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RÉSUMÉ 

Les eaux pluviales urbaines sont évacuées par des réseaux de drainage qui sont conçus pour 

fonctionner en écoulement à surface libre. Or pour plusieurs raisons, comme une augmentation de 

l’intensité de la pluie ou de sa fréquence, une urbanisation accrue, ou des dysfonctionnements 

dans le réseau, la capacité d’évacuation de la conduite peut être dépassée. Ce dépassement de 

capacité entraine une mise en charge partielle ou totale de la conduite. Le passage d’un 

écoulement à surface libre vers un écoulement en charge ou vice-versa représente un type 

d’écoulement appelé « écoulement transitoire ». Durant un écoulement transitoire, on observe des 

variations importantes de pression et de vitesse pouvant créer des dommages tels qu’une rupture 

de conduites, un effondrement d’infrastructures, une inondation de zones bases, une apparution 

de geyzers, etc. Ces écoulements transitoires sont très souvent accompagnés d’une 

entrée/évacuation de quantités importantes d’air dans le réseau. 

Pour améliorer la conception des nouveaux réseaux de drainage et la réhabilitation des réseaux 

existants, les modèles de simulation doivent prendre en compte les écoulements transitoires en 

intégrant des aspects particuliers souvent négligés, notamment la dynamique de l’écoulement et 

les effets de l’air. C’est dans ce cadre que le Laboratoire d’Hydraulique de l’École Polytechnque 

a mis en place un programme qui vise la modélisation numérique et physique (expérimentale) des 

écoulements transitoires avec et sans poches d’air emprisonnées.  

Le présent mémoire rentre dans le cadre ce programme. Son objectif principal est de faire une 

analyse dynamique et expérimentale des écoulements transitoires avec poches et bulles d’air, 

dans le but de disposer d’éléments de comparaison et de pistes de solution pour la réalisation du 

modèle numérique particulièrement dans sa composante avec poches d’air. La principale 

hypothése émise durant cette étude est que l’effet de l’air, souvent négligé, a un impact certain 

sur la dynamique de l’écoulement.  

Les travaux de ce mémoire se structurent en trois grandes parties : une revue bibliographique, un 

travail numérique sur le modèle de simulation en cours de réalisation et des travaux 

expérimentaux.  

i) La revue bibliographique a permis de faire une analyse critique des modèles existants et dresser 

une liste de leurs forces et leurs limites. Ces modèles sont classés suivant la technique de calcul 
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utilisée (fente de Preissmann, suivi du front ou approche à deux composantes de pression) et 

selon leur capacité à prendre en compte l’effet de l’air. Cette revue a montré qu’il existe une 

gamme très variée de modèles. Cependant aucun de ces modèles ne prend totalement en compte 

la dynamique de l’écoulement particulièrement sous l’effet de l’air. 

ii) Le travail numérique a permis d’identifier une série d’aspects et paramètres physiques à 

investiguer expérimentalement, vue leur intérêt dans la modèlisation. Ces paramètres sont donc la 

forme des fronts, les oscillations de pression dues à l’effet de l’air, les conditions d’initiation et 

de propagation des fronts d’onde, etc. 

iii) Les investigations expérimentales ont permis d’identifier plusieurs types de fronts d’onde et 

leur interaction avec l’air. Ces investigations ont mis en exergue l’ampleur de la quantité d’air 

dans le front et son impact sur la réduction de la célérité des ondes de pression. Vis-à-vis des 

longueurs des fronts et des ondulations, les essais réalisés ont montré que les longueurs des fronts 

et les demi-longueurs des ondulations atteignent régulièrement une limite inférieure égale à la 

moitié du diamètre de la conduite. Cette limite suggère un pas spatial maximum de D/2 (D : 

diamètre de la conduite) lors de la modélisation numérique, si on veut tenir compte des 

paramètres importants qui ont un impact sur la dynamique de l’écoulement. Enfin, les premières 

comparaisons effectuées entre les résultats numériques et expérimentaux montrent que le modèle 

numérique présente une bonne capacité de simulation des écoulements transitoires. Ces résultats 

expérimentaux vont permettre de calibrer le modèle numérique. 

Mots clés : Capture de choc, écoulements transitoires, front d’onde, modélisation numérique et 

expérimentale, poches d’air, suivi de choc. 
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ABSTRACT 

Urban stormwaters are removed through sewer systems that are designed to operate in free 

surface flow. But for several reasons, such as increased intensity of rainfall or its frequency, 

increased urbanization, hydraulic failures, the pipe capacity may be exceeded. This overflow 

causes a partial or total pressurization pipe. The passage of free surface flow to pressurized flow 

is part of transient flows, during which the pressure and velocity variations are fast and can create 

damage such as the collapse of infrastructure, the ‘blow-off’ of manhole covers, geysers, and 

basement flooding, etc. These transient flows are often accompanied by entrance and release a 

large amount of air in sewers. To improve the design of new drainage systems and rehabilitation 

of existing sewers, taking into account the transient flows, simulation models should incorporate 

aspects often neglected, including the flow dynamics and air effects. For the reason the 

Hydraulics Laboratory of “École Polytechnique de Montreal” has implemented a program to 

construct a transient flows simulation model with and without air pockets. This master aims to 

make a dynamic analysis and experimental study of transient flows with air pockets and bubbles, 

in order to provide data for comparison and possible solutions for the realization of numerical 

model especially in its component with air pockets. The main hypothesis emitted during this 

study is that the air effect, often overlooked, strongly impacts the flow dynamics. This work is 

structured into three main parts: literature review, numerical work on the numerical model in 

progress and experimental work. 

 i) The literature review has enabled a critical analysis of existing models and develops their 

strengths and limitations. These models are classified according to the calculation method 

(Preissmann slot, interface tracking or two-compnent pressure approach) and for their ability to 

take into account the air effect. This review has shown that there is a diverse range of models, yet 

none of these takes fully into account the flow dynamics particularly as a result of the air. 

  

ii) The numerocal work has identified the points on which experimental investigations must insist 

because their interest in modeling. These points are the front shapes, the pressure oscillations due 

to the air effectr, the front initiation condition and propagation, etc.  

iii) The experimental investigations have identified several front types and their interaction with 

air. These investigations have highlighted the magnitude of the air quantity in front and its impact 
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on reducing acoustic wave speed. On the front and undulation lengths, the tests showed that the 

front lengths and undulation half-lengths consistently reach a lower limit equal to the half 

diameter of the pipe. This limit suggests a maximum spatial step should not exceed the pipe half 

diameter in the numerical modeling for not omit details impinging on the flow dynamics. Finally, 

the first comparisons between numerical and experimental results show that the numerical model 

shows good ability to simulate transient flows. These experimental results will allow us to 

calibrate the numerical model. 

  

  

Keywords: Air pockets, bore front, numerical modeling and experimental, transient flows, shock 

capturing, shock fitting. 
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INTRODUCTION 

1.1 Cadre théorique 

Dans le but d’améliorer les conditions de vie des populations, beaucoup de villes ont adopté les 

réseaux de drainage urbain pour l’évacuation des eaux pluviales afin d’éviter les inondations des 

rues et des sous-sols. Cela permet de réduire les conséquences  y relatives telles que les gênes de 

la circulation, les encombrements des rues, le développement de maladies hydriques, etc. La 

conception de ces réseaux obéit entre autres à deux considérations fondamentales : (i) une 

capacité supérieure au débit généré par la pluie de projet et (ii) une hypothèse d’un écoulement à 

surface libre dans les conduites. Or, pour plusieurs raisons,  cette capacité est régulièrement 

dépassée :  

1. Du fait de leur vétusté, la rugosité des conduites augmente avec comme conséquence la 

diminution de la capacité d’évacuation ; 

2. La démographie galopante entraine, d’une part, une imperméabilisation accrue par 

l’urbanisation, donc plus de débit de ruissellement, et d’autre part, elle génère plus de 

rejets d’eau dans les réseaux d’égout ; 

3. La tendance à la hausse des pluviométries intenses et de leurs fréquences (Mailhot et al., 

2007), fait accroître les débits à évacuer. 

Ainsi, la conséquence directe du dépassement de la capacité du réseau se traduit par des 

débordements plus fréquents. 

Malgré la nouvelle tendance à la prise en compte de nouvelles pratiques de gestion locale des 

eaux de ruissellement par rétention et ou par infiltration, avec des quantités et des débits réduits à 

évacuer (InfraGuide, 2005), les réseaux de drainage existants débordent toujours. Ces 

débordements sont souvent accompagnés de dommages très graves tels que la rupture des 

canalisations, l’apparution des geysers, l’expulsion des couvercles de regards,… (Hamam et 

McCorquodale, 1982). 

Au vu de ces aspects et de leurs conséquences, il convient de revoir les hypothèses de calcul des 

nouveaux réseaux et de mettre en place des modèles de simulation plus adaptés pour la gestion 
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des réseaux existants, tout en conciliant la fonctionnalité, les aspects techniques, financiers, 

sécuritaires et environnementaux.  

Les principaux dysfonctionnements enregistrés lorsque la capacité d’évacuation est atteinte se 

traduisent dans le réseau par des variations brusques de vitesse et de pression dues à des 

processus dynamiques d’alternance entre des écoulements non permanents à surface libre et en 

charge. 

Plusieurs modèles et logiciels existent pour calculer ou simuler les réseaux de drainage avec une 

prise en compte partielle des phénomènes précédemment évoqués. Cependant, très peu de 

modèles prennent suffisamment en compte l’effet de l’air qui amplifie voire crée ces phénomènes 

(Guo et Song, 1990; Zhou et al., 2004).  

Les modèles peuvent être classifiés en deux approches : l’approche shock capturing ou capture de 

choc, principalement basée sur la fente de Preissmann (Cunge et Wegner, 1964) et l’approche 

shock fitting ou suivi de choc (Wiggert, 1972). Dans la première approche, on ne se préoccupe 

pas de la position du front d’onde c'est-à-dire la discontinuité entre l’écoulement à surface libre et 

celui en charge, tandis que dans la deuxième approche la position et la vitesse du front sont 

calculées à chaque pas de temps. À ces deux approches, il faut ajouter celle dite à deux 

composantes de pression (Vasconcelos et Wright, 2007) qui se base sur les propriétés élastiques 

de la conduite. Elle se propose comme alternative, même si elle n’est pas encore suffisamment 

éprouvée. 

En plus de l’approche de calcul, les modèles diffèrent également sur : 

- leur schéma numérique de résolution : les modèles avec la méthode des caractéristiques 

(Wiggert, 1972; Fuamba, 2002), les modèles à volume fini (León et al., 2010), etc.  

- leur capacité à mieux prendre en compte l’effet de l’air : modèles monophasiques plus 

fréquents et modèles diphasiques ou plutôt partiellement diphasiques (Li et 

McCorquodale, 2001). 

Parmi les logiciels, nous pouvons noter Infonet (InfoNet, 2007), Mouse (DHI, 2003), SWMM 

(EPA, 2004; Rossman, 2005) qui utilisent tous l’approche shock capturing.  
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Pour des raisons de complexité, de gain de temps ou de manque d’hypothèses vérifiées, des 

simplifications sont faites dans la plupart des modèles, réduisant ainsi la chance de reproduire 

avec exactitude les phénomènes transitoires.   

 

1.2 Problématique 

Les inondations deviennent de plus en plus préoccupantes dans beaucoup de villes du monde, y 

compris celles du Canada. Leurs principales manifestations sont les débordements des réseaux 

d’égouts lorsque leur capacité maximale d’évacuation est atteinte ou en cas de 

dysfonctionnements. La fréquence de ces inondations augmente principalement avec les quatre 

facteurs suivants : les variations pluviométriques, la sous-estimation de la période de rerour 

pendant la conception, l’urbanisation et la vétusté des réseaux de drainage : 1) avec les 

changements climatiques, on a tendance à observer des pluies de plus en plus intenses et 

fréquentes (Mailhot et al., 2007); 2) pour des raisons financières, certaines municipalités 

choisissent de concevoir leur réseau de drainage avec une pluie de projet de période de retour 

assez faible (2 ou 5 ans, etc.); 3) l’urbanisation conduit à plus d’imperméabilisation des sols, par 

conséquent plus de débits et de volumes d’eau à évacuer; 4) la vétusté des réseaux les expose à 

des pannes fréquentes de pompage, des ruptures de canalisations, mais également elle contribue à 

une augmentation de la rugosité qui se traduit par une diminution de la capacité d’évacuation.  

Tous ces facteurs favorisent un fonctionnement en régime mixte avec alternance d’écoulements à 

surface libre et en charge alors que le réseau est conçu pour un fonctionnement uniquement à 

surface libre (Hamam et McCorquodale, 1982). Les passages alternés d’écoulements à surface 

libre et en charge sont constitués de transitions c'est-à-dire de périodes de variations importantes 

de pression et de vitesse non suffisamment prises en compte par les outils actuels de simulation 

des réseaux. Ces phénomènes transitoires, amplifiés par l’effet de l’air, causent d’importants 

dégâts (effondrement des infrastructures hydrauliques, défaillances, refoulements au niveau des 

regards, geysers, inondations…) du fait des pressions très importantes (Guo et Song, 1990; 

Fuamba, 1997). Il devient donc nécessaire de disposer d’outils de simulation adéquats pour 

l’exploitation et la réhabilitation des réseaux existants mais aussi la conception des nouveaux 

réseaux.   
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Pour mettre en place ces types de solutions, des auteurs comme Fuamba (1997) se sont intéressés 

d’abord à décrire le comportement de l’écoulement, qui peut être résumé en quatre grandes 

phases. En effet, au début de la pluie, l’eau s’écoule graduellement par écoulement à surface 

libre. Le début de cette première phase, peu dynamique, est influencé par la rétention des bassins 

versants. C’est lorsque les premiers ruissellements arrivent à s’accumuler dans un regard d’entrée 

de réseau que commence cette première phase. Elle correspond à la phase pour laquelle le réseau 

est conçu pour transporter le débit de design. Lorsque le niveau d’eau atteint la crête de la 

conduite, un front de remplissage peut naître et se déplacer le long de cette conduite vers sa 

deuxième extrémité : c’est la deuxième phase. Après cette deuxième phase, deux états existent 

dans la conduite : une partie est à surface libre devant le front de remplissage et une autre en 

charge derrière le front.  

La conduite se remplit pendant la propagation du front de remplissage. L’écoulement est très 

dynamique dans cette troisième phase où les variations de pression et de vitesse sont très rapides. 

Enfin, lorsque le front atteint la deuxième extrémité de la conduite, commence alors la quatrième 

phase où toute la conduite est en écoulement en charge. 

Les réseaux d’égout sont traditionnellement conçus pour fonctionner en écoulement à surface 

libre. Les logiciels actuels (SWMM, MOUSE, etc.) permettent de simuler un réseau existant ou 

nouveau. Mais toute la complexité, engendrée par la dynamique des quatre phases, ci-avant 

décrites, et de l’effet de l’air, n’est pas entièrement prise en compte par ces logiciels.  

Une gamme de méthodes de résolution des écoulements non permanents est utilisée dans ces 

logiciels. La méthode de Preissmann, très répandue, permet de résoudre numériquement les 

équations de Saint Venant en remplaçant les dérivées partielles par des différences finies. Elle est 

basée sur l’hypothèse que l’écoulement est à surface libre en tout temps (Cunge et Wegner, 

1964).    

D’autres modèles de type shock fitting ou suivi de choc sont aussi utilisés. Ils prennent en compte 

l’existence de deux états (surface libre et sous pression) dans la conduite. 

Fuamba (1997) présente trois modèles de simulation des écoulements transitoires dans les 

réseaux de drainage urbains. S’appuyant sur les résultats de ces modèles, le Laboratoire 

d’Hydraulique de l’École Polytechnique de Montréal est entrain de réaliser un modèle plus 

évolué (sur lequel est basée notre étude) afin de prendre en compte les différents types de fronts 
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dans le réseau. Ce modèle devrait encore évoluer pour prendre en compte les effets des poches et 

bulles d’air.  

1.3 Hypothèse 

L’effet de l’air a un impact sur la dynamique de l’écoulement, particulièrement sur les variations 

de pression et les formes des différents types de fronts d’onde.  

Les modèles de simulation en cours d’utilisation ne prennent pas entièrement en charge tous les 

phénomènes transitoires et diphasiques dans les réseaux de drainage. L’originalité de notre étude 

réside dans le développement de deux modèles avec et sans effet de l’air à des fins de 

comparaison. L'hypothèse sera réfutée si l’impact de l’effet de l’air n’est pas significatif dans les 

résultats expérimentaux. 

1.4 But de l’étude 

Le but principal de la présente étude est de faire une analyse expérimentale des écoulements 

transitoires avec poches et bulles d’air, dans le but de disposer d’éléments de comparaison et de 

pistes de solution pour la mise en place d’un modèle de simulation des écoulements transitoires. 

Plus spécifiquement, il s’agit d’abord de déterminer les différents coefficients de rugosité, de 

friction et de pertes de charge singulières du modèle physique à réaliser au laboratoire. Ensuite, 

d’explorer le comportement des fronts d’onde de remplissage et de vidange et réaliser une 

analyse descriptive de l’effet des poches et bulles d’air dans les écoulements. 

1.5 Objectifs 

La présente étude rentre dans le cadre d’un travail d’équipe pour la réalisation d’un 

modèle numérique qui comprendra deux parties : une première sans l’effet de l’air et une 

deuxième avec prise en charge de l’effet de l’air.  

L’objectif global de ce travail consiste à :  

 générer des fronts de propagation, mesurer et analyser l’impact de l’air sur ces 

fronts dans les conduites de drainage soumises à un processus de remplissage et de 

vidange à partir d’un modèle physique construit dans le Laboratoire 

d’Hydraulique de l’École Polytechnique de Montréal. 
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 Disposer de mesures pour la calibration du modèle numérique sans prise en 

compte de l’effet de l’air. 

 Plus spécifiquement, il s’agit de: 

1. Mesurer les coefficients de rugosité, de friction et de pertes de charge singulières à surface 

libre et en charge.  

2. Décrire et analyser la dynamique de l’écoulement sous les effets de l’air.  

3. Réaliser les mesures de laboratoire pouvant servir à une calibration du modèle numérique. 

 

1.6 Revue critique de la littérature 

Dans ce travail, l’état de l’art sur le sujet est fait sous forme d’article. La question des 

écoulements transitoires dans les réseaux de drainage urbain a été abordée par beaucoup 

d’auteurs, mais elle reste toujours une grande préoccupation.  
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CHAPITRE 1 ARTICLE 1 : TRANSIENT FLOWS IN STORM WATER 

SYSTEMS : CRITICAL REVIEW OF LITERATURE AND PROSPECTS 

1.1 Abstract 

Transient flows in storm water systems (SWS) are followed by complex phenomena (pressure 

and velocity variations, air pocket effects).  From an experimental perspective, laboratory tests 

have contributed to a better understanding of the transient flows phenomena, in order to improve 

their numerical formalization into a realistic modelling of such complex phenomena. From a 

numerical perspective, Shock-Fitting and Shock-Capturing techniques are the two main 

approaches generally used with a few hypotheses and simplifications. None of the software and 

numerical models that are currently used simulate adequately transient flows in SWS as they 

either neglect or excessively simplify the transition phenomenon and trapped air pocket effects. 

In fact, such models generally use non-dynamic hypotheses (open-slot approach, non presence of 

trapped air).  
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This paper (1) updates the available knowledge regarding the transient flow modelling, (2) points 

out through a critical analysis the strengths and weaknesses of the current numerical models, and 

(3) identifies prospects for future research in transient flows. 

 

1.2 Résumé 

Les écoulements transitoires dans les réseaux de drainage urbains s’accompagnent de 

phénomènes complexes comme des variations instantanées de pressions et de vitesses, et de la 

présence de poches d’air sur une partie ou toute la longueur de la conduite. Des essais en 

laboratoire ont contribué à mieux comprendre ces phénomènes, afin d’améliorer la formalisation 

numérique des écoulements transitoires. Dans la simulation numérique, deux techniques (suivi et 

capture de choc) sont généralement utilisées, avec quelques hypothèses et simplifications dans le 

processus.  

Malgré les nombreux logiciels et modèles numériques actuellement utilisés, on ne dispose pas 

encore d’outils suffisamment fiables pour simuler les écoulements transitoires dans les réseaux de 

drainage urbains, du fait de simplifications ou de négligence de l’effet de l’air. En fait, les 

modèles utilisent généralement des hypothèses non-dynamiques, comme l’approche de la fente 

de Preissmann ou la non prise en compte de la présence de poches d’air dans l’écoulement.  

Dans cet article, les auteurs présentent d'abord les modèles de simulation des écoulements 

transitoires, couramment utilisés et ils dressent leur classification. Ensuite, ils analysent chaque 

type de modèles en présentant ses forces et ses faiblesses. Enfin, les auteurs exposent des 

perspectives de recherche, identifiées dans le domaine des écoulements transitoires. 

 

Keywords: Free surface flow, interface tracking technique, Preissmann slot technique, 

pressurized flow, transient flow, urban drainage systems. 

 

1.3 Introduction 

Storm water systems (SWS) are designed and rehabilitated to easily evacuate all future rainstorm 

events that do not exceed the specified design hydrologic level by preventing water over-

accumulation in the streets and avoiding flooding. When the discharge exceeds the pipe capacity 
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during critical rainstorm events, a pressurized flow can be established partially or completely 

along the entire pipe. Transition from a free surface flow to a pressurized flow can be followed 

by significant variations in flow depth, pressure and velocity; an entry or expulsion of large 

quantities of air into/out of the pipe can also occur. Transient flows are then generated. Transient 

flows can cause hydraulic failures such as the collapse of infrastructure, the ‘blowing-off’ of 

manhole covers, geysers, and basement flooding, as well as the release of air from the manholes. 

 

Over the years, an increase in SWS overflow has been noticed, with damage ranging from the 

flooding of low-lying areas to water systems damage, such as pipe rupturing or appearance of 

geysers, which can be dangerous for public safety. As a result, the discharge to be evacuated 

tends to increase because of the ever growing urbanization. Drainage design rainfall also tends to 

be more frequent and more intensive (Mailhot et al., 2007). Consequently, the flow dynamics in 

pipes is becoming more complex compared to the commonly assumed hypotheses. Instead of a 

permanent and uniform free surface flow, pipes are facing more and more transient flows which 

are more critical for their service life. 

