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RÉSUMÉ 

Le grenaillage de précontrainte est un procédé d’écrouissage largement utilisé dans les industries 

aérospatiale et automobile pour améliorer la résistance à la fatigue de composants métalliques et 

ainsi prolonger leur durée de vie utile. La performance et la répétabilité de cette amélioration 

dépendent largement des paramètres de grenaillage, tels que l’intensité Almen, le taux de 

recouvrement, la durée du traitement de grenaillage, etc. La méthode d’analyse par éléments finis 

a été adoptée pour simuler le procédé de grenaillage en raison du développement de plus en plus 

poussé des méthodes numériques et de l’augmentation des ressources et capacités informatiques 

disponibles. La plupart des modèles par éléments finis du procédé de grenaillage, tels que les 

modèles 2D ou les modèles à impact unique, ne peuvent représenter adéquatement ce procédé qui 

implique un grand nombre d’impacts de billes distribuées de façon aléatoire. Par conséquent, un 

des objectifs principaux de cette étude a été de développer un modèle 3D capable de simuler ce 

procédé aléatoire, et d’utiliser ce nouveau modèle afin d’étudier de façon quantitative les 

relations entre les paramètres de grenaillage et les résultats de ce traitement. 

La mise en forme par grenaillage avec application d’un pré-chargement externe est une utilisation 

particulière du grenaillage de précontrainte lors de la fabrication de composantes à paroi mince. 

Ce procédé est largement utilisé dans l’industrie aéronautique afin de produire des composantes 

minces avec des formes géométriques complexes, telles que des revêtements de voilure. La 

plupart des études publiées portant sur ce procédé consistent en des études expérimentales 

d’essais et erreurs. Par conséquent, un autre objectif de cette étude a été de développer un modèle 

numérique afin de simuler ce procédé, et d’investiguer quantitativement les relations entre les 

conditions de pré-chargement (moment de flexion ou force en tension appliquée) et la forme 

résultante (flèche maximale résultante ou rayon de courbure). 

Un nouveau modèle 3D par éléments finis capable de simuler les impacts de billes distribués de 

façon aléatoire a été développé afin de simuler de façon dynamique le grenaillage de 

précontrainte. En utilisant ce modèle aléatoire, des relations quantitatives ont été établies entre 

l’intensité du jet de billes, le taux de recouvrement, la rugosité induite et le nombre d’impacts, 

pour une composante en aluminium 2024. Les résultats de simulation montrent que ce nouveau 

modèle par éléments finis aide à bien comprendre le procédé et permet de mieux prédire les 
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résultats du grenaillage de précontrainte que les simulations par éléments finis conventionnelles 

du procédé. 

Une étude expérimentale du grenaillage de précontrainte et de la mise en forme par grenaillage 

avec pré-chargement externe a été conduite afin de valider le nouveau modèle. Les expériences 

de grenaillage de précontrainte ont permis d’établir des relations quantitatives entre la saturation 

de la couche superficielle traitée, le taux de recouvrement, la rugosité et le temps de grenaillage 

pour des éprouvettes en aluminium 2024. Un dispositif de pré-chargement a été conçu pour 

appliquer des moments en flexion sur les éprouvettes soumises à des tests de mise en forme par 

grenaillage. La principale conclusion de ces derniers tests de grenaillage est que la flèche induite 

par le procédé dans la direction d’un pré-chargement en flexion croît avec l’augmentation du 

moment externe appliqué. 

Un modèle par éléments finis en trois étapes (implicite, explicite et explicite) a été développé afin 

de simuler le procédé de mise en forme par grenaillage avec pré-chargement. Tout d’abord, un 

calcul implicite a été effectué afin d’obtenir la distribution de contraintes initiale résultant du 

moment appliqué par le dispositif de pré-chargement. Ensuite, un calcul explicite a été utilisé 

pour obtenir les contraintes induites par le grenaillage avec pré-chargement. Finalement, un 

calcul implicite sur un modèle élargi a permis de calculer la flèche induite et le rayon de courbure 

de la pièce traitée. Ce modèle par éléments finis en trois étapes est le premier modèle permettant 

de simuler le procédé de mise en forme par grenaillage avec pré-chargement. Il constitue un outil 

très utile pour contrôler et prédire les résultats du procédé. 

Un modèle analytique a également été développé afin d’étudier le procédé de grenaillage et de 

prédire l’intensité Almen avec utilisation réduite de puissance de calcul. L’utilisation de ce 

modèle analytique a permis de montrer que différentes combinaisons de paramètres de 

grenaillage (diamètre de billes et vitesse) peuvent donner une même intensité Almen, tout en 

générant des profils de contraintes résiduelles différents. Il est par conséquent important de 

sélectionner différents combinaisons de paramètres, et d’investiguer leur influence sur les 

résultats du grenaillage. 

Des méthodes numériques, expérimentales et analytiques ont été utilisées pour étudier les 

procédés de grenaillage de précontrainte et de mise en forme par grenaillage avec pré-

chargement. Avec l’aide du nouveau modèle par éléments finis développé dans le cadre de cette 
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étude, l’intensité du jet de billes, la saturation des couches traitées, le taux de recouvrement et la 

rugosité peuvent être étudiés en détail. Ce nouveau modèle constitue donc un outil pratique pour 

les concepteurs afin de guider leurs choix de paramètres optimaux de grenaillage. De plus, le 

nouveau modèle de mise en forme par grenaillage avec pré-chargement constitue un outil unique 

pour prédire et optimiser ce procédé. Finalement, le modèle analytique du procédé de grenaillage 

offre un outil simple pour prédire l’intensité Almen en fonction des paramètres de grenaillage. 
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ABSTRACT 

Shot peening is a cold working process widely used to improve the fatigue life of metallic 

components in the aerospace and automobile industries. The performance and repeatability of this 

improvement depend greatly on the shot peening parameters, such as Almen intensity, surface 

coverage, peening time, etc. Finite Element Analysis (FEA) has been adopted to simulate the shot 

peening process based on the development of computer resources and numerical methods. Most 

of the existing Finite Element (FE) models, however, such as 2D models and one shot impact 

models, cannot describe numerous randomly distributed shot flow. Therefore, one goal of this 

study was to establish a 3D shot peening model that can simulate a random shot peening process 

and to study the quantitative relationship between peening parameters and peening results.  

Stress peen forming is a special application of shot peening that deals with thin target 

components. Stress peen forming has been widely used in the aeronautics industry to produce 

thin components with complex shapes, such as wing skins. Most studies of the stress peen 

forming process have been based on trial and error experiments. Therefore, another objective of 

this study was to develop a numerical model in order to simulate this process, and to investigate 

the quantitative relationship between the prebending conditions (prebending moment or pre-

stress) and the forming results (resulting arc height or radius of curvature). 

A novel 3D FE model that describes randomly distributed shots was developed in order to 

simulate the dynamic shot peening process. Using this 3D random FE model, a quantitative 

relationship was established between peening intensity, surface coverage and roughness, with 

respect to the number of shots, based on the same target component, aluminum 2024. The 

simulated results show that the novel FE model can help us to understand and predict shot 

peening results better than the existing conventional FE models. 

An experimental study of shot peening and stress peen forming was carried out in order to 

validate the novel FE model. In shot peening experiments, the quantitative relationships between 

saturation, surface coverage and roughness, with respect to peening time, were established for 

aluminum 2024 test strips. A pre-stressing device was designed to apply prebending moments on 

the strip in order to perform stress peen forming. The principal conclusion was that with 

increasing prebending moment, the deformed arc height following the prebending direction 

increases.  
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A three-step implicit-explicit-implicit FE model was developed to simulate the stress peen 

forming process. Firstly, an implicit FE calculation was performed to acquire the initial stress 

distribution resulting from the prebending moment. Secondly, an explicit FE calculation was 

carried out to obtain the induced stress after shot peening. Finally, an implicit FE model was built 

to calculate the deformed arc height and radius of curvature of the deformed component. The 

three-step FE model is the first model that simulates the stress peen forming process. It provides 

a useful tool to predict the results of stress peen forming. 

An analytical model was also developed to study the shot peening process and to predict Almen 

intensity with reduced use of calculation resources. The study of this analytical model showed 

that although different combinations of shot peening parameters (shot size and velocity) can 

produce the same Almen intensity, each combination resulted in a different through thickness 

residual stress distribution. Therefore, it is important to choose different combinations of shot 

peening parameters, and to investigate their influence on the shot peening results.  

Numerical, experimental and analytical methods were employed to study the shot peening and 

stress peen forming processes. With the help of the newly developed FE model for the simulation 

of the shot peening process, the shot peening intensity, saturation, surface coverage, and surface 

roughness can be studied in detail. Therefore, the new FE model provides a useful tool for 

designers, to guide their choice of the optimal shot peening parameters. In addition, the newly 

established FE model of stress peen forming provides a useful tool for prediction and 

optimization of the stress peen forming process. Finally, the analytical model for calculation of 

the shot peening process offers a simple tool to predict Almen intensity with respect to shot 

peening parameters. 
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CONDENSÉ EN FRANÇAIS 

Le grenaillage de précontrainte est un procédé d’écrouissage inventé autour de 1930 et largement 

utilisé depuis les années 1940 dans les industries automobile et aérospatiale pour améliorer la 

résistance à la fatigue de composants métalliques et ainsi prolonger leur durée de vie utile. Ce 

procédé consiste à marteler la surface de la pièce traitée à l’aide d’un jet de grenailles 

(habituellement sphériques) à haute vitesse. Les impacts répétés déforment de façon marquée la 

surface, générant des déformations plastiques dans la couche superficielle, ce qui induit un champ 

de contraintes résiduelles compressives à la surface, de même que des contraintes résiduelles en 

tension à l’intérieur du composant traité. La couche superficielle de contraintes résiduelles 

compressives réduit la probabilité de rupture prématurée sous conditions de chargement cycliques 

et augmente par conséquent la résistance à la fatigue du composant. 

De multiples paramètres de grenaillage, tels que les caractéristiques des grenailles ou billes 

(types, taille, matériau), la vitesse, l’angle d’incidence du jet, les propriétés du matériau traité, le 

temps d’exposition au grenaillage, etc. ont une influence significative sur les résultats du 

grenaillage. Cependant, en pratique, deux paramètres de contrôle (intensité du grenaillage et taux 

de recouvrement) sont utilisés afin d’assurer les performances et la répétabilité du procédé. Ces 

deux paramètres sont souvent les seuls paramètres spécifiés pour le traitement d’un composant. 

L’intensité du grenaillage est reliée à l’énergie cinétique (masse des billes et vitesse) transférée 

du jet de billes à la surface traitée durant le traitement. Durant la décennie 1940-1950, J.O. 

Almen a développé une procédure normalisée afin de quantifier l’énergie du jet (Almen et Black, 

1963). Remarquant que des éprouvettes métalliques minces soumises au grenaillage se 

retrouvaient déformées en flexion suite au traitement, il a proposé de considérer la flèche d’une 

éprouvette soumise à un grenaillage pendant un long temps d’exposition (saturation) afin de 

mesurer de façon indirecte l’énergie du jet de billes incident. La flèche maximale de l’éprouvette 

normalisée à saturation constitue, par définition, « l’intensité du grenaillage » ou « l’intensité 

Almen ». La mesure de l’intensité du grenaillage est effectuée par grenaillage successif d’une 

série d’éprouvettes normalisées en acier SAE1070 laminé à froid. L’efficacité du traitement de 

grenaillage dépend largement de l’intensité Almen (voir par exemple Fathallah, 1994 et Herzog 

et al. 1996), ainsi que du taux de recouvrement (Meguid et al. 2002). Le taux de recouvrement est 
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simplement défini comme étant la fraction de l’aire totale traitée couverte par des indentations, 

exprimée en pourcentage. 

Durant le grenaillage, les impacts répétés de billes à haute vitesse ne génèrent pas uniquement 

une couche déformée plastiquement accompagnée de contraintes résiduelles en compression, 

mais ils augmentent également la rugosité de la surface traitée. Une rugosité accrue présente 

davantage d’irrégularités, lesquelles créent des concentrations de contraintes et par conséquent 

une réduction de la vie en fatigue de la pièce traitée (Sharp et al. 1994). Par conséquent, 

l’efficacité du grenaillage dépend d’un délicat compromis entre son effet bénéfique (génération 

de contraintes résiduelles compressives) et son effet nuisible (rugosité accrue). 

Un effet secondaire du grenaillage de précontrainte est qu’il peut induire des changements 

géométriques significatifs lors du traitement de composants métalliques minces, tel que noté par 

J.O. Almen. L’équilibre interne de la pièce traitée requiert que les contraintes résiduelles en 

compression soient compensées par des contraintes résiduelles en tension ailleurs dans la pièce, 

soit à l’intérieur de la pièce ou près de la face opposée au traitement. La combinaison de ces 

contraintes est susceptible de modifier la forme de la pièce traitée. Le procédé de mise en forme 

par grenaillage est utilisé depuis 1968 pour produire des revêtements de voilures d’ailes avec des 

géométries complexes (Baughman, 1984). Il est réalisé en grenaillant une seule face ou les deux 

faces du composant à paroi mince avec des intensités de grenaillage variées, de façon à obtenir la 

forme désirée. 

La mise en forme par grenaillage induit typiquement des formes semi-sphériques, puisque l’effet 

du procédé – en particulier la courbure induite - est identique dans toutes les directions. La mise 

en forme de voilures d’ailes, présentant une courbure plus faible dans la direction de la longueur 

de l’aile que dans la direction de la largeur (corde), nécessite par conséquent l’utilisation d’une 

technique particulière. La voilure est soumise à un pré-chargement externe en flexion à l’aide 

d’un outillage spécialisé, tout en étant simultanément soumise au grenaillage. La présence de 

contraintes dues au pré-chargement externe modifie l’effet du grenaillage, les impacts générant 

davantage de déformation plastique dans la direction des contraintes en tension générées par 

l’outillage. Il est ainsi possible de contrôler les courbures induites par le grenaillage, et par 

conséquent de générer des formes complexes telles que des voilures d’ailes. Les conditions de 

pré-chargement constituent des paramètres critiques du procédé de mise en forme par grenaillage 
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au même titre que les paramètres de grenaillage, et nécessitent par conséquent un contrôle 

approprié. Peu de travaux ont été publiés à propos de la mise en forme par grenaillage. Les 

quelques études disponibles sont pour la plupart basées sur des résultats expérimentaux et des 

relations empiriques, et seulement un nombre très réduit d’études (voir par exemple Li, 1981 et 

Kopp et Ball, 1987) ont considéré l’effet du pré-chargement externe. 

L’objectif principal de cette thèse consiste à étudier en détail les procédés de grenaillage de 

précontrainte et de mise en forme par grenaillage, afin de mieux comprendre l’influence des 

paramètres des procédés sur le résultat final. Un certain nombre d’études du grenaillage de 

précontrainte basées sur des simulations numériques par éléments finis et sur des modèles 

théoriques ont été publiées au cours des 20 ou 30 dernières années, dans un souci de 

compréhension du procédé et d’optimisation. Cependant, ces études se concentrent pour la 

plupart sur les contraintes résiduelles générées, sans considérer les autres phénomènes qui 

influenceront de façon marquée la vie en fatigue, soit la couverture de la surface par des 

indentations et l’augmentation de la rugosité qui en résulte. Elles négligent également de tenir 

compte de l’aspect aléatoire du procédé, qui est pourtant susceptible d’influencer les résultats. En 

effet, les billes sont expulsées de la buse de grenaillage de façon aléatoire, sans en connaître de 

façon exacte le diamètre, la position, la direction ou la vitesse. Les résultats du grenaillage 

pourraient donc varier d’une fois à l’autre, et d’un endroit à l’autre à la surface du composant 

grenaillé. De plus, en raison probablement de la complexité du procédé, aucun modèle numérique 

de la mise en forme par grenaillage avec pré-chargement extérieur n’est présenté dans la 

littérature scientifique. Enfin, l’utilisation de ces deux procédés dans un contexte de production 

industriel implique la mesure de « l’intensité Almen » du jet de billes et du taux de recouvrement 

pour des fins de contrôle. Aucun lien clair n’a jusqu’à présent été établi entre ces mesures et les 

paramètres physiques des procédés. 

Les sous-objectifs de la thèse sont les suivants: 

(1) Développer un modèle 3D par éléments finis considérant l’aspect aléatoire du procédé de 

grenaillage de précontrainte. Ce modèle permettra d’étudier les relations entre les 

paramètres physiques du procédé, tels que l’angle d’incidence du jet et le temps 

d’exposition au grenaillage, avec les paramètres de contrôle du procédé (intensité du 

grenaillage et taux de recouvrement). 
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(2) Réaliser une étude expérimentale du grenaillage de précontrainte et de la mise en forme 

par grenaillage avec pré-chargement extérieur, afin d’établir des relations quantitatives 

entre l’intensité, le taux de recouvrement, la rugosité et le temps d’exposition, de même 

qu’entre le pré-chargement appliqué et la forme résultante sur des éprouvettes en 

aluminium 2024, un alliage typique des applications aéronautiques. 

(3) Développer un modèle par éléments finis de la mise en forme par grenaillage avec pré-

chargement extérieur. 

(4) Développer un modèle analytique du grenaillage afin de prédire l’intensité Almen et les 

contraintes résiduelles dans l’éprouvette Almen à partir d’une combinaison de paramètres 

physiques du procédé. 

Les modèles par éléments finis existants pour le procédé de grenaillage utilisent des successions 

d’impacts pour lesquelles la localisation et la séquence des impacts sont définies a priori, ce qui 

est peu représentatif du procédé. Ces modèles permettent une certaine compréhension et 

prédiction de contraintes résiduelles moyennes induites par le procédé, mais sont d’une utilité fort 

limitée pour analyser les phénomènes reliés au recouvrement et à la rugosité induite, et pour 

analyser les variations de résultats inhérentes au procédé. 

Un nouveau modèle 3D par éléments finis du procédé a par conséquent été développé dans le 

cadre de cette thèse. Ce modèle inclut un grand nombre de billes identiques en acier impactant de 

façon aléatoire une cible en aluminium, avec un angle d’incidence normal ou oblique. Un 

programme Matlab approprié combiné avec du code en ANSYS APDL (ANSYS Program Design 

Language) a été utilisé afin de générer les coordonnées initiales et un maillage approprié pour 

chaque bille dans le jet. Le solveur explicite LS-DYNA a été utilisé pour réaliser les calculs. La 

taille des éléments dans le maillage a été choisie suite à une étude de convergence, de façon à 

conserver un temps de calcul acceptable. Les billes ont été considérées rigides dans la simulation 

en raison de leur dureté et de leur limite d’élasticité nettement plus élevées que celles de la cible. 

Toutes les billes ont été modélisées avec un même rayon (r = 0.5mm), une même densité, une 

même vitesse et un même angle d’impact (normal ou oblique, selon les simulations). Une plaque 

d’aluminium de dimensions 5mm×5mm×3mm a été considérée comme cible. On a considéré que 

l’aluminium avait un comportement élasto-plastique avec écrouissage isotrope; l’effet éventuel 

du taux de déformation du matériau a été négligé. Tous les contacts entre les billes ont également 
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ignorés. Dans toutes les simulations, le centre de chaque indentation a été situé à l’intérieur d’une 

aire de contact prédéfinie sur la surface. Des simulations ont été effectuées pour 5 différents 

nombres d’impacts, de façon à pouvoir établir des tendances en fonction du nombre d’impacts 

et/ou du taux de recouvrement. Pour chaque nombre d’impacts considéré, 5 modèles 

indépendants ont été générés par le programme Matlab afin d’étudier l’aspect aléatoire du 

procédé. 

L’analyse des résultats de simulation a été réalisée en 4 étapes. Tout d’abord, un profil de 

contraintes résiduelles moyen a été obtenu pour chaque simulation. Ensuite, on a déterminé de 

façon analytique la flèche que provoquerait ce profil de contraintes dans une éprouvette 

d’aluminium de dimensions similaires à celles d’une éprouvette Almen. Ceci a permis de tracer 

par meilleur ajustement (« best fit ») des courbes reliant le nombre d’impacts et la flèche induite, 

et d’en trouver le point de saturation, soit l’endroit sur la courbe où la flèche augmente de 

seulement 10% en doublant le nombre d’impacts. Pour chaque simulation, on a également estimé 

le taux de recouvrement en considérant que tout point à la surface présentant une déformation 

plastique supérieure à un seuil prédéterminé (déduit via simulations à une indentation) faisait 

partie de la surface indentée. Finalement, la rugosité a été estimée en considérant les 

déplacements verticaux des nœuds des éléments de la surface. Les conclusions suivantes peuvent 

être tirées des résultats de simulation : 

(1) La dispersion de la flèche induite et du taux de recouvrement diminuent lorsque le 

nombre d’impacts augmente. Cette tendance n’est pas aussi claire pour la rugosité induite. 

(2) Dans le cas de grenaillage à incidence normale, le procédé atteint la saturation (en terme 

de flèche induite) et un taux de couverture de 100% après environ 48 impacts pour la 

surface étudiée. 

(3) Pour un nombre d’impacts donné et une vitesse donnée, les impacts normaux produisent 

de plus grandes flèches que les impacts obliques. De plus, la saturation est obtenue après 

un plus grand nombre d’impacts dans le cas d’un jet oblique que dans le cas d’un jet 

normal. 

(4) Dans le cas d’impacts obliques, un taux de recouvrement de 100% est atteint après un 

plus petit nombre d’impacts, comparativement au procédé à impacts normaux. 
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(5) Le grenaillage à incidence normale produit une plus grande rugosité que le grenaillage à 

incidence oblique à saturation de même qu’à taux de recouvrement de 100%. 

(6) Des relations empiriques ont pu être établies entre la flèche induite, le taux de 

recouvrement, la rugosité et le nombre d’impacts.  

(7) Les résultats numériques obtenus présentent des tendances similaires aux résultats 

expérimentaux présents dans la littérature scientifique. 

Le modèle 3D développé dans le cadre de cette thèse permet donc de mieux comprendre et 

prédire les résultats du grenaillage que les modèles conventionnels. Il pourrait donc constituer un 

outil très utile pour un concepteur, de façon à guider ses choix de paramètres de grenaillage 

optimaux. 

Peu d’études expérimentales ont jusqu’ici tenté d’établir des relations quantitatives entre 

l’intensité Almen correspondant à un jet de billes, les contraintes résiduelles dans un échantillon 

donné, le temps d’exposition, le taux de recouvrement et la rugosité. De plus, l’intensité Almen 

étant basée sur l’utilisation d’éprouvettes normalisées en acier SAE1070, peu de liens ont été 

établis entre la flèche de ces éprouvettes et celle de l’échantillon d’intérêt. Finalement, aucun 

article étudiant l’effet d’un pré-chargement externe sur la forme induite par grenaillage n’a pu 

être trouvé dans la littérature, malgré l’importance fondamentale de cette technique pour la mise 

en forme de voilures d’ailes d’avions. 

Une étude expérimentale a par conséquent été réalisée dans la cadre de la thèse. Les tests ont été 

effectués sur des éprouvettes ou bandes métalliques en aluminium 2024, un alliage typique des 

applications aéronautiques, avec des billes de céramique de type Zirshot Z425 (diamètre nominal 

de 0.425mm) à l’aide de l’équipement suivant, soit d’une machine portable de grenaillage à 

projection de type BLAKA-1 de la compagnie Baiker AG et d’une buse droite d’un diamètre 

nominal de ¼ pouce (environ 6mm) montée sur un robot SV3XLong de la compagnie Motoman 

accompagné d’un contrôleur robot de type XRC2001. La pression et le débit massique des billes 

ont été mesurés directement par les capteurs de la machine de grenaillage, tandis que la vitesse 

des billes a été mesurée par un capteur de mesure de vitesses des particules de type Shotmeter. 

Des profils de contraintes résiduelles ont été obtenus via la technique de diffraction des rayons X, 

combinée avec électropolissage. Les valeurs mesurées ont été corrigées pour tenir compte de 

l’effet de l’enlèvement de matière en utilisant les méthodes de compensation et de correction 
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suggérées dans la norme SAE HS784. Les trajectoires de grenaillage par le robot ont été 

programmées de façon à avoir un jet de billes normal à la surface traitée, avec une distance 

constante de 25mm entre l’extrémité de la buse et la surface. Un dispositif de pré-chargement 

comprenant quatre supports à éprouvettes avec des rayons de courbure différents (ܴ௣= infini, 720 

mm, 360 mm et 240 mm) a été utilisé pour les tests de mise en forme par grenaillage avec pré-

chargement en flexion. 

Les conclusions suivantes peuvent être tirées des résultats des tests : 

(1) Pour des conditions de grenaillage similaires, les éprouvettes d’aluminium avec la 

dimension principale dans la direction du laminage de la plaque originale présentent une 

plus grande flèche que les éprouvettes découpées perpendiculairement à la direction de 

laminage. Ceci prouve que la direction de laminage influence les résultats de grenaillage. 

(2) Pour les éprouvettes d’aluminium et pour les éprouvettes Almen, la relation entre la 

flèche à saturation (intensité) et la vitesse des billes est presque linéaire. Les éprouvettes 

d’aluminium présentent une plus large flèche et un plus court temps d’exposition pour 

arriver à saturation que les éprouvettes Almen, peu importe la direction du laminage. 

(3) Pour un même temps d’exposition, la rugosité de la surface augmente lorsque la vitesse 

des billes augmente. La relation présente deux étapes, soit une première étape pendant 

laquelle la rugosité augmente rapidement et de façon presque linéaire, suivi d’une 

deuxième étape pendant laquelle la rugosité augmente plus lentement jusqu’à atteindre 

une valeur limite. 

(4) Une augmentation de la vitesse des billes entraîne, à saturation, une hausse de la 

contrainte résiduelle maximale, laquelle est située à une plus grande profondeur. 

L’épaisseur de la couche superficielle en compression augmente également. Des 

tendances similaires ont été remarquées en gardant une vitesse des billes constante et en 

augmentant le temps d’exposition. Cependant, la vitesse des billes et le temps 

d’exposition ont peu d’effet sur la contrainte résiduelle à la surface. 

(5) L’application d’un pré-chargement en flexion lors de la mise en forme par grenaillage 

augmente de façon significative la flèche induite par le traitement, pour des conditions de 

grenaillage identiques. Une relation presque linéaire a été constatée entre le moment de 
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flexion appliqué et la flèche résultante, tant pour la mise en forme de bandes métalliques 

et que celle d’éprouvettes carrées. La flèche induite dans la direction du pré-chargement 

augmente de pair avec l’augmentation du moment de flexion appliqué, tandis que la 

flèche induite perpendiculairement à la direction de pré-chargement diminue. 

Un modèle par éléments finis en trois étapes (implicite, explicite puis implicite) a été développé 

afin de simuler le procédé de mise en forme par grenaillage avec pré-chargement. Le modèle par 

éléments finis du grenaillage présenté un peu plus haut avec billes impactant de façon aléatoire 

une surface a été complémenté afin de modéliser la mise en forme. On a considéré que la zone 

impactée dans ce modèle constituait une zone élémentaire représentative pour une plaque 

soumise au grenaillage. On a donc dans un premier temps appliqué un pré-chargement en flexion 

sur le volume représenté, puis simulé les impacts à la surface de ce volume toujours sous 

chargement en flexion de façon à obtenir les champs de contraintes induites. Ces champs de 

contraintes ont été appliquées à un second modèle considérant la plaque complète de façon à 

calculer la déformation géométrique générée par le traitement à partir des contraintes induites. 

Ainsi, la première étape a été réalisée à l’aide du logiciel par éléments finis ANSYS. Des champs 

de pression ont été appliqués aux frontières du volume modélisé afin d’obtenir via un calcul 

implicite les distributions de contraintes et de déformations résultant du moment appliqué par le 

dispositif de pré-chargement. On a considéré que les billes étaient immobiles durant cette étape. 

Après avoir converti tous les éléments du modèle dans un format approprié et transféré les 

contraintes et déplacements nodaux, un calcul explicite avec LS-DYNA a été exécuté afin de 

simuler les impacts de billes sur le volume pré-contraint et d’obtenir les contraintes induites par 

le traitement. Des contraintes moyennes ont été calculées à différentes profondeurs à l’intérieur 

du volume impacté, de façon à obtenir des profils moyens de contraintes ߪ௫
௖ et ߪ௬

௖ dans les deux 

directions principales. Des relations théoriques basées sur quelques hypothèses simplificatrices 

ont permis d’en déduire les profils de contraintes lorsque le chargement extérieur est retiré. Le 

principe d’équivalence a alors été utilisé pour déterminer l’effet global de ces profils de 

contraintes sur une section de la plaque, c’est-à-dire les forces et moments qui devraient être 

appliqués extérieurement pour générer le même effet sur la section. Finalement, ces forces et 

moments ont été appliqués aux extrémités d’une plaque rectangulaire, dans un modèle 

indépendant comprenant uniquement des éléments coques (SHELL181) réalisé sur ANSYS avec 

calcul implicite. On a considéré que le grenaillage a été effectué de façon uniforme sur cette 
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plaque. Les changements géométriques obtenus par calcul correspondent aux déformations que 

générerait le grenaillage avec pré-chargement. Les flèches et courbures induites par le procédé 

ont ainsi été déterminées dans les deux directions principales. 

Ce modèle par éléments finis en trois étapes est le premier modèle permettant de simuler le 

procédé de mise en forme par grenaillage avec pré-chargement. Il constitue un outil très utile 

pour contrôler et prédire les résultats du procédé. Employé pour simuler le traitement de bandes 

métalliques d’aluminium telles que celles utilisées précédemment dans l’étude expérimentale, 

avec 48 billes frappant de façon normale la surface représentative à 66.2m/s, il a permis de tirer 

les constatations suivantes : 

 La mise en forme par grenaillage génère des contraintes résiduelles compressives sur les 

deux faces de la composante. 

 Par comparaison avec la mise en forme par grenaillage conventionnelle, l’utilisation de 

pré-chargement génère des contraintes résiduelles plus élevées en surface (sur les faces 

supérieure et inférieure), de même que des valeurs plus élevées de contrainte maximale en 

compression et de contrainte maximale en tension. 

 Les courbes obtenues par simulation indiquent une relation presque linéaire entre le 

moment appliqué par le pré-chargement et la flèche induite par le grenaillage. De plus, 

l’application d’un moment générant des contraintes principalement dans une direction 

diminue l’effet du grenaillage dans la direction perpendiculaire. 

 Les contraintes résiduelles issues de simulation sont conformes aux résultats 

expérimentaux, prouvant de ce fait la validité de l’approche de modélisation. Les 

tendances remarquées dans l’étude expérimentale entre le moment appliqué et la flèche 

induite se retrouvent dans les résultats de simulation. 

Un modèle analytique du grenaillage particulièrement adapté à la prédiction de l’intensité Almen 

d’un jet de billes a été finalement développé. Ce modèle est principalement basé sur un modèle 

du grenaillage présenté par Li et al. (1991) et complémenté par Shen et al. (2004) pour prédire les 

contraintes induites dans un solide semi-infini. Quelques améliorations ou corrections au modèle 

de Li ont été apportées, puis les résultats du modèle prédictif ont été combinés avec l’approche de 

Guagliano (2001) afin de prédire la déformation correspondante d’une éprouvette Almen. 
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Dans une première étape du modèle, le champ de déformation correspondant à l’impact d’une 

bille sur un solide semi-infini est calculé comme si les deux matériaux (bille et cible) étaient 

purement élastiques. La théorie de contact de Hertz est utilisée pour déterminer les paramètres du 

contact et les contraintes sont déduites du chargement de Hertz. La vitesse initiale de la bille est 

reliée à la force maximale exercée par la bille sur la cible pendant le contact selon une approche 

énergétique. Ensuite, les déformations plastiques dans le régime élasto-plastique sont estimées à 

l’aide d’un ratio α défini comme étant le ratio entre le rayon d’une indentation lors d’un contact 

équivalent sur un matériau parfaitement plastique et le rayon de contact maximal lors d’un impact 

élastique. Ce ratio est utilisé en considérant la courbe élasto-plastique multilinéaire du matériau 

pour déterminer les proportions respectives de déformations plastiques et élastiques, et en déduire 

les contraintes totales puis les contraintes résiduelles correspondant à un impact unique. Les 

champs de contraintes et de déformations correspondant à une succession d’impacts distribués 

sur la surface traitée sont déduits en remarquant qu’un taux de recouvrement de 100% devrait 

correspondre à des champs de contraintes et de déformations permanents et continus, avec des 

contraintes indépendantes de la position en x et y et nulles dans la direction normale à la surface. 

La prise en compte des conditions d’équilibre interne selon l’approche de Guagliano (2001) 

permet finalement d’obtenir le profil de contraintes résiduelles qu’on retrouverait dans une pièce 

de dimensions réelles et de relativement faible épaisseur (comme par exemple une éprouvette 

Almen) après l’avoir soumise à ce grenaillage, de même que d’obtenir la flèche induite par le 

traitement. 

L’utilisation du modèle analytique pour simuler le grenaillage d’éprouvettes Almen a permis 

prédire l’intensité Almen correspondant à différentes combinaisons de paramètres, et de tirer 

conclusions suivantes : 

 Les résultats obtenus par le modèle correspondent assez bien aux résultats expérimentaux 

publiés par Cao et al. (1995), en particulier pour la prédiction de l’intensité Almen. 

 La vitesse des billes semble être le paramètre prédominant pour l’intensité Almen. Le 

matériau dont sont constituées les billes a aussi un effet important. 

 L’intensité Almen est approximativement proportionnelle au diamètre des billes pour une 

vitesse donnée, particulièrement à basse vitesse. 
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 Des relations empiriques ont été établies afin de relier le diamètre des billes, leur vitesse 

et l’intensité Almen correspondante pour des billes d’acier et pour des billes de 

céramique. 

 Il n’y a pas de relation biunivoque entre les profils de contraintes résiduelles et les 

intensités Almen correspondantes. Chaque profil de contrainte résiduelle correspond à une 

unique intensité, mais une même intensité peut être générée par divers profils de 

contraintes résiduelles, et donc par différentes combinaisons de paramètres de grenaillage. 

Ainsi, de petites billes à haute vitesse pourraient produire la même intensité Almen que de 

grosses billes à faible vitesse, tout en générant une contrainte à la surface et une contrainte 

maximale compressive plus importantes et une couche de contraintes en compression de 

plus faible épaisseur. 

Ces résultats montrent bien qu’il est important et même primordial de spécifier la taille des billes 

pour un traitement donné lorsqu’on indique une intensité Almen. Modifier la taille des billes tout 

en conservant l’intensité Almen pourrait entraîner des résultats non voulus, tels que de plus 

faibles niveaux de contraintes résiduelles à la surface ou une couche de contraintes en 

compression de plus faible épaisseur, deux caractéristiques influençant de façon négative la vie 

en fatigue des composantes traitées. De plus, un mauvais contrôle des paramètres de grenaillage 

pourrait être problématique, puisque des variations simultanées de plus d’un paramètre de 

grenaillage pourraient produire une même intensité Almen et par conséquent passer inaperçus. 

Finalement, rappelons que les tests Almen sont habituellement réalisés sur des éprouvettes 

normalisées en acier SAE1070. Deux traitements montrant des intensités Almen similaires 

pourraient induire sur un autre matériau (aluminium par exemple) deux champs de contraintes 

différant de façon marquée l’un par rapport à l’autre. 

En résumé, les procédés de grenaillage de précontrainte et de mise en forme par grenaillage avec 

pré-chargement ont été étudiés par des méthodes numériques, expérimentales et analytiques dans 

le cadre de cette thèse. Quatre contributions majeures pour l’optimisation de ces procédés ont été 

réalisées : 

1. Développement d’un modèle 3D par éléments finis prenant compte le caractère aléatoire 

du procédé, permettant par le fait même d’établir des relations quantitatives entre les 

principaux paramètres du procédé. 
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2. Établissement de relations quantitatives entre le moment appliqué et la flèche induite lors 

de la mise en forme par grenaillage avec pré-chargement, grâce à la réalisation d’une 

étude expérimentale, qui a également permis de mettre en évidence l’influence de la 

direction de laminage sur les résultats du grenaillage. 

3. Développement d’une approche en trois étapes pour la simulation par éléments finis de la 

mise en forme par grenaillage avec pré-chargement en flexion. La comparaison des 

résultats de simulation avec les résultats expérimentaux obtenus précédemment a permis 

de valider l’approche. 

4. Développement d’un modèle analytique permettant de prédire l’intensité Almen et de 

quantifier les contributions des paramètres de grenaillage. 

