated. Taking these (positive) correlations into account would
reduce the variance of V5, since

Var[A+B] = Var[A] + Var[B] + 2× Cov[A,B]. (4.2)

One way to compute these correlations would be to compute the covariance matrix of the
predictors using our dataset. However, this would amount to incorporating information from
the data to our prior, which could in turn lead us to overestimate the accuracy of our model.
However, while this bias affects our test error estimate, we are confident that it does not
invalidate the insights we get from comparing the estimates computed using different values
of our parameters. Furthermore, in practice, one would expect that the user would use (in
2-D) eight rather than just 4 electrodes, and that the information from the additional four
electrodes, selected to circumscribe the region already analysed by the four electrodes, would
compensate this bias.

In an experiment, we included all six voltages from each of the three injection patterns in the
feature matrix, adding independent noise to each. This resulted in a diminution of the actual
variance of each voltages as compared to the chosen value of ν2, since it was equivalent to
drawing several realizations of each voltage, as e.g. V5 = V3 − V1 = V4 + V6. It made results
harder to interpret, so we kept the initial model.

This is interesting to note that none of the previous studies on the topic included a noise
model for the boundary measurements. Their conclusions were thus that the anisotropy of
the electrical conductivity was one of the main factors that made EIT difficult to apply on
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CFRP, without further exploring this relationship. Hence, the noise model and its analysis
here is a significant contribution of this research.

4.2 Results from the whole dataset

4.2.1 Impact of noise and algorithms comparison

In this section, we compare the prediction performances of the algorithms presented in Chap-
ter 3. Figure 4.3 shows the error rates against the noise’s standard deviation for all algorithms,
electrode shifts and anisotropy level. It is the same graph as Figure 4.1, except that this time
we considered the complete dataset. We used 800 samples for training and 200 for testing,
10 times. Note that in this graph the maximum noise standard deviation is 5% of the voltage
magnitude, while in Figure 4.1 it ranged from 0 to 10%. As expected, prediction errors are
more frequent. Delaminations with size close to the chosen threshold a = 6.75 mm are harder
to classify, since even a good estimation of their size can lead to a misclassification.

Figure 4.3 confirms the trends we first observed in Figure 4.1. On one hand, in the case
of high anisotropy, one observes better accuracies when little noise is added, but prediction
performance worsens quickly when noise crosses a threshold depending on anisotropy. On
the other hand, when λ is small the error rates are disappointingly far from zero on noiseless
data but remain relatively stable as we add more noise.

From Figure 4.3, one can clearly see that:

• k-NN is always worse;

• SVM and random forests perform roughly as well.

We will henceforth only show results using SVM and random forests.

4.2.2 Number of training samples required

One of the goals of this study is to determine how many training samples are needed to
achieve near optimal performance. Figure 4.4 shows the error rates as a function of the
number of training samples, with Esh = 0. The number of test samples is kept fixed at 200.

We observe from the graphs it is clear that the asymptotic value of the error rate, i.e. the
misclassification rate as Ntr → ∞, is almost reached when Ntr = 800. In fact, little to no
progress is made, in general, between 200 and 800. We should remind the reader at this point
that the subject of the analysis is a 2D laminate with a single lamina. Hence the values of
Ntr where the curve flattens in Figure 4.4 may not be meaningful for real world conditions.
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Figure 4.3 Misclassification rate as a function of the noise standard deviation, 800 training
data, 200 test data, repeated 10 times.
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As adding one dimension to the geometry could increase that value, we may postulate that
we would need at least 200 samples in the 3D case, thus providing a lower bound on the
amount of work necessary for detection.

4.2.3 Comparison of different electrode settings

In order to better compare the different electrode settings, the error rates obtained with each
set-up are superimposed in Figure 4.5.

When the anisotropy is extremely high, i.e. for λ = 1, 000, the different electrode set-ups
yield similar results. On the contrary, in the isotropic case, the electrode set-up seems to
have an impact: the set-up with Esh = 50% provides better predictions, especially when ν
is close to zero. Recall that in Figure 4.2 we could see that delaminations were harder to
detect when they were located far from the electrodes, but that this relationship between
damage location and prediction performance became less obvious as λ grew. As the influence
of the relative location with respect to the electrodes vanishes, so does the influence of the
positioning of the latter, which explains the results shown in Figure 4.5.

