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SOFTWARE Open Access

PSEUDOMARKER 2.0: efficient computation of
likelihoods using NOMAD
Edward Michael Gertz1*, Tero Hiekkalinna2,3, Sébastien Le Digabel4, Charles Audet4,
Joseph D Terwilliger2,5,6 and Alejandro A Schäffer1

Abstract

Background: PSEUDOMARKER is a software package that performs joint linkage and linkage disequilibrium analysis
between a marker and a putative disease locus. A key feature of PSEUDOMARKER is that it can combine case-controls
and pedigrees of varying structure into a single unified analysis. Thus it maximizes the full likelihood of the data over
marker allele frequencies or conditional allele frequencies on disease and recombination fraction.

Results: The new version 2.0 uses the software package NOMAD to maximize likelihoods, resulting in generally
comparable or better optima with many fewer evaluations of the likelihood functions.

Conclusions: After being modified substantially to use modern optimization methods, PSEUDOMARKER version 2.0
is more robust and substantially faster than version 1.0. NOMAD may be useful in other bioinformatics problems
where complex likelihood functions are optimized.

Background
PSEUDOMARKER [1] is a package that genomically

localizes trait-predisposing loci by performing statisti-

cal tests using a putative disease locus and a series of

markers. Genomic localization of genes that impact some

phenotype is based on tests of independence of disease

phenotypes from genotypes of a genome-spanning set of

markers. Many “association tests” try to test directly for

statistical relationships between disease phenotypes and

marker genotypes directly by sampling large numbers of

cases and controls or very small families. Such tests con-

found the statistical relationship between marker alleles

and the genotypes at a putative nearby disease locus with

the statistical relationship between the same markers and

the phenotype. This confounding is unavoidable for case-

control data because of the limited degrees of freedom,

but these relationships can and should be modeled explic-

itly when analyzing more complex and heterogeneous

pedigree sets.

PSEUDOMARKER performs a full likelihood analy-

sis under a specified model of the relationship between

*Correspondence: gertz@ncbi.nlm.nih.gov
1National Center for Biotechnology Information, NIH, DHHS, Bethesda, MD,
USA
Full list of author information is available at the end of the article

disease phenotypes and underlying genotypes. In pedi-

gree data, one can test for genetic linkage as the pref-

erential cosegregation of a marker or a haplotype with

disease family-by-family; the marker genotype that coseg-

regates with the disease can differ from family to family.

In either pedigree data or in case-control data, one can

test for linkage disequilibrium (LD) between a marker and

a putative disease locus as the preferential co-occurrence

of a specific genotype at the marker with a genotype

at the disease locus. By using a full likelihood model,

PSEUDOMARKER can combine analysis of case-control

(singletons) data and pedigree data of arbitrary size

in one unified testing framework. We directly analyze

linkage and LD among marker and disease genotypes,

integrating over all possible genotypes at the putative

two-allele disease-predisposing locus, for all individu-

als under an explicit model of the genotype-phenotype

relationship.

PSEUDOMARKER version 1 maximizes several like-

lihood functions [1] using a generalized pattern search

(GPS) algorithm [2] implemented in a custom version of

the ILINK [3] program. Previously, we showed that PSEU-

DOMARKER, using GPS likelihood estimates, performed

well in detecting linkage and LD, outperforming several

competing genetic analysis programs as measured by the

power or false positive rate [4].

© 2014 Gertz et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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The running time of PSEUDOMARKER depends on the

number of times the optimization algorithm evaluates any

likelihood function. Each evaluation involves computation

over one or, often, several pedigrees for fixed values of

certain parameters that may include the recombination

fraction and marker allele frequencies. ILINK computes

these likelihoods using a peeling method that is a general-

ization of the Elston-Stewart algorithm [5]. Computation

time is highly dependent on the pedigree structure and the

number of untyped founders.

A reduction in the number of likelihood function eval-

uations would allow more samples, larger and more com-

plex pedigrees, or a greater density of markers to be

analyzed in a reasonable amount of time. Although the

GPS method [2] was more robust than the older line

search method implemented in all previous versions of

ILINK, we decided that the number of likelihood evalua-

tionsmight be reduced by using instead a newer algorithm

known to outperform GPS in some other optimization

problems.