Les travaux réalisés dans le cadre de cette étude ont permis de réaliser des contributions 

significatives à la compréhension des procédés de grenaillage et de mise en forme par grenaillage 

avec pré-chargement. Plusieurs questions d’importances ont cependant été laissées en suspens, et 

pourraient faire l’objet de recherche supplémentaire. Ainsi, certaines hypothèses devraient être 

validées ou raffinées afin d’améliorer le modèle aléatoire du grenaillage. Premièrement, la 

simulation considérait une distance initiale minimale de 0.75mm entre chaque bille, valeur fixée 

arbitrairement et inférieure au diamètre d’une bille. Une étude supplémentaire devrait donc être 

réalisée afin de vérifier si la distance minimale entre les billes influence les résultats. 

Deuxièmement, les dimensions des surfaces et volumes représentatifs ont été également 

déterminés arbitrairement, et l’influence de ces dimensions sur les résultats présentés devrait par 

conséquent être investiguée. Troisièmement, les courbes de saturation, de recouvrement et de 

rugosité issues de simulations numériques devraient être comparées à des courbes 

expérimentales. 

Le modèle par éléments finis en trois étapes de la mise en forme par grenaillage avec pré-

chargement considère que les contraintes induites par le grenaillage sont uniformément 

distribuées sur toute la surface grenaillée de la plaque traitée. Cependant, dans le procédé réel de 

mise en forme par grenaillage, les contraintes induites par le grenaillage d’une zone donnée ont 

une influence notable sur les résultats du grenaillage des zones subséquentes. Le champ de 

contraintes induites n’est donc pas uniforme dans la plaque. Ce phénomène a été mis en évidence 

par certains tests expérimentaux non présentés dans cette thèse, visant à comparer l’effet d’un 
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grenaillage réalisé par un robot balayant une surface plusieurs fois à haute vitesse avec l’effet 

d’un grenaillage réalisé par le même robot balayant une seule fois la surface à basse vitesse. Les 

courbures et flèches obtenues étaient beaucoup plus uniformes lorsque le robot passait plusieurs 

fois à haute vitesse. Des études supplémentaires pourraient être réalisées afin de mieux 

comprendre ce phénomène et de l’intégrer dans le modèle par éléments finis. 
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INTRODUCTION 

Shot peening is a cold working process widely used to improve the fatigue life of metal 

components in the automotive industry and to produce thin components with complex shapes 

such as wing skins, in the aerospace industry. This process is accomplished by bombarding the 

surface of a metallic component with shots at a high velocity that induce a layer of plastic 

deformation near the surface. This plastic deformation leads to a residual compressive stress field 

in the peened surface, along with increased tensile stress through the thickness. The layer of 

compressive residual stress reduces the likelihood of premature failure under cyclic loading 

conditions and therefore improves the fatigue life of the peened component.  

Numerous shot peening parameters, such as shot size, type, velocity, pressure, mass flow, 

incidence angle, material properties of the target component, etc. have great influence on shot 

peening results. In the industry, two control parameters, peening intensity and surface coverage, 

have been adopted to characterize the effectiveness and the repeatability of the shot peening 

process. Peening intensity is related to the amount of kinetic energy (related to the shot mass and 

velocity) transferred from the shot stream to the target component during the shot peening 

process. A method widely used to quantify peening intensity is called Almen intensity (Almen 

and Black, 1963). Surface coverage is defined as the ratio of the area covered by peening 

indentation to the total treated surface area, expressed as a percentage. There is much to be 

gained by studying these indicators in detail and establishing a direct relationship between them 

based on the same target component, by analytical, experimental and numerical methods.  

During shot peening, the projection of shots at high velocity results not only in compressive 

residual stress on the peened surface, but also in an increased surface roughness. Higher surface 

roughness presents more irregularities, which act as stress concentrations and cause a reduction 

of the fatigue life of the treated component. Therefore, the performance of shot peening will 

depend on a trade-off between its beneficial effect (compressive residual stresses) and its 

detrimental effect (surface roughness).   

Shot peen forming is a dieless process that has been widely used to form various aircraft 

component since the 1960’s. Conventional peen forming causes the component to form a 

spherical shape since it induces the same curvatures in both chordwise and spanwise directions. 

For a wing skin, which has a larger curvature in the chordwise direction than in the spanwise 
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direction, a technique called stress peen forming is applied. In stress peen forming, the 

component is elastically pre-bent along the spanwise direction during peen forming. After peen 

forming, the resulting chordwise curvature will be larger than the spanwise curvature. Most of the 

investigations of stress peen forming are based on experimental and empirical relationships.  

During stress peen forming, not only the shot peening process parameters (shot size, shot velocity 

and peening time, etc.), but also the prebending conditions (elastic prebending moment) should 

be controlled to obtain the required deformation of a peened component. Due to the complexity 

of the process, there is currently no numerical model with the ability to simulate the stress peen 

forming process that takes into account all these parameters.  

The principal objective of this study is to develop and validate predictive tools for the shot 

peening and (stress) peen forming results. The effect of the shot peening parameters (shot size, 

material, velocity, etc.) on the peening and forming results (Almen intensity, roughness, 

coverage, arc height, etc.) are studied by these tools. Both numerical as well as analytical tools 

are developed and validated by controlled shot peening and peen forming experiments. 

This document is organized as follows. Chapter 1 presents a comprehensive review of the state of 

art of the shot peening and peen forming processes. Chapter 2 presents the rationale and sub-

objectives of the project, based on the findings of Chapter 1. The scientific approach and the 

relationship between the research objectives and the publications resulting from the thesis work 

are described in Chapter 3. Chapters 4 to 7 present four objectives in the form of four research 

papers. Each chapter has its own Abstract, Introduction, Methods, Results and Discussion 

sections. In Chapter 4, a novel 3D random finite element model that considers randomly 

distributed shot is described. Chapter 5 introduces the experimental study of the shot peening and 

stress peen forming processes. In Chapter 6, a three-step finite element model is described. The 

established FE model simulates the stress peen forming process considering the shot peening 

conditions as described in Chapter 5. An analytical model for the study of the shot peening 

process and prediction of Almen intensity is described in Chapter 7. Chapter 8 discusses the main 

findings in this work and the relationship between four articles. The conclusions and the 

Recommendations are given in the last Chapter.  
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CHAPITRE 1 LITERATURE REVIEW 

1.1 Basic aspects of shot peening  

Shot peening is accomplished by bombarding the surface of a metal component with multiple 

shots at high velocities. Each piece of shot that strikes the material acts as a tiny peening hammer, 

imparting to the surface a small plastic indentation surrounded by a plastic zone. Once contact 

between the shot and the target has ceased, the elastically stressed region tends to recover to the 

fully unloaded state, while the plastically deformed region sustains some permanent deformation. 

These inhomogeneous elasto-plastic deformations result in the development of a compressive 

residual stress field in the exposed upper layer. The layer of compressive residual stress reduces 

the likelihood of premature failure of the metal component under conditions of cyclic loading 

(Meguid, 1975; Webster and Ezeilo, 2001; Rodopoulos et al. 2004). 

Wohlfahrt (1984) described the two competitive residual stress generating processes of shot 

peening, as shown in Figure 1.1. One is direct plastic elongation of the top layer of the 

component due to numerous shot indentations, as illustrated at the left hand side of Figure 1.1 

(Principle 1). After shot peening, the ݖݎ plane (see Figure 1.1) of the target component is divided 

into two different sections. Section A represents plastic deformation by shot peening while 

section B represents the region beneath the plastic deformation. The elasto-plastic elongation of 

the surface layer results in compressive residual stresses with a maximum magnitude at the 

surface when this effect is the only or predominant one. The second residual stress generating 

process can be explained as Hertzian pressure which produces plastic deformation beneath the 

impact surface, as shown at the right side of Figure 1.1 (Principle 2). The residual stress has a 

maximum value at a distance ݖ ൌ 0.47ܽ below the surface, where ܽ is the radius of the plastic 

indentation. In practice, the distribution of compressive residual stress after shot peening results 

from the combined effect of these two competing processes, direct plastic surface deformation 

and plastic deformation of deeper layers due to the Hertz pressure.  
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Figure 1.1: Schematic illustration of the formation of residual stresses as a consequence of two 

competitive processes in shot peening: direct stretching of a surface layer (Principle 1, left) and  

Hertizan pressure (Principle 2, right) (Slim, 1995). 

Figure 1.2 shows a typical residual stress field described by five main terms, namely 

 ߪ௠௔௫:  the maximum compressive residual stress, 

 ߪ௦௨௥ :  the surface residual stress, 

 ߪ௧௘௡ :  the maximum tensile residual stress, 

 ݐଵ :     the depth of maximum compressive residual stress, and 

 ݐଶ :     the depth where the residual stress changes sign (from compressive to tensile). 
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Figure 1.2: Schematic illustration of the residual stress caused by shot peening. 

1.2 Shot peening process parameters 

Many shot peening parameters are known to have a great influence on the effectiveness of the 

shot peening treatment. These can be classified into the following three groups (Kyriacou, 1996): 

 Shot parameters: Type, size, shape, density, hardness, yield strength, stiffness, etc.  

 Target parameters: Hardness, yield strength, stiffness, work hardness, chemical 

composition, pre-stress condition, etc. 

 Flow parameters: Mass flow rate, pressure, velocity, angle of impingement, standoff 

distance. 

Working on fundamental research on shot peening, Herzog et al. (1996) analyzed the effect of 

shot peening parameters on the resulting residual stress profile. In his study, the influence of the 

hardness of the target material ܪ ௠ܸ , hardness of shot ܪ ௦ܸ, shot diameter ݀, shot velocity ݒ, shot 

flow mass flow ሶ݉  , pressure ݌  and peening time ݐ  on the residual stress profile was shown 

schematically in Figure 1.3. In this figure, the directions of the arrows show the influence of 

these parameters on residual stress profile. Arrow 1 shows that the value of the surface residual 

stress ߪ௦௨௥  increases with the increase of ܪ ௦ܸ  and ܪ ௠ܸ ; arrow 2 shows that the value of the 
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maximum residual stress ߪ௠௔௫ increases with the increase of ܪ ,ݐ ,݀ ,݌ ,ݒ ௦ܸ and ܪ ௠ܸ; arrow 3 

shows that the depth of the maximum residual stress ݐଵ decreases with the increase of ܪ ௠ܸ and 

arrow 4 shows that ݐଵ increases with the increase of ݐ ,݀ ,݌ ,ݒ and ܪ ௦ܸ. 

 

Figure 1.3: The effect of the peening parameters on the residual stress profile (Herzog et al. 

1996). 

 

Figure 1.4: Almen intensity measurement system (Bernard et al. 2004). 
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1.3 Shot peening process control methods 

Measurement of Almen intensity and surface coverage are the two main control methods used to 

ensure the repeatability of the shot peening and peen forming processes in the industry. In this 

section, these two shot peening control parameters as well as their influence on peening effects 

are discussed in detail. 

1.3.1 Almen intensity 

During the 1940’s, J.O. Almen developed a standard process to measure the kinematic energy 

transferred by a shot stream. Shot peener and shot peening specifications refer to this energy as 

intensity at saturation. The measurement of peening intensity is accomplished by determining its 

effect on standardized test strips, called Almen strips, with a standardized tool, called Almen gage 

(Almen and Black, 1963).  

Figure 1.4 shows the standard Almen intensity measurement system that consists of three 

elements. (1)Three different thicknesses of Almen strips of spring steel SAE1070 tempered to 44-

50 HRC, as listed in Table 1.1. (2) One steel block (holding fixture) to attach and support the 

Almen strips during the shot peening process. (3) One gauge capable of reading the arc height of 

Almen strips. 

When a thin piece of metal is submitted to a shot stream on one of its sides (see Figure 1.4 (a)), it 

bends (convex towards the shot peened side) because of plastic deformations induced by shot 

peening (see Figure 1.4 (b)). Almen intensity is a measurement of the arc height deflection 

(inches or millimetres) at the center of Almen strips submitted to a given shot peening process. A 

higher intensity (higher arc deflection) means that a greater amount of kinetic energy has been 

transferred to the treated parts.  

Table 1.1: Almen strips dimensions (Kirk, 1999). 

Strip Thickness(in) Length (in) Width (in) Use for 
N 0.031+/-0.001 3 +/- 0.015 0.745 – 0.750 Low Intensity 
A 0.051+/-0.001 3 +/- 0.015 0.745 – 0.750 Average Intensity 
C 0.938+/-0.001 3 +/- 0.015 0.745 – 0.750 High Intensity 
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Figure 1.5: Schematic saturation curve (Champaigne, 2001). 

In order to determine the Almen intensity of a given process, a certain number of strips must be 

peened using the same peening parameters but for different exposure times. A saturation curve is 

then obtained by plotting the arc height deflection of the different strips as a function of exposure 

time. Saturation time (ܶ) is the earliest point on the curve where doubling the exposure time (2ܶ) 

produces no more than a 10% increase in arc height. Almen intensity is the particular arc height 

obtained at saturation time (indicated as ܶ in Figure 1.5). Complete procedures can be found in 

SAEJ442 and SAEJ443. 

1.3.2 Surface coverage 

Coverage is defined as the ratio of the area covered by peening indentations to the complete 

surface being treated, expressed as a percentage. Visual inspection is the standard method for 

coverage evaluation. For practical reasons, the maximum coverage that can be assessed visually 

is around 98%, since coverage percentages are difficult to discriminate as 100% coverage is 

approached. Thus 98% surface coverage is usually considered as full coverage according to SAE 

2277. Moreover, 200% coverage is defined as peening twice the exposure time required 

achieving full coverage (98%). 

Kirk and Abyaneh (1993), and Kirk (2002, 2005) discussed the theory of coverage developed for 

random indentations, which assumes that randomly distributed shot particles arrive at the 

component’s surface at a constant rate and create circular indentations of a constant size. A 
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simplified treatment of the theoretical basis of coverage control is presented, based on the 

application of an Avrami equation (Kirk and Abyaneh, 1993; Karuppanan et al. 2002). 

Karuppanan et al. (2002) presented two theoretical models to predict the development of 

coverage. One is the Avrami equation which requires determination of indentation radius and 

shot spread area, the other is the Holdgate model which requires determination of the coverage 

ratio after an initial interval time of shot peening. All these required parameters are determined 

from experimental tests. 

1.3.3 Surface roughness 

Shot peening produces compressive residual stress in the target component, however, it increases 

surface roughness at the same time. The two most common roughness parameters used in the 

field of shot peening are peak-to-valley roughness ܸܲ and average roughness ܴܽ as shown in 

Figure 1.6. ܸܲ value is defined as the distance between the highest peak ܴ௣௘  and the lowest 

valley ܴ௩ , as in Equation (1.1). Average roughness ܴܽ  is defined as the arithmetic average 

deviation of a surface from a mean line. For a sample length ܮ, it can be obtained with Equation 

(1.2). 

 ܸܲ ൌ ܴ௣௘ ൅ ܴ௩ (1.1) 

 ܴܽ ൌ ଵ

௅
׬ |ܼሺݔሻ|dݔ

௅
଴  (1.2) 

 

Figure 1.6: Roughness definition. 
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1.3.4 Influence of Almen intensity and surface coverage on the shot peening 

effects (residual stress and surface roughness) 

Balcar and Maltby (1981) conducted a study showing the influence of Almen intensity on surface 

roughness. The study was carried out on shot peened A.I.S.I. 316 stainless steel, 2024-T351 and 

7075-T6 aluminum alloys, using four different sizes of glass beads and three different projection 

angles. Bignonnet et al. (1987) studied the influence of surface coverage on the shape of the 

compressive residual stress field and on surface roughness for two different Almen intensities. 

Fathallah (1994) investigated the influence of Almen intensity and surface coverage on the shape 

of the compressive residual stress field. Experiments were conducted with two different shot 

types. Herzog et al. (1996) studied the influence of Almen intensity on the shape of the 

compressive residual stress field on shot peened aluminum alloy Al7020 and steel X35CrMo17 

specimens, for different shot types. Torres and Voorwald (2002) evaluated the shot peening 

intensity, residual stress on the fatigue life of AISI 4340 steel.  

From these studies, the following conclusions can be drawn: 

 Influence of Almen intensity on residual stress profiles: Almen intensity had only 

influence on the depth of the compressive residual stress ݐଵ. With the increase of Almen 

intensity, ݐଵ increases, which has beneficial effect in preventing crack propagation. Almen 

intensity had no significant influence on the surface residual stress ߪ௦௨௥ and the maximum 

residual stress ߪ௠௔௫ (Fathallah, 1994, Herzog et al. 1996, Torres and Voorwald, 2002). 

 Influence of surface coverage on residual stress profiles: increasing the surface coverage 

caused an increase of the compressive residual stress depth ݐଵ  and had no significant 

influence on the surface residual stress ߪ௦௨௥  and the maximum residual stress  ௠௔௫ߪ 

(Fathallah, 1994, Bignonnet et al. 1987).  

 Influence of Almen on surface roughness: surface roughness increased with the increase 

of Almen intensity (Balcar and Maltby, 1981), which has detrimental effect on fatigue life 

of peened component. 

 Influence of surface coverage on surface roughness: an increase of surface coverage 

resulted in an important increase in the surface roughness (Bignonnet et al. 1987). 
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Since compressive residual stress has beneficial effect, while roughness has detrimental effect, 

therefore, shot peening results depend on the tradeoff between these two peening results. 

1.4 Finite element simulation of shot peening 

1.4.1 Existing Finite Element models 

Shot peening is a hybrid process involving elasticity and plasticity as well as static and dynamic 

effects. The theoretical studies of the shot peening process have been rather limited over the past 

several decades (Al-Obaid, 1995; Kobayashi et al. 1998). Numerical simulation of the process 

was made possible with the development of the finite element method and the rapid development 

of computational power. One of the first finite element simulations was carried out by (Al-Obaid,  

 

Figure 1.7: Six types of existing models for simulating the shot peening process: a) 2D 

axisymmtric model  (Mori et al. 1994); b) 3D model with four symmetry surfaces (Meguid et al. 

2002); c) 3D model with three symmetry surfaces (Schiffner and Droste gen. Helling, 1999); d) 

3D model with two symmetry surfaces (Guagliano, 2001); e) 3D model with one symmetry 

surface (Baragetti, 2001); f) 3D model without symmetry (Schwarzer et al. 2003). 
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1990b) using 3D isoparametric solid elements and a mesh consisting of nine layers of elements 

through the thickness of a target plate. Subsequently, six main types of finite element models 

have been established to simulate the shot peening process: 

(1) Mori et al. (1994) introduced an axisymmetric model to simulate the plastic deformation of 

the workpiece and the shot as shown in Figure 1.7a). Levers and Prior (1995) performed a 2D 

dynamic analysis with a deformable component and a rigid spherical shot to study the 

residual stress profile induced by shot peening. Schiffner and Droste gen. Helling (1999) used 

a similar axisymmetric model for simulating the residual stress profile in an elastic-plastic 

surface subjected to perpendicular shots with different shot peening parameters. Rouhaud and 

Deslaef (2002) and Rouhaud et al. (2005) investigated the influence of the shot and 

component material properties upon the residual stress profiles with a similar axisymmetric 

model. Meo and Vignjevic (2003) predicted the residual stress profile resulting from the shot 

peening process with this type of model for welded joints applications. 

(2) Meguid et al. (2002) developed a periodic symmetry cell with a square contact surface as 

shown in Figure 1.7b). The main advantage of this model is its ability to simulate multiple 

impacts with a reduced model size. Majzoobi et al. (2005) investigated the effects of shot 

velocity upon the residual stress profile and the development of the shot peening coverage. 

Meguid et al. (2005) implemented a slightly different cell that consisted of 5 simple unit cells 

to study the relaxation of peening residual stresses due to cyclic thermo-mechanical overload. 

(3) Schiffner and Droste gen. Helling (1999) created a 3D model with an equilateral triangle 

impact surface and three symmetry surfaces to investigate the effect of adjacent shots, as 

shown in Figure 1.7c). Their results showed that the interaction between adjacent shots 

should be taken into account. 

(4) Edberg et al. (1995) simulated multiple impingements between the shots and a surface using a 

3D model with two symmetry surfaces as shown in Figure 1.7d). Meguid et al. (1999a; 

1999b) used this kind of model to study the residual stress profiles resulting from single and 

twin indentations. The effect of the separation distance between two impinging shots on the 

equivalent stress contours and residual stresses was presented. Deslaef et al. (2000) and 

Guagliano (2001) employed a similar model with four impacts (being equivalent to nine 

impacts due to the symmetry of the problem) to predict residual stresses. Guagliano (2001) 



13 

related these stresses to Almen intensity. Al-Hassani et al. (1999) used this type of model to 

simulate single and multiple impacts with an in-line configuration. 

(5) Al-Hassani et al. (1999) developed a half circular 3D finite element model with one 

symmetry surface as shown in Figure 1.7e) to simulate a single shot impact with an oblique 

incidence angle. Guagliano et al. (1999) and Baragetti (2001) used a similar model to study 

the residual stress profiles produced by one and two shot impacts. Hong et al. (2008a) 

conducted a parametric study based on that model to investigate the effect of shot diameter, 

impact velocity, incident angle and component material properties on the residual stress 

profile. 

(6) Schwarzer et al. (2003) implemented a 3D model without  symmetry boundary condition as 

shown in Figure 1.7f). This model is more representative than the previous models as it 

considers independent impacts. Their results showed that the impact sequence has a great 

influence upon the shot peening results. 

Among these six types of models, the axisymmetric model in Figure 1.7a) is the smallest model 

in terms of degrees of freedom. Therefore, it allows conducting parametric studies of the shot 

peening process within a relatively short time. However, it does not represent the real shot 

peening process since all simulated impacts take place over a single location. Figure 1.7b) and c) 

represent infinite components with fewer elements. In these models, numerous shots impact the 

component simultaneously due to the symmetry conditions imposed. Models Figure 1.7d) – f) 

represent more accurately the real shot peening process at the cost of computer resources. In 

addition, models Figure 1.7a) – d) can only simulate normal impacts. In all of these existing 

models, the locations and sequence of the multiple shot impacts have been defined a priori 

(Meguid et al. 2002; Majzoobi et al. 2005; Meguid et al. 2005). 

1.4.2  Effect of shot peening parameters with FE analysis  

1.4.2.1 Effect of shot velocity and shot size 

Al-Obaid (1990b) analyzed the influence of shot velocity on the residual stress profile with a 

three-dimensional dynamic finite element model that considered the elastoplasticity of the target.  

Meguid et al. (1999a, 1999b) studied the effect of the shot velocity, size and shape upon the time 

histories of the equivalent stress trajectories, equivalent plastic strain and unloading residual 
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stresses with the FE method. Schiffner and Droste gen. Helling (1999) simulated the residual 

stresses in accordance with the shot peening parameters, such as shot velocity, diameter and 

material parameters, with an axisymmetric and a 3-Dimensional FE model.  

Guagliano (2001) calculated the influence of shot velocity and shot size on the residual stress 

profiles with a FE model as shown in Figure 1.7d). The simulated results shown in Figure 1.8 

indicate that the depth of the maximum compressive residual stress (ݐଵ) and the depth where the 

residual stress changes sign ( ଶݐ ) increase with increasing shot velocity and shot diameter. 

However, with increasing shot velocity, the surface residual stress ߪ௦௨௥ decreases. Deslaef et al. 

(2000) studied various shot peening parameters, such as the shot size and velocity, with the 

numerical method and by experimentation. The results showed that the residual stress field 

reached a saturated state after a limited number of impacts. Majzoobi et al. (2005) studied the 

effect of velocity and peening coverage on the compressive residual stress profiles and the results 

showed that the residual stress distribution was highly dependent on impact velocity and a 

uniform state of stress was achieved at a particular shot number.  

 

Figure 1.8: Residual stress profiles due to shot peening in a thick component, with different shot 

diameters and at different shot velocities. (a) Shot diameter 0.3mm, (b) Shot diameter 0.5mm, (c) 

Shot diameter 0.7mm, (d) Shot diameter 1.0mm (Guagliano, 2001). 
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1.4.2.2 Effect of material properties 

Schwarzer et al. (2003) studied the influence of the material behaviour on residual stress using a 

3D finite element model without symmetry. The results showed that higher yield stress caused 

significantly higher surface and maximum residual stress values. Compared with isotropic 

material behaviour, the target with kinematic hardening caused a slight reduction of maximum 

compressive stress. In conclusion, the residual stress produced by shot peening is mainly 

determined by its yield stress and not by its hardening behaviour. 

Rouhaud et al. (2005) studied the effects of target material behaviour on residual stress with a 2D 

model using multiple shot of radius 0.4mm  with velocities 75m/s . Bilinear stress strain 

constitutive law with different hardening parameters (ܪଵ ൌ ఙ್షఙೞ

ఌ್ିఌೞ
 , where ߪ௕ is ultimate tensile 

stress, ߪ௦ is yield stress, ߝ௕ is strain at ultimate tensile stress and ߝ௦ is strain at yield stress) has 

been applied in his study. The results of one isotropic hardening model and three kinematic 

models are shown in Figure 1.9. The analyzed results showed that for the kinematic model, the 

profile of the residual stress had greatly changed in shape with the change of hardening slope. 

With increments of hardening slope, the compressive stress near the surface first decreased, and 

then increased to reach maximum value, and then decreased again to reach a tensile stress. 

However, for the isotropic model, the surface compressive residual stress increases with the 

increase of the depth to reach maximum value and then decreases to tensile stress, which was 

closer to the shape of the  experimentally measured residual stress profile as shown in Figure 1.3. 

 

Figure 1.9: Relationship between Residual stress and material constitutive laws (Rouhaud et al. 

2005). 
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1.4.2.3 Effect of friction between shot and component 

Meguid et al. (2002) studied the effect of friction with the Coulomb friction model, expressed as  

௙ܨ  ൌ  ௡ (1.3)ܨߤ

where ܨ௙ is the friction force, ܨ௡  is the normal force and ߤ  is the friction coefficient.  

Meo and Vignjevic (2003) studied the effect the friction also with the Coulomb friction model. 

Significant differences were found in the residual stress field between a frictionless impact and an 

impact with a coefficient of friction of 0.1. However, the variation of the residual stress and 

plastic strain was negligible for 0.1 ൏ ߤ ൏ 0.5 . Therefore, 0.1 was selected to simulate the 

Coulomb friction coefficient between the shot and the target. Schwarzer et al. (2003) used a 

coefficient of friction of 0.4  to describe the contact between the shot and target. 

1.5 Process of peen forming 

1.5.1 Conventional peen forming 

The peen forming technique has been used to curve wing skins since 1968, and ranks as one of 

the major advances in aircraft manufacturing technique (Baughman, 1984). It is accomplished by 

peening one or both sides of the component part with varying shot peening intensities so that the 

part obtains the desired contour shape.  

After the surface of the component is repeatedly hit by high velocity shots, a thin plastic layer 

will cause compressive stress on the top layer and tensile stress beneath the impact points, as 

shown in Figure 1.10. For a constrained component (i.e. clamped at its extremities), this induced 

stress is in non-equilibrium. After the release of the boundary conditions, a permanent convex 

curvature will result and the non-equilibrium stress field in the component will be released so that 

it leads to a balanced residual stress field. Therefore, residual stress can be regarded as the results 

of an equivalent stretching and bending stresses acting in a manner to balance the induced 

stresses.  
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Figure 1.10: Peen forming procedure: (a) Multiple shots impact a thin component. (b) Top plastic 

deformation and compressive stress. (c) Stretching force ܨ and bending moment ܯ , which cause 

component to extend and bend. 

 

Figure 1.11: Schematic illustration of the residual stresses after peen forming: (a) Induced stress 

profile ߪ௜௡ௗ. (b) Stretching stress profile ߪ௦. (c) Bending stress profile ߪ௕. (d) Residual stress 

profile ߪ௥௘௦ (Guechichi, 1986). 

Guechichi (1986) assumed the distribution of residual stresses in a plate as shown in Figure 1.11. 

The distribution of the residual stress profile in a thin plate results from the summation of three 

stress profiles: the induced stress profile caused by shot peening on an infinite plate, Figure 

1.11(a); the stretching stress profile, in Figure 1.11(b) and the bending stress profile, in Figure 

1.11(c). Therefore: 
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௥௘௦ߪ  ൌ ௜௡ௗߪ ൅  ௕ (1.4)ߪ௦൅ߪ

Peening induced stresses in a component are complicated and difficult to obtain. Al-Hassani 

(1981) assumed a cosine function to express the induced stress profile. Vanluchene et al. (1995) 

and Vanluchene and Cramer (1996) obtained empirical equations from experiments to relate the 

induced stresses and the arc height (i.e. the deflection) of normalized Almen strips (Almen and 

Black, 1963). Guagliano (2001) and Han et al. (2002) developed finite element models to predict 

the induced stress profiles created by shot peening and related these induced stresses to arc 

heights.  

Vanluchene et al. (1995) developed a method to predict the peening pattern and to minimize the 

peening intensity needed to form a specific shape using a finite element package along with an 

optimization software. This method simplified the induced stress profile as the sum of a bending 

stress and a stretching stress and calculated the total induced stress needed on the top and the 

bottom of the component according to the target forming shape. Several shot peening 

experiments with different shot peening intensities were carried out in order to relate the induced 

stresses to the shot peening intensities and the resulting arc heights. Generating a cylinder from a 

rectangular plate with dimensions of 48inൈ144inൈ0.25in was selected to test the developed 

software. Percentage errors between 30% to 52% have been obtained at 9 measurement points 

when compared to the target values. 

Han et al. (2002) performed a two-stage explicit/implicit simulation of the peen forming process. 

At the first stage, the induced stress/strain profile was obtained by employing the finite element 

approach on a small scale sample problem. At the second stage, this induced profile was applied 

to the entire workpiece to calculate the final deformation and stress distribution using an implicit 

static analysis.   

Figure 1.12 illustrates the re-distributed equilibrated residual stress profiles for two impact 

velocities. It is interesting to note that although shot peening was performed only on one side of 

the component, the forming result presented compressive stress on both sides of the component. 

These compressive stresses serve to inhibit stress corrosion cracking and to improve fatigue life 

of the peen formed component. 
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Figure 1.12: Residual stress after peen forming (Han et al. 2002). 

1.5.2 Stress peen forming  

Conventional peen forming causes the component to acquire a doubly curved shape because it 

induces an isotropic residual stress distribution in the component and a convex curvature of the 

component towards the peening direction. For a wing skin, which has a larger curvature in 

chordwise direction than in spanwise direction, a technique called stress peen forming is applied.  

Li (1981) analyzed the features of stress peen forming, described the forming principles and 

performed experimental studies. The author drew the conclusion from the analysis that if the 

wing panel is elastically pre-bent in the chordwise direction during peen forming, the chordwise 

contour curvature will be further increased, and at the same time the spanwise contour curvature 

will be decreased. Thus the trend in conventional peen forming of a panel taking on a spherical 

shape can be counteracted by using stress peen forming to a great extent. In addition, the results 

of experiments showed that the radius of curvature in the pre-bending direction is inversely 

proportional to the peening pressure, the shot size and the pre-bending value under saturated peen 

forming conditions. 
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Figure 1.13: Deflection of the component due to peen forming and stress peen forming: (a) Pre-

stress values on the component in the ݔ and ݕ directions, respectively. (b) Deflections of the 

component in the ݔ and ݕ  directions under different peen forming conditions (Gardiner and 

Platts, 1999).  

Gardiner and Platts (1999) simulated the induced stress profile involved in stress peen forming by 

applying temperature distributions in shell elements. In the case of stress peen forming, different 

temperature profiles following the depth of the component were applied to produce differential 

effects in the ݔ and ݕ directions, so that different curvatures can be produced in each direction. 

Figure 1.13 presents the pre-stress condition and the resulting deflections of a square plate with 

dimensions 20mm ൈ 20mm . The results show that stress peen forming produced a larger 

deflection in the pre-stressed direction compared to conventional peen forming.  

1.6 Summary of the findings  

Shot peening is accomplished by bombarding the surface of the component with numerous shots 

at high velocities. After shot peening, a layer of compressive residual stress is produced which 

can postpone crack prorogation and improve the fatigue life of the component. Almen intensity 

and surface coverage are two important control parameters used to ensure the repeatability of 

shot peening. Most evaluations of the influence of intensity and surface coverage on the shot 

peening results were based on experiments that are generally costly, tedious and time consuming. 

Six types of finite element models have been established to simulate the shot peening process, 
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with the assumptions that the location and sequence of impacts have no influence on the shot 

peening results. With these finite element models, the influences of shot velocity, shot type, shot 

size, shot peening angles, and distance between shot on the shot peening results were studied. In 

order to simulate the peen forming procedure, an induced stress obtained from explicit analysis 

was used to calculate residual stress profiles after peen forming. Most of studies of stress peen 

forming, however, were based on experimental trial and error.   
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CHAPITRE 2 OBJECTIVE AND RATIONALE OF THE PROJECT 

The principal objective of this work is to study numerically, experimentally and analytically the 

results of the shot peening process and its application to forming. Based on the literature survey 

performed, four main aspects requiring attention were identified and led to the four sub-

objectives studied in this work, namely 

1. The literature survey showed that most of the existing numerical analyses did not take 

into account the stochastic aspect of the shot peening process. The first sub-objective of 

this study is to develop a new FE model that allows taking into account both the spatial 

and temporal random nature of the shot stream hitting a metallic surface. Different from 

all of the existing FE models, this FE model considers numerous randomly distributed 

peening shots. This should lead to more realistic simulations than the existing models and 

will allow studying the influence of shot peening parameters (shot diameters, velocity, 

peening time, etc.) on the shot peening control variables (Almen intensity, coverage, 

roughness).  

2. There is very little experimental data on stress peen forming in the literature. Controlled 

experiments, where the shot peening parameters are precisely known and where reliable 

residual stress distributions are obtained would be of considerable interest for validating 

any predictive tool. The second objective of this study is to perform stress peen forming 

experiments on aluminum 2024 test strips where the shot peening parameters are 

rigorously controlled and where residual stress profiles are obtained. 

3. There is also very little computational study of stress peen forming. The third objective is 

to create an Implicit-Explicit-Implicit three-step FE model to simulate the stress peen 

forming process. With this model, the relationship between the prebending moment and 

the resulting arc height as well as its influence on the resulting residual stress profile, can 

be obtained. 

4. Finally, although they have the potential of leading to very accurate predictions, 

computational models are time and resources consuming. It would be a great interest to 

develop relatively precise analytical tools for predicting the residual stresses and Almen 
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intensity (which is in fact peen forming). These tools could be used for generating the 

initial solution in an optimization process where the final tuning is performed with the 

computational models. The development of such analytical models is the fourth and final 

objective of this thesis. 

At the end of this study, predictive tools for the results of shot peening and peen forming should 

have been developed and tested. These tools will form a basis for future projects concerned with 

the optimization of the shot peening and peen forming processes. 
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CHAPITRE 3 SCIENTIFIC APPROACH AND COHERENCE WITH 

RESEARCH OBJECTIVES 

This thesis is organized into four sections, consisting of the four research articles that were 

generated from the thesis study in order to reach the four objectives listed at the previous chapter. 

In the following lines, each article is summarized and it is shown how it meets the objectives set 

for the project as well as the novelty introduced. 

3.1 Article 1: On the potential applications of a 3D random finite 

element model for the simulation of shot peening (Objective 1) 

This article presents a novel 3D shot peening model based on the comparison of the existing FE 

models. In most of the existing FE models, the shot peening sequence and impact location were 

defined a priori. Therefore, the purpose of this article is to consider the random nature of the shot 

peening process, which has never been done. This 3D FE model with multiple randomly 

distributed shots was developed combining a Matlab program with the ANSYS preprocessor. The 

explicit solver LS-DYNA has been used to simulate the dynamic impingement process.  

The main contributions of this paper are: 

 Development of a novel 3D FE model with the ability to simulate randomly distributed shots. 

 Establishing a relationship between resulting arc height and number of peening shots. With 

this relationship, shot peening intensity can be simulated. 

 Establishing a relationship between surface coverage and number of peening shots. 

 Establishing a relationship between surface roughness and number of peening shots. 

 Characterization of the influence of peening angle on peening results, such as intensity, 

surface coverage and roughness, as well as residual stress. 

This article was published in the journal Advances in Engineering Software, 2009, Vol. 40, 

pp.1023-1038. The objective of this journal is to communicate recent and projected advances in 

computer-based engineering techniques. This article was written almost entirely by the author of 

this thesis.  
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This article explains the basic concepts and technical terms used in shot peening, such as 

intensity and coverage, as simulated with the novel 3D FE model. As stated in its title, this paper 

presents potential applications that are validated in the second paper. 

