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A population whose evolution is approximately described by a Laguerre diffusion process is considered. Let
Y(#) be the number of individuals alive at time ¢ and T(y, 1)) be the first time Y {¢) is equal to either 0 or
d(> 0), given that Y(#y) = is in (0,d). The aim is to minimize the expected value of a cost criterion in
which the final cost is equal to 0 if ¥(7) =d and to oo if ¥(T) = 0. The case when the final cost is 0
(respectively oo) if T is greater than or equal to (resp. less than) a fixed constant s is also solved
explicitly. In both cases, the risk sensitivity of the optimizer is taken into account.

Key words: Brownian motion; Diffusion processes; Stochastic control; Risk sensitivity; Hitting time;
Stochastic differential equation
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1 BIOLOGICAL BACKGROUND AND INTRODUCTION

1.1 Biological Background [See Ref. 1, pp. 176-182]

Assume that a population is composed of 4-type and a-type individuals and that the size of
the population is a constant N. Assume also that there are currently i A-type individuals and
that before maturity mutation converts an 4-type (respectively a-type) individual to an a-type
(resp. A-type) with probability p4, (resp. p.4). Then the expected proportion of mature 4-type
individuals before reproduction is given by

(1 = pug) + (N = )pay
pi= N .

Next, let X be the number of A-type individuals in the next generation; the Wright-Fisher
model postulates that

PIX =j]=C'pi1 —p)*.

That is, it assumes that the probability that any individual will produce an 4-type individual is
equal to p;, independently for each of the N individuals in the population. Therefore, the
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population process evolves as a Markov chain. For N large, we can show that this process can
be approximated by a diffusion process. In particular, if we set

71 72
Pia =g and  pag =
where y; € (0, oo) fori = 1,2 and 0 < d < 1, then the limiting process (as N tends to 0o) is a
diffusion process {X (), t > 0} with infinitesimal parameters

px(x) =y, —yx and o% =x

which is sometimes called a Laguerre diffusion process. This process is also used in
branching theory. Notice that the orders of mutation rates are assumed to be different.

The model corresponds to the case when the number of A-type individuals is of the order
N¢. The state space is the interval [0, oc) and is interpreted as follows: if X(¢) goes to infinity,
then the number of 4-types becomes larger than order N¢, whereas if X(f) reaches zero, then
this number becomes smaller than order N%. Therefore, the survival of the A-type individuals
in the population is endangered if 4 is small and X(¢) reaches zero.

1.2 Introduction

In this paper, we consider the problem of optimally controlling a diffusion process
{X(¢), t > 0} with infinitesimal parameters

Uy(x) =o+ fx and O'IZY = o%x,

where ¢ > 0 and where o and f§ can take any real values. Hence, the Laguerre process is the
special case when 6 =1, > 0 and f§ < 0.

More precisely, we consider the controlled diffusion process {Y(¢), ¢ > 0} defined by the
stochastic differential equation

dY () = (x + BY(@®))dt + b[YO)lu(®)dt + o Y2 (2)dW (5), ¢))

where {W(¢), t > 0} is a standard Brownian motion and the controlled variable %(f) must be
chosen so as to minimize the cost criterion

Cc@®,y) =~ %lnE[e_OJ(y)] 2
in which
T(»)
J(y) = j Euz(t) dr + K[T, Y(T)), 3)
where
T(y,to):=inf{t > t: Y(£) =0 or d (> 0)|Y (%) =y € (0, d)} @

and K(-, -) is a general termination cost function. Furthermore, in (2) 8 is a parameter that
takes the risk sensitivity of the optimizer into account [see Ref. 2, p. 4]. If 0 is positive
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(respectively negative), the optimizer is said to be risk-seeking (resp. risk-averse), whereas
we have:

lim C@®,y) = E[J(y),

which is the risk-neutral case.

Our objective is to maximize the survival time of the population (of A-type individuals), so
that we would like Y(T') to take on the value d (and rot 0). To do so, we will consider two
special cases for the termination cost function K. In Section 2, we will take

o if Y (1) =d,
Actually, we could be less extreme and set
| HYT)=d

with ¢; > ¢;. However, here we prefer to treat the limiting case above.
Next, in Section 3, we will let d tend to oo and choose

0 if T=>s,

KZ[TaY(T)]=[OO 1fT<S, (6)

where s is a fixed constant. That is, we will force the process {¥(¢), t > 0} to remain above 0
at least until time s. Here again we could replace 0 and oo by ¢; and ¢; respectively.
Finally, some concluding remarks will be made in Section 4.

2 FORCING THE POPULATION TO REACH d BEFORE 0
First we prove the following lemma.

LEMMA 2.1 For the diffusion process {X(t), t > 0} with infinitesimal parameters iy (x) =
« + Bx and o%(x) = o°x, the origin is

an exit boundary if <0,
2

a regular boundary f0<a< %,
2

. c
an entrance boundary if o > 5

Proof The results above follow from the formulae [see Ref. 3, p. 279]

b b 20/0? 2
a1 :=J J —3—()—6) ex] [Zﬁ( y)]dxdy 00 & o> >Z
0lyotx\y 2

and

b b 2 20/a? 2 —_
(TR R
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Remarks

(1) A boundary x = b is said to be accessible if the probability of reaching it in finite time is
strictly positive. Both exit and regular boundaries are accessible, whereas entrance (and
natural) boundaries are inaccessible. Furthermore, a boundary is accessible if and only if
the quantity ¢; in the proof above is finite. Then, the boundary is regular if and only if
Hy < o0.

