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Sommaire

Dans cette thése, nous cherchons & modéliser numériquement les phénomeénes
de combustion dans les chambres de combustion et les bréileurs. Un nouveau schéma
numérique a alors été proposé, développé puis testé pour la simulation d’écoulements
bidimensionels cartésiens ou axisymétriques de fluides visqueux incompressibles en
régime laminaire ou turbulent. En outre, le milieu peut étre réactif ou non et
éventuellement sujet & la radiation. En effet, la combustion implique les phénomeénes
physiques suivants: turbulence, réactions chimiques dans la flamme et transferts de
chaleur par convection et radiation dus aux produits de combustion. Ces phénomenes
sont gouvernés par des équations générales de conservation dont les solutions
analytiques ne sont pas triviales.

L’intérét manifesté a la simulation numérique des phénoménes de combustion
est dii & la recherche accrue de I’efficacité dans la conception des briileurs et des
chambres de combustion et au besoin de contrdler la pollution. En outre, la présence
sur le marché d’ordinateurs plus performants et moins chers a fait de la simulation
numérique une alternative plus intéressante que 1’étude expérimentale.

La base de toute la simulation numérique repose sur une bonne modélisation
de I’écoulement. Pour ce faire, il est nécessaire d’utiliser une formulation appropriée
de I’équation de convection-diffusion. Le probléme réside alors dans la satisfaction de
la contrainte d’incompressibilité ou encore le couplage vitesse-pression quand la

formulation en variables primitives est utilisée.

Dans cette étude, une nouvelle méthode numérique, appelée "Staggered Control
Volume Finite Element Method (SCVFEM)" est proposée et développée. C’est une
méthode de volumes finis basée sur la notion de maillage décalé qui utilise la

formulation en variables primitives (u,v,p). La discrétisation du domaine se fait suivant



un maillage non structuré formé de triangles a trois noeuds. Dans cette méthode, la
pression est constante par élément alors que les vitesses sont stockées ou bien aux
milieux des c6tés ou bien aux sommets du triangle. L’élément de base utilisé ici est
un élément & ordres inégaux (vitesse linéaire et pression constante). Ils est équivalent
a I’élément P1 non conforme/PO et 4 I’élément P1/P0 répertoriés par la méthode des
éléments finis.

La méthode SCVFEM peut étre considérée comme une extension de la notion
de maillage décalé aux maillages non structurés. Comme nous considérons deux fagons
de stocker les vitesses (et toutes les autres fonctions scalaires), la volume de contréle
pour I’équation de mouvement (et toute les autre équations de transport) sera désigné
par Co-Volume ou par Volume de contrble Polygonal suivant que les vitesses sont
stockées aux milieux des cOtés ou aux sommets des triangles. Ainsi, la Co-Volume est
construit en joignant les centroides des deux triangles voisins avec les extrémités de
leur c6té commun ol la vitesse est stockée. Par ailleurs, le volume de contrdle
polygonal autour de chaque sommet est obtenu en joignant les centroides des triangles
voisins avec les milieux des coté voisins correspondants.

Les fonctions d’interpolation utilisées dans chaque élément sont la fonction
exponentielle basée sur I’orientation de I’écoulement et la fonction de pondération par
la masse qui utilise la différenciation amont. Ces fonctions permettent de discrétiser
le terme convectif de I’équation de transport alors que la terme diffusif est approximé -
par une interpolation bilinéaire sur le triangle. Le volume de contrdle pour I’équation
de continuité est constitué par le triangle lui-méme.

La couplage vitesse-pression est effectué dans un premier temps par une
intégration de I’équation de mouvement sur le Co-Volume afin d’obtenir les
expressions de u et v. Ces expressions sont alors introduites dans 1’équation de
continuité qu’on intégre sur chaque élément et qui nous permet d’obtenir une équation
pour la pression. A partir du champs de pression obtenu, on construit un champs du

gradient de pression qu’on introduit dans les équations de mouvement. On peut alors
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résoudre ces derni¢res sur le Co-Volume ou le volume de contrdle polygonal en
fonction du schéma utilisé.

Toutes les équations discrétisées (pression, vitesse ou toute autre fonction
scalaire) ont des propriétés conservatives. Leur résolution se fait de maniére
séquentielle ce qui procure des facilités pour I’extension aux écoulement 3D. En outre,
P'utilisation de maillages non structurés permet une grande flexibilité dans la
discrétisation de la géométrie. Dans cette thése, la méthode SCVFEM est étendue aux
écoulements turbulents réactifs avec ou sans radiation. Plusieurs modifications ont pu
améliorer sensiblement la précision et la convergence.

La méthode SCVFEM a certaines propriétés qui la distinguent des autres
méthodes numériques. Premiérement, pour les deux variantes (stockage aux cotés et
aux sommets), il n’est pas nécessaire de spécifier les conditions frontiéres pour la
pression ce qui évite un énorme probléme. Deuxiémement, pour le schéma i stockage
aux cOtés, il est facile d’imposer les conditions frontiéres pour toutes les fonctions
scalaires ainsi que I’intensité de radiation ce que évite la discontinuité engendrée par
les coins. Finalement, pour un méme nombre d’inconnues et une méme précision
recherchée, le temps CPU pour le méthode a stockage aux cotés est moindre que celui

de la méthode a stockage aux sommets (voir Chapitré 5).

Pour les écoulements turbulents, de forts gradients apparaissent au niveau de
la paroi. Toutefois, en ingénierie, 1’intérét est dirigé vers les propriétés de
I’écoulement principal. Ainsi, un modéle basé sur les grandeurs moyennées conduit &
un systéme d’équations différentielles pour la vitesse, la densité, les fractions de masse
et I’enthalpie sous une forme conservative. Ces équations introduisent aussi des
corrélations comme la correction du tenseur de Reynolds qui peut étre soit
prédéterminée, soit modélisée. Pour des écoulements non réactifs, les équations
gouvernantes sont celles du mouvement et de la continuité; par conséquent la

modélisation du tenseur de Reynolds est nécessaire pour fermer le systéme d’équations.
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La turbulence est modélisée par le modele a deux équations k-e standard couplé
avec la loi de la paroi. Toutes les variables transportées sont résolues sur un domaine
de calcul séparé du domaine réel par une distance donnée et les conditions de
glissement pour la vitesse sont alors imposées & la paroi. L’implantation de la loi de
la paroi est basée sur 1’approximation du profil de la vitesse au voisinage de la paroi
par une fonction logarithmique bien connue. La détermination de la vitesse de friction
ou du taux de cisaillement 2 la paroi est effectuée de deux maniéres différentes: La
premiere est la méthode classique basée sur I’équilibre de la génération et la
production de 1’énergie proche de la paroi et la seconde est une méthode ou 1’équation
logarithmique pour la détermination de la vitesse de friction est résolue par un quasi-

newton itératif.

Dans la modélisation des écoulement turbulents réactifs ot la moyenne de Favre
est utilisée, la corrélation pour la fluctuation de la densité n’apparait pas. Par
conséquent, 1’équation qui gouverne le transport de la fraction de la masse du
carburant a la méme forme que celle en absence de réactions chimiques. En outre, le
taux de réaction chimique dans les réactions homogenes est défini comme étant le taux
avec lequel I’'un des réactifs forme les produits de la réaction. C’est une fonction de
la température, de la pression et de la composition du mélange et elle est tres
influencée par la turbulence et les caractéristiques du mélange. L’objectif de la
modélisation de la combustion est alors la spécification du taux de consommation du
carburant, de la probabilité de réaction et des espéces chimiques.

Plusieurs modeles de combustion basés sur I’approche de conservation scalaire
(conserved scalar approach) sont examinés pour les flammes de diffusion turbulentes.
On cite alors le modele & chimie rapide, modéle 4 taux de réaction fini, modele
d’équilibre chimique et le modele de micro-flammes. Pour la turbulence, les deux

fagons de considérer la loi de la paroi sont utilisées et comparées a travers des tests
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sur les quatre modetles de combustion ci-dessus. Par ailleurs, concernant les

fluctuations des concentrations, les fonctions de probabilité delta et beta sont utilisées.

La contribution de la radiation a la balance énergétique est nécessaire pour
compléter 1’équation de conservation de 1’énergie et ’équation de transfert radiatif. A
cause de la nature intégro-différentielle de I’équation de radiation et de 1’aspect
multidimensionnel du rayonnement, le solution numérique de cette derniére équation
est trés complexe. Plusieurs modeles de radiation sont alors considérés pour traiter des
géométries irréguliéres.

Une procédure numérique est donc développée pour la résolution du transfert
radiatif dans des enceintes 2D cartésiennes ou axisymétriques isotropes avec des
surfaces grises. La méthode de transfert discret a été étendue aux maillages
triangulaires non structurés et elle couple les équations de convection-diffusion pour
les écoulement visqueux turbulents réactifs avec 1’équation de radiation & travers
I’équation d’énergie. La différence majeure entre la méthode actuelle et la méthode de
transfert discret originale réside dans le traitement des aspects géométriques. (voir
Chapitre 4). La procédure est alors utilisée pour la simulation de la combustion dans
un brilleur ou le modele de I’émittance des gaz de combustion est considéré comme

“three-gray plus one-clear gas".

En résumé, les objectifs principaux du présent travail sont:

* Développement de le méthode SCVFEM pour les écoulements turbulents
réactifs a densité variable.

® Implantation du modele de turbulence & deux équations k-¢ et la loi de la
paroi pour des géométries complexes.

* Investigation de différents modéles de combustion pour les flammes de
diffusion turbulentes.

¢ Application du modele de radiation pour des brilleurs & gaz réel.
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Finalement, la validation de la méthode SCVFEM a été effectuée pour
différents tests et les résultats obtenus ont été comparés aux solutions analytiques, a
d’autres méthodes numériques ou & des résultats expérimentaux.

Pour des cas tests laminaires, une évaluation et une comparaison systématiques
ont été effectuées concernant la précision, la convergence et la capacité de prédire les
recirculations, et ce pour les deux variantes du SCVFEM. 1l a été montré que les deux
schémas pouvaient donner des résultats précis pour le longueur de recirculation.

Pour les cas tests turbulents, I’intérét a été porté sur la prédiction de la
longueur de recirculation dans des géométries complexes par le modele k-¢, et ce pour
les deux maniéres d’implanter la loi de la paroi qu’on appelera méthode classique et
méthode du quasi-newton. Dans le cas de la marche, les résultats montrent que le
modele k-e a la capacité de prédire le comportement de 1’écoulement mais ne réussit
pas a donner la bonne longueur de recirculation. Il a été aussi trouvé que le point de
rattachement par la méthode classique était mieux que celui donné par la méthode du
quasi-newton. En revanche, les profiles de vitesse fournis par cette derniére sont plus
proches des résultats expérimentaux que ceux obtenus par la méthode classique.

Dans les tests turbulents réactifs, les quatre modéles de combustion ont été
comparés en utilisant les deux méthodes de la loi de la paroi. Il a été trouvé que les
résultats obtenus par la méthode du quasi-newton étaient beaucoup mieux. En outre,
les résultats montrent que les prédictions de la distribution de la fonction de mélange
utilisant les modeles PDF dans la région développée de la flamme étaient meilleurs que
ceux obtenus sans PDF.

Les tests de radiation montrent que dans les problémes & absorption dominante,
I’actuelle méthode de transfert discret donne d’excellents résultats. Pour des problémes
de "scattering" purs, on obtient le méme niveau de précision que d’autres méthodes.
Ainsi, la présente méthode peut étre utilisée pour la simulation du transfert de chaleur
réactif dans des chambres de combustion a gaz avec des géométries quelconques grice

a ’économie de calcul et la précision raisonnable qu’elle procure.



Dans le test de comparaison de la flamme de diffusion turbulente couplée ou
non avec la radiation, il a été trouvé que dans la région de flamme, la température
maximale prédite avec radiation était de 110 °C plus basse que celle obtenue sans
radiation. Il a ét€ aussi illustré que pour de grands brileurs et chambres de
combustion, la radiation constitue un mode de transfert de chaleur trés important. En
outre, les résultats obtenus avec la schéma SCVFEM sont comparables aux prédictions

obtenues avec la méthode des éléments finis.



Abstract

In the present study, a new numerical method, named Staggered Control-
Volume Finite Element Method (SCVFEM) is proposed and developed for
incompressible laminar and turbulent flows, as well as turbulent reacting flows with
emphasis on radiative heat transfer. Based on the primitive variables (u,v,p)
formulation, the discretisation is carried out on a triangular element, where the
pressure is stored at the centroid and velocities at the midpoint of the sides or at the
vertices. The element used here is an unequal-order linear velocities/constant pressure
type, equivalent to the P1 non-conforming/PO element and P1/P0 element of the finite
element method. Control volumes and co-volumes constructed around each variable
location leads to two different SCVFEM schemes, namely Face-centered and Vertex-
centered schemes. A flow-oriented exponential function and the skewed, mass-
weighted upwind interpolation function for the dependent variables are used. The
pressure-velocity coupling is treated by momentum integration over the co-volume.
This relation is then used to derive the pressure equation by integrating the continuity
equation over each triangular element. Pressure gradients which appears in the
momentum equations are evaluated by using a reconstruction method for the pressure

variation. The SIMPLE segregated solution algorithm is implemented.

Turbulence is solved by using the standard k-e two-equation model. Near solid
walls, wall function methods are adopted. The implementation of the law-of-the-wall
is based on the universality of a logarithmic velocity profile and the validity of near
wall turbulent equilibrium. The determination of the friction velocity or shear stress
at boundary is considered using two different methods. One is the classical
approximation method, which is based on the balance of generation and dissipation of

energy near the wall; another is the direct iteration method, where the logarithm law
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relation for friction velocity is solved by using the quasi-newton iteration.

Based on the conserved scalar approach, several combustion models are
examined for turbulent diffusion flames. These are the fast chemistry, finite reaction
rate, chemical equilibrium and micro-flame models. The concentration fluctuations are

accounted for by the delta and beta probability density functions.

A numerical procedure for solving radiative heat transfer in 2D cartesian and
axisymmetric enclosures with a gray absorbing, emitting and isotropically scattering
media is developed. The discrete transfer method is extended to an unstructured
triangular mesh and coupled to the advection-diffusion equations for the viscous

turbulent reacting flows through the energy equation.

Finally, validation of the proposed SCVFEM was performed on several test

problems, and then applied to practical problems involving reacting flows.
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Chapter 1
Introduction

1.1 Aims and Motivations of the Thesis

The use of CFD codes for simulating combustion phenomena is becoming a
widespread tool among the scientific and industrial communities. It helps engineers to
optimize the operating conditions, reduce pollutants emission, correct the
measurements, and eventually, to improve the design of new combustors. Most of the
commercial CFD codes, such as PHOENICS, FIDAP, FLUENT and TASCflow can
be used for the simulation of the turbulent reacting flow with a moderate success.
Although others commercial software such as N3S, RAMPANT are working with the
triangular grid for discretization, but so far, we are unaware of any reports on the
simulation of combustion by using these codes. Combustors may involve fine
geometrical details, especially they may comprise the sharp angles, in this situation,
the spatial discretization with unstructured triangular grid is superior to that of
rectangular ones. Although the CFD codes have been well developed, there still has
room for improvement. An attempt to use the unstructured triangular grid by using the
control volume finite element method in conjunction with the vorticity-streamfunction
formulation for the simulation of combustion has been reported (Elkaim et al., 1993).
However, the method is based on the vorticity-streamfunction formulation which
suffers the difficulties for boundary condition on vorticity and extension to 3D is not
immediate, it is not satisfied. Alternatively, to develop an efficient CFD code using
an unstructured triangular grid with primitive variable formulation applied for the

simulation of combustion, is the motivation of the present work.



The primary goal of this thesis is to propose, develop and test an unequal-
order, Staggered Control Volume Finite Element Method (SCVFEM) for the
simulation of 2D cartesian and axisymmetric, viscous, incompressible, laminar and
turbulent flows, turbulent reacting flows with and without radiation. The aim is to use
this code to model the performance and techniques for flames in practical furnaces and
combustors.

Stimulus for the numerical simulation of combustion is due to demands for
higher efficiency furnaces and combustors and the requirement of controlling pollution
formation. Because of the availability of inexpensive computer, this has become a
viable alternative to experimental investigation. Combustion involves the following
physical phenomena: turbulence, chemical reactions in the flame, convective heat
transfer and radiative heat transfer from the products of combustion. The most basic
requirement is the simulation of the laminar flow, for which it is necessary to provide
the appropriate convection-diffusion formulation. The critical issue is the spurious
pressure harmonics problem and the pressure-velocity coupling when the primitive
variable formulation is used.