3.2 Article 2: Experimental study of shot peening and stress peen 

forming (Objective 2) 

This article introduces shot peening and stress peen forming experiments designed by the author 

of this thesis. In this article, the relationship between peening intensity and surface coverage with 

respect to peening time was established for aluminum 2024.  

Another purpose of this article is to perform a stress peen forming process and to determine the 

quantitative relationship between the prebending moment and the resulting arc height. 

The main original contributions of this paper are: 

 Establishment of a quantitative relationship between resulting arc height and peening time. 

With this relationship, shot peening intensity and saturation time can be calculated. 

 Establishment of a quantitative relationship between peening surface coverage and peening 

time.  

 Establishment of a quantitative relationship between peening surface roughness and peening 

time.  

 Measurement by X-Ray Diffraction (XRD) of residual stress profiles after shot peening on a 

thick component, after conventional peen forming and stress peen forming. 

 Establishment of a quantitative relationship between prebending conditions (prebending 

moment) and resulting arc height and radius of curvature with a pre-stressing device designed 

by the author of this thesis.  

This article was accepted by the Journal of Material Processing Technology. This journal covers 

the processing techniques used in manufacturing components from metals and other materials. 

This article was written almost entirely by the author of this thesis.  

This article introduces the shot peening procedure, equipment as well as the shot peening and 

stress peening results in the experiments. The experimental results under different shot peening 
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conditions have been used to validate the developed FE models introduced in the first and third 

papers. 

The procedure and the device in the experiments were all designed by the author of this thesis. 

The operation of the shot peening machine and robot during the shot peening and stress peen 

forming processes were performed with the help of Dave Demers (Second author of this article), 

a bachelor student at École Polytechnique de Montréal. 

3.3  Article 3: A numerical study of the stress peen forming process 

(Objective 3) 

This article presents a numerical study of the stress peen forming process. In this article, a three-

step numerical model was developed to simulate the stress peen forming process.  

The main contributions of this paper are: 

 Development of an implicit-explicit-implicit FE procedure to simulate stress peen forming 

successfully. Firstly, an implicit FE model with ANSYS was established to simulate the pre-

stress process. Secondly, an explicit FE model was developed, the same as is introduced in 

the first article (Chapter 4), and was used to simulate the dynamic shot peening process. 

Finally, an implicit FE model with ANSYS was developed to calculate deformed arc height 

and radius of curvature after stress peen forming. 

 Establishment of a relationship between the prebending moment and the resulting arc height 

and radius of curvature. 

 A comparison is presented of the predicted numerical results with the experimental results 

presented in article 2 (Chapter 5). The relatively good fit to the experimental results shows 

that both the novel 3D FE model described in the first article, as well as the three-step FE 

model described in this article, are both practical and reliable.   

This article was submitted to the journal Advances in Engineering Software, on April 21st, 2010. 

The objective of this journal is to communicate recent and projected advances in computer-based 

engineering techniques. This article was written almost entirely by the author of this thesis.  
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3.4 Article 4: An analytical approach to relate shot peening 

parameters to Almen intensity (Objective 4) 

This article analyzes the shot peening process theoretically and presents an analytical model 

based on Hertz contact theory for the prediction of Almen intensity and residual stress 

distribution for an Almen strip. With this model, the influence of shot peening parameters, such 

as shot type (steel and ceramic), size, velocity and peening angle on the Almen intensity, can be 

studied easily. 

The main contributions of this article include: 

 An explanation of the shot peening principles as well as the internal stress profiles during 

impingement, after rebound of shot and after the release of boundary conditions of the Almen 

strip. 

 The development of an analytical model that can predict the Almen intensity and shot-

induced residual stress for Almen strips, for any combination of peening parameters (shot 

type, size, velocity, peening angle). The model was solved with MATLAB, the calculation for 

each case takes only a few seconds, while the calculation with the 3D random FE model takes 

several days.  

 The study of the effect of shot velocity and size on the resulting Almen intensity. These 

results can be used as a tool for determining the various possible combinations of peening 

parameters required to obtain given Almen intensities. 

This article was submitted to the journal Surface and Coating Technology on February 15th  2010. 

This journal is an international archival journal that publishes scientific papers on surface and 

interface engineering. This article was written almost entirely by the author of this thesis. 
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CHAPITRE 4  ON THE POTENTIAL APPLICATIONS OF A 3D 

RANDOM FINITE ELEMENT MODEL FOR THE SIMULATION OF 

SHOT PEENING 

H.Y. Miao, S. Larose, C. Perron, Martin Lévesque, Advances in Engineering Software, 40, pp. 

1023-1038, 2009.  

4.1 Abstract 

Shot peening is a cold-working process that is used mainly to improve the fatigue life of metallic 

components. Experimental investigation of the mechanisms involved in shot peening is very 

expensive and complicated. Therefore, the Finite Element (FE) method has been recognized as an 

effective mean for characterizing the shot peening process and several types of FE models have 

been developed to evaluate the effects of shot peening parameters. However, in most of the 

existing FE models, the shot peening sequence and impact location were defined a priori. It is 

therefore the purpose of this study to consider the random property of the shot peening process. A 

novel 3D FE model with multiple randomly distributed shots was developed combining a Matlab 

program with the ANSYS preprocessor. The explicit solver LS-DYNA has been used to simulate 

the dynamic impingement process. Several potential applications of this novel model such as: the 

quantitative relationships of the peening intensity, coverage and roughness with respect to the 

number of shots have been presented. Moreover, simulations with multiple oblique impacts have 

been carried out in order to compare with results from normal impingements. Our work shows 

that such a computing strategy can help understanding and predicting the shot peening results 

better than conventional FE simulations. 

4.2 Introduction 

Shot peening is a mechanical surface treatment widely used to improve the fatigue life of metallic 

components in the aerospace and automobile industries. This process is accomplished by 

bombarding the surface of a metallic component with shots at high velocities. Each shot acts as a 

tiny peening hammer, compressing and stretching the metallic surface. An indentation 

surrounded by a plastic region is created during this impingement. The plastic deformation leads 

to a residual stress profile through the thickness of the component. This residual stress profile is 
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compressive at the top surface and tensile in the thickness of the component in order to ensure 

equilibrium. The layer of compressive residual stress reduces the likelihood of premature failure 

under cyclic loading conditions (Meguid, 1975; Webster  and  Ezeilo, 2001; Rodopoulos et al. 

2004). 

Several studies dealt with the theoretical aspects of shot peening (Meguid, 1975; Al-Obaid, 1995; 

Kobayashi et al. 1998). Numerical simulation of the process was made possible with the 

development of the finite element method and the rapid development of computational power. 

Subsequently, six main types of finite element models have been established to simulate the shot 

peening process: 

 

Figure 4.1 Six types of existing models for simulating the shot peening process: a) 2D 

axisymmtric model  (Mori et al. 1994); b) 3D model with four symmetry surfaces (Meguid et al. 

2002); c) 3D model with three symmetry surfaces (Schiffner and Droste gen. Helling, 1999); d) 

3D model with two symmetry surfaces (Guagliano, 2001); e) 3D model with one symmetry 

surface (Baragetti, 2001); f) 3D model without symmetry (Schwarzer et al. 2003). 
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1) Mori et al. (1994) introduced an axisymmetric model to simulate the plastic deformation of 

the workpiece and the shot as shown in Figure 1.7a). Levers and Prior (1995) performed a 2D 

dynamic analysis with a deformable component and a rigid spherical shot to study the 

residual stress profile induced by shot peening. Schiffner and Droste gen. Helling (1999) used 

a similar axisymmetric model for simulating the residual stress profile in an elastic-plastic 

surface subjected to perpendicular shots with different shot peening parameters. Rouhaud and 

Deslaef (2002) and Rouhaud et al. (2005) investigated the influence of the shot and 

component material properties upon the residual stress profiles with a similar axisymmetric 

model. Meo and Vignjevic (2003) predicted the residual stress profile resulting from the shot 

peening process with this type of model for welded joints applications. 

2) Meguid et al. (2002) developed a periodic symmetry cell with a square contact surface as 

shown in Figure 1.7b). The main advantage of this model is its ability to simulate multiple 

impacts with a reduced model size. Majzoobi et al. (2005) investigated the effects of shot 

velocity upon the residual stress profile and the development of the shot peening coverage. 

Meguid et al. (2005) implemented a slightly different cell that consisted of 5 simple unit cells 

to study the relaxation of peening residual stresses due to cyclic thermo-mechanical overload. 

3) Schiffner and Droste gen. Helling (1999) created a 3D model with an equilateral triangle 

impact surface and three symmetry surfaces to investigate the effect of adjacent shots, as 

shown in Figure 1.7c). Their results showed that the interaction between adjacent shots 

should be taken into account. 

4) Edberg et al. (1995) simulated multiple impingements between the shots and a surface using a 

3D model with two symmetry surfaces as shown in Figure 1.7d). Meguid et al. (1999a; 

1999b) used this kind of model to study the residual stress profiles resulting from single and 

twin indentations. The effect of the separation distance between two impinging shots on the 

equivalent stress contours and residual stresses was presented. Deslaef et al. (2000) and 

Guagliano (2001) employed a similar model with four impacts (being equivalent to nine 

impacts due to the symmetry of the problem) to predict residual stresses. Guagliano (2001) 

related these stresses to Almen intensity. Al-Hassani et al. (1999) used this type of model to 

simulate single and multiple impacts with an in-line configuration. 
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5) Al-Hassani et al. (1999) developed a half circular 3D finite element model with one 

symmetry surface as shown in Figure 1.7e) to simulate a single shot impact with an oblique 

incidence angle. Guagliano et al. (1999) and Baragetti (2001) used a similar model to study 

the residual stress profiles produced by one and two shot impacts. Hong et al. (2008a) 

conducted a parametric study based on that model to investigate the effect of shot diameter, 

impact velocity, incident angle and component material properties on the residual stress 

profile. 

6) Schwarzer et al. (2003) implemented a 3D model without  symmetry boundary condition as 

shown in Figure 1.7f). This model is more representative than the previous models as it 

considers independent impacts. Their results showed that the impact sequence has a great 

influence upon the shot peening results. 

Among these six types of models, the axisymmetric model in Figure 1.7a) is the smallest model 

in terms of degrees of freedom. Therefore, it allows conducting parametric studies of the shot 

peening process within a relatively short time. However, it does not represent the real shot 

peening process since all simulated impacts take place over a single location. Figure 1.7b) and c) 

represent infinite components with fewer elements. In these models, numerous shots impact the 

component simultaneously due to the symmetry conditions imposed. Models Figure 1.7d) – f) 

represent more accurately the real shot peening process at the cost of computer resources. In 

addition, models Figure 1.7a) – d) can only simulate normal impacts. In all of these existing 

models, the locations and sequence of the multiple shot impacts have been defined a priori 

(Meguid et al. 2002; Majzoobi et al. 2005; Meguid et al. 2005). 

Numerous shot peening parameters have a great influence on the effectiveness of the shot 

peening treatment. These can be classified into three groups: shot, target and flow parameters 

(Kyriacou, 1996): 

 Shot parameters: size, shape, integrity, density, hardness, yield strength, stiffness, etc. 

 Target parameters: hardness, yield strength, stiffness, work hardening characteristics, 

chemical composition, pre-stress condition, etc. 

 Flow parameters: mass flow rate, shot velocity, angle of impingement, stand-off distance, etc. 
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The effects of most of these parameters upon the residual stress profiles have been studied by 

theoretical analysis and finite element method (Al-Obaid, 1990a; Meguid et al. 1999a; Meguid et 

al. 1999b; Schiffner and Droste gen. Helling, 1999). However, investigations related to shot 

peening intensity, surface coverage and surface roughness were performed mainly through 

experiments (Fathallah, 1994; Herzog et al. 1996; Karuppanan et al. 2002; Bignonnet et al. 1987; 

Clausen and Stangenberg, 1999). 

Peening intensity is an important control parameter for the practical shot peening process. It is 

related to the amount of kinetic energy transferred from the shot stream to a work piece during 

the shot peening process (Kyriacou, 1996). A method widely used to quantify peening intensity 

was introduced by John Almen (Almen and Black, 1963) and is called Almen intensity. The 

method consists in peening a standardized strip of given dimensions and material, called Almen 

strip, which is fixed to a mounting fixture by means of four roundhead bolts. Once the bolts are 

removed, the strip will curve towards the peening direction. The resulting arc heights under 

different shot peening times can be measured. Shot peening saturation is defined as the point, on 

the curve of peening time versus arc height, beyond which the arc height increases by less than 

10% when the peening time doubles. Guagliano (2001) established a relationship between Almen 

intensity and the shot peening parameters (shot type, shot velocity and shot size) based on the 

residual stress profiles beneath the centerline of the impact point. Karuppanan et al. (2002) 

developed an algorithm for determining the saturation point by means of full regression analysis. 

They applied Equation (4.1) to fit the experimental data  

ሺܶሻ݄ܣ  ൌ ஻

ሺ்ାௗሻ೛ െ ஻

ௗ೛   (4.1) 

where ݄ܣሺܶሻ is the arc height, ܤ, ݀ and ݌ are fitting parameters and ܶ  is the peening time. 

Coverage is defined as the ratio of the area covered by peening indentations to the total treated 

surface area, expressed in percentage. Similar to the peening intensity, the effectiveness of the 

peening treatment depends greatly on the peening coverage (Meguid et al. 2002). Most of 

coverage studies are based on visual inspection and theoretical models. Visual inspection is the 

standard method for coverage evaluation. For practical purposes, the maximum coverage that can 

be assessed visually is around 98%, since coverage percentages are difficult to discriminate as 

100% coverage is approached. Thus, 98% surface coverage is usually considered as full 

coverage. Moreover, 200% coverage is defined as peening twice the exposure time required 
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achieving full coverage (98%) according to SAE J443. Kirk and Abyaneh (1993) and Kirk (2002, 

2005) discussed the theory of coverage for random indentations, which assumes that statistically 

random shot particles arrive at the component’s surface at a constant rate and create circular 

indents of constant size. A simplified treatment of that theory based on the application of an 

Avrami equation is presented by Kirk and Abyaneh (1993) as: 

௧௛ሺܶሻܥ  ൌ 100 ൈ ൫െ݁ିగ௥ҧమோ்൯ (4.2) 

where ܥ௧௛ሺܶሻ is the theoretical calculated coverage, ݎҧ  is the average radius of the indentations, ܴ 

is the rate of creation of impacts (number of impacts per unit area per unit time) and ܶ is the 

peening time. 

Equation (4.2) was expressed in terms of peening parameters (Kirk and Abyaneh, 1993) and 

(Karuppanan et al. 2002) as: 

௧௛ሺܶሻܥ  ൌ 100 ൈ ቆ1 െ ݁
ି యೝഥమ೘ሶ ೅

రಲഥೝయഐೞቇ (4.3) 

where ሶ݉  is  the mass flow rate of the shots, ܣҧ  is the peening area on the treated component, ݎ is 

the average radius of the shots and ߩ௦ is the density of the shots. 

It is worth noting that Equations (4.2) and (4.3) rely on the assumption that statistically-random 

shot particles are impinging an infinitely-large plate at a constant rate and creating circular 

indents of constant size. 

The projection of shots at high velocity produces indentations on the surface of the treated 

material and results in an increased surface roughness. A surface of higher surface roughness 

presents more irregularities, which act as stress concentrations and cause a reduction of the 

fatigue life of the treated component (Sharp et al. 1994). In practice, surface roughness 

parameters are mainly determined with the help of electronic contact (stylus) instruments. 

However, the measurement results depend strongly on the selections of the scanning length and 

the limit wavelength (Clausen and Stangenberg, 1999). 

Few investigations have been performed to study the effect of the impingement angle upon the 

shot peening results. Ebenau et al. (1987) conducted an experimental study of the influence of 

shot peening angle on the residual stress distributions and the bending fatigue behavior. Their 

results showed that perpendicular shot peening led to a higher fatigue life than peening with an 
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angle of 45°. Al-Hassani et al. (1999) simulated a single shot impacting the target at an oblique 

incidence angle with a finite element model. Schwarzer et al. (2003) studied the influence of the 

impact angle on the residual stress profile by simulating the impacts of 19 shots. The results 

showed that normal impacts produce both larger surface and larger maximum compressive 

residual stress values when compared to oblique impacts. 

In light with this literature survey, it is possible to list the limitations of the existing studies: 

 In most of the existing finite element models, the shot peening sequence and location 

were defined a priori according to a certain pattern. This is of course an over-

simplification of the real shot peening process. 

 Most of the investigations related to intensity, coverage and roughness were based on 

experiments and theory. No numerical study has been performed in order to relate them to 

shot peening time (or number of shots). 

 Almen intensity is defined based on Almen strips made of steel SAE1070, which may be 

different from the practical peened component. Therefore, it is impossible to establish a 

direct relationship between the development of coverage on Almen strips and that on the 

practical component. 

The objective of this work is to develop a finite element model that can better simulate the real 

shot peening process. A 3D finite element model with numerous randomly distributed steel shots 

bombarding an aluminum component at a certain velocity is developed as an example. With this 

model, the shot peening intensity, saturation, surface coverage, surface roughness and the angle 

of impingement can be studied in details. The model provides a useful tool for the designer for 

guiding his choices of the optimal shot peening parameters. 

This article is divided into eight sections. Section 4.3 describes a newly developed 3D random 

finite element model. Sections 4.4 and 4.5 present simulated curves obtained with the 3D random 

model for saturation and residual stress profiles after normal and oblique shot peening. Sections 

4.6 and 4.7 deal with surface coverage and surface roughness, respectively. Section 4.8 concludes 

the work and the last section lists future works. 
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4.3 3D random finite element model 

During the shot peening process, numerous shots impact the component at random locations and 

in a random sequence. The finite element model developed in this paper consists of a large 

number of identical shots impinging an aluminum target at normal or oblique incidence angles, 

randomly. In order to simulate these randomly distributed shots, a Matlab program combined 

with ANSYS APDL (ANSYS Program Design Language) were used to generate the random 

coordinates of each shot. Explicit solver LS-DYNA has been used to simulate the dynamic 

impingement process. 

It is assumed that all shots are rigid due to their relatively high yield and hardness values, when 

compared to the target material (Meguid et al. 1999b). All the shots have the same radius 

ݎ) ൌ 0.5mm), density (ߩ௦ ൌ 7800kg/m3), velocity (ݒ ൌ 50m/s) and impact angles (90° or 60°). 

An aluminum plate with dimensions 5mm×5mm×3mm was selected as the target component 

in this shot peening model. A Coulomb friction coefficient ߤ ൌ 0.2  was defined between the 

shots and the target component since its influence on the residual stresses and plastic strains is 

negligible for 0.1 ൏ ߤ ൏ 0.5 (Meo and Vignjevic, 2003). 

The aluminum is assumed to obey an elasto-plastic behavior with isotropic hardening. In the 

simulation, the elastic modulus ܧ ൌ 71.7GPa, the Poisson’s ratio ߭ ൌ 0.33, the density ߩ௧ ൌ

2810kg/m3 , the initial yield stress ߪ௬ ൌ 503MPa
 
and the linear strain-hardening parameter 

ଵܪ ൌ 3.3GPa have been selected in the FE calculation. In this study, the potential strain rate 

sensitivity of the material was not taken into account. Similar assumption were used by other 

authors for the simulations of the shot peening process (Meguid et al. 1999b; Guagliano,  2001;  

Rouhaud et al. 2005  and Hong et al. 2008a). 

For this 3D non-symmetrical model with multiple shots, the most important limitation in the 

calculation is the solution time. It is therefore important to use an appropriate meshing since the 

minimum element size determines the total solution time in the explicit finite element code. After 

convergence study, an impact area of 2mmൈ2mmൈ1mm was discretized into a fine mesh with 

elements of dimensions 0.05mmൈ0.05mmൈ0.05mm. Reduced one-node integration was used to 

decrease the computational time. These simulations required approximately 1GB of RAM. In this 
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paper, the shot peening parameters, the dimensions of target plate and the material properties of 

aluminum plate were fixed for the sake of simplicity. 

In order to study the relationships between intensity, coverage, roughness and the number of 

shots, the simulations corresponding to 5 different numbers of shot impacts ܰ= {6, 12, 24, 48 and 

96} were carried out. The initial coordinates of these shots were generated with a Matlab 

program. The origin of the coordinates system is located at the center of the aluminum plate top 

surface. The ݖ-axis is directed towards the depth direction of the component and the ݔ- and ݕ-

axes are along the model sides (see Figure 4.2a). In the case of normal impingement, the 

coordinates of the center of each shot are obtained by: 

 
ݔ ൌ െ0.75 ൅ 1.5 ൈ randሺ1,1ሻ
ݕ ൌ െ0.75 ൅ 1.5 ൈ randሺ1,1ሻ

ݖ ൌ െ0.5 െ ሺܰ െ 1ሻ ൈ 0.5 ൈ randሺ1,1ሻ
 (4.4) 

where randሺ1,1ሻ is a uniform pseudo-random number generator in the interval [0, 1]. After 

automatic and random generation of shot center position, spherical shots were created and 

meshed. Then a velocity of 50m/s in the z direction was applied to all shots and the simulation 

was started. 

In the case of 60° oblique impingement, the coordinates of each shot are obtained by: 

 
ݕ ൌ െ0.75 ൅ 1.5 ൈ randሺ1,1ሻ

ݔ ൌ െ0.75 െ ሺܰ െ 1ሻ ൈ 0.5 ൈ randሺ1,1ሻ
ݖ ൌ െ0.75 ൅ 1.5 ൈ randሺ1,1ሻ ൅ ሺݖ െ 0.5ሻ/tanሺ60°ሻ

 (4.5) 

For better comparison with normal impacts, the shot velocity was kept constant at 50m/s. Thus, 

a velocity of 50 ൈ cosሺ60°ሻm/s  in ݔ the direction and a velocity of 50 ൈ sinሺ60°ሻm/s  in the ݖ  

direction were applied to all shots to represent a 60° oblique incidence. 

For both cases, the centers of the indentations are located in an area of 1.5mmൈ1.5mm. The 

coordinates of the first sphere were randomly generated with Equation (4.4) or (4.5). Then for 

each new sphere, if the distances between all the existing spheres are greater than an assumed 

value 0.75mm, the sphere is accepted. Otherwise, the sphere is rejected and the coordinates of a 

new sphere are generated until the distance condition mentioned above is reached. This minimum 

distance value has been set arbitrarily and we believe that it might have some influence upon the 

final results. Such consideration is let for future studies. In addition, only the contacts between 
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the shots and the aluminum target have been defined. The contacts between the shots, such as the 

impact shots and the rebound shots, are ignored for simplicity. Therefore, the shot stream thus 

simulated could be interpreted as an effective stream. Finally, an APDL code was written with 

the Matlab program in order to automatically mesh the shots in ANSYS. For each number of 

shots under investigation, five models were generated in order to study the random aspects of the 

peening process. 

Figure 4.2 shows the model thus developed. Figure 4.2(a) presents 24  random shots 

perpendicularly impacting the component, Figure 4.2(b) presents 24 random shots impacting the 

component with an oblique angle of 60° in the ݖݔ-plane. The displacements normal to the bottom 

and four side surfaces of the target block were fixed. The top surface was free.  

 

 

Figure 4.2: Random finite element model: (a) multiple shots impinging an aluminum component 

at normal incidence; (b) multiple shots impinging an aluminum component at 60° angle of 

incidence. 
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Figure 4.3: Representative surface. (Region 1: aluminum surface. Region 2: fine element region. 

Region 3: boundary of the shots centers. Region 4: representative surface.) 

Figure 4.3 presents the surface impact region and the representative surfaces for the intensity, 

coverage and roughness studies described in the following sections. Region 1, with dimensions 

5mmൈ5mm , is the total target component for the simulation. Region 2, with dimensions 

2mmൈ2mm, is the boundary of the impacting shots. All the shot centers lie within Region 3, of 

dimensions 1.5mmൈ1.5mm . Region 4, with dimensions 1mmൈ1mm , is selected as the 

representative surface for studying the surface coverage and roughness. A volume of 

1mmൈ1mmൈ3mm is selected as a representative volume to study the average induced stress 

profile, saturation and intensity. All these dimensions were chosen arbitrarily since our objective 

is to study the influence and the usefulness of simulating random impacts. The problem of 

defining a simulation area that is representative of the whole component is let for future 

investigation. 
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Figure 4.4: Sketch of shot peening on a strip with dimensions 76mmൈ19mmൈ3mm. (a) Shot 

peening of a strip with bolts. (b) Induced stress profile in the strip. (c) Arc height of the deformed 

strip. 

4.4 Shot peening intensity and saturation 

4.4.1 Arc height calculation with induced stress profile 

The Almen intensity is usually determined with standard Almen steel strips. In practice, however, 

shot peening can be applied on different materials such as aluminum. In this paper, a shot 

peening saturation curve on an aluminum plate was simulated. 

In order to simulate a saturation curve, an aluminum strip with dimensions 

76mmൈ19mmൈ 3mm is fixed with bolts as shown in Figure 4.4(a). As peening takes place, 

gradual plastification of the component surface layers produces an induced stress profile in ݔ-

direction ߪ௫
௜௡ௗ as shown in Figure 4.4(b). 

The induced stress profile in Figure 4.4(b) is not self-equilibrated and tends to stretch and bend 

the strip. Therefore, a compressive force ܨ௫ and a bending moment ܯ௫ must be applied on the 

strip by the rigid support in order to maintain the strip in a flat shape. Equations (4.6) and (4.7) 

are the force and moment equilibrium equations for this case, namely 

׬  ௫ߪ
௜௡ௗ௧

଴ ܾdݖ ൅ ௫ܨ ൌ 0 (4.6) 

׬  ௫ߪ
௜௡ௗ௧

଴ ቀ௧

ଶ
െ ቁݖ bdݖ ൅ ௫ܯ ൌ 0 (4.7) 
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where ܾ ൌ 19mm  is the width and ݐ ൌ 3mm is the thickness of the strip. 

After the release of the rigid constraints due to the support and bolts, the originally flat strip will 

stretch and bend, as shown in Figure 4.4(c). The superposition principle is used in order to 

calculate the resulting bending. It is assumed that the strip is subjected to the inverse of the force 

and moment calculated from Equations (4.6) and (4.7) by using the theory of elasticity. 

Therefore, the residual stress profile after the deformation of the strip can be calculated as: 

௫ߪ 
௥௘௦ ൌ ௫ߪ

௜௡ௗ ൅ ிೣ

஺
൅

ெೣቀ೟
మ

ି௭ቁ

ூ
 (4.8) 

where ܣ is section area of the target component and ܫ is the moment of inertia of the target 

component. 

Finite element simulation of such a strip with a bending moment and a stretching force induced 

by shot peening showed that the influence of the stretching force on the arc height is negligible. 

Therefore, in the following study, only the bending effect of the strip has been considered in 

order to calculate the arc height. For this specific rectangular strip, the length is four times the 

width, so the arc height along the length is 16 times of which along the width. Therefore, only the 

result along the length direction is considered and expressed as: 

ݏܪܣ  ൌ ଷெೣ௟మ

ଶா௕௧య (4.9) 

where ݈ ൌ 76mm is the length of the strip. 

4.4.2 Shot peening saturation curve with FEM – normal impacts 

Five dynamic simulations were performed for each number of shots N = {6, 12, 24, 48 and 96}. 

For each of these simulations, ߪ௫
௜௡ௗ  were averaged over the whole ݕݔ-plane of the representative 

volume in the z direction. In order to obtain these average induced stress profiles, 9 ൈ 9 ൌ 81 

uniformly distributed paths following the depth of the plate in the representative volume were 

defined by ANSYS General Postprocessor. SX values were interpolated into each of these 81 

paths respectively. Then the average values of SX for constant depths were calculated from these 

81 paths to represent ߪ௫
௜௡ௗ. Arc heights can be calculated with Equations (4.7) and (4.9) with 

these averaged induced stress profiles. 
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Figure 4.5 presents the 25 arc heights calculated from simulation results ݏܪܣ. An equation of the 

form:  

ሺܰሻ݂ܪܣ  ൌ ௣భேమା௣మே

ேା௤భ
 (4.10) 

is fitted according to a least squares criterion through these 25 simulated values. A regression 

coefficient ܴଶ ൌ 0.9812 has been obtained in this case. With the help of Equation (4.10), it is 

possible to calculate a saturation point, beyond which when the number of shots doubles, the arc 

height increases by 10% with the Fminsearch function in Matlab.  

It was found that the arc height reaches saturation for ܰ = 48 and for an intensity of 1.1409mm. 

Therefore, our model predicts that saturation of this specific aluminum strip, according to the 

Almen intensity definition, is reached after 48 shots for the shot peening conditions we have 

simulated. 

A 95% confidence interval on the mean value of arc height has been computed for each number 

of shots. Then, the width of this confidence interval has been normalized with respect to the mean 

value and is presented in Figure 4.5. This normalized confidence interval is used as an indication 

of the relative scatter as the number of shots increases. It can be seen from the figure that the 

relative scatter decreases significantly as the number of shots increases. This might be explained 

by the fact that the induced stress field becomes more uniform as the number of shots increases. 
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Figure 4.5: Simulated arc heights for normal impacts versus the number of shots. 

4.4.3 Shot peening saturation curve with FEM – 60° impact angle  

Shot peening impact angle has a significant influence on the shot peening results. Most of the 

existing finite element models can be used to investigate the influence of shot size and velocity. 

However, few of them are suitable for the investigation of the influence of the peening angle 

because of symmetry considerations.  

Figure 4.6 presents the general case with normal impacts (case 1) and oblique impacts (case 2). 

For normal impacts (case 1), shots have an impingement angle of 90° with respect to the ݔ-axis in 

the ݖݔ-plane. For oblique impacts (case 2), shots have an impingement angle of 60° with respect 

to the ݔ-axis in the ݖݔ-plane. For oblique impacts, 5 random simulations for each ܰ= {6, 12, 24, 

48 and 96} were performed to obtain average induced stress profiles and arc heights. Equation 

(4.10) was fitted through these 25 arc heights data with a regression coefficient ܴଶ ൌ 0.9603. 

Shot peening saturation was obtained for ܰ=78, which corresponds to a deflection of 0.8137mm.  
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Figure 4.6: Two impact cases: (a) normal impact; (b) oblique impact with 60° impact angle with 

respect to ݔ-axis in the ݖݔ-plane. 

 

 

Figure 4.7: Effect of shot peening angle upon the arc heights versus the number of shots for two 

shot peening cases as shown in Figure 4.6. 1݂ܪܣሺܰሻ) and 2݂ܪܣሺܰሻ are fitting Equation (4.10) 

for normal impact and oblique impact respectively; NCI1 and NCI2 are normalized 95% 

confidence interval for these two cases respectively. 
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Figure 4.7 presents the saturation curves for these normal impacts and oblique impacts. It can be 

seen that the deflection at saturation (intensity in the case of Almen strips) decreases when the 

impact angle decreases, while the peening time to reach saturation increases. The 95% confidence 

intervals on the mean values have been computed for oblique impacts. As for the normal impacts, 

it can be found that the Normalized Confidence Interval decreases globally as the number of 

shots increases. However, for the oblique impact, its variation is not monotonous. The reason for 

such behaviour is not clear but could be related to the random property of the process and 

simulation. A reasonable assumption would be that an increased number of simulations would 

reduce the scatter in simulation results. 

 

 

Figure 4.8: Comparison of the residual stress profiles  ߪ௫
௥௘௦ after normal shot peening (case 1) and 

oblique shot peening (case 2) respectively with shot radius ݎ ൌ 0.5mm, shot velocity ݒ ൌ 50m/s 

and number of shots ܰ= 48. 
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4.5 Residual stress profiles of shot peening 

4.5.1 Residual stress profiles after normal and oblique shot peening  

Figure 4.8 compares the residual stress profiles ߪ௫
௥௘௦ calculated from the induced stress profiles, 

after 48 normal and oblique impacts, with Equation (4.8). For these two cases, the residual stress 

is compressive at both the top and bottom surfaces of the component. This result is typical for 

shot peening on thin components. Normal peening produces higher maximum compressive 

residual stress and higher surface compressive residual stress.  

4.5.2 Comparison of residual stress profiles with reference models  

Figure 4.9 and Figure 4.10 present the induced and residual stress profiles calculated with 

different finite element methods. In these two figures, curve (1) represent  ߪ௫
௜௡ௗ and ߪ௫

௥௘௦ beneath 

the impact point of model (b) in Figure 4.1 with one shot impact. Curves (2) and (3) represent 

௫ߪ
௜௡ௗ  and ߪ௫

௥௘௦  beneath the centerline of model (d) in Figure 4.1 after five shot impacts. The 

sequences and impact locations of the five shots are as in (Guagliano, 2001) with an indentation 

distance ݀ݏ ൌ 0.4mm and ݀ݏ ൌ 0.3mm, respectively. Curves (4) are ߪ௫
௜௡ௗ and ߪ௫

௥௘௦ and obtained 

for the new model introduced in this paper, for 48 shots. 
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Figure 4.9: Induced stress profiles ߪ௫
௜௡ௗcalculated from different finite element models with shot 

radius ݎ ൌ 0.5mm, shot velocity ݒ ൌ 50m/s and for normal shot peening. 

 

Figure 4.10: Residual stress profiles ߪ௫
௥௘௦ calculated from different finite element models with 

shot radius ݎ ൌ 0.5mm, shot velocity ݒ ൌ 50m/s and for normal shot peening. 
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It can be seen from these curves that significantly different results can be obtained for the various 

modeling strategies tested in this study. For both ߪ௫
௜௡ௗ  and ߪ௫

௥௘௦ , very different results can be 

obtained for the surface and maximum compressive stresses. In addition, curves (2) and (3) show 

that the shot location can have a significant effect on the ߪ௫
௜௡ௗ and ߪ௫

௥௘௦
  profiles. We believe that 

the new model introduced in this study will lead to more representative results than the previous 

models since it is based on more realistic hypotheses. This will be verified in future works with 

X-Ray Diffraction measurements. 

4.6 Shot peening coverage 

4.6.1 Surface plastic strain after one impact 

Shot peening coverage is defined in terms of surface plastic indentation as introduced in Section 

4.2. Two simple shot peening simulations with one shot were performed in order to compare the 

plastic indentations produced by one normal impact and one oblique impact with the model 

developed in this paper. 

Figure 4.11 presents the von Mises equivalent plastic strain contour in the ݖݔ-plane passing 

through the model center after one normal impact. The results show that the maximum plastic 

strain is beneath the impact point. 

Figure 4.12 shows the equivalent plastic strain and ௭ܷ displacement profiles at the component 

surface. A pile up around the indentation can be observed. Considering that the pile up is not part 

of the indentation, the boundary of the indentation can be defined as the contour line with null ௭ܷ 

displacement. From that definition, an indentation of radius ݎҧ ൌ 0.2mm was obtained for this 

shot peening case. In addition, the von Mises equivalent plastic strain is equal to 0.027 at the 

boundary of the indentation. Therefore, we considered all points on the surface with the von 

Mises equivalent plastic strain larger than 0.027 as impacted material. This definition allows 

evaluation of peening coverage after single and multiple impacts. 
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Figure 4.11: von Mises equivalent plastic strain contour after one normal shot impact (cutting in 

the ݖݔ plane). 

 

Figure 4.12: von Mises plastic strain profile and indentation profile of the surface nodes (with 

 after one normal impact (0=ݖ and 0=ݕ
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Figure 4.13: von Mises equivalent plastic strain contour after one 60° oblique impact (cutting in 

the ݖݕ-plane). 

 

Figure 4.14: von Mises equivalent plastic strain contour after one 60° oblique impact (cutting in 

the ݖݔ-plane). 
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Figure 4.13 and Figure 4.14 present von Mises equivalent plastic strain contours after one shot 

impact for oblique impacts in the ݖݕ-plane and in the ݖݔ-plane respectively. Similar to the results 

of the normal impact, the plastic strain contour in the ݖݕ-plane is symmetric. However, the plastic 

strain contour in the ݖݔ-plane is no longer symmetric. 