(2) Notice that the type of boundary at the origin does not depend on the constant f.

Now, if the constant « in the stochastic differential equation (1) is greater than or equal to
6%/2, we can write that the optimal control is #* =0 because the controlled process
{Y(#),t = 0} is then identical to the uncontrolled diffusion process {X(¢),¢ > 0} and,
according to the previous lemma, it cannot reach the origin. Hence, we can write that
C(8,y) = 0 if u(t) = 0. Since C(8, y) cannot be negative, we have indeed u* = 0. Therefore,
we will assume from now on that o < ¢?/2.

When we choose the termination cost function defined in (5), the optimal control problem
is time-invariant, so that we can assume that £y = 0. Let F(») be the minimum expected cost
incurred from the initial state y (=/(0)). That is,

F(y):= inf C(0,y).
) u(t),OlsntsT () ©.»

Assuming that F(y) exists and is twice differentiable, we can show that it satisfies the
dynamic programming equation

inf B W + @+ By + b(IWF'(y) - H%Ey[F 'DF + E;yF ”(y)] =0,
where # = u(0). This non-linear ordinary differential equation is valid for 0 <y < d; the
boundary condition is
F(y)=Ki(y) ify=0ord.
The minimizing u is given by
u* = —b(yF'(y), (7

so that

2 2
@+ BIF () — 2 BOIF OIF — 8P OIF + Ly (3) = 0. ®
2 2 2

PROPOSITION 2.1  Ifo < ¢%/2 and b[Y(¥)] is equal to Y'/2(¢), then the optimal control u* is
given by

1/2 —20(/0'26—2/3y/a2

st Y

- T J‘g z—2a/0? g—2fz/d* J5

Jor 0 <y < d, where

})224‘9
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is assumed to be positive.
Proof Notice that we have:
v’y = b (y) + b0’y ©)
when b(y) = y!/2. Then the transformation [see Ref. 2, p. 223]
G(y) = e (10)
linearizes the ordinary differential equation (8) to
@+ BIGO) +305G' () = 0 ay
for 0 < y < d. The boundary condition is

1 ify=d
— L, Ki(y) — y )
G)=e ‘{0 ity =0, (12)

Remark The function G(y) can be interpreted as
G(y) = Ele " HDIX(0) = y] = PIX(T) = dIX(0) = ],

where {X(#),t > 0} is the uncontrolled process corresponding to {Y (), ¢ > 0} [see Ref. 2,
p- 224]. This probability does indeed satisfy the linear ordinary differential equation (11),
subject to the boundary condition (12) [see Ref. 4, p. 231].

Solving equation (11) subject to (12) is an easy task. We find that

Y Z—Za/aze—2ﬂ2/02 dz

G( )— L
Y d __2n/g? 2 2

foz a/0% g=2pz/0* dz

(13)

for 0 <y < d. The optimal solution u* is then deduced from (10) and (7).
Remarks

(1) Suppose that the cost function J(y) defined in (3) is generalized to
1
) =| a0 O &+ KT YL

fo

where g(-) is positive. Then the transformation used to linearize the ordinary differential
equation (8) will work if there exists a constant y such that

b*(»)
oty = —= | fg*y.
vy q(y) 4

For instance, the problem has the same optimal solution if [Y(#)] = 1 and q[Y(#)] = 1/Y ().
These choices for the functions b and g imply that the smaller the value of Y(?) is, the more
expensive it is to control the process.
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(2) If the risk parameter 6 is equal to —1/¢?, then the ordinary differential equation (8)
becomes

2
@+ BIF () + S 3F'(3) = 0,

which is the same differential equation as G(y) satisfies. However, the boundary condition is

0 ify=d,

Hﬁ={
Therefore, we can conclude that the function F(») does not exist when § = —1/¢2. Actually,
F(y) does not exist if § < —1/a?. This can be deduced from the probabilistic interpretation

e FO) — G =PX(T)=dX(0)=3€(0,1) for0<y<d

given above. Since F(y) is non-negative, the constant y cannot be negative.

Going back to the interpretation of the risk parameter 0 given in Section 1, we can state
that the optimizer must not be too risk-averse or pessimistic. On the other hand, we can allow
the optimizer to be as risk-seeking or optimistic as we want. If 6 increases, then the optimal
control u* decreases. Hence, a very risk-seeking optimizer is willing to take the risk of not
using much control. If the controlled process {Y (), # > 0} hits the boundary d first, then the
total cost is small. In the case of a risk-averse optimizer, he/she is afraid of receiving an
infinite penalty for finishing at y = 0. Therefore, he/she is ready to use as large a control as
needed (u* tends to oo if § decreases to —1/a?) to avoid this penalty.

(3) If B # 0, the definite integral that appears in the function G(y) and/or »* can be
expressed in terms of the incomplete gamma function.

Particular Cases
(1) If & = B = 0, we have:

G(y):g and u* = for 0 <y <d.

vy1/2

That is, u*(f) = [yY"/2(f)]”" and it follows that the optimally controlled process
{Y*(¢),t > 0} obeys the stochastic differential equation

dY*() = y~'dt + o{(YH V2 ().

According to Lemma 2.1, this process cannot hit the origin if

Thus if (—a? <) 0 < 672, the optimal control assures the optimizer not to receive the
infinite penalty incurred for finishing at y = 0. When the optimizer is more risk-seeking,
he/she is willing to take the risk of receiving this infinite penalty. Using (13) with
o= 1/y and § = 0, we find that this risk is given by

- G(y) 1 <§)1—2/(702)





















