

Titre: Title:	A note on r-equitable k-colorings of trees
Auteurs: Authors:	Alain Hertz, & Bernard Ries
Date:	2014
Туре:	Article de revue / Article
Référence: Citation:	Hertz, A., & Ries, B. (2014). A note on r-equitable k-colorings of trees. Yugoslav Journal of Operations Research, 24(2), 293-298. https://doi.org/10.2298/yjor130704039h

Document en libre accès dans PolyPublie

Open Access document in PolyPublie

URL de PolyPublie: PolyPublie URL:	https://publications.polymtl.ca/3627/
Version:	Version officielle de l'éditeur / Published version Révisé par les pairs / Refereed
Conditions d'utilisation: Terms of Use:	CC BY-NC-SA

Document publié chez l'éditeur officiel Document issued by the official publisher

Titre de la revue: Journal Title:	Yugoslav Journal of Operations Research (vol. 24, no. 2)
Maison d'édition: Publisher:	Faculty of Organizational Sciences, Belgrade, Mihajlo Pupin Institute, Belgrade, Faculty of Transport and Traffic Engineering, Belgrade, Faculty of Mining and Geology – Department of Mining, Belgrade, Mathematical Institute SANU, Belgrade
URL officiel: Official URL:	https://doi.org/10.2298/yjor130704039h
Mention légale: Legal notice:	

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal Yugoslav Journal of Operations Research 24 (2014) Number 2, 293 - 298 DOI: 10.2298/YJOR130704039H

A NOTE ON *R*-EQUITABLE *K*-COLORINGS OF TREES

Alain HERTZ

Ecole Polytechnique de Montréal and GERAD Montréal, Canada alain.hertz@gerad.ca

Bernard RIES

PSL, Université Paris-Dauphine 75775 Paris Cedex 16, France CNRS, LAMSADE UMR 7243 bernard.ries@dauphine.fr

Received: July 2013 / Accepted: November 2013

Abstract: A graph G = (V, E) is *r*-equitably *k*-colorable if there exists a partition of *V* into *k* independent sets V_1, V_2, \dots, V_k such that $||V_i| - |V_j|| \le r$ for all $i, j \in \{1, 2, \dots, k\}$. In this note, we show that if two trees T_1 and T_2 of order at least two are *r*-equitably *k*-colorable for $r \ge 1$ and $k \ge 3$, then all trees obtained by adding an arbitrary edge between T_1 and T_2 are also *r*-equitably *k*-colorable.

Keywords: Trees, equitable coloring, independent sets.

MSC: 05C15, 05C69.

1 INTRODUCTION

All graphs in this paper are finite, simple and loopless. Let G = (V, E) be a graph. We denote by |G| its order, i.e, the number of vertices in G. For a vertex $v \in V$, let N(v) denote the set of vertices in G that are adjacent to v. N(v) is called the *neighborhood* of v and its elements are *neighbors* of v. The *degree* of vertex v, denoted by deg(v), is the number of neighbors of v, i.e., deg(v) = |N(v)|. $\Delta(G)$ denotes the *maximum degree* of G, i.e., $\Delta(G) = \max\{deg(v) | v \in V\}$. For a set $V' \subseteq V$, we denote by G - V' the graph obtained from G by deleting all vertices in V' as well as all edges incident to at least one vertex of V'.

An independent set in a graph G = (V, E) is a set $S \subseteq V$ of pairwise nonadjacent vertices. The maximum size of an independent set in a graph G = (V, E) is called the *independence number* of G and denoted by $\alpha(G)$.

A k-coloring c of a graph G = (V, E) is a partition of V into k independent sets which we will denote by $V_1(c), V_2(c), \dots, V_k(c)$ and refer to as color classes. 294

The cardinality of a largest color class with respect to a coloring c will be denoted by Max_c . A graph G is r-equitably k-colorable, with $r \ge 1$ and $k \ge 2$, if there exists a k-coloring c of G such that $||V_i(c)| - |V_j(c)|| \le r$ for all $i, j \in \{1, 2, \dots, k\}$. Such a coloring is called an r-equitable k-coloring of G. A graph which is 1-equitably k-colorable is simply said to be equitably k-colorable.

