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Let X(t) be a controlled one-dimensional diffusion process having constant infinitesimal variance. We consider the problem of
optimally controlling X(t) until time T(x) = min{T1(x), t1}, where T1(x) is the first-passage time of the process to a given
boundary and t1 is a fixed constant. The optimal control is obtained explicitly in the particular case when X(t) is a controlled
Wiener process.

1. Introduction

Let {X(t), t ≥ 0} be the one-dimensional controlled diffu-
sion process defined by the stochastic differential equation

dX(t) = a[X(t)]dt + b0u(t)dt + σ0dB(t), (1)

where a(·) is a real function, u(t) is the control variable,
b0 /=0, and σ0 > 0 are constants and {B(t), t ≥ 0} is a
standard Brownian motion. We define the first-passage time

T1(x) = inf{t > 0 : X(t) = d | X(0) = x}, (2)

where x < d, and the random variable

T(x) = min{T1(x), t1}, (3)

where t1 > 0 is a constant.
Next, we consider the cost criterion

J(x) =

∫ T(x)

0

1

2
q0u

2(t)dt + k ln[T(x) + 1], (4)

where q0 > 0 and k /= 0 are constants. We want to find the
control u∗ that minimizes the expected value of J(x). This
type of problem is a special case of the ones that Whittle [1,
page 289] termed LQG homing. Notice that if the constant k
is negative, then the optimizer tries to maximize the survival
time of the process in the interval (0,d), taking the quadratic
control costs into account. LQG homing problems have been

treated by various authors; see Kuhn [2], Lefebvre [3], and
Makasu [4]. Kuhn and Makasu used a risk-sensitive cost
criterion (see also Whittle [5, page 222]).

In the general formulation given by Whittle, {X(t), t ≥ 0}
is an n-dimensional process and the random variable T(x) is
the moment of first entry of the joint variable (X(t), t) into
a stopping set D ⊂ R

n × (0,∞). However, in practice, it is
very difficult to obtain explicit solutions to problems in two
or more dimensions (except in special instances). Moreover,
in the papers published so far on homing problems, the
hitting time T(x) was defined only in terms of X(t). Here,
we consider the case when the optimizer stops controlling
the diffusion process at most at time t1.

Using a theorem in Whittle [1], we can state that the
optimal control u∗ can be expressed as follows:

u∗ =
σ2

0

b0

G′(x)

G(x)
, (5)

where

G(x) = E

[

exp

{

−
b2

0

q0σ
2
0

k ln[τ(x) + 1]

}]

. (6)

In the above formula, τ(x) is a random variable defined by

τ(x) = min{τ1(x), t1}, (7)

with

τ1(x) = inf
{

t > 0 : ξ(t) = d | ξ(0) = x
}

, (8)
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and {ξ(t), t ≥ 0} is the uncontrolled process that satisfies the
stochastic differential equation

dξ(t) = a[ξ(t)]dt + σ0dB(t). (9)

That is, τ(x) is the random variable that corresponds to T(x)
for the diffusion process obtained by setting u(t) = 0 in (1).

Hence, the optimal control problem is reduced to the
computation of the mathematical expectation G(x). Actually,
for this result to hold, we must have P[τ(x) <∞] = 1.
However, in our case this condition is trivially satisfied
because τ(x) ≤ t1.

In Section 2, we will obtain an explicit solution u∗ in the
case when a[X(t)] ≡ µ > 0, so that

dX(t) = µdt + b0u(t)dt + σ0dB(t). (10)

Notice that the uncontrolled process {ξ(t), t ≥ 0} is then a
Wiener process with drift µ and diffusion parameter σ2

0 . Fur-
thermore, we will choose the constant k = −q0σ

2
0 /b

2
0. With

this choice, the mathematical expectation G(x) simplifies to

G(x) = E
[

exp{ln[τ(x) + 1]}
]

= 1 + E[τ(x)]. (11)

2. Optimal Control of a Wiener Process

Let m1(x) denote the expected value of the first-passage time
τ1(x). In the case of the Wiener process defined by

dξ(t) = µdt + σ0dB(t) (12)

the function m1(x) satisfies the ordinary differential equation

1

2
σ2

0m
′′
1 (x) + µm′

1(x) = −1, (13)

and is such that m1(x) = 0 if x = d. We find (see Lefebvre [6,
page 220]) that

m1(x) =
d − x

µ
. (14)