 

Although they are designed to operate in the free-surface regime (Samani et al., 2003, Brière, 

2000), drainage systems have been handling an increase in transient flows during periods of 

flooding. In the transient state, free-surface flows and pressurized flows may exist 

simultaneously. Several authors described the behaviour of the flow during transitional stages: 

Cunge and Wegner (1964), Yevjevich (1975), Yen (1977), Fuamba (1997), etc. Also laboratory 

experiments conducted since the 1980’s have made it possible to better understand the dynamics 

of water into the SWS: Valentine (1981), Hamam and McCorquodale (1982), Zech et al. (1984), 

Cardle et al. (1989), Baines (1991), and recently Aimable and Zech (2003), Vasconcelos and 

Wright (2005, 2008 and 2009), Mokhtar et al. (2006). The interaction between water and air has 

been described by Li and McCorquodale (1999) and Vasconcelos and Wright (2005). Studies 

conducted by researchers (Zhou et al., 2004 and 2002, Vasconcelos and Wright 2003) have 

indicated that large peak pressures and severe pressure oscillations inside the drainage system 

may occur due to the resultant force of the air trapped in the sewer pipe. During transitional 

periods, a significant amount of air can be trapped in the pipe. Depending on the type of 

ventilation, the expulsion of this air can generate peaks of pressure and oscillations of great 
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amplitudes (Zhou et al., 2002 and 2004) or phenomena like geysers. Song et al. (1983) and Guo 

and Song (1988 and 1990) have illustrated the formation process of these geysers. The 

displacement and formation process of air pockets during fast filling was analyzed by Hamam 

and McCorquodale (1982); Li and McCorquodale (1999 and 2001). 

 

The transition phenomenon coupled to the trapped air problem has critical effects, yet existing 

numerical models (such as Mouse, HydroWorks, SWMM, etc.) dealing with the drainage system 

simulations either neglect or excessively simplify it. In fact, such models generally use non-

dynamic hypotheses such as the open-slot approach and the non presence of trapped air into 

flowing water. The transient flow dynamic analysis should be part of both the design and the 

rehabilitation processes for building highly efficient sustainable drainage infrastructure. Because 

the current design approach lacks this kind of analysis, actual drainage systems face 

unpredictable phenomena, making them unsafe and more vulnerable to damage. 

1.4 Classification of current numerical models based on the calculation 

technique  

The fundamental assumption underlying the development of the primary transient flow models is 

the Preissmann slot. In fact, Preissmann and Werner (1961) were the first to imagine that 

assuming a slot upper a conduit helps to continue calculating pressurized flow as free-surface 

flow, by using the well known mass and momentum equilibrium equations and calculating the 

pressure wave celerity necessary for pressurized flow. When using the Preissmann slot, it is not 

necessary to know the position of discontinuity between the free surface flow and the pressurized 

flow. This technique is called “Shock-Capturing” technique. However, calculation of the 

transient flow hydrodynamic conditions such as the front wave location and celerity remains a 

great concern for the accuracy and stability of the numerical models. Strong pressure oscillations, 

compromising the stability of the models appear to wave fronts and its surroundings 

(Vasconcelos et al., 2006). 

Models based on the “Shock-Capturing” technique cannot predict the front location, and they 

usually under estimate the front celerity and the pressure in low piezometric flows. The equations 

used in these types of models are exclusively made for free surface flow. These models also 

present limitations on their capacity to calculate phenomena such as water hammer in pressurized 



11 

 

flow. The Preissmann’s slot technique gives place sometimes to indecision requiring further 

iterations to determine the surface level at the time of the transition from pressurized flow to free 

surface flow (Nguyen, 1990). Also the accuracy of the Shock-Capturing models depends on the 

performance of the numerical resolution scheme and the choice of flow variables (Toro, 2001, 

Vasconcelos et al., 2006). Using the Lax-Friedrichs scheme, Vasconcelos et al. (2006) showed 

that the wave front celerity is lower when depth and velocity are considered as flow parameters 

instead of the flow area and the flow rate. This difference expressed by the front celerity is 

greater when the height of the discontinuity is greater. The following models are representative of 

the shock-capturing models: Glaister (1988) Garcia-Navarro et al. (1994), Capart et al. (1997) 

and software as InfoNet (InfoNet, 2007), SWMM 5 (EPA, 2004) and MOUSE (DHI, 2003). 

In addition to Preissmann’s slot technique there is the shock capturing models family, we denote 

the finite-volume technique used in some models. Models Bourdarias and Gerbi (2006) and León 

et al. (2010) are the latest generation of finite-volume models for transients flow in sewers. 

Generally finite volume model overcome Prissmann slot limitation such as its inability to 

simulate sub-atmospheric pressures in pressurized flow conditions. 

 

Contrary to the Shock-Capturing models, the hydrodynamic conditions (location and celerity) 

related to the wave front are calculated at each time step when using the “Shock-Fitting” 

technique or Interface-Tracking technique. To determine the transient flow conditions, Wiggert 

(1972), Song et al. (1983), Cardle and Song (1988), Guo and Song (1990), Fuamba (1997) and 

other suggested the calculation of (a) the wave front conditions by using the mass and momentum 

equilibrium equations around the front and (b) the free surface and pressurized conditions in the 

pipe cross-sections by using the equilibrium respective equations. The Method of Characteristics 

(MOC) offers a great opportunity as a numerical scheme. The explicit form facilitates the 

resolution of equations, including calculations of boundary conditions. Comparing the Lax-

Friedrichs scheme and the MOC-Hartree method (Sturm, 2000), Vasconcelos et al. (2006) 

showed the weakness of the use of the Method of Characteristics without the wave front follow-

up. In fact, their results showed a delay in the wave front propagation when using the MOC. 

Calculation in the pressurized zone can be done by the use of the Rigid Column Method (Wylie 

and Streeter, 1993). Li and McCorquodale (1999) proposed a model based on this approach 

which presents a good agreement between numerical and experimental results. The following 
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models are representative of the shock-fitting models: Wiggert (1972), Song et al. (1983); Cardle 

and Song (1988), Guo and Song (1990); Fuamba (1997), Gomez and Achiaga (2001), Zhou et al. 

(2002), Politano et al. (2007). 

 

Regarding the Interface-Tracking models, the shape of the wave front is subject to many 

hypotheses. Zhou et al. (2002) assumed that the front is characterized by a vertical interface 

advancing in an air-filled pipe. This interface compresses air that is expelled towards manholes. 

Experiments conducted by Mokhtar et al. (2006) showed that the wave front shape is more 

complex, variable and strongly influenced by the upstream pressure. The front tends to be 

inclined more when the pressure decreases. 

 

When using the Preissmann’s slot technique in the pressurized zone, the additional head is stored 

in the slot. This head is included in the term centroid of the momentum equation. The pressure 

value as it relates to the presence of water in the cross-section and the surcharge pressure term are 

lumped together, which is adequate for surcharging flows where both terms are positive. 

However, if the surcharge pressure term becomes negative, the sum of the pressure head terms 

becomes less than the pipe depth, causing the regeneration of free surface flow (Vasconcelos et 

al., 2006). This represents a limitation of the Preissmann’s slot technique which reduces the 

validity of this technique for pressurized flows where the piezometric head is lower than the 

pipe's crown. To overcome this limitation, Vasconcelos and Wright (2007) proposed a Two-

component Pressure Approach (TPA) capable of simulating full pipe flows with negative 

gauge pressures. This TPA mode includes the second pressure term in the formulation, by 

assuming that the unsteady pressurized flow is incompressible and an elastic behavior for the 

pipe walls. 

1.5 Evolution and Classification of Models according the air pocket effect 

Beyond the calculation technique, and the type of resolution scheme, the models differ by their 

ability to take into account the air pocket effect. The transient phenomena and the trapped air 

pockets in the sewers are concomitant. When the discharge to be evacuated exceeds the pipe 

capacity or when there is hydraulic failure involving an abrupt flow variable change, part of the 

pipe can be pressurized. This event is accompanied by particular phenomena in the flow (wave 
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front, air trapping, water hammer, etc.), which generally, cause damage to the system. The 

modelling of these phenomena is not yet entirely undertaken because of the complex transient 

dynamics of the instability of boundary conditions and the presence of two phases (water - air) in 

the flow. Previous works performed by Wiggert (1972), Song et al. (1983), Cardle and Song 

(1988), Guo and Song (1990), Garcia-Navarro et al. (1994), Capart et al. (1997), Fuamba (1997 

and 2002) and Vasconcelos and Wright (2004) have helped to understand the transient flow 

issue. However, these works did not sufficiently integrate the effects of trapped air, despite 

studies conducted by Hamam and McCorquodale (1982), Li and McCorquodale (1999), Zhou et 

al. (2002, 2004) and Vasconcelos and Wright (2003, 2005, 2008 and 2009). The work of Zhou et 

al. (2002 and 2004) showed that the air trapped inside of sewers during rapid fillings can be a 

cause of important pressure peaks and high-pressure surges. 

 

This paper (1) updates the available knowledge regarding the transient flow modelling, (2) points 

out in a critical analysis the strengths and weaknesses of the current numerical models, and (3) 

identifies prospects for future research in transient flows. 

1.6 The Shock-Capturing Models 

1.6.1 Summary of the Preissmann slot Principles 

Flows in pipes are calculated by a system of two partial derivative equations, called Saint Venant 

equations. These equations express the conservation of mass and momentum, according to 

assumptions and simplification such as: (i) a hydrostatic distribution of pressure, (ii) a mild slope 

of the pipe, (iii) a uniform distribution of velocities at each cross-section and (iv) a permanent 

friction, etc. 

 

In the free surface flow zone, there are two ways of presenting equations, according to flow 

parameters: a) the flow area and the flow rate (1.1) or b) the water depth and velocity (1.2).  

( )
2

0

0

0f

A Q
t x
Q Q gAy gA S S
t x A

∂ ∂⎧ + =⎪ ∂ ∂⎪
⎨ ⎛ ⎞∂ ∂⎪ + + + − =⎜ ⎟∂ ∂⎪ ⎝ ⎠⎩

    (1.1) 
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⎨
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      (1.2) 

where A is the flow area, y the water depth, y  the centroid depth, Q the flow rate, V the velocity, 

g the gravity acceleration, c the gravity wave celerity, S0 the pipe slope, Sf the energy slope, x the 

spatial step and t the time step. 

 

The choice of one system (1.1) or the other (1.2) was already discussed by Sturm (2000); Toro 

(2001) and Vasconcelos et al. (2006) have shown that (1.1) is more suited to give more accurate 

results when determining the wave front location in the pipe. In a case study, Vasconcelos et al. 

(2006) show that, when one uses the depth and velocity as flow variables (1.2) instead the flow 

rate and flow area (1.1), simulated wave front have incorrect propagate celerity. In addition, Toro 

(2001) shows that the front velocity is lower when using the non-conservative form (1.2) instead 

of the conservative (1.1). 

 

Equations (1.1) and (1.2) are not definite when water depth reaches the crown. The benefit of the 

Preissmann slot (Figure 1-1), consisting in assuming a particular cross-section whose diameter 

does not have a limit at the top, is to continue calculating the flow with the same equations 

system even if a part of the pipe is pressurized. The main condition in choosing the width of the 

slot is to take into account the pressure wave celerity in pressurized flows (1.3). 

2

gAF
a

=        (1.3) 

 

                 
   Figure 1-1 : Preissmann slot 

 
where F is the width of the slot and a the pressure wave celerity in the pressurized flow. 
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The study conducted by Vasconcelos et al. (2006) showed the difficulty in selecting the slot 

width. Indeed, to obtain a satisfactory celerity, the slot should be sufficiently narrow in order to 

minimize the volume of water stored in the slot cross-section. Various authors (Vasconcelos et 

al., 2006; Arora and Roe, 1997; Trajkovic et al., 1999) have shown that a very narrow slot can 

compromise the stability of the model with spurious numerical oscillations. 

 

The Preissmann slot models have the advantage to calculate the flow with the same equations 

system, without using a specific processing of the discontinuity. According to the effectiveness of 

the resolution scheme, this discontinuity can be more or less smoothed. Despite of the 

discontinuity limitation, the Preissmann slot remains largely used because of its simplicity. 

1.6.2 Single-Phase Flow Models 

When flow is exclusively of a free surface type, the use of such models (Glaister, 1988; Garcia-

Navarro et al., 1994) presents no particular limitations. Problems arise when the water depth 

reaches the pipe crown. In this case, the mass and momentum equations become indefinite. 

Cunge and Wegner (1964) suggested the use of a hypothetical slot on the crown aimed at: (i) 

allowing the pressurization of the pipe without modifying the equations and (ii) obtaining the 

necessary pressure wave celerity, much faster into the pressurized zone (Vasconcelos et al., 

2006). To achieve these two goals, dimensions of the hypothetical slot must satisfy the conditions 

of pressure wave celerity in the pressurized flow. A very small slot width is necessary to comply 

with equation (1.3). When the width of the slot is imposed, the determination of a realistic 

celerity becomes difficult, especially since it depends on the air trapped in the fluid. The 

Preissmann slot simplifies the problem of transient flow regime to a standard problem of free 

surface flow into a cross-section of special shape. The use of the slot allows having a centroid 

depth exceeding half the diameter. In these types of models, the mathematical formulation (1.4) 

of the equations system (1.1) is used by many authors (Capart et al., 1997; Johnson et al., 2002; 

Vasconcelos and Wright, 2007). 

 ( )
2

0

                   0
,          and   

f

QA
Q S S gAQ gAy
A

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥ −+⎣ ⎦ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

U F S   (1.4) 
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The fundamental difference between current models lies in the numerical schema used and which 

impacts strongly on the quality of results and the stability of the model. 

1.6.3 Diphasic Models 

The diphasic models are usually used in the oil or nuclear power industries. Chaudhry (1979) 

presents a system of three equations resulting from the momentum, the energy and the continuity 

equations to calculate a homogeneous fluid (water-air). This system is solved by an implicit finite 

difference method similar to the Method of Characteristics, but which does not require the 

fulfilment of the Courant condition. Because of the complexity of the SWS boundary conditions 

associated with manholes where unsteady hydrographs are entering in systems, these types of 

models are not directly transposable into SWS. 

 

Some researchers tried to integrate the air-water interaction to simulate transient flows in SWS. 

However, these attempts do not describe effectively the behaviour of diphasic flow in a highly 

reliable and generalized way. In the majority of cases, these models were developed to justify and 

corroborate observed results during experimental investigations (Hamam and McCorquodale, 

1982; Li and McCorquodale, 1999 and 2001). 

1.6.4 Finite volume Models 

a)  The finite volume model of Bourdarias and Gerbi (2007) simulates mixed flows and related 

phenomena. In this model, the free surface flow (1.5) and pressurized flow (1.6) equations are 

combined to obtain dual model under conservative form (1.7).  

 
( ) ( ) ( )

2

1 2

0

cos sin cosf

A Q
t x
Q Q gI x gA S gI x
t x A

θ θ θ

∂ ∂⎧ + =⎪ ∂ ∂⎪
⎨ ⎛ ⎞∂ ∂⎪ + + = − +⎜ ⎟∂ ∂⎪ ⎝ ⎠⎩

  (1.5) 

In which: 1I Ay=  and 2 0I =  for uniform geometry of channel. Where A  : flow area, Q  : flow 

rate, x  : axis direction, t  : time step, θ  : pipe incline, fS  : pipe slope.  
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  (1.6) 

In which : M Aρ=  and B Qρ= . 

Dual model conservative form is presented by equation (1.7): 

 
( ) ( )

2

0

, , sin ,

A Q
t x

Q QQ Q p x A E gA gK A E
t x A A

θ

∂ ∂⎧ + =⎪ ∂ ∂⎪
⎨ ⎛ ⎞∂ ∂⎪ + + = −⎜ ⎟∂ ∂⎪ ⎝ ⎠⎩

  (1.7) 

In which : E  denotes the “state” of the current point (free surface : E FS= , or pressurized: 

PrE ess= ) and wher the pressure low term writes (1.8):   
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    (1.9) 

Where : hR  : hydraulic radius, K  : friction term, sK  : Strickler coefficient. 

The interest for this transformation is that the momentum (second part in equations (1.5) and 

(1.6)), the pressure (1.8), the friction term (1.9) and the friction law (1.10) are continuous through 

transition point. 

( )
( )4/32

1

s h

K A
K R A

=        (1.10) 
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In this model authors use finite volume discretisation for i) first order Roe scheme and solution of 

the Riemann problem to solve the non transition point and ii) two solutions of Riemann problem 

and Rankine-Hugoniot jump condition to solve transition point. Numerical and experimental 

results give good agreement. The model can deal with multiple transitions between two types of 

flow.  

b) The Illinois Transient Model (ITM) is a multipurpose Finite Volume shock-capturing model to 

analyze transient flows in closed-conduit systems ranging from dry-bed flows, to gravity flows, 

to partly gravity-partly surcharged flows (mixed flows) to fully pressurized flows (water hammer 

flows) (León and Oberg, 2010). This model have two features : i) it can simulate flow regimes in 

complex closed-conduit systems : describe positive and negative open channel-pressurized flow 

interfaces, interface reversals, simulate sub-atmospheric pressures in the pressurized flow region ; 

ii) it can simulate transient mixed flows when large pressure wave celerities (1000 m/s) are used.  

ITM model governing equations are written in their vector conservative form as follows (1.11) 

(León et al., 2007): 

 U F S
t x

∂ ∂
+ =

∂ ∂
      (1.11) 

In the ITM model the free surface region is simulated using the 1D Saint-Venant equations 

(1.12), the pressurized region is simulated using the classical 1D compressible water hammer 

equations and open channel-pressurized flow interfaces are simulated by enforcing mass, 

momentum and energy relations across open channel-pressurized flow interfaces (1.13) (León  et 

al., 2010). 

( )
2

0

0
, ,

w
w

w fw w w f

QA
U F SQ gA S SQ Ap gA H

A

ρρ
ρρ ρ ρ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥ −+ +⎣ ⎦ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

  (1.12) 

 ( )
2

0

0
, ,

f
f f

f f ff ff
f

Q
A

U F SQ gA S SA pQ
A

ρ
ρ

ρρρ

⎡ ⎤
⎡ ⎤⎡ ⎤ ⎢ ⎥= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥ −+ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

  (1.13) 



19 

 

Where : the variables for free surface flow are the following : A  : flow area, Q  : flow rate, p  : 

average pressure of water column over the cross-section area, H  : gauge air pressure head, wρ  : 

liquid density, 0S  : pipe slope, fS  : energy slope. The variables for the pressurized flow are the 

following : fA  : full cross-sectional area, p  : pressure acting on gravity centre of fA , fρ  : fluid 

density for compressible water hammer flows. For single-phase flow conditions 0H = .  

In compressible water hammer flows, the authors use un third equation (1.14) for calculate fρ , p  

and Q .  

 ( )2
ref f refp p a ρ ρ= + −     (1.14) 

Where : a is the pressure wave celerity in single-phase flow conditions, refρ and refp  are the 

reference density and reference pressure, respectively. The reference state (subscript ref) is 

defined at the phase change from free surface to pressurized flow, for which all flow parameters 

in both free surface and pressurized flow regime are identical.  

For determining the gauge air pressure head H in equation (1.14), authors use two Martin’s 

(1976) equations: i) equation (1.15) for no air release, and ii) equation (1.16) for air release.  

 *dH H dVk
dt V dt

= −      (1.15) 

 * *dH H dV H dmk k
dt V dt m dt

= − +    (1.16) 

Where: V  : is the air pocket volume, m  : the masse of air, k  : the heat capacity ratio. Those 

parameters are defined in Martin (1976) and Zhou et al. (2000). 

The numerical scheme used in the ITM model is an explicit Finite Volume Godunov-type 

scheme.  This Godunov-type scheme (Toro, 2001) has the peculiarity to capture shocks in the 

solution automatically, without explicitly tracking them. For evaluate the accuracy and 

robustness of the model, authors compare numerical results with Trajkovic et al. (1999) to 

simulate a positive mixed flow interface reversing its direction and becoming a negative 
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interface, Vasconcelos et al. (2006) to simulate sub-atmospheric pressures in pressurized flow 

regime the ITM model for simulating transient free surface flows, pressurized flows, etc. All 

comparison show good agreement. 

1.7 Two-component Pressure Approach  

1.7.1 Summary of the Principles 

In the pressurized zones, when the piezometric head goes below the crown; the models based on 

the Preissmann slot regenerate systematically a free surface flow, assuming that the flow is 

sufficiently ventilated. To overcome this limitation Vasconcelos and Wright (2007) proposed an 

approach (1.17) known as two-component Pressure Approach (TPA). In this approach, pressure 

is expressed by two components: the first represents the hydrostatic-like pressure, which never 

exceeds the half of the pipe’s diameter and the second represents the overpressure. This 

overpressure which can be either positive, when a full pipe occurs, or negative if a part of the 

pipe is depressurized without regenerating a free surface flow. 

 
( ) ( )

2

0

0

0c s f

A Q
t x
Q Q gA h h gA S S
t x A

∂ ∂⎧ + =⎪ ∂ ∂⎪
⎨ ⎛ ⎞∂ ∂⎪ + + + + − =⎜ ⎟∂ ∂⎪ ⎝ ⎠⎩

    (1.17) 

Where: ch is the hydrostatic-like pressure ( / 2ch D≤ ), and sh  the overpressure. The other 

parameters remain identical to those previously defined. 

 

This approach is based on assumed elastic behaviour of the pipe where the pressure wave celerity 

is given by an expression (1.18) of Wylie and Streeter (1993). This expression takes into account 

the variations of the cross-section and pressure, which are related to the elastic geometrical 

properties of the pipe by an expression (1.19) of Vasconcelos and Wright (2007). 

 A pa
Aρ

∆
=

∆
     (1.18) 
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Where: A∆  is the flow area variation A, p∆  the pressure variation p and ρ  the fluid density. 

 

This model functions with a three step algorithmic calculation. Firstly, in the absence of 

transition, the value representing the overpressure is null while the one representing the 

hydrostatic one is calculated according to the conservative variable of the cross-section flow. 