The notion of equitable colorability was introduced in [8] and has been studied since then by many authors (see [2, 3, 4, 5, 6, 7, 9]). In [3], the authors gave a complete characterization of trees which are equitably k-colorable. This result was then generalized to forests in [2]. More precisely, for a forest F = (V, E), let $\alpha^*(F) = \min\{\alpha(F - N[v]) | v \in V \text{ and } deg(v) = \Delta(F)\}$

Theorem 1.1 ([2]) Suppose F = (V, E) is a forest and $k \ge 3$ is an integer. Then F is equitably k-colorable if and only if $k \ge \lceil \frac{|F|+1}{\alpha^*(F)+2} \rceil$.

This result can easily be generalized to r-equitable k-colorings.

Theorem 1.2 ([1]) Suppose F = (V, E) is a forest and $r \ge 1, k \ge 3$ are two integers. Then F is r-equitably k-colorable if and only if $k \ge \lceil \frac{|F|+r}{\alpha^*(F)+r+1} \rceil$.

Proof: Suppose F is r-equitably k-colorable for $r \ge 1$ and $k \ge 3$. Let v be a vertex in F such that $deg(v) = \Delta(F)$ and $\alpha(F - N[v]) = \alpha^*(F)$. Clearly, for such a coloring, there are at most $\alpha^*(F) + 1$ vertices in the color class that contains v. It follows that all other color classes contain at most $\alpha^*(F) + r + 1$ vertices. Thus $|F| \le \alpha^*(F) + 1 + (k-1)(\alpha^*(F) + r + 1) = k(\alpha^*(F) + r + 1) - r$, and we therefore have $k \ge \lceil \frac{|F|+r}{\alpha^*(F)+r+1} \rceil$.

Conversely, let $k \ge \lceil \frac{|F|+r}{\alpha^*(F)+r+1} \rceil$. Consider the forest F' = (V', E') obtained from F by adding r-1 new isolated vertices. Then |F'| = |F|+r-1 and $\alpha^*(F') = \alpha^*(F)+r-1$. Thus $k \ge \lceil \frac{|F|+r}{\alpha^*(F)+r+1} \rceil = \lceil \frac{|F'|+1}{\alpha^*(F')+2} \rceil$. By Theorem 1.1, F' is equitably k-colorable. Restricting the color classes to V gives an r-equitable k-coloring of F.

In this note, we are interested in a different sufficient condition for a tree to be r-equitably k-colorable. More precisely, given a tree T = (V, E) and an edge $e \in E$ such that its removal from T creates two trees T_1 and T_2 of order at least two, we show that if both T_1 and T_2 are r-equitably k-colorable, for $r \ge 1$ and $k \ge 3$, then T is also r-equitably k-colorable. We also explain why $|T_1|, |T_2| \ge 2$ and $k \ge 3$ are necessary conditions.

2 A SUFFICIENT CONDITION

Consider a tree T and two integers $r \ge 1$ and $k \ge 3$. Let c be an arbitrary r-equitable k-coloring of the vertex set of T such that $|V_1(c)| \ge |V_2(c)| \ge \cdots \ge |V_k(c)|$. Then there may be vertices in T which are forced to be colored with color k. Indeed, if for instance T is a star on (k-1)r + k vertices, then the vertex v of degree > 1 necessarily belongs to $V_k(c)$ and actually $V_k(c) = \{v\}$. Furthermore, we have $|V_i(c)| = r + 1$ for $i \in \{1, 2, \cdots, k - 1\}$. It turns out that this is no longer true for colors $1, 2, \cdots, k - 1$, as shown in the following property.

