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Th matrix Riccati equation that must be solved to obtain the solution to stochastic optimal control problems known as LQG
homing is linearized for a class of processes. Th results generalize a theorem proved by Whittle and the one-dimensional case
already considered by the authors. A particular two-dimensional problem is solved explicitly.

1. Introduction

Let {𝑊(𝑡), 𝑡 ≥ 0} be a one-dimensional standard Brow-
nian motion and consider the controlled diffusion process{𝑋(𝑡), 𝑡 ≥ 0} that satisfies the stochastic diff rential equation𝑑𝑋 (𝑡) = 𝑓 [𝑋 (𝑡)] 𝑑𝑡 + 𝑏 [𝑋 (𝑡)] 𝑢 [𝑋 (𝑡)] 𝑑𝑡+ V[𝑋 (𝑡)]1/2𝑑𝑊 (𝑡) , (1)

where 𝑢(⋅) is the control variable and 𝑓(⋅), 𝑏(⋅), and V(⋅) > 0
are Borel measurable functions.

Th problem of finding the control 𝑢∗ that minimizes the
expected value of the cost function

𝐽 (𝑥) = ∫𝜏(𝑥)
0

{12𝑞 [𝑋 (𝑡)] 𝑢2 [𝑋 (𝑡)] + 𝜆} 𝑑𝑡, (2)

in which 𝑞(⋅) > 0 is a Borel measurable function, 𝜆 ̸= 0 is a
real parameter, and 𝜏(𝑥) is a fi st passage time defin d by𝜏 (𝑥) = inf {𝑡 > 0 : 𝑋 (𝑡) ∉ (𝑑1, 𝑑2) | 𝑋 (0) = 𝑥} , (3)

with 𝑑1 < 𝑥 < 𝑑2, is a special case of what Whittle
[1] (p. 289) termed LQG homing. This type of problem has

applications in fin ncial mathematics (see Makasu [2]). In
Lefebvre and Zitouni [3], the authors considered an optimal
landing problem. They also mentioned another possible
application in which one wants to optimally control a dam.

In order to obtain 𝑢∗, we defin the value function𝐹 (𝑥) = inf
{𝑢[𝑋(𝑡)],0≤𝑡≤𝜏(𝑥)}

𝐸 [𝐽 (𝑥)] . (4)

Using dynamic programming, one only has to determine the
value of 𝑢∗(𝑥). We find that 𝐹(𝑥) is such that

𝐹 (𝑥) = inf
𝑢(𝑥)
{𝐹 (𝑥) + 12𝑞 (𝑥) 𝑢2 (𝑥) + 𝜆+ [𝑓 (𝑥) + 𝑏 (𝑥) 𝑢 (𝑥)] 𝐹 (𝑥)
+ 12 V (𝑥) 𝐹 (𝑥)} ;

(5)

that is,0 = inf
𝑢(𝑥)
{12𝑞 (𝑥) 𝑢2 (𝑥) + 𝜆 + [𝑓 (𝑥) + 𝑏 (𝑥) 𝑢 (𝑥)] 𝐹 (𝑥)
+12V (𝑥) 𝐹 (𝑥)} . (6)
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It follows that

𝑢∗ (𝑥) = −𝑏 (𝑥)𝑞 (𝑥)𝐹 (𝑥) , (7)

so that

𝜆 + 𝑓 (𝑥) 𝐹 (𝑥) − 12 𝑏2 (𝑥)𝑞 (𝑥) [𝐹 (𝑥)]2 + 12V (𝑥) 𝐹 (𝑥) = 0.
(8)

Th boundary conditions are𝐹 (𝑑1) = 𝐹 (𝑑2) = 0. (9)

Whittle has shown that if the relation

𝛼V [𝑋 (𝑡)] = 𝑏2 [𝑋 (𝑡)]𝑞 [𝑋 (𝑡)] (10)

holds for a positive constant 𝛼, then the function

Φ (𝑥) := 𝑒−𝛼𝐹(𝑥) (11)

satisfie the linear second-order ordinary differential equa-
tion 12V (𝑥)Φ (𝑥) + 𝑓 (𝑥)Φ (𝑥) − 𝛼𝜆Φ (𝑥) = 0, (12)

subject to Φ(𝑑1) = Φ (𝑑2) = 1. (13)