Therefore, in the case when t1 tends to infinity, the function
G(x) is given by

G(x) = 1 +
d − x

µ
. (15)

It follows from (5) that

u∗t1=∞ = −
σ2

0

b0

1

µ + d − x
. (16)

Now, to obtain the expected value of the random variable
τ(x), we can condition on τ1(x):

E[τ(x)] = E[τ(x) | τ1(x) ≤ t1]P[τ1(x) ≤ t1]

+ E[τ(x) | τ1(x) > t1]P[τ1(x) > t1].
(17)

We may write that

E[τ(x) | τ1(x) > t1] = t1. (18)
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Figure 1: Optimal controls u∗t1=∞ (dotted line) and u∗ (solid line)
when x ∈ (−10, 5), b0 = q0 = σ0 = µ = 1, and d = t1 = 5.

Moreover, because the conditional probability density func-
tion of τ1(x), given that τ1(x) ≤ t1, is given by

fτ1(x)(t | τ1(x) ≤ t1) =
fτ1 (x)(t)

P[τ1(x) ≤ t1]
for 0 < t ≤ t1,

(19)

we have:

E[τ(x)] =

∫ t1

0
t fτ1(x)(t)dt + t1P[τ1(x) > t1]. (20)

The function fτ1 (x)(t) is known to be (see Lefebvre [6,
page 219])

fτ1(x)(t) =
d − x
√

2πσ2
0 t3

exp

{

−

(

d − x − µt
)2

2σ2
0 t

}

for t > 0.

(21)

Making use of this formula, we can obtain an explicit
expression for the mathematical expectation E[τ(x)] and
hence, for the optimal control u∗.

To illustrate the results, we computed (numerically) the
optimal control when b0 = q0 = σ0 = µ = 1 and d = t1 = 5.
Looking at Figure 1, we see that the optimal control u∗ tends
to zero much faster than u∗t1=∞ = 1/(x − 6) as x tends to
−∞. However, for x close to the boundary at d = 5, the two
functions are similar.

Next, to see the effect of the constant t1 on the optimal
control, we computed the value of u∗ when x = 0 and t1
varies from 0 to 20. This value is compared to u∗t1=∞ = −1/6
in Figure 2. When t1 decreases to 0, so does u∗, as it should
be. For t1 ≥ 15 (approximately), we have u∗ ≃ u∗t1=∞.

Finally, in Figure 3, we show the optimal control u∗ when
d = 15 and t1 = 5. Because E[τ1(x)] = 15 − x (see above),
when x ≤ 5 (approximately), it is very unlikely that the
uncontrolled process will hit the boundary at d = 15 before
time t1 = 5. Therefore, the optimal control is close to 0.
Notice that limd→∞u∗ = 0 (for a finite value of x). Indeed, we
can write that limd→∞P[τ1(x) > t1] = 1. Hence, we deduce
from (17) that E[τ(x)] = t1, which implies that G(x) = 1+t1,
and thus u∗d=∞ = 0.
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Figure 2: Optimal controls u∗t1=∞ = −1/6 (dotted line) and u∗

(solid line) when x = 0, b0 = q0 = σ0 = µ = 1, d = 5, and
t1 ∈ (0, 20).
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Figure 3: Optimal control u∗ when x ∈ (5, 15), b0 = q0 = σ0 = µ =
1, d = 15, and t1 = 5.

3. Conclusion

We have considered LQG homing problems for which the
optimizer controls the diffusion process in the time interval
(0,T(x)], where the random variable T(x) is smaller than
or equal to a fixed constant t1. Moreover, the termination
cost function was chosen so that the optimal control was
expressed in terms of the expected value of a first-passage
time for the corresponding uncontrolled process.

An application of this type of problem is the following:
suppose that X(t) denotes the wear of a machine. The
optimizer wants to maximize the lifetime of the machine.
However, it is natural to assume that the machine will be
replaced after a certain time, even if it is still in working order,
because it might become obsolete.

To obtain a more realistic model for the wear of a
device, we could use a degenerate two-dimensional diffusion
process, as in Lefebvre [7]. The most difficult problem would
then be to compute the probability density function of the
first-passage time τ1.
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