Mesh Adaptive Direct Search (MADS) [6] is a frame-

work for a class of derivative-free algorithms designed to

supersede the GPS method. MADS is conceptually sim-

ilar to GPS, but uses a richer set of search directions,

resulting in better theoretical convergence properties. The

NOMAD software package [7] is a high-quality, C++

open-source implementation of MADS algorithms in use

in universities and companies around the world [8-11].

NOMAD is robust [12] and has a wide range of function-

ality, including handling of general nonlinear constraints,

biobjective optimization, parallelism, and the restriction

of variables to integer or boolean values [13] .

We describe PSEUDOMARKER 2.0, which uses a cus-

tomized version of ILINK that uses NOMAD tomaximize

likelihoods. We show that NOMAD is more effective at

finding optima than GPS, while requiring fewer evalua-

tions of the likelihood function.

Implementation
PSEUDOMARKER

PSEUDOMARKER uses parametric inheritance models

and exact likelihood computations to evaluate the evi-

dence for linkage and/or LD between a putative trait

locus and a set of genotyped markers. When applying

extreme parametric models, it yields statistics that are

stochastically equivalent to several popular model-free

methods if applied to simple family structures [14], for

instance mother-father-child triads, case-control samples,

or affected sib-pairs. PSEUDOMARKER, however, has

substantial advantages over the simpler nonparametric

methods when analyzing more complex family structures

[1,4].

PSEUDOMARKER takes as input a pedigree file (in-

cluding pedigree structures and genotypes) in LINKAGE

format [15], a common format used by many analysis

packages, such as the well-known PLINK package [16].

The map file that describes the names and positions of

the markers may be supplied using any one of a vari-

ety of formats, including the format used by PLINK. The

format of the map file must be explicitly specified as a

command-line option. Many more details on the PSEU-

DOMARKER data input format can be found in the

online documentation (http://www.helsinki.fi/~tsjuntun/

pseudomarker/, under Tutorial) .

PSEUDOMARKER uses likelihood ratio tests to com-

pare four models describing all possible combinations

of having or not having linkage and having or not hav-

ing LD. Marker allele frequencies are parameters of all

four likelihood functions. For likelihoods allowing for LD,

the marker allele frequencies are allowed to vary condi-

tional on which trait-locus allele is on the same haplotype.

For likelihoods allowing for linkage, the probability with

which recombination occurs between trait and marker

loci (the recombination fraction) is a parameter. For each

likelihood function, all parameters are estimated jointly.

Estimating the parameters is a nonlinear constrained

optimization problem. ILINK uses the pedigree struc-

ture, genomic data and the inheritance model to compute

each likelihood function exactly as a nonlinear function

of its free parameters. Marker allele frequencies and con-

ditional allele frequencies are probabilities, and as such

are constrained to lie between 0 and 1. Each set of fre-

quencies must also sum to 1. The recombination fraction,

if a parameter, is constrained to lie between the 0 and

0.5, because larger values of the recombination fraction

are not biologically meaningful; a recombination fraction

of 0.5 between two loci indicates that the loci segregate

independently.

The main programs of PSEUDOMARKER are primar-

ily intended to be used for fine mapping a linkage region

as has been done, for example, in Kyöstilä et al. [17],

and for testing candidate genes as has been done in Deo

et al. [18]. PSEUDOMARKER may be used for genome-

wide data, but for larger or more complex problems using

current (circa 2014) technology requires the use of a

computational cluster to complete the genome-wide anal-

ysis in reasonable time. For most purposes, if the data

set contains a large number of families, we instead rec-

ommend two-stage analysis approach. In the first stage,

a filter based on the haplotype-based haplotype rela-

tive risk (HHRR) method [19] and less computationally

expensive classical linkage analysis with loose thresh-

olds is used to identify markers likely to benefit from

PSEUDOMARKER analysis. The second stage performs

full PSEUDOMARKER analysis on these candidate mark-

ers. A program twostage.py is provided in the PSEUDO-

MARKER distribution to perform the two-stage analysis.

A description of the two-stage method and instructions

http://www.helsinki.fi/~tsjuntun/pseudomarker/
http://www.helsinki.fi/~tsjuntun/pseudomarker/
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are available on the PSEUDOMARKER website (under

Tutorial/Two Stage Analyses).