In turbulent flows, rapid fluctuations are exhibited. However, for engineering
applications interest is mainly in the mean flow properties. Hence a model, based on
the time-averaging, yields a set of differential equations for the mean velocities,
density, mass fractions and enthalpy in the general conservation equations. These
equations have additional correlation terms, such as ;4_,’;]7 , W ,and ;—/;]7 , Which
must be either predetermined or modelled. For non-reacting flows, equations of
interest are those governing the mass and momentum, hence, modelling of the
term ;,Tu—] (Reynolds-stress) is needed in order to close this set of differential
equations.

In turbulent reacting flows, when the Favre-averaging is used, the density
fluctuation correlation does not appear. Hence, equations governing the transport of

fuel mass fraction have a form similar to those of non-reacting flows. The chemical



reaction rate in homogeneous reactions is defined as the rate at which one of the
reactants form products (Khalil, 1982). It is a function of the temperature, pressure
and composition, and is strongly influenced by the turbulent and mixing characteristics
of the flow. The objective of combustion modelling is to specify the rate of fuel
consumption and to model probability of reaction, at last to determine the chemical
species and thermal state parameters. The available combustion models will be
described in Chapter 2.

In turbulent flames, besides convection, radiation also becomes important. The
radiation contribution to the energy balance is needed to complete the specification of
the energy conservation equation. Due to the integro-differential nature of the radiative
transfer equation and the multidimensional nature of radiation itself, the numerical
solution of the radiative transfer equation is very difficult. Several radiation models
with emphasis on the treatment of an irregular shaped geometries are investigated.

The proposed unequal-order, SCVFEM for turbulent reacting flow uses the
primitive variables, on an unstructured triangular mesh, staggered grid arrangement.
It provide geometric flexibility, and ability of extension to 3D flows. In the present
study, the SCVFEM (Rida, 1993) is extended to complex turbulent reacting flows with
and without radiation. Further refinements have significantly improved the accuracy
and convergence. In summary, the major contributions of the present work include
following:

® Develop the basic SCVFEM for incompressible laminar and turbulent flows,
turbulent reacting flow with variable density.

* Incorporation of the k-e two-equation turbulence model and the wall function
methods for turbulent flows in complex geometries.

 Investigation of the different combustion models for turbulent diffusion
flames.

® Develop the radiation model for real furnace combustion gases.



1.2 Outline of the Thesis

In Chapter 2, a review of the existing numerical methods for incompressible
laminar and turbulent flows, turbulent reactive flows with emphasis on radiative heat
transfer is presented for combustion processes.

The governing equations for turbulent reacting flow with variable density, as
well as turbulence models and combustion models will be given in Chapter 3.

Chapter 4 presents the basic Staggered Control-Volume Finite Element Method
(SCVFEM). The SCVFEM involves the choice of the different type of interpolation
function, the integration of the transport equations over the control volumes, the
treatment of the pressure-velocity coupling, the derivation of the pressure equation,
and the segregated solution algorithm, etc.. Consideration of radiative heat transfer,
includes the solution procedure of radiative transfer equation and the treatment of the
coupling between the energy conservation equation and the radiative transfer equation.
Where, the geometric consideration in the application of the discrete transfer method
are mainly addressed.

In Chapter 5, results are presented to validate the proposed SCVFEM.

Finally, conclusions concerning the computational results are discussed.
Relevant recommendations related to the improvement and extension of the proposed

methods are also presented.



Chapter 2
Literature Review

Numerical methods for various fluid flow and heat transfer problems range
from the classical methods, such as the finite difference method (Roache, 1976,
Patankar, 1980), to the more recent finite element methods (Chung, 1978, Baker,
1983), and the control volume based methods (Patankar, 1980, Baliga and Patankar,
1980). This chapter reviews the development of these different numerical methods to
the solution of the fluid flow with particular attention to problems involving
turbulence, combustion and radiation. The general governing equations for the scalar
variables such as velocities, temperature and concentrations of chemical species can
be represented as a set of transport convection-diffusion equations. The specific issues
which arise in their numerical solutions are false diffusion or numerical diffusion
(Raithby and Torrance, 1974), spurious pressure harmonics or checkerboard pressure
fields (Patankar, 1980) and the pressure-velocity coupling when the primitive variable

formulations are used.
2.1 False Diffusion

Early investigations of the numerical prediction of convection-diffusion
phenomena have employed finite difference method based on the centred difference
scheme (CDS). In most circumstances, CDS offers a satisfactory compromise between
accuracy and computational economy when convection does not dominate diffusion.
For convection dominated flow, however, central differencing results in instability or

unphysical oscillatory behaviour when the grid Peclet number is greater than two.



Efforts to overcome this problem has led to the development of various upwind
difference schemes. The mechanism of upwinding has been explained by Gosman et
al. (1969) in their "Donor-Cell" model. While the oscillatory behaviour has been cured
for high Peclet numbers, upwinding is less accurate than the CDS at low Peclet
numbers. Several improvements based on the locally one-dimensional assumption have
been proposed leading to the exponential difference scheme (EDS) and hybrid
difference scheme (HDS) of Spalding (1972). Further refinements such as the power-
law difference scheme (PLDS) of Patankar (1981) yields a better approximation to the
EDS than the HDS. However, as found by Raithby (1976a), these hybrid schemes
work well when the flow is steady, closely aligned with the grid lines, and possesses
no strong cross flow gradients. In problems that do not conform to these conditions,
the locally one-dimensional assumption used in hybrid schemes can give rise to false
diffusion or numerical diffusion.

The skewed upwind difference scheme (SUDS) proposed by Raithby (1976b)
is a first-order accurate scheme. It yields a significant reduction in skewness errors by
using an upwind discretization in a streamwise coordinate system, in which case
skewness errors are entirely absent. Leonard (1979) proposed a flow-oriented
difference scheme based on a conservative quadratic upstream interpolation (QUICK)
for convection terms. However, the coefficients can become negative when the
convection effects are strong enough (Patel and Markatos, 1986). These lead to the
development of the quadratic upstream extended (QUDSE) and quadratic upstream
extended revised (QUDSER) finite difference schemes (Pollard and Siu, 1982), which
ensures the coefficients are positive. In the recent evaluation of several upwind
schemes, Sharif and Busnaina (1988) found that the SUDS produces the least amount
of numerical or artificial diffusion, however, unacceptable numerical dispersion (over-
and undershoot) is produced when the flow angle is skewed at large angles to grid
lines. This is because the SUDS does not satisfy the discrete maximum principle, and

the influence coefficients determined by SUDS are not guaranteed to be positive.



Busnaina et al. (1991) found that higher-order and streamwise differencing schemes
produce less numerical diffusion but introduce oscillations in the solution. On the other
hand, lower-order schemes produce excessive numerical diffusion but no oscillations.

Different modifications of the SUDS scheme have been proposed to improve
its performance. Van Doormaal et al. (1987) proposed a physical advection correction
scheme (PAC) to the SUDS, where the approximation to the convected quantity at a
cell face is modified and it reflects the interactions between the physical processes of
advection, diffusion and source terms. Solutions exhibit little or no spurious overshoots
or undershoots. Busnaina et al. (1991) proposed a modified skew upwind weighted
differencing (SUWD) scheme for discretizing the convection terms, which produces
less numerical diffusion and dispersion than SUDS. Calhoon and Roach (1993)
developed a new upwind procedure which seeks to include the viscous terms so that
boundary and shear layer will not be over-dissipated as with standard upwind scheme.
The method closely parallels the Finite Analytic method (Chen et al., 1988) which is
based on a local analytic solution of the governing equation for an element in
constructing an algebraic representation of the partial or ordinary differential equation
and yields a fully conservative method. The difference between the finite analytic
method and the exponential scheme lies in that the transient terms are considered in
the finite analytic method, while it is not considered in the exponential scheme in the
derivation of the local analytic solutions.

Conventional Finite Element Method (FEM) encountered difficulties similar to
those that afflict central differencing schemes. Christie et al. (1976) proposed a one-
dimensional upwind FEM scheme based on skewed weighting functions, which was
extended to two-dimensional problems by Heinrich et al. (1977). Hughes et al. (1979)
proposed another upwind FEM scheme based on a special quadrature rule applied to
the advection term. Soon it was realized that, like the finite difference counterparts,
the finite element upwind procedures tend to produce overdiffusive solution in 2D and

3D as well as in transient situations (Brooks and Hughes, 1982).



In the FEM, the false diffusion can be reduced by a Petrov-Galerkin
formulation with the streamline upwind scheme (SUPG) proposed by Brooks and
Hughes (1982), which may be viewed as a modification to the classical Galerkin finite
element method. The physical idea of SUPG is to increase control over the advective-
derivative term by adding an artificial diffusion term in the weighting function which
acts only in the streamline direction (Hughes, 1987). Rice and Schnipke (1985) noted
that the SUPG of Brooks and Hughes (1982) can exhibit small non-physical spatial
oscillations in the solution field of a transported scalar. They proposed a monotone
streamline upwind (MSU) finite element method that presents a streamline
approximation to the convection terms, rather than to modify the weighting function.
They claim that this method is more stable than SUPG. The extension of the MSU
finite element method of Rice and Schnipke (1985) to quadratic finite element has been
proposed by Hill and Baskharone (1993), which does not exhibit any non-physical
spatial oscillations, nor suffer from the traditional problem of excessive numerical
diffusion. Shemirani and Jambunathan (1992) found that the methods of SUPG and
MSU, however, generally violate the conservation laws, resulting in global imbalance
of transported quantities. They proposed a Conservation Monotone Streamline Upwind
(CMSU) formulation using simplex elements. The method is shown to accurately
model the advection phenomena with significantly smaller numerical diffusion than the
existing methods and results are free of all spatial oscillations.

Baliga and Patankar (1980) proposed a control volume based finite element
method (CVFEM) using the flow-oriented, upwind type interpolation that significantly
reduces false diffusion. However, it encountered negative coefficient difficulties in the
discretization equations which can become quite serious when obtuse-angled triangular
elements, or tetrahedral elements with a solid angle exceeding «/2 steradian, are used
in problems that involve high Peclet numbers (Saabas, 1991, Masson et al., 1994). A
mass-weighted, skewed upwinding procedure (MWUS) was proposed by Schneider and
Raw (1986), which is based on CVFEM with a quadrilateral element. They claimed



that the potential for the development of spatial oscillations in the domain does not
exist. The MWUS was also implemented by Saabas (1991) using both three-node
triangular and four-node tetrahedral elements in two- and three-dimensions,
respectively, and a co-located equal-order primitive variable formulation. Other
applications of MWUS with CVFEM are also found in Afshar (1992) on a
quadrilateral element, and Masson et al. (1994) on a triangular element. Similar
“attempts has been used based on a staggered control volume scheme (Rida, 1993) and

will be extended in the present work.
2.2 Pressure-Velocity Coupling

In incompressible flow probléms, another difficulty lies in the calculation of the
unknown pressure field, which can be related to the fact that only pressure gradients
appear in the momentum conservation equations. The pressure field is indirectly
derived from the incompressibility constraint, i.e. continuity equation. Because of this,
if velocities and pressure are stored at the same location, when the central differencing
scheme is applied to both the continuity equation and the pressure gradient terms in
the momentum equations, it has been shown to produce nonphysical oscillations in the

pressure field, or checkerboard pressure field (Patankar, 1980).

2.2.0 Vorticity-Stream function

Early work based on the vorticity-stream function formulation (Gosman et al.,
1969) which satisfies the incompressibility constraint identically, avoids the necessity
of computing the pressure. This formulation was adopted by Elkaim et al. (1993),
McKenty et al. (1993) and Meng et al. (1992) using the control volume finite element
method on unstructured triangular grid for the simulation of the turbulent reacting
flows. However, difficulties for applying boundary conditions on vorticity and

extension to three dimensions is not immediate. Due to these difficulties, the primitive
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variable formulation is preferable. The differences between the vorticity-stream
function and primitive variable formulation are discussed by Roache (1976).

To eliminate the checkerboard pressure problem when using the primitive
variable formulation, several methods based on the different storage locations for

velocities and pressure have been developed.

2.2.1 Staggered Grid Method

The checkerboard pressure field can be prevented by using a staggered grid
arrangement as first proposed by Harlow and Welch (1965) in their marker and cell
(MAC) method. Since it has been widely used by Patankar and Spalding (1972) in
their SIMPLE (semi-implicit method for pressure-linked equation), and its variants
SIMPLER (Patankar, 1980), SIMPLEST (Spalding, 1980), and SIMPLEC (Van
Doormaal and Raithby, 1984). Essentially, the method consists in storing pressure at
the main grid nodes in the discretized calculation domain, and staggering the velocity
components relative to these nodes (Fig. 2.1(a)). In the resulting momentum equation,
pressure appears at adjacent, rather than alternate nodes, and the discretized continuity
equation can use the velocity components at sides directly, and so that no interpolation
is needed.

The staggered grid method has been widely used in the solution of complex
flow problems in regular orthogonal grid, curvilinear orthogonal and non-orthogonal
grids with considerable success (Maliska and Raithby, 1984, Karki and Patankar,
1988, Shyy and Vu, 1991). However, it was found that this approach fails when the
grid undergo bends that exceeds 90° (Shyy and Vu, 1991). The difficulties with
staggered grid approach led to the development of co-located schemes using the
primitive variables formulation. However, most of these methods need special
procedures to treat the decoupling of the pressure and velocity field.

Extension of the MAC method to triangular elements can be found in the

complementary volume method of Nicolaides (1989, 1990) and a similar method
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named the dual variable method of Hall et al. (1991). The resulting arrangements are
shown in Figure 2.1(b), where pressure is stored at the circumcenters, and the velocity
components y directed along the dual mesh edges which is perpendicular to its edges.
The complementary control volumes or covolumes are formed by joining the
circumcenters of all triangulations. Using these methods, the pressure gradients in the
momentum equations can be discretized directly as in the MAC method. However, to
avoid the reentrant problems when constructing the polygonal control volumes, these
methods are restricted to the use of equilateral triangles and acute triangles (Hall et al.,
1991).

2.2.2 Equal-Order, Cell-Centered Method

The first equal-order, co-located FVM is the cell-centered method. In the
arrangement shown in Figure 2.1(c) and 2.1(d), all the dependent variables (u,v,p) are
stored at the cell center. The control volume based on the rectangular grid (Fig.
2.1(c)) has been widely used in the co-located finite volume method computations, by
Rhie and Chow (1983), Reggio and Camarero (1986), Peric et al. (1988), Miller and
Schmidt (1988), Majumdar (1988), Kobayashi and Pereira (1991) and Smith et al.
(1993), etc.. The key feature in cell-centered method for incompressible flow is the
appropriate evaluation of cell-face velocity and pressure, or the treatment of pressure-
velocity coupling. The special procedure has been classified as Pressure Weighted
Interpolation (Rhie and Chow, 1983, Miller and Schmidt, 1988) and Momentum
Interpolation (Majumdar, 1988) by Smith et al. (1993).

Rhie and Chow (1983) introduced a method of determining the convective
velocities at cell faces which are obtained by interpolations between grid nodes. The
pressure gradient term is excluded from averaging, and treated directly by a pressure
difference of the node pressures. Different from the above method, Reggio and
Camarero (1986) proposed an opposed differencing scheme in which the velocity

gradients are obtained by upwind differencing and pressure gradients by downwind
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differencing. These procedures ensure strong velocity-pressure coupling, and thus
eliminate the pressure wiggles. However, Majumder (1988) found that the results
based on Rhie and Chow’s method is under-relaxation factor dependent, and proposed
a new momentum interpolation method in an iterative solution that is independent of
the under-relaxation parameter used. Thiart (1990) proposed a similar procedure based

on the momentum interpolation method.

2.2.3 Equal-Order, Vertex-Based Method

The second equal-order, co-located method commonly used in FVM, FEM and
CVFEM is the vertex-based method. In this method, the same control volumes for
both the velocity and pressure in the control volume method, or, in the case of finite
elements, the same shape functions are used. It includes the bilinear velocity/bilinear
pressure element and the linear velocity/linear pressure element, as shown in Fig.
2.1(e) and Fig. 2.1(f), respectively. The 4-node quadrilateral element (Fig. 2.1(e)) has
been implemented by Rice and Schnipke (1986) using the FEM, by Schneider and Raw
(1987) and Afshar (1992) using CVFEM. The triangular element (Fig. 2.1(f)) has been
used by Prakash and Patankar (1985), and Sabbas (1991) and Masson et al. (1994)
using CVFEM. The procedures for dealing with the pressure-velocity coupling can be
classified as: the method of Prakash and Patankar (1985), the method of Schneider and
Raw (1987), and the method of Rice and Schnipke (1986).

In the method of Prakash and Patankar (1985), the continuity equation is
integrated over an element to obtain the discretization equation for pressure. The
velocity field used in the integration of continuity equation is not the nodal velocity
field but a different velocity field, derived from the discretized momentum equation
at an element vertex. This new velocities can be expressed as the pseudo-velocities
plus the pressure coefficients multiplied by pressure gradient. The pressure gradient
is uniform by assuming the pressure varies linearly over an element. The quantities,

such as pseudo-velocities and pressure coefficients at any other points in the element
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are obtained by assuming a linear variation of these quantities over the element.
Because the new velocity field is driven by the pressure difference between adjacent
grid points, its substitution into the continuity equation yields a pressure algebraic
equation that eliminates spurious oscillations.