 

 

Figure 4.15: von Mises plastic strain profile and ௭ܷ displacement profile of the surface nodes 

(with 0=ݕ and 0=ݖ) for normal peening and oblique peening respectively. (ߝ௣ ,90° represents 

plastic strain after one normal impact; ௭ܷ, 90° represents ௭ܷ after one normal impact; ߝ௣ , 60° 

represents plastic strain after one oblique impact; ௭ܷ, 60° represents ௭ܷ after one oblique impact). 
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Figure 4.15 presents the comparison of von Mises plastic strain and ௭ܷ displacement profiles of 

the nodes with ݕ ൌ 0 and ݖ ൌ 0 for cases 1 and 2. This figure clearly shows that the surface 

plastic indentation profiles after a normal or an oblique impingement are quite different: 

 The surface plastic strains after a normal impact are smaller than after an oblique impact. 

 In the case of a normal impact, the surface plastic strain contour is symmetric while it is 

not in the case of an oblique impact. For an oblique impact, the plastic strain has a larger 

value on the side whose normal is along the shot trajectory than on the other side. 

 In the case of a normal impact, a plastic strain value ߝ௣
כ ൌ 0.027 reveals an indentation 

with a diameter 0.4mm, while in the case of an oblique impact, a plastic strain value  

௣ߝ
כ ൌ 0.027 relates to a plastic indentation with a width equal to 0.5mm in the ݔ direction 

for this specific case. In addition, on the left hand side of Figure 4.15, it seems that 

௣ߝ
כ ൌ 0.027  is not inside the crater left by the indentation but in the pile up. It can be seen 

from Figure 4.15 that it is difficult to define the value of a plastic strain that belongs to an 

impacted region for an oblique shot. 

4.6.2 Numerical simulation of peening coverage with FEM – normal impacts 

In our model, numerous shots impact the surface of the component following a random sequence 

and at random locations. The plastic strain related to indentations on the top layer of the 

component can be related to shot peening coverage. von Mises equivalent plastic strains for the 

441 nodes on the representative surface of the component were obtained through simulations for 

different number of shots impacts. Shot peening coverage was approximated as the ratio of the 

number of nodes with von Mises plastic strains larger than 0.027 to the total number of nodes on 

the representative surface (441). The sensitivity of peening coverage with respect to this 

definition is let for future study. 
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Figure 4.16: Shot peening coverage versus the number of shots after normal impacts. 

Figure 4.16 presents the 25 simulated coverage results ݏܥ for ܰ= {6, 12, 24, 48 and 96}. An 

Avrami Equation (4.11) of the form  

ሺܰሻ݂ܥ  ൌ 100 ൈ ሺ1 െ ݁ି௠ேሻ (4.11) 

was fitted through this data with a fitting parameter m = 0.082 and led to a regression coefficient  

ܴଶ ൌ 0.969 . From Avrami Equation ݂ܥሺܰሻ ൌ 100 ൈ ሺ1 െ ݁ି଴.଴଼ଶேሻ , full coverage (98% 

coverage or 98 =݂ܥ%) is obtained for ܰ=48 under these peening conditions and 200% coverage 

(twice the duration of full coverage) is obtained for ܰ= 96. 

Normalized 95% confidence intervals of the mean values for each ܰ = {6, 12, 24, 48 and 96} are 

shown in Figure 4.16. It can be seen that the scatter in the results decreases with the increase of 

the number of shots. 
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Figure 4.17: Relationship between surface coverage and percentage of peen time. 

4.6.3 Comparison of the simulated coverage with reference studies 

Figure 4.17 presents curves showing the relationship between the surface coverage and the 

percentage of total peening time, defined as the ratio of the number of shots to the total number of 

shots for 98% surface coverage (full coverage). The curves shown in Figure 4.17 summarize the 

experimental results obtained by Knotek and Elsing (1987), where steel shots with ݎ ൌ 0.9mm  

are impacted at the 50CrV4 steel with ݒ ൌ 52m/s and by Cammett (2007), where S280 steel 

shots are impacted at the 4340 steel with intensity equal to 9A, as well as the simulated results in 

this study. It can be seen that very consistent results can be obtained.  

4.6.4 Numerical simulation of peening coverage with FEM-60° angle impacts 

In the case of oblique impacts, the coverage study is based on the aforementioned assumption 

that all surface points where the von Mises equivalent plastic strain is larger than 0.027 are 

considered as pertaining to the impacted area. Therefore, a fitting Equation (4.11) through the 
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simulated data led to fitting parameter ݉ ൌ 0.11 with a regression coefficient ܴଶ ൌ 0.979. It can 

be calculated from the equation that full coverage (98%) is reached after 36 random shots. We 

recall that a more detailed study would be required for defining a more realistic criterion for the 

computation of coverage for the case of oblique impacts. 

Figure 4.18 presents curves fitted through the data points for normal impacts and oblique 

impacts. It can be seen that shot peening with an angle of incidence of 60° reaches full coverage 

earlier than with normal impacts. This is likely to be due to the fact that a larger plasticized area 

is induced on the surface in the case of oblique impact as shown in Figure 4.15. 

 

Figure 4.18: Shot peening coverage versus the number of shots for normal impacts (case 1) and 

oblique impacts (case2) respectively. 
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Figure 4.19: ܸܲ roughness definition: peak-to-valley roughness (Clausen and Stangenberg, 

1999). 

4.7 Surface roughness 

4.7.1 Definition of surface roughness 

One of the most common roughness parameters used in the field of shot peening is the peak-to-

valley roughness (ܸܲ) as shown in Figure 4.19 (Clausen and Stangenberg, 1999). ܸܲ value is 

defined with Equation (4.12) as the distance between the highest peak ܴ௣௘ and the lowest valley 

ܴ௩ within the sampling length, 

 ܸܲ ൌ ܴ௣௘ ൅ ܴ௩ (4.12) 

4.7.2 Peening induced surface roughness with FEM – normal impacts 

After multiple random impacts, the ݖ direction displacements of the nodes on the representative 

surface can be used to evaluate the surface roughness. Simulated surface roughness ܸܲݏ can be 

approximately obtained as: 

ݏܸܲ  ൌ maxሺ ௭ܷሻ െ minሺ ௭ܷሻ (4.13) 

where maxሺ ௭ܷሻ and minሺ ௭ܷሻ ) are the highest peak and the lowest valley within the reference 

area. 

Figure 4.20 presents 25 values of roughness ܸܲݏ from simulation after 6, 12, 24, 48 and 96 

random impacts. As for the intensity study (Section 4.4), an equation of the form: 

 ܸ݂ܲሺܰሻ ൌ ௣భேమା௣మே

ேା௤భ
 (4.14) 
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was fitted through the data and led to ܴଶ ൌ 0.9849. In addition, the Normalized 95% Confidence 

Interval on the mean value has been computed for each number of shots. It can be seen that the 

relative scatter increases slightly as the number of shots increases. One possible explanation for 

this behaviour could be that as the number of shots increases, the possibility of creating a deeper 

valley or a higher peak increases. Such behaviour is also consistent with the fact that ܸܲݏ is 

computed with the extreme values rather than with average quantities. 

From Figure 4.20, it can be seen that the development of roughness can be divided into two main 

stages. During stage I, roughness increases rapidly as each impact creates an isolated indentation 

and independent peaks and valleys. During stage II, many indentations are superimposed so that 

roughness increases at a slower rate. 

 

Figure 4.20: ܸܲ roughness versus number of shots for normal impacts. 
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Figure 4.21: Relationship between surface roughness and peening time from this numerical study 

and the experimental results obtained by (Gentil et al. 1987). 

4.7.3 Comparison of the surface roughness with reference results 

By combining the relationship between coverage and number of shots obtained from Figure 4.16 

(Equation (4.11)) and the relationship between roughness and number of shots obtained from 

Figure 4.20 (Equation(4.14)), it is possible to establish the relationship between the simulated 

surface roughness and the peening time as well as the relationship between the simulated surface 

roughness and the surface coverage . 

Figure 4.21 compares the relationship between surface roughness and peening time from this 

numerical study and the experimental results obtained by Gentil et al. (1987). In the study of 

Gentil et al. (1987), a linear function of the form ܴݖ ൌ 34.8 ൅ 6.2 ௙ܶ was used for best fitting the 

experimental results with regression coefficient ܴଶ ൌ 0.94. In this study, a linear equations with 

the form ܸܲ ൌ 42.5 ൅ 3.98 ௙ܶ was used for best fitting the simulated results with a regression 

coefficients ܴଶ ൌ 0.98 . In this figure, ௙ܶ represents peening time to reach full coverage; 
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0.5 ௙ܶ represents half peening time of ௙ܶ , which corresponds to 86% coverage; 2 ௙ܶ  and 

3 ௙ܶ represent twice and three times ௙ܶ.  

In the study of Gentil et al. (1987), steel shots with ݎ ൌ 0.7mm impacted E460 steel; in our 

model, steel shots with ݎ ൌ 0.5mm impacted aluminum strip. However, it can be seen that the 

numerical results and reference experimental results present similar tendencies. 

 

 

Figure 4.22: PV roughness versus the number of shots for two shot peening cases.ܸ݂ܲ1ሺܰሻ is PV 

roughness for normal impacts; ܸ݂ܲ2ሺܰሻ  is ܸܲ  roughness for oblique impacts; NCI1 is 

Normalized 95% Confidence Interval width for normal impacts; NCI2 is Normalized 95% 

Confidence Interval width for oblique impacts. 
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Table 4.1 Relationship between saturation intensity and full coverage for two shot peening cases. 

Peening 
 angle 

Saturation Full Coverage (98%) 
Number Arc 

height 
(mm) 

Cove-
rage 
(%) 

ࢂࡼ
(mm) 

Number Arc 
height 
(mm) 

Cove-
rage 
(%) 

 ࢂࡼ
(mm) 

Normal 48 1.1409 98 0.0469 48 1.1409 98 0.0469 
Oblique (60°) 78 0.8137 99.9 0.0438 36 0.6837 98 0.0411 

 

4.7.4 Peening induced surface roughness with FEM-60° impact angle 

Equation (4.14) was fitted through the data obtained for ܸܲݏ after 60° oblique impacts. A 

regression coefficient ܴଶ ൌ 0.9814  was obtained. Figure 4.22 presents the fitted ܸ݂ܲሺܰሻ 

equations for normal impacts and oblique impacts respectively.  

With the fitted equations, it is possible to calculate the ܸܲ values corresponding to saturation and 

full coverage for the two shot peening cases. In Figure 4.22, ܵሺ1ሻ and ܥܨሺ1ሻ represent saturation 

and full coverage with ܰ=48 for normal impacts, ܵሺ2ሻ represents saturation for oblique impacts 

with ܰ= 78; ܥܨሺ2ሻ represents full coverage with ܰ = 36 for oblique impacts. 

4.8 Summary 

A 3D random model was developed to simulate shot peening intensity, surface coverage and 

surface roughness with normal and oblique impacts. For each of these quantities, an empirical 

relationship has been obtained in order to relate them to the number of shots. With these 

equations, (a) the arc height, coverage and roughness values at saturation, (b) the arc height, 

coverage and roughness values at full coverage can be calculated separately.  

Table 4.1 summarizes these simulated results for this specific shot peening case (shot 

velocity ݒ ൌ 50m/s, shot radius ݎ ൌ 0.5mm). It can be seen from Table 4.1 and Figure 4.22 that: 

(1) For the case of normal shot peening, the process reaches saturation and full coverage after 

approximately 48 impacts. Since these two parameters are based on the study of the same 

target material (aluminum), full coverage and saturation are very consistent. 
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(2) For the same number of impacts, normal impacts produce larger arc heights than oblique 

impacts. In addition, more shot impacts are required to reach saturation with oblique 

impacts than with normal impacts. 

(3) In the case of oblique impacts, shot peening reaches full coverage with less shots, when 

compared to normal shot impacts. We recall that this result depends greatly on the 

criterion used for discriminating peened and unpeened area. 

(4) When compared with oblique impacts, shot peening at normal impacts induces larger 

surface roughness at saturation and at full coverage. This is consistent with the results 

shown in Figure 4.15, where the difference between the peak and valley caused by one 

normal impact is larger than that caused by one oblique impact. 

4.9 Suggestions for future work 

Shot peening is widely used for improving the fatigue life of metallic component, but this ability 

depends greatly on the shot peening effectiveness, such as shot peening intensity, surface 

coverage and surface roughness. The contribution of present work is the development of a 

numerical model to simulate all of these shot peening results and to establish a relationship 

between all of them. Table 4.1 shows the kind of conclusions that can be drawn from such an 

exercise.  

Our model is based on several assumptions and simplifications that require to be considered in 

future works, such as: the influence of the representative surface, the definition of the plastic 

strain used for computing the coverage, the influence of the distance between each shots and the 

influence of the impact between each shots, etc. Material properties were assumed for the target 

aluminum component. An experimental program should be undertaken in order to obtain realistic 

constitutive properties for this material. Nevertheless, we believe that our work is useful in the 

sense that it shows the potential information and results that can be obtained from the simulations 

we have performed. In addition, refinement of the models will lead to new understanding of the 

shot peening process and this might lead to a significant impact in the shot peening industry. This 

is therefore the motivation for conducting the studies listed above. 
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CHAPITRE 5 EXPERIMENTAL STUDY OF SHOT PEENING AND 

STRESS PEEN FORMING    

H. Y. Miao, D. Demers, S. Larose, C. Perron, Martin Lévesque, accepted by Journal of material 

processing technology. 

5.1 Abstract 

Shot peening is a cold working process widely used to improve fatigue life of aerospace and 

automobile components. Stress peen forming is widely used in the aeronautic industry to produce 

thin components with complex shapes, involving double curvatures, such as wing skins. In this 

paper, quantitative relationships between the saturation, surface coverage and roughness with 

respect to peening time have been established based on aluminum Al2024 test strips. The 

influences of peening velocity and peening time on the resulting residual stress profiles have been 

experimentally presented. The quantitative relationships between the prebending moment and the 

resulting arc heights of narrow strips and square strips have been experimentally investigated. 

Experimental results show that with the increases of the prebending moment, the resulting arc 

height following the prebending direction increases and the tendency is almost linear. 

Quantitative equations of the saturation, coverage and roughness as well as the relationship 

between the prebending moment and resulting arc height can be used for the optimization of shot 

peening and stress peen forming process.  

5.2 Introduction 

Shot peening is a cold working process widely used to improve the fatigue life of metallic 

components and to induce curvature of thin aeronautic components, such as wing skins. 

Numerous shot peening parameters, such as shot size, type, velocity, incidence angle, material 

properties of the target component, etc. have a great influence on the effectiveness of the 

treatment. The repeatability of the shot peening process is usually measured using two control 

parameters: Almen (peening) intensity and peening coverage. 

Peening intensity is related to the amount of kinetic energy transferred from the shot stream to a 

work piece during the shot peening process (Kyriacou, 1996). A method commonly used to 

quantify peening intensity was introduced by Almen and Black (1963) and is called Almen test. 
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The method consists of peening a standardized SAE1070 spring steel test strip of given 

dimensions and material (Almen strip) that is clamped to a mounting fixture by means of four 

roundhead bolts. This strip is of dimensions 76mm ൈ 19mm for three available thicknesses (type 

A: 1.29 mm, type N: 0.79 mm and type C: 2.39 mm). Once the bolts are removed, the Almen 

strip will curve towards the peening direction. The resulting arc heights under different shot 

peening times can be measured by a dedicated measuring equipment called Almen gauge. Shot 

peening saturation is defined as the point on the curve of peening time versus arc height beyond 

which the arc height increases by less than 10% when the peening time doubles. The Almen 

intensity, or peening intensity, is by definition the arc height of the Almen strip at shot peening 

saturation. Complete procedures and specifications of intensity measuring equipment can be 

found in SAE standards SAE-J442, SAE-J443 and SAE-AMS 2430. Karuppanan et al. (2002) 

adopted an algorithm for determining the saturation point by means of full regression analysis. 

They applied Equation (5.1)  

ሺܶሻ݄ܣ  ൌ ஻

ሺ்ାௗሻ೛ െ ஻

ௗ೛   (5.1) 

to fit experimental data, where ݄ܣሺܶሻ is the arc height, ܤ, ݀ and ݌ are fitting parameters and ܶ is 

the peening time.   

Coverage is defined as the ratio of the area covered by peening indentations to the total treated 

surface area, expressed in percentage. Visual inspection is the standard method for coverage 

evaluation. For practical purposes, the maximum coverage that can be assessed visually is around 

98%, since coverage percentages are difficult to discriminate as 100% coverage is approached. 

Thus, 98% surface coverage is usually considered as full coverage according to SAE J2277. 

Moreover, 200% coverage is defined as peening twice the exposure time required achieving full 

coverage (98%). Kirk and Abyaneh (1993) and Kirk (2002, 2005) discussed the theory of 

coverage for random indentations, which assumes that randomly distributed shot particles reach 

the component’s surface at a constant rate and create circular indents of constant size. A 

simplified treatment of that theory based on the application of an Avrami equation is presented by 

Kirk and Abyaneh (1993) as  

௧௛ሺܶሻܥ  ൌ 100 ൈ ൫െ݁ିగ௥ҧమோ்൯ (5.2) 
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where ܥ௧௛ሺܶሻ is the theoretical calculated coverage, ݎҧ  is the average radius of the indentations, ܴ 

is the rate of creation of impacts (number of impacts per unit area per unit time) and ܶ is the 

peening time. 

Equation (5.2) was expressed in terms of peening parameters (Kirk and Abyaneh, 1993) and 

(Karuppanan et al. 2002) as: 

௧௛ሺܶሻܥ  ൌ 100 ൈ ቆ1 െ ݁
ି యೝഥమ೘ሶ ೅

రಲഥೝయഐೞቇ (5.3) 

where ሶ݉  is  the mass flow rate of the shots, ܣҧ  is the peening area on the treated component, ݎ is 

the average radius of the shots and ߩ௦ is the density of the shots.  

Shot peening improves the fatigue life by introducing compressive residual stress in near surface 

region which hinders cracks propagation. However, the projection of shots at high velocity 

produces indentations on the surface of the treated material and results in an increased surface 

roughness which reduces the fatigue life of the treated component (Sharp et al. 1994). Therefore, 

the performance of shot peening will depend on a tradeoff between its beneficial effects 

(compressive residual stress) and its detrimental effects (surface roughness) (Curtis et. al. 2003). 

A surface with higher surface roughness presents more irregularities, which act as stress 

concentrations to accelerate the nucleation and early propagation of microcracks. In practice, 

surface roughness parameters are mainly determined with the help of electronic contact (stylus) 

instruments. The measurement results depend strongly on the selections of the scanning length 

and the limit wavelength (Clausen and Stangenberg, 1999). An elastic stress concentration factor 

 ௧ related to surface roughness can be calculated as (Curtis et. al. 2003)ܭ

௧ܭ  ൌ 1 ൅ 2.1 ோ೟

ௌ೘
 (5.4) 

where ܴ௧ represents the maximum peak-to-valley distance and ܵ௠ represents the average distance 

between peaks.  

Shot peening of a thin component induces a curvature towards the peening direction. Almen 

intensity measurement is a common use of this phenomenon. The use of shot peening to induce a 

shape is called peen forming. It is a dieless process which has been widely used to form various 

aircraft components since the 1960’s (Baughman, 1984; Kopp and Ball, 1987 and Tatton, 1987).  
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Conventional peen forming usually induces a spherical shape in the peened component as normal 

shot impacts create an isotropic effect in isotropic material. For a wing skin, which has a larger 

curvature in chordwise direction than in spanwise direction, a technique called stress peen 

forming can be applied. In stress peen forming, the component is elastically pre-stressed (usually 

stretched or bent) before and during peening. In the case of wing forming, wing panels can be 

pre-bent along the chordwise direction during peen forming. After peen forming, the resulting 

curvature along the chordwise direction will thus be larger than that along the spanwise direction. 

It is possible to obtain the target curvature in the chordwise direction with a small curvature in the 

spanwise direction. 

Most of the stress peen forming process is based on experimental trials and errors and few 

investigations of stress peen forming have been performed to relate the prebending moments or 

forces and the resulting curvatures. (Baughman, 1984) and (Kopp and Ball, 1987) introduced the 

principles of elastic stress peen forming with prebending moment or prestretching force. (Barrett 

and Todd, 1984) showed that the elastic pre-stressing technique increases the maximum 

compressive residual stress when compared with conventional peen forming. Li (1981) presented 

experimental results of stress peen forming under different values of prebending moments. 

Gardiner and Platts (1999) simulated various stress profiles (induced, residual, etc.) involved in 

stress peen forming by using temperature profiles.  

According to this literature survey, it is possible to list the limitations of the existing studies:  

(1) Almen intensity is defined based on Almen strips made of steel SAE1070, which are 

different from the practical peened components. Therefore, it is impossible to establish a 

direct relationship between the coverage and saturation of an Almen strips and the 

material being treated. 

(2) Most of the investigations of Almen intensity, coverage and roughness were conducted 

separately. No direct relationship between these parameters and shot peening time was 

obtained through experimental investigation.  

(3) For stress peen forming, the relationship between the prebending moments and the 

curvatures of the deformed component has not been studied in details. 

The first objective of this work is to experimentally study the shot peening control parameters 

(saturation and coverage) and shot peening effects (residual stress and roughness) in details. With 
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experimental data, the quantitative relationship between the shot peening intensity, coverage, 

roughness and peening time on the same target material can be established. In addition, residual 

stress profiles for different peening parameters, such as shot velocity, saturation peening time, 

full coverage peening time are presented. The second objective of this paper is to present the 

effect of the prebending moments on the peen forming results. The relationship between the 

prebending moments and the resulting arc heights of narrow and square components are obtained. 

This article is divided into six sections. Section 5.3 introduces devices and parameters in the shot 

peening and stress peen forming experiments performed in this study. Section 5.4 presents the 

shot peening results including saturation curve, coverage curve, roughness curve as well as 

residual stress profiles. Section 5.5 shows the relationship between prebending moment and 

resulting arc heights in narrow strip and square strips. Section 5.6 discusses the experimental 

results and conclusions are presented in section 5.7. 

5.3 Description of shot peening and stress peen forming processes 

5.3.1 General considerations 

Shot peening and stress peen forming process were performed with a BLAKA-1 portable blasting 

machine (#CH8152 GLATTGRUGG), a Motoman Model robot (Motoman SV3X Long) and a 

robot controller ( XRC 2001). Ceramic Zirshot Z425 shots with approximate Young’s modulus 

ܧ ൌ 300GPa , Poisson’s ratio ߭ ൌ 0.27  and density ߩ௦ ൌ 3850kg/m3  were used in the 

experiments. Table 5.1 lists the three cases of shot peening parameters used in this study. The 

pressure and mass flow of the shots were measured directly by the pressure and mass flow meters 

of the “Baiker” machine. The velocity of the shot flow was measured by shot velocity 

measurement device “Shotmeter” sold by Progressive Technologies (Barker, 2005). The diameter 

of the nozzle was 6mm and the standoff distance between nozzle and target was of 25mm. 

Normal impingement of shots was considered in the experiments.  

Table 5.2 lists the metallurgical composition of target material Al2024 used in the experiments, 

which was manufactured by standard lamination process. This fabrication method stretches the 

grain in one preferential direction (longitudinal) which could bring mechanical properties 

anisotropy and could significantly modify the peening results. Samples were cut from 1.6mm 

thick 2024-T3 aluminum sheets 200 and from 12.5mm thick 2024-T351 aluminum plates. For 
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each of the two samples thicknesses, three longitudinal (L) and three transverse (T) directions 

tensile tests have been performed on MTS 810 material testing machine to evaluate the 

mechanical properties of the material. Therefore, a total twelve tensile tests have been performed.  

Table 5.1: Shot peening process parameters. 

Case # Set pressure (kPa) Set mass flow (kg/min) 
Measured shot velocity 

(m/s) 

1 37.9 0.4 34.6 

2 96.5 0.4 53.7 

3 155.1 0.4 66.2 

Table 5.2: Aluminum 2024 Metallurgical Composition. 

 Al Cr Cu Fe Mg Mn Other Si Ti Zn 

(%) 90.7 - 94.7 0.10 3.80 – 4.90 0.50 1.20 – 1.80 0.30 – 0.90 0.15 0.50 0.15 0.25 

 

Table 5.3: Average mechanical properties of experimental Al2024. 

 
Thick sample 

(12.5mm) 
 

Thin sample 
(1.6mm) 

Difference 
between thin 

and thick 
samples in L 
direction (%) 

 L T 
Difference 
between L 
and T (%) 

 L T 
Difference 
between L 
and T (%) 

 74.3 74.1 0.27  78.5 74.5 5.08 5.35 (GPa) ܧ

 370.8 332.9 10.22  394.4 364.4 7.61 5.98 (MPa) ݏߪ

 468.7 483.1 2.98  528.7 503.4 4.78 11.35 (MPa) ܾߪ

 26.70 2.20 17.6 17.3  16.53 19.7 23.6 (%) ܾߝ

 

Table 5.3 shows the average results of three samples in L and T directions for two thicknesses, 

respectively. The thin component has higher Young’s modulus ܧ, yield stress ߪ௦, Ultimate tensile 

stress ߪ௕ and lower elongation at UTS  ߝ௕ when compared with thick component. For both thick 

and thin components, yield stress ߪ௦   in L direction is larger than that in T direction. 

5.3.2 Shot peening process 

In shot peening experiments, peening time incrementation can be defined by either considering 

one peening pass over each surface location ( ௣ܰ ൌ 1) and different robot travelling velocities 

( ௥ܸ ൌ 320, 160, 80, 42, 20 and 10mm/s) or considering different numbers of peening passes 
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( ௣ܰ ൌ 1, 2, 4, 8, 16 ܽ݊݀ 32) and only one robot travelling velocity ௥ܸ ൌ 320mm/ݏ. Comparison 

of these two methods on aluminum test strips has been performed as a preliminary test. Results 

showed that both methods can produce similar peening results (both coverage and resulting arc 

height) on aluminum test strips with dimensions 76mm ൈ 19mm ൈ 1.6mm . That is to say, 

peening results considering one peening pass ( ௣ܰ ൌ 1) at relatively slow travelling velocity 

( ௥ܸ ൌ 10mm/ݏ.) were in close agreement with peening results considering 32 peening passes 

௣ܰ ൌ 32) at high travelling velocity ( ௥ܸ ൌ 320mm/ݏ). This robot travelling velocity will be 

considered as nominal travelling velocity in this paper. Therefore, for any number of peening 

passes ௣ܰ, an equivalent robot travelling velocity ௘ܸ corresponding to one peening pass ( ௣ܰ ൌ 1) 

can be calculated with Equation: 

 ௘ܸ ൌ ଷଶ଴

ே೛
 (5.5) 

Four categories of shot peening experiments were performed: 

(1)  For each of the three shot peening velocities (34.6m/s, 53.7m/s, 66.2m/s), three Almen 

tests were performed on standard SAE1070 steel (Almen) strips (Type A with dimensions 

76mm ൈ 19mm ൈ 1.29mm). Saturation curves and Almen intensities were obtained by 

peening with a constant robot travelling velocity ௥ܸ ൌ 320mm/ݏ  for six different 

numbers of peening passes ( ௣ܰ ൌ 1, 2, 4, 8, 16 and 32). Therefore, a total of 54 (6passes 

ൈ 3velocities ൈ 3repetitions) Almen strips have been tested.  

(2) The influence of the material grains orientations on the peening-induced arc height was 

investigated by conducting saturation studies using two sets of aluminum test strips, with 

the longest dimension in longitudinal direction (L test strips) and transverse direction (T 

test strips) respectively. Aluminum test strips with dimensions 76mm ൈ 19mm ൈ 1.6mm 

were peened with robot travelling velocity ௥ܸ ൌ 320mm/ݏ for six different numbers of 

peening passes ( ௣ܰ ൌ 1, 2, 4, 8, 16 and 32). For each combination of peening parameters, 

robot parameters (three shot velocities) and type of test strips (L and T test strips), three 

samples were peened for repeatability concerns. Therefore, 54  (6passes ൈ 3velocities ൈ

3repetitions) L and 54 T test strips were prepared to study the influence of the material 

grains orientations on the resulting deformed arc heights, respectively. 
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(3) Three aluminum plates with dimensions 200mm ൈ 150mm ൈ 12.5mm were peened with 

three shot velocities to study the influence of shot velocity on the surface coverage and 

roughness. On each plate, six regions with dimensions 200mm ൈ 25mm ൈ 12.5mm have 

been peened with six peening passes ( ௣ܰ ൌ 1, 2, 4, 8, 16 and 32), respectively, with the 

robot travelling velocity ௥ܸ ൌ 320mm/ݏ to study the influence of the number of passes 

on the surface coverage and roughness.  

(4) Two aluminum plates with dimensions 200mm ൈ 75mm ൈ 12.5mm were peened with 

shot velocities ݒ ൌ 34.6m/53.7 ,ݏm/ݏ and 66.2m/ݏ until saturation for evaluating the 

influence of shot velocity on residual stress. A third aluminum plate with dimensions 

200mm ൈ 75mm ൈ 12.5mm  was peened with shot velocity ݒ ൌ 66.2m/ݏ  until full 

coverage to study the influence of peening time on residual stress. 

5.3.3 Stress peen forming process 

For these experiments, the robot velocity was set so that saturation is reached in one pass. This 

velocity eV  is calculated from Equation (5.5) by using the number of passes required for 

saturation obtained at Section 5.3.2, for each shot velocity. 

 Figure 5.1 presents the pre-stressing device with four radii of prebending curvatures (ܴ௣ ൌ

∞, 720mm, 360mm, 240mm ) designed for the stress peen forming. Two categories of 

experiments were performed with this device: 

(1) For each shot velocity, four groups of four aluminum strips (two L test strips and two T 

test strips) with dimensions 76mm ൈ 19mm ൈ 1.6mm  were fixed on the prestressing 

device. Therefore, 24 aluminum L test samples and 24 aluminum T test samples were 

tested. The strips were elastically deformed with radii of the prebending curvatures equal 

to ∞, 720mm, 360mm  and 240mm, respectively. 

(2) Four square strips with dimensions 76mm ൈ 19mm ൈ 1.6mm  were prebent on the 

prestressing device along the longitudinal direction of the strip with radii of the 

prebending curvatures equal to ∞, 720mm, 360mm  and 240mm, respectively. For each 

shot velocity, experiments were performed three times to ensure repeatability. 

36 aluminum samples were therefore tested. 
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Figure 5.1: Prestressing device with four radii of prebending curvatures (∞, 720mm, 360mm  

and 240mm) used in the stress peen forming experiments: clamping the samples on the device 

induces prebending moments.  

5.4 Shot peening results 

5.4.1 Saturation studies 

Almen gauge was used to measure the deformed arc heights of Almen strip (76mm ൈ 19mm ൈ

1.29mm ) and aluminum test strip ( 76mm ൈ 19mm ൈ 1.6mm ) for different peening times 

(number of passes). It should be noted that Almen gauge measures the total arc heights between 

specific lengths of the strip 31.75mm  in the longitudinal direction and 15.87mm  in the 

transverse direction, respectively) (SAE-J442). Figure 5.2 presents the 54 measured resulting arc 

heights of aluminum L test strips for the three shot velocities under investigation. For each shot 

velocity, with the 18 measured results for ௣ܰ ൌ 1, 2, 4, 8, 16 and 32 (three repetitions for each 

number of pass), the quantitative relationship between the resulting arc heights and the number of 

passes was best fitted using Equation (5.6) as: 
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ܪܣ  ൌ ௔௧

௕ା௧
 (5.6) 

where ܪܣ is arc height, ݐ is number of passes and ܽ, ܾ are fitting parameters.  

For each saturation curve, saturation time (number of passes) and the arc height at saturation time 

(aluminum intensity) were calculated and listed in Figure 5.2. Very similar curves were obtained 

for the other test strips and are not reported here.  

Table 5.4 lists the arc height at saturation ܣ௦ and saturation numbers of passes ௣ܰ௦ for aluminum 

L and T test strips as well as for Almen strips type A for each velocity. With the number of robot 

passes at saturation ௣ܰ௦ , the equivalent robot travelling velocities ௘ܸ௦ can calculated using 

Equation (5.5). Therefore, for three shot velocities, equivalent robot travelling velocities for the 

saturation of the aluminum L test strips are 34mm/s, 47mm/s and 55mm/s, respectively. 

 

 

Figure 5.2: Resulting arc heights for different numbers of peening passes and fitted saturation 

curves for aluminum L test strips (with longitudinal direction equals to 76mm and transverse 

direction equals to 19mm) for three shot peening velocities. 
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Table 5.4: Results of saturation study on aluminum test strips (L represents aluminum L test strip, 

T represents aluminum T test strip) and Almen strip (Type A). 

Shot 
velocity 

(m/s) 

Arc height at 
saturation ܣ௦ 

(mm) 
 

Saturation time  
(number of pass ௣ܰ௦) 

Equivalent robot velocity 
for saturation of 

aluminum L test strips 
௘ܸ௦ ൌ 320 ௣ܰ௦⁄  

(mm/s) 
L T 

Almen
strips 

 L T 
Almen
strips 

34.6 0.224 0.209 0.127  9.466 9.919 23.219 34 

53.7 0.321 0.308 0.189  6.846 6.673 12.178 47 

66.2 0.387 0.376 0.220  5.886 6.119 8.304 55 

 

 

 

Figure 5.3: Relationship between arc height at saturation and shot velocity for aluminum test 

strips and Almen strips.  
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From Table 5.4, it can be found that for each shot peening velocity, arc height at saturation of 

aluminum test strips (both L and T) are all larger than the corresponding arc height at saturation 

for Almen strips (Almen intensities). This is due to the fact that aluminum 2024 has a lower 

modulus of elasticity (more compliant) than Almen 1070 steel strip. Therefore, for the same 

peening energy, larger deformations can be produced in aluminum test strips than in Almen 

strips. In addition, for each shot velocity, the arc height at saturation of aluminum L test strip is 

larger than that of T test strips.  This is explainable by the difference in the mechanical properties 

of the material as shown in Table 5.3 for thin components. For aluminum 2024-T3 with thickness 

of 1.6mm, tensile test results show that yield stress (ߪ௦ ) and ultimate tensile stress (ߪ௕ ) in 

longitudinal direction are larger than those in transverse direction. That is to say, for the same 

peening energy (shot velocity), induced stress produced by shot peening is larger in L direction 

than in T direction (Wang et al. 1998). Therefore, the deformed arc height, which can be 

calculated from the induced stress profiles (Miao et al. 2009) is larger in L direction than that in T 

direction. 

Figure 5.3 presents the relationships between arc height at saturation and shot velocity for 

aluminum test strips (L and T) and Almen strips. It can be found that for both materials, arc 

height at saturation increases with the increase of shot peening velocity. The relationship is 

almost linear, which is consistent with the experimental results presented by Cao et al. (1995).  

5.4.2 Surface coverage studies 

Taylor Hobson stylus profiler (Talysurf  Series 2) was used to measure 3D surface topography 

for 18 shot peening conditions (six different numbers of peening passes for three shot velocities). 

For each shot peening condition, measurements on a 5mm ൈ 5mm  shot peened aluminum 

surface with 400 ൈ 400 measurement points was performed to evaluate surface coverage and 

roughness.  

Figure 5.4 shows two example surface topography results with shot velocity of 34.6m/s after 1 

and 32 numbers of peening passes, respectively. It can be found that more random indentations 

were produced after numerous peening passes, which results in larger surface coverage and 

roughness. 
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Figure 5.4: Surface topography obtained by 3D roughness measurement profiler. (a) After one 

peening pass. (b) After 32 peening passes. 

 

Figure 5.5 2D grayscale topography of peened surfaces after 1, 2, 4, 8, 16 and 32 peening passes 

for shot velocity of 34.6 m/s.  
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Figure 5.6: Surface  coverage calculated by ImageJ after 1, 2, 4, 8, 16 and 32 peening passes for 

shot velocity of 34.6 m/s. 

 

Figure 5.7: 2D grayscale topography (a, b and c) and surface coverage (d, e and f) calculated by 

ImageJ after 1, 2 and 4 peening passes for shot velocity of 53.7 m/s.  
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Figure 5.8: 2D grayscale topography (a, b and c) and surface coverage (d, e and f) calculated by 

ImageJ after after 1, 2 and 4 peening passes for shot velocity of  66.2 m/s.   

ImageJava software was use to evaluate surface coverage form surfaces topography images 

obtained from profiler. Figures 5.5, 5.6, 5.7 and 5.8 present 2D measured topography images as 

well as evaluated surface coverages by ImageJ after different number of peening passes for three 

shot velocities. It becomes very difficult to evaluate coverage percentage as 100% is approached 

since it is hard to distinguish between peened and unpeened areas. Therefore, for shot velocities 

of 53.7m/ݏ and 66.2m/ݏ, only the images after 1, 2 and 4 passes have been presented.  For the 

visual evaluation of the coverage, standard assumption of considering 98% coverage as full 

coverage remains in this study. 