4.2.4 Comparison with cavity detection

Angelidis and Irving [2] remarked that damaged areas consist of fiber breaks and intra laminar
cracks as well as inter laminar delaminations. The goal of this section is to find if prediction
results on data taking into account the added effect of fiber breakage are significantly different
from those obtained with data simulating the effect of through-thickness conductivity change
only. To achieve that, we plotted the error rates obtained with cavity data, as described in
Section 2.4.2, against those obtained with delamination data, as described in Section 2.4.1.
For the sake of clarity, we only show the error rates obtained with the SVM algorithm.
Results are displayed in Figure 4.6. As expected, it is significantly easier to detect a cavity
than a delamination, except when λ = 100. The high error rates observed in Figure 4.3
for small λ and near zero Esh, which we interpreted as being caused by the incapability to
detect delamination located far away from the electrodes, disappear when delamination are
replaced by cavities.
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training data, 200 test data, repeated 10 times.
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CHAPTER 5 CONCLUSION

5.1 Study synthesis

In this study, we described a methodology that consists of using machine learning algorithms
to infer the presence of damage in CFRP from boundary voltage measurements. We imple-
mented the CEM to generate data samples and used standard machine learning algorithms
to solve the inverse problem. The SVM and random forest algorithms yielded similar per-
formances, while the k-NN algorithm was constantly outperformed. As our estimate of the
Bayes error was not significantly smaller, using other state-of-the-art machine algorithms
would probably not help us with reducing the error.

Since we observed that at least 200 samples are needed to provide an error rate “close
enough” to its asymptotic value, we postulate that hundreds are necessary to achieve good
accuracy on three-dimensional composite. Our cavity experiment confirmed our intuition that
delaminations are harder to detect than cavities, as the latter obstruct both in-plane and
through-thickness conductivity, while delaminations affect through-thickness conductivity
only.

By using machine learning algorithms for a classification tasks, rather than attempting to
predict a continuous variable, i.e. delamination sizes, we were able to visualize the dependence
of prediction performance on damage location more efficiently. First, this enabled us to
confirm that the damage cases that are the hardest to detect are the ones located the farther
from the electrodes, as it had been reported in numerous papers. More importantly, studying
the joint effect of anisotropy, electrode positioning, and noise on the prediction performance
allowed us to uncover a link between anisotropy and geometry that had not been previously
identified. We initially suspected that our results would lead us to define an upper bound on
the conductivity ratios which makes the inverse identification feasible. Instead, we observed
that anisotropy might actually help us improve predictions when the material is thin. In
other words, our results seem to indicate that unless the electrode density is very high, i.e.
the electrode spacing is in the same order of magnitude as the material thickness, the electrical
anisotropy may help engineers to extract more reliable predictions from EIT. Another way to
state this is that thinner materials require a greater anisotropy in order to balance the length
scales (depth of composite versus distance between electrodes) and thereby improve detection
in regions farther away from the electrodes. This observation leads us to recommend doing
further research on the relationship between material geometry, anisotropy level and optimal
electrode spacing.
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5.2 Limitations

The use of exclusively synthetic data is not enough to conclude that the proposed method is
efficient in real life situations. Nevertheless, the majority of the approximations introduced in
the development of the model, notably in the mathematical characterization of delamination,
lead to overestimates of its predictive power. Hence our conclusions overall do not allow us
to conclude that EIT detection is impossible. In fact, past studies of EIT for composites
have come to similar conclusions for the same range of parameters we considered.

Nevertheless, the studies we undertook indicate that certain properties of EIT could be lever-
aged to improve accuracy and reliability, maybe even to the point of making this approach
feasible. We therefore cautiously encourage further study of this problem be undertaken,
particularly with appropriately prepared samples of composites.