NOMAD

NOMAD [7] implements several variants of the MADS

framework for constrained derivative-free optimization.

In its usual mode, it searches for an optimum by generat-

ing trial points along orthogonal directions starting from

the incumbent best solution [20]. The set of directions

used in this step is far richer than the set of directions

searched by GPS; formally, the set of normalized direc-

tions is dense in the unit sphere. The use of such a rich set

of search directions ensures stronger theoretical conver-

gence properties, and leads to a more efficient algorithm

in practice [6]. The MADS framework is flexible enough

to allow the use of heuristics that investigate additional

trial points to improve practical convergence. Heuris-

tics available in NOMAD include Variable Neighborhood

Search (VNS)metaheuristic [21] and the construction and

exploration of quadratic models of the objective func-

tion and of the constraints [12]. The VNS metaheuristic

was not used in our tests, but quadratic models are used

by NOMAD in its default mode, and were used in our

tests.

To optimize likelihoods, NOMAD proposes to ILINK

values for its free parameters, trial points in the MADS

framework. ILINK attempts to evaluate the likelihood

function at these trial points. NOMAD explicitly handles

bound constraints, and so will not, for instance, suggest

a negative probability. The constraints that allele frequen-

cies sum to 1 was handled by another of NOMAD’s

features, the extreme barrier approach. For any set of

marker allele frequencies, one frequency may be repre-

sented implicitly, its value obtained by subtracting the

sum of the other frequencies from 1. NOMAD is not

aware of the implicit frequencies. For a trial point sug-

gested by NOMAD, it is possible for an implicit frequency

to have an infeasible value: a negative value or a value

greater than one. In such a circumstance, the extreme bar-

rier takes effect. ILINK informs NOMAD that the trial

point is infeasible, and NOMAD ignores the point, effec-

tively treating it as if it had an infinitely bad objective

value.

ILINK was modified substantially to use NOMAD

instead of GPS.We usedNOMAD in its librarymode [13].

Using NOMAD in this mode involves setting up internal

ILINK data structures prior to invoking NOMAD, pro-

viding NOMAD with code (a C++ class) that NOMAD

uses as a callback to provide ILINK with trial points, and

converting between NOMAD’s representation of the vari-

ables and ILINK’s, ultimately invoking an internal ILINK

routine named likelihood. NOMAD was run in a mode

that uses 2n orthogonal search directions, where n repre-

sents the number of optimization variables. NOMADwas

stopped when the minimum poll size, a NOMAD param-

eter, was less than 10−4, indicating that for the next set

of trial points, the largest change to any parameter to the

likelihood functions would be at most 10−4.

The interface between PSEUDOMARKER and ILINK

was modified to enable better performance, but these

changes do not affect the file formats or command-

line syntax for PSEUDOMARKER. NOMAD is used by

default. Compiled executable files are available from the

PSEUDOMARKER web site (see Availability and require-

ments). These files include and will use the NOMAD

solver without requiring any additional downloads or user

intervention. In accordance with the LGPL version 3.0,

downloaded archives also contain files allowing users to

rebuild the necessary executables using a different, pos-

sibly modified, but application programming interface

(API) compatible, version of NOMAD.

Computational experiments

Table 1 gives a brief summary of the 14 data sets that we

analyzed in this project. Twelve of these data sets were

used to compare the overall number of likelihood function

evaluations required by PSEUDOMARKER to complete

the analyses of specific markers when using GPS to the

number of evaluations needed to complete the analyses

of the same markers when using NOMAD. Two addi-

tional data sets were used to compare processor time

used by PSEUDOMARKER version 1.06d (the last release

with major version 1) to that used by PSEUDOMARKER

2.0, to complete realistic genomic scans of chromosome

22. Table 2 shows pedigree statistics of the data sets;

more detailed statistics are shown in Additional file 1:

Tables S1–S3. Pedigree, phenotype, and marker statistics

were computed using PedStats [22].

The 12 test data sets used to compare iteration counts

were selected to include difficult cases, including such

factors as real life pedigree structures, realistic amounts

of missing data, and large multi-generational families.