With these visual evaluations of the surface coverage, the relationship between the coverage and 

the number of peening passes was obtained with a best fitting Avrami as 

ܥ  ൌ 100ሺ1 െ ݁ି௔௧ሻ (5.7) 

where ܥ is coverage, ݐ is the number of peening passes and ܽ is a fitting parameter. 

Avrami theoretical model expressed in Equation (5.7) was used to validate the experimental 

evaluation of the coverage. Before the validation, average radii of indentations for each peening 

velocity were measured using magnified images from the profiler as shown in Figure 5.9. For 
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each velocity, five indentation radii were measured to obtain the average value. The average radii 

of five indentations radii are 0.1302mm, 0.176mm and 0.191mm for the three shot velocities 

under investigation ( 34.6m/ݏ,  53.7m/ݏ  and 66.2m/ݏ ). It can be found that the radius of 

indentation increases with the increase of the shot velocity. 

Figure 5.10 compares the experimental fitting coverage curves from Equation (5.7) as well as the 

theoretical Avrami coverage curves calculated from Equation (5.7) for different shot peening 

velocities. From Figure 5.10 (a), (b) and (c), it can be found that the experimental fitting curves 

are consistent with the theoretical curves. Figure 5.10 (d) compares the influence of the shot 

velocities on surface coverage curves. It shows that for same numbers of peening passes, surface 

coverage increases with the increase of shot velocity. 

 

 

Figure 5.9: 2D color topography of peened surfaces for measurement of shot peening 

indentations radii at three shot peening velocities (For each velocity, five indentation radii are 

measured to obtain the average value). 
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Figure 5.10: Comparison of experimental fitting coverage curves and theoretical Avrami 

coverage curves for three shot peening velocities. (a) Shot velocity equals to 34.6m/ݏ. (b) Shot 

velocity equals to 53.7m/ݏ. (c) Shot velocity equals to 66.2m/ݏ.  (d)  Effect of shot velocity on 

coverage curves. 

5.4.3 Surface roughness studies 

With 3D measured surface roughness data, the relationship between surface average roughness 

and surface stress concentration factor with respect to the number of peening passes can be 

obtained. The surface average roughness parameter ܵ௔ represents the average amplitude of the 

peaks and valleys of the measured.  
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Figure 5.11: Experimentally measured surface average roughness and best fitting curves for three 

shot velocities. 

Figure 5.11 presents 18 experimentally measured surface average roughness for 18 shot peening 

conditions, as well as the best fitting average roughness curves with respect to number of pass 

with Equation (5.8) for each shot velocity:  

 ܵ௔ ൌ ܽሺ1 െ ݁ି௕௧೎
ሻ (5.8) 

where ݐ is the number of peening passes,  ܽ, ܾ and ܿ are fitting parameters. 

From Figure 5.11, it can be found that the surface average roughness increases with the increase 

of shot velocity for identical number of peening passes. In addition, the development of the 

surface average roughness can be divided into two main stages. During stage I, roughness 

increases rapidly as each impact creates an isolated indentation and independent peaks and 

valleys. During stage II, many indentations are superimposed so that roughness increases at a 

slower rate. 
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Stress concentration factor ܭ௧  is calculated from the experimentally measured maximum peak to 

valley distance ( ܴ௧ ) and the average distance between peaks ( ܵ௠ ) with Equation (5.4). 

Discrimination between long-range height variations and short-range height variations such as ܴ௧ 

and ܵ௠ was accomplished based on a 2D measurement length of 5mm in this experiment. For 

each of the 18 shot peening conditions, five measurement repetitions were preformed to obtain ܴ௧ 

and ܵ௠. Therefore, five ܭ௧  could be calculated.  

 

Figure 5.12: Evolution of stress concentration factors Kt with respect to number of passes for 

different velocities. (a) Shot velocity equals to 34.6m/ݏ. (b) Shot velocity equals to 53.7m/ݏ.  

(c) Shot velocity equals to 66.2m/ݏ.  (d) Evolution of stress concentration factor curves for three 

shot velocities. 
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Figure 5.12 shows the five calculated stress concentration factors ܭ௧ as well as the average value 

of ܭ௧ for each shot peening condition. For each shot peening velocity, Equation (5.9) can be used 

to best fit the relationship between the experimental stress concentration factors with respect to 

the number of passes: 

௧ܭ  ൌ 1 ൅ ܽሺ1 െ ݁ି௕௧೎
ሻ (5.9) 

where ݐ is the number of peening passes,  ܽ, ܾ and ܿ are fitting parameters. 

It can be seen from Figure 5.12 that the stress concentration factor increases with the increase of 

shot velocity. In addition, similar to the surface average roughness, development of the stress 

concentration factor can be divided into two main stages. During stage I, ܭ௧ increases rapidly 

while during stage II, ܭ௧  increases at a slow rate until a stabilized value. 

5.4.4 Residual stress profiles measured by X-Ray Diffraction Method (XRD) 

X-Ray diffraction method has been employed to measure residual stress profiles corresponding to 

three different shot peening conditions in Al2024-T351 12.5mm thick strips: 

Case 1: Shot peening velocity ݒ ൌ 34.6m/ݏ and robot travelling velocity for saturation ௘ܸ௦ ൌ

34mm/ݏ (as listed in Table 5.4); 

Case 2: Shot peening velocity ݒ ൌ 66.2m/ݏ and robot travelling velocity for saturation ௘ܸ௦ ൌ

55mm/ݏ (Table 5.4); 

Case 3: Shot peening velocity ݒ  ൌ 66.2m/ݏ  and robot travelling velocity for full coverage 

 ௘ܸ௙ ൌ 29mm/ݏ  (corresponds to number of peening passes  ௘ܰ௙ ൌ 11.15 in Figure 5.10).  

For residual stresses at each depth within the samples, the surface material was electropolished 

with a diameter of 12mm  and the irradiated/sampled spot for the X-Ray beam was with a 

diameter of 2mm. Therefore, the measured residual stress for each depth is an average value over 

a circular surface of 2mm  in diameter. The measured residual stress values have been 

compensated using gradient correction and material removal correction method as in SAE 

HS784. Equation (5.10) is used to best fit this experimental data: 

௥௘௦ߪ  ൌ expܣ ቂିଶሺ௫ି௫೏ሻమ

ௐమ ቃ ൅  (5.10) ܤ
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where ߪ௥௘௦  is the residual stress, ݔ  is the depth beneath the surface, ܣ ൅ ܤ  is the maximum 

residual stress, ܹ is the width of the curve and ݔௗ is the depth of the maximum residual stress 

(Curtis et. al. 2003). Values of the fitting parameters for the three cases under consideration are 

presented in Table 5.5. 

Figure 5.13 presents measured residual stress values (after correction) as well as the best fitting 

curves for the three cases studied. The following conclusions can be drawn from this figure: 

(1) For saturation speeds (Case 1 and Case 2), with the increase of shot velocity, the 

maximum compressive residual stress increases. In addition, the depth of maximum 

compressive residual stress and the thickness of the layer with compressive residual stress 

are increased. 

(2) For the same peening velocity (Case 2 and Case 3), more peening time, which means 

more impact energy can increase the maximum compressive residual stress, and increase 

the depth of maximum compressive residual stress as well as the thickness of the layer 

with the compressive residual stress. 

(3) For all three cases, the residual stress at the top surface of the component (from 0 to 

0.06mm) is quite similar. 

In order to study the surface residual stresses in these three cases, two measurements at each top 

surface of the component have been performed and compared.  

Table 5.6 lists for the three peening cases the measured surface residual stresses (no correction of 

gradient) for two different locations as well as the average values. These results suggest that the 

residual stresses are fairly uniform at the surface. 
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Figure 5.13: Residual stress profiles after correction for three peening cases. 

Table 5.5: Residual stresses at surface in three cases. 

 ௗ (mm) ܹ (mm) ܴଶݔ (MPa) ܤ (MPa) ܣ 

Case 1 -360.7 32.25 0.0571 0.177 0.9814 

Case 2 -330.8 -2.373 0.08161 0.2073 0.9845 

Case 3 -354.6 18.64 0.1151 0.3203 0.9851 

 

Table 5.6: Residual stresses at the surface for the three peening cases under consideration (Unit: 

MPa). 

 Location 1 Location 2 Average 

Case 1 -296± 10 -284± 9 -290± 9 

Case 2 -275±6 -290± 3 -283± 5 

Case 3 -286±4 -274± 8 -280± 6 
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5.5 Stress peen forming results 

5.5.1 Stress peen forming of narrow strips 

Aluminum L test strips and T test strips with the same dimension as Almen strips (76mm ൈ

19mm ൈ 1.6mm) have been chosen in this study for simplification of arc height measurement. 

Significant parameters for the peen forming tests can be calculated as follows. 

Figure 5.14 illustrates the parameters introduced in the relationship that can be obtained by a 

geometrical analysis between the prebending radius ܴ௣  and the prebending arc height ௣݄ܣ  , 

expressed by Equation (5.11): 

 ܴ௣
ଶ ൌ ሺܴ௣ െ ௣ሻଶ݄ܣ ൅ ቀ௟

ଶ
ቁ

ଶ
 (5.11) 

where ݈ is the reference length for arc height measurement, which is equal to 31.75mm in this 

case. Since ݄ܣ௣ ا ܴ௣, Equation (5.11) can be rewritten as Equation (5.12): 

௣݄ܣ  ൌ ௟మ

଼ோ೛
 (5.12) 

Prebending moment can be calculated with Equation (5.13) (Miao et al. 2009): 

௣ܯ  ൌ ாூ

ோ೛
ൌ ா௕௧య

ଵଶோ೛
 (5.13) 

 

Figure 5.14: Illustration of the relationship between prebending radius and prebending arc height. 
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where ܧ is Young’s Modulus of aluminum strip (76.5GPaሻ, the average value of thin L and T 

aluminum strips as shown in Table, ܫ is the moment of inertia, ܾ is the width of the strip (19mm) 

and ݐ is the thickness of the strip (1.6mm). 

The surface tensile stress of a prebent strip ߪ௦௧  can be calculated with Equation (5.14): 

௦௧ߪ  ൌ
ெ೛ൈ௧

ଶൗ

ூ
 (5.14) 

Table 5.7 lists the prebending arc heights ݄ܣ௣, prebending moments ܯ௣, surface tensile stresses 

 ௦௧ and resulting arc heights measured by Almen gauge for peen forming tests performed underߪ

four prebending radii (ܴ௣ ൌ ∞, 720mm, 360mm, 240mm), shot velocity of 66.2m/ݏ and for a 

robot travelling velocity ௘ܸ௦ ൌ 55mm/ݏ (ensuring saturation of the aluminum strips).  

It can be seen from Table 5.7 that the maximum surface stress ߪ௦௧ produced by the maximum 

prebending moment is 255MPa, which is less than the yield stress of aluminum 2024 listed in 

Table 5.3. The prebending of the strip is therefore entirely elastic for the range of prebending arc 

height under consideration.  

 

Table 5.7: Relationship between prebending conditions and resulting arc heights. 

Radius of 
prebend 

 ܴ௣ 
(mm) 

Prebend 
arc height  

 ௣݄ܣ
(mm) 

Prebend 
moment 

 ௣ܯ
(N·mm) 

Surface 
stress 

 ௦௧ߪ
(MPa) 

Resulting arc height ݄ܣ௥ (mm) 
࢜ ൌ 66.2m/ݏ 

L-test strip with 
Longitudinal 
prebending 

T-test strip with 
Transverse 

prebending 
TEST 1 TEST 2 TEST 1 TEST 2 

∞ 0 0 0 0.3759 0.3658  0.3429 0.3632 

720 0.175 689 85 0.4521 0.4674  0.4343 0.4420 

360 0.350 1378 170 0.5969 0.5867  0.5537 0.5791 

240 0.525 2067 255 0.7010 0.7163  0.6629 0.6782 

 



85 

 

Figure 5.15: Experimental relationship between arc heights (prebending arc height and resulting 

arc height) and prebending moments. 

Figure 5.15 presents the prebending arc heights and the resulting arc heights for three shot 

velocities as a function of the prebending moments. For each velocity and prebending moment, 

two L test strips and two T test strips were peened. It can be found that, similar to the saturation 

study, resulting arc heights of L test strips are larger than those of T test strips for identical 

prebending moments. In addition, for each shot velocity, a linear best fitting curve from 8 

resulting arc heights data in longitudinal direction was obtained to represent the relationship 

between the prebending moments and the resulting arc heights. The fitting curves show that the 

resulting arc height increases almost linearly with the increase of the prebending moment. 

Furthermore, for shot velocities ݒ ൌ 53.7m/ݏ and ݒ ൌ 66.2m/ݏ , all resulting arc heights are 

larger than the prebending arc heights. However, for shot velocity ݒ ൌ 34.6m/ݏ, there exists a 

specific prebending moment (Point A) with identical prebending and resulting arc heights. 

According to the best-fitting curve for shot peening velocity equals to 34.6m/ݏ, both prebending 

and resulting arc heights equal to 0.367mm at Point A while the prebending moment equals to 

1445.5N · mm. This result suggests that a controlled shot peening combined to an accurate 
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prestressing device could produce the same final arc height as the prebending arc height. This 

finding could be of particular interest for practical applications. 

5.5.2 Residual stress profile after stress peen forming  

Two additional residual stress profiles have been measured by XRD after conventional peen 

forming (without prebending moment) and after stress peening forming (with prebending 

moment). The two cases studied are: 

(1) Case 4: Al2024-T3 strip with dimensions of 76mm ൈ 19mm ൈ 1.6mm, peened with shot 

velocity of ݒ ൌ 66.2m/ݏ, robot travelling velocity of 55mm/s and for conventional peen 

forming. 

(2) Case 5: Al2024-T3 strip with dimensions of 76mm ൈ 19mm ൈ 1.6mm , peened with 

shot velocity of ݒ ൌ 66.2m/ݏ, robot travelling velocity of 55mm/s and for a  prebending 

moment of 2067N · mm. 

For each case, two identical samples have been prepared. Correction for stress relaxation and 

redistribution as a result of material removal via electro-polishing was performed as per SAE 

HS784. However, it is difficult to compensate the stress release when the correction becomes 

large. Therefore, for each case, the residual stresses for depth (0 to 0.8mm) were measured from 

the convex side on a first sample and residual stresses for depth (0.8mm  to 1.6mm) were 

measured from concave side on the second sample. 

Figure 5.16 shows the residual stress profiles for Cases 2 (strip with thickness 12.5mm, peened 

with shot velocity of ݒ ൌ 66.2m/ݏ, robot travelling velocity of 55mm/s), 4 and 5. It can be seen 

from the figure that: 

(1) Shot peening on thick component produces compressive residual stress only at the top 

surface of the component (Case 2), while peen forming produces compressive residual 

stress on both top and bottom surfaces of the strip (Cases 4 and 5). Larger tensile residual 

stress can be induced in the middle of the strip after peen forming. 

(2) With respect to conventional peen forming (Case 4), stress peen forming (Case 5) has 

larger compressive residual stress on both top and bottom surfaces. It also leads to high 

tensile stresses in the middle layer of the strip. 
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Figure 5.16: Residual stress profiles in three cases:  conventional peen forming on 1.6mm  thick 

strip ( ܯ௣ ൌ 0N · mm), stress peen forming on 1.6mm  thick strip (ܯ௣ ൌ 2067N · mm) and shot 

peening of 12.5mm thick component. 

5.5.3 Stress peen forming of square samples 

Table 5.8 lists the relationship between the prebending values in the longitudinal direction 

(prebending radii, prebending moments and surface stresses) and the resulting radii of curvature 

in longitudinal and transverse directions for square strips (76mm ൈ 19mm ൈ 1.6mm ) with shot 

velocity of 66.2m/ݏ and robot travelling velocity of 55mm/s. Similar to that for narrow strips, 

the prebending moment ܯ௣ is calculated using Equation (5.13) with ܾ ൌ 19mm  and the surface 

stress ߪ௦௧ is calculated with Equation (5.14).  

The resulting radius of curvature following the centerline of the square plate is calculated from 

the measured deformation data measured by the surface profiler in the longitudinal and transverse 

directions, respectively.  
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From Table 5.8, it can be seen that with the increase of the prebending moment, the resulting 

radius of curvature decreases in Longitudinal direction and increases in Transverse direction.  

Table 5.9 lists the relationship between the prebending values (prebending radii, prebending arc 

height) and the resulting arc height for the cases listed in Table 5.8.  

The prebending arc heights ݄ܣ௣  and resulting arc heights ݄ܣ௥  are calculated using Equation 

(5.12) with reference length ݈ ൌ 76mm . The results show that with the increase of the 

prebending moment, the resulting arc height increase in Longitudinal direction and decreases in 

transverse direction. 

Table 5.8: Prebending parameters and resulting radii for peen formed square strips. 

Radius of 
prebending 

ܴ௣ 
(mm) 

Prebending 
moment ܯ௣ 

(N·mm) 

Surface 
stress  

 ௦௧ߪ
(MPa) 

Resulting radius of curvature (mm) ࢜ ൌ 66.2m/ݏ 
Longitudinal 

resulting radius 
(mm) 

 
Transverse resulting 

 arc radius (mm) 

Test 1 Test 2 Test 3  Test1 Test  Test 3 

∞ 0 0 541 513 520  606 605 600 

720 2756 85 371 372 370  668 670 675 

360 5512 170 279 274 272  895 848 834 

240 8268 255 218 216 217  1054 1043 1032 

 

Table 5.9: Prebending parameters and resulting arc heights for peen formed square strips. 

Radius of 
prebending 

ܴ௣ 
(mm) 

Prebending 
arc height 

 ௣݄ܣ
(mm) 

Resulting arc height ݄ܣ௥ (mm) ࢜ ൌ 66.2m/ݏ 
Longitudinal resulting arc 

height (mm) 
 

Transverse resulting  
arc height (mm) 

Test 1 Test 2 Test 3  Test 1 Test 2 Test 3 

∞ 0 1.336 1.406 1.386  1.191 1.194 1.204 

720 0.8507 1.947 1.938 1.95  1.081 1.077 1.070 

360 1.7014 2.592 2.629 2.648  0.806 0.852 0.866 

240 2.5521 3.307 3.333 3.320  0.685 0.692 0.699 
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Figure 5.17: Relationship between resulting arc heights in Longitudinal and Transversal 

directions and prebending moments. (a) Shot velocity equals to 34.6m/ݏ . (b) Shot velocity 

equals to 53.7m/ݏ. (c) Shot velocity equals to 66.2m/ݏ. (d) Comparison of resulting arc heights 

for three shot velocities. 

Figure 5.17 shows the relationship between the resulting centerline arc heights with respect to the 

prebending moments. For each shot peening velocity and each prebending moment, three 

resulting arc heights in longitudinal and transverse directions have been presented respectively. In 

addition, linear regression have been used to best fitting the relationships between the resulting 

arc heights and the prebending moments in both directions. It can be seen that for the three shot 

peening velocities, the resulting arc height in longitudinal direction increases with the increase of 

the prebending moments while the resulting arc height in transverse direction decreases with the 

increase of the prebending moments. All of these results reflect the tendencies that were obtained 

experimentally by (Li, 1981). 
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Figure 5.18: Relationship between resulting arc heights and prebending arc heights vs. 

prebending moments for three velocities. (Point A: identical prebending moment of 4116N · mm 

and resulting arc heights of 1.493mm  for shot velocity of 34.6m/ݏ . Point B: identical 

prebending moment of 7666N · mm and resulting arc heights of 2.781mm for shot velocity of 

53.7m/ݏ. Point C, D and E: identical resulting arc heights of 1.34mm with prebending moments 

of 0, 540N · mm and 2934N · mm for three shot velocities 34.6m/ݏ , 53.7m/ݏ  and 66.2m/ݏ , 

respectively). 

Figure 5.18 presents the prebending arc heights and resulting arc heights in the longitudinal 

direction as a function of the prebending moments for three shot velocities. It can be found that 

with the increase of the shot peening velocity, the resulting arc height increases. For shot velocity 

ݒ ൌ 66.2m/ݏ, all resulting arc heights are larger than the prebending arc heights, however, for 

both shot velocities ݒ ൌ 34.6m/ݏ and ݒ ൌ  there exists specific points A and B, where ,ݏ/53.7

the resulting arc heights are equal to the prebending arc heights. With the help of the prebending 

technique, the same deformed arc heights can be obtained under different shot peening 

conditions. For example, points E, D and C represent resulting arc height 1.34mm obtained from 
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three shot peening velocities (ݒ ൌ 34.6m/ݒ  ,ݏ ൌ ݒ and ݏ/53.7 ൌ 66.2m/ݏ) with  three different 

prebending moments 0, 604N · mm and 3023N · mm, respectively. It is well known that higher 

shot peening velocity requires more peening energy and can also produce larger surface 

roughness which has detrimental effect on the fatigue life of the peened component. Therefore, 

stress peen forming offers an alternative where the prebending values and the shot peening 

parameters could potentially be selected in order to obtain the desired shape while minimizing the 

shot peening energy and maximizing the fatigue life of the peened component. 

5.6 Summary 

Shot peening experiments on aluminum 2024 with ceramic shots have been performed to study 

peening intensity, surface coverage and surface roughness with different shot peening velocities.  

Experimental results can be summarized as: 

(1) Shot peeing time can be evaluated either by one pass of robot peening ௣ܰ for different 

robot peening velocities ௥ܸ  or by different numbers of peening passes ௣ܰ  for the same 

robot peening velocities ௥ܸ. Experimental results show that both methods can produce the 

same surface coverages and resulting arc heights on aluminum test strips. For any number 

of peening passes ௣ܰ   the equivalent robot peening velocity ௘ܸ  can be calculated with 

Equation(5.5). 

(2) For the same peening conditions, aluminum L test strip produces larger resulting arc 

height than T test strip.  This result means that the rolling direction of the aluminum strip 

has an influence on the shot peening results.  

(3) When compared to Almen standard strips, both aluminum L test strip and T test strip 

present larger intensity and a shorter peening time to reach saturation.  

(4) For both aluminum and Almen strips, the relationships between intensities and shot 

peeing velocities are almost linear.   

(5) With the increase of shot peening velocity, the radii of the plastic indentation increase, 

which can explain why the increase of the peening velocity decreases the full coverage 

peening time. With the help of the radii of the plastic indentations, Avrami equations can 
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be used for predicting the relationship between the coverage and peening time (number of 

peening passes).  

(6) For the same peening time, both surface average roughness ܵ௔  and surface stress 

concentration factor ܭ௧ increase with the increase of the peening velocity.  In addition, 

their relationships present two main stages: during stage I, roughness increases rapidly 

and during stage II, roughness increase slowly and stabilizes. 

(7) For saturation peening time, with the increase of shot peening velocity, the maximum 

compressive residual stress, the depth of the maximum compressive residual stress as well 

as the depth of the compressive residual stress increase. For the same peening velocity, 

the increase of the peening time can increase the maximum compressive residual stress, 

the depth of the maximum compressive residual stress as well as the depth of the 

compressive residual stress. However, both peening velocities and peening time have few 

influence on the surface residual stress. 

With the experimental results of the peening intensity, surface coverage and surface roughness, 

quantitative relationships have been obtained in order to relate them to peening time (number of 

passes). With Equations (5.6), (5.7), (5.8) and (5.9), the values of resulting arc height (ܪܣ), 

coverage (ܥ) and roughness (ܵ௔  and ܭ௧) at saturation and at full coverage can be calculated 

separately. Table 5.10 summarizes these simulated results for this specific shot peening case. It 

should be noted that the results of the aluminum L test strip have been considered since little 

difference have been presented between L and T test strips. 

It can be seen from Table 5.10 that: 

i. With the increase of the shot peening velocity, the peening time (number of passes) to 

reach saturation and full coverage decrease, while the arc heights, surface roughness (ܵ௔ 

and ܭ௧) at saturation and at full coverage increase. 

ii. The ratio of the peening time to reach full coverage and the peening time to reach 

saturation is of 2.17, 1.86 and 1.89 for shot peening velocities ݒ ൌ 34.6m/ݒ  ,ݏ ൌ  ݏ/53.7

and ݒ ൌ 66.2m/ݏ, respectively. In general, these values are close to 2 for all three cases, 

which means the peening time of full coverage is twice the peening time to reach 

saturation. Since full coverage is easier to evaluate, peening operator could find full 
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coverage time and divides by two to obtain the effective time with respect to saturation, 

for the materials and conditions listed in this study. 

Stress peen forming experiments on both narrow strips (aluminum L and T test strips) with 

dimensions of 76mm ൈ 19mm ൈ 1.6mm  and square strips with dimensions of 76mm ൈ

76mm ൈ 1.6mm  have been performed.  Experimental results show that: 

1) When compared to conventional peen forming, stress peen forming produces larger 

resulting arc height under the same peening conditions for both narrow and square strips. 

2) Similar to the saturation study, for the same stress peen forming conditions, L test strip 

produce larger resulting arc height than T test strip.  

3) The relationship between the prebending moments and the resulting arc heights are almost 

linear for both narrow and square strips. For narrow strips, the resulting arc height 

increases with the increase of the prebending in the longitudinal direction. For the square 

strips, the resulting arc height following the longitudinal direction increases with the 

increase of the prebending moment. However, the resulting arc height following the 

transverse direction decreases with the increase of the prebending moment. 

4) For narrow strip (L test strip), a controlled shot peening process combined with a 

prebending device can be designed to produce the same resulting arc height as the 

prebending arc height. For square strip, stress prebending can produce same resulting as 

prebending arc heights along longitude direction. Different peening velocities combined 

with different prebending moments can produce same designed resulting arc height, as 

points E, D and C in Figure 5.18. Therefore, with the help of the prebending device, it is 

possible to reduce peening energy and improve fatigue life of the peened component. 

5) Under same forming condition, stress peen forming requires less peening energy and 

produces less surface stress concentration factor therefore can improve fatigue life of 

deformed component. 
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Table 5.10: Relationship between saturation intensity and full coverage for three shot velocities. 

Shot  
Velocity 

 ࢜
(m/s) 

Saturation  Full Coverage (98%) 

 ࡺ

Arc 
height 

 ܪܣ
(mm) 

Coverage 
 (%) ܥ

ܵ௔  
(μm) 

 ܰ  ௧ܭ
Arc 

height  ܪܣ
(mm) 

Cover
age  

 (%) ܥ

ܵ௔ 
(μm) 

 ௧ܭ

34.6 9.466 0.224 83.4 2.98 1.15  20.59 0.248 98 3.01 1.16 

53.7 6.846 0.321 87.7 5.22 1.22  12.79 0.350 98 5.24 1.25 

66.2 5.886 0.387 87.3 6.28 1.25  11.15 0.422 98 6.36 1.27 

 

5.7 Conclusions 

Almen intensity and surface coverage are two important parameters to evaluate the shot peening 

process. However, different from surface coverage, which is based on the peened material, 

Almen intensity is based on standard Almen strip (spring 1070). In this paper, experimental study 

of intensity and surface coverage on aluminum 2024 have been performed to relate them with the 

peening time. One contribution of this work is to develop quantitative relationships between arc 

height and coverage with respect to the number of peening passes. With these equations, the 

number of passes to reach saturation as well as to reach full coverage can be calculated.  

Compressive residual stresses have beneficial effect for the improvement of the fatigue life of the 

peened component. However, surface roughness has detrimental effect on the fatigue life of the 

peened component. In this paper, the influence of the shot peening velocities and peening time on 

the residual stress profile as well as their influence on the surface roughness have been 

experimentally measured and presented. Peen forming has been recognized as a suitable 

manufacturing process for various aircraft components. Stress peen forming is a prevailing 

technique for the forming of wing skins. Another contribution of present work is to establish a 

quantitative relationship between the prebending moment and resulting arc height based on 

experimental results. With this relationship, the prebending moment can be predicted to achieve 

the required deformed curvature or arc height.  
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CHAPITRE 6  A NUMERICAL STUDY OF STRESS PEEN FORMING 

H. Y. Miao, S. Larose, C. Perron, Martin Lévesque, submitted to the journal Advances in 

Engineering Software, on April 21th, 2010. 

6.1 Abstract: 

Stress peening forming is widely used in the aeronautics industry to induce curvatures in wing 

skins. Most of the investigations of stress peen forming are empirical and experimental. In this 

paper, a three steps numerical model that can simulate this process was developed. First, an 

implicit Finite Element Analysis (FEA) with ANSYS where a prebending moment along the 

spanwise direction of the component was performed. Then, an explicit FEA with LS-DYNA 

simulating shot impacts on the pre-stressed component was executed in order to obtain the 

resulting stresses inside the component. Finally, an implicit FEA with ANSYS was performed for 

calculating the arc heights and the curvature radii of the component in chordwise and spanwise 

directions. Numerical analysis of the process shows that the prebending moments have an 

influence not only on the residual stress profiles but also on the curvatures of the deformed 

component in chordwise and spanwise directions. This model establised the relationship between 

the prebending moment and the resulting arc heights and residual stress profiles. The numerical 

strategies developed in this paper supply a useful tool for studying and optimizing the stress 

peening process. 

6.2 Introduction 

Shot peen forming is a dieless process which is and has been widely used to form various aircraft 

components since the 1960’s (Baughman, 1984; Kopp and Ball, 1987; Tatton, 1987). The 

forming process is achieved by bombarding the surface of a component with high speed particles 

that induce a thin layer of plastic deformations near the surface. These plastic deformations 

induce an isotropic residual stress distribution in the component and a convex curvature of the 

component towards the peening direction. Conventional peen forming causes the component to 

acquire a doubly curved shape because its induces the curvatures in all directions. For a wing 

skin, which has a larger curvature in chordwise direction than in spanwise direction, a technique 

called stress peen forming is applied to reduce the generation of parasitic curvatures. In stress 
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peen forming, the component is elastically pre-bent along spanwise direction during peen 

forming. After peen forming, the resulting chordwise contour curvature will be larger than the 

spanwise contour curvature. 

Several theoretical and numerical works have been performed to study the residual stress 

distribution and the deformation of a component after conventional peen forming. Al-Hassani 

(1981) used the assumption that the residual stress profile is the sum of an equivalent stretching 

stress and an equivalent bending stress acting in a manner to balance the induced stresses. 

Induced stresses are defined as the internal non-equilibrated stresses that develop in a rigidly 

constrained component subjected to shot peening (Al-Obaid, 1990a; Vanluchene et al. 1995). 

Residual stresses are the self-equilibrated stresses that remain inside the component after the 

removal of all external constraints. Peening induced stresses in a component are complicated and 

difficult to obtain. Al-Hassani (1981) assumed a cosine function to express the induced stress 

profile. Vanluchene et al. (1995) and Vanluchene and Cramer (1996) obtained empirical 

equations from experiments to relate the induced stresses and the arc height (i.e. the deflection) of 

normalized Almen strips (Almen and Black, 1963). Meo and Vignjevic (2003) employed an axi-

symmetric Finite Element (FE) model to obtain the induced stress profile by simulating the 

impact of a single rigid sphere on an elastic-plastic work-piece. Hong et al. (2008a) conducted a 

parametric study with a 3D FE model to investigate the effect of shot diameter, impact velocity, 

incident angle and component material properties on the resulting induced stress profile. 

Guagliano, (2001) and Han et al. (2002) developed finite element models to predict the induced 

stress profiles created by shot peening and related these induced stresses to arc heights. As 

defined in SAE Standards J442, Almen intensity is defined as the arc height of a normalized 

Almen strip at the point where when shot peening time doubles, the arc height increases by less 

than 10%.  

Most of the investigations of stress peen forming are based on experiments and empirical 

relationships. Baughman (1984) and Kopp and Ball (1987) introduced the principles of elastic 

stress peen forming with prebending moment or pre-stretching force. Barrett and Todd (1984) 

showed that the elastic pre-stressing technique increases the maximum compressive residual 

stress when compared to conventional peen forming. Li (1981) presented experimental results of 

stress peen forming under different values of prebending moments. Gardiner and Platts (1999) 
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simulated the various stress profiles (induced, residual, etc.) involved in stress peen forming by 

using temperature profiles.  

In these previous works the relationship between the prebending parameters and the curvatures of 

the component has not been studied in details. Our objective in this paper is to address this issue. 

A finite element model suitable for simulating the stress peen forming process is established 

firstly. Then residual stress profiles, curvature radii and arc heights of a deformed component are 

calculated. In addition, the effects of prebending moment on these quantities are studied. Finally, 

model predictions are compared with the corresponding experiments. 

This article is divided into five sections. Section 6.3 presents the features and the basic principles 

used in the stress peen forming numerical models. Section 6.4 presents the numerical models 

used to calculate the peen forming results under different prebending conditions. Section 6.5 

compares the simulated arc height and residual stress with experimental results. Finally, Section 

6.6 concludes the work. 

 

Figure 6.1: Illustration of the principle of peen forming process. (a) Induced stress profile in 

௫ߪ direction ݔ
௜௡ௗ produced by shot peening in a fixed strip with a linear compressive force ܨ௫ and 

a linear bending moments ܯ௫. (b) Extended and bent strip after release of boundary force and 

moment in ݔ direction.  (c) Induced stress profile in y direction ߪ௬
௜௡ௗ  produced by shot peening in 

a fixed strip with a linear compressive force ܨ௬ and a linear bending moments ܯ௬. (d) Extended 

and bent strip after release of boundary force and moment in ݕ direction. 
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6.3 Principle of shot peen forming 

6.3.1 Peen forming of a rectangular strip 

Figure 6.1 illustrates the principle of the conventional peen forming of a rectangular strip, where 

௫ܨ  and ܨ௬  are linear compressive forces, ܯ௫ and ܯ௬  are linear bending moments, ݄ is the 

thickness of the plate, ߪ௫
௜௡ௗ  and ߪ௬

௜௡ௗ  are induced stress profiles, ܫ ൌ ݄ଷ 12⁄

 

is the moment of 

inertia, ߪ௫
௥௘௦ and ߪ௬

௥௘௦ are residual stress profiles. Firstly, a flat component is rigidly constrained 

during shot peening. As peening takes place, gradual plastification of the component surface 

layers produces induced stress profiles in ݔ direction ߪ௫
௜௡ௗ  and in ݕ direction ߪ௬

௜௡ௗ  as shown in 

Figure 6.1(a) and (c). These induced stresses are not self-equilibrated. Then after the release of 

the boundary constrains (ܨ௫, ܨ௬  and ܯ௫  ௬), the strip tends to extend and bend, as shown inܯ ,

Figure 6.1(b) and (d), which corresponding to producing tensile stresses (ܨ௫ ݄⁄

 

and ܨ௬ ݄⁄ ) and 

bending stresses (ܯ௫ሺ݄ 2⁄ െ ሻݖ ⁄ܫ  and ܯ௬ሺ݄ 2⁄ െ ሻݖ ⁄ܫ ) for equilibrium. Finally residual stress 

profiles after peen forming ሺߪ௫
௥௘௦ and ߪ௬

௥௘௦) can be calculated with equations shown in Figure 

6.1(b) and (d). 

Linear compressive forces ܨ௫ ௬ܨ ,  and linear bending moments ܯ௫ , ܯ௬  are applied on the 

component by the rigid support in order to maintain the component in a flat shape. It should be 

noted that the subscripts refer to the direction of the axial stress induced by these forces. For 

example, in Figure 6.1(a), ܯ௫ induces a linear axial stress in ݔ direction even though it is actually 

oriented along ݕ . After the release of the rigid constraints due to the support, the originally flat 

component will stretch and bend, as shown in Figure 6.1(b) and (d). The superposition principle 

is used in order to calculate the resulting stretching and bending. It is assumed that the 

component is made of an elasto-plastic material with hardening. The solutions (stresses, strains, 

displacements, etc.) of an initially unloaded flat component subjected to the inverse of the forces 

and moments illustrated in Figure 6.1 (a) and (c) (called Problem 2) are added to the solutions of 

the problems depicted in the same figures (called Problem 1). In order to apply this principle, it is 

assumed that adding the stresses of Problem 2 to the stresses of Problem 1 does not lead to 

further yielding when taking into account the hardening that took place at Problem 1. The 

compressive forces and the bending moments used for keeping the component flat can be 

expressed as: 
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where ݖ ൌ 0 at the top surface. 