Equation (12) is actually the Kolmogorov backward equation
satisfi d by the moment-generating function (or the Laplace
transform of the density function) of the random variable𝜏0(𝑥) that corresponds to 𝜏(𝑥) but for the uncontrolled
process obtained by setting 𝑢[𝑋(𝑡)] ≡ 0 in (1). Moreover, the
above boundary conditions are the appropriate ones. Thus,
Whittle was able to sometimes transform the optimal control
problem into a purely probabilistic problem.

Remark 1. When V[𝑋(𝑡)], 𝑏[𝑋(𝑡)], and 𝑞[𝑋(𝑡)] are (positive)
constant functions, the relation in (10) is obviously satisfi d.
Therefore, it is then always possible to linearize (8) in such
a case. However, if two (or all) of these functions are not
constant, we can say that it is a special case when (10)
does hold. When only one of these three functions is not a
constant, the relation cannot be satisfi d.

Next, notice that the optimal control is expressed in terms
of the derivative 𝐺(𝑥) := 𝐹(𝑥) of the value function, which
satisfie the Riccati equation

𝜆 + 𝑓 (𝑥)𝐺 (𝑥) − 12 𝑏2 (𝑥)𝑞 (𝑥) [𝐺 (𝑥)]2 + 12V (𝑥) 𝐺 (𝑥) = 0.
(14)

However, in general, we do not have a condition that would
enable us to determine the value of the arbitrary constant that
appears in the solution of (14).Therefore, we must solve either

the nonlinear second-order differential equation (8) or the
Kolmogorov equation (12).

In Lefebvre and Zitouni [3], the authors generalized
Whittle’s result.They showed that if 𝑏(⋅) is diff rent from zero,
then the function 𝑧(𝑥) defin d through

𝐺 (𝑥) = −𝑞 (𝑥) V (𝑥)𝑏2 (𝑥) 𝑧 (𝑥)𝑧 (𝑥) (15)

is a solution of the linear second-order ordinary differential
equation

𝜆 − 𝑓 (𝑥) 𝑞 (𝑥) V (𝑥)𝑏2 (𝑥) 𝑧 (𝑥)𝑧 (𝑥) − 12 𝑞 (𝑥) V2 (𝑥)𝑏2 (𝑥) 𝑧 (𝑥)𝑧 (𝑥)
− 12 V (𝑥) [𝑞 (𝑥) V (𝑥) + 𝑞 (𝑥) V (𝑥)]𝑏2 (𝑥) 𝑧 (𝑥)𝑧 (𝑥)
+ 𝑏 (𝑥) 𝑞 (𝑥) V2 (𝑥)𝑏3 (𝑥) 𝑧 (𝑥)𝑧 (𝑥) = 0.

(16)

They then gave a method that can be used to obtain an explicit
expression for 𝐺(𝑥), hence the optimal control 𝑢∗(𝑥).

Now, Whittle actually considered LQG homing problems
in 𝑛 dimensions. {X(𝑡), 𝑡 ≥ 0} is then an 𝑛-dimensional
controlled diffusion process defin d by𝑑X (𝑡) = f [X (𝑡)] 𝑑𝑡 + B [X (𝑡)] u [X (𝑡)] 𝑑𝑡+ {N[X(𝑡)]}1/2𝑑W (𝑡) , (17)

where the noise matrix N is symmetric and positive defin te.
Th cost function 𝐽(𝑥) is replaced by

𝐽 (x) = ∫𝜏(x)
0

{12u [X (𝑡)]Q [X (𝑡)] u [X (𝑡)] + 𝜆} 𝑑𝑡. (18)

Th matrix Q is positive defin te and𝜏 (x) = inf {𝑡 > 0 : X (𝑡) ∉ 𝐶 | X (0) = x} , (19)

where 𝐶 denotes the continuation region.

