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Optimal and suboptimal control of a standard

Brownian motion

MARIO LEFEBVRE

The problem of optimally controlling a standard Brownian motion until a fixed final time is

considered in the case when the final cost function is an even function. Two particular problems

are solved explicitly. Moreover, the best constant control as well as the best linear control are

also obtained in these two particular cases.

Key words: stochastic control, Wiener process, best linear control.

1. Introduction

In a series of papers (see Lefebvre and Zitouni (2012) and (2014), for instance),

the author considered the problem of optimally controlling a one-dimensional diffusion

process until it enters a given termination set. More precisely, assume that the controlled

diffusion process {X(t), t ­ 0} satisfies the stochastic differential equation

dX(t) = m[X(t)]dt +h[X(t)]u[X(t)]dt +{v[X(t)]}1/2 dB(t), (1)

in which u(·) is the control variable, m(·), h(·) and v(·) > 0 are Borel measurable func-

tions, and {B(t), t ­ 0} is a standard Brownian motion. We want to find the control u∗

that minimizes the expected value of the cost function

J(x) =

T (x)∫

0

{

1

2
q0 u2[X(t)]+λ

}

dt +K[X(T (x)),T (x)], (2)

where q0 > 0 and λ ̸= 0 are constants, K is a general termination cost function and T (x)
is a random variable defined by

T (x) = inf{t > 0 : X(t) = d1 or d2 | X(0) = x ∈ (x1,x2)}. (3)
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The set of admissible controls consists of Borel measurable functions.

This type of problem, known as LQG homing (see Whittle, 1982) has also been con-

sidered recently by Makasu (2013), in which an explicit solution to a two-dimensional

problem is presented.

In general, in the problems that could be solved explicitly so far, the function K(·, ·)
was set equal to zero. Then, if the constant λ is positive, the aim is to make the diffusion

process leave the continuation region as soon as possible (taking the quadratic control

costs into account). When λ is negative, the optimizer tries to maximize the time spent

by the controlled process in the continuation region.

In the current paper, we assume that {X(t), t ­ 0} is a controlled standard Brown-

ian motion and we replace the random variable T (x) by a fixed constant t f . Moreover,

instead of giving a penalty that is proportional to the time spent by {X(t), t ­ 0} in the

continuation region, we assume that λ is equal to zero and we choose the termination

cost function K in such a way that one is penalized if X(t f ) is far from the objective.

In the next section, the problem set up above will be solved explicitly for two partic-

ular functions K. Then, in Section 3, we will consider the problem of obtaining the best

constant control as well as the best linear control in the problems solved in Section 2.

The expected costs obtained with these suboptimal solutions will be compared with the

value function, that is, the expected cost when one uses the optimal control. Finally, a

few concluding remarks will be made in Section 4.

2. Optimal control of a standard Brownian motion

Let {X(t), t ­ 0} be the process defined by the stochastic differential equation

dX(t) = b0 u[X(t), t]dt +dB(t), (4)

where b0 ̸= 0 is a constant. The cost function is

J(x, t0) =

t f∫

t0

1

2
q0 u2[X(t), t]dt +K[X(t f )], (5)

where x = X(t0).
We consider an important problem known in control theory as a regulator problem.

In this type of problem, the optimizer is trying to keep the controlled process as close

as possible to a constant c, taking the quadratic control costs into account. In the case of

a controlled standard Brownian motion, we can assume, without loss of generality, that

c = 0. Hence, the non-negative function K(·) should be such that K[X(t f )] is minimum

when X(t f ) is equal to zero, and should be strictly increasing with |X(t f )|. Moreover, we

assume that K(·) is an even function and that

lim
X(t f )→∞

K[X(t f )] = ∞. (6)
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To solve our optimal control problem, we can use dynamic programming. We define

the value function

F(x, t0) = inf
u[X(t),t], t0¬t¬t f

E[J(x, t0)]. (7)

This function satisfies the Hamilton-Jacobi-Bellman (HJB) equation

0 = inf
u(x,t0)

{

1

2
q0 u2(x, t0)+Ft0(x, t0)+b0 u(x, t0)Fx(x, t0)+

1

2
Fxx(x, t0)

}

. (8)

