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Abstract

Monoclonal antibody producing Chinese hamster ovary (CHO) cells have been shown to undergo metabolic changes when
engineered to produce high titers of recombinant proteins. In this work, we have studied the distinct metabolism of CHO
cell clones harboring an efficient inducible expression system, based on the cumate gene switch, and displaying different
expression levels, high and low productivities, compared to that of the parental cells from which they were derived. A
kinetic model for CHO cell metabolism was further developed to include metabolic regulation. Model calibration was
performed using intracellular and extracellular metabolite profiles obtained from shake flask batch cultures. Model
simulations of intracellular fluxes and ratios known as biomarkers revealed significant changes correlated with clonal
variation but not to the recombinant protein expression level. Metabolic flux distribution mostly differs in the reactions
involving pyruvate metabolism, with an increased net flux of pyruvate into the tricarboxylic acid (TCA) cycle in the high-
producer clone, either being induced or non-induced with cumate. More specifically, CHO cell metabolism in this clone was
characterized by an efficient utilization of glucose and a high pyruvate dehydrogenase flux. Moreover, the high-producer
clone shows a high rate of anaplerosis from pyruvate to oxaloacetate, through pyruvate carboxylase and from glutamate to
a-ketoglutarate, through glutamate dehydrogenase, and a reduced rate of cataplerosis from malate to pyruvate, through
malic enzyme. Indeed, the increase of flux through pyruvate carboxylase was not driven by an increased anabolic demand.
It is in fact linked to an increase of the TCA cycle global flux, which allows better regulation of higher redox and more
efficient metabolic states. To the best of our knowledge, this is the first time a dynamic in silico platform is proposed to
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analyze and compare the metabolomic behavior of different CHO clones.
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Introduction

Monoclonal antibodies (mAbs) are among the largest segment of
today’s therapeutic proteins market, with a 21% annual increase
rate in launching into clinical trial [1]. Indeed, although CHO
cells is now the major cell line used industrially with culture and
production protocols that have been largely optimized [2], mAbs
production at high quantities and of high quality, e.g. with defined
glycosylation profile, still has to be achieved. Among many factors
affecting mAbs quality, the stability with time of high producing
level CHO cell clones with enhanced endogenous pathways (e.g
glutamine synthetase (GS) gene) [3], and presenting a prolonged
cell viability level due to the over-expression of some cytoplasmic
proteins (e.g. chaperones such as Hsp70 and Hsp27) is highly
critical [4]. Moreover, media composition and culture conditions,
as well as their management along with culture duration, have to
be optimized to achieve not only the objective of desired cell
productivity and viability but also mAbs quality specifications [5].
Ultimately and within this context, efficient process control
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strategies, fed through on-line and off-line analyses, may allow
seeking and maintaining desired optimal conditions with time.
However, due to the large number of variables and decision steps
assoclated with the development and the identification of a stable
high-producer cell line, it is a highly challenging and time
consuming process [6,7]. Indeed, high-throughput screening
approaches are normally used for clone selection, but there is a
risk of performance discrepancy during scaled-up and manufac-
turing [8]. Therefore, only a knowledge-based strategy capable to
detect at each step desired and undesired cell traits, as well as to
extrapolate its behavior at the process scale, can efficiently guide
and accelerate cell line screening works. Indeed, such level of
knowledge has thus to be based on an adequate description of cell
behavior in a managed environment. In that context, various
“omic” approaches have been applied to cell line characterization.
Clonal variations in rat fibroblasts [9] and hepatoma cells [10]
were first reported and revealed differences in growth character-
istics under both oxygen deficient and aerobic culture conditions.
Proteomic and genomic studies on various NSO [11,12,13] and
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murine cell lines [14], and of their recombinant derivative clones,
allowed to clearly demonstrate that clones differing in their mAb
productivities also differ in the abundance of proteins involved in
cellular functions such as energetic metabolism, mAb folding/
assembly, and cytoskeletal organization. The issue of clonal
variation in recombinant CHO cells has also been largely
addressed. Early works compared clones for their growth and
morphological aspects, and showed altered cell morphology and
different sub-population spatial organization types between clones
when grown on agar [15,16]. Clone-specific variations at the
functional genetic level were also extensively described. It has been
reported that high- and low-producer CHO-mAb subclones differ
mainly in their DNA fragment sizes where high numbers of
differentially expressed genes were identified [17]. Analyses at the
proteomic level also revealed that different clones show different
behaviors at different culture phases such as at mid-exponential
and stationary [18-22]. The effect of culture conditions on
different CHO cell clones, with respect to cell growth and
productivity, was also investigated at reduced temperature [23].
Regarding specific productivity, different enhancing effects of low
culture temperature were observed in different clones. Recently, a
metabolomic study focusing on clonal variations in response to
culture condition variation has been conducted [24]. Comparing
clone-to-clone changes, beside specific productivity, strong varia-
tions in cell density, nutrient uptake and metabolic generation
patterns were also detected. Indeed, various fluxomic approaches
[25] have been developed to estimate metabolic fluxes rates, such
as using labeling techniques [26-30] and metabolic mathematical
models [31-36]. Using isotope labeling experiments, metabolic
flux analysis (MFA) techniques and mathematical models, different
metabolic patterns in CHO cell clones were observed such as a
higher metabolic efficiency as a result of lower by-products
production. Taken together, these works have significantly
improved our knowledge on CHO cell behavior, as well as our
conviction on the need for developing tools allowing a more in-
depth capacity to describe cell metabolic behavior. In that context,
kinetic models, when they describe transient behaviors, can serve
as i silico platform enabling either intuitive or counter-intuitive
metabolic flux exploration. In this work, we have further
developed a kinetic-metabolic model for CHO cells. The model,
which is based on cell energetic and redox states [36], was
implemented with metabolic regulation aspects and then applied
as an i silico platform to the characterization of clonal variation
comparing a parental CHO cell line to its high- and low-producer
derived clones. High- and low-producer clones, engineered with
the inducible cumate gene-switch expression system [37,38] were
cultured in shake flask cultures, under both induced and non-
induced conditions. The model was calibrated on experimental
data of extra- and intracellular metabolites. In the present work,
we thus present a descriptive model as well as evaluating its
predictive capacity.

Materials and Methods

Ethics statement
All cell culture protocols were approved by the ethics committee
of the Ecole Polytechnique.

CHO clones and culture

CHO clones that stably produce a recombinant monoclonal
human anti-CD20 at different specific productivities (high- and
low-producer) were provided by Viropro International Inc.
(Montreal, Quebec, Canada). These cells were derived from
CHO-Cum?2 cells and stably express the reverse cumate

PLOS ONE | www.plosone.org

An In Silico Platform to Study CHO Metabolism

transactivator, as described in details by Mullick et al. 2006
[37]. Cells were seeded at 2x10° cells mL™" in 300 mL of a
protein-free medium in 1-L shake flasks, and cultured on a shaker
(150 rpm) in a humidified incubator at 37°C and 5% COs. The
medium used was a customized chemically-defined SFM4CHO
medium (Hyclone, Utah, USA) supplemented with 4 mM
glutamine (Hyclone, Utah, USA, cat. # SH30034), 30 mM
glucose (Sigma, Oakville, Canada, cat. # G8270), and 0.05 mg
mL ™! dextran sulphate (MW: 500000, Sigma, Oakville, Canada,
cat. # D7037). For the comparative study, the parental clone,
together with high- and low-producer clones, were cultured in
duplicate. High- and low-producer clones were cultured both in
the presence and in absence of cumate, the latter serving as non-
induced control. In case of induction, 1 pg mL~" of cumate was
added after 48 hours of incubation, to trigger the recombinant
protein expression. It should be mentioned that no visible effects
on morphology or growth rates were reported for mammalian cells
cultured at a cumate concentration below 200 pg mL ™" [37]. Cell
culture samples were taken every 24 h for cell counts, biochemical
assays, and quantification of amino acids and human IgG, the
recombinant mAb. Samples were centrifuged at 300 g for 5 min to
remove cells, and supernatant samples were stored at —20°C for
further analysis. Cultures were monitored for a total of 6 days.