Remark 2. In the general formulation, B is an 𝑛 × 𝑚 matrix,
u is a (column) vector of dimension 𝑚, and Q is an 𝑚 × 𝑚
matrix. Here, we assume that𝑚 = 𝑛.

The optimal control is given by

u∗ (x) = −Q−1 (x)B (x) 𝐹x (x) (20)

and the value function 𝐹(x) satisfie

𝜆 + 𝐹
x
(x) f (x) − 12𝐹x (x)B (x)Q−1 (x)B (x) 𝐹x (x)+ 12 tr [N𝐹xx (x)] = 0, (21)

where 𝐹x is the derivative of 𝐹 with respect to the vector x.
The equation is subject to𝐹 (x) = 0 if x ∈ 𝜕𝐷, (22)
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in which 𝜕𝐷 denotes the boundary of the stopping region 𝐷
(the complement of continuation region 𝐶).

Th relation that generalizes (10) and that must hold
between the control matrices B and Q and the noise matrix
N in order to be able to linearize the nonlinear partial
differential equation (21) is the following:𝛼N [X (𝑡)] = B [X (𝑡)]Q−1 [X (𝑡)]B [X (𝑡)] . (23)

In practice, it is difficult to satisfy (exactly) the above relation
for 𝑛 ≥ 2, especially if the matrices involved are not constant
matrices. In fact, even in the case when the various matrices
in (23) are indeed constant, it is rather rare that this relation is
satisfi d. Problems for which (23) holds must be symmetrical.
For instance, an important particular case is the one when N,
B, and Q are all proportional to the identity matrix of order𝑛 (and f is identical to zero), so that we want to optimally
control an 𝑛-dimensional Brownian motion.

Because of the importance of the matrix Riccati equation
in many applications, the problem of linearizing this equation
has been considered by a number of authors. Grasselli and
Tebaldi [4], in particular, proposed a method that enabled
them to transform the matrix Riccati equation that appeared
in their work into 2𝑛 linear equations; see also Gourieroux
and Sufana [5].

Th aim of this paper is to generalize the theorem proved
by Whittle [1] and, at the same time, the results in Lefebvre
and Zitouni [3]. In the next section, fi st the two-dimensional
case will be presented. Then the results will be extended
to the 𝑛-dimensional case. In Section 3, a particular two-
dimensional problem will be solved explicitly. Finally, we will
end with a few concluding remarks in Section 4.

2. Linearization of the Matrix Riccati Equation
in Two Dimensions

Let

M [X (𝑡)] = B [X (𝑡)]Q−1 [X (𝑡)]B [X (𝑡)] . (24)

If the relation in (23) holds, then the matrix M is symmetric
and invertible. To generalize Whittle’s theorem, we will
assume that M is indeed symmetric and invertible but not
necessarily proportional to N.

For simplicity, we will present the linearization technique
that we propose in the case of two-dimensional controlled
diffusion processes. Equation (17) can then be rewritten as
follows [omitting the dependence of all functions on X(𝑡) =(𝑋1(𝑡), 𝑋2(𝑡))]:

(𝑑𝑋1 (𝑡)𝑑𝑋2 (𝑡)) = (𝑓1𝑓2)𝑑𝑡 + (𝑏11 𝑏12𝑏21 𝑏22)(𝑢1𝑢2)𝑑𝑡
+ (𝜎21 𝜎12𝜎12 𝜎22 )1/2 (𝑑𝑊1 (𝑡)𝑑𝑊2 (𝑡))

(25)

and the cost function becomes

𝐽 (𝑥1, 𝑥2) = ∫𝜏(𝑥1 ,𝑥2)
0

{12 (𝑢1 𝑢2) (𝑞11 𝑞12𝑞21 𝑞22)(𝑢1𝑢2) + 𝜆}𝑑𝑡.
(26)

The two standard Brownian motions are assumed to be
independent.