Lemma 2.1 Consider an r-equitably k-colorable tree T of order at least two, where $r \ge 1$ and $k \ge 3$. Also, let ℓ be any element in $\{1, 2, \dots, k-1\}$. Then, for any vertex u in T, there exists an r-equitable k-coloring c of T with $|V_i(c)| \ge |V_j(c)|$ for all $1 \le i < j \le k$ such that $u \notin V_\ell(c)$.

Proof: Suppose the lemma is false. We then clearly have $|T| \ge 3$. Let c be an r-equitable k-coloring of T with $|V_i(c)| \ge |V_j(c)|$ for all $1 \le i < j \le k$. Among all such colorings we choose one such that, for each $t = 1, 2, \dots, k$, there is no r-equitable k-coloring c' of T with $|V_i(c)| = |V_i(c')|$ for $i = 1, 2, \dots, t - 1$ and $\max_{i=t}^k \{|V_i(c')|\} < |V_t(c)|$. In other words, $Max_c = |V_1(c)|$ is minimum among all r-equitable k-colorings of T, $|V_2(c)|$ is minimum among all r-equitable k-colorings of T, and so on.

Let $\ell \in \{1, 2, \dots, k-1\}$ be an integer for which the lemma does not hold. We define x = 1, y = 2, z = 3 if $\ell = 1$, and $x = \ell - 1, y = \ell, z = \ell + 1$ if $\ell > 1$. Since we assume that the lemma is false, it follows that $u \in V_{\ell}(c)$, which means that $u \in V_x(c)$ if $\ell = 1$ and $u \in V_y(c)$ if $\ell > 1$. Then $|V_x(c)| > |V_y(c)|$, otherwise we could assign color x to all vertices in $V_y(c)$ and color y to all vertices in $V_x(c)$ to obtain an r-equitable k-coloring c' with $u \notin V_{\ell}(c')$, a contradiction. Similarly, we must have $|V_y(c)| > |V_z(c)|$ when $\ell > 1$ since otherwise we could assign color y to all vertices in $V_z(c)$ and color z to all vertices in $V_y(c)$, and thus the lemma would hold.

We define F as the subgraph of T induced by $V_x(c) \cup V_y(c) \cup V_z(c)$. If F is disconnected, we add some edges to make F become a tree T' such that no two adjacent vertices have the same color with respect to c; otherwise we set T' = F. Let V' denote the vertex set of T'. Moreover, for q = y or z, we denote $\overline{q} = y + z - q$. This implies that $\overline{q} = z$ if q = y and $\overline{q} = y$ if q = z. We start by proving the following two claims.

Claim 1: There exists no r-equitable 3-coloring c' of T' (using colors x, y, z) with c'(u) = c(u), $|V_x(c')| = |V_x(c)| - 1$, $|V_q(c')| = |V_q(c)| + 1$ and $|V_{\overline{q}}(c')| = |V_{\overline{q}}(c)|$ for q = y or z.

Indeed, if such a coloring c' exists, then the assumption on c implies $|V_q(c')| = |V_x(c)| > |V_x(c')|$. Now we can obtain an r-equitable k-coloring c^* of T by letting $V_x(c^*) = V_q(c')$, $V_q(c^*) = V_x(c')$, and $V_i(c^*) = V_i(c')$ if $i \neq x, q$. We distinguish two cases:

- If $\ell = 1$, we have $|V_1(c^*)| > \max_{i=2}^k \{|V_i(c^*)|\}$ and $u \notin V_1(c^*)$.
- If $\ell > 1$, we have q = y since otherwise $|V_z(c')| = |V_z(c)| + 1 = |V_x(c)|$ which contradicts $|V_x(c)| > |V_y(c)| > |V_z(c)|$. Then $|V_1(c^*)| \ge \cdots \ge |V_{\ell-1}(c^*)| > |V_\ell(c^*)| \ge |V_{\ell+1}(c^*)| \ge \cdots \ge |V_k(c^*)|$ and $u \in V_{\ell-1}(c^*)$.