It follows that the optimal control u∗(x, t0) is given by

u∗(x, t0) =−b0

q0

Fx(x, t0). (9)

Substituting this expression into the HJB equation, we obtain the non-linear second-

order partial differential equation

Ft0(x, t0)−
b2

0

2q0

[Fx(x, t0)]
2 +

1

2
Fxx(x, t0) = 0. (10)

Actually, F also depends on t f , and we have the boundary condition

F(x, t0) = K(x) if t f = t0. (11)

We assumed above that the function K[X(t f )] is chosen to be strictly increasing with

|X(t f )| and to satisfy the condition in (6). It also implies that the following conditions

hold:

lim
x→±∞

F(x, t0) = ∞. (12)

Indeed, since t f is finite, if we start at ±∞ the value of |X(t f )| should also be infinite,

unless the optimizer uses an infinite control u. At any rate, the conditions in (12) will

then be satisfied.

Moreover, by symmetry, the value function F(x, t0) should be such that F(−x, t0) =
F(x, t0). Since it must be strictly increasing with |x|, and Fx(x, t0) is assumed to exist, it

has a minimum at x = 0.

Next, we can greatly simplify our problem by defining

G(x, t0) = e−F(x,t0)/α, (13)

with

α :=
q0

b2
0

. (14)

Indeed, we find that the function G satisfies the linear second-order partial differential

equation

Gt0(x, t0)+
1

2
Gxx(x, t0) = 0, (15)
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subject to

G(x, t0) = e−K(x)/α if t f = t0. (16)

Now, let L(ω, t0) denote the Fourier transform with respect to the variable x of the

function G(x, t0). That is,

L(w, t0) := F {G(x, t0)}=
∞∫

−∞

e−iwx G(x, t0)dx. (17)

Because the constant α is positive (and we assumed that the even function K(·) is such

that the condition in (12) is satisfied), we can write that

lim
x→±∞

G(x, t0) = 0. (18)

Then we deduce from Eq. (15) that L(ω, t0) satisfies the first-order differential equation

Lt0(w, t0)−
w2

2
L(w, t0) = 0, (19)

whose general solution is

L(w, t0) = c0 ew2t0/2, (20)

in which the constant c0 is uniquely determined from the condition (see Eq. (16))

L(w, t0) = F {e−K(x)/α} if t f = t0. (21)

We may thus write that

c0 = e−w2t f /2 L(w, t f ), (22)

so that

L(w, t0) = ew2(t0−t f )/2 L(w, t f ) = ew2(t0−t f )/2
F {e−K(x)/α}. (23)

We can now state the following result.

Proposition 1 If the even function K is chosen in such a way that the condition in (6) is

satisfied, then the optimal control u∗(x, t0) is given by

u∗(x, t0) =−α
b0

q0

Gx(x, t0)

G(x, t0)
=− 1

b0

d
dx

F −1{L(w, t0)}
F −1{L(w, t0)}

. (24)

Moreover, the value function is

F(x, t0) =−q0

b2
0

ln
{

F
−1{ew2(t0−t f )/2 L(w, t f )}

}

. (25)
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2.1. Particular cases

I) The first particular case that we consider is the one for which

K[X(t f )] = X2(t f ). (26)

Furthermore, we set b0 = q0 = 1, so that α = 1.

Remark. Because the control costs are also quadratic, the optimal control u∗(x, t0)
should be a linear function of x.

With this choice for the even function K, we have

lim
X(t f )→∞

K[X(t f )] = ∞,

as required, so that we can use Proposition 1. We have

L(w, t f ) = F {e−x2}=
√

πe−w2/4. (27)

It follows that

L(w, t0) = ew2(t0−t f )/2
√

πe−w2/4. (28)

We find that

G(x, t0) = F −1{L(w, t0)}=
1

√

1+2(t f − t0)
exp

{

− x2

2(t f − t0)+1

}

, (29)

which implies that the value function is given by

F(x, t0) =
1

2
ln [1+2(t f − t0)]+

x2

2(t f − t0)+1
(30)

and the optimal control is

u∗(x, t0) =−Fx(x, t0) =− 2x

2(t f − t0)+1
. (31)

Remarks. (i) We see that the optimal control is indeed a linear function of x, as expected.

(ii) The function F(x, t0) is symmetrical with respect to 0 and has a minimum at the

origin, as it should.