In the method of Schneider and Raw (1987), the convected variables and
pressure at the control volume faces or integration points, are expressed in terms of
the nodal values using a local discrete analog to the governing differential equation at
the control volume face in order to close the algebraic representation of the
conservation equations. For the velocity at the integration points, a one-dimensional
N-§ equation was considered by using an upwind differencing for convection modelling
and central differencing for pressure gradient and diffusion terms. The resulting
integration point velocity serves the tight coupling with the node velocities and node
pressures. The integration point velocities are then substituted into the momentum
equation and used to derive a Poisson equation for pressure. The authors claim that the
method permits accurate convection modelling and preclusion of pressure-velocity
decoupling. Recently, Schneider and Karimian (1992) extended this method for solving
both incompressible and compressible flows.

In the method of Rice and Schnipke (1986), the closure relation between
velocities and pressure is obtained from the discretized momentum equation, where the
velocities at each grid point are expressed as the pseudo-velocities plus the pressure
gradient term. These relations are then substituted into the integrated continuity
equation and used to form the pressure algebraic equation. They showed that the
resulting pressure equation does not exhibit spurious pressure modes.

The equal-order vertex-based method simplifies - the book-keeping of the
different control volumes used in the staggered grid approach. This method assumes
a continuous approximation of pressure in each element. Alternatively, when piecewise
constant pressure is assumed in each element, constitutes the unequal-order vertex-
based schemes in the FEM.
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2.2.4 Unequal-Order, P1/P0 Element

The unequal-order elements include a bilinear-velocity/constant pressure
element (Q1/QO0) and a linear-velocity/constant pressure (P1/P0) element, as shown in
Fig. 2.1(g) and Fig. 2.1(h), respectively. The 4-node quadrilateral element (Fig.
2.1(g)) has been used by Benim and Zinser (1986) with SIMPLE-like segregated finite
element method, by Mukhopadhyay et al. (1993) with an explicit transient CVFEM.
The 3-node triangular element (Fig.2.1(h)) has been implemented by FIDAP (1991)
using the penalty function method and SIMPLE-like segregated method. However, as
discussed by Benim and Zinser (1986), this type of element may give checkerboard
pressure oscillation. In the method of Mukhopadhyay et al. (1993), the cell-face
velocity and pressure corrections are derived from an explicit discretized momentum
equations. These relations are then used in the derivation of the pressure equation
which has a strong diagonal dominance ensuring the correct pressure-velocity coupling.
The P1/PO element (Fig. 2.1(h)) is used in the present work. To avoid the
checkerboard pressure field, we suggested that the momentum interpolation can be
used for evaluating cell-face velocity and pressure based on the control volume
method, this is the fundamental approach of the present study in the treatment of the
pressure-velocity coupling. The interest of piecewise constant pressure approximation
over a continuous approximation of pressure is probably a better approximation of
mass conservation, and the possibility of an easy elimination of the pressure, thus

reducing the number of equations (Thomasset, 1982).

2.2.5 Unequal-Order, P1 Nonconforming/P0 Element

From the numerical computation point of view, it is difficult to impose
boundary conditions for dependent variables at the corner points of the calculation
domain when using elements in Figures 2.1 (e), (f), (g) and (h). This is further

compounded when computing the normal direction at these points is required for the
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turbulent flow computations. This difficulty can be easily overcome by an arrangement
such as the P1 nonconforming/P0 element of Crouzeix-Raviart (1973), in which
velocities are stored at midpoint of sides, and pressure is assumed piecewise constant
over an element, as shown in Fig. 2.1(j). This method has been implemented by
Thomasset (1982) for practical computations in the finite element methodology. The
application of this type element using the finite volume TVD schemes for solving the
Euler shock problem may be found in Ware and Berzins (1992). The 4-node
quadrilateral grid in which velocities are stored at midpoint of sides and pressure
constant at center point has been used by Maliska and Raithby (1984), as shown in
Fig. 2.1(i), where the momentum equations for cartesian velocities (u,v) at sides are
solved over the staggered control volume, then it is used only to compute the
contravariant velocity components that enter into the mass conservation constraint.

Using this method, the checkerboard pattern of pressure can be avoided.

While the checkerboard-type pressure problem can be overcome by the most
of the aforementioned methods, no numerical method can be regarded as the best for
all the fluid flow problems. Most of the existing numerical methods have at least one
or more of the following limitations:

* Difficulty in application to the complex geometries.

® No explicit physical interpretation.

e Difficulty to impose the pressure boundary condition.

® Extension to 3 dimensional flows is not immediate.

Finite element methods have geometric flexibility and ease of extension to high
order schemes, but do not lend themselves to an explicit physical interpretation. The
CVFEM combines the intrinsic geometric flexibility of FEM together with the direct
physical invocation of a conservation principle on the control volumes. The unequal-
order scheme of Baliga and Patankar (1983) and the equal-order scheme of Prakash
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Figure 2.1: The storage locations used in the first-order scheme with the primitive
variable formulation
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and Patankar (1985), respectively are typical of this class of schemes. In the method
of Baliga and Patankar (1983), the pressure is computed at fewer grid points than that
of the velocity, but the pressure boundary condition must be provided. In the method
of Prakash and Patankar (1985), the velocity and the pressure are computed at the
same grid points, but it still needs to specify the boundary condition for pressure. Both
the methods of Baliga and Patankar (1983) and Prakash and Patankar (1985) used the
same form interpolation function, i.e. the flow-oriented upwind function without
consideration of the source term in the transport equations. In an attempt to improve
his previous equal-order method, Prakash (1986) proposed a second method, where a
new flow-oriented, upwind type shape function includes the effects of the source terms
in the streamwise direction in the transport equations. The same interpolation function
is used to derive algebraic formulations to both the continuity and the momentum
equations. Hookey and Baliga (1988) modified the interpolation function of Prakash
(1986), to include source term effects in both directions parallel and normal to the
mean flow within each element. The pressure correction equation involves up to 25
neighbouring nodes in two dimensional problems (Hookey, 1989). This makes
extension to three dimensional flows difficult.

Staggering has proved to be a very effective method to avoid the pressure
checkerboard patterns, but in the case of finite volume it has only been used for
structured grid. This work proposed an extension to unstructured grid of the CVFEM
scheme. The theoretical basis is equivalent to the P1 non-conforming/PO element and

P1/P0 element of the finite element method.
2.3 Solution Algorithm

For primitive variable formulations, once the required convection-diffusion
formulation is chosen, the essence of the method lies in the treatment of the coupling

between the momentum and continuity equation. Two methods of handling this are the
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artificial compressibility method (Chorin, 1976) and the penalty function method
(Reddy, 1982). The artificial compressibility method is based on the addition of an
artificial time derivative of pressure to the continuity equation. This results in a
pressure distribution such that a divergence-free velocity field is ensured. It is noted
that the added term must vanishes for time-accurate solutions. Turkel (1987) extended
this concept by adding the pressure time derivative to the momentum equations and can
be considered as a preconditioning method to accelerate the convergence to a steady
state for both incompressible and compressible flows. In FEM, the penalty function
method reduces problems of conditional (or constrained) extremum to problems
without constraints by the introduction of a penalty on the infringement of constraints
(Reddy, 1982). In the application to incompressible flows, one replaces the
incompressibility constraint by a relation between the velocity and pressure, thus
eliminating the pressure terms in the momentum equations. Comparing the artificial
compressibility method and the penalty function method, Shih et al. (1989) pointed out
that these two methods are exactly the same. Both methods need to reconstruct the
continuity equation by adding the extra pressure term, then eliminate the pressure in
the momentum equations. The choice of free parameters is very important for

application of these two methods.

2.3.1 Segregated Solution Algorithm

An alternative to artificial compressibility and penalty methods is the use of
fully coupled solution algorithms in conjunction with direct Gaussian elimination type
solution for the numerical solution of the incompressible flow equations. This method
of solution requires less CPU time compared to most other methods for problems of
moderate size. However, as the number of unknown is increased, the cost becomes too
expensive, both in terms of storage and CPU time. Thus, these serious limitations have
led to the development of alternative algorithms based on segregated forms of solution.

A number of segregated solution methods currently employed originate from
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the SIMPLE procedure of Patankar and Spalding (1972). This method solves the
pressure and velocity algebraic equations separately, one at a time. Because of slow
convergence and the need of heavy under-relaxation of the SIMPLE procedure, some
enhancements have been developed.

Patankar (1980,1981) introduced the SIMPLER (SIMPLE-revised) method, in
which a pressure correction equation is used for obtaining only the velocity
corrections, while a separate pressure equation is solved for the evaluation of pressure.
This method brings a significant saving of computation time compared to the SIMPLE
method. Another variant is the SIMPLEC (SIMPLE-Consistent approximation)
procedure proposed by Van Doormaal and Raithby (1984), using a consistent
approximation for the treatment of the velocity correction fields. It avoids the
inconsistency of the SIMPLE procedure. The pressure correction equation does not use
under-relaxation. They showed that this is less expensive than SIMPLER for the
problems solved. The SIMPLEST procedure was developed by Spalding (1980), who
recommended an explicit treatment of convection and implicit treatment of diffusion
in the momentum equation. Another enhancement of SIMPLE is called PISO (Pressure
Implicit with Splitting of Operators), proposed by Issa (1985). It is a non-iterative
method for handling the pressure-velocity coupling of the implicitly discretised fluid
flow equations, which is essentially the same as the SIMPLER procedure for

incompressible flows.
2.4 Turbulence Modeling: Two-Equation Models

Based on the pioneering work of Prandtl’s mixing length theory and
Kolmogorov’s and Prandtl’s one-equation models, the turbulence models in use today
employ two differential equations for the turbulent length and time scales, and
constitute the first complete turbulence models. Variations of these two-equation

models are of interest for practical applications and under further development. These
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include the High-Reynolds number standard k-¢ model of Launder and Spalding
(1974), the Near-wall and Low Reynolds number k-e¢ models (Patel et al., 1985), the
k-w model of Wilcox (1988), the k-» model of Speziale et al. (1992), and the recently
developed Renormalization Group (RNG) k-e model of Yakhot and Orszag (1986), as
well as a Multiple-Scale turbulence model of Duncan et al. (1993).

2.4.1 Standard k-e¢ Model

In the standard k-e¢ model of Launder and Spalding (1974), the turbulence
kinetic energy k and its dissipation rate e are calculated from transport equations in the
fully turbulent flow region, and the Reynolds-stress tensor is represented by an eddy
viscosity model constructed from k, ¢ and mean flow field. The turbulent eddy

viscosity can be determined from the transport equation of k and ¢, defined as:

k2
p,t:Cpp_e- (2.1)

For wall bounded flows, wall functions are adopted to blend the fully turbulent
region with the near wall region, because of the predominance of viscous effect in that
region. Used in conjunction with wall functions, the k-¢ model is reasonably well
behaved, and has been applied to the solution of many practical problems with a
moderate amount of success. Because this model cannot be integrated directly to a
solid wall, particularly in problems where wall transport properties are important, the
development of various Low-Reynolds-number near-wall corrections have been

proposed and will be reviewed.

2.4.2 Low-Reynolds-Number Near-Wall k-¢ Models
The low-Reynolds-number models avoid the use of wall functions, and instead,
propose a method for determining the various turbulence parameters all the way to the

surface itself. The eddy viscosity is defined as:
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where L is a damping function. In some versions, ¢ isequal to the actual dissipation
¢, while in others itis ¢ = ¢ - p, where D depends on the version considered and
is non-zero only in the viscosity affected region. The various Low-Reynolds number
versions of the k-e model differ in the form of the damping functions, in the values of
the closure coefficients and in the surface boundary condition imposed on & Details
are given by Patel et al. (1985) and Wilcox (1993b).

The Low-Reynolds number k-e¢ models have the undesirable feature of requiring
very high numerical resolution near the wall, and perform poorly in adverse-pressure-
gradient boundary layers. Furthermore, the damping funcfions in these models were
developed for attached boundary layers and are not always well behaved in separated
flows (Rodi, 1991). In attempts to improve such situations, the two-layer model is
adopted. It uses the one-equation model of Norris and Reynolds (1975) near the walls,
because this model performs well in adverse-pressure-gradient boundary layers (Rodi
and Scheuerer, 1986). For flow over a backward-facing step, the two-layer model
predicted the reattachment length with much better agreement with the experiments of
Driver and Seegmiller (1985), and it also produces a small second corner eddy which

is absent in the calculation with standard k-e model.

2.4.3 k-w and k-7 Models

The k-e model is the most widely used two-equation model, while k-w and k-7
models are recently developed additions. The major difference between these models
lies in the application of wall boundary conditions for the length scale variable and the
source terms introduced in the turbulent variable transport equations.

The k-w model of Wilcox (1988) is a two-equation model based on a transport

equation for the turbulent time scale, where the turbulent kinetic energy k and
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turbulent time scale w are solved. The turbulent viscosity for this model is:

u, =y Lk 2.3)
®

where y* is the model constant, and w is defined by ¢ =¢/(B k).

With no viscous damping of the model’s closure coefficients and without
resorting to wall functions, the model equations can be integrated to the solid
boundary. Hence, the k-w model is more computational robust than the k-e model for
the integration of turbulent flows through the viscous sublayer. Furthermore, it has
been designed to predict the proper wake strength in equilibrium adverse pressure
gradient boundary layer flows. However, when this model is applied to free shear
layers, a strong dependency of the results on the freestream value of w has been found
(Menter, 1992). Wilcox (1993a) proposed a modified version that eliminates the
model’s freestream boundary condition sensitivity and without destroying its accuracy
for boundary layers in adverse pressure gradient and for transitional boundary layers.
He shows that the k-w model is superior over all other turbulence models for wall-
bounded flows.

Instead of solving the turbulent length scale transport equation, a modeled
transport equation for the turbulent time scale ¢=1/w is solved in k-7 model of
Speziale et al. (1992). The eddy viscosity for k-7 model is:

k,=C, pkt (2.4)

The advantage of this model is in the wall behaviour of 7. In the low Reynolds
number form, at a solid wall, the dissipation rate ¢ can have a finite value at the wall,
while, the turbulent kinetic energy is zero. Then the value of w ( w=¢/(pk) ) at the
wall is infinity and the value of 7 ( t=kfe ) at the wall is zero. This behaviour gives
the k-7 model advantages over both the k-¢ and k-w models at low Reynolds numbers,

because the equations are integrated directly to the wall and these boundary conditions
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greatly affect the numerical behaviour of the solution.

2.4.4 RNG k-e¢ Model

The Renormalization Group (RNG) k-¢ model is derived from statistical
principles (Yakhot and Orszag, 1986). It is based on Gaussian statistics where an
expansion is made about an equilibrium state by using the correspondence principle.
In the high Reynolds number limit, the RNG model is identical to the standard k-e
model of Launder and Spalding (1974). The major difference between the RNG k-e
mode] and the standard k-e model lies in the near wall treatment. The RNG k-¢ model
can be integrated directly to a solid wall without the need for wall damping functions.
The constants of the RNG k-¢ model are calculated explicitly by the theory, while, in
the standard k-e model, the constants are obtained from benchmark experiments for
equilibrium turbulent boundary layers and isotropic turbulence, and are given in Table
2.1, respectively. Beyond having the attractive feature of no undetermined constants,
the RNG k-¢ model of Yakhot and Orszag (1986) automatically bridges the eddy
viscosity to the molecular viscosity as a solid boundary is approached, thus eliminating
the need for the use of empirical wall function or Van Driest damping. However, in
the RNG k-e¢ model of Yakhot and Orszag (1986), the constant C,, = 1.063 is
dangerously close to one, which constitutes a singular point of the e-transport equation
(Speziale and Thangam, 1992). To overcome this shortcoming, the new version of
RNG k-e model was recently adopted by Speziale and Thangam (1992) for the
calculation of turbulent separated flows. The constants of this model are also given in
Table 2.1.
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Table 2.1: Comparison of model constants of k-¢, RNG and new version of RNG

Cu Cel Ce2 ok oe
k-e 0.09 1.44 1.92 1.0 1.3
RNG 0.085 1.063 1.72 0.7179 0.7179
RNG" | 0.085 c. 1.68 0.7179 0.7179
Cq = L42-n(1-n/np/(1+Bn?) 2.5)

It was shown by Speziale and Thangam (1992) that when this model is extended
to include an anisotropic eddy viscosity, the predicted mean reattachment point is
almost identical to the experimental data. The RNG k-¢ model has been successfully
implemented by a commercial finite volume program FLUENT (1993), where
turbulent flow results shown based on the RNG k-e¢ model are much better than those

of the k-e model.