Then, with the initialization of the transition phase on one of the two boundary conditions, the 

height of the overpressure becomes positive at the transition point and over the entire pressurized 

zone. Lastly, if a depressurized front is generated, the algorithm tests if there is sufficient 

ventilation. If it is the case, the depressurization will reduce the total head to a value lower than 

the crown and the free surface flow is automatically regenerated. Otherwise, the hydrostatic-like 

pressure is equal to half of the diameter whereas the overpressure becomes negative. 

1.8 Interface Tracking Models 

1.8.1 Summary of the principles 

The Interface-tracking models use a numerical approach, which consists in separately treating the 

two sides of the bore front (Figure 1-2) and a special processing of the front by mass (1.20) and 

momentum (1.21) equations. In these types of models, three important groups are distinguished: 

a) the first corresponds to models which calculate free surface flow and pressurized flow with the 

Method of Characteristics, b) the second represents the models which calculate both flows via the 

rigid column and c) the third corresponds to the models which calculate the free surface flow 

with the Method of Characteristics and the pressurized flow using the rigid column or localized 

inertia approach (Wylie and Streeter, 1993). 

( ) ( )1 1 2 2A V w A V w− = −      (1.20) 

( ) ( )( )1 1 2 2 1 1 2 1g A h A y A V w V V− = − −    (1.21) 

    /w x t= ∆ ∆       (1.22) 
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Where the index 1 corresponds to the pressurized zone and index 2 to the free surface zone. A 

represents the flow cross-section, V the velocity, h1 the pressure, y  the centroid and w the wave 

celerity. x∆  is the distance travelled by the wave front during the t∆  time. 

 
Figure 1-2 : Shock fitting approach scheme 

 
Regarding the interface-tracking models, free surface flows are governed by the same equations 

than those used by the Preissmann slot models. 

1.8.2 Single Phase Flow Models based on the Method of Characteristics 

The interface-tracking models using the Method of Characteristics to solve the free surface and 

pressurized flows are indexed in the literature. The pressurized flow is generally calculated by 

applying the mass and momentum equations (1.23) in which the flow parameters are the 

piezometric head (H) and the velocity (V) (Wylie and Streeter, 1993). 

  

2

0 0

0f

H a V HV VS
t g x x
H V Vg V gS
x x t

⎧∂ ∂ ∂
+ + + =⎪⎪ ∂ ∂ ∂

⎨
∂ ∂ ∂⎪ + + + =⎪ ∂ ∂ ∂⎩

     (1.23) 

Song et al. (1983), Cardle and Song (1988) and Guo and Song (1990) were the first to develop a 

numerical model able to describe the pressure and the velocity conditions to each time step in 



23 

 

each interior pipe cross-section. Fuamba (1997 and 2002) analyzes a pressurizing wave front by 

taking into account the probability of critical and torrential flows appearing in the free surface 

flow. In his work, three one-dimensional models differing from each other by the used numerical 

method, were developed and tested successfully on real data and in a laboratory. A comparison of 

the three models was made and the selection criteria were suggested. However, these models 

require intensive calculation resources because of the large number of iterations. These models 

do not take into consideration the presence of several fronts (Figure 1-3) and the presence of 

transient diphasic flow. 

 

 
Figure 1-3 : A meeting of two wave fronts 

 
 

 

 

The effect of air in the Interface-tracking models, with the Method of Characteristics to calculate 

the pressurized and free surface flows, was partially tackled by the work of Gomez and Achiaga 

(2001). To reduce the amplitude of the pressure oscillations due to the water hammer effect, 

when two bore fronts meet, the authors proposed to reduce the value of the pressure wave 

celerity, just after the collision, to numerically reproduce the test results obtained from the 

laboratory. This reduction of the pressure wave celerity is explained by the presence of air 

between the two fronts. Indeed, the experimental investigation of Wylie and Streeter (1993) 

showed that a pressure wave celerity of 1000 m/s for a zero air content in the fluid decreases to 

200 m/s for a 1% air content and to zero when the air content is 100%. The impact of this 

pressure wave celerity on maximum pressures can be understood if an analogy is made with the 
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phenomena of water hammer in closed pipes. Equation (1.24) developed by Joukowski-Alliévi 

(Carlier, 1986) shows the pressure variation is directly associated with this pressure wave celerity 

a: 

    2 1V VH a
g
−

∆ = ±      (1.24) 

Where: V1 and V2 are the water velocities in the two wave fronts, H∆  is the pressure variation. 

The processing of two wave fronts collision remains a topic that has not been sufficiently 

investigated. The calculation of the pressure wave celerity when fronts get into collision, is not 

enough documented in the literature. This is also the case for the characterization of the wave 

front and the determination of the air content volume in the wave front in order to calculate the 

exact pressure wave celerity. In real SWS cases with particular manhole situations such as a 

supply-fall, a significant amount of air can be introduced in the pipe. Experimental tests 

performed on a physical model (Figure 1-4) in the Hydraulic Research Laboratory of École 

Polytechnique de Montréal have shown that a pressurized wave front generated from a supply-

fall and propagating upstream contains a large amount of air (Figures 1-5 and 1-6) (Bousso et al., 

2010). This quantity of air decreases once one departs from the front. In the case of a stationary 

downstream front (Figure 1-7), obtained when energy is just sufficient to remain motionless, the 

air content is weaker than when the discharge is sufficient enough to force the wave front (Figure 

1-5) to advance against the flow. This last front is similar to the air-entrained hydraulic bore 

observed by Ead and Ghamry (2002) in circular pipes. This presence of air in the wave front and 

in the pressurized zone, but at a lower rate, can also be observed without being supplied by a fall 

(Figure 1-4). Given these reasons, it appears important to classify the front types and to quantify 

the air content in order to take into account the fluid density variation in the models, particularly 

when calculating the wave front location and the pressurized flow conditions near the front. 
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Figure 1-4 : Downstream front scheme 

 
The physical impact of the captured air is detected by physical oscillations which are important 

enough when the wave front reaches the cross-section (Figures 1-8 and 1-9). These oscillations 

could be due to the compression and expansion of air bubbles and pockets. 

 

Figure 1-5 : Downstream front spread 
 

Figure 1-6 : Stationary downstream front  
 

 
Figure 1-7 : Upstream front scheme 
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Figure 1-8 : Oscillations at 40 cm after 
passage of the stationary front with a slope 
S0=0.3% 
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Figure 1-9 : Oscillations after the passage of 
a highly ventilated front on a slope S0=0.3%

 
 

To overcome the usual assumption of vertical interface between the pressurized and the free 

surface flow, and to calculate the flow conditions even if the energy is insufficient, Politano et al. 

(2007) have proposed a model in which the mass and the momentum equations are applied on an 

inclined interface (Figure 1-10).  

 

∆

∆

∆
 

Figure 1-10 : Inclined wave front (Politano et al., 2007) 
 
In this model, the Method of Characteristics is used to calculate the free surface flow conditions 

by applying equation (1.2) and the pressurized flow conditions by applying equation (1.23). The 

mass (1.25) and momentum equations (1.26), applied to the movable interface between sections 

Si and Si-1, with the positive characteristic for free surface in Si-1 and the negative characteristic in 

the pressurised flow Si, allows to obtain four equations for calculating the four unknowns (water 

depths and velocities) for both sections Si and Si-1. 

Time (s) 

W
at

er
 le

ve
l (

cm
) 

Time (s) 

W
at

er
 le

ve
l (

cm
) 



27 

 

    ( )1
1 1

i
i i i

d A A
x A V AV

dt
−

− −

−
∆ = −    (1.25) 

 ( ) ( )2 2
1 1 1 1 0 1/ 2 / 2i i i i i i i i iA V AV g y A H Z D A g xS A A− − − − −− + − − − + ∆ +  (1.26) 

where Ai-1 and Ai are respectively flow cross-section in Si-1 and Si, Vi-1 and Vi are velocities at 

selected areas Ai-1 and Ai respectively, 1iy − is the centroid depth in Si-1, Hi  the piezometric head at 

Si, Zi the invert elevation of the cross-section Si, A the full cross-section of the pipe, D the pipe 

diameter and S0  the pipe slope. 

 

Results of this model, compared to experimental results, show good agreement. However, this 

model does not take into account the effect of air or the eventuality of several wave fronts. 

 

Wiggert’s (1972) developed a numerical model which is part of the first generation. He uses the 

equation (1.19) to calculate the pressurized flow conditions such as a rigid column and the free 

surface flow using the Method of Characteristics applied to equation (1.2). 

1.8.3 Diphasic Models based on the Rigid Column 

The models of Li and McCorquodale (1999); Zhou et al. (1999, 2002 and 2004) are the most 

known for this type of models. Li and McCorquodale (1999 and 2001) applied the rigid columns 

principle to the pressurized flow to study the trapped air effects in SWS conduits. Hamam and 

McCorquodale (1982) assumed a hypothetical stationary air bubble being compressed and 

expanded between two rigid columns. This approach was extended by Li and McCorquodale 

(1999) who modeled the trapped air bubble propagation (Figure 1-11). Indeed, there authors 

solved the set of equations formed by (1) the resulting force applied to the rigid column, (2) the 

mass equation and (3) the momentum conservation equation to obtain accelerations of columns A 

(1.27) and C (1.29). The acceleration of column B (1.28) is obtained by applying the momentum 

equation combined to the mass equation and the rate of variation of the rigid column mass 

(Figures 1-11, 1-12 and 1-13). 
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where subscript A, B and C correspond to the water columns A, B and C respectively; L is the 

column length, f the friction, V the velocity, y the water depth, K the pipe entrance or exit loss 

coefficient, S0 the pipe slope, Ap the full cross-section, pa the air pressure in through the wave 

front and γw and ρw the water unit weight and density. 

 

In addition to equations (1.27) to (1.29), the authors used the mass conservation equation 

between two consecutive manholes, the air bubble mass continuity equation and pseudo adiabatic 

expansion equation. 
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Figure 1-11 : Rigid column 'A' from Li and McCorquodale (1999) 
 

 

 Figure 1-12 : Rigid column 'B' from Li and McCorquodale (1999) 
 

 

Figure 1-13 : Rigid column 'C' from Li and McCorquodale (1999) 
 
 
Results from this model, compared to experimental results, showed good agreement on the 

pressure variation. However, the model overpredicts the minimal and maximum pressure values. 



30 

 

This model can simulate only one air bubble. Generally speaking, the rigid columns based 

models calculate the pressure value and assume the value constant into the pressurized zone. 

Even if they can integrate the air trapped effects, these models cannot however describe the 

pressure and velocity conditions at each time step. 

 

An ordinary differential equation based on the momentum equilibrium of a rigid column 

represents the majority of the Rigid-Column models. Li and McCorquodale (1999) presented this 

equation (1.30) for a pressurized column of a downward pipe whose downstream end is 

connected to a submerged manhole (Figure 1-14). 
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2

22 1 2
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1
2s

VdV fx Vx g h h wV K gx S
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 (1.30) 

 

where x1 is the length of the pressurized column, V2 the water velocity in the column, w the 

pressurized column propagation celerity, h0 the head generating the wave front, h1 the pressure 

head at the front, Ke the exit head loss coefficient, f  the Darcy friction factor, D the pipe 

diameter and S0 the pipe slope. 

 
Figure 1-14 : Rigid column from Hamam and McCorquodale (1982) 

 
 
Equation (1.30) was first used in its simplified form (1.31) by Wiggert (1972) in an Interface-

tracking model. 
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where n is the Manning roughness and Rh the hydraulic radius. 

 

In addition to the momentum (1.32) and continuity (1.33) equations, Li and McCorquodale 

(1999) used equation (1.34) to estimate the air relative velocity over the flowing water mass in 

the free surface flow zone. Milne-Thomson (1938) developed an equation showing instability 

caused by air on the water surface. 

 ( ) ( ) ( )1 1 1 2 2 2 1 2 1 1 2 1y A p A A y A h A A V w V Vγ γ γ ρ+ − − + = + −  (1.32) 

( ) ( )1 1 2 2V w A V w A+ = +  (1.33) 

where γ is the water density, 1y  and 2y   the centroid depths at upstream and downstream from 

the front, A1 and A2 the upstream and downstream flow areas, V1 and V2 the upstream and 

downstream velocities, h1 the pressure in the pressurized zone, p the air pressure at the wave 

front, and w  the wave celerity. 

( )2 1

2 1 2 1

a
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G G

w A AQV
A K A A K A

−
= =

− −
 (1.34) 

where: Va is the air velocity expelled by the pressurizing front, Qa the air flow in front of the 

wave front, A1 and A2 the flow areas respectively on the free surface flow and the pressurized 

flow and KG = 1.2 accounts for the gradually varied nature of the free surface (Hamam and 

McCorquodale, 1982). 

 

In the model of Zhou et al. (2002 and 2004), the Martin’s differential equation (1976) (1.35) is 

used to determine the air absolute pressure through the wave front (Figure 1-15). 

* * a
a

a

dH H dk Q
dt V dt

∀⎛ ⎞= − −⎜ ⎟
⎝ ⎠

 (1.35) 

where : H* is the absolute air pressure, a∀  the air volume in the front, Qa the air flow when 

coming out of the pipe. 



32 

 

 
Figure 1-15 : Conceptual design from Zhou et al. (2002) 

 

1.9 Strengths and limitations of current models 

As noted before, a wide range of transient flow models exists. But the validity of these models 

depends closely on the choice of the numerical resolution method, unknown flow factor 

parameters, boundary conditions and whether or not the air effect is taken into account. The 

following sections present strengths and limitations of current models as available in the 

literature (Table 1-1). 

1.9.1 Preissmann Slot Models 

Ability to manage progressive transitions: These models make it possible to have a gradual 

transition between free surface flow and pressurized flow, far away from the wave front. In such 

a case, they are preferred to Interface-tracking models (Vasconcelos et al., 2006). 

 

Simplicity and homogeneity: Authors like Vasconcelos et al. (2006) underline the popularity of 

the Preissmann slots models because of their simplicity. The use of a single resolution scheme in 

pressurized flow and in free surface flow zones also enables these models to maintain some 

consistency in the results. This circumvents the effects of changing the equations system, such as 

change from rigid column with the Method of Characteristics. 

 

 Underestimation of pressure wave celerities: The difficulties encountered in the Preissmann slot 

models are usually the calculation of pressure wave celerities (1.18) and the wave front location. 

Indeed, the pressure wave celerity depends strongly on the quantity of air trapped in the fluid. A 

slot adapted to a good celerity is a sufficiently narrow slot, in respect of equation (1.3). However, 



33 

 

this situation generates spurious numerical oscillations. In this case, the time step is too small and 

it affects the capacity of the model to run numerical simulations over a long period; whereas a 

large slot leads to too low pressure wave celerities, with unrealistic results. Then the volume of 

water stored in the slot becomes very important and the wave front location is not accurate 

(Vasconcelos et al., 2006). 

 

Spurious numerical oscillations: Authors like Arora and Roe (1997); Trajkovic et al. (1999); 

Vasconcelos et al. (2006, 2009) showed the appearance of very strong spurious oscillations, if the 

flow transition coincides with the front. These oscillations are also observed when the celerity of 

the pressure wave is high or the time step very small. The use of digital filters like that of Press et 

al. (1989) makes it possible to attenuate these oscillations. However, these filters pose two types 

of problem. The first one is the attenuation of all kinds of numerical oscillations, whereby some 

can be of physical origin like the oscillations generated during the air pockets release or the 

oscillations after the passage of the front (Figures 1-8 and 1-9) (Bousso et al., 2010). The second 

problem is the numerically time consuming effort which can reach 60%, according to 

Vasconcelos et al. (2006). In a recent comparative study, Vasconcelos et al. (2009) proposed a 

second more complex technique, based on a hybrid flow approach which introduces a digital 

diffusion near the front, with better results. 

 

However, according to our observations from experimental investigations (see Figures 1-8 and 1-

9), the air rate generates important physical oscillations. To differentiate these oscillations from 

those of numerical origin, it is advisable to characterize the types of fronts by determining the 

lengths in which the density variation is important and also the zone of high strong pressure 

oscillations. 

 

Free surface flow regeneration: In the pressurized flow zones, when the piezometric head is 

below the crown, a free surface flow is regenerated even if the ventilation is insufficient (Cunge 

et al., 1981; Song et al., 1983; Vasconcelos et al., 2006). 
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1.9.2 Finite Volume Models 

No restriction on low piezometric flow: The main limitation of the Preissmann slot models is its 

inability to simulate sub-atmospheric pressures in pressurized flow conditions. The Finite 

Volume Illinois Transient model overcomes this limitation by its robustness (León et al, 2010).  

 

No restriction in pressure wave celerity: Contrary to the Pressmann slot and TPA models, Finite 

volume by León et al. (2010) can realistically simulate pressure wave celerity. 

 

Complex scheme:  A finite volume scheme can be complex and may be difficult to set, especially 

in its resolution. It requires a mathematical formulation with robust powerful solvers. To 

facilitate the numerical resolution, Bourdarias and Gerbi (2007) made use of a linearized 

Riemann solver. However, as pointed out by Toro (2001) and León et al., 2010, this linearization 

for free surface flows is not sufficiently robust to be generally used. In particular, this solver may 

give negative depths in cases involving strong rarefactions leading to very shallow water. 

1.9.3 Two-component Pressure Approach (TPA) 

Ability of calculating pressurized flows with low piezometric head: This approach (Vasconcelos 

and Wright, 2007) overcomes the limitation related to the presence of low piezometric head. By 

decomposing hydrostatic pressure and those related to overpressure, the approach can simulate 

low piezometric pressurized flows. By checking the presence of ventilation, it prevents 

regeneration of an unjustified free surface flow. 

 

Low pressure wave celerity: As in the Preissmann slot models; this model is also confronted with 

the difficulty of taking into account the actual pressure wave celerity. The use of a real wave 

celerity obtained from the geometrical and elastic characteristics of the pipe leads to instabilities 

of the model. 

 

Absence of the air effect: Consideration for the air effect remains a major concern for current 

models. 
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1.9.4 Interface-Tracking Models 

Better positioning of the wave front: The Interface-Tracking models offer a better estimate of the 

wave front celerity and its positioning. Pressurized front pressure is calculated with the continuity 

(1.20) and momentum (1.21) equations applied at the wave front cross-section, allowing a better 

accuracy on the piezometric head at any location and time. 

 

Better identification of the free surface flow zone: By the use of the Method of Characteristics, 

free surface flow is calculated by taking into account its real flow rate:  sub-critical, critical or 

supercritical flow (Fuamba, 2002). 

 

Difficulty of determining large discontinuity: The Interface-Tracking methods using the Method 

of Characteristics are not stable when a major discontinuity appears in the flow. The flow 

parameters can have several solutions which compromise the stability of the model (Chaudhry, 

1995). To avoid this constraint, it might be necessary to initiate a wave front each time. While 

this situation leads to the presence of a multitude of fronts difficult to manage. 

 

Long computing time: The interface tracking requires important iterations of nonlinear mass and 

momentum equations across the front. To fulfill the Courant condition, a very small time step on 

the pressurized side is needed, compared to that on the free surface flow. The wave front and the 

pressurized zones conditions are thus calculated with more several iterations, compared to the 

free surface zones conditions. This procedure requires important computing time and calculation 

resources. The displacement of the wave front is sometimes a few millimeters (∆x too small); the 

Courant condition calculation in this situation can also give a time step that is too small (1.36). 

 

( )/t x a V∆ = ∆ +  (1.36) 
 

where: ∆t is the time step, ∆x the spatial step, a the pressure wave celerity and V the velocity. 

 

Processing of two wave fronts moving in opposite direction not yet mastered: There have not 

been a sufficient number of studies done to understand flow behavior when two wave fronts 

meet. If the velocities or the piezometric head between the two waves are very different, a water 
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hammer effect can occur on contact, which can create instabilities in the Method of 

Characteristics (Chaudhry, 1995). Serious oscillations that could compromise the stability of the 

model can also appear. To reduce the water hammer effect, Gomez and Achiaga (2001) propose 

decreasing the pressure wave celerity. 

 

Inability to propagate a wave front with insufficient piezometric head: The initiation and the 

maintenance of a wave front require a sufficiently large head in the pressurized zone. When the 

head is insufficient, neither the initiation of the wave front nor its displacement is possible. This 

restriction limits the calculation of a slow filling system with a low head and very low inflow. 

When the wave front is flattened to extend over a great length as Mokhtar et al. (2006) tests 

showed or quite simply if the wave tends to disappear, the Interface-Tracking model along with 

the vertical interface hypothesis is not valid. This situation is attenuated by Politano et al. (2007) 

who considered the interface with a certain slope. In the models like that of Fuamba (2002), when 

the pressurization wave changes course, the positive or negative characteristics used to calculate 

the free flow side present some limitations. In these situations one should consider 

depressurization front equations. 

 

Difficulty in initiating a wave front from internal boundary conditions: When a hydraulic bore 

develops inside a free surface flow section, a partial pressurization can occur within the pipe. No 

model yet exists with satisfactory results. These limitations are also underlined by Cardle and 

Song (1988) and Vasconcelos et al. (2006). 
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Table 1-1 : Strengths and weaknesses of the various models 
Model Strengths Weaknesses 

Preissmann 
slot 

 Ability to manage
progressive transitions 

 Simplicity and 
homogeneity 

 Underestimation of pressure wave 
celerities 

 Spurious numerical oscillations 
 Free surface flow regeneration 

Finite 
volume 

 No restriction on low 
piezometric flow 

 No restriction in pressure 
wave celerity 

 Complex scheme 

TPA  Ability of calculating 
pressurized flows with 
low piezometric head 

 Low pressure wave celerity 
 Absence of air’s effect  

Interface-
Tracking 

 Better positioning of the 
wave front  

 Better identification of the 
free surface flow zone 

 Difficulty of determining large 
discontinuity  

 Long computing time  
 Processing of two wave fronts 

moving in opposite direction not yet 
mastered 

 Inability of propagating a wave 
front with insufficient piezometric 
head 

 Difficulty in initiating a wave front 
internal boundary conditions 

 
 
 
 
 

1.10 Prospects 

Accounting for the air effect in current models is still only partial. Formulations like those of 

Hamam and McCorquodale (1982) and Li and McCorquodale (1999) suppose only one air 

pocket. Vasconcelos and Wright (2003, 2005, and 2009) show the limitation of the single-phase 

models. 