Analytical methods

Cell density was determined by cell counting using a
hemocytometer, and cell viability was estimated using the trypan
blue (sigma, Oakville, Canada cat. # T8154) exclusion method.
The concentration of glucose, lactate, glutamine and glutamate in
the culture supernatant were determined using a dual-channel
immobilized oxidase enzyme biochemistry analyzer (2700 SE-
LECT, YSI Inc. Life Sciences, Yellow Springs, OH, USA), using
calibration buffers provided by the manufacturer. Ammonia
concentration in supernatants was assayed by an enzymatic kit
with respect to manufacturer technical instructions: Ammonia
Assay Kit (Sigma, Oakville, Canada cat. # AA0100). NAD(P) and
NAD(P)H were also extracted and assayed by an enzymatic kit
with respect to manufacturer technical instructions: NAD(P)/
NAD(P)H Quantitation Kit (BioVision, CA, USA, cat. # K337-
100). mAbs concentration was quantified using an enzyme-linked
immunosorbent assay (ELISA). First, 96-well plates (Costar)
(Fisher Scientific, Burlington, Canada, cat. # 3795) were coated
with a goat anti-human IgG1l (H+L) solution (Jackson Immuno
Research, PA, USA, cat. # 109-165-003) diluted to 2.5 pg mL ™!
in 50 mM sodium carbonate (Fischer Scientific, Burlington,
Clanada, cat. # S263-1), and incubated at 4°C overnight. Then,
the blocking of non-specific sites was carried out by adding PBS
solution containing 1% casein. After incubation for 1 h at 37°C,
either samples or standards diluted in PBS-casein were added in
triplicate to each well and incubated for 1 h at 37°C. After the
plates were incubated 1h at 37°C, peroxidise-conjugated
affinipure fragment Goat anti-human IgG (Jackson Immuno
Research, PA, USA, cat. # 109-035-003) (1:10,000 dilution) was
added to each well, and the plates were incubated for 1 h at 37°C.
After each of the previous steps, the wells were washed three times
(PBS with 1% w/v Tween 20). Finally, the reaction was revealed
by 3,3,5,5'-Tetramethylbenzidine (TMB) (Sigma, Oakville, Can-
ada, cat. # T0440) and stopped after 15-20 min by adding 1 N
hydrochloric acid, and the plates were red by an automatic plate
reader at 450 nm using a Victor’ V microplate reader (Perkin-
Elmer, Vaudreuil-Dorion, Canada). The analysis of amino acid
concentrations was performed on an Agilent 1290 UPLC system
(Agilent technologies, Montreal, Quebec, Canada) coupled to an
Agilent 6460 triple quadruple mass spectrometer (Agilent
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technologies, Montreal, Quebec, Canada), following methods
previously described [39,40]. The underivatized amino acids were
separated by a 2.1x150 mm ZIC™-Hilic column (3.5 pum, 200
A, PEEK) (Merck SeQuant, Peterborough, Canada) and
2.1x20 mm ZIC™-Hilic guard column (5 pm, 200 A, PEEK)
(Merck SeQuant, Peterborough, Canada) at a column tempera-
ture of 35°C and injection volume of 5 pL. The mobile phase
buffer contained 20 mM HCOONH4 (Sigma, cat. # 74314) at
pH 4. The mobile phase A was 10% of the mobile phase buffer in
water, and the mobile phase B was 10% of the mobile phase buffer
in acetonitrile (ACN) (Sigma, cat. # A3396). The mobile phase B
was linearly decreased from 90% to 35% in 19 min, then was
increased to 90% in one minute and held at 90% for 15 min at a
flow rate of 0.1 mL min—1. The Agilent 6460 triple quadruple
mass spectrometer (Agilent technologies, Quebec, Canada),
equipped with a Jet stream electrospray ion source (Agilent
technologies, Quebec, Canada), was used for the analysis of amino
acids in negative ion mode. The other parameters: Gas
temperature of 350°C, Gas flow rate of 9 L min—1, Nebulizer
pressure of 45 PSI, sheath gas temperature of 350°C, sheath gas
flow rate of 10 L min—1, capillary votage of 3 kv. An internal
standard solution which contains 2 pM Homoarginine (Fisher
cat.# AC169090010), 2 pM homophenylalanine (Sigma cat.#
294357) and 2 pM Methionine-d3 (CDN isotope D1292) was used
as internal standard for quantification. The MRM transition and
retention time of each amino acid is listed in Table S1. It should be
noted that commercial standards of every nutrients and metab-
olites were also used to establish calibration curves along with each
series of analysis. Finally, extraction efficiency and compounds
stability were determined using internal standards.

Respirometry test

Respirometry assays were performed as described by Lambour-
sain et al. [41]. Briefly, 3 mL of cell suspension containing at least
5%10° cells were inoculated in a 10-mL borosilicate glass syringe
(Sigma, Oakville, Canada), in which the plunger was substituted
by an Ingold pOy probe (Mettler Toledo, Montreal, Quebec,
Canada). At low cell densities, a volume of cell suspension
containing 5x10°% cells was collected and centrifuged, and the
pellet was re-suspended in a total of 3 mL of spent media. The
respirometer was kept at 37°C and magnetically agitated (60
RPM) to ensure the homogeneity of cell suspension. Dissolved
oxygen was recorded by an acquisition system (Centris, Longueuil,
Quebec, Canada).

Extraction of intracellular metabolites

For intracellular metabolomic analysis, 5x10° cells were
obtained daily, washed twice with cold PBS and extracted with
400 pL of 80% cold methanol in the presence of 0.2 g of sand
(Sigma, Oakville, Canada, cat. # 274739). After 10 min on dry
ice, the mixture was vortexed and then sonicated in ice and water
for 5 min. Suspensions were then centrifuged at 4°C for 7 min at
21,000 g. The supernatants were then transferred to a clean tube
as extracts. Pellets were re-extracted as mentioned above with
200 pL of 50% cold methanol and 200 pL of cold water. At each
extraction, supernatants were combined with the first extract and
stored in —80°C: prior to analysis.

Energetic nucleotide concentrations

Extracts were filtered through 0.2 pm filters (Millipore,
Etobicoke, Canada) before analysis. Nucleotides in CHO cells
extracts were analyzed using a 1290 UPLC system coupled to a
6460 triple quadruple mass spectrometer (both from Agilent
Technologies, Montreal, Quebec, Canada). Nucleotides were
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separated by a Symmetry C18 column (150x2.1 mm, 3.5 pm)
(Waters, Milford, USA) equipped with a Security C18 guard-
column (Waters, Milford, USA 10x2.1 mm, 3.5 um) by the ion-
pair method, as previously described [42]. DMHA (N,N-
dimethylhexylanine, Sigma, Oakville, Canada, cat. # 308102)
was used as an ion-pair reagent to improve the signal-to-noise ratio
with positive ionization mode. The mobile phase consisted of
Buffer A: 10 mM ammonium acetate, 15> mM DMHA at pH 7.0,
and Buffer B: 50/50% (v/v) acetonitrile, 20 mM NH,OAc at
pH 7.0. Mobile phase flow rate was set at 0.3 mL min~ ' with the
following gradient: 0—10 min at 10% B, 10-20 min at linear
gradient from 10 to 30% B, 20-21 min at linear gradient from 30
to 60% B, 21-26 min at 60% B, 26-27 min at linear gradient
from 60 to 10% B and 27-35 min at 10% B. External standard
curve was used for quantification. The Agilent 6460 triple
quadruple mass spectrometer (Agilent technologies, Quebec,
Canada), equipped with a Jet stream source (Agilent technologies,
Quebec, Canada), was used for the analysis of nucleotides in
positive ion mode. The mass spectrometer parameter were 100 ms
scan time; 350°C gas temperature; 7 L min ™' gas flow rate; 30 PSI
nebulizer pressure; 350°C sheath gas temperature; 12 1 min~ !
heath gas flow rate and 3500 V capillary voltage. The data was
recorded in MRM mode with the mass spectrometer conditions
listed in Table S2.

Organic acid and sugar phosphate concentrations

Extracts were filtered through 0.2 um filters (Millipore,
Etobicoke, Canada) before UPLC-MS/MS (Agilent, Montreal,
Quebec, Canada) analysis equipped with a Hypercarb column
(100x2.1 mm, 5 um) and a Hypercarb pre-column (2.1 x10 mm,
5 um) (Thermo Fisher, Burlington, Canada), as previously
described [43,44]. Mobile phase consisted in Buffer A: 20 mM
ammonium acetate at pH 7.5, and Buffer B: 10% (v/v) methanol
in water. Flow rate was set at 0.3 mL min~ ' using the following
gradient: 0-5 min at 10% A, 5-10 min at linear gradient from
10% to 20% A, 10-20 min at linear gradient from 20% to 100%
A, 20-30 min at 100% A, 30-32 min at linear gradient from
100% to 10% A and 32-40 min at 10% A. The Agilent 6460
triple quadruple mass spectrometer (Agilent technologies, Quebec,
Canada), equipped with a Jet stream source (Agilent technologies,
Quebec, Canada), was used for the analysis of sugar phosphates
and low molecular organic acids in negative ion mode. The mass
spectrometer parameter were 100 ms scan time; 300°C gas
temperature; 7 L min ! gas flow rate; 35 PSI nebulizer pressure;
400°C sheath gas temperature; 12 L min~" heath gas flow rate
and 3500 V capillary voltage. Data were recorded in MRM mode
with the mass spectrometer conditions listed in Table S3. The
external standard curve was used for quantification.