5.3 Future work

This general statement attempts to highlight the fact that there are still some discrepancies
between how EIT works in composites and how they are modelled numerically. In particular,
the experimental set-up, the choice of electrodes, and especially the possibility of using
electrodes on both sides of the composite, should be carefully evaluated. So far, there does
not seem to be a consensus on the form in which EIT could be implemented in the field, say
in specific applications in the aerospace industry.

Highly resistive ply-ply interfaces should be taken into account in the modeling of the forward
problem. In this work, we assumed that the conductivity was homogeneous in the through-
thickness direction, but in reality it is equal to that of the transverse direction inside each
plies but considerably lower in the matrix rich ply-ply interfaces. Those interfaces are likely
to increase both the data generation cost and the difficulty of inverse inference.

A reasonable hypothesis is that prediction results would be slightly better if using not only
four electrodes (or eight in 3D) but also surrounding grid electrodes. Also, including a full
frequency model would probably increase detectability of delaminations, based on experi-
mental results we have seen. In order to get a deeper understanding of the joint effect of
geometry, electrode positioning, and anisotropy on damage detection, one could add a “ma-
terial thickness” parameter to our methodology. Ideally, we want to find a description of the
optimal electrode spacing as a function of geometrical and conductivity parameters.

Another issue is the bias due to our noise model. Future work should focus on improving
the noise model, e.g. by taking voltage correlations into account. One could also simulate
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the presence of minor material imperfections using noise in order to decrease the cost of data
generation. This would be faster than solving the forward problem multiple times for small
(benign) delamination.

One of the important conclusions of our study is that the predictions from different machine
learning algorithms are relatively close, with a slight preference for more highly non-linear
approaches such as SVM with radial basis function and random forests. In any case, our
studies did not seek the optimal implementation of our chosen machine learning algorithms,
and there is still some room for improvement of detection if the hidden parameters of the
algorithm were optimized for the chosen task.



59

BIBLIOGRAPHY

[1] Hirotogu Akaike. Information theory and an extension of the maximum likelihood prin-
ciple. In Selected papers of hirotugu akaike, pages 199–213. Springer, 1998.

[2] N. Angelidis and P. E. Irving. Detection of impact damage in CFRP laminates by means
of electrical potential techniques. Composites Science and Technology, 67(3):594–604,
2007.

[3] David C. Barber and Brian H. Brown. Applied potential tomography. Journal of Physics
E: Scientific Instruments, 17(9):723, 1984.

[4] Joakim Beck, Ben Mansour Dia, Luis FR Espath, Quan Long, and Raul Tempone.
Fast bayesian experimental design: Laplace-based importance sampling for the expected
information gain. arXiv preprint arXiv:1710.03500, 2017.

[5] Abdessalem Benammar, Redouane Drai, and Abderrezak Guessoum. Detection of de-
lamination defects in cfrp materials using ultrasonic signal processing. Ultrasonics, 48
(8):731–738, 2008.

[6] Charly Billet, Serge Prudhomme, Marc Laforest, Kenan Kergrene, and Augustin
Schmidt. Electrical impedance tomography. Technical report, Polytechnique Montreal,
2017.

[7] Leo Breiman. Classification and regression trees. Routledge, 1984.

[8] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[9] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, Oct 2001. ISSN 1573-
0565.

[10] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20
(3):273–297, 1995.

[11] Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE transac-
tions on information theory, 13(1):21–27, 1967.

[12] David R. Cox. The regression analysis of binary sequences. Journal of the Royal Statis-
tical Society. Series B (Methodological), pages 215–242, 1958.



60

[13] Eugene Demidenko, Andrea Borsic, Yuqing Wan, Ryan J Halter, and Alex Hartov.
Statistical estimation of eit electrode contact impedance using a magic toeplitz matrix.
IEEE Transactions on Biomedical Engineering, 58(8):2194–2201, 2011.

[14] Bradley Efron. The jackknife, the bootstrap, and other resampling plans, volume 38.
SIAM, 1982.

[15] Bradley Efron and Robert J. Tibshirani. An introduction to the bootstrap. CRC press,
1994.

[16] M Endrizzi, BIS Murat, P Fromme, and A Olivo. Edge-illumination x-ray dark-field
imaging for visualising defects in composite structures. Composite Structures, 134:895–
899, 2015.

