
Titre:
Title:

Detecting very large sets of referenced files at 40/100 GbE, 
especially MP4 files

Auteurs:
Authors:

Adrien Larbanet, Jonas Lerebours, & Jean Pierre David 

Date: 2015

Type: Communication de conférence / Conference or Workshop Item

Référence:
Citation:

Larbanet, A., Lerebours, J., & David, J. P. (août 2015). Detecting very large sets of 
referenced files at 40/100 GbE, especially MP4 files [Communication écrite]. 15th 
Annual DFRWS Conference (DFRWS USA 2015), Philadelphia, PA, USA. Publié dans
Digital Investigation, 14(suppl. 1). https://doi.org/10.1016/j.diin.2015.05.011

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/34302/

Version: Version officielle de l'éditeur / Published version 
Révisé par les pairs / Refereed 

Conditions d’utilisation:
Terms of Use:

CC BY-NC-ND 

Document publié chez l’éditeur officiel
Document issued by the official publisher

Nom de la conférence:
Conference Name:

15th Annual DFRWS Conference (DFRWS USA 2015)

Date et lieu:
Date and Location:

2015-08-09 - 2015-08-12, Philadelphia, PA, USA 

Maison d’édition:
Publisher:

Elsevier

URL officiel:
Official URL:

https://doi.org/10.1016/j.diin.2015.05.011

Mention légale:
Legal notice:

© 2015 The Authors. Published by Elsevier Ltd on behalf of DFRWS. This is an open 
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/). 

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://doi.org/10.1016/j.diin.2015.05.011
https://publications.polymtl.ca/34302/
https://doi.org/10.1016/j.diin.2015.05.011


ilable at ScienceDirect

Digital Investigation 14 (2015) S85eS94
Contents lists ava
Digital Investigation

journal homepage: www.elsevier .com/locate/d i in
DFRWS 2015 USA
Detecting very large sets of referenced files at 40/100 GbE,
especially MP4 files

A. Larbanet*, J. Lerebours*, J.P. David*

�Ecole Polytechnique de Montr�eal, 2900, boul. �Edouard-Montpetit, Campus de l'Universit�e de Montr�eal 2500, chemin de Polytechnique,
Montr�eal H3T 1J4, Quebec, Canada
Keywords:
Video fingerprinting
Network monitoring
Deep packet inspection
Content-based detection
GPU computing
* Corresponding authors.
E-mail addresses: adrien.larbanet@polymtl.

jonaslerebours@gmail.com (J. Lerebours), jpdavid@p

http://dx.doi.org/10.1016/j.diin.2015.05.011
1742-2876/© 2015 The Authors. Published by Elsev
creativecommons.org/licenses/by-nc-nd/4.0/).
a b s t r a c t

Internet traffic monitoring is an increasingly challenging task because of the high band-
widths, especially at Internet Service Provider routers and/or Internet backbones. We
propose a parallel implementation of the max-hashing algorithm that enables the detection
of millions of referenced files by deep packet inspection over high bandwidth connections.
We also propose a method to extract high-entropy signatures from MP4 files compatible
with the max-hashing algorithm in order to have low false positive rates. The system first
computes a set of fingerprints, which are small subsets of the referenced files a priori
unique and easily identifiable. At detection time, the max-hashing algorithm eliminates the
need to reconstruct the flows. A Graphics Processing Unit (GPU) card computes the fin-
gerprints of all the IP packets in parallel and searches for hits in the onboard collection of
fingerprints. Our application, dedicated to the detection of known MP4 video files, enables
the detection of millions of fingerprints and demonstrates a sustained processing rate of
50 Gbps per card. Furthermore, a null false positive rate was observed for our 28.25 GB
transfer test. The proposed implementation also features the detection of suspect flows
based on IP addresses and ports in order to carry out deeper investigations off line.
© 2015 The Authors. Published by Elsevier Ltd on behalf of DFRWS. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
Introduction

In 2017, an average of 283 Tb including 914,100 minutes
of video will cross the Internet every second as estimated
by Cisco (2012). While such performance is desirable and
well exploited in most circumstances, it can also serve less
glorious aims. Network supervision becomes more and
more mandatory to prevent data leakage, to block mali-
cious programs and to detect attacks. The forensics domain
is also concerned with the transfer of files related to illegal
activities such as child pornography, fraud, copyright
infringement and others. All these fields of application
ca (A. Larbanet),
olymtl.ca (J.P. David).

ier Ltd on behalf of DFRWS
involve referenced data recognition, a process that is usually
composed of two steps:

1. Collection and reference of sensible data: these data are
used to create a reference database.

2. “Live” analysis: a system collects new data and compares
it to the reference database. Amatchwill raise an alert or
trigger an action.

Detecting referenced data over network connections is
not obvious because the initial content is split into small
packets (usually 500e1500 bytes for Ethernet) and
embedded in various protocols. If the monitoring applica-
tion has access to the initial content, a trivial approach
consists of using standard hash values as fingerprints. As
soon as a new object is present, its hash value is computed
and compared against a set of reference hash values. Such a
. This is an open access article under the CC BY-NC-ND license (http://

http://creativecommons.org/licenses/by-nc-nd/4.�0/
http://creativecommons.org/licenses/by-nc-nd/4.�0/
mailto:adrien.larbanet@polymtl.ca
mailto:jonaslerebours@gmail.com
mailto:jpdavid@polymtl.ca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2015.05.011&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2015.05.011
http://creativecommons.org/licenses/by-nc-nd/4.�0/
http://creativecommons.org/licenses/by-nc-nd/4.�0/
http://dx.doi.org/10.1016/j.diin.2015.05.011
http://dx.doi.org/10.1016/j.diin.2015.05.011


A. Larbanet et al. / Digital Investigation 14 (2015) S85eS94S86
method can easily be implemented in a data center to
monitor file uploads or in a proxy to monitor file down-
loads. Nevertheless, in general it is not possible to access
the initial content or to reconstruct it for several reasons:

� The transfer must be detected before it is complete (e.g.,
data leakage prevention).

� The bandwidth and/or the required memory may be too
high for real-time rebuilding (e.g. an Internet backbone).