Model development

The global structure of the mathematical model developed and
presented here is based on a previous model describing CHO cells
central metabolism [36]. Details concerning the model (transient
mass balances, parameters, etc.) are provided in the Supporting
Information; with the description of the biochemical reactions
considered in the model metabolic network (Table S4), fluxes’
kinetic formulation (Table S5), state variables and initial condi-
tions (Table S6), affinity constants (Table S7) and maximal fluxes’
rates (T'able S8). In the present work, the descriptive precision as
well as the predictive capacity of the model were improved by
including catabolic pathways of amino acids metabolism along
with other biochemical pathways (glycolysis, pentose phosphate
pathway, TCA cycle, glutaminolysis as well as cell respiration)
providing carbon skeletons to the central metabolism (Figure 1).
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For simplification purposes, amino acids are pooled into 3 groups
channeled through TCA intermediates such as succinate, oxalo-
acetate and o-ketoglutarate. The other entry points for amino acid
carbon skeletons are lumped to pyruvate. A special care was taken
to preserve all stoichiometric relationships while lumping and/or
combining reactions. In addition, we also further described the cell
specific growth rate from its precursor’s building blocks by
considering G6P (leading to phospholipids and organic phosphate
compounds), R5P (to DNA, RNA and nucleotides), and extracel-
lular glutamine together with other amino acids (to proteins)
(reaction 34, Tables S4 and S5). Cell growth is described from the
main cell building blocks for which experimental data were
available; thus excluding precursors of lipids. This approach,
although reductive, allowed describing cell growth with culture
time from the major anabolic pathways that are logically expected
to affect growth behavior, as previously demonstrated [36].
Furthermore, a description of the cell-specific recombinant protein
production rate from the mAb composition in amino acids is
incorporated into the model. Extracellular amino acid concentra-
tions are included individually in the kinetic expression for both
the cell specific growth rate and mAb productivity. For
simplification purposes and because of a lack of available data in
literature as well as experimentally, a single affinity constant value
is used for each amino acid, either as a substrate for biomass
formation or antibody production, except for glutamine. Indeed,
experimental data show that cell growth stopped specifically upon
depletion of glutamine, while it has not limited antibody
production. Consumption rate of each precursor for the synthesis
of biomass or recombinant protein is calculated as proposed by
Martens [45], considering the stoichiometry of precursor metab-
olites (Table S4, reactions 34-35). The mass balance on amino
acids thus includes their production (where it applies) and their
consumption for anabolic needs for growth and production as well
as their contribution toward energy production through TCA
cycle.

The stoichiometric coefficients of the respective biosynthetic
equations were taken from literature [27]. The global metabolic
network is presented in Figure 1, and a detailed summary of each
flux reactions is given in Table S4. Only amino acids measured in
this work are considered in the model. For amino acids, only
extracellular pools were considered except for glutamate; extra-
cellular glutamine is directly converted to intracellular glutamate,
and intracellular glutamate exchange for extracellular glutamine is
also considered to account for the management of nitrogenous
sources as the culture enters the plateau phase. Intracellular
glutamate is channeled through TCA cycle via a bidirectional
exchange for a-ketoglutarate, as reported by Nolan et al. (2001)
[34]. From experimental data obtained in this work, extracellular
aspartate concentration showed low constant values as the culture
reaches the plateau phase, which suggests a possible exchange of
intracellular oxaloacetate for extracellular aspartate, a phenome-
non that has thus been described in the model. Finally, it is
assumed that at low extracellular glutamine level, the cells take up
extracellular alanine; an activation term based on a threshold
concentration for extracellular glutamine was thus included in the
model.

Description of flux kinetic regulation

Mathematical formulations of metabolic flux kinetics have been
determined based on a previous work [36] or adapted from Segel
(1993) [46], both for their biological mechanistic representation
and for the model capacity to simulate experimental data for
another CHO cell line in bioreactor cultures. Michaelis-Menten
type kinetic formulation was applied considering substrates, co-
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factors [47,48], energetic nucleotides ratios, as well as inhibitors
and activators when required as described in literature (brenda-
enzymes.nfo [48]). ATP-to-ADP ratio has been reported to be
maintained, in metabolically healthy cells, at a ratio around 10:1
[49], NADH-to-NAD in the order of 0.03-0.07 and NADPH-to-
NADP 10-100 folds higher [50]. Moreover, since our experimen-
tal data on the cell contents in these single nucleotides suggest that
their respective sums (ATP+ADP+AMP; NAD+NADH; NADP+
NADPH) vary of lower amplitudes than the ratios during a batch
culture; it has thus been decided to keep with using ratios, as we
have recently used to describe another CHO cell line [36]. This
approach has also been suggested by Dash et al. (2008) [51] to
model metabolism and energetics in Skeletal Muscle cells. We
have thus considered using these nucleotide ratios as the driving
forces coordinating metabolic reactions. Moreover, the uptake
rates of extracellular metabolites (glucose, glutamine, amino acids)
are the dominant factors driving changes in the metabolic system.
However, the Km values for most metabolite transporters are low
relative to the extracellular concentration of the metabolites
(Tables S6-S7) [52]. This suggests that the transport of a
metabolite into a cell may not be mainly controlled by the
transporter, but rather from the intracellular enzymatic reactions
and regulation. The extracellular concentrations influence the
dynamics of intracellular concentrations. Therefore, it is proposed
in this work to model the consumption of extracellular metabolites
through the intracellular enzyme-catalyzed reactions with related
kinetic rate expressions as suggested by [53], where the
concentration dependencies of the kinetic expressions are based
on the corresponding extracellular metabolite concentration. In
this work, additional regulatory functions, mainly in glycolysis
(Figure 2), were introduced and evaluated, one by one, to either
describe activation or inhibition of enzyme kinetics. The
regulatory mechanisms involved in glycolysis are described as
hexokinase inhibition by its product G6P (term I), phosphoglucose
1somerase (term II) and phosphofructokinase inhibition (term III)
respectively by PEP and G6P, activation of pyruvate kinase by F6P
(term IV), as well as the inhibition of lactate dehydrogenase
forward reaction (term V) were considered based on information
derived from the literature [54-56]. Activation and inhibition
mechanisms of the enzymatic reactions are expressed through
negative and positive feedback and feedforward loops, modifying
the Michaelis-Menten rate laws as illustrated in Figure 2 [57].
Finally, reaction reversibility has been taken into account, for
those showing negative flux rate values during the course of a
culture simulation: understanding that model simulations were not
restricted in their signs. Thermodynamics aspects of biochemical
kinetics were not considered in this work, because the model
includes mainly lumped biochemical reactions.

Model calibration

The final fully dynamic model includes 35 reactions and 46
variables. The kinetic formulations for the flux regulation are
presented in Table S5. The model has 95 kinetic parameters, 48
affinity constants (Table S7), 42 maximum reaction rates (Table
S8) and one parameter for each regulatory function (Table S7).
Initial conditions for most of the variables were available from
culture data (Table S6), while those remaining were taken from
literature for similar conditions (brenda-enzymes.info and references
therein [48]). The set of kinetic parameters previously determined
for another CHO cell line in bioreactor cultures [36] was used as
initial estimates, when described, and the new parameters were
taken from literature for similar biological systems (brenda-
enzymes.nfo and references therein [48]). The parameter estimation
approach used is extensively discussed in a previous study [36].
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Briefly, for each of the five cultures under investigation, a

sensitivity analysis was performed for evaluating the influence of
each parameter on the model output. In order to define their
influence, parameters were systematically varied from their initial

value comparing respective model output, defined as the weighted

sum of squared residuals (WSSRES) between available experi-
mental data (X™) and simulated values (X™) for each state
variable m at time k, where the weight is the inverse of the variance
of the experimental data for each state variable, var, %
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The sensitivity analysis procedure allowed to rank the param-
eters by their decreasing influence, and to remove parameters that
were not contributing to model sensitivity from further optimiza-
tion cycle, keeping them at their initial value. Optimal parameter

(for the sensitive ones) were then obtained by minimizing

the normalized sum-squared errors using a Least-squares minimi-

zation

function in MATLAB’s Optimization Toolbox (The

Mathworks, Inc., Natick, USA) for non-linear regression. Finally,
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doi:10.1371/journal.pone.0090832.9002

95% confidence intervals for both model sensitive parameters and
model predictions were calculated using built-in  MATLAB
functions “nlparct.m” and “nlpredci.m™, respectively.