Next, let

𝐹x (𝑥1, 𝑥2) = G (𝑥1, 𝑥2) = (𝐺1 (𝑥1, 𝑥2)𝐺2 (𝑥1, 𝑥2)) ,𝐹xx (𝑥1, 𝑥2) = Gx (𝑥1, 𝑥2) = H (𝑥1, 𝑥2)
= (𝐻11 (𝑥1, 𝑥2) 𝐻12 (𝑥1, 𝑥2)𝐻12 (𝑥1, 𝑥2) 𝐻22 (𝑥1, 𝑥2)) ,

(27)

where we have assumed that 𝐹𝑥1𝑥2(𝑥1, 𝑥2) = 𝐹𝑥2𝑥1(𝑥1, 𝑥2).
The optimal control is given by

(𝑢∗1𝑢∗2) = −(𝑞11 𝑞12𝑞21 𝑞22)−1 (𝑏11 𝑏21𝑏12 𝑏22)(𝐺1𝐺2) . (28)

Moreover, the matrix Riccati equation satisfied by the deriva-
tive G(𝑥1, 𝑥2) of the value function 𝐹(𝑥1, 𝑥2) with respect to
x and that we want to linearize is given by [see (21)]

𝜆 + G (𝑓1𝑓2) − 12GMG + 12 tr [NH] = 0. (29)

Proposition 3. Assume that the matrix M defined in (24) is
symmetric and invertible.Then, the function 𝑧(𝑥1, 𝑥2) defined
by the transformation

G = 1𝑧 (𝑧𝑥1 𝑧𝑥2)K, (30)

where 𝑧𝑥𝑖 = 𝜕𝑧/𝜕𝑥𝑖 for 𝑖 = 1, 2 and
K = (𝑘11 𝑘12𝑘21 𝑘22) := −NM−1, (31)

satisfies the linear partial diff rential equation

𝜆𝑧 + 2∑
𝑖=1

2∑
𝑗=1
𝑓𝑖𝑧𝑥𝑗𝑘𝑗𝑖 + 12𝐿 (𝑧𝑥1𝑥1 , 𝑧𝑥1𝑥2 , 𝑧𝑥2𝑥2) = 0, (32)

where𝐿 (𝑧𝑥1𝑥1 , 𝑧𝑥1𝑥2 , 𝑧𝑥2𝑥2)
= 2∑
𝑖=1

2∑
𝑗=1
𝜎2𝑖 {𝑧𝑥𝑗𝑥𝑖𝑘𝑗𝑖 + 𝑧𝑥𝑗 𝜕𝜕𝑥𝑖 𝑘𝑗𝑖}
+ 2𝜎12 { 2∑

𝑖=1
𝑧𝑥𝑖𝑥2𝑘𝑖1 + 𝑧𝑥𝑖 𝜕𝜕𝑥2 𝑘𝑖1} .

(33)

Furthermore, for the transformation to be valid, there must
exist functions 𝜙(𝑥1) and 𝜓(𝑥2) such that
∫ 1𝑧 2∑𝑖=1𝑘𝑖1𝑧𝑥𝑖𝑑𝑥1 + 𝜓 (𝑥2) = ∫ 1𝑧 2∑𝑖=1𝑘𝑖2𝑧𝑥𝑖𝑑𝑥2 + 𝜙 (𝑥1) .

(34)
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Proof. We compute

G (𝑓1𝑓2) = 1𝑧 2∑𝑖=1 2∑𝑗=1𝑓𝑖𝑧𝑥𝑗𝑘𝑗𝑖,
GMG

= 1𝑧2[ 2∑𝑖=1𝑧2𝑥𝑖 (𝑘𝑖1 𝑘𝑖2)M(𝑘𝑖1𝑘𝑖2)+2𝑧𝑥1𝑧𝑥2(𝑘11 𝑘12)M(𝑘21𝑘22)] ,
tr [NH]
= −𝑧2𝑥1𝑧2 (𝑘11 𝑘12) (𝜎21𝜎12) − 𝑧2𝑥2𝑧2 (𝑘21 𝑘22) (𝜎12𝜎22 )
− 𝑧𝑥1𝑧𝑥2𝑧2 ((𝑘11 𝑘12) (𝜎12𝜎22 ) + (𝑘21 𝑘22) (𝜎21𝜎12))+ 𝐿 (𝑧𝑥1𝑥1 , 𝑧𝑥1𝑥2 , 𝑧𝑥2𝑥2) ,