� Not all packets may be available. Networks are usually
interconnected via multiple links and the route taken by
a given packet cannot be known in advance.

� The content may be embedded inside a container.
� The target applications and their protocols may be

unknown.

Many research papers address the problem of detecting
a limited number (thousands) of small signatures, typically
regular expressions (Yu and Becchi (2013)). This paper ad-
dresses the problem of detecting very large numbers (tens
of millions) of large objects, typically image or video files, in
real time at very high bandwidth. In addition, the proposed
GPU implementation enables the extraction of suspect TCP/
UDP flows in the same traffic. The highly parallel archi-
tecture of GPUs, made of hundreds of processing cores,
perfectly matches the hundreds of IP packets to be pro-
cessed in parallel and independently. Furthermore, the
large and fast memory available in GPU cards enables the
detection of millions of known files and the extraction of as
many flows within a single card.

The detection approach is founded on the max-hashing
algorithm proposed by David (2013). A 128-bit sliding
window generates 64-bit hash values, fromwhich we only
keep the one that maximizes a given criterion (actually we
keep the highest hash value). Since the signatures are
computed for very small data blocks, the max-hashing al-
gorithm requires that the blocks contain high-entropy data
(ideally unique).

In information theory, the entropy is the average
amount of information, which is usually measured in bits. A
low-entropy data source means that the data are redun-
dant while a high-entropy source means that each symbol
has the same probability to occur, which may be related to
uniqueness as detailed in Section “False positive”. An
important contribution of this paper is the computation of
high-entropy signatures from MP4 files.

Our results show that a single GPU card is able to pro-
cess up to 63 Gbps. Nevertheless, the PCIe 2.0 link used to
feed the card is a severe bottleneck that limits the global
processing rate to 50 Gbps. State-of-the-art PCIe 3.0 GPU
cards or using two cards should enable the monitoring of
100 GbE connections quite straightforwardly.

The remainder of this paper is organized as follows: Sec-
tion “Related work” describes previous work in the field of
known data recognition. Section “The max-hashing algo-
rithm” briefly presents said algorithm, the bedrock of the
present work. Section “Referencing MP4 files with max-
hashing” presents our proposed method for referencing
MP4 files. Section “GPU computing” gives some background
about the GPU architecture to allow a good understanding of
the implementation proposed in Section “Max-hashing with
GPU”. Section “Detecting TCP/UDP flows” presents our
method for the extraction of suspect TCP/UDP flows. Section
“Results” describes some test cases and reports the associ-
ated performance. Section “Discussion” addresses a few
challenges related to the complete system configuration.
Finally, Section “Conclusion” concludes this work and fore-
sees some future contributions.

Related work

Known data recognition

Analyzing, classifying and identifying information for
exponentially growing data sizes and transmission rates
has led to new developments in the field of hashing and
fingerprinting. These techniques all share a common
objective: reducing large data sets to short representations
while maintaining the ability to make fast and precise
queries at a later time. MD5 (Message Digest #5) and SHA-1
(Secure Hash Algorithm) are two very common examples of
hashing algorithms that are used in cryptography and fo-
rensics. Many other methods have been developed for
cryptography (Bakhtiari et al., 1995), requiring a strong
non-reversible property, but also in other fields with
different goals such as simplified mathematics, easy hard-
ware implementation and others (Knott, 1975). Finger-
printing in the forensics field is covered in detail by
Roussev (2009, 2010, 2011).

Hash functions usually take a whole file as input and
compute a fixed length fingerprint so that one can assume
that two files with the same fingerprints are likely to be
identical, with a very low probability of a false positive. This
property is mainly used for file identification or authenti-
cation. One can therefore check for changes, updates or
alterations of critical files by only inspecting their finger-
prints. On the Internet, large files to download are usually
accompanied by their hash value. When the download is
complete, the user can compute the file's hash value and
verify that it is the expected one. A different hash value
means that the file is corrupted. The same principle is used
when investigators need to examine data found on seized
equipment. It is possible to quickly filter irrelevant files
(Chawathe, 2009; National Institute of Standards and
Technology, 2003) or to point out sensitive content by
using a library of known hash values. Each file from the
seized equipment is hashed and a lookup access is made to
the hash value library. If the hash value exists, then the file
is known and no further processing is required for that file.
This is even more important for cases that involve huge
amounts of data which can require several months to
process and therefore delay further investigations. To help
speed up such investigations, the National Software
Reference Library, a database maintained by the National
Institute of Standards and Technology (2003), regroups a
collection of the fingerprints of popular files such as oper-
ating systems and widely used software. This is of great
help to reduce the amount of relevant data to analyze.

Hashing whole documents does not give anymeasure of
the difference between two files since even a single bit flip



Fig. 1. Fingerprints of each window in a data set.

A. Larbanet et al. / Digital Investigation 14 (2015) S85eS94 S87
completely changes a fingerprint. Nicholas Harbour pro-
posed the concept of piecewise hashing, implemented in his
software dcfldd (Harbour, 2002) to address this problem.
Data are split into fixed-size segments hashed indepen-
dently. Therefore a single file is represented by several
fingerprints. When parts of it are corrupted, only the fin-
gerprints of the corrupted segments are modified. How-
ever, any data deletion or insertion in a file modifies all the
segments from that point and thus all the corresponding
fingerprints.

Andrew Tridgell faced this issue in proposing a software
calledSpamSumin2002 (Tridgell, 2002). Thepurposewas to
detect spam mails, which usually contain similar but not
identical text, in order to circumvent classic hashing detec-
tion. His method shares some similarities with Rabin's fin-
gerprints (Rabin, 1981), developed in the context of string
matching. The original idea hasmore recently been adapted
to the forensics field (Kornblum, 2006) as “Context Triggered
PiecewiseHashing” (CTPH).Adocument is split into segments
whose boundaries are determined by local properties. A
fingerprint is then computed for each segment. Roussev
(2009) details this method, which he names “data finger-
printing”. Computing severalfingerprints foreachdocument
increases the probability of detecting unchanged segments.
More importantly, since theboundaries only dependon local
windows of data, the corresponding segments are still
detected when they are relocated, in the same document or
not.Moregenerally, these techniquesaddress themeasureof
containment and similarity, as defined by Broder (1997).