Results

Model structure fine-tuning and characterization

The model was first applied to parental cell line culture data
obtained in shake flasks. Model performance assessment with
cumate-induced and non-induced cultures of low-producer and
high-producer clones is presented thereafter, and the details on
model parameters calibration are shown as (Figures S1, S2, S3).

PLOS ONE | www.plosone.org

Describing the regulation of glycolysis ameliorates model
simulations of experimental data. Biologically relevant
scenarios (Figure 2) of enzyme regulation mechanisms, known to
play a role in glycolysis robustness, were successively evaluated
from model performance to simulate experimental data. For
clarity reasons, only simulations for four significant model
variables, such as cell density, glucose, ATP-to-ADP and
NADH-to-NAD ratios, are shown here (Figure 2) for parental
and the induced low- and high-producer cultures, and the
remaining results can be found as (Figures S4, S5, S6, S7, S8,
S9, S10). The last two model variables are markers of cell energetic
and redox states, respectively [58]. Interestingly, one can observe
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that model simulations of cell growth agreed with experimental
data in all regulation scenarios. However, the error between model
simulation and experimental data for extracellular glucose and
energetic nucleotides ratio shows to be high, when no regulation
terms are included in the kinetic flux expressions. Hexokinase
inhibition by G6P (term I) decreases the simulation error for
extracellular glucose and redox nucleotides ratio, and to a lesser
extent for energetic nucleotides ratio. Adding a term (II) to
account for PGI inhibition by PEP further reduces the error
between model simulations and experimental data, and this is
particularly obvious for energetic nucleotide ratios. This suggests
that variations in sugar phosphate cell concentrations, although of
low magnitudes, may trigger the first two regulatory mechanisms
to control glycolytic fluxes. To verify whether incorporating other
regulatory terms into rate expressions significantly influences
simulation results, a formulation with all main regulatory steps was
also tested. The last formulation also shows to allow simulating
experimental data almost similarly to the case when the first two
terms are considered. This may suggest that not all the regulatory
terms are solicited within experimental conditions in this study.
Therefore, because of a higher performance level as well as a lower
formulation complexity, a kinetic formulation including the first
and the second regulatory terms was used in the remaining of this
study. Considering extracellular metabolites (Figures S4,56,58) the
model is far from predicting experimental data when no regulatory
terms are considered. However, model simulations are closer to
experimental data when only adding the first (term I) and the
second (term II) regulatory terms, respectively hexokinase feed-
back inhibition by its product, G6P, and phosphoglucose
isomerase inhibition by PEP. Interestingly, our experimental data
set accounts for a wide diversity of metabolites such as by-products
(lactate, NH,", glutamate), amino acids (alanine, glutamine, serine,
aspartate, and amino acid pools to TCA cycle), sugar phosphates
of glycolysis (G6P and PEP) as well as glucose, cell density and
energetic nucleotides, which are all well simulated by the model
implemented with regulation terms I and II. Similar observations
can be drawn for scenarios of intracellular organic acids such as
PYR and SUC. In addition, model simulations corresponded
more closely to experimental data for organic acids such as AKG
and MAL in induced low- and high-producer cultures, but to a
lesser extent to no clear effect for other amino acids and AMP
(Figures 55,57,59). Finally, the same behavior can be observed for
the cell specific oxygen consumption rate (qOy), for which
simulations were closer to experimental data comparing to the
case with no regulation (Figures S4,56,S8).

A limited subset of model parameters drives the in silico
A sensitivity analysis was performed on the
resulting model, aiming to identify the most critical parameters.
Values of model parameters were changed from —85 to +300%,
one at a time, from their optimal value, and the normalized sum-
squared differences (WSSRES) were calculated as previously
described. Resulting WSSRES values were then further normalized
to that obtained for original optimal parameter values (i.e. 0%
change). Parameters showing a deviation of =15% and higher
were considered sensitive; a colormap (Figure S1) was drawn to
illustrate the extent to which normalized WSSRES values vary
from that of the optimal value (i.e. minimal simulation error). The
model reveals to be primarily sensitive to parameters of glycolysis,
TCA cycle and energetic reactions, amino acids catabolism
pathways, partially to glutaminolysis, and to a lesser extent to
the pentose phosphate pathway. The specific glucose uptake rate
(Vimaxtr) @and other parameters of glycolysis (Vyawrcn Vet Viay
o and V.. rpp) show to strongly affect simulation error.
Moreover, maximum reaction rates for three enzymes in TCA

cell behavior.
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cycle  (Vmaxarepi, Vmascss and Vyaarp), and for the reaction
connecting glycolysis to TCA cycle (Vyunrnrs Viaour and Vi),
also reveal to be significant. The model is also highly sensitive to
three reactions related to glutaminolysis (Viayerns VmawGLNs
Vmw_cﬂlLDII: VinaxrGLDH> vr/m)gﬁ’llaT}l: and vmax/lSX)r and to a lesse extent
to two parameters related to the pentose phosphate pathway
oxidative branch (V,uceppms and V,.zp). The model shows a high
sensitivity to energetic reactions, represented here by parameters
related to non-specifically described ATP (v,4047p4) and NADH
consuming reactions (Vy,quey)- Furthermore, the maximum specific
growth rate (V,,augowen) also strongly influences the simulation error.
Finally, parameters related to amino acids catabolism (V745
VinaxSALs VimaxfASTA> VmaxHISARGTA> and V. L 1SILELEUHISVALTYRTA) @150
demonstrate to be influential. There are therefore a high number
of non-influential parameters with 65 out of 95. This lack of
sensitivity may partially come from the experimental space used to
calibrate and to challenge the model. Although these non-sensitive
parameters are biologically relevant, describing existing active
pathways and enzymatic reactions, they may require expanded
experimental culture conditions to be solicited, as we proposed in a
recent work [59]. For space limitation only, sensitivity results for
parental culture are shown while the other cultures exhibited
almost the same results. Therefore, the model was kept as is at this
point because actual non-sensitive parameters may become
sensitive and thus be useful in a future study exploring outside
the actual experimental space.

A limited subset of measured variables contribute to the
overall model sensitivity. The specific contribution of each
measured variable to the overall model sensitivity was also
investigated. Among measured variables, cell density, extracellular
glucose, glutamine, lactate, ammonia, ASX (ASN+ASP), amino
acids pool to glutamate and nucleotide ratios showed a high
sensitivity level compared to pyruvate and succinate (Figure S2).
Not surprisingly, energetic nucleotide ratios exhibited the highest
sensitivity as it is affected by multiple reactions in various parts of
the metabolic network, through their regulatory role. Interestingly,
parameters with a relatively high global sensitivity on model
overall output may not systematically impact on all variables
simulated. Here again, results are conditioned by the experimental
space studied. It may thus suggest that experimental intracellular
concentrations have never reached threshold levels, above or
below which a higher impact could have been observed. The
whole procedure of model parameters calibration has then been
performed on the cumate-inducible cell lines, induced and non-
induced. For space limitation and clarity reasons, only final
calibrated results are shown and discussed in the following sections
(see Tables S7 and S8 for parameters values).