II) We now choose the following termination cost function:

K[X(t f )] = |X(t f )|, (32)
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and we still take b0 = q0 = 1. Again, we can appeal to Proposition 1. This time, we find

that

L(w, t f ) = F {e−|x|}= 2

1+w2
, (33)

so that

L(w, t0) = ew2(t0−t f )/2 2

1+w2
. (34)

We can invert the Fourier transform to obtain the function G:

G(x, t0) =
1

2
e(t f−t0)/2

{

e−x erf

(

x+ t0 − t f
√

2(t f − t0)

)

+2 cosh(x)

−ex erf

(

x+ t f − t0
√

2(t f − t0)

)}

, (35)

where erf denotes the error function. From this expression for G, it is a simple matter to

calcule the value function

F(x, t0) = − ln(2)− t f − t0

2
− ln

{

e−x erf

(

x+ t0 − t f
√

2(t f − t0)

)

+2 cosh(x)

−ex erf

(

x+ t f − t0
√

2(t f − t0)

)}

(36)

and the optimal control

u∗(x, t0) =−
erf

(

x+t0−t f√
2 (t f−t0)

)

e−x −2 sinh(x)+ erf

(

x+t f−t0√
2 (t f −t0)

)

ex

erf

(

x+t0−t f√
2 (t f −t0)

)

e−x +2 cosh(x)− erf

(

x+t f −t0√
2 (t f−t0)

)

ex

. (37)

We can check that the value function is symmetrical with respect to 0 and has a

minimum at the origin. It follows that u∗(0, t0) = 0, which is logical.

We see that a seemingly almost equivalent problem leads to a much more compli-

cated optimal solution. In the next section, we will compute the best linear control for

this particular problem. We will also compute the best constant control for both par-

ticular cases presented above, as well as the expected cost when the optimizer uses no

control at all. The various expected costs obtained by using all these suboptimal controls

will then be compared to the value function in special instances.

3. Suboptimal solutions to our problems

First, we will compute the expected cost when the optimizer uses no control at all,

so that u[X(t), t]≡ 0. Denoting the controlled process in this case by {X0(t), t ­ t0} and
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the cost function by J0(x, t0), we have

E[J0(x, t0)] = E [K[X0(t f )]] . (38)

Moreover, as is well known, X0(t f ) has a Gaussian distribution with mean X0(t0) = x and

variance t f − t0. It follows that

E
[

X2
0 (t f )

]

= t f − t0 + x2. (39)

Now, if Z ∼ N(µ,σ2), we find that

E [|Z|] =−µ+

√

2

π
σ exp

{

− µ2

2σ2

}

+2µΦ(µ/σ), (40)

where Φ denotes the distribution function of the N(0,1) random variable. Making use of

this formula, we obtain that

E [|X0(t f )|] =−x+

√

2(t f − t0)

π
exp

{

− x2

2(t f − t0)

}

+2xΦ

(

x√
t f − t0

)

. (41)

Next, we will compute the best constant control for the two problems considered in

the previous section. If u[X(t), t]≡ c, denoting the controlled process by Xc(t), we have

dXc(t) = cdt +dB(t). (42)

Then {Xc(t), t ­ t0} is a Wiener process with drift c and variance parameter 1. It follows

that, starting from Xc(t0) = x,

Xc(t)∼ N(x+ c(t f − t0), t f − t0). (43)

Hence, we may write that the expected value of the cost function (which we denote by

Jc(x, t0) when u[X(t), t]≡ c) is given by

E[Jc(x, t0)] =
1

2
c2 (t f − t0)+E [K[Xc(t f )]] . (44)

Thus, if K[Xc(t f )] = X2
c (t f ),

E[Jc(x, t0)] =
1

2
c2 (t f − t0)+(t f − t0)+ [x+ c(t f − t0)]

2, (45)

while in the case when K[Xc(t f )] = |Xc(t f )|, we obtain (see Eq. (40)) that

E[Jc(x, t0)] =
1

2
c2 (t f − t0)− x− c(t f − t0)

+

√

2(t f − t0)

π
exp

{

− [x+ c(t f − t0)]
2

2(t f − t0)

}
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+2 [x+ c(t f − t0)]Φ

(

x+ c(t f − t0)√
t f − t0

)