2.4.5 A Multiple-Scale Turbulence Model k -¢,-ki-¢,

A multiple-scale turbulence model has been derived by Duncan et al. (1993).
This model splits the energy spectrum into a high wave number regime and a low
wave number regime, which correspond respectively to a region where the turbulent
kinetic energy is produced by interaction with the mean flow and a region where the
turbulent energy is transferred from the production region. Thus two sets of k,-¢,-k-¢
equations are established, where k, is the kinetic energy contained within the
production region and e, is the rate at which energy is passed from the low wave
number range into the high wave number range, k, is the kinetic energy contained in
the smaller eddies and ¢, is taken to be equivalent to the dissipation rate at the high

wave number end of the spectrum. The eddy viscosity for this model is defined as:
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where the coefficients are determined by examining the decaying and homogeneous
turbulence. This model has been applied to boundary-free turbulent shear flows with
good agreement with data. Until now, there are no reports on wall bounded flows

applications of this model.

2.4.6 Turbulence Near-Wall Functions

The wall function is derived by considering that the flow in the near wall region
can be represented by a Couette flow approximation based on the logarithmic form of
the law of the wall. The standard form of the near-wall model is the two-layer law of
Launder and Spalding (1974), given by:

v (v*<11.63)

u 2.7
u, | linegy), (*211.63)
K

where E is a wall roughness parameter, and « is the von Karman constant. u, is the
friction velocity and y- is the dimensionless normal distance from the wall. The wall
function is applied at the first point located within the inner region of the turbulent
boundary layer.

A new way of treating the wall functions was proposed by Chieng and Launder
(1980) and latter by Amano (1984). In the two-layer model of Chieng and Launder
(1980), the near-wall cell is treated as viscous sublayer up to a distance from the wall

and fully turbulent beyond this, the first computational point lies outside the viscous
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sublayer. In this model, the mean generation rate and mean dissipation rate of the k
equation in the numerical cell adjacent to the wall is evaluated, while, the value of e
in the near-wall cell is approximated under local equilibrium condition. In the two-
layer model of Amano (1984), the treatment of the e equation in the near-wall cell
takes into consideration the fact that the value of e near the wall is an order of
magnitude larger than that in the fully turbulent core and reaches its maximum at the
wall. Each term in the e equation is evaluated in accordance with the k equation rather
than approximated under local equilibrium conditions. However, it was found that both
linear and logarithmic profiles deviate from the experimental data in the buffer layer.
In order to improve the accuracy, another wall function method is proposed in

which the velocity profile based on the Reichardt law, is defined as:

2 = Llin(1+0.4y7+7.8 |1-exp(-20) -2 exp(-033y") 2.8)
v, % 1 11

Reichardt’s law closely matches the experimentally observed velocity profile
across the viscous sublayer (y* < 5), the transitional sublayer (5 < y* < 30) and the
fully turbulent layer beyond (y* > 30). This method has been used by Autret et al.
(1987) and a commercial finite element program FIDAP (1991).

A three-layer model was implemented by Thangam and Speziale (1992), in
which all three layers, the viscous sublayer, the transitional sublayer and fully

turbulent layer are considered. The law of the wall is then given by:

yh r*<5)
-;—‘- ={ -3.05+5lny*,  (S<y*<30) (2.9)
55+25my*,  (y*230)

It was shown by Thangam and Speziale (1992) that the three layer law of the
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wall, with standard k-e model predicts a reattachment point longer than that of the
two-layer law of the wall for flows over a turbulent backward facing step. However,
the three-layer law of the wall boundary condition does not affect the turbulence stress
profile.

The three-layer near wall model of Amano (1984) is comprised of a viscous
sublayer, a buffer layer, and an overlap layer in the near-wall cell. In the application
of the three-layer model, the first computational point lies outside the buffer layer and
assumes the near-wall cell is large enough. He showed that the three-layer model gives
better predictions than the two-layer model, but the latter requires less computational

time. Details of the treatment of the three-layer model are given in Amano (1984).

2.4.7 Turbulence Modelling from a Numerical Viewpoint

The turbulence models previously described can be implemented by any well
established numerical method, such as finite differences, finite volume, finite element,
as well as control volume based finite element methods. Most of the early works on
turbulence modelling uses the finite-difference and/or finite volume method based on
hybrid central/upwinding differencing scheme, such as Chieng and Launder (1980).

Rhie and Chow (1983) applied the finite volume collocated method to solve the
turbulent flows over airfoils with and without trailing edge separation. The k-¢ model
with wall functions was utilized to describe the turbulent flow processes. Their work
used a general curvilinear coordinate system based on the TEACH code with SIMPLE
method, thus eliminating the geometric limitation of TEACH code written for cartesian
or cylindrical coordinates. They show that without separation, the k-¢ turbulent model
predicted values in reasonably good agreement with the experimental data; with
separation, the k- model predicted poor results.

Zhu and Rodi (1992) have used the finite volume method with standard k-e
model to simulate the axisymmetric confined jets in a diffuser. It uses an equal-order,

cell-centered grid with all the dependent variables stored at the geometric centre of the
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control volumes. They solved the discretized equations based on a curvilinear
coordinate system to treat the complex geometries. Three discretization schemes were
used to approximate the convection terms, i.e. hybrid central/upwind differencing,
QUICK and SOUCUP (Combined Second-Order Upwind, Central differencing and
first-order upwind schemes). They showed that the high-order discretization of the
turbulence equations plays a crucial role in accurately simulating turbulent flows.

Morgan et al. (1977) demonstrated the use of a mixing length and a two-
equation turbulence model with the finite element method. They solved the coaxial jet
flow using the Prandtl’s mixing length model and fully developed pipe and channel
flows using the k-1 two-equation model. The solution domain considered does not
extend to the wall but terminates inside the fully turbulent region. The near wall
boundary condition is treated by the wall function method. Latter, they extended the
method by using the k-¢ model (Morgan et al., 1979) and solved the same flow
problems, the results compared favourably with other numerical method predictions.

Benim and Zinser (1985) used a segregated solution algorithm with SUPG finite
element method to solve pipe flows and confined jet flows. The turbulence is solved
by the k-e two-equation turbulence model. Instead of using the near wall first point of
the boundary element to estimate the wall shear stress, the near wall second point in
the boundary element is considered. The velocity components as well as the turbulent
quantities k and ¢ are interpolated by bilinear function, a constant pressure is assumed
on a quadrilateral element.

Comini and Del. Giudice (1985) demonstrated the use of the SIMPLER
algorithm of Patankar (1980) coupled with the k-¢ model with wall functions. The 8-
node isoparametric elements are used for all variables. They solved a fully developed
channel flow and a backward-facing step flow.

Autret et al. (1987) reported on the solution of turbulent flows by a Galerkin
finite element method. They solve the turbulent flow over a backward-facing step using

the k-e model. The wall region is treated through the Reichardt’s law. They show how
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the numerical reattachment length is underpredicted, and an appropriate choice of C.,
can gives qualitatively better results.

Benim (1990) reported the solution of steady confined turbulent swirling flow
by a SUPG finite element method. The momentum and continuity equation are solved
using a segregated algorithm. Both the k-e model and the algebraic stress model (ASM)
are considered. He showed that the ASM leads to more accurate results for swirling
flows compared to the k-e¢ model.

Manouzi and Fortin (1991) developed a transmission finite element method to
model the boundary layer flow. The method is based on a domain decomposition into
subdomains near a solid boundary. This boundary element has both linear and
logarithmic variation for the vertical direction and a quadratic variation in the
horizontal direction. It was found that the latter provides a more accurate
representation of the logarithmic-linear velocity profile to the boundary of the flow
domain. They calculated the poiseuille flow and flow over a backward-facing step.

Elkaim et al. (1992) developed a numerical procedure to solve turbulent flow
with the k-¢ model based on a control volume finite element method. They treated the
pressure-velocity coupling by the vorticity-streamfunction formulation. Both the law
of wall and Low-Reynolds number formulations are implemented to take into account
the wall effects. They found the latter to perform better in recirculation regions.

Zuercher and Rozon (1993) demonstrated the turbulence modelling using the
commercial control volume finite element method code Aerovisc/TASCflow. Two-
layer and k-e turbulence models with and without an additional dissipation rate
equation source term modification were considered. In the application of two-layer
turbulence model, the computation domain is divided into two regions: away from
walls and near walls. They used the combination of the standard k-e model away from
the wall and a one-equation model in the near wall region. They found that two-layer
model provided improved predictive capability compared to the wall function

approach. For the turnaround duct test case, flow separation was predicted using the
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two-layer model, whereas it was not using the k-¢ turbulence model and a log-law wall

function method.
2.5 Combustion: The Conserved Scalar Approach

Chemical reactions usually involve many species and proceed through a large
number of finite rate reaction steps. Essentially, these reaction processes can be
described by conservation equations for the mean value of each species, which in turn
leads to computation of the mean reaction rates of each species. These reaction rates
are inevitably highly nonlinear functions of the temperature and the concentration of
species, as well as theirs corresponding second-moment correlations. However,
knowledge of these quantities is insufficient to obtain reaction rates, which makes it
very difficult to simulate the combustion process. A simplification of the above
difficulty is the use of the conserved scalar approach (Bilger, 1980). Considering the
turbulent nonpremixed flame with two streams of reactants, where turbulent mixing
is important and the chemical reactions are assumed sufficiently "fast" for all reactions
to go to equilibrium as soon as the reactants are mixed. Then the calculation of the
mean reaction rates in the conservation equations of species is no longer required as
all species may be determined simply in terms of strictly conserved scalar variables.
Following Bilger (1980), the reaction takes place in an irreversible, single step as

follows:

1kg Fuel + skg Oxidant = (s+1)kg Products (2.10)

where the reaction rate obeys:

We=W,fs = -Wy(s+1) 2.11)

and the linear relationships for the conserved scalar variables as:
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Bro=Yp-Yols
Brp=Yp+¥p/(s+1) @.12)

Bor=Y, +sYp/(s+1)

Here, Yp, Yo, and Y, represent the mass fractions of fuel, oxidant and products,
respectively, and s is the stoichiometric ratio of oxidant required to burn 1 kg fuel.
Bro, Bre and Bp are the conserved scalars of the mixture fractions.

The preferred choice of conserved scalar is the mixture fraction, others may
be formed using the sensible enthalpy. The conserved scalar approach is suited only
when there are two uniform reactant feeds, then linear relationships among all the
conserved scalars exist (Bilger,1980). It is not only useful in one-step reaction, but it
can also be extended to two-step reactions (Nikjooy et al., 1988) and multi-step
reactions such as the chemical equilibrium model of Gordon and McBride (1971).
Based on the conserved scalar approach, the combustion models can be classified as:
the fast chemistry reaction model, probability density function of conserved scalars,
chemical equilibrium model, laminar flamelet model, or the finite rate chemistry with
a two-variable modification, such as eddy-break-up model (Spalding, 1971b) and eddy

dissipation combustion model (Magnussen and Hjertager,1976).

2.5.1 Fast Chemistry Reaction Model

The fast chemistry reaction model assumes that the reaction is so fast that fuel
and oxidant do not co-exist anywhere, except within an infinitely thin flame sheet (both
the fuel and the oxidant will be zero when the mixture is stoichiometric). According
to the above assumption, Williams (1965) concluded that a linear combination of
species conservation equations for fuel and oxidant, yields an equation whose form is
identical to the conservation equation of chemically inert species without source terms.
In this model, only one conservation equation of mixture fraction is solved. Recent

applications of this model by different numerical methodologies are made by Kim
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(1987) with finite element method, by Elkaim et al. (1993) with CVFEM and vorticity
streamfunction formulation, by Liu et al. (1993) with finite volume multigrid method.
The advantage of this model is that it allows the solution to converge easily because
the governing equation of the mixture fraction has no source term. While this model
assumes that fuel and oxidant cannot co-exist, some available experimental results are
contrary to this assumption and indicate that the fuel and the oxidant may exist at the
same location but at different times. Modifications to account for this co-presence of
the reactants, were made by Spalding (1971a), Lockwood and Naguib (1975) and
Bilger (1975).

2.5.2 Probability Density Function Model

Consideration of the concentration fluctuations, or unmixedness and
intermittency, has led to the development of the probability density function (PDF)
model. The PDF of conserved scalars by the mean and the variance (e.g. mixture
fraction f and concentration fluctuation variable g) can be specified from three types
of assumed forms, double delta PDF of Spalding (1971a), beta PDF of Jones (1979)
and clipped Gaussian PDF of Lockwood and Naguib (1975). By comparing various
PDF models for the hydrogen-air round jet diffusion, Jones (1979) concluded that
while the double delta PDF gives rise to unrealistic resuits, the clipped Gaussian and
Beta PDF provide good agreement with little difference. Recently, a comparative study
of the delta and beta PDF models were made by Kim and Chung (1989) with finite
element method, by McKenty et al. (1993) with control volume finite element method.
Good agreement being obtained with experimental data for the conserved scalar field
and for the mean composition. When more accurate forms of the PDF are required,
the direct calculation of PDF is needed (Pope, 1976, O’Brien, 1980).

2.5.3 Chemical Equilibrium Model

For reversible reaction, the fast chemistry assumption implies that the forward
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and back reaction rates are fast compared with the turbulent mixing processes, thus the
composition of the mixture at a given point at any particular instant will be the same
as that reaches if the mixture were isolated and allowed to come to chemical
equilibrium (Bilger, 1980). Bilger suggested that for many species and multiple
reactions, the chemical equilibrium constants of molecular species can be calculated
from the elemental composition and enthalpy defined by a conserved scalar approach.
The most reliable method for the calculation of the equilibrium state of a gas is based
on the minimising of the Gibbs free energy, which is described by Gordon and
McBride (1971). This has lead to a well tested and reliable computer program that has
been used by Liew et al. (1981), Jones and Whitelaw (1982) for different reaction
problems. Another discussion of the minimization of free energy technique can be
found in Heywood (1986). In case of methane/air mixtures, Jones (1979) showed that
in their chemical equilibrium results, in the fuel lean regions, negligible quantities of

CO are present; in the fuel rich region, appreciable CO concentration exists.

2.5.4 Flamelet Model

In the laminar flamelet concept the turbulent diffusion flame is considered as
an ensemble of thin laminar diffusion flamelets. The model is applicable if the length
scales of the turbulent eddies are much larger than the reaction zone thickness of the
flamelets (Rogg et al., 1986). The laminar flamelet concept can be used to determine
the composition and temperature as a function of the conserved scalar (such as mixture
fraction). The flamelet can be specified from the reaction mechanism provided by
either experimental measurement or numerical prediction.

Liew et al. (1981) established their flamelet model on the experimental data of
Mitchell et al. (1980). They supposed that the microscopic element in the model
describing local mixture state and burning, has the structure of an undisturbed laminar
diffusion flame. This provides unique relationships for all thermochemical variables

in terms of the conserved scalar (or mixture fraction) alone. These relationships are
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then averaged, for the turbulent flame using an assumed PDF of the conserved scalar.
By comparing the results between the flamelet model and the chemical equilibrium
model of Gordon and McBride (1971), they showed that their flamelet model yields
substantial improvements in the prediction of mean CO concentration in the fuel rich
regime of an open turbulent methane/air diffusion flame. The specification of the
flamelet model using numerical prediction may be found in Liew et al. (1984). They
proposed a simple method for the incorporation of detailed non-equilibrium
hydrocarbon chemistry into a representative flow field model. The microscopic element
in the turbulent ensemble is taken to be a stretched laminar flamelet, drawn from a
library of such flamelets in which the extent of local stretching is characterized by
Damkohler number. The application of the flamelet model, were also shown by Rogg
et al. (1986) to partially premixed diffusion flamelets with detailed chemistry, by
Askari-Sardhai et al.- (1985) to propane/air reaction, by Cant et al. (1990) to premixed
turbulent flame, respectively. Recently, McKenty (1992) established a micro-flame
model for methane/air flames based on the experimental data of Mitchell et al. (1980).
The model relates the species mass fraction of the combustion products to the mean
mixture fraction. It is shown that this model gives better predictions of CO and H,

mass fraction than the chemical equilibrium model for fuel rich mixtures.