Data sets contained both biallelic markers and multiallelic

microsatellites. The real data sets were from Finnish gene

mapping studies on which TH and JDT were collabora-

tors [24,27], while the simulated data sets were generated

as part of the Ph.D. dissertation of TH, some of which

have been analyzed in prior publications [1,29]. Simulated

genotype data were generated using a modified version of

SLINK [34,35]; parameters used for the simulations are

shown in Additional file 2: Tables S4 and S5.

Some data sets were observed to present difficult maxi-

mization problems for the GPS while the previous version

of the PSEUDOMARKER package was being developed.

The x.linked test set [28] was particularly interesting

because it was x-linked, had multiple alleles, and most

of the data were triads, and still maximization was quite

time-consuming.
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Table 1 Summary of all data sets

Test set Description Reference

fin1 Familial combined hyperlipidemia pedigrees from Finland Pajukanta et al. [23]

fin2 Migraine pedigrees from Finland Wessman et al. [24], Kaunisto et al. [25], Hiekkalinna et al. [4]

fin3 A sub set of the Migraine families (different phenotype and genotyped
individuals than on data set fin2)

Tikka-Kleemola et al. [26]

fin4 Schizophrenia families from Finland Ekelund et al. [27], Hiekkalinna et al. [4]

fin5 Same as fin1, but with multiallelic markers

fin6 Same as fin1, but with highly polymorphic marker

x.linked Extended pedigrees and triads from northern Finland with real
X-chromosomal marker data

Karjalainen et al. [28]

100sibs Artificial sib-pair pedigrees Hiekkalinna [29]

100sibs.c Artificial sib-pair pedigrees with additional cases Hiekkalinna [29]

100sibs.cc Artificial sib-pair pedigrees with additional cases and controls Hiekkalinna [29]

mixed Various size artificial pedigrees (triads, sib-pairs, and extended
pedigrees)

Hiekkalinna [29]

noparents Artificial affected sib-pairs with no parental genotypes Hiekkalinna [29]

FHS Framingham Heart-Study marker data and phenotypes Larson et al. [30]

FinnTwin12 Finnish twins and twin families Kaprio et al. [31,32], Törnwall et al. [33]

All 12 sets used to compare iteration counts were ana-

lyzed under assumptions of both the dominant and reces-

sive extreme inheritance models described in [14] and

all four likelihood functions used by PSEUDOMARKER,

testing for linkage and/or LD. Six were also analyzed

under more biologically plausible inheritance models.

We optimized likelihoods using either GPS as previously

described [1] or NOMAD [7].

To test running time on real data, we used two data

sets: a subset of data from the Framingham Heart Study

(FHS) [30] version 18 as deposited in NCBI’s dbGaP,

and subset of data from the FinnTwin12 study [31,32].

The FinnTwin12 data were recently used in a joint anal-

ysis of linkage and LD [33]. Usage of the FHS data for

this purpose is covered by an IRB-approved protocol

(Ivan Ovcharenko, Principal Investigator; AAS, Associate

Table 2 Data set properties

Data set Pedigrees
Average Singleton Singleton Number of Maxium

pedigree size cases controls markers alleles/marker

fin1 61 15.33 200 200 3 2

fin2 84 13.08 200 200 3 2

fin3 37 13.24 100 100 4 4

fin4 438 5.79 0 199 3 2

fin5 61 15.33 200 200 4 8

fin6 61 15.33 200 200 1 18

x.linked 482 3.17 112 203 1 20

100sibs 100 4.00 0 0 1 3

100sibs.c 100 4.00 200 0 1 3

100sibs.cc 100 4.00 200 200 1 3

mixed 180 5.22 0 50 6 3

noparents 200 4.50 100 100 2 4

FHS 216 27.68 0 0 2181 2

FinnTwin12 171 3.46 0 0 8502 2
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Investigator). The FinnTwin12 study was approved by the

Ethics Committee of Helsinki University Hospital District

and individuals in the study gave their written informed

consent.