[17] Luis Waldo Escalona-Galvis, Paulina Diaz-Montiel, and Satchi Venkataraman. Optimal
electrode selection for electrical resistance tomography in carbon fiber reinforced polymer
composites. Materials, 10(2):125, 2017.

[18] Luis Waldo Escalona-Galvis, Paulina Diaz-Montiel, and Satchi Venkataraman. Optimum
electrode configurations for two-probe, four-probe and multi-probe schemes in electrical
resistance tomography for delamination identification in carbon fiber reinforced compos-
ites. Journal of Composites Science, 2(2):29, 2018. ISSN 2504-477X.

[19] Alexandre Fouchard, Stéphane Bonnet, Lionel Hervé, and Olivier David. Flexible numer-
ical platform for electrical impedance tomography. COMSOL Conference in Grenoble,
2015.

[20] Engr Ekundayo Gbenga. Using non-destructive testing for the manufacturing of compos-
ites for effective cost saving: A case study of a commercial prepreg CFC. International
Journal of Materials Engineering, 6(2):28–38, 2016.

[21] Victor Giurgiutiu. Structural Health Monitoring of Aerospace Composites. Academic
Press, 2015.

[22] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

[23] Jacques Hadamard. Sur les problemes aux derive espartielles et leur signification
physique. Bulletin of Princeton University, 13:1–20, 1902.

[24] T Hastie, R Tibshirani, and J Friedman. The Elements of Statistical Learning. New
York: Springer, 2 edition, 2009.



61

[25] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data
with neural networks. science, 313(5786):504–507, 2006. doi: 10.1126/science.1127647.

[26] Atsushi Iwasaki and Akira Todoroki. Statistical evaluation of modified electrical re-
sistance change method for delamination monitoring of cfrp plate. Structural Health
Monitoring, 4(2):119–136, 2005.

[27] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction
to statistical learning, volume 112. Springer, 2013.

[28] Daniel C. Kammer. Sensor placement for on-orbit modal identification and correlation
of large space structures. Journal of Guidance, Control, and Dynamics, 14(2):251–259,
1991.

[29] Ron Kohavi. A study of cross-validation and bootstrap for accuracy estimation and
model selection. In Ijcai, volume 14, pages 1137–1145. Stanford, CA, 1995.

[30] Z. Li, A. Haigh, C. Soutis, A. Gibson, R. Sloan, and N. Karimian. Detection and
evaluation of damage in aircraft composites using electromagnetically coupled inductors.
Composite Structures, 140:252–261, 2016.

[31] Andy Liaw, Matthew Wiener, et al. Classification and regression by randomforest. R
news, 2(3):18–22, 2002.

[32] David Meyer and FH Technikum Wien. Support vector machines. R News, 1(3):23–26,
2001.

[33] T. M. Mitchell. Machine Learning. McGraw-Hill International Editions. McGraw-Hill,
1997. ISBN 9780071154673.

[34] Paulina Diaz Montiel. Exploration on surrogate models for inverse identification of
delamination cracks in CFRP composites using Electrical Resistance Tomography. PhD
thesis, San Diego State University, 2016.

[35] J. Mueller and S. Siltanen. Linear and Nonlinear Inverse Problems with Practical Ap-
plications. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2012.

[36] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological Review, 65(6):386, 1958.

[37] Arthur L. Samuel. Some studies in machine learning using the game of checkers. IBM
Journal of research and development, 3(3):210–229, 1959.



62

[38] Ruediger Schueler, Shiv P Joshi, and Karl Schulte. Damage detection in cfrp by electrical
conductivity mapping. Composites Science and Technology, 61(6):921–930, 2001.

[39] Gideon Schwarz et al. Estimating the dimension of a model. The annals of statistics, 6
(2):461–464, 1978.

[40] Lakshmi Selvakumaran, Quan Long, Serge Prudhomme, and Gilles Lubineau. On the de-
tectability of transverse cracks in laminated composites using electrical potential change
measurements. Composites Structures, 121:237–246, 2015.

[41] Erkki Somersalo, Margaret Cheney, and David Isaacson. Existence and uniqueness for
electrode models for electric current computed tomography. SIAM Journal on Applied
Mathematics, 52:1023–1040, 1992.