Thus, in both cases, c^* is an *r*-equitable *k*-coloring of *T* such that $|V_i(c^*)| \ge |V_j(c^*)|$ for all $1 \le i < j \le k$ and $u \notin V_{\ell}(c^*)$, a contradiction.

Claim 2: No leaf of T', except possibly u, is in $V_x(c)$.

Indeed, assume T' has a leaf $v \neq u$ in $V_x(c)$ and let w be its unique neighbor in T'. We can change the color of v from x to $\overline{c(w)}$ to obtain an r-equitable 3coloring c' of T' with c'(u) = c(u), $|V_x(c')| = |V_x(c)| - 1$, $|V_{\overline{c(w)}}(c')| = |V_{\overline{c(w)}}(c)| + 1$ and $|V_{c(w)}(c')| = |V_{c(w)}(c)|$, contradicting Claim 1.

Let **vec***T* be the oriented rooted tree obtained from *T'* by orienting the edges from root *u* to the leaves. Let us partition the vertices in $V_x(c)$ into subsets U_1, \dots, U_p such that U_q $(q = 1, 2, \dots, p)$ contains all vertices in $V_x(c)$ having no successor in $V_x(c) - \bigcup_{j=1}^{q-1} U_j$. For a vertex $v \in U_1$, let L(v) denote the set of leaves in **vec***T* having *v* as predecessor.

296

If |L(v)| = 1 for some $v \in U_1$, then let $P = v \to s_1 \to \cdots \to s_a$ denote the path from v to the leaf s_a in L(v). If v = u (and hence $\ell = 1$ since $u \in V_x(c)$) then T' is a chain with only one vertex in $V_x(c)$, which means that $V_y(c) = V_z(c) = \emptyset$ since $|V_x(c)| > |V_y(c)| \ge |V_z(c)|$. Thus T' has only one vertex, namely u, and since $u \in V_1(c)$ this implies that T has only one vertex, a contradiction. Hence $v \neq u$. Let w be the predecessor of v in **vec**T:

- if $c(w) = c(s_1)$, we change the color of v to $\overline{c(w)}$ to obtain an r-equitable 3-coloring c' of T' with c'(u) = c(u), $|V_x(c')| = |V_x(c)| - 1$, $|V_{\overline{c(w)}}(c')| = |V_{\overline{c(w)}}(c)| + 1$ and $|V_{c(w)}(c')| = |V_{c(w)}(c)|$, contradicting Claim 1;
- if $c(w) \neq c(s_1)$, we assign color $c(s_1)$ to v, color $c(s_{j+1})$ to s_j (j = 1, 2, ..., a-1), and color x to s_a ; we obtain an r-equitable 3-coloring c' of T' with $|V_i(c')| = |V_i(c)|$ (i = x, y, z), c'(u) = c(u) and a leaf $s_a \in V_x(c')$. But this contradicts Claim 2.

We therefore conclude that $|L(v)| \ge 2$ for all $v \in U_1$. By denoting $W_1 = \bigcup_{v \in U_1} L(v)$, we get $|W_1| \ge 2|U_1|$. For each set U_q , with q > 1, we will now construct a set W_q containing vertices in $V_y(c) \cup V_z(c)$ that are successors of vertices in U_q but not successors of vertices in U_{q-1} . So let v be any vertex in U_q (q > 1). If v has at least 2 immediate successors in **vec**T, we add two of them to W_q . If v has a unique immediate successor in **vec**T, then let $P = v \to s_1 \to \cdots \to s_a \to v'$ denote a path from v to a vertex $v' \in U_{q-1}$. If a > 1, we add s_1 and s_2 to W_q . If a = 1 and s_1 has an immediate successor $w \notin V_x(c)$, then we add s_1 and w to W_q . Assume now that a = 1 and all the immediate successors of s_1 are in $V_x(c)$. We will prove that such a case is not possible.