Assessment of the in silico platform performance

The model describes intra- and extracellular metabolites
concentration profiles and growth kinetics. The kinetic
expression for the cell specific growth rate, as multiplicative
Michaelis-Menten kinetics for precursors of cell building blocks,
was able to simulate the viable cell concentration profile in all
CHO cells cultures under study (Figure 3). High- and low-
producing clones exhibit almost similar growth profiles, reaching
maximum viable cell densities of ~3.5x10° cells mL™", while
parental cell line reached slightly higher maximum viable cell
density (~4.5x10° cells mL™"). The model also simulates
extracellular metabolites profile with time, although significant
differences in behavior are observed between the parental, low-
and especially high- producer clones (Figure 3). Interestingly,
differences between induced and non-induced cultures of the same
clone are non-significant. Irrespective of the clone or induction
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state, all cultures were not glucose-limited (>5-15 mM at culture
harvest), with the higher consumption in high-producer clone
cultures. Parental and low-producer cultures exhibit similar
glutamine profiles, and a faster depletion is again observed for
the high-producer clone. Growth cessation coincided with the
depletion of glutamine. Interestingly, unlike glucose, lactate
concentration profile differs among clones but the model structure
is able to simulate each case. Lactate is produced all along cultures
but, however, the high-producer clone seems to start consuming
lactate at glutamine depletion, suggesting the coupling of these
phenomena as suggested by Zagari et al. (2013) [60]. Ammonia
production was almost similar in parental and low-producer
cultures, reaching a final concentration of approximately ~4 mM
whereas it was ~5 mM in the case of the high-producer clone.
Similarly to lactate, the high-producer clone seems to start
consuming ammonia following glutamine depletion. Differences
in extracellular metabolites profiles are significantly related to
amino acids metabolism (see Table S8 for statistical analysis).
Globally, all amino acids except alanine and glutamate are
consumed and the consumption/production rates are greater in
the case of high-producer clone (Figure 3). Glutamate concentra-
tion constantly increases in all culture media, and alanine is also
constantly produced during exponential phase but consumed
thereafter (from ~96 h), with a more pronounced decrease in the
high-producer clone. In that culture, alanine may have compen-
sated for the lack of glutamine, once the latter was depleted. Beside
alanine, extracellular concentrations in (ASN+ASP) and SER in
the high-producer reached depletion. These amino acids are
expected to contribute to pyruvate synthesis. Although a higher
consumption of grouped amino acids channeled through succinate
and glutamate can be identified in the high-producer culture, there
1s no depletion observed. Interestingly, most intracellular metab-
olites show constant and similar levels between cultures except for
G6P and PEP with an increasing trend after exponential phase
(Figure S10).

Model simulates CHO cells clonal variations in energetic
state. As previously mentioned for the parental cell line, the cell
energetic state represented by ATP-to-ADP, NADH-to-NAD
ratios, and the cell specific oxygen consumption rate (¢0,) are
well simulated for all cultures (Figure 3). Although the cell specific
oxygen consumption rate is generally greater for the high-
producer clone, the ATP-to-ADP ratio, a marker of respiration
and energy consumption, showed relatively stable and similar
values in all cultures. NADPH-to-NAPD was also substantially
similar and stable in exponential phase in all cell lines, with a slight
decrease after exponential phase, which suggests the down-
regulation of NADPH production. Finally, the NADH-to-NAD
ratio, which is a marker of TCA cycle activity, was considerably
higher in high-producer clone than in parental and low-producer
cell lines, indicating a sustained up-regulated TCA activity, as
discussed in the next sections.

Clonal variation in physiology can be inferred from a
limited set of model kinetic parameters. In order to further
evaluate parameters adjustment attributed to clonal variation, the
associated p-values for each pair of estimates (control vs. either
induced low-producer or high-producer cultures) were calculated
(Table S8). In low- and high-producer clones, only two and four
parameters, respectively, were statistically different from those for
parental to allow the model to simulate the effect of cumate
induction. Briefly, in the case of the induced low-producer clone,
main differences can be observed for parameters related to
glycolysis (V,urpm), and ATP consumption reactions, which are
lumped as ATPase proton pumps requirements (V,cd7Puse)-
However, in the case of the induced high-producer clone, v,
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o7 A0d V04 7Pas. are both significantly changed in addition to one
parameter related to glutaminolysis (V,ayus74) and one related to
the reactions connecting glycolysis to TCA cycle (vV,oppr). The
high-producer clone thus resulted in a significantly different i silico
behavior compared to the parental cell line and, to a lesser extent,
to the low-producer clone (Figure S3 and Tables S8) regarding the
simulations that are however in agreement with experimental
data. Interestingly, the high-producer clone only requires the
adjustment of four parameters values from those of the parental
for the simulations to cope with experimental data.

The model simulates mAb production. The dynamics of
mAb production, modeled as multiplicative Michaelis-Menten
kinetics of amino acids, resulted in the simulation of mAb titers
(Figure 3) both in low- and high-producer clones. The model thus
shows to simulate experimental data in induced cultures while it
simulates the production resulting from the leaky expression of the
inducible system.

Discussion

The kinetic-metabolic model is a reliable in silico tool to
assess CHO cells clonal variations

Induction of recombinant proteins in microbial cell platforms
has been shown to cause an increased energetic demand in
support to a metabolic burden [61,62]. Unlike microbial cells, the
links between cell metabolic load and protein productivity in
engineered mammalian cells has yet to be tackled, although some
progress has been accomplished with the help of '*C-labeling [29].
In this work, an inducible system with low- and high-producer
clones have been selected in order to study an induction effect on
CHO cell metabolic behavior and load. Towards this goal, the use
of an i silico platform, made of a kinetic-metabolic model, confers
a unique capacity to explore mAb CHO producing cells beyond
experimental observations onto which the model has been
anchored a prion. Therefore, the remaining discussion will be
based on the results derived from the developed i silico platform.

Clone to clone variations yield more significant metabolic
changes than recombinant protein expression

In the previous sections, we reported large differences in
behavior between the low- and the high-producer clones,
comparing non-induced and induced cells (Figure 3). However,
it is of interest to evaluate the source of these differences. The
contribution of mAb production is estimated to account for atmost
5% of total carbon uptake by the cells, as previously observed [29],
even for the high-producer clone, and one can expect the de novo
metabolic load associated to the recombinant proteins to be low
compared to the intrinsic one related to endogeneous protein
synthesis. This estimate is calculated taking the carbon mass in
1 mol of mAb to the augmentation of the total mass of carbon
from cellular growth, considering a specific productivity of
~1x107% mmol 107° cells h™' and a specific growth rate of
~0.04 h™!, and assuming a dry cell weight of 350 pg cell ™', a
cellular molecular weight of 150 ¢ mol™' and the reported
elemental formulas for both biomass and mAb [34]. Therefore,
the production capacity is not thought to be limited at the anabolic
level, but rather at the protein processing stage (assembly and the
folding) [63]. We then used the model to evaluate the effect of
cumate induction on the metabolic load, and similar intracellular
flux distribution, metabolic fluxes and ratios were found when
normalized to their time-corresponding values in non-induced
controls (Figure 4). Only metabolic fluxes and ratios of major
metabolic networks such as glycolysis and TCA are shown.
Interestingly, most normalized values of metabolic fluxes and
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Figure 3. Simulated and experimental data for parental and induced/non-induced cell lines. Parental (experimental data: black triangles,
simulated data: solid black line), induced low-producer (experimental data: black squares, simulated data: dashed black line), non-induced low
producer (experimental data: blue squares, simulated data: dashed blue line), induced high-producer (experimental data: black circles, simulated
data: dotted black line), and non-induced high-producer (experimental data: red circles, simulated data: dotted red line).

doi:10.1371/journal.pone.0090832.9003

ratios are close to 1 for the high-producer clone, while the low-
producer clone exhibits deviations from 0 to 10% for a series of
fluxes with +10% for Vure, Vecrs VGIJVS’ TCA flux and ATP
turnover rate. In the case of the high-producer clone, the
contribution of glutamine to TCA cycle is lower in the induced
culture. Indeed, the higher deviation between induced and non-
induced cells is observed comparing the mAb specific production
rates with time, with production rates that are 13 to 8 times higher
in the low-producer clone and 5 to 1 times higher in the high-
producer clone. This higher deviation level in the low-producer
clone looks surprising but it can be attributed to a higher leakage
level of the cumate gene switch in the high-producer clone in the
absence of cumate induction (Figure 3). Our results, both
experimental and from simulations, thus suggest that within our
experimental conditions, differences in metabolic time profile
caused by clonal variation [24] exceeded that induced by
recombinant protein expression [61,62].

High producer clone selection favors metabolically
efficient cell population subsets

The high-producer clone shows a more efficient lactate
Model simulations (Figure 4) suggest that the
distinct metabolism of the high-producer clone favors mAb
production irrespective of cumate induction. Induced and non-
induced high-producer show similar glycolytic rates (Vyx, Vees),
glutamine metabolism (Vgzng) and ATP turnover rate for the

metabolism.

PLOS ONE | www.plosone.org

whole culture duration. However, interestingly, although hexoki-
nase and phosphoglucose isomerase activities are both not affected
by cumate induction, lactate dehydrogenase activity shows the
lowest values for the high-producer clone, and to a lesser extent for
the low-producer clone (Figure 5). Lactate production rate for the
high-producer clone is lower (—46% at mid exponential phase and
—56% at the end of exponential phase) than that for parental
(Figure 4, Table 1). Therefore, although an overflow of glycolytic
flux to lactate has been extensively reported under non-limiting
glucose conditions [64], irrespective to recombinant protein
expression, the high-producer CHO cell clone seems to maintain
a more efficient metabolic state; a result that is also supported form
simulated lower values of lactate production rate-to-glucose
consumption rate ratio (Figure 6). While a quasi-constant ratio
value is maintained for the parental clone, the low-producer also
exhibits a decreasing trend, but to a lower extent than for the high-
producer. With ratios lower than 1, while literature usually reports
a 1-2 range, one can clearly conclude of a respiratory metabolism,
coupled to a high feeding rate of intermediates to anabolic
reactions.