(35)

where the function 𝐿 is defined in (33). Substituting these
expressions into (29), we fin that the differential equation
satisfi d by 𝑧(𝑥1, 𝑥2) will indeed be the linear equation (32) if

0 = (𝑘11 𝑘12)M(𝑘11𝑘12) + (𝑘11 𝑘12) (𝜎21𝜎12) ,
0 = (𝑘21 𝑘22)M(𝑘21𝑘22) + (𝑘21 𝑘22) (𝜎12𝜎22 ) ,
0 = 2 (𝑘11 𝑘12)M(𝑘21𝑘22) + (𝑘11 𝑘12) (𝜎12𝜎22 )

+ (𝑘21 𝑘22) (𝜎21𝜎12) .
(36)

Now, the three equations in this system hold simultane-
ously if

2KMK + KN + NK = (0 00 0) := 02. (37)

But this relation is verifie for all matrices B, Q, and N
that satisfy the conditions mentioned above. Notice, however,
that from (30) we deduce two expressions for the value
function 𝐹(𝑥1, 𝑥2). For the transformation to be valid, these
two expressions must of course be compatible, which yields
(34).

Remarks 4. (i) When (23) holds, so that we can apply
Whittle’s theorem, the matrix K is given by

K = − 1𝛼 I2, (38)

where I2 denotes the identity matrix of order 2. Th condition
in (34) becomes

∫ 1𝑧𝑧𝑥1𝑑𝑥1 + 𝜓 (𝑥2) = ∫ 1𝑧𝑧𝑥2𝑑𝑥2 + 𝜙 (𝑥1) ; (39)

that is,

ln [𝑧 (𝑥1, 𝑥2)] + 𝜓 (𝑥2) = ln [𝑧 (𝑥1, 𝑥2)] + 𝜙 (𝑥1) . (40)

We can obviously choose 𝜓(𝑥2) = 𝜙(𝑥1) ≡ 𝑐0, a constant.
The efore, this condition is always satisfi d when Whittle’s
theorem can be used. Moreover, it is clearly more likely to
satisfy (23) [and (34)] when all the matrices are constant.

(ii) Th function 𝑧(𝑥1, 𝑥2)must be strictly positive. In one
dimension, 𝑧(𝑥) is indeed strictly positive since, making use
of (15), it can be expressed as an exponential function. When
(23) (in two dimensions) is satisfi d, it is also easy to prove
that 𝑧(𝑥1, 𝑥2) is strictly positive.

(iii) Th simplest problems that can be considered are
such that the two controlled processes defin d by (25) are
independent, so that 𝜎12 = 0, and all the matrices are
constant, which implies that 𝑘𝑖𝑗 is also a constant, for 𝑖, 𝑗 =1, 2. The linear function 𝐿 then reduces to

𝐿 (𝑧𝑥1𝑥1 , 𝑧𝑥1𝑥2 , 𝑧𝑥2𝑥2) = 2∑
𝑖=1

2∑
𝑗=1
𝜎2𝑖 𝑧𝑥𝑗𝑥𝑖𝑘𝑗𝑖. (41)

(iv) Proposition 3 does not give us the function G from
which one deduces the optimal control. Similarly to Whittle’s
theorem, it rather simplifies the optimal control problem.
Indeed, it is generally easier to solve a linear than a nonlinear
differential equation.

Since the proof is a simple extension of that of Proposi-
tion 3, we can state the following corollary.