Notable applications and specialized hardware benefits

Hashing has beenwidely used in network forensics. The
main challenges are usually either to prevent network in-
cidents or to retrace what happened after an incident.
Typical incidents are intrusions and unauthorized accesses
(Zheng, 2010), malicious infections and the transmission of
sensible content (Yoshihama et al., 2010). Since it is usually
not possible to log all the traffic over long periods, finger-
printing can reduce the storage size while preserving the
ability to retrace incidents. In their survey, Broder and
Mitzenmacher (2004) cover a few application fields that
use Bloom filters to summarize and reduce content size and
eventually speed up communications in distributed sys-
tems. This includes packet tracing, payload identification
and traffic optimization (Callado et al., 2009).

These approaches are off line and post-attack methods,
but fingerprints can also be used for “live” analysis: mali-
cious software protection (Fechner, 2010) and live network
securing systems (Zheng, 2010), for instance. However,
because of the increasing network bandwidths, monitoring
devices need to handle a growing amount of data. General
Purpose Processors (GPPs) are not powerful enough to
handle such flows, making specialized hardware manda-
tory. FPGAs (Lin et al., 2009), GPUs (Tumeo et al., 2011;
Jamshed et al., 2012) and more recently many-core pro-
cessors (Jiang et al., 2013) are potential targets for such
processing because of their parallel architecture. In addi-
tion to their ease of programming, GPUs are known to offer
significant performance gains (Vasiliadis and Ioannidis,
2010) against a GPP implementation.
The max-hashing algorithm

Themax-hashing algorithm proposed by David (2013) is
designed for quickly detecting the presence of some known
content when the user can only access its fragments, which
is precisely the context of file transfers over the Internet. It
is particularly powerful when the reference database is
large since the computation time does not depend on its
size.

Basically, the max-hashing algorithm computes the
hash value of every fixed-size esmallewindow in the data
but only keeps the one with the maximum value. This
maximum value has the useful property of representing
any fragment of the original data containing the related
window. In other words, we can spot some known content
inside an Ethernet stream as soon as the window that
generates the maximum value passes through the packet
analyzer with a single database access per packet.
Implementation steps

Either while referencing data or analyzing the live flow,
the system processes the data in three steps: extract data
blocks, compute fingerprints for these data blocks and
finally access the fingerprint database to store the finger-
prints or search for a match.

Split data into blocks
At referencing time, a set of high-entropy sub-blocks is

extracted from the content to monitor. Ideally, each sub-
block should be unique to the content so that a local
match also means a global match. Using multiple blocks
actually decreases the false positive probability. During live
detection, the payload is extracted from the IP packets by
removing the low level protocols (typically UDP and TCP).

Compute block fingerprints
Awindow size SW and a hash functionHmust initially be

chosen as constant parameters. Computing the fingerprint
requires hashing all the overlapping windows with H. For a
SB-byte data block, every SW-byte window is hashed,
resulting in SB � SW þ 1 fingerprints from which the algo-
rithm will only keep the maximum one. Fig. 1 shows an
example of every computed fingerprint from an input data
flow. In the proposed implementation, the algorithm
computes 64-bit fingerprints from 128-bit windows. The



A. Larbanet et al. / Digital Investigation 14 (2015) S85eS94S88
implemented hash function is fully described in Section
“Fingerprint computation”.

Storing/searching fingerprints
For large reference data sets, DDR3 or GDDR5 memories

are best exploited for burst accesses, which enable very
efficient hash table implementations. We use a 2p-row � c-
column array of fingerprints. The hash function used to
access the hash table is simply the p least significant bits of
the fingerprint value. When the algorithm searches for a
match, it keeps the p least significant bits andmakes a burst
read of the complete row. The fingerprint is further
compared with each of the c cells in the row.
Possible issues

False negative
Considering a document with one fingerprint, splitting

it into packets introduces a probability of cutting the win-
dow producing the maximumvalue fingerprint. In this case
the document would not be detected. Let's consider a
document of SD bytes divided into SP-byte packets. The
fingerprints are computed from a SW-byte window, and the
probability of splitting right inside a given window is the
number of possibly cut windows over the total number of
windows, which can be calculated as follows:

p ¼
ðSW � 1Þ
zfflfflfflfflffl}|fflfflfflfflffl{Number of windows cut by a split

�
��

SD
SP

�
� 1

�zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{Number of splits

SD � SW þ 1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Total number of windows

For instance, for a document of 15,000 B, divided into
ten IP packets of 1500 B and using a 16-B window for
fingerprint computation, we get about a 1% chance of not
detecting the document at all.

This probability can be reduced by considering more
than one fingerprint per document. The probability of not
detecting nwindows in different IP packets is pn¼ pn. In the
previous example, the false negative probability with four
fingerprints is less than one in a hundredmillion. However,
this method requires more memory to store the finger-
prints. For a given memory size, there is a compromise
between the number of documents to detect and the
probability of a false negative that can be tolerated.

False positive
The max-hashing algorithm relies on the fact that small

windows are highly representative of the document. This is
true for high-entropy content only because all the symbols
(i.e., the complete small windows in our context) have the
same probability of occurring and the probability of
receiving a given symbol is 2�H, where H is the entropy (in
bits) of the small windows. Since we compute N-bit hash
values, we need H to be greater or equal to N to ensure a
maximum entropy for the signatures. For N large enough,
the entropy becomes related to uniqueness. For instance,
with H ¼ 64, the probability of randomly receiving a given
symbol is 2�64 ¼ 5.4 � 10�20.
The referencing step thus requires great care to select
high-entropy regions in a given document, which is not
always possible in the general case. However, large docu-
ments usually contain regions with compressed informa-
tion, which intrinsically have high-entropy. These regions
are good candidates for extracting the maximum value
fingerprints. We present our method for the selection of
high-entropy fingerprints from MP4 video files in section
“Referencing original fingerprints from video files”.

Optimizations

The best way to reduce the false detection rates (posi-
tive and negative) is to increase the number of fingerprints
at reference time. This can be achieved in two ways:
increasing the number of blocks in the content and/or using
multiple hash functions. Since we do not have any control
over the number of high-entropy blocks in the given con-
tent, it is relevant to use multiple hash functions. Never-
theless, we also desire to minimize the computation effort
to maximize the processing rate.