2.5.5 Eddy Dissipation Combustion Model

Extension of the conserved scalar approach to the case of finite rate chemistry
is carried out by considering an additional variable which is affected by the chemical
kinetics. The eddy-break-up (EBU) model of Spalding (1971b) combines the effects
of mixing and kinetics through the use of the eddy break-up rate and the kinetic rate
of reaction in a laminar premixed flame. Magnussen and Hjertager (1976) extended
the idea of the EBU model, and proposed the eddy dissipation concept (EDC) for both
turbulent diffusion and premixed flames. Based on EBU or EDC model, a single step,

irreversible fast reaction described by two differential equations, one for the mixture
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fraction, another for mass fraction of fuel are solved. This approach is semi-empirical
and not soundly based in theory (Bilger, 1980). It is however widely used in the
combustion community due to its simplicity and flexibility in applications to 3D
complex geometries (Bai and Fuchs, 1993). Jessee et al. (1993) presented a finite
volume method for the solution of turbulent reacting flows using a finite chemical
kinetics model based on the eddy dissipation concept. Extension of the EBU model to
a two-step global reaction of hydrocarbon fuel described by Westbrook and Dryer
(1981) is carried out by Nikjooy et al. (1988) using the finite volume method, where
the three equations for unburnt fuel, carbon monoxide (CO) and mixture mass fraction
are solved, two of these equations have a non-zero EBU source terms. Application of
the EDC model to a four-step reduced reaction mechanism of hydrocarbon fuel
suggested by Hautman et al. (1981) are made by Bai and Fuchs (1993), with the use
of the finite difference together with a multi-grid method and a local grid refinement
technique. Other applications of EDC model by using the different numerical methods,
were also found in Benim (1989) with FEM, by Mckenty (1992) with CVFEM and a

vorticity-streamfunction formulation.

2.5.6 Other Methods

Much work is presently underway in predicting turbulent flows through direct
numerical simulations (McMurty and Givi, 1989), PDF modelling (Chen et al., 1989)
and finite chemical kinetics embedded in the flow calculations (Vos, 1987).

Direct numerical simulation refers to the numerical solution of the exact
aerothermodynamical equations of the unsteady turbulent reacting flow field (McMurty
and Givi, 1989). No turbulence modelling is required because of the turbulence is
obtained as the direct solution of the unsteady equation. However, the large disparity
in time and length scales and limited computer capacity, makes this method impractical
for most practical applications.

PDF modelling on turbulent nonpremixed methane jet flames was demonstrated
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by Chen et al. (1989) using the Monte Carlo simulation. The chemical reaction models
are considered as a five-scalar, four-step reduced mechanism and a four-scalar
constrained equilibrium model, respectively. They make use of the PDF submodel to
handle five scalars, while turbulence velocity field is described by a second-order
moment closure. Hsu et al. (1993) developed a PDF approach for compressible
turbulent reacting flows for the use with a CFD flow solver. The PDF of the species
mass fraction and enthalpy are obtained by solving a PDF evolution equation using a
Monte-Carlo scheme. Their scheme is the combined finite-volume Monte-Carlo
procedure. However, the PDF approach has only been used in some simple
applications due to its complexity.

Vos (1987) showed the numerical solution of turbulent reacting flows using
finite chemical kinetics with the finite volume method. He proposed a two-step,
pseudo-time-splitting algorithm for the solution of mass fraction equations. This
technique is also implemented by Coelho and Pereira (1992) for predicting methane/air
laminar diffusion flame with a finite rate chemical kinetics combustion model using a
local grid refinement technique. In the first step, convection and diffusion of all
species in the standard governing equations are solved by the Gauss-Seidel line by line
iterative procedure. In the second step, chemical reactions are taken into account for
all mass fractions simultaneously by integrating the stiff ordinary-differential equations
with chemical source term using a general chemical kinetics code package CHEMKIN
(Kee et al., 1980). Similar procedures are adopted by Jessee et al. (1993) for the finite
chemical kinetics calculation using the eddy dissipation concept, but the reaction time
is controlled by the local turbulence rather than by the local residence time (Coelho
and Pereira, 1992) for the given control volume. In order to predict the CO and NO,
they make use of the simplified thermal NOy reaction mechanism of Miller and
Bowman (1989). Radhakrishnan and Pratt (1988) proposed a fast algorithm for the
calculation of chemical kinetics equations by using exponentially-fitted integration
algorithms namely CREK1D.
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2.6 Radiation Modelling

Radiation is the dominant mechanism of energy transfer to the walls of large
scale combustion chambers. The difficulties associated with radiation modelling are the
multi-dimensional nature of the phenomena, the integro-differential nature of radiative
transfer equation, and the coupling between the radiative transfer equation and energy
conservation equation (Chiu, 1990). Unlike the flow field, which can be solved directly
by a spatial integration algorithm, for radiation, both spatial integration and angular
integration have to be carried out. There are several radiation models, such as Zonal
(Hottel and Sarofim, 1967), Monte-Carlo (Howell, 1968), Flux (Gosman and
Lockwood, 1973) methods, etc.. The excellent reviews of various radiation models on
combustion system are given by Viskanta and Menguc (1987), and by Howell (1988).

In this section, several well established radiation models are discussed with
emphasis on their application to irregular shaped complex geometries and coupling to
the flow equations. The problems posed by the application to practical furnaces are

presented.

2.6.1 Zonal Method

The Zonal method is based on the view factor and mean beam length concepts.
Essentially geometric in its approach, the domain is divided into a number of surface
and volume zones about which radiation balance and total energy balance are
formulated. Each zone is considered to be uniform in temperature and radiation
properties. The heat release and the flow patterns are specified in advance.
Geometrical exchange factors (exchange areas) between each zone pair are supposed
to be known a priori.

The advantage of this method is that it can approach an exact solution for the
radiative fluxes as the number of zones is increased, and even for a relatively coarse

zoning, it can give good results.
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The major difficulty of applying this method is the tedious evaluation of the
direct exchange areas. Attempts to improve the zonal method were made by Larsen
and Howell (1985) with an exchange factor method, by Naraghi et al. (1988) with a
continuous exchange factor method in participating media, by Saltiel and Naraghi
(1991) with an exchange factor method in nonhomogeneous media, respectively.
Considering the anisotropically scattering media, Yuen et al. (1992) developed a
Generalized Zonal method. However, there is a difficulty in matching the required grid
sizes for radiation and fluid flow field (Howell, 1988) and the calculation of the
exchange areas remains very difficult for complex geometries (Viskanta and Mengiic,
1987).

2.6.2 Monte Carlo Method

The Monte Carlo method is based on a statistical approach. The exchange
factors are automatically calculated as the randomly chosen energy releases are tracked
through the domain for their lifetimes. This method can in principle be programmed
to include an exact simulation of all important physical processes (Howell, 1988).
Applications may be found in Taniguchi (1969), Steward and Cannon (1971), Gupta
et al. (1983), Burns et al. (1992) and Gorner and Dietz (1993), which illustrate its
geometry flexibility and ability to handle difficult problems.

The drawbacks of this method is that it requires long computation time to
obtain good results due to the method’s statistical approach. Another difficulty is the
grid size incompatibility, in which the computational element size required for
statistical accuracy in the Monte Carlo solution may not be compatible with the grid
size necessary for numerical solution of the energy equation, even given sufficiently

fast and cheap computation capability (Howell, 1988).

2.6.3 Flux Methods

In the flux methods the angular variation of the radiant intensity in space is
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assumed to be of a certain functional form. The integro-differential radiative transfer
equation then reduce to a set of partial differential equations. The various flux methods
are classified as Flux Model, Spherical Harmonics (P-N) method, Discrete Ordinates
(Sx) method according to the different functions (or weighting coefficients) used.
Because this class of methods is essentially a field method, they can easily be

incorporated into existing flow and reaction solvers.

Flux Models

The flux model includes the 2-Flux model (Siddall and Selcuk, 1974), 4-Flux
model (Lockwood and Spalding, 1971) and 6-Flux model (Patankar and Spalding,
1974) in 1-, 2- and 3-dimensional heat transfer problems, respectively. In this model,
the space is divided into 2, 4 and 6 directions along each coordinate direction, and the
intensity is assumed uniform in each direction. DeMarco and Lockwood (1975)
developed a new flux model, in which a six-term Taylor’s series expansion is used to
represent the directional dependency of intensity and resulting in 6 flux partial
differential equations. The result is shown to be better than that of the 6-Flux model.
The application of the various Flux models in combustion chambers may be found in
Khalil (1982).

The flux models provide a very economical tool for predicting radiative heat
transfer in rectangular shaped enclosures (Benim, 1988). However, due to the lack of
coupling between the radiant fluxes, the accuracy with this method is limited. Also,
these methods are generally not compatible with arbitrary shaped geometries, and their
application to complex geometries is not straightforward (Benim, 1988). Improvement
of the accuracy of the flux model, has led to the development of the P-N and Sy

methods, which has a tight coupling between the radiant fluxes.

Spherical Harmonics (P-N) Method
The Spherical Harmonics (P-N) method assumes that the angular distribution
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of radiant intensity in a medium can be approximated by a finite series of spherical
harmonics. The intensity is expanded in an orthogonal series of products of a position
dependent coefficient and a normalized spherical harmonic function. The order of the
approximation N is the truncation of the series. In principle, as N increases to infinity,
the solution approaches the exact solution of the radiative transfer equation.

A general description of P-N method is given in the book by Davison (1957).
It has been widely used in various problems with good accuracy (Ratzel and Howell,
1983, Mengii¢ and Viskanta, 1985, Modest and Sikka, 1991). Usually, the P-3 method
is appropriate for the application to engineering problems with good accuracy and
moderate computational time.

The disadvantage of applying the P-N method lies in its inflexibility. Deriving
and using of the expansions of order N greater than 3 becomes very difficult (Howell,
1988). For example, for N equal to 5, the derivations are more complex and costs as
compared to the P-3 method with negligible improvement in accuracy (Mengii¢ and
Viskanta, 1985).

Discrete Ordinates Method

The discrete ordinates method (Sy) (Chandrasekhar, 1960) assumes that the
angular distribution of intensity about a location can be expressed by a discrete set of
intensities which span the entire solid angle of 4. The angular integral of intensity is
discretized by numerical quadrature. The discrete ordinates equations are obtained by
evaluation of the radiative transfer equation in these specified directions.

The Sy method has been widely used in the thermal radiation community: by
Fiveland (1984, 1988), Truelove (1974, 1988), Kim and Lee (1988), Jamaluddin and
Smith (1988,1992), Chai et al. (1993 b,c,d) for simple geometries, by Sanchez and
Smith (1992), Chai et al. (1993 a,c) for complex geometries. The accuracy of the Sy
method depends on the selection of discrete directions and associate weights, the

choice of quadrature scheme may be found in Carlson and Lathrop (1968), Fiveland
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(1984,1991) and Wakil and Sacadura (1992). The use of the S, method is found to be
slightly more accurate than P-3 method (Fiveland, 1984). Extension of the Sy method
with the finite element formulation is shown by Fiveland et al. (1993).

For problems where scattering dominates, this method works very well, but
errors may arise if it is applied to absorption dominated problems due to the "ray
effect" (Lathrop, 1968). Discussions on "ray effect” occurring on the application of
the Sy method are given by Chai et al. (1993d). They concluded that the ray effect
arises by the inability of the discretized intensity distribution to fully represent the
actual continuous intensity distribution, it is independent of the spatial discretization.
By increasing the number of ordinate directions, the ray effect can be reduced, but
cannot be eliminated (Fiveland, 1984). Similar to the false diffusion concept in fluid
flow, they introduced a new concept "false scattering” for radiation which appears in
the application of the Sy method, and is a consequence of spatial discretization and is
independent of the angular discretization. It happens when a beam is not aligned with

the grid line in the multi-dimensional computations.

2.6.4 Discrete Transfer Method

The discrete transfer method was proposed by Shah (1979), and Lockwood and
Shah (1981). Firstly, the surface of the enclosure is divided into subsurfaces, and the
volume of the medium is divided into cells (or Zones); secondly, taking each
subsurface as a hemisphere, the emitted radiation is subdivided into beams, where each
beam is assumed to have positive and negative propagation direction (Fluxes); finally,
the beams are drawn hemispherically from each subsurface in prescribed directions
(similar to Monte Carlo method, in random direction). The solution proceeds along
individual rays of intensity, one at a time, instead of solving for all the intensities in
the field. It can be classified as the ray tracing method. A survey of the state-of-the-art
of ray tracing procedure are given by Glassner (1989). This method can be considered

as a combination of the Zonal method, Flux Model and Monte Carlo technique. It
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retains their advantages while avoiding their shortcomings.

Because the number of beams is specified in advance, it can be more economic
than the Monte Carlo solution which needs a lot of random beams to obtain good
results. It is flexible and able to handle complex geometries. In application to
absorption media, finer discretization can yield any desired degree of precision, and
even reproduce the exact solutions (Lockwood and Shah, 1981). For gas flames, where
the scattering is zero, the method can provide excellent results as evidenced by the
work of Abbas et al. (1984, 1986), Fiveland and Wessel (1986), Carvalho et al.
(1987,1988, 1990), Meng et al. (1992). Extension of this method to cylindrical
enclosures for the isotropic scattering medium were made by Carvalho et al. (1991).
Application of this method to complex geometries are given by Murthy and Choudhury
(1992), Meng et al. (1993). When scattering is considered, a simple average is used
in the discrete transfer computations, unlike the Sy method which use a more accurate
numerical quadrature. This will reduce the accuracy when this method is applied to
solve anisotropic scattering problem.

Discrete transfer method may also suffer from the ray effect, as shown by
Viskanta and Menguc (1987), Carvalho (1991) and Meng et al. (1993), but the false
scattering is not found. This is due to the ray tracing approach, where the intensity is

solved along the "upwind" ray propagation direction.

2.6.5 Other Methods

The radiative transfer equation can be solved by other methods, as the finite
element method (FEM) (Razzaque et al., 1983,1984, Fiveland et al., 1993) and finite
volume method (FVM) (Raithby and Chiu, 1991), as well as boundary element method
(BEM) (Bialecki, 1991).

The advantage of using FEM is that it offers the possibility of high accuracy,
and can be used with the same grid as for the flow and energy conservation equation.

Furthermore, it can be applied to complex geometries. However, this method is still
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limited when using very coarse grid, due to the high computational cost (Howell,
1988). Tan (1989) used the product-integration method to solve radiation problems,
significantly reducing the solution time of FEM.

The FVM can give good accuracy on coarse grid. The intensity at the
integration points are determined from the solution of the radiative transfer equation
using the skewed upwinding procedure (Raithby, 1976b). It satisfies the global
conservation constraints for intensity and heat flux, hence prevents the occurrence of
the "ray effect” encountered in the Sy method (Chiu, 1990).

Using BEM, the integration is over the boundary, no volume integrals are
present in BEM, thus it requires fewer calculations (Bialecki, 1991). However, because
the ray-tracing method is used in BEM computations, it may suffer from the

disadvantages of the discrete transfer method when scattering has to be considered.

2.6.6 Radiation Models for Complex Geometries

Most of the radiation models have the ability to deal with irregular and complex
geometries. The Monte-Carlo method (Burns et al., 1992, Gorner and Dietz, 1993) is
very flexible and can provide high accuracy if a sufficient number of random rays is
chosen. However, at the cost of computation efficiency. The Zonal method (Hottel and
Sarofim, 1967) and its extension, the Exchange Factor method (Naraghi et al., 1988)
can be computationally efficient but have the problems of computing the exchange
factors in very complex geometries. Saltiel and Naraghi (1990) developed a new
discrete exchange factor method, where the exchange factors are calculated from point
to point. It is flexible because unstructured triangular meshes are used. Lisienko et al.
(1992) presented a Zone-Node method for radiating gas in complex geometries, with
two set of grids, a fine curvilinear orthogonal grid for the computation of the flow
field and a coarse grid for the computation of radiation. Haidekker (1991)
demonstrated the radiation solution in complex 3D geometries using the zonal, the

imaginary plane and the discrete transfer method. Both the blocking technique and the
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curvilinear coordinate system are used to deal with the irregular shaped enclosures,
where the computation meshes are based on unstructured rectangular meshes.

Chai et al. (1993e) presented a procedure to model radiation in irregular
geometries using the discrete ordinates method. They dealt with the irregular boundary
using the blocking or ladder-like approximation, such as used in past finite difference
procedure based on structured cartesian grids. The finer the mesh, the more realistic
the representation of the real boundary. However, the memory is used inefficiently
when the blocking technique is used. Chiu (1990) developed a finite volume method
based on the discrete ordinates approximations of RTE. For simple domain considered,
the irregular shaped boundary is treated by dividing the azimuthal angle in accordance
with the orientations of the bounding surfaces; for complex geometries, the special
treatment of intensity is considered when the angular grid with solid angles straddling
over a boundary surface.

Unlike the discrete ordinates method, the discrete transfer method can make
perfect angular discretization to match the real boundary. This is because the method
is based on a ray tracing approach, the ray directions are specified in advance on each
emitting surface arbitrarily. Applications of the discrete transfer method for complex
geometries are shown by Murthy and Choudhury (1992) on a non-orthogonal
rectangular grid, by Meng et al. (1993) on unstructured triangular grids.

2.6.7 Emissivity Models

The above approximation methods assume that the radiative transfer equation
is in a form applicable to homogeneous and gray media. For the nongray medium, the
spectral effect of the radiation has to be considered, and the radiative transfer equation
should be integrated over the entire wavelength spectrum. Naturally, this will make
the computation times prohibitive. Under some situations this is not necessary, for
example, in natural gas or oil fired combustors, only three species contribute

significantly to the radiation in the infrared region. These species are the products of
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the combustion, i.e. carbon dioxide, water vapour and hot soot particles within the
flame produced by the thermal decomposition of fuel lean situations (Khalil, 1982).
The gases radiate in several bands, while the soot emits continuously over a wide
range of wavelength. It is only necessary to represent the spectral effects by several
bands for each species instead of using whole wavelength in real gases of combustors.