 

More developed approaches, applying mass and momentum equations to each phase of the water-

air seem to be the best way to go for better solutions. In this regard the proposals of De Henaut 

and Raithby (1995), Nguyen (1999), and Issa and Kempf (2002) should be relevant. Their four 
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basic momentum and mass equations of the two water-air phases are summarized in the studies 

of Vasconcelos et al. (2006). Solving this system of equations should be a possible solution in the 

simulation of two-phase transient flows. More research oriented towards the modeling of 

boundary conditions, coupled with entry/release of large quantities of air from the manholes is, 

however, required in order to improve the reliability and stability of transient numerical models. 

 

On the experimental level, large investigations need to be carried on the shape of the front wave 

in rapidly or slowly filling fronts; the depressurization wave front; the pressure and the unit 

weight variation across the wave front. To date, the bulk of the investigations carried out are 

horizontal pipes or milder slopes, in rapid fillings without an initial level or a level at rest. 

Characterizations of the transient flows in pipes on greater slopes with an initial flow will provide 

more valuable and relevant information. 

 

1.11 Conclusion and recommendations 

This bibliographical review of literature on transient flows deals with various numerical models. 

It shows that the models currently in use represent a significant documentation on the topic for 

the last two decades. However, considerable research work is still needed to overcome existing 

limitations resulting in the fact that none of the current models fully takes into account more 

complexity of the transient flow issue. The instability of the boundary conditions and the air 

effect as well as the discontinuity calculations are among the key constraints in these models. The 

performance of the transient flow models in terms of accuracy, stability and capacity to deal with 

various configurations depends on the numerical resolution scheme used, taking into account the 

air effect and the boundary conditions. In this paper the authors have shown that the pressurized 

wave front generated from a supply-fall can contain a large amount of air. And also this amount 

of air is responsible for high pressure oscillations. 

 

Several authors have contributed to advancing theoretical and empirical knowledge in this field. 

However, developing a model able of reproducing the complexity of the phenomenon remains a 

challenge. The trapped air, the impact of non-permanent friction and the boundary conditions in 

the presence of air remain some of the challenges still to be explored. 
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CHAPITRE 2 DÉMARCHE ET ORGANISATION 

Le travail de recherche, objet du présent mémoire, se structure en trois grandes parties 

interactives : la revue bibliographique, le travail numérique et le travail expérimental complété 

par l’analyse des résultats. 

2.1 Revue de la bibliographie 

La revue de la bibliographie constitue la première étape, elle fait l’objet d’un article (chapitre 1). 

Cette revue montre qu’il existe une grande variété de modèles de simulation des écoulements 

transitoires dans les réseaux de drainage urbains. Ces modèles peuvent globalement se regrouper, 

vis-à-vis de l’approche de calcul, en deux grandes familles : modèles avec approche capture de 

choc (shock capturing) et modèles avec approche suivi de choc (shock fitting). À ces deux types 

de modèles s’ajoute un troisième type appelé approche à deux composantes de pression qui se 

base essentiellement sur l’élasticité de la conduite et procède par une décomposition de la 

pression en deux composantes. Outre les approches, les modèles peuvent se différencier par les 

types de schémas numériques de résolution et la prise en compte ou non de l’effet de l’air. Les 

performances des modèles sont liées à ces différents éléments de classification. Avec la revue 

bibliographique, nous avons constaté que la gamme de modèles sans prise en compte de l’effet de 

l’air est beaucoup plus importante.  

Malgré les diverses tentatives, la prise en compte de l’effet de l’air n’est jusque là que partielle. 

La formulation de l’effet de l’air est faite, en général, pour résoudre un problème particulier, cela 

empêche sa généralisation. Cet aspect d’étude partielle est aussi également constaté dans les 

essais en laboratoire qui sont effectués jusqu’à présent.  

Notre étude rentre dans le cadre d’un programme de mise en place d’un modèle de simulation 

numérique des écoulements transitoires, qui se veut assez ambitieux pour prendre en charge les 

effets de l’air, souvent occultés.  

2.2 Le modèle numérique et la programmation 

Rappelons que l’objectif du projet est l’étude expérimentale des écoulements transitoires dans les 

réseaux de drainage urbain. Toutefois une analyse numérique a été complétée en appui au travail  
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sur le modèle mathématique développé par  un étudiant au doctorat. Ce travail numérique et de 

programmation (voir chapitre 4) a permis d’identifier, d’une part les types d’essais les plus 

pertinents à réaliser au laboratoire, et d’autre part les forces et faiblesses de ce modèle qui seront 

présentées ultérieurement sous forme d’article scientifique encore en cours de rédaction. En effet, 

le choix des investigations sur les conditions d’initiation et de propagation des fronts d’onde a été 

fortement motivé par les difficultés convergeance et les instabilités rencontrées dans la simulation 

numérique.  

Le travail numérique consiste à : 

 identifier les équations des différentes parties de l’écoulement : écoulement à surface 

libre, écoulement transitoire et écoulement en charge; 

 formaliser les équations des conditions aux limites. 

 Dans chaque type d’écoulement, des équations de conditions aux limites sont développées, la 

principale difficulté étant de s’assurer la convergence de ces équations généralement non 

linéaires. Après chaque formalisation des conditions aux limites et de leur programmation en 

C++, le modèle est testé en adoptant des pentes de conduites et hydrogrammes d’entrée variés 

pour couvrir les différents cas réels de sollicitation des réseaux de drainage et de la stabilité du 

modèle numérique développé. Si les résultats semblent cohérents avec une bonne stabilité du 

modèle, la formulation sera retenue. Sinon, elle est modifiée ou reprise totalement. Cependant, ce 

processus itératif présente un risque d’abandonner une bonne formulation parce que tout 

simplement la technique de résolution n’a pas été capable de choisir la bonne solution en cas 

systéme d’équations à solutions multiples. Trois points particuliers sont à noter dans la 

programmation : 

 Respect strict de la condition de Courant pour une meilleure stabilité du modèle; 

 Subdivision du pas de temps en une dizaine de sous pas de temps lorsque les apports de 

l’hydrogramme sont très importants, pour résoudre les conditions aux limites; 

 Utilisation des outils de résolution de «Numerical receipes in C++»  (N.R, 2010) pour 

résoudre les systèmes d’équations non linéaires des conditions aux limites; 
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 Utilisation de la programmation orientée objet et des structures chainées qui ont permis 

d’éviter de manipuler des matrices consommatrices de beaucoup de ressources, pour 

améliorer le temps de calcul. 

2.3 Travail expérimental 

Le travail expérimental est présenté aux troisième et quatrième chapitres. Il comprend 

essentiellement deux parties :  

 l’installation du modèle physique, le calibrage des appareils et le calcul d’incertitude; 

 la réalisation des essais et l’analyse des résultats. 

2.3.1 L’installation et le calibrage des appareils 

L’installation du modèle, présentée au quatrième chapitre, a été une occasion de découverte d’une 

gamme variée d’équipements. Ce travail réalisé avec l’appui du technicien du laboratoire 

comprend la plomberie, l’électricité et la programmation des équipements que sont la carte 

d’acquisition de données, les débitmètres, les capteurs de pression et les vannes électriques. Tous 

les équipements de mesure sont calibrés avant leur utilisation. Après la calibration, les calculs 

d’incertitude relative à la qualité des instruments de mesure sont effectués pour s’assurer de la 

qualité des mesures. 

2.3.2 La réalisation des essais et leur analyse 

Après la réalisation du modèle physique, trois types d’essais sont réalisés : 

 Des essais servant à la détermination des coefficients de pertes de charge. Les résultats 

présentés au quatrième chapitre visent à déterminer les coefficients de rugosité, de friction 

et de pertes de charge singulière à l’entrée et à la sortie des réservoirs; 

 Des essais d’exploration visant à faire une analyse descriptive et dynamique des 

écoulements transitoires dans les réseaux de drainage urbain en présence de poches d’air. 

L’analyse de ces essais fait l’objet du deuxième article (voir chapitre 3); 

 Des essais permettant de tester le modèle numérique en termes de sensibilité aux 

différents paramètres de dépendance et en termes de qualité des résultats. Cette analyse de 

sensibilité et la comparaison de résultats numériques et expérimentaux ne sont pas 
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présentées dans ce document compte-tenu que le modèle n’est pas encore présenté dans sa 

globalité par l’étudiant qui y travaille pour son doctorat. 

Après ces différents travaux et analyses, une discussion générale (chapitre 5) a permis de 

synthétiser les résultats obtenus et faire le lien entre les différents chapitres, avant de présenter la 

conclusion de ce travail et de formuler quelques recommandations. 
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CHAPITRE 3 ARTICLE 2 : EXPERIMENTAL ANALYSIS OF 
TRANSIENT FLOWS IN URBAN DRAINAGE SYSTEMS IN THE 

PRESENCE OF AIR POCKETS 
 

3.1 Abstract 

This paper analyses different wave front shape and its propagation conditions in pipes, the 

physical behaviour of the air bubbles and pockets and their effects. Results are obtained by 

exploring the physics and dynamics of the wave fronts on a physical model built for this purpose. 

The variety of the shapes observed calls for more caution in the modelling of transient flows. The 

front shape depends on the energy that generates it, the pipe slope, the air pressure, and other 

parameters. The front lengths and the undulation half-lengths regularly attain minimum values of 

about D/2 (D: pipe diameter). These values suggest that a calculation spatial step in the numerical 
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model below this minimum values can lead to omit important details in flow. The magnitude of 

the oscillations observed deserves special attention in order not to confuse these physical 

oscillations with those of numerical origin in the simulation models, especially when using a 

numerical oscillations filter.  

  

3.2 Résumé 

Cet article analyse différentes formes du front d'onde et leurs conditions de propagation dans les 

réseaux de drainage urbains. Il analyse également le comportement physique des bulles et poches 

d'air ainsi que leur impact sur la propagation de front. Les résultats de cette étude sont obtenus à 

partir d’analyse physique et la dynamique de fronts d'onde, sur un modèle physique, construit à 

cet effet. Les auteurs montrent qu’il existe une très grande variété de formes de front d’onde. 

Cette forme dépend de l'énergie générant le front, de la pente de la conduite, de la pression, et 

d'autres paramètres non totalement maitrisés. Les longueurs des fronts et de la demi-longueur des 

ondulations atteignent très souvent un minimum, correspondent à D/2, D étant le diamètre de la 

conduite. Ces valeurs suggèrent que le pas spatial dans les modèles numériques ne devrait pas 

dépasser cette valeur, pour ne pas omettre d’importants détails dans l'écoulement. L'amplitude 

des oscillations observées, mérite également une attention particulière afin de ne pas confondre 

ces oscillations physiques avec celles d'origines numérique dans les modèles de simulation, en 

particulièrement lors l'utilisation d'un filtre numérique. 

 

 

Keywords: Air pockets, numerical and experimental modeling, storm water systems, transient 

flows, wave front. 

 

 

3.3 Introduction 

Storm Water Systems (SWS) are traditionally designed to operate with free surface flow. 

However complete or partial portion of the SWS pipes can be pressurized, due to a few reasons: 

rapid opening/closing of valves, sudden stopping/starting of the pumps, the submerging of 
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manholes or exceeding of the hydraulic capacity of a pipe. The result is a complex flow 

composed of a mixture of water/air during the transition between two permanent flow states: free 

surface and pressurized flow. 

 

The accurate simulation of transient flow requires considering and reproducing all physical 

phenomena taking place during the transition flow process to facilitate the development of the 

numerical modelling. Among existing transient numerical models, those using the "Shock 

Fitting" technique present the particularity of tracking the wave front propagation, by applying 

the two fundamental equations of continuity and momentum around the wave front. In this 

approach, the shape of the wave front has been the subject of several hypotheses and 

considerations: a vertical front (Fuamba, 2002, Zhou et al., 2002 and 2004), or an inclined front 

(Politano et al., 2007). 

 

The flow is considered as a single phase flow if it is composed exclusively of water. When a 

wave front is generated, a single phase flow is observed, sometimes accompanied by air bubbles 

and pockets just below the pipe crown. The air bubbles and pockets enter the pipe from the 

manhole when the water level above the pipe crown is relatively low or when the water entering 

the manhole is accompanied by large air cavities (Figures 3-1a and 3-1b). The wave front 

propagation may then consist of mixed fluid (more or less homogeneous mixture of water and 

air). This is particularly the case when the inflow becomes very large; and then it creates a high 

turbulence at the water surface. Flow is considered of a two-phase flow or a “diphase flow” 

composed of a mixture of water and air. 

 

  
a) Low piezometric head b) Fall with air cavity 

Figure 3-1 : Entry of air into the pipe during the filling 
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3.4 Literature Review 

The transition from a free surface flow to a pressurized flow, and vice versa, in SWS has already 

been the subject of many numerical and experimental studies. Numerically speaking, several 

approaches are used. The first and most popular approach integrates the hypothetical Preissmann 

slot to determine the transient flow hydrodynamic conditions, when flow turns into pressurized 

type. The slot allows the calculation of the flow dynamic conditions by the use of the two 

fundamental equations of mass and momentum conservation of a free surface flow (Cunge and 

Wegner, 1964). Models based on the “Shock-Capturing” technique cannot predict the front 

location, and they usually underestimate the front celerity and the pressure in low piezometric 

flows. 

 

The second approach, called "Shock-Fitting" technique presents the advantage of tracking the 

wave front location at any time. The two fundamental equations of continuity and momentum 

equilibrium are applied around the wave front cross section to determine the hydrodynamic 

conditions of the transient flow. A number of hypotheses are made about the flow’s behaviour 

and the effect of air. Wiggert (1972), Fuamba (2002) and Zhou et al. (2002, 2004) assume a 

vertical front. However, Politano et al. (2007) assumed an inclined moving interface to calculate 

a low piezometric head. Li and McCorquodale (1999) conducted a numerical and experimental 

study on transient flow where the air-water interaction was considered. Their mathematical model 

simulates the transient flow during an air release from the manhole. The air-water interaction has 

been described in studies done by Amiable and Zech (2003), Vasconcelos and Wright (2005, 

2009) and Mokhtar et al. (2006). Guo and Song (1988, 1990) and Zhou et al. (2002, 2004) have 

integrated air in their numerical models to partially address the issue because of its complexity. 

 

This paper analyses the wave front shape and its propagation conditions in pipes, the physical 

behaviour of the air bubbles and pockets and their impact on the wave front propagation. Despite 

attempts to take into account the effect of air in transient flows, no model has been sufficiently 

tested to the point of reproducing accurately enough all the dynamics of this particular type of 

flow. 
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3.5 Main objective of the study  

The main objective of this study is to explore the physics and dynamics of the wave front in SWS 

(shape, size and behaviour), in order to improve the understanding and the mathematical 

modelling of transient flow including air bubbles and pockets by using the “Shock-Fitting” 

technique. The physical conditions of the wave front initiation are also determined, considering a 

wide range of slope values. These experimental results will serve to calibrate and validate 

numerical models based on the Shock-Fitting technique. 

 

The following wave front types have been analyzed: 

a) Pressurizing wave front propagating downstream, initialization at an end manhole (Figure 3-

2).  

b) Two pressurizing wave fronts: the first one propagating downstream, the second one 

upstream, initialization at an end manhole (Figure 3-3). 

c) Pressurizing wave front propagating upstream, initialization at an intermediate manhole 

(Figure 3-4). 

d) Depressurizing wave front propagating downstream, initialization at an end manhole (Figure 

3-5). 

 

 

 
 
Figure 3-2 : Pressurizing wave front propagating 
downstream 
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Figure 3-3 : Upstream and downstream wave fronts 

 

 
Figure 3-4 : Pressurizing wave front propagating upstream 

 

 
Figure 3-5 : Downstream depressurization wave front 
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3.6 Description of the experimental (physical) model setup 

Experimental tests were conducted at the Hydraulics Laboratory of “École Polytechnique de 

Montreal” on a physical model (Figures 3-6 and 3-7) built for this specific purpose. The physical 

model consists of three transparent PVC pipes (C1, C2 and C3) and four tanks (R1, R2, R3 and R4) 

acting as manholes. Pipes C1, C2 and C3 have a diameter of 0.10 m each and respective lengths of 

5.52 m, 5.49 m and 4.82 m. Tanks R1, R2 and R4 have a horizontal section of 1.03 m x 1.03 m 

while R3 is circular with a diameter of 0.40 m.  

 

The tanks are equipped with supports of adjustable heights to provide the pipes with the desired 

variable slopes. Six electrical ball valves are mounted on the model so as to individually isolate 

the pipes and the tanks. Each of the tanks, R1, R2, and R3, can be supplied individually, with an 

adjustable flow, by a large tank. Sixteen pressure sensors (Hoskin types P9-4H2-1H1-DN1C0 

and P9-DN1C0), two electromagnetic flowmeters (Arkon MAG910E) and one ultrasonic 

flowmeter (HEDLAND HTTF) are fixed to the physical model in order to respectively measure 

water level, pressure and flow rate at different positions along the model. A combined weir (0.10 

m in height and width in the triangular part and 0.10 m in height and 0.50 m in width in the 

rectangular part) is installed in the R4 tank to obtain the total flow out of the system. A high-

resolution camera (STV-LRC with 200 frames per second) records the wave front shape, in order 

to characterize its behaviour and its dynamic (shape, celerity, air content, air bubbles or pockets 

shape, etc.). All recorded data values are saved by a personal computer using a data acquisition 

card. 
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Figure 3-6 : Plan view of the laboratory model 

 
Φ=0.406m

 
Figure 3-7  : Elevation of the laboratory model 

 

3.7 Methodology 

Inflows (hydrographs) entering the SWS at manholes sections are measured by flowmeters. 

Water levels in tanks and at different locations in pipes are measured by pressure sensors. A 200 

frame per second video camera records the successive change of wave front shapes and air 

pockets and bubbles and makes it possible in this way to determine the wave front celerity. The 

wave front lengths and the zone of high air content are determined from the videos. An analysis 

of the flow rate and pressure is used to assess the impact of wave front celerity, air pockets and 

bubbles in flow dynamics. 
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The wave fronts are generated by varying inflow values in manholes by operating the valves. The 

wave fronts are initialized by taking into account the flow depth in the pipe, the pipe slope and 

the water level in the tank. Table 3-1 presents the range of experimental values used in the tests. 

In this table y is the initial flow depth, D is the pipe diameter, Q is the flow rate generate a wave 

front, Qp is the pipe capacity flowing in a full section calculated by the Manning formula (with a 

roughness coefficient of 0.013: commercial value)). Results are analyzed by taking into account 

pipe slopes, inflows, water levels in tanks, conditions of air evacuation, and other relevant 

parameters depending on each studied case. 

 
 
      Table 3-1 : Variables considered in the tests 

Variables Used values 
Slope 0.3% 0.6% 1% 1.5% 3% 

/y D  0.5 0.7 0.85 0.95  
Q   1.3 pQ<  ( )1.3 1.7 pQ−  1.7 pQ≥   

 
The operating process to generate pressurizing wave fronts is summarized as follows: 

• First the pipe slope is adjusted.  

• Then, the upstream valve is opened to reach the fixed starting water depth in the pipe. Flow is 

adjusted until permanent flow is reached. 

• Finally, the data acquisition program as well as the video camera are started. Afterwards, 

supply valves (¼ turn type) are opened instantly to reach the required water depth at fixed 

pipe cross sections. 

 

To operate the system in order to generate depressurizing wave fronts, the process is slightly 

different: 

• First the pipe slope is adjusted.  

• Then, the pipe is filled at 5D's head on the inlet crown. This head is chosen to allow a 

continuous flow during depressurization. 

Finally, the data acquisition program as well as the video camera are started to record the 

pressure, the flow rate, and the depressurizing wave fronts shape. 
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3.8 Analysis of the results 

Current numerical models using the Shock-Fitting technique assume that the transient flow 

initializes at the manhole exit downstream cross section as soon as the water level reaches the 

pipe crown at that section. This means that the energy in the manhole is sufficient enough to 

pressurize the first pipe cross section (Figure 3-8). Tests performed by Vasconcelos and Wright 

(2005) on -0.2% to +0.2% pipe slopes, show that the most pronounced wave fronts are only 

observed with an initial water level between 60% and 80% of the diameter. 

 
Figure 3-8 : Initiation wave front scheme 

 

3.8.1 Pressurization wave front propagating downstream 

The results show that the pressurizing wave front is more pronounced when the initial depth at 

the entry of the pipe is between 0.5D and 0.85D with inflows more than 1.5Q. When the flow 

depth is between 0.4D to 0.6D, a wave front is not always observed. In fact, if the flow is low 

(<1.3Q), the filling pipe is progressive and no wave front exists. The filling phase is accompanied 

by a few undulations on the free surface flow.  

 

These undulations, with average lengths of about 1D to 2D, tend to trap air pockets. The head on 

the crown at the entry of the pipe, at the moment of the front initiation, varies with the slope. The 

initialisation head is greater when the pipe slope is more important (Figures 3-9 to 3-12). Table 3-

2 summarizes the conditions of initiation and the observed front shapes (Figures 3-13). 
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a) 0.3% and 0.6% pipe slopes: When the inflow is low, the wave front is not always observed. 

The pipe pressurization is gradual, with some average length undulations (2D to 3D). The 

minimum and maximum flow depths in the undulations are on average 0.7D and 0.95D. When 

the water level in the manhole is low, i.e. H0/D<1.3, a significant amount of air bubbles are 

carried in the flow direction. The quantity of air pockets is greater when the inflow is greater. The 

entry of these bubbles and pockets is facilitated by the low head above the crown of the pipe 

(Figure 3-1-a). Two types of fronts are observed: undulatory fronts (Table 3-2, Figure 3-13-a) 

and inclined fronts (Table 3-2, Figure 3-13-b). The undulatory fronts have relatively low 

celerities (0.05 to 0.3 m/s). The front length (Lo), i.e. distance between its contact with the pipe 

crown and the beginning of the normal flow, averages 1D to 2D. The inclined front displays no 

undulations. This front has a higher celerity of 0.5 to 0.6 m/s. Its inclination is spread over a 

distance of up to 6D. 