In the proposed implementation of the max-hashing
algorithm, we first use a common hash function. Then we
derive four variants by just applying a XOR to the hash
value with well-chosen constants Ci. In this way, the extra
computation required to implement four hash functions
instead of one is negligible. However, at detection time,
four accesses to the database of reference fingerprints are
now required instead of a single one.

Referencing MP4 files with max-hashing

The file referencing process can be improved by closely
studying file formats. As described byGarfinkel et al. (2010),
a dedicated approach must be adopted for each file format
to be able to compute unique fingerprints. A quick overview
of the standard video file format specification (ISO/IEC
14496-14 for MP4; ISO/IEC 14496-10 for H.264) and our
own results presented in Section “Max-hashing the whole
file” support the need for a specific fingerprinting method
for MP4 video files using the H.264 encoder.

We propose to first identify high-entropy blocks in
reference files based on their format. We focus on the
Macro-block level of H.264 since data is compressed at such
a level using CABAC or CAVLC algorithms. Furthermore,
Macro-blocks describe the appearance of the video and are
consequently unique to each file.

We modified the free and open-source software Ffmpeg
and the included libavcodec library to extract the location of
the high-entropy blocks in such video files. The modified
application enables reading a video file and retrieving the
position of any processed byte during the decoding stages
of an MP4 (H.264) video file. At the end of the reading step,
the application returns all the indexes and sizes of the high-
entropy blocks.

Nevertheless, we cannot directly extract high-entropy
blocks and apply the max-hashing algorithm to the
blocks because of potential side effects. Actually, if a low-
entropy block nearby a high-entropy block generates a
maximum hash value higher than the one generated by the
high-entropy block, there is a risk of a false negative if both



A. Larbanet et al. / Digital Investigation 14 (2015) S85eS94 S89
blocks are present in the same IP packet. So, we apply the
max-hashing algorithm to the whole file and we only keep
the local maxima belonging to high-entropy blocks. This is
an important contribution of the proposed method which
leads to the impressive results presented in Section
“Focusing on high-entropy blocks”.

GPU computing

General-Purpose computation on Graphics Processing
Units (GPGPU) consists of exploiting the high parallel
computing power of GPUs to perform tasks in different
contexts. Such applications have become so efficient that
GPU manufacturers have modified the architecture of their
processors to also best fit GPGPU. This section summarizes
the main characteristics of a GPU as a basis for section
“Max-hashing with GPU”.

A GPU implements data level parallelism thanks to a
SIMD (Single Instruction Multiple Data) architecture. The
same instruction is performed on different data at the
same time. Nowadays, these processors can launch
several hundred processes in parallel. GPUs allow fast
context switches to hide the latency of the external
memory. Such an architecture becomes relevant as soon
as an application applies the same sequence of operations
on large data sets (as it is usually the case in graphics
processing).

The vocabulary used in this section is the one proposed
by NVIDIA in the description of the “CUDA” architecture
(NVIDIA, 2013), the foundation of all their most recent
processors.
Threads

Processing data on a GPU consists of running several
occurrences of a function, called a “kernel”, in parallel. A
kernel usually takes an array of pointers as input and
output arguments. Each instance of the launched function
processes its own index in the array. In our work, we wrote
the source code in CUDA C, which is developed by NVIDIA.
Kernels can only access the onboard memory, except some
special sharing manipulations available on the most recent
processors. The interoperability between the GPU and the
mainstream processor requires dedicated data transfers
between their memories.

Software
Threads are organized in a three-level hierarchy, as

illustrated in Fig. 2. The designer actually launches a “grid”,
which is a set of “blocks”, themselves composed of
Fig. 2. Thread organization in NVIDIA CUDA architecture.
“threads” that all execute the same function. The processor
is generally more efficient when there is no divergence
between threads. Indeed, when processing a conditional
branch instruction, the GPU splits the threads and runs
them in two stages: first all the threads that branch run
together, then the threads that do not branch. The advan-
tages of the parallel architecture of GPUs are quickly lost in
such cases because the numerous threads launched for
parallel work are actually run serially.

Hardware
On chip, processing units are grouped in “multiproces-

sors”. When a grid is launched, the scheduler maps the
different blocks to the GPU's multiprocessors, so that each
multiprocessor runs a block (Fig. 2).

Multiprocessors are independent from each other.
Blocks running in different multiprocessors can come from
different launches and belong to different grids. The NVI-
DIA K20c is composed of 13 multiprocessors, each running
32 threads at the same time. The group of currently
running threads in a multiprocessor is called a “warp”.

Recent NVIDIA GPUs can process several grids and
several PCIe transfers at the same time. This ability can be
used to create pipelined applications and reduce the
transfer penalty.
Memory issues

GPUs usually embed their own GDDR memory, called
the “global memory”, which is a very high bandwidth
dedicated memory coupled to L1 and L2 caches. This
memory has a very high latency and is only efficient when
the computing time is larger than this latency (200e400
cycles according to NVIDIA (2013)), which makes caching
and data prefetching of the highest importance.

Moreover, cached global memory accesses are grouped
over a whole warp and aligned on 128-byte segments (the
size of the cache line). The GPU reads 128 bytes in the
memory as soon as required data is not available in caches,
and this is repeated for each thread in the warp. Thorough
implementation is often required to keep data locality and
anticipate further data requests.

Another memory, the “shared memory”, is attached to
each multiprocessor and can be accessed by all the threads
within the mapped block. This memory is the same as the
L1 cache and is very fast to access.

Small and temporary data can be stored in local regis-
ters. Nevertheless, their number is limited and split over a
warp or a block (depending on the processor architecture).
When too many registers are required, the compiler de-
creases the number of concurrent threads. In the worst
cases, the registers are backed up in the “local memory”,
which is a part of the global memory mapped to each
thread. Programmers have to limit their use of registers to
run a maximum of threads at the same time in an efficient
way.

GPU cards are connected to the motherboard through a
bus, typically the PCIe on recent cards. This bus determines
the bandwidth and the latency of all the transfers between
the GPU and the host processor.