. (46)

The best constant control is determined by finding the value of c that minimizes

E[Jc(x, t0)]. In the first case, we have

d

dc
E[Jc(x, t0)] = c(t f − t0)+2 [x+ c(t f − t0)](t f − t0), (47)

so that the best constant c∗ is given by

c∗ =− 2x

1+2(t f − t0)
. (48)

The expected cost becomes

E[Jc∗(x, t0)] =
x2

1+2(t f − t0)
+ t f − t0. (49)

Remarks. (i) We can check that this value of the constant c corresponds indeed to a

minimum for the expected cost. (ii) We see that if we start at Xc(t0) = 0, then the best

constant is c∗ = 0, so that E[Jc∗(x, t0)] reduces to E[J0(x, t0)]. (iii) The value of c∗ depends

on x. However, the control will not change between t0 and t f ; that is, u[X(t), t] = c∗ for

all values of t ∈ [t0, t f ].

Now, writing

∆t := t f − t0, (50)

we find that the optimal constant c when K[Xc(t f )] = |Xc(t f )| is such that (after simplifi-

cation)

0 =
d

dc
E[Jc(x, t0)] = c∆t −∆t +2∆t Φ

(

x+ c∆t√
∆t

)

. (51)

Hence, c∗ satisfies the equation

c∗−1+2Φ

(

x+ c∗∆t√
∆t

)

= 0. (52)

Using a mathematical software, this equation can be solved for any x and ∆t, which

then enables us to compute the expected cost explicitly. A numerical example will be

provided at the end of this section.

The most difficult task is to determine the best linear control when K[Xc(t f )] =
|Xc(t f )|. Since we were able to obtain the exact optimal control u∗(x, t0) in this case,

we could try to find a linear approximation to u∗(x, t0). However, here we can find the
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exact constant a such that ua[X(t), t] := aXa(t) minimizes the expected value of the cost

function

Ja(x, t0) :=

t f∫

t0

1

2
a2 X2

a (t)dt + |Xa(t f )|, (53)

with {Xa(t), t ­ t0} defined by

dXa(t) = aXa(t)dt +dB(t). (54)

Since the aim is to bring the controlled process as close as possible to zero at time

t f , we can assume that the optimal constant a is negative. Let b := −a. The process

{Xb(t), t ­ t0} that satisfies the stochastic differential equation

dXb(t) =−bXb(t)dt +dB(t) (55)

is an Ornstein-Uhlenbeck process, which is a time-homogeneous Gaussian process. We

can write (see Cox and Miller (1965), for instance) that, conditional on Xb(t0) = x,

Xb(t)∼ N

(

xe−b(t f−t0),
1− e−2b(t f−t0)

2b

)

. (56)

It follows (with ∆t = t f − t0, as above) that

E[X2
b (t)] =

1− e−2b∆t

2b
+
(

xe−b∆t
)2

. (57)

Hence, the expected cost when we choose u[X(t), t] = ub[X(t), t] :=−bXb(t) is given by

E[Jb(x, t0)] =

t f∫

t0

1

2
b2 E[X2

b (t)]dt +E[|Xb(t f )|]

=
b∆t

4
− 1

4

(

1

2
−bx2

)

(

1− e−2b∆t
)

+E[|Xb(t f )|], (58)

where

E[|Xb(t)|] = −xe−b∆t +

√

1− e−2b∆t

bπ
exp

{

−bx2 e−2b∆t

1− e−2b∆t

}

+2xe−b∆t Φ

(√
2bx

e−b∆t

√
1− e−2b∆t

)

. (59)

To obtain the optimal constant b∗, we must therefore differentiate the expected cost

with respect to b and use a mathematical software to find the value of b for which the

derivative is equal to zero (and check that this value corresponds indeed to a minimum,

which clearly should be the case). Once b∗ has been evaluated (approximately), we can

compute the minimum expected cost. We will illustrate the procedure with a numerical

example in the next subsection.
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3.1. A numerical application

We will compute the various optimal and suboptimal controls derived in the previous

sections, as well as the corresponding expected costs, in two particular instances. We set

t0 = 0 and t f = 1, so that ∆t = 1, and we first assume that the controlled process starts at

x = 1.