- If $v \neq u$, then v has a predecessor w in **vec**T. We must have $c(w) = c(s_1)$, otherwise we could assign color $\overline{c(s_1)}$ to v to obtain an r-equitable 3-coloring c' of T' with c'(u) = c(u), $|V_x(c')| = |V_x(c)| 1$, $|V_{\overline{c(s_1)}}(c')| = |V_{\overline{c(s_1)}}(c)| + 1$ and $|V_{c(s_1)}(c')| = |V_{c(s_1)}(c)|$, contradicting Claim 1. But now we can assign color $c(s_1)$ to v and assign color $\overline{c(s_1)}$ to s_1 to obtain an r-equitable 3-coloring c' of T' with c'(u) = c(u), $|V_x(c')| = |V_x(c)| 1$, $|V_{\overline{c(s_1)}}(c')| = |V_{\overline{c(s_1)}}(c)| + 1$ and $|V_{c(s_1)}(c')| = c(u)$, $|V_x(c')| = |V_x(c)| 1$, $|V_{\overline{c(s_1)}}(c')| = |V_{\overline{c(s_1)}}(c)| + 1$ and $|V_{c(s_1)}(c')| = |V_{c(s_1)}(c)|$, contradicting Claim 1.
- If v = u, then $\ell = 1$ since $u \in V_x(c)$. By assigning color $c(s_1)$ to u and color $\overline{c(s_1)}$ to s_1 , we obtain an r-equitable 3-coloring c' of T' with $|V_x(c')| = |V_x(c)| 1$, $|V_{\overline{c(s_1)}}(c')| = |V_{\overline{c(s_1)}}(c)| + 1$ and $|V_{c(s_1)}(c')| = |V_{c(s_1)}(c)|$. It follows from the assumptions on c that $|V_{\overline{c(s_1)}}(c')| = |V_x(c)| > |V_{c(s_1)}(c)| = |V_{c(s_1)}(c')|$. Thus the lemma would hold, a contradiction.

In summary, we have $|W_q| \ge 2|U_q|$. Since all sets W_q are disjoint, we have

$$|V_y(c)| + |V_z(c)| \ge \sum_{q=1}^p |W_q| \ge \sum_{q=1}^p 2|U_q| = 2|V_x(c)|.$$

Hence $|V_y(c)|$ or $|V_z(c)|$ is larger than or equal to $|V_x(c)|$, a contradiction.

Lemma 2.1 allows us to show our main result.

Theorem 2.2 Let T_1 and T_2 be two trees or order at least two. If both T_1 and T_2 are r-equitably k-colorable for $r \ge 1$ and $k \ge 3$, then a tree T obtained by adding an arbitrary edge between T_1 and T_2 is also r-equitably k-colorable.

Proof: Consider an r-equitable k-coloring c of T_1 and an r-equitable k-coloring c' of T_2 such that $|V_i(c)| \ge |V_j(c)|$ and $|V_i(c')| \ge |V_j(c')|$ for all $1 \le i < j \le k$. Let u be a vertex in T_1 and v a vertex in T_2 , and let T be the tree obtained by adding an edge which joins u and v. According to Lemma 2.1, we may assume that $v \notin V_1(c')$. Hence $v \in V_{k-\ell+1}(c')$ for some $\ell \in \{1, 2, \dots, k-1\}$ and it follows from Lemma 2.1 that we may assume that $u \notin V_{\ell}(c)$. We can therefore construct a k-coloring c^* of T such that $V_i(c^*) = V_i(c) \cup V_{k-i+1}(c'), i = 1, 2, \dots, k$. For i > j, we have :

$$|V_i(c^*)| - |V_j(c^*)| = |V_i(c)| + |V_{k-i+1}(c')| - (|V_j(c)| + |V_{k-j+1}(c')|)$$

= (|V_i(c)| - |V_j(c)|) + (|V_{k-i+1}(c')| - |V_{k-j+1}(c')|).