A. Larbanet et al. / Digital Investigation 14 (2015) S85eS94S90
Max-hashing with GPU

An efficient GPU program involves a few adaptations of
the original max-hashing algorithm to fit such specialized
architecture. Section “Fingerprint computation” details
how the algorithm has been adapted to a GPU and Section
“Storing and searching in a database” addresses the data-
base implementation. Results and performance for both
parts are detailed in Section “Results”.
Fingerprint computation

Computing all the hashes requires a significant
amount of time and computational power. A rolling hash
function is used to sequentially hash all the windows. It
computes a fingerprint from the previous one in a small
number of operations and keeps the maximum value “on
the fly”. In this way, the rolling hash mechanism just
computes the contribution of the incoming byte and
removes the contribution of the outgoing byte. More de-
tails about this mechanism are given in the work of David
(2013). In the present implementation, the byte contri-
butions are added and removed by the mean of a XOR
function.

We compute 64-bit fingerprints from 128-bit win-
dows. As current GPUs do not contain 64-bit integer ALU,
computing two 32-bit hashes, hhi and hlo, instead of a
single 64-bit one appears to be more efficient for these
processors. In the following, “fingerprint” refers to the
concatenation of these two 32-bit hashes. The byte
contributions are computed through two functions, fhi
and flo. They use two 32-bit parameters, phi and plo, so
that:

fhiðxÞ ¼ x� phi ; f loðxÞ ¼ x� plo

The double rolling hash is performed according to the
recurring relations:

hnþ1
hi ¼ �

hn
hi04

�
4fhiðanÞ4fhiðanþ16Þ

hnþ1
lo ¼ �

hn
lo04

�
4f loðanÞ4f loðanþ16Þ

These operations only require 32-bit rotates (0),
multiplications and exclusive-or. The algorithm keeps the
hash only when it is bigger than the current maximum
(initially set to zero). To compute several hash functions Hi,
we simply compute an exclusive-or between the hash
values and predefined constants Ci (1�i�4). The results of
this implementation are presented in Section “Fingerprint
computation”.
Storing and searching in a database

The database implementation is a straightforward
adaptation of the hash table method described in Section
“Storing/searching fingerprints” with a 2p-row � c-column
array of fingerprints. Two basic operations are required:
storing and searching. They are both implemented as in-
dependent kernels.
Storing
Each thread is dedicated to a single fingerprint and

sequentially reads the c1 cells in the selected line and stops
at the first zero value (empty cell). The value of the
fingerprint is written there, as well as the reference loca-
tion in the corresponding database. Read and replace ac-
cesses are executed as a single atomic operation to prevent
conflicts between two different threads that try to access
the same line at the same time. The performance is not
measured here as we focus on the live analysis bandwidth.

Searching
The searching kernel reads the c1 cells in parallel. We

launch one thread per column and per input fingerprint.
Searching for nf fingerprints thus requires a total of nf � c1
threads. This configuration results in a very simple kernel
that only makes one comparison between a reference
fingerprint and a value in the database. Memory accesses
are automatically coalesced and aligned since we read
contiguous 64-bit words in the database. The performance
of the database search operations is presented in Section
“Search in fingerprint database”.

Detecting TCP/UDP flows

The system, as described above, can detect parts of
known files through an Ethernet connection. Yet, it may be
interesting to identify all the packets transferred between
two given points that already triggered a hit (suspect flow).
This is the purpose of the TCP/UDP flow detection part. A
packet flow is determined by two IP addresses (source and
destination), two port numbers and a transport layer pro-
tocol. In this paper, we focus on IPv4 addresses (32 bits) and
TCP/UDP ports (16 bits). We adopted a similar approach as
for the fingerprint database: the use of a hash table.

The packet header is first parsed: IP addresses and TCP/
UDP ports are extracted and stored. A 16-bit index, for the
hash table, is also computed from both IP addresses. We
chose a commutative function (f(@1,@2) ¼ f(@2,@1)) so that
the direction of the packet has no impact.

The hash table is an array of 216-row � c2 ¼ 8 columns.
Each cell contains two IP addresses and two boundaries for
each port (2 � 32 þ 4 � 16 ¼ 128 bits). The whole table
requires 8 MB for half a million cells. For each packet, the
previously computed index indicates the row, and every
non-empty cell in this row is tested. If the IP addresses are
identical and the port numbers fit their boundaries, the
CPU is alerted. The performance of the flow detection is
presented in Section “TCP/UDP flow detection”.

Results

The test bench is a Linux server composed of two Intel
Xeon E5-2609 CPUs and an NVIDIA Tesla K20c GPU card
connected to a PCI Express v2.0 16x interface. The GPU
includes 13 multiprocessors with 32-thread warps and
embeds 5 GB of GDDR5 memory. Fig. 3 presents an over-
view of the proposed detection system. The data are first
copied into the main memory by the operating system.
Then, they are transferred to the GPGPUmemorywhere the
computation can start, as already detailed.



Fig. 3. Detection system Overview.

Table 2
Test scenarios.

Tests and results Configurations

Memory transfers Fig. 4 Variable buffer size
DMA to pinned memory
Host to device copy

Compute fingerprints 119.9 Gbps 768 MB of random input data
1536 B blocks
4 fingerprints per block
No data transfer

Search in fingerprints
database Fig. 5

2.09 � 106 random fingerprints
2p1-row � c1-columns database
p1 ¼ 21
No data transfer

Parse packet headers Fig. 6 Variable number of packets
Packets stored in 1536 B blocks
No data transfer

Search in TCP/UDP flows
database Fig. 7

524,288 random flows
2p2-row � c2-columns Database
p2 ¼ 16
No data transfer

Chained kernels Fig. 8 Variable buffer size
1536 B blocks
4 fingerprints per block
c1 ¼ 16 and c2 ¼ 8
No data transfer

A. Larbanet et al. / Digital Investigation 14 (2015) S85eS94 S91
Test scenarios and results are summarized in Tables 1
and 2. We first report the performance of the proposed
referencing algorithm. Then the bandwidth of memory
transfers between the host and the GPU are measured
because they will set the upper limit for the detection
system. Finally, the performance of each kernel is measured
independently to later be able to select and build an
optimal configuration for the complete system.
Referencing original fingerprints from video files

We apply the max-hashing algorithm on 8073 MP4
video files (56.5 GB, 182.4 h) from the CCV database (Jiang
et al., 2011). To measure the impact of our high-entropy
block extractor on the detection results, we consider two
distinct test cases: the basic case where the max-hashing
algorithm is applied on whole files and the case where
we focus on high-entropy regions as presented in Section
“Referencing MP4 files with max-hashing”. In both cases,
the files are split into 128 blocks and 4 fingerprints are
computed for each block. The results are shown in Table 1.