Corollary 5. In the 𝑛-dimensional case, the matrix Riccati
equation [see (21)]

𝜆 + G (x) f (x) − 12G (x)B (x)Q−1 (x)B (x)G (x)+ 12 tr [NGx (x)] = 0 (42)

is transformed into a linear partial diff rential equation for the
function 𝑧(𝑥1, . . . , 𝑥𝑛) defined through

G = 1𝑧 (𝑧𝑥1 ⋅ ⋅ ⋅ 𝑧𝑥𝑛)K, (43)

where

K = (𝑘11 ⋅ ⋅ ⋅ 𝑘1𝑛...
...

...𝑘𝑛1 ⋅ ⋅ ⋅ 𝑘𝑛𝑛) := −NM−1, (44)

provided that the 𝑛 expressions that we deduce from (43) for the
value function 𝐹(x) are compatible.

Remarks 6. (i) For the sake of brevity, we did not give the
linear equation satisfied by 𝑧(𝑥1, . . . , 𝑥𝑛), but it is a simple
matter to derive it.

(ii) Th larger 𝑛 is, the more difficult it should be to obtain𝑛 compatible expressions for the value function. Nevertheless,
the result is clearly an improvement over Whittle’s theorem.
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(iii) If we defin instead 𝑧(𝑥1, . . . , 𝑥𝑛) through the equa-
tion

G = 1𝑧 (𝑧𝑥1 ⋅ ⋅ ⋅ 𝑧𝑥𝑛)P, (45)

with

P := −(M)−1N, (46)

then we find that 𝑧(𝑥1, . . . , 𝑥𝑛) satisfie a linear partial
differential equation if2PMP + PN + NP = 02, (47)

which does not always hold true. Therefore, the transforma-
tion that we used is more appropriate.

3. Explicit Solution to a Particular Problem

In this section, we will make use of Proposition 3 to help us
solve a particular LQG homing problem in two dimensions.

Assume that(𝑑𝑋1 (𝑡)𝑑𝑋2 (𝑡)) = (00)𝑑𝑡 + (1 00 2)(𝑢1𝑢2)𝑑𝑡
+ (1 00 1)1/2 (𝑑𝑊1 (𝑡)𝑑𝑊2 (𝑡))

(48)

and let

𝐽 (𝑥1, 𝑥2) = ∫𝜏(𝑥1,𝑥2)
0

[12 (𝑢1 𝑢2) (1 11 4)(𝑢1𝑢2) + 𝜆] 𝑑𝑡,
(49)

where𝜏 (𝑥1, 𝑥2) = inf {𝑡 > 0 : 𝑋1 (𝑡) + 𝑋2 (𝑡) = 0
or 𝑑 | 𝑋1 (0) = 𝑥1, 𝑋2 (0) = 𝑥2} , (50)

with 0 < 𝑥1 + 𝑥2 < 𝑑. We assume that 𝜆 is positive.
We calculate

M := BQ−1B = ( 43 −23−23 43 ) ,
K := − NM−1 = −(1 1212 1) .

(51)

Remark 7. It is important to notice that, in this particular
problem, the relation in (23) does not hold, since the matrix
K is not proportional to the identity matrix of order 2. Hence,
we could not appeal to Whittle’s theorem to linearize the
differential equation satisfied by the value function.

From Proposition 3, we deduce that the function 𝑧(𝑥1, 𝑥2)
here satisfies the linear partial differential equation

𝜆𝑧 − 12 (𝑧𝑥1𝑥1 + 𝑧𝑥1𝑥2 + 𝑧𝑥2𝑥2) = 0. (52)

To solve this differential equation, we will use the method
of similarity solutions. Th t is, we assume that the function𝑧(𝑥1, 𝑥2) can actually be written as𝑧 (𝑥1, 𝑥2) = 𝜌 (𝜉) , (53)

with 𝜉 := 𝑥1 + 𝑥2. Equation (52) is then transformed into the
second-order ordinary differential equation

−32𝜌 (𝜉) + 𝜆𝜌 (𝜉) = 0, (54)

whose general solution can be written as

𝜌 (𝜉) = 𝑐1𝑒√2𝜆/3𝜉 + 𝑐2𝑒−√2𝜆/3𝜉, (55)

so that𝑧 (𝑥1, 𝑥2) = 𝑐1𝑒√2𝜆/3(𝑥1+𝑥2) + 𝑐2𝑒−√2𝜆/3(𝑥1+𝑥2). (56)