The simple model of accounting for the spectral effect is Hottel’s "emittance
charts” and the "sum of gray gases" methods (Hottel and Sarofim, 1967), which were
borrowed from the atmospheric physics, and named "narrow band models" (Goody,
1964). In Hottel’s method, the determination of the coefficients is based on a trial and
error graphical fitting technique of Hottel and Sarofim (1967). For CO,-H,0O mixture,
the emissivity could be fitted by a "one-clear plus two-gray gas" by Truelove (1974).
When more than two-term fits are considered, Hottel’s fitting method tends to be
rather time consuming. Taylor and Foster (1974) proposed a least-squares technique
for determining the coefficients. For CO,-H,0 mixtures the emissivity is fitted by a
"one-clear plus three-gray gas" model, in the temperature range from 1200 to 2400 K.
Good accuracy is obtained for a large range of path length. The application of "mixed
grey and clear gas" formulation to the real furnace gas may be found in Abbas et al.
(1984, 1986), Carvalho et al. (1987,1988,1990).

A more useful approach to modelling the spectral properties of the gases is the
wide-band models of Edwards (1968), in which the band emittance of these gases is
considered as a function of total and partial pressure, path length and temperature.
This method makes the band properties of the gas mixture relatively easy to calculate,
but the computation time is longer than the mixture of gray gas model of Hottel and
Cohen (1958). Docherty and Fairweather (1988) incorporated the wide band model
into the computation of the nonhomogeneous combustion products by the discrete
transfer method, they showed a good agreement with the narrow band model results

for both spectral and total radiative intensities.
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2.6.8 Radiation Modelling in Real Scale Furnaces

Early reports on the modelling of the flow, combustion and heat transfer in real
scale industrial furnaces are mainly based on the flux models. Gosman and Lockwood
(1973) have studied the flow, heat transfer and chemical reaction processes in a
gaseous-fired cylindrical furnace. The flow field was solved by the vorticity-stream
function combined with two-equation k-e turbulence model using the finite difference
method. The chemical reaction is considered as a single-step fast chemistry reaction
model. Heat transfer is determined by solving the specific enthalpy equation coupled
with radiation. The radiation model is considered as a four flux model. Encouraging
agreement is obtained between the predicted and measured distribution of temperature
and radiant heat transfer along the furnace wall. However, because the effect of the
"unmixedness” phenomena was neglected in the combustion computations, the flow
field is unsatisfactory. Considering the unmixedness, Gosman et al. (1978) used a beta
PDF model for the prediction of various gas-fired cylindrical furnaces, where the
radiation transfer is calculated with a new flux model of Lockwood and Shah (1978).
A general procedure for the computation of 3D flow with combustion and heat transfer
has been described by Patankar and Spalding (1974), where the six flux radiation
model is considered. Latter, this procedure was applied to the case of the experimental
rectangular furnace of the International Flame Research Foundation (IFRF), Holland
by Pai et al. (1978). Farouk and Sidawi (1993) developed a 3D computation model for
the simulation of the turbulent reactive flow of the natural gas fired industrial furnace.
The turbulent flow is simulated by a k-e-g model, and the combustion model is based
on the local instantaneous equilibrium where the combustion process is assumed to be
micro-mixing limited. A gray six-flux model is used in the prediction of radiation
transfer.

Recently, the discrete transfer method has become popular in the prediction of
the large-scale combustion furnaces. Abbas et al. (1984) demonstrated the predictions

of the flow, combustion and heat transfer within a refinery process heater, where the
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radiation transfer is handled by the discrete transfer method with the mixed gray and
clear gas emissivity model. In the consideration of the computational economy, the
whole computation domain is divided into two zones with the burner region and the
main combustion chamber region. The radiation calculations were performed
simultaneously on a coarse grid where the radiation source for each flow cell is
calculated on a volumetric basis. A similar procedure was implemented by Abbas and
Lockwood (1986) for the prediction of power station boilers. Fiveland and Wessel
(1986) developed a numerical furnace model (FURMO) for 3D pulverized-fuel fired
furnace. They used the discrete transfer method in the solution of the radiation
transfer, where the absorption and scattering coefficients in the radiative transport
equations for particle-gas mixture are considered. The scattering coefficients are
computed using Mie theory (Van De Hulst, 1957) by estimating the amount of each
particle type in the computational cell, and the absorption coefficient for gas mixture
is calculated using the wide-band model of Edwards (1967). Carvalho et al. (1987,
1988, 1990) and Coelho and Carvalho (1993) have demonstrated the simulation of 3D
flow, reaction and heat transfer in industrial glass furnaces and boilers. Most of their
computations are based on the domain decomposition method. The governing equations
are solved by finite-difference/finite volume method, and a staggered grid is used for
velocity components. They made use of the discrete transfer radiation model along
with the Hottel’s mixed gray gas model. The different techniques in the application of
the discrete transfer method to the large-scale furnaces are shown. These techniques
involve: update of the radiation variables less frequently than the others, usually every
10 iterations for the radiation calculations (Carvalho et al., 1987, 1990); using coarse
grid for radiation calculations (Carvalho et al., 1990, Coelho and Carvalho, 1993); less
rays per each boundary cell, usually 4 and 8 rays (Carvalho et al., 1988). Fairweather
et al. (1992) reported the prediction of the structure and thermal radiation received
around a turbulent reacting jet discharging into a cross-flow. Both flamelet and soot

formation and consumption are derived from a global reaction scheme for hydrocarbon
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combustion. In their computation, the radiation received external to a flame was
computed from converged flow field calculations through the use of a 3D adaption of
the discrete transfer method coupled to a narrow band model of radiative transfer.

The application of the discrete ordinates method to the boiler is reported by
Jessee et al. (1993). The use of the Monte-Carlo method with the approximated flow
and heat release to industrial furnaces may be found in Gorner and Dietz (1993).

Most of the aforementioned methods are based on finite difference/finite
volume method, which suffer from the difficulty in dealing with the complex
geometries. The typical example is that the irregular-shaped wall is treated by stepwise
approximation (Carvalho et al., 1987). This difficulty can be overcome by using the
finite element method or the control volume finite element method.

Benim (1989) introduced a finite element solution of a turbulent diffusion flame
in furnace. The combustion rates are estimated using the eddy dissipation concept
model. The moment method (Benim, 1988) is used which allows the derivation of an
approximation local field equation for the radiation intensity, and it can be directly
used in irregular grids. The procedure is then applied to the simulation of flame 29 of
the M-2 trials performed in the IFRF, with good agreement with experimental data and
with finite difference predictions. Engelman and Jamnia (1991) introduced a numerical
procedure for the simulation of the effects of gray-diffuse surface radiation on the
temperature field of fluid flows using FIDAP. The radiation is solved by using the
view factor methods with non-participating medium. They showed the coupling
between the energy equation and the radiation heat transfer exchange relationship in
their finite element method. For considering the participating medium, Jamnia (1992)
incorporated the P-1 approximation model in the FIDAP code. By testing different
cases, he showed that the advantage of this method lies in its simplicity of
incorporating in a general purpose code. Meng et al. (1992) presented a control
volume finite element method for the simulation of the turbulent reacting flow in

furnaces. The flow is solved by the vorticity streamfunction formulation and the k-e
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two-equation model. The chemical reaction is considered as the fast chemistry. The
radiation heat transfer is solved by a discrete transfer method on an unstructured
triangular grid. The heat flux to the furnace wall is good agreement with the
experiment data of the M-2 trials, flame 29 of the IFRF.

2.7 Choice of Overall Numerical Model

Criteria for choosing a model and a numerical scheme lie in its conceptual
simplicity, economy of computation, ability to handle complex geometries and
possibility of extension to three dimensional flow problems. Based on the previous
review, the choice for the basic components of the overall numerical model is as

follows:

Fluid Flow: Control Volume Finite Element Method
® Primitive variable (u,v,p)

® Staggered gﬁd arrangement

® Unstructured mesh

® Segregated solution algorithm

Turbulence: Two-Equation Model

® k-¢ mode!l and wall functions

Combustion: Diffusion Flames Models
® Fast chemistry reaction model

® Delta and Beta PDF model

® Eddy dissipation model

¢ Chemical equilibrium model

¢ Flamelet model
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Radiation: Discrete Transfer method

e Mixed gray and clear gas model

The proposed numerical method namely an unequal-order, Staggered Control-
Volume Finite-Element Method (SCVFEM) for fluid flow and heat transfer has been
developed. The method use primitive variables on a three-node triangular element.
Pressure is stored at the centroid of each triangular element, while velocity components
and other scalar variables are located at the midpoint of sides or at vertices of each
element. Depending on the location of the variables, this leads to two different
schemes: Face-centered scheme when variables are stored at the midpoint of each side;
and Vertex-centered scheme when variables are stored at vertices.

The classical technique of staggering of variables used in structured grids is
extended to an unstructured mesh by using two control volumes. The control volume
for the continuity equation is the triangular element itself. The control volumes for the
momentum equations and the other scalar transport equations depend on the scheme
used. For the Face-centered, the co-volumes are constructed by joining the centroid
and vertices encompassing the common side of two neighbouring elements; while, for
the Vertex-centered, the polygonal control volume surrounding each node is
constructed by joining the centroid of elements to the midpoints of the corresponding
sides. The discretized control volume for any conservation equations is ensured to be
conservative in the whole calculation domain. The integration of the general
conservation equation is carried out on these discretized control volumes. The resulting
algebraic equations for pressure, velocity components as well as other scalar variables

have the conservative properties. A segregated solution algorithm is used.



Chapter 3

Mathematical and Physical Models

3.1 Introduction

In this chapter, the Favre-averaged equations governing the mass, momentum,
turbulent quantities, and energy are presented for turbulent reacting flows. The
equations are given in 2D cartesian and axisymmetric forms for variable density flows
as encountered in combustors and furnaces. Among these, the turbulence is
characterized by two-equation k-e¢ model based on eddy viscosity concept, with the
wall function method near the solid wall. The fast chemistry, finite reaction raté,
chemical equilibrium and micro-flame models are used for turbulent diffusion flames.
The influence of turbulence fluctuation on combustion is introduced by using the
assumed delta and beta probability density functions. Radiation is considered through
the discrete transfer method incorporated in the source term of the energy equation.
The spectral property of real furnace gases is provided by the mixed grey and clear
gas model, where only water vapour and carbon dioxide are presumed to contribute

significantly to the gaseous radiation.
3.2 Mean Flow Equations

The Favre-averaged transport equations of mass and momentum may be written

as:
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Continuity Equation:

9 9 - 3.1
ax(rpu) + ay(rpV) 0 3.1

x-Momentum Equation:

8 8 rouwy + Lrovey = fry ), O, O
-;é;(rpu) a(rpu u) + ay(rpvu) ax( e,fax) ay(ru,ﬁg)
Ofpy O4), Of,, O 3.2
+ ax(r”‘ﬁ’ax) + ay(m‘ﬁax) (3.2)

y-Momentum Equation:

2(rPV) + i(rpuw + -a—(rpvw’) = —a—(ru a") + —‘?—(ru av)
ot ox dy ax\ Tax) oyl oy

. _@_(m éy.) . i(,p ov
ax\ Tay) o\ Toy

) 3.3)

oP v
- r-é—y— - (2p.eﬁ;)am+pw2am

2], (21200
3 dy e |ox 7 dy

The above equations are valid for both cartesian and cylindrical coordinates
with r=1 and o,,=0 or r=y and «a,,=1 for cartesian or cylindrical coordinates
respectively. When considering swirling flows in axisymmetric burners, the transport

equation of tangential velocity is given as follows:
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60- Momentum Equation:

Drow) + Zpumw) + Zrpvw) = —a—(ru 91”—) * —a-(ru aw)
or o 3 al Tar) | Toy

d
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where, in the above equations, u, v and w represent the velocity components in the x,
yand 0 coordinates, respectively. P is the pressure, p is the density, and . is the

effective viscosity.
3.3 Turbulence Model

In the present study, the standard two-equation k-e turbulence model (Launder
and Spalding, 1974) with wall function is implemented. The governing equations for
the turbulent kinetic energy and its dissipation rate are given by:

Turbulent Kinetic Energy Equation:
d 0 d o Begok o Wk
—(rpk) + —(rpuk) + —(@rpvk) = —|r—=—| + —|r—=£—
ot o dy ox{ o, x| oyl 6,9 (3.5
+ MG, - pe)

Turbulent Energy Dissipation Rate Equation:

%("Pe) + —c%(rpu'e) + gy—(rpv-e) = ._a.(r_lfﬂé) + E_(r&ﬁgﬁ

ox| o, ox oy| o, ay) (3.6)

+ L:(Cle - C,pe)
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where G, is the turbulent generation term:

o HEHST M 5 2]

- 2 -pk"‘pt(ﬂ‘-‘*lm)] (..aﬁ+_];.§.£.r_‘.)2) (3.7)
3] ox r dy J|]\ox r dy

AL S
pzot ox Ox ay ay

It can be seen that terms involving §p/dx, dp/dy in Gy are inserted to account
for variable density effects. These terms come from the pressure-velocity correlation
in the Favre-averaged equations for k and e (Kim and Chung, 1989) and are identically
zero for constant density flows.

The turbulent eddy viscosity for the k-e model is defined as:
2
b, = C,0 (3.8)
€

giving for the effective viscosity:

By =B * B, (3.9)

The model constants recommended by Launder and Spalding (1974) are:

G, O, C, C, C.

1.0 13 14 192 0.09

This model is valid only in fully turbulent flow regions. Close to the solid
walls, the local Reynolds number of the turbulence becomes small, and the viscous

effects dominate turbulent ones. Two methods, either the wall function method or the



55

low-Reynolds number modelling method can be used in that region. In the present

study, only the wall function method is considered.

3.3.1 Wall Function Methods
In the wall function method it is assumed that the shear stress is uniform up to
a distance y within the near-wall region. For the first grid point next to the wall (see

Fig. 3.1), one defines a friction velocity u_ as:

Solid Wall

Figure 3.1: Grid point near the solid wall

%, (3.10)
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where T, is the wall shear stress. In the two-layer law of the wall, the wall shear

stress can be defined by:

" < 11.63)

(B
-V
y t

. = (3.11)

! pu, N
T 021163
;ID(E)’ Y]

where v, is the velocity component parallel to the wall, g and x are the roughness
parameter ( E=9.0 for a smooth wall) and the Von Karman constant (x = 0.42) ,
respectively. y* is the dimensionless distance in the normal direction from point P
to the wall, which is defined as:

yr = BY 5 (3.12)

When considering convective heat transfer, the near-wall heat flux is
determined by (Chung, 1993):

( T-T
.Efz’_(___“l (" < 11.63)
Pry
- 3.13)
9 = T-T (
P& (I T,)u, " > 11.63)
Pr, [1 In(Ey )w]
K Pr,

where the function p(Pr) is given by Jayatilleke (1969) of the form:

P(Pr)
Pr

t

= 9.24

Pr Pr

t t

3
(ﬁ'-)4 —1} [1 +0.28 exp( —o.omfiﬂ (3.14)
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here, pr is the molecular Prandtl number of gas, Pr, is the turbulent Prandtl
number, g is specified as a Neumann type boundary condition in the energy
equation,

Once T, (or u, ) is found, the near-wall point values for ¢ and ¢ are then

determined from:

k = = (3.15)

e = %I (3.16)

The key point in the application of the two-layer wall function method is the
determination of the wall shear stress at the log law region ( y*211.63 ). Two
methods are implemented in the calculation of wall shear stress, one is the classical
approximation method, which is based on the balance of generation and dissipation of
energy in the near wall region (Launder and Spalding, 1974); another is the direct
iteration method, in which the friction velocity based on the near wall velocity log law

profile is directly solved by using a quasi-newton iteration (Garon, 1994).