Max-hashing the whole file
Among the 8073 � 128 � 4 ¼ 41,33,376 computed fin-

gerprints, we noticed 371 fingerprints that are common to
at least two files (243 files generated at least one redundant
fingerprint). Most of them were computed on files that
share the same audio track (music sample) and involve only
7 files. But there are also 14 highly redundant fingerprints
that are common to up to 143 visually unique files. We
identified that these highly redundant fingerprints were
computed on MP4 media information headers. Results
show that a basic approach for referencing files generates
redundant fingerprints and will consequently increase the
probability of wrongfully detecting a file (false positive).
Table 1
Reference fingerprints computation.

Whole file High-entr. blocks

Total finger. 4,133,146 4,119,933
Redundant finger. 371 0
Files with redun. 243 0
Focusing on high-entropy blocks
This new approach does not generate any new redun-

dant fingerprints and, as it filters both audio information
and MP4 headers, the redundancies computed in the pre-
vious section are avoided. The computed fingerprints are all
unique to each file in our database. The probability of a
mismatch in the database is therefore nullified.

Memory transfers

Before being accessed and processed by the GPU, data
must be copied into the dedicated memory. The theoretical
data bandwidth of our PCI-Express 2.0 bus is 64 Gbps (16
lanes).We use DirectMemory Access (DMA) to copy a block
of pinned memory to the GPUmemory as this is the fastest
way to transfer data because they cannot be swapped. Re-
sults show an actual sustained transfer rate of up to
50 Gbps, dependent on the transmitted block size, as pre-
sented in Fig. 4. The bandwidth is close to saturation for
buffers as small as 2 MB. The application should therefore
use buffer sizes greater than or equal to 2 MB.

Fingerprint computation

Wemeasured the performance of this kernel by hashing
768 MB of random data. The kernel has to produce four
fingerprints per 1536 B blocks (524,288 blocks). This test
shows a processing rate of 119.9 Gbps, allowing the kernel
to produce 40 million fingerprints per second.

Search in fingerprint database

The implemented fingerprint search function was
launched on 2 million random fingerprints to search in a
2p1-row � c1-columns database (p1 is set to 21, c1 is vari-
able). Opposite configurations were tested: first when no



Fig. 4. Transfer performances. Fig. 6. Parsing headers.

A. Larbanet et al. / Digital Investigation 14 (2015) S85eS94S92
hit occurs, thenwhen hits occur for every searched hash. No
relevant differences were observable. We can see in Fig. 5
that the hash searching rate varies linearly with 1/c1, an
expected tendency as the total workload is linear with c1.
TCP/UDP flow detection

These results refer to the bottom of Fig. 3, as described in
Section “Detecting TCP/UDP flows”.

Parsing headers
This kernel extracts, for each packet, the payload posi-

tion, IP addresses and TCP/UDP ports and computes the
index in the hash table from them. Results are stored in the
GPU memory and are ready to be handled by further ker-
nels. Fig. 6 shows that 400 Mpps (million-packets-per-
second) can be treated. For 64 B packets, which is the
minimal size for a standard Ethernet packet, it represents a
total bandwidth of 204.8 Gbps.

Search in TCP/UDP flow database
Thehash table is an arrayof 2p2 lines and c2 columnswith

p2¼16 and c2 is variable. Each cell contains two IP addresses
and twoboundaries foreachport (2�32þ4�16¼128bits).
For each packet, the previously computed index indicates
the line, and every non-empty cell in this line is tested. If the
IP addresses are identical and the port numbers fit their
boundaries, the packet and the positions of the complying
Fig. 5. Search in fingerprints database.
cells are reported back to the CPU. As with the fingerprint
search kernel (Section “Search in fingerprint database”), the
search rate varies linearly with 1/c2 and reaches 518 Mpps
when c2 ¼ 1, as illustrated in Fig. 7. The performance spikes
are the effect of optimizations provided by NVIDIA's
architecture.

Single-GPU complete system

A single-GPU configuration, where all the kernels run on
the same GPU, is tested here. The performance of the
resulting chain (illustrated in Fig. 3) is measured.

Chained kernels
In this configuration, kernels are launched sequentially

except for theTCP/UDPflowsearch. Thisonecanbe launched
after parsing the headers (in parallel with the fingerprint
computation). The data are already stored in the GPU
memory before the launch. They are real packets captured
while transferring referenced files via FTP. Results are pre-
sented in Fig. 8: the solid blue line is the computing time of
the chained kernels and the dashed red line is the memory
transfer time at 50 Gbps (maximum PCIe 2.0 measured
bandwidth).We achieved amaximum throughput of almost
63 Gbps.

Pipeline setup
An interesting feature of Tesla GPUs is that independent

transfers and computations can overlap, so that the
Fig. 7. Search in TCP/UDP flows database.



Fig. 8. Chained kernels computing time & minimum transfer time.

Fig. 9. Pipeline transfer and computing.