As introduced by Al-Hassani (1981), residual stresses in ݔ and ݕ directions can be calculated with 

Equations (6.3) and (6.4), namely 
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Since, in theory, ߪ௫
௜௡ௗ ൌ ௬ߪ

௜௡ௗ for conventional peen forming, Equations (6.5) and (6.6) can be 

written as: 

௥௘௦ߪ  ൌ ௜௡ௗߪ ൅  ௕ (6.7)ߪ+௦ߪ

where ߪ௦ is stretching stress and equals to 
ிೣ

௛
 ௕ is bending stretch and equals toߪ ,

ெೣሺ೓
మ

ି௭ሻ

ூ
. 

Figure 6.2 presents a sketch of the bending moments applied to a rectangular plate with 

dimensions ݈ ൈ ܾ ൈ ݄.  ,direction (spanwise) ݕ ௫ represents a linear bending moment alongܯ 

 direction (chordwise). This generic figure ݔ ௬ represents a linear bending moment alongܯ

presents the loads applied in the implicit finite element model of a rectangular plate for the 

calculation of the arc heights as well as the curvature radii of the deformed component.  
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Figure 6.2: Sketch of a plate ( ݈ ൈ ܾ ൈ ݄ ) subjected to various moments (linear prebending 

moment ܯ௫
௣௥௘ and linear bending moments ܯ௫ and ܯ௬.) 

 

Figure 6.3: Sketch of a rectangular plate after peen forming: ܴ௫, ௫݂ are in ݖݔ plane, ܴ௬, ௬݂  are in 

 .plane ݖݕ
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Figure 6.3 shows a deformed component after peen forming. ௫݂ , ௬݂ are the arc heights of the 

component sections parallel to ݔ and ݕ axes caused by the bending moments ܯ௫  and ܯ௬ . The 

total arc height of the plate is defined as: 

 ݂௧௢௧ ൌ ௫݂ ൅ ௬݂ (6.8) 

For a strip with dimensions as Almen strip, the total arc height ݂௧௢௧ can be measured 

experimentally using Almen gauge with ݈ ൌ 31.75mm and ܾ ൌ 15.87mm. ܴ௫ and ܴ௬ represent 

the curvature radii of the component sections parallel to ݔ and ݕ axes caused by the bending 

moments ܯ௫ and ܯ௬. 

6.3.2 Principle of stress peen forming 

Stress peen forming is usually performed in the following order. First, the prebending moment is 

applied. In our case, a linear prebending moment ܯ௫
௣௥௘  is applied (see Figure 6.2). Then, the 

boundaries of the component are rigidly fixed in order to maintain the initial curvature. The 

component is subjected to shot peening and finally, the constraints are removed. 

In this paper, the prebending moment is assumed to only cause an elastic deformation of the 

component. Therefore, a linearly distributed initial stress profile ߪ௫
௜  can be calculated using 

Equation (6.9), namely 

௫ߪ 
௜ ൌ

ெೣ
೛ೝ೐ሺ೓

మ
ି௭ሻ

ூ
 (6.9) 

This initial stress has a maximum tensile value at ݖ ൌ 0, which is defined as ߪ௫
௜ . In practice, this 

maximum tensile stress can be calculated with the reading of a strain gage and be used as the 

control parameter of the prebending moment. It is therefore associated to the prebending moment 

value in our study. In this study, it is assumed that the plate is free in y direction and, therefore, 

the initial stress is assumed to be ߪ௬
௜ ൌ 0. 

A three-steps FE Implicit-Explicit-Implicit calculation procedure is used to simulate shot peening 

on a prestressed component and the resulting deflection for a plate subjected to peen forming. 

First, an implicit analysis is performed to obtain the initial stress distribution and the deformation 

of the component under prebending. Since the material treated has an elastoplastic behavior, the 

intensity of the initial stress profile should have a significant influence on the plastic deformation 
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induced by shot peening, and hence, on the final shape of the component. Second, an explicit 

analysis is performed to acquire the various internal stresses at the various stages of the peen 

forming process and to calculate the bending moments (ܯ௫ and ܯ௬) due to shot peening. Finally, 

another implicit analysis is performed to calculate the resulting arc heights and the curvature radii 

of the component in chordwise and spanwise directions resulting from bending moments. 

Equations (6.10) and (6.11) introduce the combined stresses ߪ௖ as the sum of the initial stress ߪ௜ 

caused by the prebending moment and the induced stress ߪ௜௡ௗ caused by shot peening: 

௫ߪ 
௖ ൌ ௫ߪ

௜ ൅ ௫ߪ
௜௡ௗ (6.10) 

௬ߪ 
௖ ൌ ௬ߪ

௜ ൅ ௬ߪ
௜௡ௗ (6.11) 

The combined stresses ߪ௫
௖ and ߪ௬

௖ are obtained from explicit FE simulation. They represent the 

stress distribution in the component after shot peening and prior to the removal of the boundary 

constraints. The induced stress in a pre-stressed component can be calculated from: 

௫ߪ 
௜௡ௗ ൌ ௫ߪ

௖ െ ௫ߪ
௜  (6.12) 

௬ߪ 
௜௡ௗ ൌ ௬ߪ

௖ (6.13) 

Substituting Equations (6.12) and (6.13) into Equations (6.5) and (6.6) leads to the residual 

stresses in ݔ  and ݕ  directions separately. Bending moments ܯ௫  and ௬ܯ   are obtained by 

substituting Equations (6.12) and (6.13) into Equations (6.3) and (6.4). Then the arc heights and 

radii of curvatures resulting from stress peen forming can be obtained from third step of implicit 

FE.  

For all these equations, it can be seen that setting ܯ௫
௣௥௘ ൌ 0  leads to the equations for 

conventional peen forming. In the following studies, these results were used to simulate both 

conventional and stress peen forming. 

6.4 Numerical model for stress peen forming 

6.4.1 Description of the finite element model 

Both implicit solver ANSYS and explicit solver LS-DYNA were used to simulate stress peen 

forming according to the three-steps approach described in the previous section. 
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The finite element model shown in Figure 6.4 has been used for the first and second steps of the 

simulation. An Implicit-to-Explicit sequence solution was used to study the effect of the 

prebending moment ܯ௫
௣௥௘ on the structure dynamic response. 48 randomly distributed ceramic 

shots with radius ݎ ൌ 0.25mm, velocity ݒ ൌ 66.2m/s are impacting a high strength aluminum 

2024. The number of shots (48) was calculated with Equation (6.14) according to experiments as 

described in section 5.3: 

 ܰ ൌ ேtotal

ௌtotal
ܵrep ൌ ௠ሶ ௅ఘೞ௏ೞ ௏robot⁄

௅೛஻೛
ܵrep (6.14) 

where tܰotal is the total number of shots for one peening pass, tܵotal is the surface area on the 

target component for one peening pass, ሶ݉  is the mass flow of the shot flow, which is equal to 

0.4kg/min, ܮ௣ is the length of one peening pass and is equal to 100mm, rܸobot is the velocity of 

the peening robot to reach saturation in Aluminum 2024 in experiments for same peening 

condition and equals to 55mm/s,  ߩ௦ is the density of shot and equals to 3850kg/m3, ௦ܸ is the 

volume of one shot, ܤ௣ is the width of one peening pass and equals to 10mm, ܵrep is the surface 

of the boundary of the impacting shots and equals to 1mm ൈ 1mm as shown in Figure 6.5. 

The initial coordinates of these shots were generated with a Matlab program as described in Miao 

et al. (2009). The dimensions of the aluminum target was 2.5mm ൈ 2.5mm ൈ 1.6mm . 

Coordinate (0,0,0) was located on the middle top surface of the target. In order to reduce 

calculation time, a relatively small vertical distance of 0.2ݎ between each shot has been assumed. 

The influence of this distance on the results has been ignored and is left for the future study. 
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Figure 6.4: Finite element model used for stress shot peening simulation. 

 

 

Figure 6.5: Representative surface (Region 1: aluminum surface; Region 2: fine element region; 

Region 3: boundary of the shots centers; Region 4: representative surface). 
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Figure 6.5 presents the surface impact region and the representative surfaces for the study of the 

induced residual stresses. Region 1, with dimensions 2.5mm ൈ 2.5mm , is the total target 

component for the simulation. Region 2, with dimensions 1mm ൈ 1mm, is the boundary of the 

impacting shots. All the shot centers lie within Region 3, of dimensions 0.75mm ൈ 0.75mm. A 

volume of 0.5mm ൈ 0.5mm ൈ 1.6mm is selected as a representative volume to study the average 

induced stress profile 

In this procedure, ANSYS implicit elements SHELL181 (for shot) and SOLID185 (for 

component) were converted to explicit elements SHELL163 (for shot) and SOLID164 (for 

component) in LS-DYNA. Element size of shot and the top surface of the component were set to 

0.025mm after a convergence study. The ceramic shots were assumed to be rigid due to their 

relatively high rigidity and hardness values when compared to that of the target aluminum 

(Meguid et al. 1999a). The density of the ceramic shots was set to ߩ௦ ൌ 3850kg/m3. A bilinear 

isotropic elastoplastic constitutive theory with an elastic modulus ܧ ൌ 76.5GPa, Poisson’s ratio 

߭ ൌ 0.33 , density ߩ௧ ൌ 2800kg/m3 , yield stress ߪ௬ ൌ 379MPa  and tangent modulus ܧ௧௔௡ ൌ

810MPa  were selected to represent the aluminum material properties. These numbers were 

obtained from tensile testing on the target material. Potential strain rate effects of the aluminum 

material were neglected. 

For the third part of the simulation, ANSYS implicit elements SHELL181 were used to simulate 

an aluminum strip of dimensions 31.75mm ൈ 15.87mm ൈ 1.6mm. This dimension of the strip 

was selected in order to compare the deformed arc height of the strip with experimental measured 

value by Almen gauge. Bending moments ܯ௫  and ௬ܯ   from Equations (6.3) and (6.4) (as 

presented in Figure 6.2) were applied on four sides of the strip in order to calculate the resulting 

deflection after stress peen forming. Coordinate (0,0,0) was located on the middle of the strip and 

the node at this point was fixed in ݖ ,ݕ ,ݔ and ܴܱܶݖ directions. 

6.4.2 Implicit analysis of prebending 

In the static prebending analysis, all the nodes on the shot were fixed. The nodes on the bottom 

surface of the component with ݔ ൌ 0 were fixed in ݖ direction to prevent rigid movement. Linear 

pressure gradients with a slope of {0, 85/1.6, 170/1.6 or 255/1.6}MPa mm⁄  along ݖ direction 

were applied on the right surface of the component (ݔ ൌ 1.25mm) and linear pressure gradients 
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of slope of {0, -85/1.6, -170/1.6 or -255/1.6}MPa mm⁄  along ݖ direction were applied on the left 

surface of the component (ݔ ൌ െ1.25mm). These pressure lead to surface initial stress  ߪ௫
௜௠={0, 

85, 170 or 255}  MPa  on the top surface and ܯ௫
௣௥௘ ൌ ሼ0, 36.3, 72.6, 108.9ሽN according to 

Equation (6) evaluated for ݖ ൌ 0.  

6.4.3 Explicit analysis of shot peening process 

The initial stress distribution and nodal displacements obtained from implicit analysis were 

transferred to the explicit model. The four side and the bottom surfaces of the component were 

fixed. Then, the model was subjected to 48 shot impacts with an initial velocity ݒ ൌ 66.2m/s . 

Figure 6.6 presents the results obtained from the Implicit and Explicit sequence solution with 

௫ܯ
௣௥௘ ൌ 108.9N (see Figure 6.2), which corresponds to  ߪ௫

௜௠ ൌ 255MPa. The average combined 

stress profiles ߪ௫
௖ and ߪ௬

௖  were averaged over the whole ݕݔ-plane of the representative volume 

with dimensions 0.5mm ൈ 0.5mm ൈ 1.6mm (Region 4 in Figure 6.5) in the ݖ direction after 

Explicit calculation by LS-DYNA.  

In order to obtain these average combined stress profiles, 9 ൈ 9 ൌ 81 uniformly distributed paths 

following the depth of the plate in the representative volume were defined by ANSYS General 

Postprocessor. SX and SY values were interpolated into each of these 81 paths, respectively. Then 

the average values of SX and SY for constant depths were calculated from these 81 paths to 

represent ߪ௫
௖  and ߪ௬

௖  respectively. Then the average induced stress profiles ߪ௫
௜௡ௗ ௬ߪ ,

௜௡ௗ  can be 

calculated with Equations (6.12) and (6.13), respectively.  
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Figure 6.6: Combined and induced stress profiles after stress peen forming with ܯ௫
௣௥௘ ൌ 108.9N.  

It can be seen from Figure 6.6 that there is little difference between ߪ௫
௖ and ߪ௬

௖  at the top layer of 

the component. On the other hand, at the bottom layer of the component, the value of ߪ௫
௖  is 

approximately equal to the initial bending stress. ߪ௫
௜௡ௗ  has larger maximum and surface 

compressive stresses than ߪ௬
௜௡ௗ . They both show similar values at the deepest layer of the 

component. 

6.4.4 Residual stress profile with stress peen forming 

Figure 6.7 presents each term of Equation (6.7) used for calculating the residual stress profile 

௫ߪ
௥௘௦ for stress peen forming with prebending moment ܯ௫

௣௥௘ ൌ 108.9N. Similar results can be 

obtained for ߪ௬
௥௘௦. It is clearly seen that compressive residual stresses were obtained both at the 

top and at the bottom surfaces of the component.  
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Figure 6.7: Stress profiles after stress peen forming with prebending moment ܯ௫
௣௥௘ ൌ 108.9N.  

 

Figure 6.8: Stress profiles (induced stress and residual stress) of stress peen forming with 

prebending moment ܯ௫
௣௥௘ ൌ 108.9N.  



109 

Figure 6.8 presents the induced stresses ߪ௫
௜௡ௗ ௬ߪ ,

௜௡ௗ , and the residual stress profiles ߪ௫
௥௘௦ ௬ߪ ,

௥௘௦  

with prebending moment ܯ௫
௣௥௘ ൌ 108.9N ( ߪ௫

௜௠ ൌ 255MPa). Due to the difference between ߪ௫
௜௡ௗ 

and ߪ௬
௜௡ௗ, ߪ௫

௥௘௦ and ߪ௬
௥௘௦  were quite different at the top layer of the component. ߪ௫

௥௘௦ has larger 

maximum compressive stress and top surface compressive stress than ߪ௬
௥௘௦. In addition, both ߪ௫

௥௘௦ 

and ߪ௬
௥௘௦  have compressive residual stresses at the bottom surface of the component. 

Figure 6.9 presents the evolution of the residual stresses obtained following the procedure 

previously established. It can be seen from the figure that prebending has a significant influence 

on the residual stresses distribution in the component. With the increase of the prebending 

moment, the surface and maximum compressive ௫ߪ 
௥௘௦  increases gradually, the maximum 

compressive residual stress decreases gradually. The compressive residual stress values in 

chordwise direction produced by stress peen forming were larger than those obtained from 

conventional peen forming.  

 

Figure 6.9: Residual stress profiles under four different prebending moments. 
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6.4.5 Radius of curvature and arc height of stress peen forming 

Figure 6.10 presents the ௭ܷ  displacements of nodes with ݕ ൌ 7.935mm  and ݔ ൌ 15.875mm 

after FE calculation for conventional peen forming (ܯ௫
௣௥௘ ൌ 0) and stress peen forming ሺܯ௫

௣௥௘ ൌ

108.9ܰ ), respectively. With these ௭ܷ  displacement values, the arc heights ௫݂ , ௬݂  can be 

calculated directly and the curvature radii ܴ௫  and ܴ௬ can obtained by best fitting with a circle 

and are listed in Table 6.1. It can be found that stress peen forming produces larger arc height 

(smaller radius of curvature) in the prebending direction (  direction) compared with ݔ

conventional peen forming. While in the direction vertical to prebending moment  ሺݕ direction), 

prebending moment has less influence.  

 

Figure 6.10: ௭ܷ displacements of the strip following ݔ and ݕ directions after conventional peen 

forming (ܯ௫
௣௥௘ ൌ 0) and stress peen forming (ܯ௫

௣௥௘ ൌ 108.9ܰ). 
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Table 6.1: Resulting arc heights and radii of curvatures in ݔ and ݕ directions. 

Prebending 

moment (N) 
Arc height ( mm ) Radius of curvature (mm) 

௫ܯ
௣௥௘ ௫݂ ௬݂ ܴ௫ ܴ௬ 

0 0.2227 0.0638 455.57 454.46 
108.9 0.4689 0.0468 226.97 547.47 

 

Table 6.2: Relationship between prebending conditions and peen forming results. 

Table 6.2 lists the bending moments ܯ௫  and ܯ௬ , resulting arc heights ௫݂ , ௬݂  and  

݂௧௢௧  as well as curvature radii ܴ௫  and ܴ௫  under four different prebending conditions (ܯ௫
௣௥௘ ൌ

ሼ0, 36.3, 72.6, 108.9ሽN). ܯ௫ and ܯ௬ were calculated using Equations (6.3) and (6.4). ௫݂, ௬݂, ܴ௫ 

and ܴ௬ were obtained from implicit FE analysis. Prebending radius of curvature ܴ௫
௣௥௘ in Table 

6.2 can be calculated from prebending moment as: 

 ܴ௫
௣௥௘ ൌ ாூ

ெೣ
೛ೝ೐ ൌ ா௛య

ଵଶெೣ
೛ೝ೐ (6.15) 

It can be seen from Table 6.2 and Figure 6.11 that: 

 In the case conventional peen forming (ܯ௫
௣௥௘ ൌ  ௬. The littleܯ ௫ should be equal toܯ ,(0

difference between these two quantities might be due to the randomness of the shots 

distribution. 

 In the case of stress peen forming (ܯ௫
௣௥௘ ൌ 36.3N , 72.6N  or 108.9N), the radius of 

curvature ܴ௫ is smaller than ܴ௬.  

Prebending 
moment 

௫ܯ
௣௥௘

 
( N ) 

Surface 
stress 

s  
( MPa) 

Radius of 
prebend 

ܴ௫
௣௥௘

 
( mm ) 

Bending 
moment 

( N) 

Resulting arc height 
( mm ) 

Radius of 
curvature  

( mm ) 

 ௬ ௫݂ ௬݂ ݂௧௢௧ ܴ௫ ܴ௬ܯ ௫ܯ

0 0 ∞ 65.31 69.92 0.28 0.075 0.36 455.57 454.46 

36.3 85 720 80.37 71.04 0.35 0.070 0.42 358.75 464.85 

72.6 170 360 96.36 72.04 0.45 0.060 0.51 278.80 474.61 

108.9 255 240 112.93 72.8 0.55 0.050 0.60 226.97 499.80 
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 Radius of curvature ܴ௫ decreases with the increase of prebending moment, while radius 

of curvature ܴ௬ increases with the increase of prebending moment. 

 Compared with conventional peen forming (ܯ௫
௣௥௘ ൌ 0), stress peen forming produces 

smaller ܴ௫ and larger ܴ௬. ܴ௫ decreases with the increase of prebending moment, and ܴ௬ 

increases with the increase of prebending moment. 

 

Figure 6.11: Relationship between prebending moment ܯ௫
௣௥௘ and peen forming results.  (a) 

Relationship between prebending moment ܯ௫
௣௥௘ and resulting arc heights ௫݂ , ௬݂  and ݂௧௢௧ . (b) 

Relationship between prebending moment ܯ௫
௣௥௘and resulting radii of curvatures ܴ௫ and ܴ௬.  
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Figure 6.11 plots the relationship between prebending moment ܯ௫
௣௥௘and resulting arc heights ௫݂, 

௬݂  and ݂௧௢௧  as well as resulting radii of curvatures ܴ௫  and ܴ௬ . All of these results reflect the 

tendencies that were obtained experimentally by (Li, 1981).
 

6.5 Comparison with experiments 

6.5.1 Experimental study of stress peen forming 

Stress peen forming process were performed with a BLAKA-1 portable blasting machine 

(#CH8152 GLATTGRUGG), a Motoman Model robot (Motoman SV3X Long) and a robot 

controller (XRC 2001). Ceramic Zirshot Z425 shots were used in the experiments. The pressure 

of the shots stream was set to 22.5Psi, and the mass flow of the shots was set to 0.4kg/min. The 

velocity of the shot flow was 66.2m/s and was measured by shot velocity measurement device 

“Shotmeter” sold by Progressive Technologies. The diameter of the nozzle was 6mm and the 

standoff distance between nozzle and target was of 25mm. Shots having a normal trajectory with 

respect to the target surface were considered in the experiments. The robot moving velocity was 

set to 55mm/s for aluminum 2024 strip with dimensions 76mm ൈ 19mm ൈ 1.6mm to reach 

saturation. The prestressing device as shown in Figure 5.1 with four radii of prebending 

curvatures (ܴ௫
௣௥௘= ∞, 720 mm, 360 mm and 240 mm) has been designed for the stress peen 

forming. Four aluminum strips with dimensions 76mm ൈ 19mm ൈ 1.6mm were fixed on the 

prestressing device. Aluminum strips with dimensions 76mm ൈ 19mm ൈ 1.6mm  have been 

selected in the experiments for the simplification of arc height measurement. The strips were 

elastically deformed following the prestressing device. 

6.5.2 Comparison with experimental results 

Figure 6.12 presents experimental measured ௭ܷ  displacement of the deformed strip along 

prebending direction after conventional peen forming ( ௫ܯ
௣௥௘ ൌ 0 ) and stress peen forming 

௫ܯ)
௣௥௘ ൌ 108.9N). For each case, 13 points along prebending direction with a total length of 

60mm were measured by Taylor-Hobson's PGI-840 profilometer and read manually. A circle 

with a radius ܴ௫ can be used to best fit these 13 measured values for each case. Similar to FE 

simulated results in Figure 6.10(a), stress peen forming produces smaller resulting radius of 

curvature compared with conventional peen forming. 
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Figure 6.12: Experimental measured ௭ܷ  and fitting curve after conventional peen forming 

௫ܯ)
௣௥௘ ൌ 0) and stress peen forming (ܯ௫

௣௥௘ ൌ 108.9N). 

Figure 6.13 compares the experimental measured arc height and fitted radius of curvature ܴ௫  

with FE simulated results under four different prebending moments ܯ௫
௣௥௘ ൌ ሼ0, 36.3, 72.6,

108.9ሽN. In Figure 6.13(a), the resulting total arc heights were measured by Almen gauge and 

were compared with the simulated resulting arc height ݂௧௢௧. In Figure 6.13(b), four best fitting 

radii of curvatures from experimental measured data were compared with four best fitting radii of 

curvatures from FE calculated ௭ܷ  displacement. It can be seen that, for both arc heights and 

radius of curvature ܴ௫ , the simulated results are consistent with the experimental results. In 

addition, both experimental and simulated results present same tendency for the relationship 

between prebending moment and resulting arc height and radius of curvature. That is to say, 

resulting arc height ݂௧௢௧ increases with the increase of the prebending moment and resulting 

radius of curvature ܴ௫ decreases with the increase of the prebending moment. 
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Figure 6.13: Comparison of FE simulated resulting arc heights and radius of curvature with 

experimental results (a) Relationship between prebending moment and resulting arc height from 

experiment and FE simulation. (b) Relationship between prebending moment and resulting radius 

of curvature from experiment and FE simulation.  

Residual stress profiles under conventional peen forming (ܯ௫
௣௥௘ ൌ 0N) and stress peen forming 

ሺܯ௫
௣௥௘ ൌ 108.9N) have been measured in PROTO Manufacturing company with equipment 

LXRD using X-Ray Diffraction method. Correction for stress relaxation and redistribution as a 

result of material removal via electro-polishing was performed as per SAE HS784. However, it is 

difficult to compensate the stress release when correction becomes large. Therefore, for each 

case, the residual stress for depth (0 to 0.8mm) were measured from the convex side on a first 

sample and residual stress for depth (0.8mm to 1.6mm) were measured from concave side on the 

second sample. Figure 6.14 compares experimental measured and FE simulated residual stress 

profiles under these two cases.  
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Figure 6.14: Comparison of experimental measured residual stress and FEM simulated results 

under two cases. (a) Conventional peen forming with ܯ௫
௣௥௘ ൌ 0N. (b) Stress peen forming with 

௫ܯ
௣௥௘ ൌ 108.9N. 

It can be seen from Figure 6.14 that: 

 The simulated residual stresses are consistent with the experimental results, which means 

that the developed the three-steps FE model can be used to study conventional peen 

forming and stress peen forming process effectively. 
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 Peen forming process produces compressive residual stress not only on the top surface but 

also on the bottom surface of the component. 

 When compared with conventional peen forming, stress peen forming produces larger 

surface residual stress (both top and bottom surface of strip) and maximum compressive 

residual stress. 

 When compared with conventional peen forming, stress peen forming induces larger 

maximum tensile residual stress inside the component. 

6.6 Conclusions 

Stress peen forming is widely used in curving aircraft wing skins but the process remains almost 

strickly empirical. The contribution of our work is the application of the computational Implicit 

and Explicit strategies for studying this engineering problem. With this newly developed tool, the 

relationship between prebending values and residual stress profiles, arc heights curvature radii 

and of the deformed component can be studied in details. The method developed in this paper led 

to a useful tool to control and predict stress peening forming process results. For certain desired 

deformed shape, shot peening parameters such as shot size, shot velocity and prebending values 

can be selected and optimized before peen forming. 

In this paper, only a rudimentary analysis of stress peen forming has been performed based on 

several assumptions and limitations. Ongoing and future works will be dealing with the 

optimization of the 3D randomly distributed shot peening model, which includes model 

representation size and distance between random shots.  
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CHAPITRE 7  AN ANALYTICAL APPROACH TO RELATE SHOT 

PEENING PARAMETERS TO ALMEN INTENSITY 

H. Y. Miao, S. Larose, C. Perron, Martin Lévesque, submitted to the journal Surface and Coating 

Technology on February 15th, 2010. 

7.1 Abstract: 

The shot peening process is widely used in the automotive and aerospace industries to improve 

the fatigue strength of metal components by introducing near-surface plastic strains and 

compressive residual stresses. This mechanical treatment is primarily controlled by monitoring 

Almen (peening) intensity, which corresponds to the arc height at saturation of standardized test 

strips exposed to the shot stream. However, the same Almen intensity may be obtained by using 

small shots impacting the surface at high velocity or by using large shots impacting the surface at 

low velocity. This paper describes a model for predicting Almen intensity based on an analytical 

model for shot peening residual stresses. Theoretical results for different sets of peening 

parameters were consistent with published experimental results and revealed that although 

different combinations of shot peening parameters can produce the same Almen intensity, each 

combination resulted in a different through thickness residual stress distribution. 

7.2 Introduction 

Shot peening is a mechanical surface treatment widely used in the automotive and aerospace 

industries to improve the fatigue life of metallic components. A shot stream hammers the metal 

surface and induces a compressive residual stress layer, which reduces the likelihood of 

premature failure under cyclic loading conditions. The effectiveness and repeatability of the shot 

peening process is usually measured using two control parameters: peening coverage and Almen 

(peening) intensity. Numerous shot peening parameters (shot size, type, velocity, incidence angle, 

material properties of the target component, etc.) have a great influence on the effectiveness of 

the treatment. 

Almen intensity is related to the amount of kinetic energy transferred from the shot stream to a 

target component during the shot peening process (Kyriacou, 1996). The method commonly used 

to quantify peening intensity was introduced by Almen and Black (1963). It consists of peening a 
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standardized SAE1070 spring steel test strip (Almen strip) clamped to a mounting fixture by 

means of four roundhead bolts. This strip is of dimensions 76mm ൈ 19mm for three available 

thicknesses (type A: 1.29mm, type N: 0.79mm and type C: 2.39mm). After peening, when the 

fixing bolts are removed, the test strip bends towards the peening direction due to the plastic 

deformation induced by shot peening. The degree of strip deflection (expressed as strip arc 

height) due to different peening times is measured using a dedicated measuring equipment called 

Almen gauge. In order to determine the intensity of a given peening process, a number of Almen 

strips are peened using the same peening parameters for different exposure times according to 

SAE specifications. A saturation curve is obtained by plotting the strip arc height as a function of 

peening exposure time. Saturation is defined as the point on the curve beyond which the arc 

height increases by less than 10% when the peening time is doubled. Almen intensity is defined 

as the arc height at saturation. Complete procedures and specification of intensity measuring 

equipment can be found in SAE standards SAE-J442, SAE-J443 and SAE-AMS 2430. 

Flavenot and Niku-Lari (1977), Al-Hassani (1982, 1984) and Guagliano (2001) related the 

peening-induced test strip arc height to the residual stress profile in a peened thin component by 

envisaging that a bending moment and a stretching force were internally generated to balance the 

peening-induced stress (source stress), thus providing equilibrium in the free component. The 

bending moment and stretching force cause bending and axial elongation, which are manifested 

in the deflection of the component. A cosine function was assumed by Flavenot and Niku-Lari 

(1977) to represent both the residual stress in a semi-infinite component and the induced stress in 

a thin component. 

Guechichi (1986) developed a theoretical model to predict residual stress introduced by shot 

peening, based on Hertz theory of contact and an elasto-plastic calculation method (Zarka and 

Casier, 1979); Zarka and Inglebert, 1985). In his model, shot peening parameters such as shot 

velocity, shot diameter and target material were considered. Khabou et al. (1989) improved 

Guechichi’s model by considering different constitutive laws for the target material. They 

obtained good results for 7075 aluminum alloy by using a compound rheological model with two 

blocks having coupled yield thresholds. Fathallah et al. (1998) extended the model one step 

further by considering the effect of the tangential friction between the shot and the treated 

material as well as the angle of impingement. The calculated residual stress profiles using 
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different coefficients of friction and angles of impingement showed a good correlation with 

experimental data from the literature. 

Li et al. (1991) developed a simplified analytical model for calculating the compressive residual 

stress field due to shot peening. The predicted results showed good agreement with experiments. 

However, in their model, the shot peening process was considered as a quasi-static case, which 

could not take into account the velocity of the shot. In addition, an empirical relationship between 

the experimental plastic radius and the equivalent static load of shot peening was required. Shen 

et al. (2004) improved the model proposed by Li et al. (1991)  by calculating a theoretical plastic 

radius as in Al-Hassani (1984), using the equation of motion of a rigid spherical shot impinging 

upon a rigid perfectly plastic target and a geometrical relationship between the indentation plastic 

radius and indentation depth. When compared to the model of Li et al. (1991), the model of Shen 

et al. (2004) considered more shot peening parameters, such as the size and velocity of the shot 

and as the characteristics of the target material. 

As opposed to existing studies, this paper presents a combined analytical model for both 

investigating the influence of shot peening parameters on the resulting Almen intensity and on 

the residual stress in the Almen strip. The model incorporates the models of Li et al. (1991) and 

Shen et al. (2004) to predict the induced stress in a semi-infinite target component (described in 

Section 7.3.1 below). The approach of Guagliano (2001) is then used to predict residual stresses 

and deformed arc height in the Almen strip (described in Section 7.3.2 below). Section 7.4 

compares the predicted Almen intensity and residual stress distributions with experimental results 

obtained from the literature. Section 7.5 presents a parametric study of Almen intensity. 

Conclusions are presented in Section 7.6. 



121 

7.3 Analytical prediction of Almen intensity 

7.3.1 Analytical model for shot peening induced stress in a semi-infinite body 

7.3.1.1 Hertz contact theory and impact between elastic sphere and semi-infinite elastic 

body 

The loading introduced by shot peening in the model developed by Li et al. (1991) and 

complemented by Shen et al. (2004) is based on Hertz theory of contact. Fundamental equations 

are recalled below. 

It is assumed that the shot is elastic and the target is a semi-infinite elastic body. This situation 

can be considered as a particular application of Hertzian contact between two elastic spheres. The 

boundary condition for normal displacements within the circular contact area of two contacting 

spheres (see Figure 7.1) can be written as (Johnson, 1985, p.92): 

ሻݎത௭ଵሺݑ  ൅ ሻݎത௭ଶሺݑ ൌ ߜ െ ቀ ଵ

ଶோ
ቁ  ଶ (7.1)ݎ

where ݑത௭ଵሺݎሻ and ݑത௭ଶሺݎሻ are the normal displacement fields on the surface of the two spheres, ݎ 

is the radial distance from the contact center，ߜ is the total approach between the centers of the 

two spheres with the relationship ߜ ൌ ଵߜ ൅ ଶߜ , where ߜଵ  and ߜଶ  are the displacements of the 

centers of the two spheres, respectively. ܴ is the relative radius of the interface with relationship 

൫1
ܴൗ ൯ ൌ ቀ1

ܴଵ
ൗ ቁ ൅ ቀ1

ܴଶ
ൗ ቁ, where ܴଵ and ܴଶ are the initial radii of the two spheres, respectively. 

The pressure distribution ݌ሺݎሻ proposed by Hertz for two frictionless elastic solids of revolution 

in contact can be expressed as (Johnson, 1985, p.60): 

ሻݎሺ݌  ൌ ଴݌ ൤1 െ ቀ ௥

௔೐
ቁ

ଶ
൨

ଵ
ଶൗ

 (7.2) 

where ݌଴  is the maximum pressure at ݎ ൌ 0  and ܽ௘  is the contact radius. This pressure 

distribution gives rise to normal displacements at the surface of a body (Johnson, 1985, p.61): 
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Figure 7.1: Geometry of contacting surfaces. The dotted lines represent the initial envelopes of 

the spheres. After contact, the two spheres adjust (shown by the solid lines) to avoid penetration 

(ܴଵand ܴଶ are the initial radii of the two spheres, is the radial distance from the contact center, 

 ଶߜ ଵ andߜ ,ሻ are the normal displacement fields on the surface of the two spheresݎത௭ଶሺݑ ሻ andݎത௭ଵሺݑ

are the displacements of the centers of the two spheres, ܽ௘ is the radius of the contact circle). 

ഥݑ                                                   ௭ሺݎሻ ൌ ଵିజమ

ா

గ௣బ

ସ௔೐
ሺ2ܽ௘

ଶ െ ,ଶሻݎ ݎ ൑ ܽ௘                            ሺ7.3ሻ 

where ߭ and ܧ are the Poisson’s ratio and Young’s modulus of the body, respectively. 

The pressure distribution acting on the second body is equal to that on the first, so that by 

substituting Equation (7.1) into ሺ7.3ሻ we get (Johnson, 1985, p.92): 

 
గ௣బ

ସ௔೐ாಹ
ሺ2ܽ௘

ଶ െ ଶሻݎ ൌ ߜ െ ቀ ଵ

ଶோ
ቁ  ଶ (7.4)ݎ

where an equivalent Young’s modulus ܧு is defined for simplification as: 

 
ଵ

ாಹ
ൌ ଵିఔೄ

మ

ாೄ
൅ ଵିఔ೅

మ

ா೅
 (7.5) 
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where ݏܧ  and ߭ௌ  are the Young’s modulus and the Poisson’s ratio of the shot material, 

respectively, and ்ܧ  and ்߭  are the Young’s modulus and the Poisson’s ratio of the target 

material, respectively. 

From Equation (7.4) we get the total approach between the centers of the two spheres with ݎ ൌ 0: 

ߜ  ൌ గ௔೐௣బ

ଶாಹ
 (7.6) 

and the radius of the elastic contact circle with ݎ ൌ ܽ௘ as: 

 ܽ௘ ൌ గ௣బோ

ଶாಹ
 (7.7) 

Combining Equation (7.6) and Equation (7.7), we obtain: 

 ܽ௘ ൌ  (7.8) ܴߜ√

The total load ܲ compressing the solids is related to the pressure distribution by (Johnson, 1985, 

p.92): 

 ܲ ൌ ׬ ሻݎሺ݌
௔೐

଴ ݎ݀ݎߨ2 ൌ ଶగ௔೐
మ௣బ

ଷ
 (7.9) 

Combining Equation (7.6), Equation (7.8)  and Equation (7.9), ܲ  can also be expressed as 

function of ߜ: 

 ܲ ൌ ቀସாಹ

ଷ
ቁ ܴ

ଵ
ଶൗ ߜ

ଷ
ଶൗ  (7.10) 

In the case of shot peening, a shot is impinged at a flat target component, which is defined as a 

semi-infinite target in this study. Therefore, the relationship ൫1
ܴൗ ൯ ൌ ቀ1

ܴଵ
ൗ ቁ ൅ ቀ1

ܴଶ
ൗ ቁ ൌ ൫2

ൗܦ ൯ 

is applied in the following equations. 