Let us take 𝜆 = 3/2, for simplicity. We then deduce from
the preceding equation that𝑧𝑥1𝑧 = 𝑧𝑥2𝑧 = 𝑐1𝑒𝑥1+𝑥2 − 𝑐2𝑒−(𝑥1+𝑥2)𝑐1𝑒(𝑥1+𝑥2) + 𝑐2𝑒−(𝑥1+𝑥2) . (57)

We can now compare the two expressions that we obtain for
the value function 𝐹(𝑥1, 𝑥2). First, we have𝐹𝑥1 (𝑥1, 𝑥2) = 𝐺1 (𝑥1, 𝑥2)= − 1𝑧 (𝑥1, 𝑥2) (𝑧𝑥1 (𝑥1, 𝑥2) + 12𝑧𝑥2 (𝑥1, 𝑥2))

= −32 𝑧𝑥1 (𝑥1, 𝑥2)𝑧 (𝑥1, 𝑥2) ,
(58)

which implies that

𝐹 (𝑥1, 𝑥2) = −32 ln [𝑧 (𝑥1, 𝑥2)] + 𝜓 (𝑥2) . (59)

Similarly, we obtain that

𝐹𝑥2 (𝑥1, 𝑥2) = 𝐺2 (𝑥1, 𝑥2) = −32 𝑧𝑥2 (𝑥1, 𝑥2)𝑧 (𝑥1, 𝑥2) , (60)

so that

𝐹 (𝑥1, 𝑥2) = −32 ln [𝑧 (𝑥1, 𝑥2)] + 𝜙 (𝑥1) . (61)

Since 𝑧(𝑥1, 𝑥2) depends on both 𝑥1 and 𝑥2 in our problem, we
conclude that we must set 𝜙(𝑥1) = 𝜓(𝑥2) ≡ 𝑐0.

Next, making use of the boundary conditions 𝐹(𝑥1, 𝑥2) =0 if 𝑥1 + 𝑥2 = 0 or 𝑑, we can write that

0 = − 32 ln (𝑐1 + 𝑐2) + 𝑐0,
0 = − 32 ln (𝑐1𝑒𝑑 + 𝑐2𝑒−𝑑) + 𝑐0. (62)
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If 𝑐0 = 0, we find that

𝑐1 = 1 − 𝑒−𝑑𝑒𝑑 − 𝑒−𝑑 , 𝑐2 = 𝑒𝑑 − 1𝑒𝑑 − 𝑒−𝑑 . (63)

Hence,𝐹 (𝑥1, 𝑥2)
= −32 ln { 1𝑒𝑑 − 𝑒−𝑑 [(1 − 𝑒−𝑑) 𝑒𝑥1+𝑥2 + (𝑒−𝑑 − 1) 𝑒−(𝑥1+𝑥2)]} .

(64)

When 𝑐0 ̸= 0, we deduce from (62) that

𝑐2 = 𝑐1 𝑒𝑑 − 11 − 𝑒−𝑑 . (65)

Thus, we obtain the following expression for the value funct-
ion:𝐹 (𝑥1, 𝑥2)

= −32 ln{𝑐1 [𝑒𝑥1+𝑥2 + 𝑒𝑑 − 11 − 𝑒−𝑑 𝑒−(𝑥1+𝑥2)]} + 𝑐0, (66)

which is valid for 0 ≤ 𝑥1 + 𝑥2 ≤ 𝑑.
Now, remember that we do not need to determine𝐹(𝑥1, 𝑥2) explicitly to obtain the optimal controls 𝑢∗1 (𝑥1, 𝑥2)

and 𝑢∗2 (𝑥1, 𝑥2). Only 𝐹𝑥𝑖(𝑥1, 𝑥2) = 𝐺𝑖(𝑥1, 𝑥2) is needed. Here,
we compute𝐺1 (𝑥1, 𝑥2)