Anaplerosis/cataplerosis requirements allows for
different flux distribution around pyruvate node in the
high-producer clone. Lower values for the lactate production
rate-to-glucose consumption rate ratio were concomitant to higher
fluxes through pyruvate dehydrogenase in the high-producer
clone. Pyruvate dehydrogenase activity remains almost constant in
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Specific growth rate v(growth), and specific production rate v(mAb),between induced and non-induced low-producer (dashed line) and high-producer
(dotted line) cell lines. The values are defined as the ratio of specific metabolic fluxes (mmol (10 bcells)”" h™") or ratio in induced cultures to that in

the non-induced control cultures at each time point.
doi:10.1371/journal.pone.0090832.9g004

parental, while it increases of 75% in high-producer and of 45% in
low-producer at mid exponential phase (Figure 5, Table 1). In
addition, both pyruvate carboxylase and malic enzyme show non-
zero fluxes in all clones (Figure 5). Our values agree, in order of
magnitude, with non-zero values that have been recently estimated
for CHO cells using isotopic tracers technique [27]. These
anaplerotic/cataplerotic reactions are known to be important for
the replenishment of TCA-cycle intermediates [65]. Unlike
parental and low-producer, the balance between these two fluxes
favors the formation of oxaloacetate from the beginning of the
culture, which implies a higher activity of pyruvate carboxylase
and a lower activity of malic enzymes in high-producer clone.
Higher efflux of malate out of TCA cycle implies a higher rate for
its conversion to pyruvate, and finally to lactate in parental clone.
The latter agrees with higher values of lactate production rate,
both observed experimentally and from simulations (Figure 5,
Table 1). In addition, slightly higher values of the NADPH-to-
NADP ratio suggest a greater contribution of malic enzyme in
both lactate and NADPH production in parental cell line.
Moreover, a higher pyruvate carboxylase activity in the high-
producer may decrease the available pyruvate pool, which could i
Jine reduce lactate formation rate. The anaplerotic flux through
glutamate dehydrogenase stay moderate in all three cultures,
suggesting that acetyl coenzyme A derived from pyruvate is the

PLOS ONE | www.plosone.org
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predominant intermediate fuelling the TCA cycle. This result is
supported by a high glucose contribution to TCA cycle (50-60%)
(Figure 6, Table 2). A higher portion of pyruvate directed to TCA
leads to higher values of the pyruvate branch point ratio (+75%)
estimated in high-producer, and in low-producer to a lesser extent
(Figure 6, Table 2). While a large fraction of pyruvate enters the
TCA cycle (55 to 75%), only 15-35% is converted into lactate in
the high-producer clone. A lower value of lactate production rate-
to-glucose consumption rate has been associated to the over-
expression of pyruvate dehydrogenase in other animal cells
[66,67]. The fraction of pyruvate entering the TCA is noticeably
higher compared to values previously reported for other CHO cell
lines [68,69], but they are in agreement with recent reports on low
values of lactate production [70], or even showing a net lactate
consumption [27]. The pyruvate branch point ratio shows an
increasing trend in the high-producer clone, with a more active
TCA cycle along culture time. Independently of the clone, the flux
distribution around the pyruvate branch point suggests that a high
proportion of pyruvate is derived directly from glycolysis (~80%)
(Figure 6, Table 2), while the remaining 20% may mainly
originate from malic enzyme activity through the efflux of malate
from TCA cycle, and amino acids catabolism. The estimated flux
from malate to pyruvate is high at the beginning of the culture, but
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Figure 5. Selected metabolic fluxes of parental and induced low- and high-producer cell lines. Parental (solid line), induced low-producer

(dashed line), and induced high-producer (dotted line). The fluxes (y-axis) are given in mmol (10% cells) " h~

values indicate fluxes in the opposite direction of the arrow.
doi:10.1371/journal.pone.0090832.g005

this flux drops and stays at a low value as culture is progressing
(Figure 5); a behavior that has also been reported [71].
Ammonia accumulation impairs the contribution of
glutamine-metabolism to TCA cycle activity in all clones
except in high-producer. Although glutamine has been shown
to be the major amino acid catabolized in the TCA cycle [29,45],
its contribution to TCA decreases with respect to time to values
close to zero at ~48 h for the parental and the low-producer
clones only, while it reduces to ~4.5% for the high-producer clone
at 72 h for then remaining quasi-constant until the end of the
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' and the time (x-axis) in hours. Negative

culture (Figures 5,6). It even appears that the direction of the
glutamate dehydrogenase flux is reversing from a o-ketoglutarate-
producing (positive flux) to a glutamate-producing (negative flux)
reaction in parental and low-producing cultures. This result
suggests that the CHO cell lines under study may redirect the flux
through glutamate dehydrogenase when the ammonia concentra-
tion increases, since glutamate dehydrogenase provides an
alternative for the uptake (i.e. detoxification) of NH,*. A reversed
flux has been reported in literature from a medium concentration
threshold of 10 mM NH4" [72]. However from our experimental
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Table 1. Comparison of metabolic fluxes in parental, induced low-producing and induced high-producing cell lines.

At 48 h

Metabolic Flux parental Low-producing High-producing t test
Value Interval Value Interval Value Interval

VHK 7.67E-5 [6.33E-5,9.03E-5] 7.32E-5 [6.11E-5,8.52E-5] 7.66E-5 [6.14E-5,9.18E-5] -

VPGK 1.35E-4 [8.19E-5,1.88E-4] 131E-4 [8.78E-5,1.74E-4] 1.38E-4 [1.08E-4,3E-4] -

VLDH 8.74E-5 [7.13E-5,1.04E-4] 7.36E-5 [5.68E-5,9.09E-5] 4.49E-5 [2.68E-5,6.30E-5] p<0.1*

VeDH 4.04E-5 [2.64E-5,5.45E-5] 4.86E-5 [3.65E-5,6.08E-5] 7.06E-5 [5.60E-5,8.52E-5] p<0.1*

VSDH/FUM 4.90E-5 [3.23E-5,6.57E-5] 6.16E-5 [4.68E-5,7.63E-5] 9.35E-5 [7.65E-5,1.11E-4] p<0.1*

VME —VPC 3.70E-6 [1.73E-6,5.67E-6] 4.72E-6 [2.75E-6,6.69E-6] -3.57E-6 [-1.86E-6,-5.27E-6] p<0.1"

VGLNS 291E-5 [2.05E-5,3.80E-5] 3.89E-5 [2.69E-5,3.89E-5] 3.81E-5 [2.74E-5,4.87E-5] -

VGLDH 5.27E-7 [2.43E-7,8.11E-7] 3.23E-7 [1.19E-7,5.27E-7] 6.73E-6 [3.29E-6,1.02E-5] p<0.1*

VAlaTA 1.36E-5 [9.46E-6,1.77E-5] 1.61E-5 [1.20E-5,2.02E-5] 2.02E-5 [1.52E-5,2.53E-5] =

VHISARGTA 3.16E-6 [2.14E-6,4.25E-6] 4.38E-6 [3.14E-6,5.62E-6] 4.99E-6 [3.45E-6,6.53E-6] -

VsaL 5.95E-6 [5.67E-6,6.23E-6] 7.95E-6 [4.37E-6,1.15E-5] 9.71E-6 [6.12E-6,1.33E-5] -

VATPase 4.78E-4 [2.13E-4,7.43E-4] 5.51E-4 [2.86E-4,8.16E-4] 9.93E-4 [4.27E-4,1.56E-3] -

Vresp 9.32E-5 [4.99E-5,1.36E-4] 1,44E-4 [1.09E-4,1.79E-4] 2.10E-4 [1.68E-4,2.53E-4] -

Vieak 1.52E-5 [9.06E-6,2.13E-5] 1.75E-5 [8.16E-6,2.68E-5] 2.47E-5 [1.16E-5,3.77E-5] -

Verowth 0.035 [0.031,0.038] 0.028 [0.025,0.031] 0.031 [0.026,0.035] -

Vinab - - 6.43E-7 [5.43E-7,7.43E-7] 3.11E-6 [2.21E-6,9.00E-7] -

At 74 h

Metabolic Flux parental Low-producing High-producing t test
Value Interval Value Inteval Value Interval