 

In the case of low or moderate initial flow depths (y/D<0.7) and a high inflow Q/Qp≥1.5, a 

generally very fast hydraulic bore spreading over the entire pipe length is noted. A pressurizing 

front is rarely observed after the passage of this hydraulic bore, if the hydraulic depth after this 

bore exceeds 0.9D. 

 

b) 1%, 1.5% to 3% pipe slope: In these types of pipe slopes, low inflows (<1.3Qp), do not always 

generate a pressurizing front. In this case, the pressurization is progressive with undulations that 

seem shorter (lengths <2D). For high inflows and lower initial levels (less than 0.7D), a hydraulic 

bore that propagates along the entire pipe is noted with a relatively high celerity (1.1 m/s for y/D 

= 0.5 and Q = 2Qp). This hydraulic bore is sometimes followed by a large undulatory movement 

of water, a phenomenon described by Vasconcelos and Wright (2005) as U-tube oscillation. 

 

When the flow is moderate or large enough (>1.3Qp), two types of pressurizing fronts are 

observed: the undulatory front (Table 3-2, Figure 3-13-a) and a concave front (Table 3-2, Figure 

3-13-c). The undulatory front is similar to that observed for 0.3% and 0.6% pipe slopes. As for 

the concave front, the radius of curvature increases with the slope. The front length varies 

between 2.5D and 3.5D. Its celerity is higher (0.3 to 0.5 m/s). The front demonstrates a concavity 

that is greater for higher flows. This looks like a concave curvature of a large radius (>D). 
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The quantities of air pockets and bubbles in the wave front and in the pressurized zones increase 

with the pipe slope. Large quantities of bubbles and small air pockets (usually less than 3 cm) 

with an average celerity of 0.5 to 1 m/s circulate under the crown and escape through the front. 

Significant pressure oscillations (amplitudes of 5D) are noted when the front approaches or 

passes by the pressure sensor. This could indicate that the air ahead of the front is strongly 

compressed. The normal flow depth, after the zone that is gradually varied, is generally 0.6D to 

0.8D. Air intrusions are noted for 1%, 1.5% and 3% pipe slopes, with inflows exceeding 1.5Qp. 

 

It is very rare to obtain front initiation with a head over the crown at the pipe inlet less than 1.3D, 

i.e. H0/D<1.3. This value seems to increase with the pipe slope. 

 
Table 3-2 : Air-water interface – upstream wave front case 

  S0 = 0.3% S0 = 0.6% S0 = 1% S0 = 1.5% S0 = 3% 
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 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 
  Discharge 
● : rarely bore front; a à h : shape of front (Figure 3-13); ▲ : interface with air 
cavity beneath the crown; □ : hydraulic bore; ∞+ : air pocket in the direction 
flow; ∞- : air pocket counterflow; ○+ : air bubbles in the direction flow; ○- : air 
bubbles counterflow, Q1/Qp<1.3, 1.3< Q2/Qp<1.7, Q3/Qp>1.7. 
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Figure 3-9 : Upstream wave front initiation 
conditions for S0 = 0.3% 

Figure 3-10 : Upstream wave front initiation 
conditions for S0 = 0.6% 

 

Figure 3-11 : Upstream wave front initiation 
conditions for S0 = 1.5% 

Figure 3-12 : Upstream wave front initiation 
conditions for S0 = 3% 

 

  
 
a) 

 
b) 

  

c) 

  
 
d) 

  
    Figure 3-13 : Different front shapes 
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e) f) 

  

 
g) 

 
h) 

  

  
i)  

j) 
   Figure 3-13 : Different front shapes (continuation) 
 

3.8.2 Stationary upstream pressurizing front 

Front initiation requires sufficient upstream energy, following pipe slope, inflow and water level 

in upstream manhole. Once the front is initiated, it may be subjected to two types of motion, 

either it advances by pressurizing the pipe if the energy is sufficient, or it moves backwards by 

depressurizing the pipe if the energy is insufficient. Between these two possibilities of 

movement, the front can be immobilized and remain in this state for a long period of time until 

one of the flow parameters changes (i.e. flow). The wave front stopping corresponds to an 

equilibrium point, where the flow remains constant for each pipe slope value. Different tests 

conducted with different pipe slopes demonstrate a flow rate equilibrium that appears to be a 

linear function of the pipe slope.  

 

Figure 3-14 shows that the flow equilibrium increases proportionally with the pipe slope whereas 

the head in the upstream tank decreases. When the front reaches this equilibrium point, its 
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propagation celerity is zero. Any increase in flows leads to its advancement. However, a decrease 

of the flow causes it to reverse or depressurize the upstream column via the manhole (Figure 3-

15). The front shape is variable. It has fairly large undulations when the pipe slope is low, i.e. less 

than 0.6% (Figure 3-16). Contrarily, for larger pipe slopes the front has a curvature that is quite 

regular for a gradually varied flow. For example, this curvature extends over 2D’s length for 1% 

pipe slope (Figure 3-17). 

 

 
 
Figure 3-14 : Upstream stationary front 
scheme with a slope of 1% 

 
Figure 3-15 : Discharge and head according to 
the slope for a upstream stationary wave front 

 

Figure 3-16 : Shape of the stationary front for 
S0 = 0.5% 

Figure 3-17 : Shape of the stationary front 
for      S0 = 1% 

 

3.8.3 Variation of the fluid density for a stationary upstream front 

In the various equations considered in the single phase models, it is assumed that the density of 

the fluid is constant ( 31000 /kg mρ = ). However, the observations show that the head of the front 

sometimes exhibits large quantities of air. These air quantities can be located solely in the front or 

along the entire length of the pressurized portion. As an illustration of the magnitude of the 

quantity of air, their estimation was done during a stationary front with a slope of 0.3%. 
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The results of a test (Table 3-3) in which the wave front is stationary between two sensors; C1P2 

and C1P3 are analysed. The test is performed with a constant inflow in the R1 tank (Figure 3-2). 

The flow was observed as continuous over a long period during which all the considered 

parameters remained constant (flow, water levels in R1 and R3 and pressure on all pipe sensors). 

In this case, it is consider that the flow rate in the C1 pipe is identical to the inflow of the R1 tank. 

 

The observed flow is characterized by bubbles and air pockets flow continues under the pipe 

crown. These bubbles and pockets are expelled at the front head. 

 
      Table 3-3 : Summary of test parameters upstream stationary wave front 

Slope of C1 : 0.3% Water level on C1P2 (m) : 0.108 
Inflow of R1 (m3/h) : 14.35 Water level on C1P3 (m) : 0.091 
Water level in R1 (m) : 0.210 Water level in R3 (m) : 0.197 

 
 

With no equipment to measure the amount of air, it is estimated with the momentum (3.1) and 

continuity (3.2) equations applied around the front (Figure 3-18). 

( ) ( )1 2 0 2 2 2 1 1 1fF F PS F A V w A V wρ ρ− + − = − − −      (3.1) 

 

( ) ( )1 1 2 2V w A V w A− = −        (3.2) 

 

The terms of the equation (3.1) are: 

 The hydrostatic force in the pressurized cross-section:  

1 1 1 1F gA hρ=      (3.3) 

 The hydrostatic force in the free surface cross-section:  

2 2 2 2F gA yρ=      (3.4) 

 The weight of the control volume fluid:  

1 1 1 2 2 2P gA L gA Lρ ρ= +      (3.5) 
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 The force of resistance of the wall, broken into two components, taking into account the 
pressurized  portion and the free surface portion: 

 
2 2 2

1 2
1 1 2 2 4/32r

h

V n VF gA f gA
gD R

ρ ρ= +       (3.6) 

 

After arrangement and elimination of the front celerity (w = 0), the outcome is:  
 

2 2 2
2 22 1

1 2 2 2 2 0 2 1 1 1 1 0 1 14/3 2h

n V VA g y L S V A g h A L S A f V
R gD

ρ ρ
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞

= − + + + − −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎣ ⎦⎣ ⎦

 (3.7) 

in which indexes 1 and 2 represent respectively the upstream and downstream cross-sections 

from the front, A is the flow area; V the velocity; h1 the pressure; y  the centroid depth; S0 the 

pipe slope; ρ the water density and g the acceleration of gravity. 

 

Figure 3-19 displays the variation curve of the density as a function of time. It shows a fluid 

density in the front and in its immediate vicinity of 915 ± 40 kg/m3. That is to say that the air 

content in the fluid is 8.5%. The impact of this air on the flow parameters, results in a decrease of 

the pressure wave celerity (a). Indeed, this celerity depends on the fluid density (ρ), the modules 

of elasticity of the fluid (K) and the pipe (Ec). According to Streeter and Wylie (1967), it can be 

expressed as: 

/

1
c

Ka K D
E e

ρ
=

+
      (3.8)  

with :  

1 1

e

e
a

a

K
K

K
Kτ

=
⎛ ⎞+ −⎜ ⎟
⎝ ⎠

     (3.9)  

a a e eρ ρ τ ρ τ= +        (3.10) 

Where eρ  and aρ  are the respective densities of water and air; eτ  and aτ  are the water-air rates; 

eK  and aK  are the modules of elasticity of water and air. This 8.5% air content causes a 92% 



61 

 

celerity reduction (3.8). This decrease seems too to be important to be neglected in simulation 

models. 

 
 

Figure 3-18 : Applying the equation of motion for 
upstream front 
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Figure 3-19 : Change in density of the 
fluid on the upstream stationary front 
in time, S0=0.3% 

 

3.8.4 Air bubbles and pockets impact on pressure 

Figures 3-20, 3-21 and 3-22 present three different behaviours in which the particularities 

described below may be noted. All these figures refer to the installation shown in Figure 3-23: 
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Figure 3-20 : Pressure oscillations with QR1 = 
29.26m3/h, S0 = 0.3% 
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Figure 3-21 : Depression at the entrance of 
the pipe, QR1 = 13.94m3/h, S0 = 0.3% 
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Figure 3-22 : Undulations with QR1 = 
10.94m3/h, S0 = 0.3% 

 
 
 
Figure 3-23 : Pressure sensors position 
 

   
 

a) Strong numerical pressure oscillations: When large air bubbles and pockets are drawn into the 

column during pressurization (high flow and low head on the pipe crown), high pressure 

variations are observed. These variations are stronger in the front and gradually decrease as one 

moves away from it. This matches the video pictures where large air bubbles and pockets are 

present in the flow. The oscillations amplitude is larger when large air pockets are more present 

in the flow. Figure 3-20 shows oscillations ranging from -1.5D to 4D, when the air pockets 

present are 30 cm * 8 cm * 3 cm average size, flowing intermittently with an 30 cm spacing. The 

release of these large air pockets is accompanied by very high water jets, recalling the 

phenomenon of geysers treated by Guo and Song (1990). 

 

When an air pocket moving in the flow direction is getting closer to the front head, it is noted that 

its length (in the flow direction) decreases first, before being expelled out of the pressurized 

portion. Figures 3-24 and 3-25 show an 11 cm length pocket that compresses to 5 cm (55% 

decreases) before release. This compression process at the entry of the front head is followed by 

an expansion consisting of merging the air pocket into the large air cavity along the front, can be 

the cause of large variations of pressure in the front. This phenomenon seems to be similar to the 

air pockets compression and decompression at the exit of the ventilation systems described by 

Zhou et al. (2002, 2004). 
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Figure 3-24 : Length of the air pocket before 
compression (at t), S0 = 0.3% et Q = 21.3m3/h

Figure 3-25 : Length of the air pocket after 
compression (at t+0.105s) 

 
 

b) Depression at the pipe entrance: Contrary to the previous case, a moderate variation of the 

front pressure is observed on Figure 3-21. This variation is limited in the immediate vicinity of 

the front. This figure corresponds to a situation where there are fewer air pockets than in the 

previous case. These pressure variations are observed when the inflows are 1.2Q to 2Q. We can 

hypothesize that a vena contracta occurs at the entry of the pipe as indicated by Finnemore and 

Franzini (2002). Unfortunately this pipe part is not transparent and therefore does not allow a 

verification of this hypothesis. 

 

c) Free surface flow undulations before the front: When the flow depth behind the front 

(downstream side) is large ( /y D > 0.7), high amplitude undulations are observed (Figure 3-22). 

The troughs of these undulations can become air pockets, that are trapped in the front like the 

Helmholtz instability described by Hamam and McCorquodale (1982).  

  

3.8.5 Pressurizing wave front propagating upstream 

The supply to the R3 tank happens via a one metre supply-fall (Figure 3-1-b), unlike that of R1 

(Figure 3-1-a) where there is no fall. The pressurizing wave front propagating upstream generated 

in this case displays significant differences compared to that of the pressurizing wave front 

propagating downstream, starting from the R1 Manhole. Three general patterns are observed 

(Table 3-4, Figures 3-13-f, g and h). Large amounts of air bubbles and pockets are seen in the 

front as well as in the pressurized column. This amount increases with the inflow in the R3 tank. 

The front (Figure 3-13-h) is characterized by a strong aeration zone which can extend over a 
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10D’s length. The air bubbles in the front head moving roll in the opposite flow direction. 

However, in the rest of the pressurized zone, these bubbles move with 0.8 to 1.2 m/s celerities in 

the flow direction.  

 

Two types of air pockets are observed in the pressurized column: air pockets with widths less 

than 0.5D moving in the flow direction at celerities less than those of the bubbles, and pockets 

with widths greater than 0.5D moving in the opposite direction. During their movement, the large 

pockets can decrease in volume. In fact, under the action of the drag force, the small bubbles and 

air pockets detach themselves from these large pockets to drain downstream. If this volume 

decreases to a width of less than 0.5D, the pockets change direction to flow downstream in the 

flow direction. 

 

Small air pockets can also change direction if their volume is increasing. Indeed, when small air 

pockets catch up other larger ones, they merge. Once these merged, pockets may reach a 0.5D’s 

width, they then change direction and flow counterflow. The large pockets that evacuate 

upstream retain almost the same shape (Figures 3-26 and 3-27). When they meet with large 

bubbles or pockets, they merge to grow even more. The small bubbles, approximately 5 mm or 

less, tend to avoid these air pockets. They can at times fuse into the pockets on the lateral sides. 

 

When the inflow is quite large with a low water level in the R3 tank, the air pockets can occupy 

up to half of the pipe volume within 30% of the diameter below the crown. Regardless of the 

water level in the R3 tank, a very high flow can create a highly ventilated front consisting of a 

homogeneous mixture of air bubbles (Figure 3-28), similar to the air-entrained hydraulic bore 

described by Ead and Ghamry (2002). 

 

With respect to the pipe slope, there is no significant difference on the wave front. The 

differences are more visible compared to the inflow and the flow depth. 

The head on the pipe crown at the moment of initiation is higher compared to that obtained for 

the pressurizing wave front propagating downstream (Figures 3-29 to 3-32). This water head 

consistently exceeds 1.4D (H0/D≥1.4) for 1.5% and 3% pipe slopes. It is difficult to determine an 

exact tendency, although it seems to be influenced by the inflow to the R1 tank.  
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The pressure variations at the head of the wave front are greater when large air pockets are 

expelled in that zone. This expulsion, as indicated above (section 3.8.4), seems to occur by 

compression and decompression. 

 

 
 
Figure 3-26 : Shape of the air pocket counterflow

 
Figure 3-27 : Shape of the air pocket 
counterflow 

Figure 3-28 : Air-entrained wave front 
 
 
 

Table 3-4 : Air-water interface – downstream bore front case 
  S0 = 0.3% S0 = 0.6% S0 = 1.5% S0 = 3% 

0.95 f, ○-
, ∞- 

g, 
○-, 
∞- 

f,  
▲, 
∞-, 
○- 

g, 
○+, 
∞-  

g, 
○+, 
∞-  

f, 
▲, 
○+, 
∞-  

g, 
○+, 
∞- 

g, 
▲, 
○-, 
∞- 

h, 
○-, 
∞- 

g, 
▲, 
○+, 
∞- 

g, 
▲, 
○-, 
∞- 

h, 
▲, 
○-, 
∞-  

0.85 f, ○-
, ∞- 
 

f, 
○-, 
∞- 

h, 
▲, 
∞-, 
○- 

g, 
○+ 

g, 
○+, 
∞- 

h, 
▲, 
○+  

g, 
○+, 
∞- 

g, 
○-, 
∞- 

h, 
○-, 
∞- 

f, 
▲, 
○+, 
∞- 

g, 
▲, 
○+, 
∞- 

h, 
▲, 
○-, 
∞-  

y/D 

0.5-0.6 ● 
 
 

f, 
○+, 
∞- 

h,  
▲, 
∞-, 
○-, 
□ 

f, 
○+ 

g, 
○+  

h, 
▲, 
○+, 
□ 

●  f, 
○+, 
∞- 

h, 
○-, 
∞- 

f, 
▲, 
○+, 
∞- 

g, 
▲,  
○+, 
∞- 

h, 
▲, 
○-, 
∞-, 
□ 

  QR1=12.4m3/h QR1=12.4m3/h QR1=16.24m3/h QR1=13.60m3/h 
  Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 
  Discharge 
● : rarely bore front; a à h : shape of front (Figures 3-13); ▲ : interface breakdown; 
□ : hydraulic bore; ∞+ : air pocket in the direction flow; ∞- : air pocket counterflow; 
○+ : air bubbles in the direction flow; ○- : air bubbles counterflow, Q1, Q2 et Q3 are 
variables to take into account the flow of R1 (see figures 3-29 to 3-32). 
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Figure 3-29 : Downstream wave front 
initiation conditions for S0 = 0.3%, QR1 = 
12.4m3/h 

 
Figure 3-30 : Downstream wave front 
initiation conditions for S0 = 0.6%, QR1 = 
12.4m3/h 

 

Figure 3-31 : Downstream wave front 
initiation conditions for S0 = 1.5%, QR1 = 
16.25m3/h 

Figure 3-32 : Downstream wave front 
initiation conditions for S0 = 3%, QR1 = 
13.6m3/h 

 

3.8.5.1 Fluid density variation in the pressurizing wave front propagating upstream 

As with the pressurizing wave front propagating downstream, an estimate of the fluid density in 

the pressurizing wave front propagating upstream is made for a test case that is rather illustrative. 

In this test, the front is stationary on the C1P3 sensor (Figure 3-26). Calculations are performed 

between the C1P2 and C1P4 sensors. The table 3-5 summarizes the parameters of the test. The 

inflow in R1 and its water level is constant; it can be considered that the flow in the pipe is 

identical to the inflow of R1. The flow is characterized by large air bubbles and pockets under the 

crown of the pipe. They are intermittently flowing with celerities ranging from 0.2 to 0.3 m/s for 

the bubbles and 0.15 to 0.25 m/s for the small pockets (width less than 0.5D) and -0.25 to -

0.15m/s for the large pockets (width greater than 0.5D). The latter are counter-current. 
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              Table 3-5 : Summary data and results of the test downstream stationary front 

Slope of C1 : 0.3% Water level in C1P2 (m) : 0.0325 
Inflow of R1 (m3/h) : 12.45 Water level in C1P3 (m) : 0.082 
Inflow of R3 (m3/h) : 16.55 Water level  in C1P4 (m) : 0.127 
Water level in R1 (m) : 0.179 Water level  in R3 (m) : 0.305 

 

 

 

 

The momentum (3.11) and continuity (3.12) equation are also applied to this type of front to 

estimate the fluid density. 

 

( ) ( )2 1 0 1 1 1 2 2 2fF F PS F A V w A V wρ ρ− + − = + − +     (3.11)   

 

  ( ) ( )1 1 2 2V w A V w A+ = +      (3.12) 

 

The terms of the equation (3.11) F1, F2, P and Fr, are identical to those used in equations (3.3), 

(3.4), (3.5) and (3.6), but their positions are adapted to the figure 3-33. 

After transforming and eliminating the front celerity (w = 0), the following equation is obtained: 

2 2 2
2 22 1

1 2 2 2 2 0 2 1 1 1 0 14/3 2h

n V VA g y L S V A g h L S f V
R gD

ρ ρ
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞

= + − + − + +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎣ ⎦⎣ ⎦

 (3.13) where 

indexes 1 and 2 represent the downstream and upstream cross-sections of the front respectively, 

A : flow area, V : velocity, h1 : pressure, y : the centroïde depth, 0S  : the pipe slope, ρ  : the fluid 

density and g : gravity acceleration.  
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Figure 3-33 : Applying the equation of motion 
for downstream front 
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Figure 3-34 : Change in density of the 
fluid on the downstream stationary front 
in time 

 

Figure 3-34 shows a very large variation of the density (825 ± 100 kg/m3). This corresponds to 

an air content about 17.5%. Referring to the graph of Streeter and Wylie (1967), a decrease of 

94% of the pressure wave celerities is obtained.  

 

3.8.6 Two wave fronts in opposite direction 

The cases of the pressurization fronts moving towards each other play a key role in the modelling 

of flow in sewers, especially with the Interface tracking model. When two-pressurizing fronts 

approach each other, the air situated in the cavity between them compresses and tries to evacuate 

by one of the extremities. This phenomenon is partially addressed in the studies on the geyser 

causes by Guo and Song (1988, 1990), in rapidly filling pipe by Zhou et al. (2002, 2004). In their 

numerical model, Gomez and Achiaga (2001) have also confronted the problem related to the 

treatment of two fronts meeting.  

 

To reduce the effect of water hammer observed, after the shock of the two fronts, the authors 

reduced the pressure wave celerity. As for Wang et al. (2003), they assume in their model that the 

pocket between the two wave fronts tends toward a state of equilibrium. At times, it may create a 

hydraulic bore between the two fronts. Another type of equilibrium state is also shown in the 

tests by Aimable and Zech (2003). In these tests conducted on three aligned pipes separated by 
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manholes, a constant flow is admitted in the first manhole. The downstream extremity of the last 

pipe is fitted with a valve that raises the water level at the end. After a filling phase of the first 

and last pipes, two pressurizing wave fronts are generated in both ends of the second pipe. The 

authors note that the air pocket between the two fronts, at times, reached a state of still 

equilibrium. 

 

All these studies lead to the conclusion that the recognition of the air effect in models remains a 

predominant concern. But, as pointed out by Vasconcelos et al. (2006) water-air interactions are 

not sufficiently understood and can therefore be a source of serious operational problems. In 

order to better understand the behaviour of the two wave fronts as they get closer to one another, 

the shape filmed by the camera and the recorded pressures is analysed. The fronts are generated 

by input hydrographs in manholes R1 and R3 (Figure 3-3). The tests are performed with a wide 

range of slopes and flows (Table 3-1). 