For the FHS study, phenotypes for heart disease were

used only from individuals who had consented to have

their data used for general research usage (GRU). Using

in-house programs, we extracted data on pedigrees each

of which includes at least two individuals who were

phenotyped for heart disease. Data were filtered with

PLINK [16] to remove most inconsistent markers and to

keep only markers such that r2 < 0.6 pairwise. A few

inconsistent markers that were not detected by PLINK,

were detected by PedCheck [36] and also removed. The

removal of inconsistentmarkers is needed here to do com-

parisons with PSEUDOMARKER version 1. One of sev-

eral user-interface improvements in PSEUDOMARKER

version 2 is the implementation of a command line option

–skipmendelerrors to skip over markers with inconsis-

tent genotypes. Pedigree and marker statistics for the

filtered pedigree andmarker data are shown in Table 2 and

Additional file 1: Table S2. Markers were divided into 44

groups of approximately 50 markers and all groups were

processed in parallel separately using PSEUDOMARKER

version 1 and using PSEUDOMARKER version 2 on a

cluster of Linux machines.

The FinnTwin2 data contained phenotype and geno-

type information from 226 individuals in 171 pedigrees

(sibships and triads). Some individuals in the study were

twins; for monozygotic twins, only one twin was geno-

typed in the data analyzed [33]. Pedigree statistics for the

filtered pedigree and marker data are shown in Table 2

and Additional file 1: Table S2. Data for all 8502 mark-

ers were analyzed in a single run of either PSEUDO-

MARKER version 1 or PSEUDOMARKER version 2 on

a Linux machine. Each analysis was repeated ten times

and reported running time is the mean of the time for ten

analyses.

Results and discussion
The numbers of likelihood function evaluations for each

test set, summed over all markers, all models, and all

maximized likelihood functions, are shown in Table 3.

NOMAD is superior in terms of function evaluations

to GPS on all test sets. As we discuss below, NOMAD

is invoked somewhat differently from GPS on the same

optimization problems, which contributes to the improve-

ment.

We chose as our figure of merit the number of likelihood

evaluations because that separates the likelihood evalu-

ation of each PSEUDOMARKER hypothesis and gives

an “apples-to-apples” comparison of GPS and NOMAD.

Nevertheless, the figure of merit that matters more to

users of PSEUDOMARKER is the running time for

combined evaluation of all hypotheses. The reduction in

number of likelihood evaluations does convert in a linear

manner to reduction in running time, but the constants

depend on the problem instance. For example, on the

full PSEUDOMARKER run of the FHS problem, running

time decreased from 88 hours and 24 minutes to 21 hours

and 45 minutes, a 4.1-fold reduction. For FinnTwin12, the

improvement in running time was even more substantial,

decreasing from 38 hours and 5 minutes to 6 hours and 8

minutes, a 6.2-fold reduction.

In preliminary tests, we observed NOMAD was more

robust than GPS in finding an optimum (data not shown).

There were no obvious patterns to distinguish the prob-

lem instances on which NOMAD found a better likeli-

hood value than did GPS. Because NOMAD was more

robust, we experimented with invoking NOMAD less

often. For GPS, it was often helpful to retry a given opti-

mization problem, using the solution previously returned

from GPS as the new starting point because that would

sometimes lead to the identification of a better likeli-

hood value. The purpose of these restarts is to encourage

convergence to a global optimum, and to reduce the prob-

ability that GPS would stall at a non-optimal point. The

restarts were unnecessary with NOMAD. Nor was it help-

ful to start NOMAD at several different initial estimates,

as was done with GPS. The counts in Table 3 are counts

for invoking NOMAD once to solve each optimization

problem, whereas GPS was invoked as described in [1].

Despite the fewer calls to the optimization algorithm,

the optimum returned by NOMAD was usually better

than the one from GPS. Of the 288 optimization prob-

lems we tried based on the first 12 test sets, NOMAD

found an assignment to the variables that yielded a log

likelihood that was at least 0.005 worse than the value

reported by GPS only seven times (see Table 4 and

Additional file 3: Table S6). In contrast, NOMAD reported

68 objective values better by at least 0.005 than the val-

ues reported by GPS. We considered differences less than

0.005 in the log likelihood to be insubstantial, as such

differences would change log of the likelihood ratio by

at most 0.01. NOMAD returned answers with objective

value more than 0.5 better than GPS 21 times, with the

largest difference being 28, a shockingly large value. In

contrast, the most GPS improved the objective value over

NOMAD was 0.1.