The characteristics of the impact between the shot and the target component are described using 

an energy approach. We consider that the initial kinetic energy of the impinging shot is mostly 

converted into elastic work during the impact: 

 ݇ ڄ ଵ

ଶ
ቀగఘ஽య

଺
ቁ ሺܸsinߠሻଶ ൌ ׬ ܲdߜ

ఋכ

଴ ൌ ׬ ቀସாಹ

ଷ
ቁ ሺ஽

ଶ
ሻ

ଵ
ଶൗ ߜ

ଷ
ଶൗ dߜ

ఋכ

଴  (7.11) 

where ܦ ߩ ,  and ܸ  correspond to the shot diameter, density and shot velocity, ߠ  is the shot 

peening incidence angle with respect to the ݕ-ݔ plane, כߜ is the maximum approach between the 
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shot and target component and ݇  is an efficiency coefficient related to elastic and thermal 

dissipation during impact. Following Iida (1984), we consider here that the characteristics of the 

indentation are mainly function of the normal component of velocity onto the surface. The value 

of ݇ is taken as 0.8 (Johnson, 1972). 

When integrating the right hand side of Equation (7.11), we obtain the expression for כߜ: 

כߜ  ൌ ஽

ଶ
ቀହ

ସ
ߩ݇ߨ ሺ௏ୱ୧୬ఏሻమ

ாಹ
ቁ

ଶ
ହൗ
 (7.12) 

Using Equation (7.8), the maximum contact radius ܽ௘
כ  can be expressed as: 

 ܽ௘
כ ൌ ஽

ଶ
ቂହ

ସ
ߩ݇ߨ ሺ௏ୱ୧୬ఏሻమ

ாಹ
ቃ

భ
ఱ
 (7.13) 

The maximum value of ݌଴  during elastic impact ݌଴
כ  can be obtained by substituting Equation 

(7.13) into Equation (7.7): 

଴݌ 
כ ൌ ଵ

గ
ுܧߩ݇ߨ40ൣ

ସሺܸsinߠሻଶ൧
భ
ఱ (7.14) 

We can notice that for a normal impact between two spheres of the same material (with Young’s 

modulus ܧ஽ and Poisson’s ratio ߭஽), assuming ݇ ൌ 1.0, Equation (7.13) reduces to 

 ܽ௘
כ ൌ ஽

ଶ
ቂହ

ଶ
ଶܸߩߨ ሺଵିజವ

మሻ

ாವ
ቃ

భ
ఱ
 (7.15) 

as proposed by Davies (1949). 

7.3.1.2 Stress-strain analysis of elastic contact 

The equations in this section will be developed for the exact moment of maximum indentation, 

corresponding to כߜ, ܽ௘
כ  and ݌଴

 However, similar relationships can be obtained for any moment .כ

of the impact by replacing these maximum values with their corresponding instantaneous values 

 .଴ inside Equations (7.16) to (7.19)݌ ௘ andܽ ,ߜ

Following Hertz theory, the stresses reach their maximum along the z-axis passing through the 

center of the contact area in the target body, where they can be expressed as (Johnson, 1985, 

p.62): 

௫ߪ 
௘ሺݖሻ ൌ ௬ߪ

௘ሺݖሻ ൌ െ݌଴
כ ቂെ ଵ

ଶ
ሻݖሺܣ ൅ ሺ1 ൅  ሻቃ (7.16)ݖሺܤሻߥ
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௭ߪ 
௘ ൌ െ݌଴

 ሻ (7.17)ݖሺܣכ

with: 

ሻݖሺܣ  ൌ ൤1 ൅ ቀ ௭

௔೐
ቁכ

ଶ
൨

ିଵ

 (7.18) 

ሻݖሺܤ  ൌ 1 െ ௭

௔೐
כ tanିଵ ቀ௔೐

כ

௭
ቁ (7.19) 

௫ߪ
௘ ௬ߪ ,

௘  and ߪ௭
௘  are the principal stresses acting on the elastic target and ݖ is the depth under 

consideration in the target body. 

The von Mises equivalent stress distribution σ௜
௘ can be calculated from the principal stresses as: 

௜ߪ 
௘ ൌ ቄൣሺߪ௫

௘ െ ௬ߪ
௘ሻଶ ൅ ሺߪ௬

௘ െ ௭ߪ
௘ሻଶ ൅ ሺߪ௭

௘ െ ௫ߪ
௘ሻଶ൧

ଵ/ଶ
ቅ √2ൗ  (7.20) 

According to Hooke’s law, the principal strains in the target material are expressed as: 

௫ߝ 
௘ ൌ ௬ߝ

௘ ൌ ଵ

ா೅
௫ߪൣ

௘ െ ௬ߪሺ்ߥ
௘ ൅ ௭ߪ

௘ሻ൧ (7.21) 

௭ߝ 
௘ ൌ ଵ

ா೅
௭ߪൣ

௘ െ ௬ߪ்ߥ2
௘൧ (7.22) 

The equivalent strain ε௜
௘ can be obtained directly through Hooke’s law as: 

௜ߝ 
௘ ൌ

ఙ೔
೐

ா೅
 (7.23) 

The hydrostatic stress and strain can be written as: 

௠ߪ 
௘ ൌ ଵ

ଷ
ሺߪ௫

௘ ൅ ௬ߪ
௘ ൅ ௭ߪ

௘ሻ (7.24) 

௠ߝ 
௘ ൌ ଵ

ଷ
ሺߝ௫

௘ ൅ ௬ߝ
௘ ൅ ௭ߝ

௘ሻ (7.25) 

The principal components of the deviatoric stress tensor in the target material can be expressed 

as: 

௫ݏ 
௘ ൌ ௬ݏ

௘ ൌ ௫ߪ
௘ െ ௠ߪ

௘ ൌ ଵ

ଷ
௜ߪ

௘ (7.26) 

௭ݏ 
௘ ൌ ௭ߪ

௘ െ ௠ߪ
௘ ൌ െ ଶ

ଷ
௜ߪ

௘ ൌ െ2ݏ௫
௘ (7.27) 

In a similar way, the principal components of the deviatoric strain tensor are derived as: 
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 ݁௫
௘ ൌ ݁௬

௘ ൌ ଵ

ଷ
ሺ1 ൅ ௜ߝሻ்ߥ

௘ (7.28) 

 ݁௭
௘ ൌ െ ଶ

ଷ
ሺ1 ൅ ௜ߝሻ்ߥ

௘ ൌ െ2݁௫
௘ (7.29) 

7.3.1.3 Elastic-plastic analysis of the loading process 

In the elastic-plastic deformation stage, calculation of strains and stresses in an elasto-plastic 

region presents a difficult theoretical problem. Li et al. (1991) introduced the following 

simplified method. In a first step, the strain field is calculated as if the material was purely elastic. 

Then, the plastic strain in the elasto-plastic deformation stage is obtained from the strain field 

produced by the purely elastic impact and from the characteristics of a perfectly plastic impact 

using an empirical formulation introducing an efficiency factor α as:  

௜ߝ 
௣ ൌ ൜

௜ߝ
௘

௦ߝ ൅ ௜ߝሺߙ
௘ െ ௦ሻߝ

 for  ߝ௜
௘ ൑ ௦ߝ

 for  ߝ௜
௘ ൐ ௦ߝ

  (7.30) 

is defined as the ratio of the radius of maximum plastic indentation ܽ௣ ߙ
כ  to the radius of the 

maximum elastic contact radius ܽ௘
כ  (Li et al. 1991), ߝ௦  is the strain corresponding to the yield 

stress ߪ௦. 

The geometric characteristics of the plastic indentation are calculated assuming a rigid shot 

impinging upon a rigid perfectly plastic target. The determination of  ܽ௣
כ  involves the equation of 

motion of the shot during a normal contact with the target surface (Al-Hassani, 1984): 

 
ସగ

ଷ
ଷܴߩ ௗ௏

ௗ௧
ൌ െܽߨ௣

ଶ݌ҧ (7.31) 

where ݌ҧ is the average pressure resisting the motion and ܽ௣ is the radius of indentation during the 

plastic impact. Using ߜ௣ as the total approach between the centers of the two bodies, ܸ ൌ
ௗఋ೛

ௗ௧
 and 

ௗ௏

ௗ௧
ൌ ܸ ௗ௏

ௗఋ೛
, Equation (7.31) can be rewritten as 

 
ସగ

ଷ
ଷܸܴߩ ௗ௏

ௗఋ೛
ൌ െܽߨ௣

ଶ݌ҧ (7.32) 

This equation can be solved with the use of a geometrical relationship for the plastic indentation, 

as illustrated in Figure 7.2: 

 ܴଶ ൌ ܽ௣
ଶ ൅ ሺܴ െ  ௣ሻଶ (7.33)ߜ



127 

 

Figure 7.2: Plastic indentation of a rigid shot impacting a perfectly plastic target. 

With the assumption that ܴ ب ௣ߜ ,௣ߜ
ଶ is ignored in Equation (7.33). Therefore, Equation (7.34) 

is obtained: 

 ܽ௣ ൌ ඥ2ߜ௣ܴ (7.34) 

Integrating Equation (7.32) with the help of Equation (7.34), while assuming full plasticity 

conditions in which ݌ҧ remains constant and equal to 3σ௦ (Tabor, 1951) during the impingement, 

we obtain the maximum approach or final depth of indentation ߜ௣
 :as כ

௣ߜ 
כ ൌ ට

ଶఘோమ௏మ

ଽఙೞ
 (7.35) 

Then, combining Equations (7.34) and (7.35) we can obtain the following expression for the 

maximum plastic radius ܽ௣
כ  in the case of normal impact: 

 ܽ௣
כ ൌ ܴ ቀ଼ఘ௏మ

ଽఙೞ
ቁ

భ
ర
 (7.36) 

In the general case of an impact with incidence angle ߠ, Equation (7.36) becomes 
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 ܽ௣
כ ൌ ܴ ቀ଼ఘሺ௏ୱ୧୬ఏሻమ

ଽఙೞ
ቁ

భ
ర
 (7.37) 

Once the strains are calculated, the stresses can be calculated according to the elastic-plastic 

stress-strain curve (Figure 7.3): 

௜ߪ 
௣ ൌ ቐ

௜ߪ
௘

௦ߪ ൅ ௜ߝଵሺܪ
௣ െ ௦ሻߝ

௕ߪ

  for
  for
  for

௜ߝ    
௣ ൏ ௦ߝ

௦ߝ     ൑ ௜ߝ
௣ ൏ ௕ߝ

௜ߝ    
௣ ൒ ௕ߝ

 (7.38) 

in which ܪଵ is a linear strain-hardening parameter, ߪ௕ is the ultimate tensile stress of the target 

material, ߝ௕ is the strain which corresponds to ߪ௕ and ߝ௦ is the elastic strain which corresponds to 

yield stress and is calculated as: 

௦ߝ  ൌ ఙೞ

ா೅
 (7.39) 

Since the simplified analysis for the strain assumed an elastic material, it is assumed that their 

relationships in the elastic-plastic domain are valid: 

 ݁௫
௣ ൌ ݁௬

௣ ൌ ଵ

ଷ
ሺ1 ൅ ௜ߝሻ்ߥ

௣ (7.40) 

 ݁௭
௣ ൌ െ ଶ

ଷ
ሺ1 ൅ ௜ߝሻ்ߥ

௣ ൌ െ2݁௫
௣ (7.41) 

According to Ilyushin’s elastic-plastic theory (Ilyushin, 1948): 

௜௝ݏ 
௣ ൌ ଵ

ଵାఔ೅

ఙ೔
೛

ఌ೔
೛ ݁௜௝

௣  (7.42) 

Then, the principal components of the deviatoric stress tensor in the elastic-plastic domain are: 

௫ݏ 
௣ ൌ ௬ݏ

௣ ൌ ଵ

ଵାఔ೅

ఙ೔
೛

ఌ೔
೛ ݁௫

௣ ൌ ଵ

ଷ
௜ߪ

௣ (7.43) 

௭ݏ 
௣ ൌ െ ଶ

ଷ
௜ߪ

௣ ൌ െ2ݏ௫
௣ (7.44) 

With the expressions for stress and strain in the elastic-plastic domain, expressions for the 

induced stress in the target material after unloading are be derived in the next section. 
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Figure 7.3: Schematic diagram for calculating stresses after unloading (ߪ௦ is yield stress, ߪ௕ is 

ultimate tensile stress , σ௜
௘ is von Mises equivalent elastic stress, ߪ௜

௣is the plastic stress, Δߪ௜
௘ is the 

stress that can not be released , Δߪ௜
௣  is the stress corresponding to Δߝ௜

௣ ௦ߝ,  is elastic strain 

corresponding to ߪ௦ , ௕ߝ   is ultimate tensile strain corresponding to ߪ௕ ௜ߝ ,
௘  is elastic strain 

corresponding to σ௜
௘, ߝ௜

௣is plastic strain calculated from ߝ௦ and ߝ௜
௘, Δߝ௜

௘ is the stress corresponding 

to Δߪ௜
௘ , Δߝ௜

௣  is the plastic strain calculated from Δߝ௜
௘  and ܪଵ  is a linear strain-hardening 

parameter). 

7.3.1.4 Calculation of the transresidual and induced stresses after unloading 

A clear distinction must be made at this point between stresses in the target material after 

successive loading and unloading of a single shot, which will be called transresidual stresses, and 

stresses after full shot peening coverage (100% coverage), which will be called induced stresses. 

Assuming that (1) the target material is an isotropic hardening material, (2) the shot-induced 

deformation is small, (3) unloading is an elastic process before reversed yielding starts and (4) 

the hydrostatic stresses do not introduce plastic deformation, the transresidual stress can be 

calculated from the following relations: 
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௜௝ߪ 
௧ ൌ ൜

0
௜௝ݏ

௣ െ ௜௝ݏ
௘   for   

for
௜ߪ

௘ ൏ ௦ߪ

௦ߪ ൑ ௜ߪ
௘ ൑ ௜ߪ2

௣ (7.45) 

These relations can be expressed in the three principal directions ݕ ,ݔ and ݖ as: 

௫ߪ 
௧ ൌ ௬ߪ

௧ ൌ ଵ

ଷ
൫ߪ௜

௣ െ ௜ߪ
௘൯  for  ߪ௦ ൑ ௜ߪ

௘ ൑ ௜ߪ2
௣ (7.46) 

௭ߪ 
௧ ൌ െ2ߪ௫

௧ (7.47) 

When σ௜
௘ ൐ 2σ௜

௣, the target material will experience reversed yielding and hardening. Firstly, a 

stress of 2σ௜
௣ is elastically unloaded, then reversed yielding takes place. However, some stresses 

could not be released, namely: 

 Δߪ௜
௘ ൌ ௜ߪ

௘ െ ௜ߪ2
௣ (7.48) 

The elastic strains related to Δσ௜
௘ are: 

 Δߝ௜
௘ ൌ

୼ఙ೔
೐

ா
 (7.49) 

Then, as was done for the elastic-plastic contact, the elastic-plastic strains are assumed to be: 

 Δߝ௜
௣ ൌ ௜ߝΔߙ

௘ (7.50) 

Then, the corresponding stress Δσ௜
௣ can be obtained by considering the multilinear stress-strain 

curve of the target material as: 

 Δߪ௜
௣ ൌ ௜ߝଵΔܪ

௣ (7.51) 

Equation (7.51) assumes that reverse yielding induces only small strains. In the case of reverse 

yielding with large strains (e.g. due to shots impacting at very high velocity), Δߪ௜
௣ should be 

obtained using the elastic-plastic stress-strain curve (Figure 7.3) considering the presence of ߪ௕ 

during reverse yielding. Finally, the transresidual stresses when σ௜
௘ ൐ 2σ௜

௣ can be obtained as: 

௫ߪ 
௧ ൌ ௬ߪ

௧ ൌ ଵ

ଷ
൫ߪ௜

௣ െ ௜ߪ2
௣ െ Δߪ௜

௣൯ (7.52) 

௭ߪ 
௧ ൌ െ2ߪ௫

௧ (7.53) 

After full shot peening coverage (100% coverage), the deformation field is assumed to be steady 

and continuous. The target component is assumed to retain a plane surface, i.e. ߝ௫, ߝ௬ are zero and 
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the non-zero stress and strain components will be independent of x and y. Therefore, at full 

coverage: 

௫ߪ  ൌ ௬ߪ ൌ ݂ሺݖሻ (7.54) 

௭ߪ  ൌ 0 (7.55) 

௫ߝ  ൌ ௬ߝ ൌ 0 (7.56) 

௭ߝ  ൌ ଵ݂ሺݖሻ (7.57) 

The transresidual stresses do not satisfy these equilibrium conditions and must be partially 

relaxed. In accordance with Hooke’s law, the relaxation values of ߪ௫
௧ and ߪ௬

௧ can be calculated as: 

௫ߪ 
௥௘௟ ൌ ௬ߪ

௥௘௟ ൌ ఔ

ଵିఔ
௭ߪ

௧ (7.58) 

The induced stresses corresponding to 100% peening coverage (σ௜௡ௗ) can be calculated as: 

௫ߪ 
௜௡ௗ ൌ ௬ߪ

௜௡ௗ ൌ ௫ߪ
௧ െ ௫ߪ

௥௘௟ ൌ ௫ߪ
௧ െ ఔ

ଵିఔ
௭ߪ

௧ ൌ ଵାఔ

ଵିఔ
௫ߪ

௧ (7.59) 

௭ߪ 
௜௡ௗ ൌ 0 (7.60) 

It is believed that these induced stresses are a good approximation of the induced stresses at 

saturation (in the sense of Almen intensity) and can therefore be used to calculate the theoretical 

Almen intensity. 

7.3.2 Calculation of residual stress for a thin target component 

The induced stress profile obtained in the previous section is based on a semi-infinite target body. 

It is however not self-equilibrated and stresses would thus be redistributed afterward if applied to 

a thin strip since the non-equilibrated stress field would tend to stretch and bend it. Therefore, 

when performing an Almen test, a compressive force ܨ௫  and a bending moment ܯ௫  must be 

applied by the rigid support on the Almen strip in order to maintain it in a flat shape, as shown in 

Figure 7.4. The resulting residual stress profile can be calculated with equations introduced by 

Al-Hassani (1982). Equations (7.61) and (7.62) are the force and moment equilibrium equations 

for this case, namely: 
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׬  ௫ߪ
௜௡ௗܾdݖ

௛
଴ ൅ ௫ܨ ൌ 0 (7.61) 

׬  ௫ߪ
௜௡ௗሺ௛

ଶ
െ ݖሻܾdݖ

௛
଴ ൅ ௫ܯ ൌ 0 (7.62) 

where ܾ is the width and ݄ is the thickness of the strip. 

After the release of the rigid constraints due to the support and bolts, the originally flat strip will 

stretch and bend. The superposition principle is used in order to calculate the resulting bending. It 

is assumed that only elastic stresses occur during this post-treatment release and that the flat 

component is subjected to the inverse of the force and moment calculated from Equations (7.61) 

and (7.62). The residual stress profile after deformation of the strip can therefore be calculated 

with Equation (7.63) : 

௫ߪ 
௥௘௦ ൌ ௫ߪ

௜௡ௗ ൅ ௫ߪ
௦ ൅ ௫ߪ

௕ ൌ ௫ߪ
௜௡ௗ ൅ ிೣ

஺
൅

ெೣሺ೓
మ

ି௭ሻ

ூ
 (7.63) 

where ߪ௫
௦ is the stretching stress calculated from stretching force ܨ௫ and ߪ௫

௕ is the bending stress 

calculated from bending moment ܯ௫. 

Finite element simulation of such a strip with a bending moment and a stretching force induced 

by shot peeing showed that the influence of the stretching force on the arc height is negligible. 

Therefore, in the following study, only the bending effect along the length direction is considered 

in order to calculate the arc height (Guagliano, 2001 and Miao et al. 2009): 

 ArcHeight ൌ ଷெೣ௟೘
మ

ଶா௕௧య  (7.64) 

where ݈௠ ൌ 31.75mm is the reference distance for measuring Almen intensity. 
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Figure 7.4: Equilibrium process in thin target component: (a) Peened component constrained in 

flat shape by rigid support, ߪ௫
௜௡ௗ is the induced stress profile in a constrained strip. (b) Deformed 

shape and residual stress profile after release from the rigid support, ܨ௫  and ܯ௫  are stretching 

force and bending moment with respect to the stretching stress and bending stress, respectively. 

௫ߪ
௥௘௦ is residual stress in the free strip. 

7.4 Application 

7.4.1 Material, geometry and modeling parameters 

The model developed at Section 7.3 was used to obtain theoretical values of Almen intensities for 

different combinations of peening parameters. Almen strips of type A, used most often for 

peening with cast metal or cut wire shots, were considered with dimensions 76mm ൈ 19mm ൈ

1.29mm. The material for Almen strips, SAE1070 spring steel, is assumed to obey an elasto-

plastic behavior with isotropic hardening, a bilinear stress-strain relationship capped with 

ultimate tensile stress (UTS) and to have the following properties: Young’s modulus ܧ ൌ

200GPa , Poisson ratio ߭ ൌ 0.31 , yield stress ߪ௦ ൌ 1120MPa , ultimate tensile stress ߪ௕ ൌ

1270MPa and elongation at UTS ߝ௕ ൌ 8.2% (Guagliano, 2001). The linear strain-hardening 

parameter ܪଵ (see Figure 7.3) was calculated based on these values. 
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Shots were considered elastic in all calculations. Both steel and ceramic shots were studied, with 

the following material properties: 

 For steel shot: Young's modulus ܧ௦ ൌ 210GPa, density ߩ௦ ൌ 7800kg/m3 and Poisson’s 

ratio ߭௦ ൌ 0.31. 

 For ceramic shot: Young's modulus ܧ௦ ൌ 300GPa , density ߩ௦ ൌ 3850kg/m3  and 

Poisson’s ratio ߭௦ ൌ 0.27. 

In addition, different velocities, radius and shot peening angles were studied in order to determine 

their influence on Almen intensity. 

7.4.2 Algorithm for the prediction of induced and residual stress profiles 

In this section, an algorithm for the prediction of induced and residual stress profiles in an Almen 

strip (type A) impacted by 0.4mm diameter steel shots with an incoming velocity 45m/s is 

presented as an example. A discretization value of 1ߤm along the ݖ-axis was chosen for this 

example. 

(i) Input parameters: 

 Almen strip: ܧ௧ ൌ 200GPa , ߭௧ ൌ 0.31 ௦ߪ , ൌ 1120MPa ௕ߪ , ൌ 1270MPa ௕ߝ , ൌ 8.2% , 

ଵܪ ൌ ሺߪ௕ െ ௕ߝ௦ሻ/ሺߪ െ  .௦ is calculated with Equation (7.39)ߝ ௦ሻ, whereߝ

 Steel shot: ܧ௦ ൌ 210GPa, ߩ௦ ൌ 7800kg/m3, ߭௦ ൌ ܦ ,0.31 ൌ 0.4 ൈ 10ିଷm. 

 Contact parameters: ݇ ൌ  .ு is calculated with Equation (7.5)ܧ ,0.8

 Peening conditions: ߠ ൌ 90௢, ܸ ൌ 45m/s. 

(ii) Step1: Elastic contact analysis 

 Calculate ܽ௘
כ  with Equation (7.13), ݌଴

 .with Equation (7.14) כ

 For each location along the z-axis through the strip thickness, and using a discretization of 

1µm , evaluate ߪ௫
௘ሺݖሻ ௬ߪ ,

௘ሺݖሻ  and ߪ௭
௘ሺݖሻ with Equations (7.16) and (7.17), ߪ௜

௘  with 

Equation (7.20) and ߝ௜
௘ with Equation (7.23). 
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(iii) Step2: Elastic-plastic analysis 

 Calculate ܽ௣
כ  with Equation (7.37). Calculate ߙ ൌ ܽ௣

כ /ܽ௘
כ ௜ߝ ,

௣ with Equation (7.30) and ߪ௜
௣ 

with Equation (7.38). 

(iv) Step3: Transresidual stress (after loading for one shot) 

 If ߪ௜
௘ ൏ ௜௝ߪ ,௦ߪ

௧ =0; 

 If ߪ௦ ൑ ௜ߪ
௘ ൑ ௜ߪ2

௣, calculate ߪ௫
௧, ߪ௬

௧ and ߪ௭
௧ with Equations (7.46) and (7.47). 

 If σ௜
௘ ൐ 2σ௜

௣, calculate Δߪ௜
௘ and Δߝ௜

௘ with Equations (7.48) and (7.49), Δߝ௜
௣ and Δߪ௜

௣ with 

Equations (7.50) and (7.51), ߪ௫
௧, ߪ௬

௧ and ߪ௭
௧ with Equations (7.52) and (7.53). 

(v) Step4: Induced stress (after loading for full peening coverage) 

 Calculate induced stresses ߪ௫
௜௡ௗ and ߪ௬

௜௡ௗ with Equation (7.59). 

(vi) Step5: Residual stress prediction and arc height 

 Calculate ܨ௫ and ܯ௫ with Equations (7.61) and (7.62), residual stress ߪ௫
௥௘௦ with Equation 

(7.63),  then arc height with Equation (7.64). 

Figure 7.5 presents the calculated induced stresses, stretching stresses, bending stresses and 

residual stresses in the Almen strip (type A) for the example presented above. The calculated 

Almen intensity for this combination of parameters was 8A (0.2mm A). The induced stresses 

have compressive values only on the top layer of the target component. The residual stress profile 

is the final equilibrated stress profile after the release of the constraints. When compared to the 

induced stresses, the residual stresses have compressive values at both top and bottom surfaces of 

the target component. For a semi-infinite body or a fixed strip, the elongation and bending of the 

strip can be neglected. Therefore the induced stresses can be regarded as the residual stresses in 

the semi-infinite body or the fixed strip. 
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Figure 7.5: Induced stress, stretching stress, bending stress and residual stress in Almen strip 

Type A (calculated intensity 8A=0.2mmA). 

7.4.3 Validation of the efficiency factor ࢻ 

The axisymmetric finite element model shown in Figure 7.6 was developed by ANSYS to 

validate the parameter ߙ defined in Section 7.4.2. The model considered the same shot peening 

parameters as in Section 7.4 (a rigid shot with diameter ܦ equals to 0.4mm and velocity equals 

to 45m/s). The target component was represented by a cylinder with radius and depth equal to 

 The element size .ܦ including a fine mesh in the contact region of radius and depth equal to ,ܦ3

was approximately 0.02mm for the entire model, except in the contact regions of the shot and 

target component where fine elements of size 0.005mm  were used. An elastic and a rigid 

perfectly plastic targets were successively considered to calculate the elastic contact radius ܽ௘
כ  

and the plastic indentation radius ܽ௣
כ , respectively. 

For elastic target, a material with Young’s modulus ܧ ൌ 200GPa and Poisson ratio ߭ ൌ 0.31  

was defined. The rigid perfectly plastic material behaviour was approximated by an isotropic 

hardening material model with negligible strain at yield stress, with the following properties: 

Young’s modulus ܧ  ൌ 2 ൈ 10ହGPa , Poisson ratio  ߭ ൌ 0.31 , yield stress ߪ௦ ൌ 1120MPa  and 

linear strain-hardening parameter ܪଵ ൌ 0. 
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Figure 7.6: Axisymmetric finite element model of a rigid shot impact an infinite target 

component. 

Figure 7.7 (a) and (b) present the contact between the rigid shot and the elastic target. The 

maximum contact radius is approximately ܽ௘
כ ൌ 0.041mm. After shot rebound, the indentation 

disappears. Figure 7.7 (c) and (d) show the contact between a rigid shot and the rigid perfectly 

plastic target. The radius of indentation is calculated by considering the location of the first point 

with zero vertical displacement. Indentations with radii ܽ௣
כ ൌ 0.0615mm were obtained both 

during impact and after rebound. 

Table 7.1 lists the maximum contact radius in the elastic domain ܽ௘
כ  and the maximum plastic 

radius ܽ௣
כ  calculated using the analytical model and using FEM, respectively. It can be found that 

although ܽ௘
כ  and ܽ௣

כ  are slightly different, the efficiency factor ߙ calculated from both approaches 

are very consistent. 
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Figure 7.7: Contact between rigid shot and target component: (a) rigid shot impacting an elastic 

target – at maximum compression; (b) rigid shot impacting an elastic target– after rebound; (c) 

rigid shot impacting a perfectly plastic target –at maximum compression; (d) rigid shot impacting 

a perfectly plastic target – after rebound. 

Table 7.1: Elastic contact radius and plastic indentation radius calculated by analytical model and 

FEM. 

 
ࢋࢇ

כ  
(mm) 

࢖ࢇ
כ  (mm) ࢻ ൌ ࢖ࢇ

כ ࢋࢇ/
כ  

Analytical values 
 (Equation (7.13) for ܽ௘

כ  and Equation (7.37) for ܽ௣
כ ) 0.0425 0.0660 1.55 

FEM values 0.041 0.0615 1.5 
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7.4.4 Experimental validation 

Figure 7.8 compares theoretical stress profiles with published experimental residual stress 

profiles from Cao et al. (1995) for constrained Almen strips and free Almen strips, respectively. 

The experimental size range of the steel shots was 355~420µm, the Almen intensity was 8A 

(0.2mm), shot velocity was determined as 45m/s by means of an optical method and the number 

of peening passes is indicated in the figure. In order to simulate the experimental Almen intensity 

of 8A(0.2mm), we assumed steel shots of diameter 400µm , with shot velocity of 45m/s 

impacting at normal incidence angle in the theoretical calculation.  

The experimental stresses were measured by Cao et al. (1995) in the center of Almen strips (type 

A) in the longitudinal direction using an X-ray diffraction instrument SET-X. Depth distribution 

was obtained by successive electrolytic removal of material layers. The published results did not 

include correction of residual stresses due to material removal. Such correction on the published 

experimental data was however performed as part of the current work. Considering that thin 

layers Δݖ were removed, it can be assumed that the stress is homogeneous in the layer. Corrected 

stresses were thus calculated using the following approximate formula (Lu, 1996): 

ଵሻݖሺߪ  ൌ ଵሻݖ௠ሺߪ െ ଵݖ௠ሺߪ4 ൅ Δݖሻ ୼௭

௭భା୼௭
 (7.65) 

where ߪሺݖଵሻ  and ߪ௠ሺݖଵሻ  are the corrected stress and measured stress at depth ݖଵ  from the 

opposite surface, respectively and ߪ௠ሺݖଵ ൅ Δݖሻ  is the measured stress at depth ݖଵ ൅ Δݖ  (i.e. 

closer to the surface where material removal took place).  

Figure 7.8(a) and (c) compare the measured stress (uncorrected stress) and corrected stress 

profiles in constrained strips and free strips, respectively. In both cases, corrected measurements 

were slightly smaller than published measurements and the analytical prediction will be 

compared with the corrected measurements.  

Figure 7.8 (b) compares the analytical induced stress profile and the corrected residual stress in 

constrained strips after two different number of peening passes. In this figure, the induced 

stresses obtained using the theory presented in Section 7.3.1 can be regarded as residual stresses 

in a fixed strip. It can be seen that the analytical results are in relatively good agreement with the 

corrected results. However, some differences can be noticed between the theoretical and the 
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corrected residual stresses at the surface and from 0.12mm to 0.20mm from the surface. These 

differences might be attributed to: 

The experimental fixturing allowing small deflection of constrained strips. Theoretical induced 

stresses correspond to residual stresses in a semi-infinite component, without any stretching or 

bending. This is assumed equivalent to the stresses in a fully constrained strip. However, Almen 

strips subjected to a blast of shots undergo deformation and small deflection while they are still 

constrained by the fixing screws, as shown by Cao et al. (1995). This deflection reduces the 

surface stress that is to be experimentally measured. Fully constraint strips would probably 

present larger surface stresses, closer to the predicted values. 

The model not considering repeated peening passes. The model considers only one impact; the 

stresses and strains induced by this impact are uniformly distributed throughout the entire Almen 

strip and relaxed. However, experimental residual stresses after 12 and 48 peening passes show 

that the depth of the compressive residual stress layer increases with the increase of the number 

of pass. Modifying the model to take into account multiple passes or multiple impacts over the 

same point would probably increase the thickness of the layer with plastic strain, thus increasing 

the depth of the compressive residual stress layer 

Figure 7.8 (d) compares the analytical residual stress profile and the experimental residual stress 

in free strips after correction. It can be seen that in the free Almen strip, the equilibrated residual 

stresses calculated by model are reasonably consistent with the corrected experimental stresses. 

The analytical results are especially close to corrected experimental stresses at depth ranges of 

about 0.05mm to 0.10mm. The differences between the experimental and analytical results for 

free strips could be explained by reason 2) presented above. 
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Figure 7.8: Comparison of analytical residual stress and published experimental residual stress 

(Cao et al. 1995) in Almen Type A strips for: (a) Measured stresses and corrected stresses in 

constrained strips after 12 passes and after 48 passes. (b) Analytical induced stress, corrected 

stress in constrained strips after 12 passes and after 48 passes. (c) Measured stresses and 

corrected stresses in free strips after 48 passes. (d) Analytical residual stress and corrected stress 

in free strips after 48 passes. 

Figure 7.9 shows predicted and experimental Almen intensity as a function of shot velocity for 

two shot sizes: (a) S110 steel shots (nominal diameter Dnom=0.279mm, average diameter 

Dave=0.356mm), and (b) S170 steel shots (Dnom=0.423mm, Dave=0.504mm).  

In both cases, the average shot diameter was used for calculation. Figure 7.9(b) shows that the 

analytical results for the larger shot (S170) are very similar to the experimental results of (Cao et 

al. 1995). Figure 7.9(a) indicates that the model slightly overestimates the Almen intensity for 

small S110 shot (D=0.356mm) at low velocity and underestimates at higher velocity. Possible 

explanations for this phenomenon include:  



142 

 Increased interference effect at low velocity in the experiment causes a decrease of the 

average impact velocity as well as a decrease of Almen intensity (Hong et al. 2008b). 

 Friction effect between shots and surface hasn’t been considered in the model. 

 A constant efficiency coefficient parameter  has been assumed in the model. For 

different peening condition,  might be influenced by shot size, velocity and peening 

angle, etc. 

 

 

Figure 7.9: Analytical and experimental relationships between Almen intensity and shot velocity 

for two shot sizes: (a) S110 shot (Dave=0.356mm) and (b) S170 (Dave=0.504mm). 
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Figure 7.10: Effect of peening parameters on Almen intensity. S330, S170 and S110 represent 

three types of steel shots with diameter equal to 0.356mm, 0.504mm and 1.020mm, respectively. 

Z850, Z425 and Z300 represent three types of ceramic shots with diameter equal to 0.356mm, 

0.504mm and 1.020mm, respectively. For S170 and Z450, two peening angles 45º and 90º have 

been considered. 

7.5 Potential application 

Figure 7.10 shows the predicted variation of Almen intensity with shot velocity for various 

peening parameters. Two shot materials (steel and ceramic) and two peening angles (45o and 90o) 

were investigated. For each shot material, three commercially available shot sizes were studied 

(steel shots: S110, S170 and S330, and the closest available sizes for ceramic shots: Z300, Z425 

and Z850). 

Results in Figure 7.10  indicate that shot velocity is the predominant peening parameter for 

Almen intensity. For a given combination of shot size, material and peening angle, a variation of 

shot velocity from  to  was shown to increase the resulting Almen intensity by a 

minimum ratio of 2.65. The corresponding minimum ratio was 4.32 for a variation of shot 
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velocity from 10 m/s to 120 m/s. Shot material also has a substantial effect on Almen intensity. 

Steel shots produced larger Almen intensities for each combination of shot size and peening 

angle under consideration, with a difference in Almen intensity between the two shot materials 

ranging from 11% to 17% and an average difference of 15%. The Almen intensity was found to 

be approximately proportional to shot diameter, especially at low velocities. Finally, peening 

angle induces a scale factor on the shot velocity.  

The Almen intensity induced by a peening treatment with shot velocity ܸ and peening angle 

ߠ ൌ 45°  corresponds to the Almen intensity with shot velocity ܸsin45°  and peening angle 

ߠ ൌ 90°. This phenomenon suggested by the model may not be completely representative of the 

real shot peening process since the model ignores friction effects as well as interference effects 

between incident and reflected shots. 