Since $V_j(c) \ge |V_i(c)|$ and $|V_{k-j+1}(c')| \le |V_{k-i+1}(c')|$, we have : • $|V_i(c^*)| - |V_j(c^*)| \ge |V_i(c)| - |V_j(c)| \ge -r$; • $|V_i(c^*)| - |V_j(c^*)| \le |V_{k-i+1}(c')| - |V_{k-j+1}(c')| \le r$.

This proves that the considered k-coloring c^* of T is r-equitable.

Note that the condition $k \ge 3$ in Theorem 2.2 is necessary. Indeed, if both T_1 and T_2 are isomorphic to a star on 3 vertices (with u being the vertex of degree two in T_1 and v a leaf in T_2) then clearly T_1 and T_2 are 1-equitably 2-colorable. But by adding an edge which joins u and v, we obtain a tree T which is not 1-equitably 2-colorable.

Note also that the condition in Theorem 2.2 on the number of vertices in each tree is necessary. Indeed, if T_1 is an r-equitably k-colorable tree for some $k \geq 3$ and $r \geq 1$, and if T_2 contains a single vertex v, then the tree T' obtained by adding an edge which joins v and a vertex u of T_1 is possibly not r-equitably k-colorable. For example, if u is the vertex of degree four in the star T_1 on five vertices, and if we add a neighbor v (the single vertex in T_2) to u, we obtain a star T' on six vertices. While T_1 and T_2 are clearly 1-equitably 3-colorable, T' is not 1-equitably 3-colorable. It is however not difficult to prove that if T is an r-equitably k-colorable tree for some $k \geq 2$ and $r \geq 1$, then the tree T' obtained by adding a new vertex v and making it adjacent to some vertex u of T is (r+1)-equitably k-colorable. Indeed, given an r-equitable k-coloring c of T, we can extend it to a k-coloring c' of T' by assigning any color $j \neq c(u)$ to v with $j \in \{1, 2, \dots, k\}$. If $|V_j(c)| \geq |V_i(c)|$ for all $i \neq j$, then c' is (r+1)-equitable, otherwise c' is r-equitable.

ACKNOWLEDGEMENT

This note was written while the first author was visiting LAMSADE at the Université Paris-Dauphine and while the second author was visiting GERAD and Ecole Polytechnique de Montréal. The support of both institutions is gratefully acknowledged.

REFERENCES

- [1] Private communication, (2012).
- [2] CHANG, G. J., "A note on equitable colorings of forests", European Journal of Combinatorics 30 (2009) 809-812.
- [3] CHEN, B.-L., LIH, K.-W., "Equitable coloring of trees", Journal of Combinatorial Theory Series B 61 (1994) 83-87.

298

- [4] KIERSTE AD,H.A., KOSTOCHKA, A.V., "Equitable versus nearly equitable coloring and the Chen-Lih-Wu conjecture", *Combinatorica* 30(2) (2010) 201– 216.
- [5] KIERSTEAD, H.A., KOSTOCHKA, A.V., MYDLARZ, M., SZEMERÉDI, E., "A fast algorithm for equitable coloring", *Combinatorica* 30(2) (2010) 217–224.
- [6] KOSTOCHKA, A.V., NAKPRASIT ,K., PEMMARAJU S.V., "On equitable coloring of d-degenerate graphs", SIAM J. Discrete Math. 19(1) (2005) 83–95.
- [7] LUO,R., SÉRÉNI, J.-S., STEPHENS, D. C., XU,G., "Equitable coloring of sparse planar graphs", SIAM J. Discrete Math. 24(4) (2010) 1572–1583.
- [8] MEYER, W., "Equitable coloring", Amer. Math. Monthly 80 (1973), 920–922.
- [9] ZHANG,X., WU, J.-L., "On equitable and equitable list colorings of seriesparallel graphs", *Discrete Mathematics* 311 (2011), 800–803.