[42] Albert Tarantola. Inverse problem theory and methods for model parameter estimation,
volume 89. siam, 2005.

[43] Akira Todoroki. Effect of number of electrodes and diagnostic tool for delamination
monitoring of graphite/epoxy laminates using electric resistance change. Composites
Science and Technology, 61(13):1871–1880, 2001.

[44] Akira Todoroki, Miho Tanaka, and Yoshinobu Shimamura. Measurement of orthotropic
electric conductance of CFRP laminates and analysis of the effect on delamination mon-
itoring with an electric resistance change method. Composites Science and Technology,
62:619–628, 2002.

[45] Akira Todoroki, Miho Tanaka, and Yoshinobu Shimamura. High performance esti-
mations of delamination of graphite/epoxy laminates with electric resistance change
method. Composites Science and Technology, 63(13):1911–1920, 2003.

[46] Kagan Tumer and Joydeep Ghosh. Estimating the Bayes error rate through classifier
combining. In Proceedings of the 13th International Conference on Pattern Recognition,
1996, volume 2, pages 695–699. IEEE, 1996.

[47] Xiaojun Wang and D. D. L. Chung. Sensing delamination in a carbon fiber polymer-
matrix composite during fatigue by electrical resistance measurement. Polymer Com-
posites, 18(6):692–700, 1997.

[48] Hadley Wickham et al. Tidy data. Journal of Statistical Software, 59(10):1–23, 2014.



63

[49] Ruizhen Yang and Yunze He. Polymer-matrix composites carbon fibre characterisation
and damage inspection using selectively heating thermography (seht) through electro-
magnetic induction. Composite Structures, 140:590–601, 2016.

[50] Yi Zou, LPSG Tong, and Grant P Steven. Vibration-based model-dependent damage
(delamination) identification and health monitoring for composite structures—a review.
Journal of Sound and vibration, 230(2):357–378, 2000.


	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ACRONYMS
	1 INTRODUCTION
	1.1 Context and Definitions
	1.2 Literature review
	1.2.1 EIT for damage detection in CFRP
	1.2.2 Machine learning

	1.3 Goals
	1.4 Methodology and Hypothesis
	1.5 Outline

	2 FORWARD PROBLEM
	2.1 Mathematical model
	2.2 Parametrization
	2.2.1 Geometry
	2.2.2 Laminate conductivity tensor
	2.2.3 Delamination

	2.3 Finite element simulation
	2.3.1 Boundary conditions
	2.3.2 Conductivity tensors
	2.3.3 Meshing
	2.3.4 Convergence study
	2.3.5 Example

	2.4 Generation of surrogate data
	2.4.1 2D experiment with delamination
	2.4.2 2D experiment with cavity


	3 PARAMETER IDENTIFICATION USING SUPERVIZED LEARNING
	3.1 Data preprocessing
	3.1.1 Structure of the predictors matrix
	3.1.2 Data splitting: Training and Test sets
	3.1.3 Modeling noise
	3.1.4 Normalizing the predictors matrix
	3.1.5 Dimensionality reduction

	3.2 Supervised learning methods for inference on the presence of delamination
	3.2.1 k-Nearest-Neighbors
	3.2.2 An estimate of the Bayes rate lower bound
	3.2.3 Random forests
	3.2.4 Support Vector Machines

	3.3 Model selection
	3.3.1 Performance metric
	3.3.2 Cross-validation
	3.3.3 Application of cross-validation to the machine learning algorithms


	4 NUMERICAL RESULTS
	4.1 Preliminary results with well separated classes
	4.1.1 Prediction performance on test data
	4.1.2 Location of misclassified samples
	4.1.3 Sources of left-right bias

	4.2 Results from the whole dataset
	4.2.1 Impact of noise and algorithms comparison
	4.2.2 Number of training samples required
	4.2.3 Comparison of different electrode settings
	4.2.4 Comparison with cavity detection


	5 CONCLUSION
	5.1 Study synthesis
	5.2 Limitations
	5.3 Future work

	BIBLIOGRAPHY