A. Larbanet et al. / Digital Investigation 14 (2015) S85eS94 S93
application can be pipelined: packetnþ1 is being transferred,
packetn is being processed and the results from packetn�1
are copied back at the same time. The bandwidth of the
complete pipelined system is therefore limited by its
slowest part, either transfer or computation. A physical
limit already exists on the PCIe bus (measured in Section
“Memory transfers”). These transfers represent the “slow-
est part” because the computations run faster than this
limit as illustrated in Fig. 8. We therefore pipelined the
whole application allowing it to fully exploit the use of the
PCIe bus (z50 Gbps). Fig. 9 is a screenshot of the NVIDIA
profiler illustrating the implemented pipeline: streams 8
and 10 are used to sequentially transfer data to the GPU,
parse headers, hash payloads, search for known finger-
prints and copy back the results to the CPU while streams 9
and 11 can search for TCP/UDP flows in parallel as soon as
possible. We can visually identify the data transfer (Mem-
cpy HtoD) to the GPU as the bottleneck of the system.
False positive rate measurement

At the beginning of this section, we measured the
redundancy in the fingerprints when they are generated
from the whole content or when we focus on the high-
entropy blocks as proposed in Section “Referencing MP4
files with max-hashing”. To further measure the impact of
the high-entropy block extraction, we have split our
reference database into two sets. The first set is used to
compute the fingerprints and the second set is used at
detection time. A total of 28.25 GB of data are transferred
via FTP and four fingerprints are computed for each IP
packet, leading to the computation of about 500 M finger-
prints. Ideally, we should not observe any match since no
reference file is sent by FTP.

Basic approach, with redundant fingerprints
A total of 18K fingerprints were (wrongly) detected. The

equivalent false positive rate is 3.8/100,000. The real rate is
actually a little bit higher because when several hits are
associated with the same redundant fingerprint, a single hit
is reported.

With unique high-entropy fingerprints
Not a single hit has been observed in this configuration.

Discussion

False positive/negative rate reduction

Focusing on high-entropy regions greatly reduces the
false positive rate. If required, taking the neighborhood of a
fingerprint into account may further decrease the false
positive rate as detailed by David (2013). Concerning the
false negative rate induced by the packet segmentation
(Section “False negative”), it can be lowered in the refer-
encing process by increasing the number of fingerprints per
file.
Capturing high bandwidth connection

A limiting factor we observed is the need of multiple
data copies in the main memory. Actually, network card
processors and GPUs both use DMA to copy their data to
and from themainmemory but they cannot share the same
memory space. Multiple intermediate copies of the packets
are performed from the network card to the GPU. The
impact of these multiple copies is not noticeable for a
bandwidth of 10 Gbps or less, but its effect appears at
higher bandwidths. PF_RING and PSIO, for instance,
improve the high-speed capture and enable a full 40 Gbps
transfer as mentioned by Jamshed et al. (2012).
Comparison to other methods

Most content-based detection systems rely on feature
extraction that requires access to the whole file. Such
methods are more robust to small changes than the pro-
posed one, which works at the binary level, but they cannot
be applied if the monitoring application cannot access or
reconstruct the whole file. Our approach has the advantage
of only requiring access to individual IP packets. Its
simplicity enables real-time processing at bandwidths as
high as the ones used between Internet Service Providers at
the cost of a few GPU cards.

Conclusion

We have proposed an implementation of the max-
hashing algorithm on Graphics Processing Units (GPUs)
and a method to compute high-entropy fingerprints from
MP4 video files. Known files are first referenced in a
fingerprint database, which is stored in the GPU card's
embedded memory. The proposed method to extract high-
entropy fingerprints led to very good results. In our
experiment, 28.25 GB of data have been transferred by FTP
and no false positives have been observed. Concerning the
false negative rate, it can be lowered as much as desired by
increasing the number of fingerprints computed per file.



A. Larbanet et al. / Digital Investigation 14 (2015) S85eS94S94
Our results show a 63 Gbps processing rate for a single
GPU card with the ability to store more than 32 million
fingerprints and to track half a million TCP/UDP flows.
Nevertheless, the PCI Express 2.0 limits the transfer rate to
about 50 Gbps. The proposed implementation can thus
efficiently monitor a 40 Gbps Ethernet streamwith a single
GPU card. Because of the parallelism of the application, a
single PCIe 3.0 GPU card or two PCIe 2.0 GPU cards should
straightforwardly enable the detection at 100 Gbps.

The proposed method has been fully implemented and
tested for MP4 files. Nevertheless, it can be easily extended
to other formats provided that it is possible to identify
high-entropy blocks. This is typically the case for audio,
image and video files since most of them contain com-
pressed data blocks. Thus, the proposed system may be
used by forensics investigators at very large scales (up to
Internet backbones) to reliably detect the transfer of very
large sets of referenced audio, image and video files.

Acknowledgments

The authors are grateful to NetClean and the Govern-
ment of Quebec who have funded this work under the
grant number PSVT3-25624.

References

Bakhtiari S, Safavi-naini R, Pieprzyk J. Cryptographic hash functions: a
survey. Tech. rep. 1995.

Broder A, Mitzenmacher M. Network applications of bloom filters: a
survey. Internet Math 2004;1(4):485e509.

Broder AZ. On the resemblance and containment of documents. In:
Compression and complexity of sequences 1997. Proceedings; 1997.
p. 21e9.

Callado A, Kamienski C, Szabo G, Gero B, Kelner J, Fernandes S, et al. A
survey on internet traffic identification. Commun Surv Tutor IEEE
2009;11(3):37e52.

Chawathe SS. Effective whitelisting for filesystem forensics. In: Intelli-
gence and security informatics, 2009. ISI '09. IEEE international
conference on; 2009. p. 131e6.

Cisco. Vni forecast highlights. 2012 [accessed 20.03.14]. URL, http://www.
cisco.com/web/solutions/sp/vni/vni_forecast_highlights/index.html.

David JP. Max-hashing fragments for large data sets detection. In:
Reconfigurable computing and FPGAs (ReConFig), 2013 international
conference on; 2013. p. 1e6.

Fechner B. Gpu-based parallel signature scanning and hash generation.
In: 23rd international conference on architecture of computing sys-
tems (ARCS), 2010; 2010. p. 1e6.
Garfinkel S, Nelson A, White D, Roussev V. Using purpose-built functions
and block hashes to enable small block and sub-file forensics. Digit
Investig 2010;7:S13e23.

Harbour N. dcfldd. 2002 [accessed 21.03.14]. URL, http://dcfldd.
sourceforge.net/.

Jamshed MA, Lee J, Moon S, Yun I, Kim D, Lee S, et al. Kargus: a highly-
scalable software-based intrusion detection system. In: Proceedings
of the 2012 ACM conference on computer and communications se-
curity. CCS '12. New York, NY, USA: ACM; 2012. p. 317e28. URL, http://
doi.acm.org/10.1145/2382196.2382232.