Figure 7.11 compares the calculated residual stress profiles in Almen strips for normal impacts of 

steel shots, considering three combinations of shot size and velocity: (i) S110(0.356mm), shot 

velocity 53.5m/s; (ii) S170(0.504mm), shot velocity 31.8 m/s; (iii) S330(1.02mm), shot velocity 

11.4 m/s. Each combination resulted in the same Almen intensity (0.2mm A). This figure 

indicates that no one-to-one correspondence exists between residual stress profile and Almen 

intensity. Each residual stress profile corresponds to a unique Almen intensity, while a given 

Almen intensity can be related to various residual stress profiles with underlying peening 

parameters. Combination (i) with small shots and high velocity led to the largest surface stress 

(456 MPa), the largest maximum stress (597 MPa) and the thinnest layer of compressive residual 

stresses (0.131mm). Conversely, combination (iii) with large shots and low velocity led to the 

smallest surface stress (71 MPa), the smallest maximum stress (500 MPa) and the thickest layer 

of compressive residual stresses (0.141mm). These results suggest that modification of shot size 

while keeping a constant Almen intensity in a shot peening application may induce unwanted 

effects, such as lower surface stresses and reduced thickness of the compressive layer, both of 

which being commonly related to changes in the fatigue life expectancy of the peened 

component. 
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Figure 7.11: Calculated residual stresses for different combinations of peening parameters, with 

identical Almen intensity (0.2mm A). (a) Residual stress profiles for three cases following the 

whole depth (1.29mm). (b) Residual stress profiles for three cases on the top surface (0 to 

0.2mm). 

Figure 7.12  presents the relationship between shot velocity, shot diameter and Almen intensity 

from a new perspective. In this figure, results are presented as a series of curves corresponding to 

different levels of Almen intensity (ranging from 0.05 to 0.35mm A), for steel shots and ceramic 

shots (Figure 7.12 (a) and (b) respectively).  
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Figure 7.12: Relationship between diameter and velocity for seven different Almen intensities 

(Almen Type A strip): (a) Steel shot, (b) Ceramic shot. 
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For both shot materials, results show that to achieve a given Almen intensity, the shot velocity 

must increase as the shot size (diameter) decreases. At any given shot velocity, a larger ceramic 

shot diameter is required to achieve the same Almen intensity when compared to a steel shot. For 

instance, for a shot velocity of 40m/s, it is required to use approximately 0.4mm diameter steel 

shots or 0.5mm diameter ceramic shots to obtain an intensity 0.2mmA. This can be explained by 

the following. Calculations took into account two material properties for shots: density and 

Young’s modulus. Steel shots possess a larger density (ߩ௦ ൌ 7800kg/m3) when compared with 

ceramic shots (ߩ௦ ൌ 3850kg/m3), which, on the other hand are much harder (Young's modulus 

௦ܧ ൌ 300GPa) than steel shots (Young's modulus ܧ௦ ൌ 210GPa). Thus, we can conclude that the 

effect of shot density predominates over the effect of Young’s modulus when comparing these 

two shot materials. The results show that to achieve a given Almen intensity, a large variation of 

shot diameter occurs at low velocity. The required diameter is then almost constant at velocities 

over 45 m/s. Furthermore, it is nearly impossible to achieve a low intensity with large shots since 

it would require a very low velocity. 

Finally, the results from Figure 7.12 were used to establish empirical relationships between 

peening parameters and Almen intensity. The trend of the Almen intensity is well described by 

the following best fit equation for steel shots: 

,ܦு,௦௧௘௘௟ሺܣ  ሻݒ ൌ ܦ0.06735 ൅ ݒܦ0.01184 െ ଶݒܦ0.00002824 െ  ଶ (7.66)ݒଶܦ0.00004991

The coefficient of determination for this equation ܴଶ ൌ 0.998. For ceramic shots, the following 

best fit equation is obtained: 

,ܦு,௖௘௥௔௠௜௖ሺܣ  ሻݒ ൌ ܦ0.05714 ൅ ݒܦ0.01019 െ ଶݒܦ0.00002472 െ ଶݒଶܦ0.00003583

 (7.67) 

The corresponding coefficient of determination ܴଶ ൌ 0.998. For both equations, ܦ is expressed 

in mm and ݒ is expressed in m/s. These equations are only valid for the range of shot diameter 

and shot velocity represented in Figure 7.12 and should not be used outside this range of validity 

as they may lead to unrealistic results, especially for small shot diameters. 

The empirical equations for Almen intensity presented above can be used as a tool for 

determining possible combinations of peening parameters to obtain given Almen intensities. It 

would also be applicable for substituting parameters in peen forming of spring steel thin 



148 

components (or of a similar alloy), as the peening-induced stresses in such metal are likely to be 

similar to those in Almen strips. 

However, although each combination of peening parameters for a given Almen intensity induces 

similar residual stress profiles, significant differences were found in the magnitude of surface 

stress and thickness of compressive layer. It would therefore be inappropriate in many shot 

peening applications for fatigue life enhancement to substitute a set of peening parameters for 

another set while keeping the Almen intensity constant, as it could influence the fatigue life 

expectancy of the peened component. Moreover, the present study investigated residual stresses 

in Almen strips made of SAE1070 spring steel. Combinations of peening parameters leading to 

similar residual stress profiles in Almen strips may lead to various stress profiles in a different 

metal such as aluminum. Care must thus be taken when substituting peening parameters while 

applying shot peening for fatigue life enhancement or peen forming on different metals as it may 

lead to unwanted and hardly predictable results. 

7.6 Conclusions  

Shot peening Almen intensity is one of an important shot peening control parameters to ensure 

repeatability of the shot peening process. In this paper, an analytical model was developed to 

predict Almen intensity and residual stress distribution for Almen strip. The influence of shot 

peening parameters, such as shot type (steel and ceramic), size, velocity and peening angle on the 

Almen intensity have been presented. 

The study results revealed the following: 

(1) The analytical model can predict the Almen intensity and shot-induced residual stress for 

Almen strips for any combination of peening parameters (shot type, size, velocity, 

peening angle). The predicted results were in good agreement with published 

experimental results, especially for the prediction of Almen intensity. 

(2) Shot velocity was found to be the predominant peening parameter for Almen intensity. 

Shot material also had a substantial effect on Almen intensity. 

(3) The analytical model produces different residual stress for the same Almen intensity 

generated with different combinations of shot peening parameters (shot type, size, 

velocity, peening angle). Thus, small shots at high velocity will produce larger maximum 
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compressive residual stress and thinner layer of compressive residual stress, while large 

shots at low velocity will produce smaller maximum compressive residual stress and 

thicker layer of compressive residual stress. 

(4) Shot peening with normal angle of incidence will produce a larger Almen intensity 

compared with oblique shot peening, every other parameters kept unchanged. Peening 

angle induces a scale factor on the shot velocity since only the normal component of 

velocity onto the surface is considered by the model. However, this assumption may not 

be completely representative of the real shot peening process since the model ignores 

friction effects as well as interference effects between incident and reflected shots. 

(5) For either shot types, steel or ceramic, the effect of shot velocity and size on the resulting 

Almen intensity can be expressed as an empirical equation. This equation can be used as a 

tool for determining possible combinations of peening parameters to obtain given Almen 

intensities. 

Almen test is a useful control procedure for shot peening applications, as it monitors the 

aggregate energy transfer imparted to the workpiece by the shot peen process and reveals process 

variations. Any change in a process parameter is reflected by a change in Almen intensity. 

However, as underlined by the present study, simultaneous change of multiple parameters (e.g. 

shot diameter and shot velocity) may produce the same Almen intensity and may thus remain 

unnoticed. It is thus of paramount important to control within certain limits the key process 

parameters using other means. In particular, tight control of shot diameter should be used. 

Furthermore, as each combination of shot diameter and shot velocity yields a unique residual 

stress profile, shot peening for fatigue life enhancement should not be solely specified by Almen 

intensity, but also by shot diameter. Care must be taken when substituting peening parameters 

while keeping the Almen intensity constant, as it may change the residual stress profile and may 

influence the fatigue life expectancy of the peened component. 



150 

CHAPITRE 8 DISCUSSIONS 

This chapter discusses the results of this study. As an overview, this study produced a number of 

findings in relation to the objectives listed in Chapter 2.  However, as some findings appeared to 

be related to more than one research objectives, it was decided to discuss the key findings firstly 

and then discuss them in relation to the research objectives.  

8.1 Discussion of key findings 

8.1.1 Finding 1: Saturation curve (relationship between resulting arc height 

and number of shots) was established numerically and experimentally. 

Almen intensity is one of the most important control parameters to ensure the repeatability of the 

shot peening process. It is defined by a saturation curve, a relationship between peening time 

versus resulting arc height. Almen intensity is conventionally used industrial shot peening 

applications. In this study, a numerically established saturation curve was firstly presented using 

the newly developed FE model. In addition, an experimental study of the saturation curve based 

on the target peening material (aluminum) was carried out in order to relate their relationship to 

surface coverage and roughness on the same materials. 

8.1.2 Finding 2: Surface coverage curve (relationship between surface 

indentation ratio and number of shots) was established numerically and 

experimentally. 

Surface coverage is another important control parameter in the shot peening process. Most of the 

studies of surface coverage are based on visual inspection and theoretical models. In the 

theoretical model, the shot flow is assumed to impact the component’s surface at a constant rate 

and to create circular indents of constant size. In this study, a numerically established surface 

coverage curve was firstly presented using the newly developed FE model. Then, in the shot 

peening experiments, imageJava software was used to evaluate surface coverage form surfaces 

topography images obtained from profiler measurements. This experimentally calculated surface 

coverage curve was compared with the curve obtained from the Avrami theoretical model. 
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8.1.3 Finding 3: Surface roughness curve (relationship between surface 

roughness and number of shots) was established numerically and 

experimentally. 

One detrimental effect of shot peening is to increase surface roughness, which acts as stress 

concentrations, induces crack initiation and causes a reduction of the fatigue life of the treated 

component. In this study, a numerically established surface roughness curve (relationship 

between surface PV roughness and number of shots) was firstly presented using the newly 

developed FE model. In the experiments, the relationship between surface roughness (Ra 

roughness and stress concentration factor Kt) and number of shots were presented and best-fitted 

by equations. 

8.1.4 Finding 4: Residuals stress profile after shot peening, conventional peen 

forming and stress peen forming have been simulated, measured and 

compared. 

Producing compressive residual stresses is the main purpose of shot peening. Figure 1.2 shows 

the main terms for the description of the residual stress produced by shot peening. In this study, 

with the developed 3D FE model, it was possible to study the influence of the shot peening 

parameters on the resulting residual stresses such as: shot size, velocity, density, peening angle, 

peening time, etc. Residual stresses profile after conventional peen forming and stress peen 

forming have been measured by X-ray diffraction method and compared to the simulated results.  

8.1.5 Finding 5: Experimental and numerical study of the stress peen forming 

process 

A prebending device has been designed to study stress peen forming process. With this device, 

four prebending moments were applied to the strip in order to study their influence on forming 

results. Then, a three steps numerical model was developed to simulate this experimental stress 

peen forming process. With this numerical model, it was possible to predict the deformed shape 

of the strip after conventional peen forming and stress peen forming. The relationships between 

the prebending moment and the resulting arc height have been numerically predicted and 

compared to the experimentally measured values. In addition, the simulated residual stresses 
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profiles after conventional peen forming and stress peen forming have been calculated and 

compared with the experimentally measured values. 

8.1.6 Finding 6: An analytical model was developed to predict Almen intensity.  

An analytical model based on Hertz contact theory was developed using MATLAB to predict 

Almen intensity and residual stresses profile in an Almen strip. With this model, the principle and 

the induced stress distribution in the strip during impingement and rebound of shots as well as 

after release of the boundary conditions of Almen strip were introduced in details. This model 

was validated to be an effective tool for the prediction of Almen intensity under different shot 

peening parameters such as shot size, type, velocity and peening angle, etc.  

8.2 Discussion of findings in relationship to four articles 

As outlined above, a number of key findings associated with this study were discussed. These 

key findings were presented in this manner because they tended to cut across more than one 

research question. The purpose of the following section is to discuss these findings in relation to 

the research objectives as presented in Chapter 3 posed in this thesis.  

8.2.1 Discussion of findings in relationship to the first article: On the potential 

applications of a 3D random finite element model for the simulation of 

shot peening 

In the first article, a novel 3D FE model was developed to simulate random aspect of the shot 

peening process. With the new model, the quantitative relationship of peening intensity, coverage 

and roughness with respect to the number of shots have been presented. In addition, residual 

stresses profile after normal impact and oblique impact have been calculated and compared. 

Therefore, this first article presents the above listed findings 1 to 4. 
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8.2.2 Discussion of findings in relationship to the second article: Experimental 

study of shot peening and stress peen forming 

In the second article, quantitative relationships between the saturation, coverage, roughness with 

respect to peening time have been established on aluminum 2024 test strips. Residual stress 

profiles after different peening velocities and peening times have been measured by X-ray 

diffraction method. In the second part of this article, a prebending device with four different 

prebending radii of curvatures have been designed to perform stress peen forming study. With 

this device, the quantitative relationships between the prebending moment and the resulting arc 

height of narrow strips and square strips have been experimentally investigated. In addition, 

residual stresses profiles after conventional peen forming and stress peen forming have been 

measured and compared. Therefore, this second article is related to the findings 1 to 5. 

8.2.3 Discussion of findings in relationship to the third article: A numerical 

study of the stress peen forming process 

In the third article, a three steps numerical model was established to simulate the stress peen 

forming process. The second of this three steps numerical model was based on the FE model 

introduced in the first article. With this model, the relationships between the prebending moments 

and resulting arc heights as well as residual stresses have been simulated and compared to the 

experimental measured values.  Therefore, this third article presents the above listed findings 4 

and 5. 

8.2.4 Discussion of findings in relationship to the fourth article: An analytical 

approach to relate shot peening parameters to Almen intensity  

In order to understand the theory of shot peening and to predict Almen intensity with the least 

calculation resource, the fourth article describes an analytical model for the prediction of Almen 

intensity considering shot peening parameters such as, shot type (steel and ceramic), size, 

velocity and peening angle. This model can be used as a tool for determining the various possible 

combinations of peening parameters combination to obtain given Almen intensity. This article 

presents the above listed finding 6. 
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 CONCLUSIONS  

 

This thesis focused on the study of the shot peening and stress peen forming processes with 

numerical, experimental and analytical methods. A 3D FE model was developed firstly in order 

to simulate the dynamic shot peening process. With this FE model, the shot peening intensity and 

surface coverage were numerically simulated and the relationship between them and the peening 

time (number of shots) was quantitatively expressed. Based on this novel 3D random FE model 

of shot peening, a three-step Implicit-Explicit-Implicit FE model for simulating stress peen 

forming was established in order to predict the forming results under different prebending 

conditions. In order to validate the novel FE model, shot peening and stress peen forming 

experiments were carried out to study of the intensity, coverage and forming results under 

different prebending conditions. Finally, an analytical model for calculation of Almen intensity 

and residual stress was constructed in order to further understand the theory of shot peening and 

to predict the peening results under different peening parameters. 

Overall, the results of this study produced a number of interesting findings that contribute to a 

better understanding of the shot peening and the stress peen forming process. The contributions 

associated with this study are of particular importance as  

Significance and contribution of the research 

This research makes four main contributions that could potentially be used for the optimization of 

the shot peening and stress peen forming processes, namely 

1) The 3D random FE model for simulation of shot peening.  

2) The quantitative relationship between prebending and forming results with experiments. 

3) FE model for simulation of the stress peen forming process. 

4) Analytical model for the prediction of Almen intensity.  

We summarize these contributions individually in the following subsections. 

Objective 1: A novel 3D FE model with multiple randomly distributed shots was developed to 

simulate the shot peening process. It is the first FE model that takes account the random nature of 

the shot peening process, such as the shot peening sequence and the impact location. This model 
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demonstrates a computing strategy to understand most of the important shot peening parameters, 

such as saturation curve, peening intensity, surface coverage and roughness. Using this model, 

the relationship between shot peening intensity, surface coverage and surface roughness with 

respect to number of peening shots was established quantitatively.   

Objective 2: A pre-stressing device with four different prebending radii of curvatures which 

correspond to four different prebending moments was designed in order to study the stress peen 

forming process. The relationship between the prebending moment and the forming results 

(radius of curvature and the arc height) were obtained for three different shot velocities. A 

quantitative relationship between them was established in order to optimize the stress peen 

forming process. 

Objective 3: A three steps Implicit-Explicit-Implicit FE model was established, in order to 

simulate the stress peen forming process. Firstly, an implicit FEA with ANSYS was performed, 

with a prebending moment along the spanwise direction of the component, to obtain the initial 

stress distribution inside the component. Then, an explicit FEA with LS-DYNA simulating shot 

impact on the pre-stressed component was conducted in order to obtain the resulting stresses 

inside the component. Finally, another implicit FEA with ANSYS was carried out to calculate the 

resulting arc height and radius of curvature of the strip. With this FE model, the relationship 

between prebending moment and resulting arc height was obtained and compared with the 

experimental results. The numerical results showed good consistency with the experimental 

results.  

Objective 4: An analytical model based on Hertz contact theory was developed to predict Almen 

intensity and residual stress, that takes into account several shot peening parameters, such as shot 

size, shot velocity, peening angle, etc. This model incorporates the existing analytical model for 

prediction of the induced stress in a semi-infinite target component, as well as the method to 

calculate the deformed arc height and residual stresses from the induced stress in the semi-infinite 

target component. With this model, the mechanical principle of the shot peening process was 

explained in detail. In addition, we can predict the Almen intensity and residual stress with 

minimal calculation time.  
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Limitation and suggestion for future study 

Several interesting research questions are left for future research. For the newly developed 3D 

random FE model for shot peening process, there exists several assumptions which should be 

restudied in order to improve the model. Firstly, for the randomly distributed shots, the distance 

between each shot was assumed to have little influence on the results. Therefore, a further study 

should be performed with different shot distances in order to confirm this assumption. Secondly, 

the assumed representative area for the study, such as the shot distribution area, as well as the 

representative volume for calculation of the average induced stress profiles, should both be 

further studied. Thirdly, the saturation curve, coverage curve and roughness curve from the 

numerical simulation should be compared with the experimental results, using the same shot 

peening parameters. Therefore, more calculations that use the same shot peening parameters and 

target material properties, to determine which should be used in experiments, should be carried 

out in order to compare the saturation curve, coverage curve and roughness curve with 

experimental data. 

In the case of the FE model for the simulation of stress peen forming, the induced average stress 

profiles calculated from a representative volume of the component was assumed to be uniformly 

distributed in the whole target component in order to calculate the deformation of the whole strip. 

However, in actual peen forming, the induced stress in the previous peened component has a 

certain influence on the unpeened component, and the effect should not be ignored. In addition, 

some experimental results show that peening multiple passes with a fast robot travelling velocity 

and peening one pass with a low robot travelling velocity produce different forming results for a 

target with large dimension. Therefore, further studies of these issues could be performed in order 

to improve the FE model.  

In the analytical model for the prediction of Almen intensity, there exist several assumptions 

which require further validation such as the value of the efficiency coefficient ݇ ൌ 0.8, which 

represented the elastic and thermal dissipation during impact as well as an efficiency factor ߙ, 

which was defined as the ratio of the radius of maximum plastic indentation  to the radius of the 

maximum elastic contact radius. In addition, in this model, only one impact has been considered 

and the induced stress profile beneath one impact has been assumed to be uniformly distributed 
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in the whole plate to predict residual stress profile. Further study would be carried out 

considering the influence of the sounding impacts on the predicted results. 

Compressive residual stresses produced by shot peening have beneficial effect for the 

improvement of the fatigue life of the peened components. However, surface roughness produced 

by shot peening has detrimental effect on the peened components. Both numerical study and 

experimental study in this thesis have provided these two results under different shot peeing 

conditions. Therefore, future study on the fatigue prediction could be performed considering the 

residual stress profile and surface roughness in order to obtain the influence of the shot peening 

parameters on the fatigue improvement abilities. 

The stress peen forming process carried out in this thesis was a very rudimentary study and 

provided only results on the small size components with simple shapes such as rectangle or 

square strips. Further study would be focused on the components with larger size, more 

complicated shape or component with ribs, which are more close to the real wing skins.  In 

addition, more practical study of the stress peen forming could be focused on the establishment of 

a tool to predict the shot peening parameters according to the designed the geometric shape.  

 

 

 



158 

REFERENCES 

Al-Hassani, S.T.S., 1981. Mechanical aspects of residual stress development in shot peening. 

Proceedings of the 1th International Conference on Shot Peening, pp. 583–602. 

Al-Hassani, S.T.S., 1982. The shot peening of metals – mechanics and structures, Aerospace 

congress - SAE Technical Paper, SAE-821452, 13p. 

Al-Hassani, S.T.S., 1984. An engineering approach to shot peening mechanics, Proceedings of 

the 2nd International Conference on Shot Peening, pp. 275–282. 

Al-Hassani, S.T.S., Kormi, K., and Webb, D.C., 1999. Numerical simulation of multiple shot 

impact. Proceedings of the 7th International Conference on Shot Peening, pp. 217–227.  

Almen, J. and Black, J.P.H., 1963. Residual stresses and fatigue in metals. Mcgraw-hill, Toronto, 

pp. 64–69.  

Al-Obaid, Y.F., 1990a. A rudimentary analysis of improving fatigue life of metals by shot-

peening. Journal of Applied Mechanics, 57pp. 307–312. 

Al-Obaid, Y.F., 1990b. Three-dimensional dynamic finite element analysis for shot-peening 

mechanics. Computers and structures, 36(4), pp.681–689.  

Al-Obaid, Y.F., 1995. Shot peening mechanics: experimental and theoretical analysis. Mechanics 

of Materials, 19,  pp. 251–260.  

Balcar, C. and Maltby, F., 1981. Basic curves of surface finish after glass bead peening. 

Proceedings of the 1st International Conference on Shot Peening, pp. 295–301. 

Baragetti, S., 2001. Three-dimensional finite element procedures for shot peening residual stress 

field prediction. International Journal of Computer Applications in Technology, 14(1/2/3), 

pp. 51–63.  

Barrett, C.F. and Todd, R., 1984. Investigation of the Effects of Elastic Pre-Stressing Technique 

on Magnitude of Compressive Residual Stress Induced by Shot Peen Forming of Thick 

Aluminum Plates.  Proceedings of the 2nd International Conference on Shot Peening, 

pp.15-21. 



159 

Baughman, D.L., 1984. An Overview of Peen Forming Technology. Proceedings of the 2nd 

International Conference on Shot Peening, pp. 28-33 

Bernard, M., Bui-Quoc, T., Julien, D., and April, S., 2004. Literature survey on shot peening 

process characterization. pp. 2.1–2.90. 

Bignonnet, A., Picouet, L., and Lieurade, H.P. 1987. The application of shot peening to improve 

the fatigue life of welded steel structures. Proceedings of the 3rd Conference on Steel in 

Marine Structures, pp. 669–678.  

Cammett, J. 2007. Shot peening coverage - the real deal. The Shot Peener, 21(3), 8–14.  

Cao, W., Fathallah, R. and Castex, L., 1995. Correlation of Almen arc height with residual 

stresses in shot peening process. Materials Science and Technology, 11(9), pp. 967-973. 

Champaigne, J., 2001. The little book on shot peening. On line, 

http://www.shotpeener.com/learning/tlb.pdf. 

Clausen, R., and Stangenberg, J., 1999. Roughness of shot-peened surfaces - definition and 

measurement. Proceedings of the 7th International Conference on Shot Peening, pp. 69–

77.  

Curtis, S., de los Rios, E.R., Rodopoulos, C.A. and Levers, A., 2003. Analysis of the effects of 

controlled shot peening on fatigue damage of high strength aluminum alloys. 

International Journal of Fatigue, 25, pp. 59-66. 

Davies, R.M., 1949. The determination of static and dynamic yield stresses using a steel ball.  

Proceedings of the Royal Society of London A, 197(1050), pp. 416-432. 

Deslaef, D., Rouhaud, E., and Rasouli-Yazdi, S., 2000. 3D finite element models of shot peening 

processes. Materials Science Forum, pp. 347–349.  

Ebenau, A., Vöhhringer, O., and Macherauch, E., 1987. Influence of the shot peening angle on 

the condition of near surface layers in materials. Proceedings of the 3rd international 

conference on shot peening, pp. 253–260.  

Edberg, J., Lindgren, L., and Mori, K., 1995. Shot peening simulated by two different finite 

element formulations. Simulations of Materials Processing: Theory, Methods and 

Applications, ISBN 90 54 10 5534, 425–430. 



160 

Fathallah, R., 1994. Modélisation du procédé de grenaillage: incidence des billes et taux de 

recouvrement. Ph.D. thesis, ENSAM. Aix en Province, France. 

Fathallah, R., Inglebert, G. and Castex, L., 1998. Prediction of plastic deformation and residual 

stresses,  Materials Science and Technology, 14(7),  pp. 631-639. 

Flavenot, J.F., Niku-Lari, A., 1977. La mesure des contraintes résiduelles, méthode de la flèche, 

méthode de la source de contraintes, Les Mémoires Techniques du CETIM, 31. 

Gardiner, D.S. and Platts, M.J., 1999. Towards Peen Forming Process Optimisation, Proceedings 

of the 7th International Conference on Shot Peening, pp. 235-243. 

Gentil, B., Desvignes, M., and Castex, L., 1987. Analyse des surfaces grenaillees: fissuration, 

rugosite et contraintes residuelles. Materiaux et technique, 75(12), pp. 493–497.  

Guagliano, M., Vergani, L., Bandini, M., and Gili, F., 1999. An approach to relate the shot 

peening parameters to the induced residual stresses. Proceedings of the 7th International 

Conference on Shot Peening, pp.274-282.  

Guagliano, M., 2001. Relating almen intensity to residual stresses induced by shot peening: a 

numerical approach. Journal of Materials Processing Technology, 110, pp. 277–286.  

Guechichi, H., 1986. Prévision des contraintes résiduelles dues au grenaillage de précontrainte, 

PhD thesis, ENSAM. 

Han, K., Owen, D.R.J., and Perić, D., 2002. Combined finite/discrete element and 

explicit/implicit simulations of peen forming process. Engineering Computations, 19(1-2),  

pp. 92–118. 

Herzog, R., Zinn, W., Scholtes, B., and Wohlfarth, H., 1996. The significance of Almen intensity 

for the generation of shot peening residual stresses. Proceedings of the 6th International 

Conference on Shot Peening, pp. 270–281.  

Hong, T., Ooi, J.Y., and Shaw, B.A., 2008a. A numerical study of the residual stress pattern from 

single shot impacting on a metallic component. Advances in Engineering Software, 39, pp. 

743–756. 



161 

Hong, T., Ooi, J.Y., and Shaw, B., 2008b. A numerical simulation to relate the shot peening 

parameters to the induced residual stresses, Engineering Failure Analysis, 15, pp. 1097–

1110. 

Iida, K., 1984. Dent and affected layer produced by shot peening, Proceedings of the 2nd 

International Conference on Shot Peening, pp. 283-292. 

Ilyushin, A.A., 1948. Plasticity [in Russian], Gostekhizdat, Moscow, Chapter 2. 

Johnson, K.L., 1985. Contact mechanics, Cambridge University Press, Cambridge, UK. 

Johnson, W., 1972. Impact strength of materials, Edward Arnold, London, UK 

Karuppanan, S., Romero, J. S., de los Rios, E. R., Rodopoulos, C., and Levers, A., 2002. A 

theoretical and experimental investigation into the development of coverage in shot 

peening. Proceedings of the 8th International Conference on Shot Peening, pp. 101–107.  

Khabou, M. T., Castex, L. and Inglebert, G., 1989. The effect of material behavior law on the 

theoretical shot peening results, European Journal of Mechanics -A/Solids, 9(6), pp. 537-

549. 

Kirk, D., 1999. Shot peening. Aircraft Engineering and Aerospace Technology, 71(4), pp. 349–

361. 

Kirk, D., 2002. Coverage: development, measurement, control and significance. The Shot Peener, 

16(4), pp. 33–36.  

Kirk, D., 2005. Theoretical principles of shot peening coverage. The Shot Peener, 19(2), pp. 24–

26.  

Kirk, D., and Abyaneh, M. Y., 1993. Theoretical basis of shot peening coverage control. 

Proceedings of the 5th International Conference on Shot Peening, pp. 183–190.  

Knotek, O., and Elsing, R., 1987. Computer simulation of different surface topographies of 

metals produced by blasting processes. Proceedings of the 3rd International Conference 

on Shot Peening, pp. 361–368.  

Kobayashi, M., Matsui, T., and Murakami, Y., 1998. Mechanics of creation of compressive 

residual stress by shot peening. International Journal of Fatigue, 20(5), pp. 351–357.  



162 

Kopp, R., and Ball, H.W., 1987. Recent developments in shot peen forming. Proceedings of the 

3th International Conference on Shot Peening, pp. 297–308. 

Kyriacou, S., 1996. Shot-peenng mechanics, a theoretical study. Proceedings of the 6th 

International Conference on Shot Peening, pp. 505–516.  

Levers, A. and Prior, A., 1995. Finite element simulation of shot peening. The Shot Peener, 9(3), 

pp. 14–16.  

Li, J. K., Yao, M., Wang D., and Wang R. Z., 1991. Mechanical approach to the residual stress 

field induced by shot peening, Materials Science and Engineering A, 147, pp. 167-173. 

Li, Kuohsiang., 1981. Using stress peen-forming process for integrally stiffened wing panels. 

Proceedings of the 1th International Conference on Shot Peening, pp. 555–563. 

Lu, J., 1996. Handbook of measurement of residual stresses, The Fairmont Press, Inc., Lilburn, 

GA, USA. 

Majzoobi, G.H., Azizi, R., and Alavi Nia, A., 2005. A three-dimensional simulation of shot 

peening process using multiple shot impacts. Journal of Materials Processing Technology, 

164–165, pp. 1226–1234.  

Meguid, S.A., 1975. Mechanics of shot peening. Ph.D. thesis, UMIST. UK.  

Meguid, S.A., Shagal, G., and Stranart, J.C., 1999a. Finite element modeling of shot peening 

residual stresses. Journal of Materials processing Technology, 92–93, pp. 401–404.  

Meguid, S.A., Shagal, G., Stranart, J.C., and Daly, J., 1999b. Three-dimensional dynamic finite 

element analysis of shot-peening induced residual stresses. Finite Elements in Analysis 

and Design, 31, pp. 179–191.  

Meguid, S.A., Shagal, G. and Stranart, J.C., 2002. 3D FE analysis of peening of strain-rate 

sensitive materials using multiple impingement model, International Journal of Impact 

Engineering, 27, pp.119-134. 

Meguid, S.A., Shagal, G., Stranart, J.C., Liew, K.M., and Ong, L.S., 2005. Relaxation of peening 

residual stresses due to cyclic thermo-mechanical overload. Transactions of the ASME -

journal of engineering Materials and Technology, 127, pp. 170–178.  



163 

Meo, M., and Vignjevic, R., 2003. Finite element analysis of residual stress induced by shot 

peening process. Advances in Engineering Software, 34, pp. 569–575.  

Miao, H.Y., Larose, S., Perron, C. and Lévesque, Martin, 2009. On the potential applications of a 

3D random finite element model for the simulation of shot peening, Advances in 

Engineering Software, 40,  pp. 1023-1038. 

Mori, K., Osakada, K., and Matsuoka, N., 1994. Finite element analysis of peening process with 

plastically deforming shot. Journal of Materials Processing Technology, 45(1), pp. 607–

612. 

Rodopoulos, C.A., Kermanidis, A.Th., Statnikov, E., Vityazev, V. and Korolkov, O., 2007. The 

effect of surface engineering treatment on the fatigue behavior of 2024-T351 aluminum 

alloy, Journal of material engineering and performance, 1(1), pp.30-34. 

Rodopoulos, C.A., Curtis, S.A., de los Rios, E.R., and Solisromero, J., 2004. Optimisation of the 

fatigue resistance of 2024-T351 aluminum alloys by controlled shot peening–

methodology, results and analysis. International Journal of Fatigue, 26, pp. 849–856. 

Rouhaud, E., and Deslaef, D., 2002. Influence of shots’ material on shot peening, a finite element 

model. Materials Science Forum, 404-407, pp. 153–158.  

Rouhaud, E., Ouakka, A., Ould, C., Chaboche, J.L., and François, M., 2005. Finite element 

model of shot peening, effects of constitutive laws of the material. Proceedings of the 9th 

International Conference on Shot Peening, pp. 107–112.  

SAE Surface Enhancement Division, 2009. SAE Standard J2277 - Shot Peening Coverage 

Determination. 

SAE Ams B Finishes Processes And Fluids Committee, 2009. SAE Standard AMS 2430 - Shot 

Peening, Automatic. 

SAE Surface Enhancement Division, 2008. SAE Standard J442 - Test Strip, Holder, and Gage for 

Shot Peening. 

SAE Surface Enhancement Division, 2003. SAE Standard J443 - Procedures for Using Standard 

Shot Peening Test Strip. 



164 

SAE Ams B Finishes Processes And Fluids Committee, 2009. SAE Standard AMS 2430 – Shot 

Peening, Automatic. 

Schiffner, K., and Droste gen. Helling, C., 1999. Simulation of residual stresses by shot peening. 

Computers and Structures, 72, pp. 329–340.  

Schwarzer, J., Schulze, V., and Vöhringer, O., 2002. Finite element simulation of shot peening - 

a method to evaluate the influence of peening parameters on surface characteristics. 

Proceedings of the 8th International Conference on Shot Peening, pp.  507–515. 

Schwarzer, J., Schulze, V., and Vöhringer, O., 2003. Evaluation of the influence of shot 

parameters on residual stress profiles using element simulation. Materials Science Forum, 

426-432, pp. 3951–3956. 

Sharp, P.K., Clayton, J.Q., Clark, G., 1994. The fatigue resistance of peened 7050-T7451 

aluminum alloy-repair and re-treatment of a component surface, Fatigue and Fracture of 

Engineering Materials and Structures, 17(3), pp. 243–252 

Shen, S., Han, Z. D., Herrera, C. A. and Atluri, S. N., 2004. Assessment, development, and 

validation of computational fracture mechanics methodologies and tools for shot-peened 

materials used in rotorcraft principal structural elements, Final Report-U.S. Department 

of Transportation: Federal Aviation Administration, FAA Report No. DOT/FAA/AR-

03/76. 

Slim, S., 1995, Identification des paramètres d’une loi de comportement élastoplastique pour le 

grenaillage et application à l’étude des liens entre l’évolution cyclique du matériau et le 

taux de recouvrement, thèse de doctorat, ENSAM, Aix en Provence, France. 

Tabor, D., 1951. The hardness of metals, Clarendon Press, Oxford, UK. 

Tatton, R.J.D., 1987. Shot peen forming-An economical solution. Proceedings of the 3rd 

International Conference on Shot Peening, pp. 309–318. 

Torres, M. and Voorwald, H., 2002. An evaluation of shot peening, residual stress and stress 

relaxation on the fatigue life of AISI 4340 steel. International Journal of Fatigue, 24, pp. 

877–886. 



165 

Vanluchene, R.D., Johnson, J., and Carpenter, R.G., 1995. Induced stress relationships for wing 

skin forming by shot peening. Journal of Material Engineering and Performance, 4(3), 

pp. 283–290. 

Vanluchene, R.D., and Cramer, E. J., 1996. Numerical model of a wing skin peen forming 

process. Journal of Material Engineering and Performance, 5(6), pp. 753–760. 

Wang, S., Li, Y., Yao. M. and Wang, R., 1998. Compressive residual stress introduced by shot 

peening.  Journal of Material Processing Technology, 73, pp. 64-73 

Webster, G.A. and Ezeilo, A.N., 2001. Residual stress distributions and their influence on fatigue 

lifetimes. International Journal of Fatigue, 23, S775–S383. 

Wick, A., Holzapfel, H., Schulze, V., and Vöhringer, O., 1999, Effect of shot peening parameters 

on the surface characteristics of differently heat treated AISI 4140, Proceedings of the 

2nd International Conference on Shot Peening, pp. 42-53. 

Wohlfahrt, H., 1984. The influence of peening conditions on the resulting distribution of residual 

stress. Proceedings of the 2nd International Conference on Shot Peening, pp. 316–331. 

Zarka, J. and Casier, J., 1979. Elastic-plastic response of structure to cyclic loading: practical 

rules, In Nemat Nasser, S. (ed.), Mechanics Today, Pergamon Press, Oxford, pp. 93-198. 

Zarka, J. and Inglebert, G., 1985. Simplified analysis of inelastic structures, In Simplified 

Analysis of Inelastic Structures Subjected to Statical or Dynamical Loadings, CISM 

Seminar, October 7-10. 

 

 

 

 