Among the 55 cases for which the objective value

changed by at least 0.005 in the numerator in the likeli-

hood ratio test, there were two in which the p-value for the

test against hypothesis H0 improved by at least one order

of magnitude (Additional file 3: Table S6). In the majority

of cases, both programs find similar p-values, though GPS

requires more iterations and computer time. Since tests

are based on likelihood ratios, which code attains a lower

p-value depends on whether a better maximum is found
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Table 3 Number of function evaluations used by GPS and NOMAD

Test set GPS NOMAD Test set GPS NOMAD

fin1 7,650 3,342 100sibs 10,003 3,933

fin2 7,430 3,341 100sibs.c 10,891 3,240

fin3 81,887 10,765 100sibs.cc 7,137 2,811

fin4 8,460 3,250 mixed 39,522 12,278

fin5 83,272 32,662 noparents 34,590 9,143

fin6 284,069 96,626 x.linked 470,517 140,986

for the numerator or denominator of the likelihood ratio.

However, when the p-values differ, p-values produced by

NOMAD better supported by the underlying statistical

model, whereas p-values produced by GPS-based code

represent a failure to maximize the likelihoods.

In [1], we reported that one of the difficulties in GPS is

the sum constraint that the allele frequencies have to sum

to 1.0. The editor suggested that an alternative method to

handle the sum constraints is the generalized logit trans-

formation, which has been shown to work in some other

settings [37]. In the PSEUDOMARKER application, we

believe that the generalized logit would perform poorly

because the maximum likelihood estimate of some proba-

bilities is precisely zero, and this is a frequent occurrence.

Under the logit transformation, NOMADwould be tasked

with finding a minimizer that had a finite objective value,

but for which one of the variables was negatively infi-

nite. This case breaks the assumptions of the theoretical

convergence theory of NOMAD [6], and poses practical

problems for the implementation.

NOMAD is a constrained code, and is designed to han-

dle bounds on the variables, so working in probability

space poses no great problem to it, and we believe this is

one of the reasons NOMAD performs better than GPS in

the PSEUDOMARKER setting.

Conclusions
The new PSEUDOMARKER 2.0 has been released

(see Availability and requirements) and it uses NOMAD

[7] to maximize likelihoods. The new version usually pro-

vides better or comparable answers, while using far fewer

evaluations of the likelihood functions. Several of themost

prominent developers of pedigree analysis methods rec-

ognized decades ago that the optimization problems that

arise in genetic analysis of pedigrees can be difficult to

solve and can benefit from newmethods [38-40]. We have

shown in this study that MADS methods are more effec-

tive than previous methods on the optimization problems

that arise in usage of PSEUDOMARKER. Therefore, our

work is novel in two major respects. First, in the context

of PSEUDOMARKER and pedigree likelihood optimiza-

tion, the shorter analysis time and increased robustness

allow analysis to be attempted on larger data sets and

more complex family structures. Second, we introduce a

generally useful optimization package, NOMAD, to the

bioinformatics and genetic epidemiology communities,

where NOMADmay find additional usages.

Availability and requirements
Project name: PSEUDOMARKER 2.0

Project home page: http://www.helsinki.fi/~tsjuntun/

pseudomarker/

Operating system(s): GNU/Linux Intel 64-bit architec-

ture

Programming language: C and C++

Other requirements: none

License: PSEUDOMARKER is a binary distribution with

registration required. (PSEUDOMARKER from this site

Table 4 Changes in objective function

Data set ≤ −0.5 ≤ −0.05 ≤ −0.005 ≥ 0.005 ≥ 0.05 ≥ 0.5

fin3 0 0 0 23 15 8

fin4 0 1 1 0 0 0

fin5 0 0 0 20 13 7

fin6 0 0 0 8 4 2

x.linked 0 2 6 4 4 1

mixed 0 0 0 2 2 2

noparents 0 0 0 11 7 1

Count of changes in the objective function more extreme than the indicated number. Positive changes indicate that NOMAD found the better objective value.

http://www.helsinki.fi/~tsjuntun/pseudomarker/
http://www.helsinki.fi/~tsjuntun/pseudomarker/
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without registration.) NOMAD is distributed with PSEU-

DOMARKER under terms of the LGPL 3.0.

Any restrictions to use by non-academics: no

Additional files

Additional file 1: Tables S1–S3. Showing statistical information about
the test sets.

Additional file 2: Tables S4–S5. Showing parameters used to generate
the simulated genotypes in the test sets.

Additional file 3: Tables S6. Showing differences in the objective value
computed by GPS and by NOMAD.
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