Jiang H, Zhang G, Xie G, Salamatian K, Mathy L. Scalable high-
performance parallel design for network intrusion detection sys-
tems on many-core processors. In: Proceedings of the ninth ACM/IEEE
symposium on architectures for networking and communications
systems. ANCS '13. Piscataway, NJ, USA: IEEE Press; 2013. p. 137e46.
URL, http://dl.acm.org/citation.cfm?id¼2537857.2537883.

Jiang Y-G, Ye G, Chang S-F, Ellis D, Loui AC. Consumer video under-
standing: a benchmark database and an evaluation of human and
machine performance. In: Proceedings of ACM international confer-
ence on multimedia retrieval (ICMR), oral session; 2011.

Knott GD. Hashing functions. Comput J 1975;18(3).
Kornblum J. Identifying almost identical files using context triggered

piecewise hashing. Digit Investig 2006;3:91e7.
Lin Y-D, Lin P-C, Lai Y-C, Liu T-Y. Hardware-software codesign for high-

speed signature-based virus scanning. IEEE Micro 2009;29(5):56e65.
National Institute of Standards and Technology. National software refer-

ence library. Aug. 2003 [accessed 20.03.14]. URL, http://www.nsrl.nist.
gov.

NVIDIA. Cuda c programming guide version 5.5. July 2013 [accessed
20.03.14]. URL, http://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html.

Rabin MO. Fingerprinting by random polynomials. Tech. rep. Center for
Research in Computing Technology, Harvard University; 1981.

Roussev V. Hashing and data fingerprinting in digital forensics. Secur Priv
IEEE 2009;7(2):49e55.

Roussev V. Data fingerprinting with similarity digests, vol. 337/2010.
Springer; 2010. p. 207e26.

Roussev V. An evaluation of forensic similarity hashes. Digit Investig
2011;8(SUPPL.):S34e41.

Tridgell A. spamsum. 2002 [accessed 21.03.14]. URL, https://www.samba.
org/ftp/unpacked/junkcode/spamsum/.

Tumeo A, Secchi S, Villa O. Experiences with string matching on the fermi
architecture. 2011.

Vasiliadis G, Ioannidis S. GrAVity: a massively parallel antivirus engine -
recent advances in intrusion detection. Vol. 6307 of lecture notes in
computer science. Berlin/Heidelberg: Springer; 2010. p. 79e96.

Yoshihama S, Mishina T, Matsumoto T. Web-based data leakage preven-
tion. In: IWSEC; 2010.

Yu X, Becchi M. Gpu acceleration of regular expression matching for large
datasets: exploring the implementation space. In: Proceedings of the
ACM international conference on computing frontiers. CF '13. New
York, NY, USA: ACM; 2013. 18:1e18:10. URL, http://doi.acm.org/10.
1145/2482767.2482791.

Zheng Q. An improved multiple patterns matching algorithm for intru-
sion detection. In: IEEE International Conference on Intelligent
Computing and Intelligent Systems (ICIS), 2010, vol. 2; 2010. p. 124e7.

http://refhub.elsevier.com/S1742-2876(15)00056-0/sref1
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref1
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref2
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref2
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref2
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref3
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref3
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref3
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref3
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref4
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref4
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref4
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref4
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref5
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref5
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref5
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref5
http://www.cisco.com/web/solutions/sp/vni/vni_forecast_highlights/index.html
http://www.cisco.com/web/solutions/sp/vni/vni_forecast_highlights/index.html
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref7
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref7
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref7
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref7
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref8
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref8
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref8
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref8
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref9
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref9
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref9
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref9
http://dcfldd.sourceforge.net/
http://dcfldd.sourceforge.net/
http://doi.acm.org/10.1145/2382196.2382232
http://doi.acm.org/10.1145/2382196.2382232
http://dl.acm.org/citation.cfm?id=2537857.2537883
http://dl.acm.org/citation.cfm?id=2537857.2537883
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref13
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref13
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref13
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref13
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref14
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref15
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref15
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref15
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref16
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref16
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref16
http://www.nsrl.nist.gov
http://www.nsrl.nist.gov
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref19
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref19
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref20
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref20
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref20
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref21
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref21
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref21
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref22
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref22
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref22
https://www.samba.org/ftp/unpacked/junkcode/spamsum/
https://www.samba.org/ftp/unpacked/junkcode/spamsum/
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref24
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref24
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref25
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref25
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref25
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref25
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref26
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref26
http://doi.acm.org/10.1145/2482767.2482791
http://doi.acm.org/10.1145/2482767.2482791
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref28
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref28
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref28
http://refhub.elsevier.com/S1742-2876(15)00056-0/sref28

	Detecting very large sets of referenced files at 40/100 GbE, especially MP4 files
	Introduction
	Related work
	Known data recognition
	Notable applications and specialized hardware benefits

	The max-hashing algorithm
	Implementation steps
	Split data into blocks
	Compute block fingerprints
	Storing/searching fingerprints

	Possible issues
	False negative
	False positive

	Optimizations

	Referencing MP4 files with max-hashing
	GPU computing
	Threads
	Software
	Hardware

	Memory issues

	Max-hashing with GPU
	Fingerprint computation
	Storing and searching in a database
	Storing
	Searching


	Detecting TCP/UDP flows
	Results
	Referencing original fingerprints from video files
	Max-hashing the whole file
	Focusing on high-entropy blocks

	Memory transfers
	Fingerprint computation
	Search in fingerprint database
	TCP/UDP flow detection
	Parsing headers
	Search in TCP/UDP flow database

	Single-GPU complete system
	Chained kernels
	Pipeline setup

	False positive rate measurement
	Basic approach, with redundant fingerprints
	With unique high-entropy fingerprints


	Discussion
	False positive/negative rate reduction
	Capturing high bandwidth connection
	Comparison to other methods

	Conclusion
	Acknowledgments
	References