VHK 7.6 E-5 [6.51E-5,8.71E-5] 7.33E-5 [6.42E5,8.25E-5] 7.73E-5 [6.70E-5,8.75E-5] -

VPGK 1.35E-4 [9.03E-5,1.80E-4] 1.33E-4 [7.81E-5,1.88E-4] 141E-4 [9.16E-5,1.91E-4] =

VILDH 8.53E-5 [7.20E-5,9.86E-5] 6.85E-5 [5.22E-5,8.48E-5] 3.64E-5 [2.12E-5,5.18E-5] p<0.1*

VPDH 4.15E-5 [2.63E-5,5.67E-5] 5.29E-5 [3.26E-5,7.31E-5] 7.84E-5 [6.62E-5,9.06E-5] p<0.1*

VspiFUM 5.06E-5 [2.63E-5,5.67E-5] 6.51E-5 [4.79E-5,8.21E-5] 1.01E-4 [8.54E-5,1.17E-4] p<0.1*

VME —VPC 2.51E-6 [1.03E-6,3.99E-6] 3.37E-6 [1.9E-6,4.85E-6] -4.53E-6 [-2.48E-6,-6.58E-6] p<0.1*

VGLNS 2.48E-5 [1.87E-5,3.09E-5] 3.21E-5 [2.43E-5,3.20E-5] 3.01E-5 [2.33E-5,3.68E-5] -

VGLDH -1.4E-6 [-3.4E-7,-2.45E-6] -1.4E-6 [-1.18E-6,-2.9E-6] 4.75E-6 [3.29E-6,6.20E-6] p<0.1*

VAlaTA 1.38E-5 [1.07E-5,1.68E-5] 1.69E-5 [1.29E-5,2.09E-5] 1.80E-5 [1.50E-5,2.11E-5] -

T e 3.01E-6 [1.53E-6,4.49E-6] 4.25E-6 [2.23E-6,6.26E-6] 4.76E-6 [2.61E-6,6.91E-6] =

VSAL 5.94E-6 [3.38E-6,8.50E-6] 7.92E-6 [5.36E-6,1.05E-5] 9.56E-6 [6.69E-6,1.26E-5] -

VATPase 4.89E-4 [2.12E-4,7.64E-4] 5.91E-4 [3.13E-4,8.68E-4] 1.06E-3 [4.62E-4,1.68E-3] -

Vresp 9.53E-5 [5.35E-5,1.37E-4] 1.54E-5 [1.30E-4,1.78E-4] 2.94E-4 [2.15E-4,2.43E-4] -
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[1.79E-6,3.39E-6]

2.59E-6

[4.51E-7,6.91E-7]

5.71E-7

Vimab

doi:10.1371/journal.pone.0090832.t001
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data, it seems that the reverse direction of the glutamate
dehydrogenase flux is favored at extracellular ammonia econcen-
trations even below that threshold value. The fact that NH," is
staying at concentrations within the order of magnitude of the
Michaelis affinity constant of glutamate dehydrogenase for NH,*
(Kmpypys) (0.5 to 3.2 mM) may partially explain the low level for
the direct contribution of glutamine to TCA cycle via glutamate
dehydrogenase. Interestingly, alanine, which is constantly pro-
duced during cell growth, is then consumed after glutamine
depletion, and at higher rates for the high-producer, and to a
lower extent for the low-producer. The alanine aminotransferase
flux even shows to turn negative (Figure 5). This also suggests that
under low glutamine concentration, o-ketoglutarate is re-chan-
neled to the TCA cycle through aminotransferase, thus maintain-
ing TCA cycle activity. The combined catabolism of all other
amino acids represents ~7% (parental) to ~15% (low- and high-
producers) of the total carbon metabolized through the TCA cycle
(Figure 6), entering as either succinate or oxaloacetate. Therefore,
the combined catabolism of all other amino acids represented a
small but non-negligible fraction of the total carbon entering the
TCA cycle. However, this contribution decreases of ~5% with
time in the three cultures. The slow increasing contribution of
glycolysis (expressed as glucose contribution) to TCA cycle
suggests that extracellular glutamine and other amino acids may
contribute less with time as they are getting depleted from the
culture medium. Further analyzing of both lactate and glutamine
profiles reveals that the high-producer clone switches to lactate
consumption toward the end of the culture from glutamine
depletion (Figure 5). Once glutamine is depleted, lactate is readily
consumed presumably to compensate for the reduced glutamine
entry to TCA cycle. This also shows that generally, a low
contribution of glutamine to TCA cycle may result in a lower net
lactate production rate, resulting from a metabolic switch while
glucose s still non-limiting, as observed in the high-producer clone
and to a lesser extent in the low-producer clone.

The high-producer clone showed enhanced TCA cycle
activity and ATP turnover rate. Greater pyruvate dehydro-
genase and pyruvate carboxylase fluxes provide higher TCA cycle
activity in the high-producer compared to the low-producer clone,
and to the parental. Concurrently, the high-producer clone
exhibits high values of NADH-to-NAD ratio (Figure 3). In
agreement with this result, high-producer CHO cells were
reported to have higher levels of intracellular NADH when
compared to low-level producers [25]. Hence, a higher NADH-to-
NAD ratio combined to higher TCA cycle fluxes in the high-
producer suggests both active glycolysis and oxidative phosphor-
ylation, meaning an intense production of intermediates as well as
of energy. This result is in agreement with a higher ATP turnover
rate simulated in this work and as reported in literature [73].
Indeed, cell respiration determined experimentally is well simu-
lated by the model. Interestingly, the analysis of cell respiration
rate and oxidative phosphorylation activity (Figure 3) reveals that
~15% of the total oxygen uptake rate is not devoted to ATP-
producing purposes but may be consumed through the proton leak
phenomenon in the mitochondria. However, this is still speculative
given the large confidence intervals associated with the flux
representing ATP production, but it is in agreement with values
reported in literature (10%—-13%) [74]. Although high-producer
cultures undergo metabolism with a high energy yield, the specific
cell concentration in ATP stays constant (data not shown), whereas
the ATP-to-ADP ratio is similar to that observed in the parental
and low-producer cultures (Figure 3). This may be due to a higher
mitochondrial proton leak in addition to a higher ATP consump-
tion rate by the maintenance processes, which are lumped as
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Figure 6. Comparison of metabolic ratios. Lactate production-to-glucose consumption ratio ((v(LDH)-vr(LDH))/v(HK)), pyruvate branch point as
the ratio of the pyruvate influx through TCA cycle divided by the total flux into pyruvate pool (v(PDH/(v(PK)}+v(SAL)+v(ML-PC)+v(AlaTA)), when the last
two fluxes positively fed pyruvare, percentage of pyruvate derived from glucose ((v(PK)}+ v(PC))/(v(PK)+v(SAL)+v(ML)+v(AlaTA)), Contribution of glucose
to TCA cycle as the ratio of pyruvate influx to TCA cycle via v(PDH), considering most of the v(PDH) has been originated from v(PK), to the total flux
channeled through TCA cycle via its intermediates (v(PDH)/(v(PDH)+ v(ASTA)+ v(GLDH)+ v(LYSILELEUVALTYRTA)+v(PC)), Contribution of glutamine to
TCA cycle as the ratio of glutamate influx to TCA cycle either via v(GLDH) to the total flux channeled through TCA cycle via its intermediates (v(GLDH)/
(v(PDH)+v(ASTA)+v(GLDH)+v(LYSILELEUVALTYRTA)+v(PC))), contribution of other amino acids to TCA cycle ((v(LYSILELEUVALTYRTA)+v(ASTA))/
(v(PDH)+v(ASTA)+v(GLDH)+v(LYSILELEUVALTYRTA)+v(PC))), ATP turnover rate (v(PGK)+v(PK)+v(SCOAS)+vr(GInT)+ vf(CK)+vr(AK)+2P/O ratio*v(resp)),
percentage of ATP consumption for biomass synethesis(0.00043*3.78%v(growth)/(v(LYSILELEUVALTYRTA)+v(ASTA))/(v(PDH)+v(ASTA)+v(GLDH)+v(LYSILE-
LEUVALTYRTA)+v(PC)), and percentage of ATP consumption for antibodysynthesis(4*v(mAb)/v(LYSILELEUVALTYRTA)+v(ASTA))/(v(PDH)+v(AS-
TA)+v(GLDH)+v(LYSILELEUVALTYRTA)+v(PC)),between parental (solid line), induced low-producer (dashed line) and induced high-producer (dotted
line) cell lines.