= 𝐺2 (𝑥1, 𝑥2)
= −32 (1 − 𝑒−𝑑) 𝑒𝑥1+𝑥2 − (𝑒𝑑 − 1) 𝑒−(𝑥1+𝑥2)(1 − 𝑒−𝑑) 𝑒𝑥1+𝑥2 + (𝑒𝑑 − 1) 𝑒−(𝑥1+𝑥2)

(67)

for any constant 𝑐0 (and any 𝑐1). It follows that the optimal
controls are given by [see (20)]

(𝑢∗1 (𝑥1, 𝑥2)𝑢∗2 (𝑥1, 𝑥2)) = −Q−1B (𝐺1 (𝑥1, 𝑥2)𝐺2 (𝑥1, 𝑥2))
= −13 ( 4 −2−1 2 )(𝐺1 (𝑥1, 𝑥2)𝐺2 (𝑥1, 𝑥2))
= −13 (2𝐺1 (𝑥1, 𝑥2)𝐺1 (𝑥1, 𝑥2) ) .

(68)

Remarks 8. (i) If 𝑑 tends to infin ty, we find that 𝐺𝑖(𝑥1, 𝑥2)
tends to 3/2, for 𝑖 = 1, 2. Notice that the optimal controls𝑢∗1 (𝑥1, 𝑥2) and 𝑢∗1 (𝑥1, 𝑥2) are then negative, which is logical
because 𝜆 > 0 and the process𝑋1(𝑡) +𝑋2(𝑡) cannot reach the
line𝑋1(𝑡)+𝑋2(𝑡) = 𝑑when 𝑑 tends to infin ty. Therefore, the
optimizer tries to hit the line 𝑋1(𝑡) + 𝑋2(𝑡) = 0 as soon as
possible, but taking the quadratic control costs into account.

(ii) Th reason why 𝑢∗1 (𝑥1, 𝑥2) = 2𝑢∗2 (𝑥1, 𝑥2) is the fact
that 𝑞11 = 1, while 𝑞22 = 4. Thus, controlling 𝑋2(𝑡) is more
expensive than controlling𝑋1(𝑡). Moreover, 𝑏22 = 2𝑏11.

4. Conclusion

In this paper, we have generalized a theorem due to Whittle
that sometimes enables us to linearize the matrix Riccati
equation satisfied by the derivative of the value function in
the so-called LQG homing problems. In Section 3, we were
able to use our result to obtain the explicit solution to such a
problem in two dimensions, for which Whittle’s theorem did
not apply. Solving this type of problem explicitly is usually
very difficult. Furthermore, notice that the optimal control𝑢∗𝑖 (𝑥1, 𝑥2) that we obtained depends on 𝑥1 and 𝑥2, for 𝑖 = 1, 2,
rather than being constant. The efore, the solution was not
evident at all.

One cannot expect to be able to linearize the matrix
Riccati equation (21) in all cases. Whittle’s theorem depends
on a quite restrictive condition. Here, we showed that there
are other cases than the ones to which Whittle’s result applies.
We saw in Proposition 3 that the transformation that we
propose will linearize (21) (with 𝑛 = 2), provided that (34)
is satisfi d. Since, as we mentioned above, our transformation
will work every time Whittle’s theorem applies, we can at least
claim that we have improved Whittle’s result.

Apart from the case when we can transform the stochastic
optimal control problem into a purely probabilistic problem,
few particular cases have been solved so far in two or
more dimensions. The authors (see Lefebvre and Zitouni
[6]) treated the general case in one dimension. Th y used
symmetry, when possible, to obtain the exact optimal control,
and they proposed a technique that yields a very good approx-
imation to this optimal control when symmetry arguments
cannot be used. It would be interesting to generalize these
results in the 𝑛-dimensional case.

Finally, we could try to apply the technique developed by
Grasselli and Tebaldi [4], as well as other techniques proposed
by various authors, to linearize the matrix Riccati equation in
the case of LQG homing problems.
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