 

It is noted that initially, the two pressurization fronts are almost identical to those studied in 

sections 3.8.1 and 3.8.5, i.e. fronts not affected by air. As the two fronts get closer to one another 

(Figure 3-35), the pressure of the air pocket between them increases. When the fronts arrive at a 5 

to 7D’s distance, the upstream front begins to change its curvature as a result of air pressure 

(Figures 3-36, 3-37 and 3-38). A significant decrease in the flow depth under the air cavity 

between the too fronts, is observed. This decrease is more pronounced in the immediate 

surroundings of the downstream front (Figure 3-39). It closely resembles the "pre-bore motion" 

described by Vasconcelos and Wright (2005) during the air release at manhole. 

 

In all the tests conducted, the flow depth under the air cavity varies between 0.35 and 0.5D. The 

shape of the upstream wave front during its backward movement resembles the shape of the large 

bubble observed by Gardner and Crow (1970) on a horizontal depressurizing channel. Unlike the 

upstream front, the downstream front behaves like a hydraulic bore (Figure 3-40) of significant 

length (often reaches 3D), especially when large air pockets are expelled towards the front head. 

The air bubbles content contained in the downstream front head is relatively lower when the 

pocket compresses. This could be due to the air bubbles implosion under the effect of the strong 

pressure between the two fronts. 
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The expulsion of the air pocket to the R1 manhole is accompanied by water jets of varying sizes. 

These jets resemble the geysers presented by Guo and Song (1988) and the phenomenon of 

compression - decompression in the pressurization of a horizontal pipe by Zhou et al. (2002, 

2004). No notorious differences were noted in the front shapes due to the slope of the pipe. 

 

 

 
 
 
Figure 3-35 : Shapes of fronts when the air 
pressure is low 

Figure 3-36 : Front shape unaffected by 
air 

 

 
 
 
Figure 3-37 : Both fronts stop, the effect of 
air pressure starts Figure 3-38 : Upstream front shape under 

the influence of pressure of the air 
 

  
 
 
Figure 3-39 : The downatream front pushing 
upstream front Figure 3-40 : Downstream front shape 

pushing the upstream front 
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3.8.7 Upstream toward downstream depressurization fronts 

The tests are performed on the R1-C1-C3-R3-R4 line (Figures 3-6 and 3-7). After a filling phase of 

the system at 5D’s water head on pipe crown in R1, the valve supply is closed. Then, the data 

acquisition system is started. Depressurizing wave fronts are generally propagated downstream. 

Sometimes a depressurizing wave front propagating upstream is observed, but its slow 

displacement celerity does not allow its observation in the pipe transparent portion. It is therefore 

not studied. 

 

The depressurizing wave fronts propagating downstream that have been observed are classified 

into three forms: a concavity that is pronounced enough for small slopes, a pointed head when the 

slope becomes large, and an intermediate form between the two. 

When the pipe slope is mild ( 0 1.6%S < ), the front shape is similar to those observed on a 

horizontal channel by Benjamin (1968), Gardner and Crow (1970) and Wilkinson (1982), except 

that the length of the concavity is shorter, generally less than 0.4D (Figures 3-41 and 3-42). The 

concavity seems to be composed of two curves where the one composed of the head of the front 

has the lowest radius. On the front head, we notice short enough intumescences that spread at the 

same celerity as the front. They are followed by a normal flow zone with an almost constant 

depth ( 2 0.8y D≈ ). The front celerities as a whole are generally 1 m/s (Figure 3-43). However, it 

should be noted that this shape can be submitted to distortions during the moving of the front. 

The air cavity in the front sometimes seems to suck water from the intumescences to fill the 

cavity, occasionally transforming it into a "V" shape. 

 

When the pipe slope increases ( 0 1.6%S > ), it can be seen that the depressurizing front moves in 

fits and starts. It is often preceded by large air pockets and bubbles that get trapped in the 

pressurized column and that move in the flow direction. The average celerities are slightly lower 

(Figure 3-43).The front shape displays a big difference compared to milder pipe slopes. The head 

of the air cavity is usually pointed (a height of 0.5 cm to 1 cm). The front is followed by a zone of 

gradually varied flow in which the free surface slope decreases inversely with the pipe slope. 

However, this zone length increases with the pipe slop (Figures 3-44 and 3-45). 
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Considering the pressures, relatively large oscillations but lower amplitudes are observed after 

the passing of the wave front. These oscillations disappear after the front arrives at the 

downstream manhole. The oscillations seem to be more persistent in time with steep pipe slopes 

(Figures 3-46 and 3-47). 

  

 
Figure 3-41 : Shape of the upstream 
depressurization front for a mild slope 

Figure 3-42 : General shape of the front for S0
= 0.3% 

 

Figure 3-43 : Front velocity vs Slope at the 
middle of the pipe 
 

 
 
Figure 3-44 : General shape of the front 
for S0 = 1,8% 
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Figure 3-45 : Shape of the upstream depressurization front 
for a steep slope 
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Figure 3-46 : Oscillations after the passage of 
the depressurization front, S0 = 0.3% 
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Figure 3-47 : Oscillations after the passage 
of the depressurization front, S0 = 2.3% 

 
 

3.9 Conclusion and recommendations 

 

This article analyzed different shape wave fronts observed during pipe pressurization and 

depressurization. The diversity of the shapes observed calls for more caution in the modelling of 

transient flows. The shape fronts depend on the energy they carry, the pipe slope, the air pressure, 

and other parameters not fully understood. The front lengths and the undulation half-lengths 

regularly attain minimum values of about D/2. These values suggest that a calculation spatial step 

( x∆ ) in the numerical model over this minimum values, can lead to an omission of important 

details in the flow. 
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The air effect on the front and the pressurized column manifests itself particularly during large 

variations in pressure. The magnitude of the oscillations observed deserves special attention in 

order not to confuse these physical oscillations with those of numerical origins in the simulation 

models, especially when using a numerical oscillations filter. The amount of air pockets and 

bubbles as well as the duration of their persistence in the front and in the pressurized column after 

the front illustrate the need to carefully handle the equations that take into account the fluid 

density in this portion. It is concluded that the density and the pressure wave celerities are not 

constant in the front and in the pressurized portion in front vicinity. Even if the method used to 

estimate the air content into the stationary front is not a sufficiently accurate experimental 

measurement, it gives an indication of the magnitude of the air quantity. Estimating more 

accurately this amount of air according to the flow conditions, the supply to the tanks and their 

water levels, deserves further investigation.  
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CHAPITRE 4 PRÉSENTATION DU MODÈLE PHYSIQUE ET DES 

RÉSULTATS COMPLÉMENTAIRES 

4.1 Présentation du modèle de laboratoire 

Le modèle physique (Figures 4-1, 4-2 et 4-3) a été réalisé dans le cadre de cette étude. Il est 

composé de deux conduites parallèles ( 1C  et 2C ) suivies d’une troisième conduite 3C  en série 

avec les deux premières. Elles sont en PVC transparent, de longueurs respectives de 5.52 m, 5.49 

m et 4.82 m. Les diamètres de 1C  et 2C  sont de 4 pouces alors que celui de 3C  peut être 

interchangé en 4 pouces ou 6 pouces selon les besoins. Les conduites amont 1C  et 2C sont 

alimentées chacune par un réservoir de 1.03 m x 1.03 m de section horizontale sur une hauteur de 

1.00 m. Le réservoir intermédiaire, raccordant les trois conduites a une section horizontale 16 

pouces de diamètre sur une hauteur de 1.83 m. La troisième conduite vidange dans un réservoir 

de 1.03 m*1.03 m de section sur une hauteur de 1.52 m. Chacun des trois premiers réservoirs 

( 1R , 2R  et 3R ) est alimenté individuellement par une conduite de 4 pouces, raccordée à un grand 

réservoir d’alimentation. Une vanne manuelle installée sur chaque conduite d’alimentation 

permet de réguler le débit d’alimentation. Des débitmètres électromagnétiques de quatre pouces 

(arkon MAG 910E) installés sur les conduites d’alimentation des premier et troisième réservoirs 

permettent d’obtenir leurs débits d’entrée. Un débitmètre portatif ultrasonique (HEDLAND 

HTTF) est utilisé pour mesurer selon les besoins le débit à différentes positions sur l’une des trois 

conduites 1C , 2C  et 3C . Les extrémités de chacune de ces conduites sont munies de vannes 

électriques du type EPM3-120P de marque HAYWARD. Deux vannes EPM8-120P de marque 

HAYWARD de six pouces sont prévues pour la conduite 3C  lorsqu’elle sera interchangée de 

quatre à six pouces. Des capteurs de pression sont installés sur les conduites et les réservoirs afin 

d’obtenir les pressions ou les niveaux d’eau. 

Un déversoir combiné (triangulaire-rectangulaire) est installé dans le quatrième réservoir pour 

mesurer le débit total à la sortie du système. L’eau évacuée du dernier réservoir est, soit rejetée 

dans le canal d’évacuation du laboratoire par une conduite de 4 pouces, soit renvoyée dans l’un 

des réservoirs amont par l’intermédiaire d’une pompe de vidange.  
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Dans le but de disposer d’un modèle capable de faire des essais sur une très large plage de pentes 

(-10% à +10%), les réservoirs sont munis de supports ajustables pour régler les pentes des 

conduites. Pour assurer une flexibilité entre les conduites et les réservoirs, des conduites flexibles 

de 0.40 m de longueur en moyenne sont insérées. Cependant, ces conduites flexibles et les vannes 

empêchent de suivre le front d’onde dans les environs immédiats des réservoirs du fait qu’elles ne 

sont pas transparentes. 

 

 
 

      Figure 4-1 : Schéma du modèle physique – Vue en plan 

Φ 

,

Φ=0.406m

      Figure 4-2 : Schéma du modèle physique – élévation R1-R4 
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Φ=0.406m

,

Φ 

Figure 4-3 : Schéma du modèle physique – élévation R3 – R4 
 

Une caméra (SVSi) haute résolution (200 images par seconde) permet de filmer la propagation du 

front d’onde afin de caractériser son comportement, sa forme, sa vitesse et déterminer la taille et 

la vitesse des bulles et poches d’air présentes dans l’écoulement. Cette caméra fonctionne avec le 

logiciel StremView LR. 

L’acquisition des mesures des treize (13) capteurs de pression et des trois (03) débitmètres 

installés se fait par une carte d’acquisition de données du type SCC 68 de National Instrument 

raccordée à l’ordinateur. Deux types de connection des capteurs et débitmètres sont réalisés :  

 Une connexion à deux fils avec une résistance pour permettre à la carte de lire une 

tension. Cette connexion (Figure 4-4) est utilisée pour : 

o Les capteurs 0-5 psi (0-3.52 m) du type P9-4H2-DN1C0 de Hoskin Scientific qui 

retournent une intensité de 4 à 20 mA. Une résistance de 510 ohms est connectée 

en parallèle à chaque capteur; 

o Les débitmètres électromagnétiques qui retournent par leurs bornes (+2 et -3) un 

signal d’intensité de 4 à 20 mA. Une résistance de 1000 ohms est installée en 

parallèle pour obtenir à la sortie de la carte une tension; 
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o Le débitmètre ultrasonique qui retourne également un signal d’intensité de 4 à 20 

mA entre les bornes (+5 et -6). La meilleure courbe (débit-tension) est obtenue 

avec une résistance de 680 ohms. 

 Une connexion à trois fils (Figure 4-5), utilisée pour les capteurs de pression 0-3 psi (0-

2.11 m) du type P9-1H1-DN1C0 de Hoskin Scientific retournant directement une tension 

de 0 à 10 V.  

 

Figure 4-4 : Acquisition de données par 2 
fils 

 

Figure 4-5 : Acquisition de données par 3 
fils 

 

L’interface reliant les instruments de mesure et l’ordinateur est gérée par un logiciel d’acquisition 

de données LabView. L’interface du programme appelée instrument virtuel (VI) est présentée 

aux figures 4-6  et 4-7.  
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Figure 4-6 : Interface d’acquisition de données par LabView – Face avant du VI 
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Figure 4-7 : Interface d’acquisition de données par LabView – Diagramme du VI  

 

 

La carte d’acquisition de données SCC 68 NI dispose de seize (16) canaux, utilisés 

exclusivement pour les équipements de mesure installés sur le tronçon R1-R4. Il est à prévoir de 
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raccorder les six vannes électriques sur la carte Agilent Technologies 34980A et les capteurs à 

rajouter particulièrement ceux de la conduite 2C  pour mieux automatiser l’installation et 

améliorer la densité des mesures. La connexion des vannes nécessite un convertisseur de signal 

(Signal Conditioners) pour gérer l’angle d’ouverture des vannes proportionnellement à leur 

tension de commande. 

Dans cette même perspective d’amélioration de l’installation, il serait plus intéressant d’arriver à 

une synchronisation automatique de la caméra avec l’horloge de l’ordinateur ou du temps de 

début d’exécution du programme de LabView. 

 
Figure 4-8 : Installation du modèle 

 
Figure 4-9 : Raccordement électrique 

 

 
Figure 4-10 : Photo du modèle installé Figure 4-11 : Photo du modèle installé 

 

4.2 Étalonnage des instruments de mesure 

Avant de procéder aux essais, tous les appareils de mesure (douze (12) capteurs de pression, deux 

(02) débitmètres électromagnétiques, un (01) débitmètre ultrasonique, un (01) déversoir combiné) 

sont étalonnés. Une tension en courant continu de 0 à 10 V est mesurée au bord de chaque 
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instrument de mesure, en fonction de la grandeur, objet de la mesure (hauteur d’eau / pression 

pour les capteurs, débit pour les débitmètres). Les fonctions des courbes d’étalonnage sont 

introduites dans les champs «formule» du programme d’acquisition (Figure 4-7) de données pour 

enregistrer directement les grandeurs recherchées (hauteur d’eau / pression ou  débit). 

4.2.1 Étalonnage des capteurs de pression 

L’étalonnage de chaque capteur a été fait à l’aide d’un tube de 5 mm de diamètre monté sur une 

échelle graduée de hauteur totale de 2 m. Plusieurs niveaux ont été mesurés pour des valeurs de 

tension de 0 à 10 V. À partir de ces mesures, une droite de régression (4.1) donnant la hauteur 

d’eau en fonction de la tension est déterminée pour chaque capteur.  

H aU b= +       (4.1) 

 où H  : représente la hauteur d’eau ou pression sur le capteur et U  : la tension mesurée. 

Les figures 4-12 à 4-23 présentent les mesures et les droites de régression de chaque capteur de 

pression. 
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Figure 4-12 : Étalonnage du capteur R1 
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Figure 4-13 : Étalonnage du capteur C1P1 
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Figure 4-14 : Étalonnage du capteur C1P2 

y = 21.23x - 0.2356
R2 = 0.9998

0
20
40
60
80

100
120
140
160
180
200

0 2 4 6 8 10
Tension (V)

H
au

te
ur

 d
'e

au
 (c

m
) 

Capteur C1P3
Droite de régression

 
Figure 4-15 : Étalonnage du capteur C1P3 
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Figure 4-16 : Étalonnage du capteur C1P4 
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Figure 4-17 : Étalonnage du capteur C1P5 
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Figure 4-18 : Étalonnage du capteur R3 
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Figure 4-19 : Étalonnage du capteur C3P1 
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Figure 4-20 : Étalonnage du capteur C3P2 
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Figure 4-21 : Étalonnage du capteur C3P3 
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Figure 4-22 : Étalonnage du capteur C3P4 
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Figure 4-23 : Étalonnage du capteur R4 

4.2.2 Étalonnage des débitmètres 

Les calibrations des débitmètres sont toutes effectuées à l’usine. Le fournisseur conseille de ne 

modifier aucun paramètre. Cependant, une vérification sommaire a été faite afin de s’assurer de 

la fiabilité de chaque débitmètre. Cette vérification consiste à comparer le débit moyen de 

remplissage ( /Q t= ∀ ∆ ) du réservoir aval entre deux niveaux ( 1H  et 2H ) et le débit lu sur 

l’afficheur du débitmètre ( aQ ) où ( )2 1hS H H∀ = −  et t∆  le temps de remplissage mesuré au 

chronomètre et  hS  la section horizontale du réservoir.  

Pendant les mesures, les lectures sur les débitmètres sont quasi-constantes. Cette procédure est 

répétée trois fois avec des ouvertures différentes de la vanne amont du débitmètre. Les tableaux 

4-1, 4-2 et 4-3 présentent les différentes valeurs obtenues. Les différences observées sont dans 

l’ensemble inférieures à 2%. 

           Tableau 4-1 : Vérification du débitmètre Q1 

Mesures Hauteur 
initiale (m) 

Hauteur 
finale (m) 

Durée 
(s) 

Section 
réservoir 

(m2) 

Débit 
calculé 
(m3/h) 

Débit 
lu 

(m3/h) 

Différence 
% 

1 0.252 0.425 30.4 21.73 22.06 -1.5%
2 0.273 0.497 28.6 29.91 29.58 1.1%
3 0.327 0.563 35.6

1.0609 
25.32 25.80 -1.9%

 
           Tableau 4-2 : Vérification du débitmètre Q2 

Mesures Hauteur 
initiale (m) 

Hauteur 
finale (m) 

Durée 
(s) 

Section 
réservoir 

(m2) 

Débit 
calculé 
(m3/h) 

Débit lu 
(m3/h) 

Différence 
% 

1 0.322 0.462 25.6 20.89 20.49 1.9%
2 0.383 0.606 21.5 39.61 38.98 1.6%
3 0.304 0.517 35.4

0.1257 
22.98 23.37 -1.7%
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          Tableau 4-3 : Vérification du débitmètre Q3 

Mesures Hauteur 
initiale (m) 

Hauteur 
finale (m) 

Durée 
(s) 

Section 
réservoir 

(m2) 

Débit 
calculé 
(m3/h) 

Débit 
lu 

(m3/h) 

Différence 
% 

1 0.193 0.349 21.6 27.58 27.94 -1.3%
2 0.213 0.417 31.5 24.73 24.29 1.8%
3 0.254 0.524 34.7

0.1257 
29.72 30.19 -1.6%

 
Après cette vérification, une courbe d’étalonnage (débit-tension) est effectuée pour chaque 

débitmètre afin d’enregistrer directement les débits par la carte d’acquisition de données. 

L’étalonnage des débitmètres est fait de la même manière que celle des capteurs de pression à la 

différence que les débits mesurés sont directement lus sur l’afficheur du débitmètre.  

Rappelons que les résistances installées en parallèle aux débitmètres permettent de lire une 

tension à la carte d’acquisition de données. Les mesures des débitmètres électromagnétiques 

représentent des droites dont les régressions sont sous la forme l’équation (4.2) (Figures 4-24 et 

4-25). 

  Q aU b= +  (4.2) 

Où Q  : représente le débit et U  : la tension mesurée. 

La courbe de débit du débitmètre ultrasonique (Hedland HTTF) se présente quant à elle sous 

forme polynomiale (Figure 4-26).  
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Figure 4-24 : Calibrage du débitmètre Q1 
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Figure 4-25 : Calibrage du débitmètre Q2 
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Figure 4-26 : Calibrage du débitmètre Q3 

 

4.2.3 Calcul d’incertitudes 

Pour s’assurer de la qualité des mesures réalisées, l’incertitude de chacun des instruments de 

mesure a été déterminée. C'est-à-dire l’écart probable entre la valeur dite vraie de la grandeur et 

celle mesurée est évalué pour chaque instrument de mesure. Cet écart est constitué de deux 

parties. D’une part, les erreurs systématiques qui sont fortement réduites pour les capteurs par 

l’utilisation d’une mesure de référence, laquelle est soustraite de toutes les mesures. D’autre part, 

les erreurs accidentelles sont minimisées par la répétition des mesures, les purges régulières des 

capteurs lorsque des bulles d’air créent des oscillations anormales, l’élimination de toute mesure 

de qualité douteuse. 

Pour chacun instrument de mesure, l’incertitude type est déterminée comme étant la racine carrée 

de la variance (JCGM, 2008) :  

 
( ) ( )

2
2

1

n

i
i i

ff x
x

µ µ
=

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
∑   (4.3) 

où f est la relation fonctionnelle déterminant la mesurande Y  à partir des n  grandeurs ix  

( )( )1 2, ,... nY f x x x= . La mesurande Y  est soit la hauteur d’eau H  ou le débit Q , ( )ixµ  est 

l’incertitude type. 

A partir de l’équation (4.3), les incertitudes ( )fµ  sont calculées en adoptant une formule 

générale sous la forme :   ( )Y aX b= +                  (4.4)  

avec :  
2 2 2

2 2 2100
Y a X b

Y Y Yu u u
Y a X b

µ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

                  (4.5) 
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Après transformation on obtient :  2 2 2 2 2100
Y a X bu X u a u

Y
µ = + +          (4.6) 

Les figures I-1 à I-15 présentent les tensions de sortie mesurées aux deux bornes de chaque 

instrument pour une hauteur H ou débit Q donné. A partir de ces mesures, les moyennes ( moyU ) et 

les écarts types (σ ) sont déterminés (Tableaux 4-4, 4-5 et 4-6).  Les écarts aµ  et bµ  sont 

calculés respectivement avec les équations (4.7) et (4.8) (Patthey, 2010). 

( ) ( )
2

2

1 1

1
2

N N

a i i
i i

Y Y X X
N

µ
= =

= − −
− ∑ ∑            (4.7) 

( )
( )

2
2

2
1

1

1 1
2

N

b i N
i

i
i

XY Y
N N X X

µ
=

=

⎛ ⎞
⎜ ⎟
⎜ ⎟= − +

− ⎜ ⎟−⎜ ⎟
⎝ ⎠

∑
∑

       (4.8) 

L’écart Xµ  est calculé quant à lui en tenant compte de l’écart type (σ ) des mesures, de la 

précision due à la non linéarité et à l’hystérésis de l’instrument ( hµ  de 0.10%), de la précision du 

système d’enregistrement ( 0.01syst Vµ ) :  2X h systµ σ µ µ= + +      (4.9) 

L’ensemble des résultats est présenté aux tableaux 4-4, 4-5 et 4-6. Les graphiques des variations 

des mesures sont présentés en annexes 1. Les incertitudes exprimées en pourcentage sont assez 

faibles, par conséquent on peut retenir que les mesures sont fiables et que la précision de 5% peut 

être retenue. 