doi:10.1371/journal.pone.0090832.9g006

ATPase flux in the model. Overall, simulations suggest that protein, in extensio. This result correlates with our observation that
biomass synthesis only requires a minor part of ATP production ATP production rate is similarly elevated in both induced and
with ~15% (parental), ~10% (low-producer) and ~7% (high- non-induced high-producer cultures, i.e. independently of the
producer) (Figure 6, Table 2). Recombinant protein synthesis is recombinant mAb production rate. Taken together, it seems both
simulated to consume less than 2% of the ATP production rate, for from our experimental data and model simulations, that the higher

the high- and the low-producer clones, and regularly decrease productivity level of the high-producer clone in recombinant mAb
until the end of the culture (Figure 6, Table 2). The major portion 1s a consequence of its higher global metabolic activity. This up-

of ATP production goes into maintaining catabolic and anabolic regulation of central carbon metabolism was not a cause or a
reactions, such as endogenous protein synthesis (80%—-90%). Thus, consequence of increased protein production load on cell
as also suggested by Link et al. (2004) [75] the rate of oxidative metabolism but a clonal variation effect since the same result
phosphorylation, and consequently ATP production rate, may was also observed in non-induced cultures. Similar findings were
positively affect cell specific productivity but unlike bacterial cells reported in Chong et al. (2012) [76]. Therefore, our findings
[61], no direct correlation has been established yet linking the suggest that the major criterion for a successful clonal selection
ATP turnover rate and the recombinant protein productivity in relies on the identification of clones showing a high metabolic

CHO cells. A higher ATP production rate may thus favor a better efficiency and activity.
coordination of cellular functions, including enabling a better
processing of endogenous proteins as well as of a recombinant
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Table 2. Comparison of metabolic ratios in parental, induced low-producing and induced high-producing cell lines.

At 48 h

Metabolic Ratio parental Low-producing High-producing t test
Value Interval Value Interval Value Interval

1 1.07 [0.75,1.39] 0.97 [0.69,1.25] 0.58 [0.43,0.73] p<0.1*

2 0.26 [0.15,0.36] 0.33 [0.14,0.51] 0.54 [0.37,0.70] p<0.1*

3 84.9 [71,98] 85.42 [68,101] 76.75 [62,91] -

4 65.03 [50,79] 61.95 [47,76] 57.05 [41,72] -

5 1.21 [0.83,1.58] - - 7 [5.23,8.76] p<0.1*

6 4.89 [2.80,6.97] 14.35 [10.52,18.17] 12.54 [9.45,15.62] -

7 7.20E-4 [3.69E-4,1.07E-3] 9.36E-4 [4.85E-4,1.38E-3] 1.24E-3 [7.28E-4,1.75E-3] -

8 7.95 [5.57,10.33] 4.91 [3.03,6.79] 391 [2.53,13.81] -

9 - - 0.28 [0.26,0.31] 1.02 [0.82,1.22] p<0.1* *

At 74 h

Metabolic Ratio parental Low-producing High-producing t test
Value Interval Value Interval Value Interval

1 1.06 [0.65,1.46] 0.88 [0.56,1.20] 0.47 [0.29,0.65] p<<0.1"

2 0.29 [0.16,0.41] 0.35 [0.14,0.55] 0.55 [0.33,0.76] p<0.1*

3 84.55 [70,98] 84.68 [71,98] 75.44 [62,88] -

4 66.02 [50,81] 63.02 [47,78] 59.36 [41,76] -

5 - - - - 447 [2.97,5.96] p<0.1*

6 4.15 [1.92,6.37] 13.44 [10.82,16.05] 11.47 [9.40,13.53] -

7 7.19E-4 [4.00E-4,1.00E-3] 9.72E-4 [5.21E-4,1.41E-3] 1.32E-3 [7.43E-4,1.89E-3] -

8 6.86 [3.95,9.77] 4.19 [2.28,6.11] 272 [1.81,3.63] -

9 = = 0.24 [0.14,0.33] 0.81 [0.69,0.91] p<<0.1* *

The numbers in the left column correspond to the following metabolic ratios: 1: lactate production- to-glucose consumption, 2: Pyruvate branch point ratio, 3: percentage of pyruvate derived from glucose, 4: contribution of
glucose to TCA cycle, 5: contribution of glutamine to TCA cycle, 6: contribution of other amino acids to TCA cycle, 7: specific ATP production rate (mmol (106 cells)-1h-1)), 8: percentage of ATP consumption for biomass synthesis, 9:

percentage of ATP consumption for mAb synthesis.
doi:10.1371/journal.pone.0090832.t002
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Conclusions

This work on the characterization of different CHO mAb cell
clones and their parental cell line, brings a wide set of
experimental data for extra- and intracellular metabolites concen-
trations that were used to develop a descriptive and predictive
kinetic-metabolic model. The @ silico platform presented here
enabled to better describe and quantify the metabolic differences
resulting from CHO cells clonal variability. Such platform
represents a valuable tool for cell line selection, as well as
bioprocess development, but it may have also interesting
applications in biomedical and medical applications. In fine,
although this study is based on a large amount of experimental
data for both culture media and cell content, including thermo-
dynamic considerations on.

Supporting Information

Figure S1 Sensitivity analysis on model parameters for
parental cell line culture. The colormap represents the
normalized sum of squared difference between model simulations
and experimental data, when the parameter (row) is changed from
—85% to +300% (column) from the optimal value. The values for
sum of squared difference are normalized by the value
corresponding to optimal values for parameters.

(TIF)

Figure S2 Partial sensitivity analysis on model param-
eters for parental cell line culture. FEach colormap
represents the normalized sum of squared difference between the
simulated and measured extracellular metabolite concentration
over time, when the parameter (row) is changed from —85% to
+300% (column) of the optimal value. The values for sum of
squared difference are normalized by the value corresponding to
optimal values for parameters. The number for each row
corresponds to the parameter presented next to the same row in
Figure S1.

(TIF)

Figure S3 Parameter estimates with their error bars
for sensitive parameters. Glycolysis (A), TCA cycle and
Redox state (B), glutaminolysis and pentose phosphate pathway
(C), amino acids metabolism (D), energetic (E) and growth (F).
Horizontal solid lines are 1.96 standard error bars and represent
parameter estimate *1.96 standard error. Parental cell line: open
triangles for parameter estimates, induced low-producer cell line:
open squares for parameter estimates, and induced high-
producer cell line: open circles for parameter estimates. A
parameter is considered highly sensitive if a small variation in its
value (*£25%) causes more than a 15% increase of in the
objective function.

(TTF)

Figure S$4 Comparison of model simulations regarding
enzymatic regulation for parental culture for extracel-
lular and energetic metabolites. Same conditions as in
Figure 2 applied.

(TIF)

Figure S5 Comparison of model simulations regarding
enzymatic regulation for parental culture for intracel-
lular metabolites. Same conditions as in Figure 2 applied.

(TIF)

Figure S6 Comparison of model simulations regarding
enzymatic regulation for induced low-producing culture
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for extracellular and energetic metabolites. Same condi-
tions as in Figure 2 applied.

(TIF)

Figure 87 Comparison of model simulations regarding
enzymatic regulation for induced low-producing culture
for intracellular metabolites. Same conditions as in Figure 2
applied.

(TTF)

Figure S8 Comparison of model simulations regarding
enzymatic regulation for induced high-producing cul-
ture for extracellular and energetic metabolites. Same
conditions as in Figure 2 applied.

(TIF)

Figure S9 Comparison of model simulations regarding
enzymatic regulation for induced high-producing cul-
ture for intracellular metabolites. Same conditions as in
Figure 2 applied.

(TIF)

Figure S10 Simulated and experimental data for paren-
tal and induced/non-induced cell line. Parental (experi-
mental data: black triangles, simulated data: solid black line),
induced low-producer (experimental data: black squares, simulat-
ed data: dashed black line), non-induced low producer (experi-
mental data: blue squares, simulated data: dashed blue line),
induced high-producer (experimental data: black circles, simulated
data: dotted black line), and non-induced high-producer (exper-
imental data: red circles, simulated data: dotted red line).

(TIF)

Table S1 MRM transition and retention time of each
amino acid quantified.

(DOCX)

Table S2 MRM mode with the mass spectrometer
conditions for determination of nucleotides.

(DOCX)

Table S3 MRM mode with the mass spectrometer
conditions for determination of nucleotides.

(DOCX)

Table S4 Reactions of the metabolic network.
DOCX)

Table S5 Biokinetic equations of the metabolites fluxes
(1-35) of the model.
(DOCX)

Table S6 State variables description and initial condi-
tions.

(DOCX)

Table S7 Affinity (Km), activation (Ka), and inhibition
(Ki) constants.
(DOCX)

Table $8 Maximum reaction rates (vmax) and compar-
ison of highly sensitive parameters in parental, low-
producing and high-producing clones.

(DOCX)
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