I) In the first example considered in Section 2, if the optimizer uses no control at all, then

the expected cost is given by (see Eq. (39)) E[J0(1,0)] = 2. Moreover, the best constant

control c∗ is (see Eq. (48)) = −2/3, and the corresponding expected cost (see Eq. (49)) is

equal to 5/3. Finally, we deduce from (31) and (30), respectively, that the optimal control

is u∗(1,0) =−2x/3 and the value function is

F(1,0) =
1

2
ln(3)+

1

3
≃ 0,88.

We can conclude that, for this numerical example, the optimizer should use some control.

Furthermore, the optimal solution is much better than the best constant control.

If we replace the final time t f = 1 by t f = 10, we obtain the following results:

E[J0(1,0)] = 11, c∗ = −2/21, E[Jc∗(1,0)] ≃ 10,05, u∗(1,0) = −2x/21 and F(1,0) ≃
1,57. We see that for t f large, there is a huge difference between the expected cost ob-

tained with the best constant control and the value function.

II) When K[Xc(t f )] = |Xc(t f )|, if t0 = 0, t f = 1 and x = 1, we find (see Eq. (41)) that

E[J0(1,0)] = E [|X0(1)|] =−1+
√

2/πe−1/2 +2Φ(1)≃ 1,17.

The best constant c∗ satisfies Eq. (52), which becomes

c∗−1+2Φ(1+ c∗) = 0.

We find that c∗ ≃ 0,43. Making use of this value, we deduce from Eq. (46) that

E[Jc∗(1,0)]≃ 1,02.

Next, with the help of a mathematical software, we obtain that b∗ ≃ 0,56. Hence, we

compute (see (58) and (59)) that E[Jb∗(1,0)]≃ 0,93.

Finally, we find that the value function F(1,0) is approximately equal to 0,90. There-

fore, here there is less difference between the optimal and suboptimal solutions, com-

pared with the first example presented above.

As in the previous particular case, we replace t f = 1 by t f = 10 to see whether the

suboptimal solutions are still close to the optimal one when t f is large. We find that

E[J0(1,0)] ≃ 2,65, c∗ ≃−0,072, E[Jc∗(1,0)] ≃ 2,56, b∗ ≃ 0,63, E[Jb∗(1,0)] ≃ 2,31 and

F(1,0)≃ 1,50. Although the suboptimal expected costs are closer to the value function

than in the first example with t f = 10, it is clear that the optimal control u∗(1,0) is really

superior to the suboptimal controls.
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4. Conclusion

In this paper, the problem of optimally controlling a standard Brownian motion until

a fixed time t f when the termination cost function K is an even function has been con-

sidered. In Section 2, we saw that if we are able to invert the Fourier transform L(w, t0)
defined in (17), then we obtain explicit expressions for the optimal control and the value

function.

The Fourier transform L depends on the choice of the termination cost function

K. In Section 2, we presented the exact solution to our optimal control problem when

K[X(t f )] = X2(t f ) and when K[X(t f )] = |X(t f )|. As expected, u∗(x, t0) is linear in x in

the first case. However, the optimal solution was not obvious at all when we replace the

square of the final position X(t f ) of the process by its absolute value.

In Section 3, we computed various suboptimal solutions to the problem set up in this

paper. The numerical examples presented at the end of this section showed that these

suboptimal solutions could not compete with the optimal one, at least for the numerical

values chosen for t0, t f and x. Nevertheless, in the case when we are unable to invert the

Fourier transform L(w, t0), the suboptimal solutions are worth considering, especially the

best linear control.

We could have considered a controlled Wiener process with drift µ and variance

parameter σ2 instead of a standard Brownian motion. It would be interesting to see the

effect of the variance parameter on the optimal solution. However, we could then no

longer use symmetry to assert that F(−x, t0) = F(x, t0).
Finally, we could try to extend the results presented in this paper by replacing the

deterministic final time t f by a random variable T that is independent of the controlled

process {X(t), t ­ t0}. We could also consider the case when the infinitesimal parameters

of the controlled process are not both constants, but at least one is rather a function of

X(t) and/or t. For instance, we could assume that {X(t), t ­ t0} is an Ornstein-Uhlenbeck

process, whose infinitesimal mean is given by −βx for a positive constant β.
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