Classical Approximation Method

In the classical approximation method of Launder and Spalding (1974), it is
assumed that the convection and diffusion term in the streamwise direction are
neglected in the near-wall region. Then the equation for the turbulent kinetic energy
Eq. (3.5) yields that production and dissipation term are in local equilibrium,
i.e. G, =pe. Based on this assumption, the following relation is established from Eq.
3.7):
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pt(ﬁ"_:)z - pe (3.17)

Since it is assumed that the shear stress is uniform over the near wall region, then we

have:

. u,[%] (3.18)

Multiplying Eq.(3.17) with B, , substituting ¢ =Cupk2/”'t in the right-hand side, and
using the definition of t,, in Eq.(3.18), it yields:

1

7 1
t, = pkC? (3.19)
Then the corresponding friction velocity is given by:
il (3.20)
u_ = C:k 2 '

This relation avoids problems with singularities at the reattachment point where the
wall shear stress vanishes (Speziale and Thangam, 1992). Substituting Eq. (3.20) into

Eq. (3.11), yields an expression for the wall shear stress as a function of k and v,
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Ly O* < 11.63)
y

T, = 1 1 (3.21)
pcﬂ4k2 +
“1““‘—“': " 2 11.63)
=In(Ey")
K .

with y* as a function of  ,
11
. PyClH? (3.22)

j

Direct Iteration Method
Since the logarithmic law relation for the velocity profile holds in the near-wall
region, from Eqgs. (3.10) and (3.11), we have:

il

T

- -‘lzln(Ey ) (3.23)

Substituting Eq. (3.12) into Eq. (3.23) for y* , gives:

[V,

- L m®Ryy -0 (3.24)
x p

The determination of the friction velocity in Eq. (3.24) is based on two steps.
Firstly, assuming that the near-wall point lies in the viscous sublayer, the linear

relation is used for determining the shear stress, giving:
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and the friction velocity is expressed as:

ulemlzJMMi (3.26)

' P py

together with the expression y* in Eq. (3.12).

Secondly, if y*<11.63, then the relation Egs. (3.25)-(3.26) are applied.
If y*>11.63, theloglaw relation Eq. (3.24) is used directly for evaluating the friction
velocity using the quasi-newton iteration. From the value of u , the near-wall shear
stress can be determined from Eq. (3.10), and the near-wall point ¢ and g are then
determined from Egs. (3.15)-(3.16).

3.3.2 Velocity Boundary Condition on Arbitrary Wall

The boundary condition for velocities are imposed by using the slip boundary
condition. Firstly, we assume that the wall is impermeable, and that there is equality
between the stress tensor in the flow and the wall shear stress computed from the law
of the wall. For the 2D cartesian coordinates, this is expressed by the following

relation on an arbitrary wall, as shown in Figure 3.2:

a — — -
kg, (Upt) = =, sgn(-Upt) (3.27)

where, the left hand side of (3.27) represents the stress tensor in the flow, and the
right hand side is the wall shear stress computed from the wall function relation.
Secondly, the shear stress is equal to zero in the normal direction to the flow

near the wall. The velocity vector ('j’P is decomposed into its tangential and normal
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Figure 3.2: Implementing the wall functions for an arbitrary wall

components y, and v, and the following geometric relations are derived for an

arbitrary boundary as:

dv
£ = (—?—lf)cosb +(§v—)sin6

‘on  \on on (3.28)

v, = usind -vcosd

Substituting Eq. (3.27) into (3.28), together with the no-slip condition l7p~ﬁ’ =0,
then the following boundary conditions for cartesian velocities u and v are established,
which are taken as Neumann and Dirichlet type boundary conditions for wall

velocities:
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- Horizontally predominant wall (0<18|<2) :

.@ = L l Sgn(—ﬁpof,) - tand (.?.Y_)
on), cosd | kg4 on)p (3.29)
Vp = luptand
- Vertically predominant wall ($<[8]<2) :

r up = v, cotd

3 (3.30)
o = __.1 Sw sgn(—lj P'; )| - cotd Ou
on)p sind | p4 on),

where, in the case of a horizontally predominant wall, the wall shear stress generated
by u velocity is greater than that of by v velocity, the boundary condition for u
velocity is considered as Neumann type, then its corresponding v velocity is
determined from the geometric constraint relation as the Dirichlet type boundary
condition. In the case of a vertically predominant wall, the conclusion is vice versa.

For axisymmetric cylindrical coordinates with swirl, we have:
Upit =0

ueﬁ-(%(l?,; t) = 5, sgn(-Up 1) 3.31)

on

a - -
by (T 7)) = 0

where ¢ and 7 are the tangential and normal directions of the wall, respectively.

The unit vector ¢, , 18 the velocity vector direction (including the swirl
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component), and the unit vector #, is perpendicular to both the direction £, and the

normal direction of the wall 7 , defined as (Figure 3.3):

- U,
t, =
1T, (3.32)
f; = ﬁxfl
- A v _ a t Tj
L 4 n v t t 1
0
8 X b .
P u
W -fl' Tz
Solution Plane Velocity Vector Plane

Figure 3.3: Velocities at an arbitrary wall

In Figure 3.3, ¢ is defined as the angle between the wall tangential direction
and the velocity vector direction. When the three velocities u, v and w are considered,

from Eq. (3.31), we can derive the following boundary conditions for velocities:
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- Horizontally predominant wall (0<|§| <3

(@) . GosO f Ty sgn(-ﬁp'?l) - tand (QV-)
onjp cosd | 14 on)p

! v = u,tmd (3.33)

T - w
(?_w_) = sine( ¥ sgn(—l7,,°t1)) - cosd £
P p’eﬁ“ rP

- Vertically predominant wall (3< |8] <3

&
o]
It

Vp cotd

. Ty 7o Wp
sin | — sgn(-Upt)| - cosd —
l"’gﬁ

’/""'\

|9

'ﬁ\_/
HH

The Eqgs. (3.33) and (3.34) reduce to the 2D case when the swirl is null.

Following Autret et al. (1987) and Chung (1993), in the context of finite
elements, the wall function method can be implemented by assuming a constant shear
stress up to a distance Y, within the near wall region of the flow. The wall function
relations and the wall velocity relations can be applied at these boundary nodes, as

shown in Fig. 3.4 for both Face-centered and Vertex-centered schemes.
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Face-centered scheme Vertex-centered scheme

Figure 3.4: Boundary nodes in the near-wall region

3.4 Turbulent Reacting Flow with Variable Density

In diffusion flames, the reaction rate is assumed sufficiently fast, then the
reaction time is negligibly short in comparison to the mixing time. The whole reaction
process is controlled by the mixing. In this situation, the instantaneous molecular
species may be determined directly by strictly conserved scalar variables.

In this section, several combustion models for turbulent diffusion flames are
summarized, these involve the fast chemistry reaction model, probability density
function model, eddy dissipation concept model, equilibrium model and micro-flame

models.
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3.4.1 Fast Chemistry Reaction Model

The fast chemistry reaction model assumes that: the fuel and oxygen cannot
exist at the same place at any time; reaction is infinitely fast, single step, and
irreversible; the equilibrium is attained; and all the exchange coefficients are equal.
The fuel and oxygen always combine in a stoichiometric ratio s to produce (s+1) of

products, i.e.

1kg Fuel +skgOxygen = (s+1)kg Products

The conserved scalar mixture fraction f is defined as:

E_EA

= (3.35)
EF“EA

f

and

£ = my-m_Js (3.36)

where the subscripts A and F denote the air and the fuel stream conditions at inlet,

and 5

The conservation equation for the mixture fraction ¢ is (Khalil, 1982):

and m,, Aare mass fraction of the fuel and oxygen, respectively.

9 + O roufy + 2 - 9 Padf) | O Frdf) 337
sl PN+ g reud) + o) ax(' 5, ax) ay(r 3, ay) G-37

where ¢ ’ is the effective schmidt number of the mixture fraction f , taken from 0.6
to 0.9,
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This model assumes that a diffusion flame is divided into two regions:

Region 1 : the oxidant and the products co-exist, 0 < f < f,

]

mﬁ‘O

(3.382)
f

My, = My, 1-+-
A( f

]S mom
st

Region 2 : the fuel and the products co-exist, £, < f < 1

I st
Mgy, = My p (“lt'f;)

(3.38b)

mox =O

where f_ is the stoichiometric value of the mixture fraction, defined as:

-1
£, - (1+s_"'f.._,p) (3.39)
mox,A

The energy conservation equation for enthalpy can be expressed as:

0 0 0 O Pegoh) O Pegoh
L ron+-< W +Lrovh) = 2L, L[, s, (3.40)
at(rp )+ax(rpu h)+ay(rpv ) ax(r s, ax)+ay(r o, ay]* B

where, S, is the radiation source or sink, written as the divergence of the radiative

flux, which can be obtained from the solution of the radiative transfer equation.
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In Eq. (3.40), the enthalpy h is defined as:

h =c,..T + Hm, (3.41)

where the mixture specific heat is calculated from each of the gases present in the

mixture as:

5
Coie = S MC, (3.42)
1

The specific heats for each species are assumed to vary linearly with the

temperature as:

Cpi =G * b]nT (3.43)

where the values of a;’s and b;’s are taken from Khalil et al. (1975).

Furthermore, for adiabatic flame, the enthalpy can also be expressed as the
conserved scalar, the linear relation between the enthalpy and mixture fraction can be
expressed as (Bilger,1980):

h = (hp-h)f+h, (3.44)

where p, and h, are the values of enthalpy at fuel and air inlet, respectively.
The temperature can be determined from thermodynamics relation Eq. (3.41)

as:

r = HM (3.45)

Cp mix
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The density of the mixture can be defined by the equation of state:

WP (3.46)
RT

p:

where R is the universal gas constant, P is the pressure, and W, is the molecular

weight of the mixture, defined as:

W = (3.47)

This model is simple and easy of application. However, the concentration
fluctuation is not taken into account in this model, because it assumes that the fuel and
oxygen cannot co-exist at the same place at any time. The consideration of the
concentration fluctuation, requires the development of the probability density function

model.

3.4.2 Probability Density Function Model

The following assumptions are made for the simplified probability density
function (PDF) model (Khalil, 1982): the fuel and oxygen may co-exist at the same
place but at different times; the reaction is infinitely fast, single step, irreversible; the
equilibrium is attained; all the exchange coefficients are equal. Based on a conserved
scalar approach, the simplified PDF approach requires a two-parameter form of the
PDF in terms of the mean f and its variance g which are determined from the
solution of their respective conservation equation. The conservation equation for g is
defined as (Khalil, 1982):
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9 9 ronere L (rovey = 2|, Per 98|, 9, Feardg
at(rpg)+ ax(rrnus')+ ay(rpvg) ax[' o 6x)+ ay(' a ay)

] {3}

where o, is the schmidt number of g, Cgl and ng are model constants, are given
by 2.8 and 2.0, respectively. Compared with the mixture fraction Eq.(3.37), Eq.(3.48)

has a non-zero source term, which represents the generation and dissipation of the

(3.48)

+ nglp,t

variable g.
The density-weighted mean value ¢(f) of any scalar variables can be evaluated
by using scalar function with a probability density function p(f):

b = [[oPOdf (3.49)

Two types of the assumed probability density function, delta and beta PDFs are

considered below.

Delta PDF
The shape of the double delta PDF of Spalding (1971a), is established by
assuming the rectangular wave variation of f with time, this model can be divided into

four regions:
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Regionl: (0 < f< 1)

P(p = —;-[b(ﬁ) + ()]

PR g% (3.50a)

[S3E

f.=f-8

1
Region 2 : ( f < 0.5, f_g’z <0)

P(f) = a,8(0) + a,5(f,)
a, = gl(f(f+glN) (3.50b)
a; = f(f+glf)

Region3: ( f > 0.5, f+gé > 1)
P(f) = a,8(f) +a,6(1)
a, = (1-NI(1-f+g/(1-)) (3.50c)

a, = gl((1-)*+g)

Region 4: where large oscillations of f are imposed,

P(f) = (1-1)8(0) +f3(1)
Smax = (l'f)f

(3.50d)
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Beta PDF
The beta PDF can be defined as (Jones, 1979):

-1,q _pb-1
i) = fm 4 (3.51a)
[ a-prdr
with
= f(f(l—f)_l) (3.51b)
g
b = (l—f)(f(l—f)—l) (3.51¢)
g

where the fluctuation g must satisfy the following conditions, 0<g<g - This

constraint results in that z>0 and p>0Q in the use of beta PDF.

3.4.3 Chemical Equilibrium Model

By relating the thermochemical state of the mixture to the mixture fraction, it
is assumed that the reaction rate is sufficiently fast so that the chemical equilibrium
state may be reached. The mixture composition and temperature are determined from
f by calculation of chemical equilibrium for the initial reactant concentrations. In order
to reduce computational effort only those species predominately present in the products
are considered. Follow McKenty (1992), the chemical reaction for methane/air can be

simplified as:

eq:CH4+v0202+szN2 = v,CH,+v,CO,
+v,CO+v H,0+v H,+v0,+v,N,+v.NO

(3.52)

where  is the equivalence ratio, ¢ is the molar ratio of fuel/air and y, are the

coefficient of products.
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The above equation can be solved by using the minimization of free energy

technique by Heywood (1986). The element mass balance constraints are:

Yav,-b'=0  fori=12,.] (3.53)
j=1

where the stoichiometric coefficient a; are the number of kilomoles of element i per
kilomole of species j, p,” is the number of kilomoles of element i per kilogram of
mixture, and v is the number of kilomoles of species j per kilogram of mixture. The

equilibrium condition can be given for species as:

l
p,; + Rﬂn(—v‘-’l) + Rﬂl{—g’—] + E A,lay =0 forj = 1,..,n (3.54)
0 i=1

where v =2n: v, and p,}’ is the chemical potential in the standard state and P is the
mixture pré?éure, A, are lagrangian multipliers.

Eqgs. (3.53) and (3.54) permit the determination of equilibrium compositions for
a given temperature T and pressure P, these nonlinear systems of equations are solved
by Newton-Raphson method. Detailed description of this model may be found in
McKenty (1992).

3.4.4 Micro-Flame Model

Because the chemical equilibrium model over-estimates CO levels in regions
where the mixture is very rich or where the turbulence is very high, a laminar micro-
flame model was developed by Mckenty (1992).

For laminar flames it is assumed that the reaction rate is a function of initial
reactant concentrations and of temperature. The thermochemical state may be
expressed as a function of mixture fraction from experimental data in laminar flames.

For turbulent flames, it is further supposed that each calculation point constitutes a
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laminar micro-flame, the turbulence influences this laminar micro-flame through the
effect of the mixture fraction fluctuation g. Then the thermochemical state of the
mixture can be expressed as a function of the mean mixture fraction f. This model is
used for the prediction of CO and H, mass fraction in methane/air diffusion flames,
details of this model may be found in McKenty (1992).

3.4.5 Eddy Dissipation Combustion Model

The eddy dissipation combustion model was proposed by Magnussen and
Hjertager (1976) based on the EBU model of Spalding (1971b). In this model, the
reaction rate of the fuel is controlled by the turbulent mixing rate e/k, and the reactant
with the minimum concentration in the mixture. The use of this model requires to
solve at least two differential equations, one for the mixture fraction f, another for the

mass fraction of fuel » The conservation equation of fuel can be given by:

3 3
d (, o mﬁ‘)+_§_(,_p’_ﬂ_'f'_ﬁi]

———rm+ rpum,)+ rpv
(pﬁ, (p ﬁ,)ay(pmﬁ,) ax o, @ | | 0, &

(3.55)

m mo
- L pqpS mm(mﬁ‘, 2)
g™ Mg §

where o and are the mass fractions of oxygen and fuel burnt, respectively.
2

m
Jub
A is the model constant taken to be 4.0 (Hjertager and Magnussen, 1982).

3.5 Radiative Transfer Equation

The radiative transfer equation (RTE) can be expressed as (Lockwood and
Shah, 1981):
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dl E k = A A
o= (k) + k-8 + % 8,8Y1(8yaq’ (3.56)
o - TEAR kv [ p@,8)1(8)

where I is the radiation intensity in the direction €} , s is the distance along that
direction. k, and k, are the gas absorption and scattering coefficients, E, is the gas
blackbody emissive power ¢T*, and p(ﬁ,ﬁ’) is the probability that incident radiation
in the direction @’ will be scattered into the increment of solid angle

dQ about () (Figure 3.5). The above equation expresses the change of the intensity
in the specified direction {§ , in terms of absorption and out-scattering, the emission

and the in-scattering by the three terms of the right-hand-side, respectively.

o)

Figure 3.5: A monochromatic pencil of radiation across an element volume along the
path of propagation

To solve Eq.(3.56) using the discrete transfer method (Lockwood and Shah,
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1981), we define an extinction coefficient k, = k,+k, , an elemental optical

depth ds* = kds anda modified emissive power E* :

k

e

k -
E” = —1-( kEg + anp(n,ﬁ’)I<fi')dn') 3.57)

Then Eq. (3.56) may then be re-written as:

a _ ;. E (3.58)
ds* n

For a ray travelling through the domain, this equation describes the change of
the ray’s intensity when passing through an absorbing, emitting and scattering medium.
The discrete transfer method is based on solving Eq. (3.58) for a number of discrete
representative rays (or beams) that travel through the considered domain, details will

be given in Chapter 4 for the solution procedure of radiation.
3.6 Summary of the Transport Equations

The general form of the transport equation can be expressed as:

] 9 (roud)+-2. -9 9,0 (;p %)s (3.5
Seo0ZeontrZoove) - 2(m, 2 ay(rrd'ay) 5, (.59

The above equation can be used for unsteady, turbulent, variable density,
cartesian or axisymmetric flows, and can be reduced to laminar flow or constant
density flows as well as steady flows. The meaning of variable ¢, and coefficients T';,
and S, are given in Table 3.1. For the control volume method, the general form of the

transport equation (3.59) can be written in the vectorial conservation form as:
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%(rpd)) w7 =5, (3.60)

with the continuity equation:

V{rp?) = 0 (3.61)

where ¢ is a general scalar dependent variable, p is the density, § A is the volumetric
generation rate or source term, J is the combined convection and diffusion flux of the
scalar ¢,

J = Hp#¢ -T'V) (3.62)

where i}s velocity vector, r is the radius with r=1 for 2D cartesian coordinates. I'
is the diffusion coefficient (see Table 3.1). In Eq. (3.60), when the diffusion of ¢ is
not governed by Fick’s Law, the diffusion terms that do not fit the gradient expression
Eq. (3.62) are included in the source term S¢ which is listed in Table 3.1. For
examples, when flow is turbulent, time-averaging or Favre-averaging forms of the
governing equations are used, then Eqs.(3.60)-(3.62) are interpreted as the time-mean
or mass-mean values of the relevant variables, and I' may stand for the turbulent

viscosity.