 

 

 

 

 

 

 

 

 

 

 



88 

 

Tableau 4-4 : Calcul des incertitudes des capteurs 
 R1P C1P1 C1P2 C1P3 C1P4 C1P5 

a  23.3120 21.2950 43.1890 21.2300 21.3040 21.1510
b  4.7454 -7.8127 -93.3000 -0.2356 -2.8760 -2.2409

moyU  (V) 0.9429 1.1915 2.5927 0.9256 1.0240 0.7995
σ  (V) 0.0035 0.0034 0.0031 0.0060 0.0032 0.0060
H (cm) à moyU  26.7 17.6 18.7 19.4 18.9 14.7
Tension de sortie sU  10 10 10 10 10 10

0.10%h sUµ =  0.01 0.01 0.01 0.01 0.01 0.01
systµ  0.01 0.01 0.01 0.01 0.01 0.01
Xµ  0.0271 0.0268 0.0263 0.0320 0.0264 0.0320
aµ (V) 0.4176 0.3814 0.7735 0.3802 0.3816 0.3779
bµ (V) 0.4089 0.4195 1.2470 0.3702 0.3900 0.3432
Yµ (cm) 0.85 0.84 0.79 0.85 0.79 0.69
Yµ (%) 3.2% 4.8% 4.2% 4.4% 4.2% 4.7%



89 

 

 
Tableau 4-5 : Calcul des incertitudes des capteurs (suite) 

 R3P C3P1 C3P2 C3P3 C3P4 R4P 

a  42.9960 43.6460 21.2670 43.4350 42.7610 49.8350
b  -90.7870 -92.9250 -11.5190 -99.6330 -91.7830 -157.6400

moyU  (V) 2.8759 2.6614 1.6883 2.8642 2.7461 4.0484
σ  (V) 0.0019 0.0014 0.0064 0.0038 0.0016 0.0019
H (cm)  à moyU  32.9 23.2 24.4 24.8 25.6 44.1
Tension de sortie sU  10 10 10 10 10 10

0.10%h sUµ =  0.01 0.01 0.01 0.01 0.01 0.01
systµ  0.01 0.01 0.01 0.01 0.01 0.01
Xµ  0.0237 0.0227 0.0327 0.0275 0.0233 0.0238
aµ (V) 0.7700 0.7816 0.3809 0.7778 0.7658 0.8925
bµ (V) 1.3072 1.2767 0.4988 1.3175 1.2705 1.7965
Yµ (cm) 1.52 1.19 1.07 1.28 1.19 2.10
Yµ (%) 4.6% 5.1% 4.4% 5.2% 4.7% 4.8%

 
Tableau 4-6 : Calcul des incertitudes des débitmètres 

 Q1 Q2 Q3 

a  -9.8592 -9.9507 11.9130 
b  -20.1310 -20.2190 -52.8190 

moyU  (V) -3.5867 -3.2841 5.6633 
σ  (V) 0.0286 0.0282 0.0411 

Q  (m3/h) à moyU  15.2 12.5 14.6 
Tension de sortie sU 10 10 10 

0.10%h sUµ =  0.01 0.01 0.01 
systµ  0.01 0.01 0.01 
Xµ  0.0772 0.0763 0.1023 

aµ (V) 0.1766 0.1782 0.2222 
bµ (V) 0.3337 0.3221 0.5290 

Yµ (m3/h) 0.68 0.61 0.79 
Yµ (%) 4.5% 4.9% 5.4% 
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4.3 Mesure de rugosité, friction, et coefficients de pertes de charge 

singulières 

Un des principaux objectifs de ces travaux est de disposer de résultats expérimentaux pour tester 

et valider le modèle de simulation en cours de réalisation. Pour cette raison, les coefficients de 

rugosité, de friction et de pertes de charge singulières du modèle physique sont déterminés. 

Dans la formulation des écoulements par les équations de Saint Venant, plusieurs hypothèses sont 

faites pour faciliter leur résolution. Parmi ces hypothèses, celle relative à la friction permanente 

occupe une place de choix. Plusieurs auteurs dont Wylie et Streeter (1993) et Graf et Altinakar 

(1996) supposent que l’utilisation de la friction permanente, même si l’écoulement est non 

permanent, présente un impact très peu prononcé sur les résultats. Les essais de Fuamba (1997) 

ont montré une amélioration des résultats de l’ordre de 2% sur les pressions en prenant en compte 

la friction dynamique.  

A notre connaissance, cette problématique de la friction non permanente n’a pas grandement 

évolué. Dans la suite de cette analyse, l’hypothèse considérant que la friction est permanente est 

maintenue. Tous les coefficients à déterminer le seront sous l’hypothèse d’un écoulement 

permanent.  

Il s’agit donc de déterminer : 

 Le coefficient de rugosité n de Manning des conduites pour un écoulement à surface 

libre; 

  Le coefficient de friction f  de Darcy pour un écoulement en charge; 

 Les coefficients de pertes de charge singulières à la sortie et à l’entrée des réservoirs 

pour les zones disposant de capteurs.  

La détermination distincte des coefficients de pertes de charge pour les écoulements à surface 

libre et en charge, se justifie par le fait que chacun de ces écoulements est calculé avec des 

équations qui lui sont propres dans le modèle numérique en cours de réalisation. 

4.3.1 Essais réalisés 

Une série de vingt essais sont réalisés sur le tronçon R1-R4 (      Figure 4-2) : dix essais en 

écoulement à surface libre et dix autres en écoulement en charge. L’alimentation du système se 
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fait uniquement par la conduite d’adduction du réservoir R1. Les pentes des conduites sont de 

0.2%. Les caractéristiques géométriques et topographiques du modèle et le système d’acquisition 

de données sont déjà décrites à la présentation de modèle de laboratoire (section 4.1).  

La procédure des essais consiste à ouvrir d’abord la vanne (Va1) alimentant R1 et à observer un 

écoulement visiblement permanent avant de démarrer les mesures de débit et de pression. La 

figure 4-27 présente les zones retenues pour la détermination des différents coefficients. Ce choix 

respecte un compromis entre la représentativité et la possibilité de faire des mesures adéquates 

avec suffisamment d’instruments de mesure. Les essais sont répétés deux fois : une première 

série d’essais durant laquelle le débitmètre portatif est positionné sur la conduite C1 et une 

deuxième série durant laquelle le débitmètre portatif est sur la conduite C3. 

 
Figure 4-27 : Zones de mesures des différents coefficients 

 

Les coefficients de perte de charge singulière sont déterminés à la sortie du réservoir R1 et à 

l’entrée de R3. Les coefficients de perte de charge singulière des vannes ne sont pas déterminés 

dans ce travail. Les sections de passage des vannes totalement ouvertes ne présentent pas 

d’irrégularité particulière. L’hypothése que les pertes de charge singuliéres sont négligeables est 

donc retenue. 

4.3.2 Présentation des résultats 

Les mesures (hauteurs d’eau et débit) sont présentées dans les tableaux 4-7, 4-8 et 4-9. 
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Tableau 4-7 : Mesures de niveaux et débits pour déterminer n et f de C1 

Écoulement à surface libre  Écoulement en charge 
C1P2 (cm) C1P4 (cm) Débit (m3/h)  C1P2 (cm) C1P4 (cm) Débit (m3/h) 

            4.24                 4.45                 2.51              11.02         10.23          18.48 
            4.87                 5.05                 3.25              12.17          11.03 22.49 
            5.23                 5.49                 3.72     17.26 15.26          29.17 
            6.23                 6.36                 5.51              21.76          19.07 32.67 
            6.43                 6.51                 5.91     28.92          25.25          38.34 
            7.47                 7.50                 8.23              36.05          31.59 44.74 
            8.59                 8.38               11.90     43.14          37.23          47.42 
            8.96                 8.94               11.94              48.63         42.25 49.47 
    51.92 44.93 51.43 
 
Tableau 4-8 : Mesures de niveaux et débits pour déterminer Kav de R1 

Écoulement à surface libre  Écoulement en charge 
R1P (cm) C1P1 (cm) Q1 (m3/h)  R1P (cm) C1P1 (cm) Q1 (m3/h) 

          13.41                 3.38                 2.54            23.19             11.08             18.45    
          14.42                 4.41                 3.07            26.32             12.75            23.97    
          14.84                 4.77                 3.71            35.15             18.82            30.49    
          15.99                 5.85                 5.57            41.92             24.17            36.05    
          16.14                 5.99                 5.83            52.55             32.24            43.47    
          17.34                 7.10                 8.37            62.99             40.40            46.31    
          19.34                 8.52               12.24            73.20             47.63            50.17    
          19.68                 8.77               12.44            81.42             53.83            51.14    
              87.08              57.72             53.12 
 

Tableau 4-9 : Mesures de niveaux et 
débits pour déterminer Kam de R3 

Écoulement en charge 
C1P5 (cm) R3 (cm) Débit (m3/h) 

5.35 18.66 15.59 
6.52 21.88 18.21 
11.67 27.26 23.99 
15.20 30.24 26.23 
20.86 36.10 30.82 
26.50 41.31 34.51 
31.68 45.26 37.78 
36.13 49.35 40.82 
38.59 51.27 42.27  
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      Tableau 4-10 : Mesures de niveaux et débits en charge sur la conduite C3 
C3P1 (cm) C3P3 (cm) Q3 (m3/h)  C3P1 (cm) C3P3 (cm) Q3 (m3/h) 

2.54 2.69 1.09 10.26 10.10 13.59
2.75 2.49 1.20 13.22 12.64 19.82
4.83 4.42 3.43 14.45 14.02 19.90
5.87 5.24 4.96 17.42 16.61 24.23
6.92 6.99 6.96 22.94 21.94 24.82
7.97 7.95 8.87 26.55 25.80 24.05
8.26 8.04 9.47 36.13 35.06 26.78
9.48 9.54 11.81 47.51 45.84 30.82

  68.29 66.49 31.27
 

4.3.2.1 Calcul de la rugosité de la conduite C1 

Le coefficient de rugosité de la conduite C1 est calculé à partir des pertes de charge en 

écoulement à surface libre entre les capteurs C1P2 et C1P4 (Tableau 4-7) distants de 2.245 m, en 

appliquant les équations d’énergie (4.10) et de Manning (4.11). La pente de la conduite étant de 

0 0.2%S = , son effet est négligé. 

2 2
1 1 1 4

1 1 1 1 1 4 1 42 2
C P C P

C P C P C P C P f
V VZ y Z y xS

g g
+ + = + + + ∆     (4.10) 

                                              2/3
h fn R S V=                                                              (4.11) 

où hR  est le rayon hydraulique, fS  est la pente d’énergie de la conduite et V est la vitesse 
moyenne entre les capteurs.  

Les résultats des calculs montrent une rugosité comprise entre 0.010 et 0.013. On observe une 

tendance à la baisse de la rugosité inversement à la vitesse. Cependant il n’est pas possible de 

déterminer une bonne corrélation entre les valeurs (Tableau 4-11 et Figure 4-28). 

Tableau 4-11 : Rugosité de la conduite C1 
Vitesse (m/s) Rugosité n 

0.21 0.012
0.23 0.013
0.24 0.011
0.30 0.012
0.30 0.012
0.36 0.012
0.46 0.011
0.45 0.010 

0.008

0.009

0.010

0.011

0.012

0.013

0.20 0.30 0.40 0.50
Vitesse (m/s)

R
ug

os
ité

 n

Figure 4-28 : Rugosité de la conduite C1 
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4.3.2.2 Calcul de la rugosité de la conduite C3 

Le coefficient de rugosité de la conduite C3 est calculé à partir des pertes de charge en 

écoulement à surface libre entre les capteurs C3P1 et C3P3 (      Tableau 4-10) espacés d’une 

longueur L = 1.62 m, en appliquant les équations d’énergie entre C3P1 et C3P3 (4.10) et de 

Manning (4.11). 

Les résultats (Tableau 4-12 et Figure 4-29) des calculs montrent une rugosité comprise entre 

0.009 et 0.014. On observe une tendance à la baisse de la rugosité inversement à la vitesse 

comme déjà indiqué pour la conduite C1. 

Tableau 4-12 : Rugosité de la conduite 
C3 

Vitesse (m/s) Rugosité n 
0.17 0.012
0.23 0.014
0.27 0.013
0.31 0.012
0.33 0.011
0.37 0.012
0.38 0.009
0.43 0.010 

0.008
0.009
0.010
0.011
0.012
0.013
0.014

0.15 0.20 0.25 0.30 0.35 0.40 0.45
Vitesse (m/s)

R
ug

os
ité

 n

 
Figure 4-29 : Rugosité de la conduite C3 

 

4.3.2.3 Calcul de la friction de la conduite C1 

La friction est calculée avec l’équation d’énergie (4.10) et celle de Darcy (4.12) et des résultats 

de mesure du tableau 4-7.  

22 ff gDS V=            (4.12) 

 où D  est le diamètre de la conduite et g l’accélération de la pesanteur. 

Les résultats montrent une friction variant entre 0.019 et 0.025 (Tableau 4-13 et Figure 4-30).  
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Tableau 4-13 : Friction de la conduite C1 
Vitesse (m/s) Rugosité n Friction f

0.63 0.010 0.025
0.77 0.009 0.022
1.00 0.009 0.020
1.12 0.009 0.021
1.31 0.009 0.020
1.53 0.008 0.017
1.62 0.009 0.020
1.69 0.009 0.019
1.76 0.009 0.020 

0.007

0.012

0.017

0.022

0.027

0.50 1.00 1.50 2.00
Vitesse (m/s)

R
ug

os
ité

 n
 / 

Fr
ic

tio
n 

f

Friction f
Rugosité n

Figure 4-30 : Friction de la conduite C1 

 

4.3.2.4 Calcul de la friction de la conduite C3 

La friction de la conduite C3 est calculée avec l’équation d’énergie (4.10) et celle de Darcy (4.12) 

et des résultats de mesure du tableau 4-10. 

Les résultats montrent une friction variant entre 0.019 et 0.026 (Tableau 4-14 et    Figure 4-31).  

Tableau 4-14 : Friction de la conduite C3 
Vitesse (m/s) Rugosité n Friction f 

0.47 0.010 0.026
0.68 0.009 0.022
0.68 0.008 0.018
0.83 0.008 0.019
0.85 0.009 0.021
0.82 0.008 0.018
0.92 0.008 0.019
1.06 0.009 0.020
1.07 0.009 0.021 

0.007

0.012

0.017

0.022

0.027

0.40 0.60 0.80 1.00 1.20
Vitesse (m/s)

R
ug

os
ité

 n
 / 

Fr
ic

tio
n 

f

Friction f
Rugosité n

   Figure 4-31 : Friction de la conduite C3 

 

4.3.2.5 Coefficient de perte de charge à la sortie du réservoir R1 

Le coefficient de perte de charge à la sortie du réservoir R1 est calculé à partir des mesures du 

tableau 4-8 et de l’équation d’énergie (4.10) et de l’équation de la perte de charge singulière 

(4.13). 

( )2 2avh K V g∆ =           (4.13) 

 où h∆  est la perte de charge entre le réservoir et l’entrée de la conduite, V  est la vitesse à 

l’entrée de la conduite, avK  est le coefficient de perte de charge singulière. 
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Les coefficients de perte de charge sont calculés distinctement pour les écoulements à surface 

libre et en charge. 

En écoulement à surface libre, on constate un coefficient très faible lors du début de 

l’écoulement. Ce coefficient augmente avec la vitesse et reste inférieur aux valeurs obtenues pour 

un écoulement en charge (Tableau 4-15 et   Figure 4-32). 

En écoulement en charge, la variation du coefficient de perte de charge singulière est plus faible 

et oscille autour de 1.00 (Tableau 4-16 et Figure 4-33). 

Tableau 4-15 : avK  à surface libre de R1 

Vitesse (m/s) avK

0.30 0.06
0.26 0.05
0.28 0.18
0.32 0.26
0.33 0.27
0.39 0.32
0.48 0.71
0.47 0.80 

0.01
0.11
0.21
0.31
0.41
0.51
0.61
0.71
0.81
0.91

0.20 0.30 0.40 0.50
Vitesse (m/s)

K
av

 (à
 s

ur
fa

ce
 li

br
e)

 
  Figure 4-32 : avK  à surface libre du réservoir 
R1 

 
Tableau 4-16 : avK  en charge de R1 

Vitesse (m/s) avK

0.63 0.97
0.82 0.98
1.04 1.07
1.24 0.94
1.49 0.86
1.59 0.92
1.72 0.97
1.75 1.06
1.82 1.08 

0.01

0.21

0.41

0.61

0.81

1.01

1.21

0.20 0.70 1.20 1.70 2.20
Vitesse (m/s)

K
av

 (e
n 

ch
ar

ge
)

Figure 4-33 : avK  en charge du réservoir R1 
 

4.3.2.6 Coefficient de perte de charge à l’entrée du réservoir R3 

Le coefficient de perte de charge à l’entrée du réservoir R3 est calculé à partir des mesures du 

tableau 4-9 et des équations d’énergie (4.10) et de la perte de charge singulière (4.14). 

( )2 2amh K V g∆ =          (4.14) 
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où h∆  est la perte de charge entre la sortie de la conduite et le réservoir, V  est la vitesse à la 

sortie de la conduite, amK  est le coefficient de perte de charge singulière. 

Le coefficient de perte de charge est calculé uniquement pour les écoulements en charge. Nous 

avons constaté qu’en écoulement à surface libre, l’entrée dans le regard R3 se fait par chute. Cette 

situation oblige de calculer la limite amont de ce réservoir en supposant un passage conduite-

regard en écoulement critique. Cette hypothèse devrait être vérifiée dans les prochaines études 

avec un dispositif de mesure beaucoup plus amélioré. 

En écoulement en charge, la variation du coefficient de perte de charge singulière est globalement 

comprise entre 0.3 et 0.5 (Tableau 4-17 et   Figure 4-34). 

Tableau 4-17 : amK  en charge de R1 

Vitesse (m/s) amK

1.01 0.75
0.93 0.42
0.82 0.44
0.90 0.49
1.06 0.32
1.18 0.31
1.29 0.40
1.40 0.37
1.45 0.40 

0.01
0.11
0.21
0.31
0.41
0.51
0.61
0.71
0.81

0.80 1.00 1.20 1.40
Vitesse (m/s)

K
am

 (e
n 

ch
ar

ge
)

 
  Figure 4-34 : amK  en charge du réservoir R3 

 

4.4 Mesure de calibration du modèle numérique 

Rappelons que l’un des objectifs de ce travail est de disposer de mesures servant de comparaison 

au modèle numérique en cours de réalisation et à sa calibration. La présentation détaillée du 

modèle, son analyse de sensibilité, la comparaison des résultats numérique et expérimentaux et sa 

calibration sont présentées dans un article en cours de rédaction. Nous présentons ici 

sommairement le modèle. 

4.4.1 Présentation sommaire du modèle 

Le modèle numérique est du type shock fitting. Il est réalisé par le Laboratoire d’Hydraulique de 

l’École Polytechnique de Montréal et fera l’objet d’une publication en cours de préparation 

(Daynou et al., 2010). Les équations des écoulements reposent essentiellement sur les trois lois 
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fondamentales de l’hydrodynamique c'est-à-dire la conservation de la masse, de la quantité de 

mouvement et de l’énergie. 

Le modèle est composé de trois grandes parties : écoulements à surface libre, écoulements en 

charge, et écoulements transitoire c'est-à-dire présence simultanée d’une partie sous pression et 

d’une partie à surface libre (Figure 4-35).  

Initialisation 
écoulement

reseauSL = oui
reseauCH = non

Procedure de 
calcul

Si reseauSL = non 
et reseauCH = non

Lecture des 
données

C/
Calcul transitoire

B/
Calcul en 
charge

A/
Calcul 

gravitaire

Si reseauSL = oui reseauCH = oui

Test:
- reseauSL = oui ou non?
- reseauCH = oui ou non?

 
Figure 4-35 : Organigramme général du modèle 

4.4.1.1  Les écoulements à surface libre et en charge 

Les écoulements à surface libre sont calculés avec un système d’équations différentielles (4.1) 

basé sur les équations de Saint Venant (Chaudhry, 2008). Ce système transformé sous forme 

d’équations ordinaires (4.2) et (4.3) est résolu par la méthode des caractéristiques. 
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Forme différentielle : Forme d’équations ordinaires : 

( )

2

0

0

0f

y y c UU
t x g x
U U yU g g S S
t x x

⎧∂ ∂ ∂
+ + =⎪⎪ ∂ ∂ ∂

⎨
∂ ∂ ∂⎪ + + + − =⎪ ∂ ∂ ∂⎩

(4.1) ⇒

 

( )0

:
f

dU g dy g S S
dt c dtsur C

dx U c
dt

+

⎧ + = −⎪⎪
⎨
⎪ = +
⎪⎩

  (4.2)

( )0

:
f

dU g dy g S S
dt c dtsur C

dx U c
dt

−

⎧ − = −⎪⎪
⎨
⎪ = −
⎪⎩

  (4.3)

Où U  est la vitesse, y  : la profondeur d’écoulement, c  : la célérité des ondes de gravité, 0S  : la 
pente de la conduite, fS  : la pente d’énergie. 
 

Pour les écoulements en charge, le système d’équations de masse et de mouvement (4.4) est 

résolu par de la méthode des caractéristiques (Streeter et Wylie, 1967; Chaudhry, 1979). 

Forme différentielle : Forme d’équation ordinaire : 

2

0

0
2

0

H V V fg V V V
x x t D

H a V VV VS
t g x x

∂ ∂ ∂⎧ + + + =⎪ ∂ ∂ ∂⎪
⎨∂ ∂ ∂⎪ + + + =
⎪ ∂ ∂ ∂⎩

(4.4)
 

 ( )

0: 0

P P

L L

P P

fL L

P P

L L

g gdH dV
a a

gsur C VS dt gS dt
a

dx U a dt

+

⎧ +⎪
⎪
⎪+ + =⎨
⎪
⎪ = +⎪⎩

∫ ∫

∫ ∫

∫ ∫
   

 (4.5) 

( )

0: 0

R R

P P

R R

fP P

R R

P P

g dH dV
a
gsur C VS dt gS dt
a

dx U a dt

−

⎧− +⎪
⎪
⎪− + =⎨
⎪
⎪ = −⎪⎩

∫ ∫

∫ ∫

∫ ∫

     (4.6) 

Où V est la vitesse, H : la piézométrie, a : la célérité des ondes de pression, 0S  : la pente de la 

conduite et fS  : la pente d’énergie. 

 

Dans les sections intérieures de la conduite, les paramètres d’écoulement (vitesse et profondeur) 

sont calculés par des relations explicites des caractéristiques positive et négative  en prenant en 

compte la nature de l’écoulement (torrentiel, critique ou fluvial) (Daynou et al., 2010). 
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Un ensemble de conditions aux limites utilisant les conservations de masse, de quantité de 

mouvement et d’énergie et, les caractéristiques positive et négative est pris en compte dans la 

résolution de l’écoulement. Les caractéristiques positive et négative sont définies suivant le 

régime de l’écoulement en amont et en aval des regards. Pour chaque type de regard (extrémité 

amont, intermédiaire et extrémité aval), des conditions aux limites, spécifiques à sa configuration, 

sont déterminées 

4.4.1.2  Les écoulements transitoires 

La phase transitoire est découpée en deux parties : les initiations des fronts d’ondes de 

remplissage et leur propagation à l’intérieur de la conduite. 

Les fronts d’onde sont calculés avec les équations de continuité, de mouvement et de la colonne 

rigide suivant le sens de déplacement du front d’onde et des caractéristiques positives et 

négatives (Daynou et al., 2010). L’application de l’équation de la colonne rigide suppose une 

légère compressibilité de l’eau.  

Les initiations des fronts d’onde sont générées par des équations spécifiques à chaque type de 

regard et suivant les régimes d’écoulement de part et d’autre du regard (écoulement à surface 

libre en amont et en aval, en charge en amont et à surface libre en aval ou vice versa). 

Le déplacement de l’onde est géré par les équations de continuité et de mouvement autour du 

front, la caractéristique positive ou négative en charge, et les caractéristiques à surface libre du 

côté à surface libre (Fuamba, 2002; Daynou et al., 2010). 

4.4.1.3 Structure du programme 

Le modèle est réalisé en Programmation Orientée Objet (C++). Pour faciliter sa gestion et son 

extension et gérer la possibilité d’apparition de plusieurs fronts d’onde, les conduites sont 

caractérisées en six états. 

• États = 0 : si la conduite est entièrement en écoulement à surface libre; 

• États = 1 : si le niveau d’eau atteint la crête de la conduite à l’une de ses extrémités, c’est 

dire qu’on doit tenter d’initier un front d’onde de remplissage; 

• État = 2 : s’il existe un front d’onde dans la conduite; 
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• État = 3 si : 

o Le seul front d’onde existant dans la conduite est entre l’avant dernière et la 

dernière section pour le cas du front amont vers aval, ou entre la première et 

deuxième section pour le cas du front aval vers amont; 

o Les deux fronts amont et aval existant tentent de se rencontrer alors qu’il n’existe 

plus une section entre les deux. 

• État = 4 : si toute la conduite est en charge ; 

• État = 5 : si la conduite est en vidange. 

Lorsque l’ensemble du réseau est à surface libre ou en charge, on utilise respectivement les 

méthodes de calcul «Calcul gravitaire» ou celui de «Calcul en charge». Par contre, en écoulement 

transitoire la méthode «Calcul transitoire» est utilisée (Figure 4-35). Cette dernière méthode teste 

l’état de conduite pour chercher à identifier chacun des états précédemment défini et calculer la 

conduite en question. 

Pour assurer la stabilité du modèle, un ensemble de conditions et d’astuces est utilisé : 

• Respect de la condition de Courant dans chaque section à surface libre ou en charge; 

• Utilisation des outils de résolution de systèmes d’équations non linéaires de «Numerical 

receipes»; 

• Subdivision du pas temps en une dizaine de pas pour s’assurer de la convergeance des 

solutions lors des calculs des conditions aux limites intégrant les apports par 

hydrogrammes; 

• Composition du font d’onde en deux sections virtuelles dont l’une est en charge et l’autre 

à surface libre.  

4.4.2 Essais pour la calibration 

Les mesures réalisées pour la calibration du modèle numérique sont faites avec les 

caractéristiques géométriques et topographiques du modèle physique, résumées dans le tableau 4-

18. 
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    Tableau 4-18 : Les paramètres géométriques et topographiques du modèle 
Conduite C1 C3 

Longueur L (m) 5.525 4.82 
Diamètre D (m) 0.10 0.10 
Cote du radier entrée (m) 97.10 97.089 
Cote du radier sortie (m) 97.089 96.979 
Pente S0 (m/m) 0.002 0.002 
Regard R1 R3 

Section horizontale (m2) 1.03*1.03 1.0609= 2*0.4 / 4 0.1257π =  
Cote du radier (m) 97.00 96.939 

 

a) La procédure des essais se résume comme suit : 

1. Après le réglage des pentes des conduites,  la caméra et le système d’acquisition de 

données sont démarrés; 

2. Ensuite, les vannes d’alimentation des réservoirs R1 et R3 sont progressivement ouvertes 

de manière à avoir des débits d’entrée progressifs et capables de générer des fronts 

d’onde. Les différentes expériences précédemment réalisées ont permis de mieux 

maîtriser les angles d’ouverture et de vitesse des vannes pour faciliter la génération des 

fronts; 

3. Enfin, les phénomènes sont observés et notés pour être complétés plutard par les analyses 

de pression, de débits et des images vidéo. 

 

b) Les résultats montrent quatre types de fronts d’onde :  

• un front de remplissage amont vers aval dans la conduite C1, à partir R1; 

• un front de remplissage aval vers amont dans la conduite C1. à partir de R3; 

• un front de remplissage amont vers aval dans la conduite C3, à partir de R3; 

• Et un front de vidange se propageant du réservoir R1 jusqu’au réservoir R4. 

Durant la phase de remplissage, il a été observé une poche d’air d’une longueur moyenne de 2.2 

m qui est restée dans la conduite C1 pendant toute la phase de montée de l’hydrogramme de R1. 

Cette poche s’est évacuée par le réservoir R1 juste après la fermeture totale des vannes 

d’alimentation. 
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Après les essais, les mesures de pression et de débit aux différents capteurs et débitmètres sont 

récupérées sous forme de tableaux (valeurs – temps). 

L’analyse des images vidéo a permis quant à elle de déterminer la vitesse de propagation du 

front. Pour des raisons liées à la limite du champ de vision, la propagation des fronts n’est 

obtenue que pour un nombre de points limités. Les débits d’entrée dans les regards sont classés 

en pas moyen de 5 mn pour faciliter leur utilisation comme hydrogrammes dans la simulation 

numérique. 

Les tableaux 4-19 et 4-20 et la Figure 4-36 présentent les hydrogrammes des réservoirs R1 et R3 

issus de l’essai. 
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        Tableau 4-19 : Hydrogramme du regard R1 
temps (s) Débit (m3/h)  temps (s) Débit (m3/h)

0.0 0.00  73.4 50.70 
22.3 1.30  77.6 50.08 
26.6 5.08  81.9 48.90 
30.9 6.96  86.1 47.94 
35.1 7.37  90.4 46.98 
39.4 10.40  94.9 46.08 
43.6 12.87  99.1 45.07 
47.9 12.96  103.3 43.14 
52.1 18.16  107.6 42.63 
56.3 28.73  111.8 23.50 
60.6 33.21  116.0 1.49 
64.9 33.96  120.3 0.00 
69.1 42.99    

 
Tableau 4-20 : Hydrogramme du regard R3 

temps (s) Débit (m3/h)  temps (s) Débit (m3/h)
0 0.00 69.1 28.22 

22.3 0.00 73.4 28.51 
26.6 1.30 77.6 28.52 
30.9 1.36 81.9 28.52 
35.1 2.38 86.1 28.81 
39.4 3.81 90.4 29.05 
43.6 4.85 94.9 29.22 
47.9 5.63 99.1 31.05 
52.1 5.90 103.3 38.00 
56.3 7.23 107.6 27.45 
60.6 14.95 111.8 4.72 
64.9 26.25 116.9 0.00 
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Figure 4-36: Les hydrogrammes de R1 et R3

 

Les mesures des pressions aux différents capteurs sont présentées dans les figures 4-37 à 4-42. 
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Figure 4-37 : Variations piézométriques 
en R1 et C1P1 
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Figure 4-38 : Variations piézométriques 
en C1P2 et C1P3 
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Figure 4-39 : Variations piézométriques en 
C1P4 et C1P5 
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Figure 4-40 : Variations piézométriques en 
R3 et C3P1 
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Figure 4-41 : Variations piézométriques en 
C3P2 et C3P3 
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Figure 4-42 : Variations piézométriques 
en C3P4 et R4 

 

4.4.3 Aperçu de comparaison 

La comparaison des résultats du modèle numérique avec ceux des essais présentés ci-après donne 

un aperçu sur la capacité du modèle numérique à simuler les écoulements transitoires. Les 

résultats numériques, extraits des analyses de sensibilité, prennent en compte les caractériques du 

modèle numérique (Tableaux 4-18 et 4-21) et des hydrogrammes mesurés (Tableaux 4-19 et 4-

20). 
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        Tableau 4-21 : Paramètres du modèle physique 

Rugosité 
n  

Friction 
f  amK  avK  Célérité 

(m/s) 
x∆  

(m) 

Nombre 
de 

Courant 

ε = 
 (D-y)/D 

0.014 0.028 1.0 0.4 498 0.1558 0.99 0.1 

 

L’analyse des résultats (Figures 4-43 a 4-47) montre une bonne tendance dans l’allure des 

pressions. La différence des pressions de pointe est due en grande partie au fait que le modèle 

n’est pas encore calibré. L’analyse de sensibilité et la calibration permettra de déterminer les 

limites et la fiabilité du modèle et dégager des améliorations que la prise en compte de l’effet de 

l’air devra explorer. 

Ces questions seront abordées dans les études doctorales en cours sur le modèle. C’est pour cette 

raison que nous ne proposerons pas ici les méthodes de correction, vu que l’analyse globale sera 

poursuivie dans ces études. 

Par ailleurs, on peut émettre l’hypothèse selon laquelle les oscillations observées peuvent être en 

partie dues à l’effet de l’air. En effet, lors des essais, d’importantes poches et bulles d’air ont été 

observées dans l’écoulement. Comme déjà montré au chapitre 3, l’air a un impact réel sur la 

dynamique de l’écoulement, particulièrement durant sa phase de compression et d’expension. La 

réalisation ultérieure de la partie du modèle avec poches d’air permettra de confirmer ou 

d’infirmer cette hypothèse par comparaison des résultats du modèle avec et sans poches d’air. 

 

Tableau 4-22 : Comparaison résultats essais vs simulation 
  Mesure Simulation Mesure Simulation  
 Cote du Radier (m) Piézométrie (m) Hauteur d'eau (m) Écart (%) 

R1           97.000           97.606        97.583             0.606           0.583     -3.8%
C1P1           97.100           97.601        97.561             0.501           0.461     -8.0%
C1P3           97.094           97.600        97.517             0.506           0.423     -16.4%
R3           96.939           97.598        97.480             0.659           0.541     -17.8%
C3P2           97.034           97.268        97.234             0.234           0.200     -14.6%
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Figure 4-43 : Variations piézométriquesessai 
vs simulation en R1 
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Figure 4-44 : Variations piézométriques : 
essai vs simulation en C1P1 
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Figure 4-45 : Variations piézométriques : 
essai vs simulation en C1P3 
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Figure 4-46 : Variations piézométriques : 
essai vs simulation en R3 
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Figure 4-47 : Variations piézométriques : 
essai vs simulation en C3P2 

 

4.5 Conclusion 

Dans ce chapitre, la présentation du modèle physique avec l’ensemble des équipements est 

réalisée. Ce modèle présente une belle oportunité d’explorer la dynamique des écoulements 

transitoires. La qualité de l’étalonage des instruments et les précisions obtenues constituent une 
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assurance sur la qualité des mesures. Les calculs des coefficients de rugosité, de friction et de 

pertes de charge singulières donnent des valeurs qui corroborent celles habituellement utilisées 

dans la littérature. Le choix des valeurs définitives se fera lors du calage du modèle. Les mesures 

réalisées constituent un ensemble de données disponibles pour tester et calibrer le modèle. Les 

résultats préliminaires présentés dans ce chapitre montrent la capacité du modèle à reproduire 

l’allure générale des piézométries, à simuler les différentes phases de l’écoulement transitoires, 

particulièrement lors des passages d’écoulement à surface libre en sous pression et vice versa.   
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CHAPITRE 5 DISCUSSION GÉNÉRALE 
 

La revue critique de la littérature, objet du premier article présenté dans cette étude, a montré 

l’existence d’un grand nombre de modèles de simulation d’écoulements transitoires dans les 

réseaux de drainage urbains. Cependant, aucun de ces modèles ne résout entièrement la 

problématique liée à la dynamique des écoulements particulièrement sous l’effet de l’air. Les 

modèles shock capturing les plus utilisés présentent des limites quant à leur capacité à formuler 

les écoulements diphasiques qui supposent un écoulement sous pression alors que ses équations 

de base sont celles d’un écoulement à surface libre. Les modèles avec volume fini identifiés dans 

cette revue littérature, présentent une très grande capacité d’intégration des effets de l’air. 

Cependant, ce sont des modèles qui exigent une formulation mathématique assez complexte. 

Cette revue bibliographique a permis de situer notre programme de recherche dans cette grande 

diversité d’approches et d’apprécier leurs limites afin de mieux orienter les recherches sur la prise 

en charge des effets de l’air. 

Dans la deuxième partie du travail (article 2), une exploration des écoulements transitoires sous 

l’effet de l’air a été faite. Cette exploration montre l’existence de plusieurs types de fronts 

d’ondes contrairement aux hypothèses habituelles qui restreignent les types de fronts en verticale 

ou incliné. Les formes des fronts sont étroitement liées à la présence de l’air et de son état 

(compression, vitesse d’évacuation, quantité, etc.). 

Ce deuxième article montre l’intérêt à accorder au choix du pas spatial si on veut arriver à mieux 

reproduire numériquement certaines particularités dans l’écoulement comme les ondulations et 

les formes des fronts. Au-delà de la condition de Courant reliant la vitesse, la célérité, les pas de 

temps et spatial, il n’existe pas à notre connaissance, des critères de sélection du pas spatial. D’où 

l’intérêt d’orienter des investigations dans ce sens. Cet article pose également le problème de la 

quantification exacte du taux d’air dans l’écoulement notemment dans le front d’onde. Ce taux 

dépend, entre autres, de plusieurs facteurs comme la dynamique de l’écoulement et les conditions 

d’alimentation des regards. Les calculs de ce taux d’air pour des conditions particulières montrent 

qu’il peut avoir un impsct sur la célérité des ondes de pressions. Cet état de fait nécessite des 
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mesures assez précises pour mieux quantifier l’impact réel du taux d’air et l’évaluer suivant 

toutes les conditions qui régissent son apparition dans l’écoulement. Les principaux points mis en 

exergue dans cet article nous confortent sur les limites soulignées des modèles présentés dans 

l’article de la revue bibliographique et nous permettent d’orienter nos études ultérieures aussi 

bien sur le plan expérimental que dans l’analyse numérique. 

Enfin, le quatrième chapitre a présenté le modèle de laboratoire réalisé dans le cadre de cette 

étude. Il a permis de décrire le modèle étudié à travers ses différentes composantes. Il a présenté 

aussi les calculs d’incertitude des différents instruments de mesure. Toutes les investigations 

effectuées dans le cadre des articles 1 et 2 et du quatrième chapitre ont pu se faire grâce à ce 

modèle. Dans ce chapitre, sont également présentés des résultats de la détermination des 

différents coefficients de rugosité, friction et de pertes de charge singulières qui permettront la 

calibration du modèle numérique. Les mesures de calibration présentées dans ce chapitre vont 

permettre de calibrer le modèle dans première version, sans prise en charge de l’effet de l’air. 

 



111 

 

 

CONCLUSION ET RECOMMANDATIONS 

Les écoulements transitoires dans les réseaux de drainage urbains présentent des complexités 

variées avec des conséquences très dommageables. Malgré les nombreux modèles existants, 

aucun d’eux n’est capable de traiter tous les différents phénomènes et toute la dynamique de 

l’écoulement lors des passages de l’écoulement à surface libre à l’écoulement en charge et vice 

versa.  

Pour mieux déterminer le comportement hydraulique des réseaux et assurer leur gestion fiable, 

les modèles de simulation doivent être à mesure de reproduire toute la dynamique de 

l’écoulement. Pour se faire deux aspects, jusque-là peu maitrisés, doivent être intégrés avec 

précision dans les modèles. Ces aspects sont la gestion de l’interface entre l’écoulement sous 

pression et celui à surface libre et l’impact des poches et bulles d’air. 

Parmi les approches shock capturing et shock fitting, couramment utilisées, la deuxième semble 

la plus adaptée pour gérer ces deux aspects en raison de la nature des équations spécifiques pour 

chaque type d’écoulement.  

La revue bibliographique effectuée dans ce domaine montre que ces deux approches présentent, 

chacune, des forces et des faiblesses, et non les moindres. Cependant, on peut constater que les 

faiblesses de l’approche shock fitting sont, pour la plupart, liées au fait que la recherche n’a pas 

beaucoup évolué dans ce domaine. On peut citer la quantification de l’air dans les écoulements, la 

forme des fronts d’onde, le comportement des fronts durant leur propagation.  

Les expériences réalisées au laboratoire montrent plusieurs types de fronts d’onde contrairement 

aux hypothèses habituelles tendant à simplifier les fronts en deux types. La forme des fronts 

dépend de plusieurs facteurs parmi lesquels on peut noter le mode d’alimentation du regard (par 

chute ou par entrée directe), la possibilité ou non d’évacuation de l’air devant le front et, par 

conséquent, de la pression de cet air, la pente des conduites, etc.  

Les longueurs mesurées de certaines discontinuités comme les ondulations, les fronts d’onde 

soulèvent l’importance à accorder au choix du pas spatial dans les modèles afin de prétendre 

reproduire la dynamique de l’écoulement avec précision. Les estimations, quoique sommaires, du 

taux d’air dans le front d’onde pour deux situations particulières, ont le mérite d’attirer l’attention 
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des chercheurs sur l’ampleur que peut avoir ce taux et son impact sur la célérité des ondes de 

pression et tout autre paramètre tenant compte de la densité du fluide.  

Les résultats préliminaires du modèle de simulation sans poches d’air montrent une bonne 

tendance entre les valeurs numériques et aux mesures de laboratoire. La détermination des 

différents coefficients de pertes de charge du modèle physique et des mesures de calibrage 

permettra d’analyser la sensibilité et de calibrer le modèle numérique. 

Les perspectives immédiates consistent à faire le calibrage du modèle à partir des mesures 

réalisées dans le cadre de cette étude. Dans le moyen terme, les effets des poches et bulles d’air 

seront intégrés dans le modèle dans sa deuxième partie.  

Sur le plan expérimental, des efforts d’autonomisation du système d’acquisition de données et de 

densification des appareils de mesures sont à faire. Des capteurs de pression plus rapprochés et 

plus nombreux permettront de suivre avec plus de précision le front d’onde. La qualité du modèle 

sera améliorée par l’installation d’appareils de mesure de débit ou vitesse pouvant fonctionner 

autant en section pleine qu’en écoulement à surface libre et avec un temps de réaction très court 

(de l’ordre du centième de seconde), vu la rapidité du front d’onde. Il serait également très 

interessant de pouvoir suivre le départ du front d’onde à l’initiation, au travers d’une conduite 

transparente ainsi qu’à la sortie et à l’entrée des réservoirs. 

Enfin, pour arriver à quantifier avec précision l’air et son impact, il faut installer un dispositif de 

mesure de sa vitesse ou son débit et de sa  pression.  
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ANNEXES 

ANNEXE I : Incertitudes sur les instruments de mesures  
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Figure I-1 : Tension de sortie du capteur R1 à Hmoy = 
27.6 cm 
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Figure I-2 : Tension de sortie du capteur C1P1 à 
Hmoy = 17.6 cm 
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Figure I-3 : Tension de sortie du capteur C1P2 à Hmoy
= 18.7cm 
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Figure I-4 : Tension de sortie du capteur C1P3 à 
Hmoy = 19.4 cm 
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Figure I-5 : Tension de sortie du capteur C1P4 à Hmoy
= 18.9 cm 
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Figure I-6 : Tension de sortie du capteur C1P5 à 
Hmoy = 14.7 cm 
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Figure I-7 : Tension de sortie du capteur R3 à Hmoy = 
32.9 cm 

0 5 10 15 20 25 30 352.656

2.658

2.66

2.662

2.664

2.666

Temps (s)

Te
ns

io
n 

(V
)

 

 

Mesures du capteur

Figure I-8 : Tension de sortie du capteur C3P1 à 
Hmoy = 23.2 cm 

 

0 5 10 15 20 25 30 351.675

1.68

1.685

1.69

1.695

1.7

1.705

1.71

Temps (s)

Te
ns

io
n 

(V
)

 

 

Mesures du capteur

Figure I-9 : Tension de sortie du capteur C3P2 à Hmoy
= 24.4 cm 
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Figure I-10 : Tension de sortie du capteur C3P3 à 
Hmoy = 24.8 cm 
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Figure I-11 : Tension de sortie du capteur C3P4 à 
Hmoy = 25.6 cm 
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Figure I-12 : Tension de sortie du capteur R4 à Hmoy
= 44.1 cm 
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Mesures du débitmètre

Figure I-13 : Tension de sortie du débitmètre Q1 à 
Qmoy = 15.2 m3/h 
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Mesures du débitmètre

Figure I-14 : Tension de sortie du débitmètre Q2 à 
Qmoy = 12.5 m3/h 
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Figure I-15 : Tension de sortie du débitmètre Q3 à 
Qmoy = 14.6 m3/h 

 
 
 
 
 
 
 
 
 