Table 3.1: Values of ¢, T' and S, in the general transport equations.
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Chapter 4

Numerical Method

4.1 Overview

For the solution of the advection-diffusion equations encountered in the fluid
flow and combustion problems, in this work a staggered control-volume finite element
method (SCVFEM) is proposed and developed for steady/unsteady, 2-D cartesian and
axisymmetric geometries. The method uses the primitive variables (u,v,p) based on a
triangular element. There is one degree of freedom for pressure and three for velocities
yielding an unequal order scheme and since the pressure and velocities are not stored
at the same location, the scheme is staggered. Depending on the location of velocities,
there are two related SCVFEM schemes; Face-centered scheme when velocities are
stored at the midpoint of the sides, Vertex-centered scheme when the velocities are
stored at the vertices. The other properties, such as the turbulent kinetic energy k and
its dissipation rate ¢, turbulent eddy viscosity p, , mixture fraction f and its variance
g, mass fraction of fuel my, , enthalpy h, temperature T and density p, as well as the
source term S, etc. follow the storage location of velocities. The following main points
characterise the proposed SCVFEM:

® Combined form of the flow-oriented upwind function and mass weighted
upwind function based on the local Peclet number.

¢ Treatment of the pressure-velocity coupling by using a control volume mesh
for the velocity field and its dual mesh for the pressure field.

® Pressure gradient field which appears in the momentum equations is obtained

by using a linear reconstruction of the pressure field.
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e A segregated solution algorithm similar to SIMPLE method is used.
4.2 The Discretized Equations

The control volumes associated with a typical node i, internal or on a boundary
are shown in Figure 4.1 and 4.4, respectively. When applying the conservation

principle to this control volume, Eq.(3.60) can be written as follows:
d 03, €3
fMia(rp¢)dV+ [ Tads+ [ Tads-[ sav

+[ Similar contributions of other

elements associated with node i ] 4.1)

+[ boundary condition, if applicable ] = 0

The contribution to the node i from one element as shown in Fig. 4.2, consists

of a transient term, a convection-diffusion term and a source term.

Transient Term

The integration of the transient term of Eq. (4.1) can be expressed as:

¢1’”—¢§') 4.2)

[ Zeptyav - Ay o
iaoci Ot P At

3

where A, is the area of the triangular element; ¢! and ¢7 are the value of ¢, at

the time levels n+1 and n, respectively. Az = ¢**1-¢* is the time step, p'l‘ is the
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Calculation Point 1

AN

® uv,¢

Face-centered scheme Vertex-centered scheme

Figure 4.1: Calculation point i of internal element contributions

density at the time n and at the variable location 1.

Convection-Diffusion Term

The integration of the convection-diffusion flux for dependent variable ¢, uses
hybrid interpolation. It is based on the flow-oriented upwind function of Baliga and
Patankar (1980) and the skewed mass-weighted upwind function of Schneider and Raw
(1986), where the switch between these two interpolation functions depends on the
local element Peclet number.

Following Baliga and Patankar (1980), the locally exact interpolation function
is obtained from the 2D cartesian, steady, convection-diffusion equation without source

term expressed as:

Consider a new coordinate system (X,Y) (Figure 4.2), whose origin is located
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] Face-centered scheme Vertex-centered scheme

® uv,¢

Figure 4.2: The local flow-oriented coordinates (X,Y) of an element

0 d &P &
2@y ro2p) = T |28, 28 @“.3)
ox dy ox* oy
at the centroid, where the X axis is aligned with the element-average velocity
vector Vav
N TR e T (4.4)
” 3 3

where §, j denote unit vectors in global (x,y) coordinates, respectively.
Let U and V be the corresponding velocity components in the (X,Y)

coordinates, then,
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U,= 1Vl V,=0

4.5)
v,=U, b
where &, denote unit vector in local (X,Y) coordinates, respectively.
Based on (X,Y) coordinates, Eq. (4.3) can be rewritten as:
ou 3 _ o[ &, o (4.6)
“ox ax2 oY?
The exact solution of Eq. (4.6) in the local flow coordinates (X,Y) is given as
follows:
¢ = AZ+BY+C
4.7
r
Z = —————{exp —-—-—(X -X )‘ }
pU,,

where X .. is the maximum value of the X coordinates of three vertices of an
element, and A, B, C are the coefficients, can be uniquely determined in terms of
(X,Y) coordinates of three nodes 1, 2, 3 and the corresponding values of ¢.

In each element, the convection-diffusion flux J can be expressed as:

J = J,8 + J B (4.82)
where
Ty = r(pU - I‘gﬁz)
(4.80)
J, = r(pVp - 1‘6"’)

Based on the exponential interpolation function Eq. (4.7), the convection-
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diffusion flux in Eq. (4.8b) can be expressed as:

Jo = r(p(U - U )AZ + pUBY + C) - T'4) “s)

Jy

r(pV AZ + pV(BY + C) - I'B)

The other interpolation function is based on the skewed mass-weighted upwind
scheme (MWUS) of Schneider and Raw (1986) developed for a rectangular mesh with
a vertex scheme. The extension of MWUS to a triangular mesh with both Face-
centered and Vertex-centered scheme of SCVFEM are considered in the present study,
as shown in Fig. 4.3. The procedure for computing the value of o, is as follows:

If mp>0 then

¢, = fb, + (1-Nb,
" (4.10a)
f = min|max{ —,0|,1
moud

If n‘tp<0 then

o, = fb, + 1-Nb,
" (4.10b)
o]
mP

where 7 =[rp(¥)]s,, i the mass flow rate through the integration face p,
and mq , M, are the mass flow rates across the integration face q and t, with a
similar expression to ”“,,- Combining the expressions of Eq. (4.10a) and Eq. (4.10b),
together with similar expressions for faces q and t, the values ¢,, ¢, and ¢, at

integration points p,q and t can be expressed as:
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Face-centeted scheme Vertex-centered scheme .

® uv,¢
m Integration Points p, q and t

o Endpoints of sub-control volume a,b,c and o

Figure 4.3: Integration paths for the two schemes of SCVFEM

¢, = a,0,+bd, +c,b,+d\d,
b, = a0, +byb,C,0,+dyd, @.11)
b, = a;¢,+byb;+c 0, +ds0,
The simultaneous solutions for ¢,, ¢,, ¢, in terms of the nodal values ¢;, ¢,,
¢5 can be determined by inverting a 3 x 3 matrix of element interpolation coefficients,

which is directly used in the calculation of the convection fluxes at the integration

faces. To calculate the diffusion terms  5¢/3X, d¢/3Y , a linear interpolation function
with respect to (X,Y) coordinates is assumed:

b =EX +yY +3d 4.12)

where the coefficients &, y ,& are uniquely determined from the values of ¢ at the
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point 1,2,3 and its corresponding locations. Then the diffusion term can be expressed

as follows:

a¢_5, 3¢ _ 4.13)

The integration of the convection-diffusion flux in Eq. (4.1) can be

approximated by using the midpoint rule as:

[[Tds = [ Uynyrdinas

=[ (Jx)p (nx)p +(Jy)p (ny)p] Ss0

(4.14a)

f °J-ids

[/]

f :(J iy s

[T, (rg,+Up, ()15,

(4.14b)

where (ny) ,(ny), and (n,),(n,), are the components of normals in the counter
clockwise direction of the integration faces go and oc, respectively. The dependent
variable ¢ and its derivatives a¢/3X,04/0Y appearing in the convection-diffusion
flux Jy and J, are determined from the above hybrid interpolation function, other
variables such as density and viscosity are assumed to vary linearly over an element.

In the calculation of the coefficients of the convection-diffusion flux, the switch
between the exponential interpolation function and the skewed mass-weighted
upwinding function is determined according to the Peclet number of an element, i.e.,
when Pe < Pe_,,, the exponential function is used, while, when Pe > Pe,,,, the
skewed mass-weighted upwind function is used. The maximum Peclet number of an

element is defined as:
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Pe_ = max[—"—;ﬁ‘!(xm— i)} (4.15)

where X, is the X coordinate at variable locations. The specification of the Pe,,
follows the exponential difference scheme (Spalding, 1972) and Power-Low scheme
of Pantakar (1981). In the present work, the values Pe,,, = 10 for laminar flow and
Pe,,, = 2 for turbulent flow are recommended to the above hybrid schemes. However,
for turbulent swirling flow and turbulent reacting flows, only the mass-weighted

upwind scheme is used.

rce Term

The integration of the source terms can be approximated as:

A
[ sav = 5 c+Spby) (4.16)

where the linearization of the source terms in the transport equations, §. and §, are
determined by making use of the always-positive variables rule of Patankar (1980).

The total element contributions to the conservation equation for the control
volume associated with internal node i are obtained by adding the above expressions
for the transient, convection-diffusion and source terms as:

3 o5 oy
fmia(rpfb)dw [ “Fids+ [ Trds-[ sav .

=Cl‘t"l'+l + C2¢;“ + C3¢g*l + C¢1 + B,

The above expression gives a fully implicit formulation, which avoids the

stability restrictions on the time step.
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4.2.1 Boundary Conditions
For a node located at the boundary of the calculation domain, the control

volume arrangements for both schemes are shown in Figure 4.4.
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b

]
a UL
a

i
i
h
c

Vertex-centered scheme

Face-centered scheme

® uvando

0 Endpoints of control co-volume

Figure 4.4: The calculation point i located at the boundary

The boundary flux can be approximated by the integration of the convection-

diffusion flux over the boundary side ¢q as:
[ Flux out of the control volume side ca |

= f :(f‘r‘i)ds

(4.18)

Three types of the boundary conditions are considered.
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T 1: ified Boun ndition (Dirichlet B
o, = ¢mcM 4.19)
ified Fl oun ndition mann B
([‘%%) - g+a,0 (4.20)

where q,, q, are specified by the user, depending on the equation to be solved.
Eq.(4.20) is valid for the whole side ¢jz , and it is assumed that ¢ prevail at point
i. Then the integration of Eq.(4.18) becomes:
a—-
Jds = [rp(VR)d -r(g,+ s
[ [rp ()0 - 1(g; +6, ]S @
= ri [(m_q2)¢_q1]ca Sca

where 7, is the mass flow rate over the boundary surface ¢g. ¢ can be approximated

by linear interpolation function or by using the dependent variable value at point i.

Type 3: Outflow Boundary Condition
Usually, the distribution of ¢ is not known at the outflow boundary, hence, the
uniform flow boundary condition is assumed and the diffusion flux of ¢ is considered

to be negligible relative to the convective flux, i.e.

J . =rpV ¢ 4.22)

Then the treatment of outflow boundary condition can be considered as

Neumann type boundary condition which is similar to Type 2.
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4.2.2 Final Form of the Discretized Equations

Expressions similar to Eq.(4.17) can be derived for the contributions of all
elements associated with the control volume around an internal or a boundary node i.
After substituting these expressions into Eq.(4.1), the final form of the discretized
algebraic equations can be expressed as:

aid):u-l = % anb¢:;1+ai()¢:l+bi (4.23)

where, the summation is taken over all the neighbours of the node i. For Face-centered
scheme, the number of neighbours of the node i is always equal to 4, while for Vertex-

centered scheme, the number of neighbours of node i vary.
4.3 Treatment of Pressure-Velocity Coupling

In order to couple the continuity and momentum equations, a pressure-velocity
closure is required for deriving the algebraic pressure equation. In the present study,
this is established by using the momentum integration over the co-volume, as shown
in Figure 4.5.

Consider the 2D cartesian or axisymmetric, unsteady, incompressible

momentum equation in its vectorial conservative form:

%(rp\'f) - V-(rpP®F - rp V) = - 1VP + § (4.24)

where ¥ is the velocity vector, p is the density of the fluid and " is the effective
viscosity. The symbols v and ® denote the gradient/divergence and outer product
operators. P is the pressure, and r is the radius.

Integrating Eq.(4.24) over the co-volume Q_ (see Figure 4.5) around the point
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@ u, v - Face-centered scheme

© u, v - Vertex-centered scheme
OP @ Integration Point

Figure 4.5: Co-Volume used for deriving the Pressure-Velocity Closure

i, we have:

a N L —
foca(rmdv + fanc(rp\?@V - I, V) Tids = chrVPdV + chSdV(4-25)

It should be noted that when dealing with the pressure-velocity coupling the
velocity components are used at midpoints of each side of a triangle. Fig. 4.5 shows
the calculation point i and its neighbouring points k = 1,2,3,4. However, due to the
fact that velocities are stored at vertices in the Vertex-centered scheme (the shadowed
circles at vertices of the triangle, as shown in Fig.4.5), the velocities are obtained at
k=1,2,3,4 locations by a linear interpolation. Let j =1,2,3,4 be the integration
midpoints of the integration faces, and L and R represent the left and right centroids
of each element which share the common side i. Pressure is assumed constant over

each element and is stored at the centroid of the element.
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In the following, we will deal with the integration of Eq. (4.25) by considering
separately the transient term, the convection-diffusion term, the pressure gradient term

and the source terms as was done for Eq. (4.1).

Transient Term
The integration of the transient term can be expressed as:

3 1 o 7 4.26
fﬂc_a—t(rpV)dV = ;(AL"'AR) 7P (""i——] ( )

where A; and A, are the area of elements L and R, respectively.

Convection-Diffusion Term

For convection-diffusion flux in Eq. (4.25), the midpoint approximation is used

to calculate the integral. It can be expressed as:

4
fan(rpV@\?' - ru  Wyiids = lej [rp@R ™! - ru (GVoyls, 4.27)

Eq. (4.27) can be treated as the general discretized equation, where ¢= ¢ by

using hybrid interpolation.

Pressure Gradient Term
The key point of the pressure-velocity closure is the treatment of the pressure
gradient term in the above equation. The pressure gradients in Eq. (4.25) can be

integrated by parts as:
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fﬂ rVPdV = fg V(PP AV - foPVrdV (4.28)

where the first term of right hand side of Eq. (4.28) can be calculated by using
Gauss’s theorem along the integration path j =1 to 4:

4
- = de = = 4.2
f o, V(Pr)dV = fan, rPids = JZ; r,Pils; (4.29)

Since the pressure is assumed constant over each element, the use of geometric

condition gives (Appendix A),

[ 1VPAV = (Py-P)iigr;s; = APFigrss, (4.30)

~ where 7, constitutes the normal of the side s; directed from the triangle L to the

triangle R, as shown in Figure 4.5.

rce Term

The source term in Eq. (4.25) is treated as follows:

A +A o
focng = _L_é__“;(s'c,uqu,‘) 4.31)

By summing all the contributions of transient, convection-diffusion, pressure,
and source terms, and the boundary conditions for velocity ¢ , the final form of the

discretized momentum equation can be expressed as:
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4
ey + Y agt = o)V - APrsiy + 4, 4.32)
k=1

This is the relation of the Pressure-Velocity closure, it will be used in the

derivation of the pressure algebraic equation.
4.4 Pressure Equation and Pressure Gradient

The control volume for the continuity equation is the triangular element itself,

where the pressure is stored at the centroid of the element, as shown in Figure 4.6.

O P
@® U, Vv - Face-centered scheme

@ W, V - Vertex-centered scheme

Figure 4.6: The node cluster involved in the discretized pressure equation

By integrating the continuity equation (3.61) over the control volume of Py,
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using the midpoint approximation, we have:

s
> prAs = 0 (4.33)
i=1

where s; is the length of the side i of the triangle P,, the integration points 1, 2 and 3
are the midpoints of each side, and 7, is the outward normal of the integration side
of the element Py, as shown in Figure 4.6.

For the Face-centered scheme, the velocities at points 1,2,3 can be used
directly, because the velocities are stored at the midpoint of sides. However, in
Vertex-centered, linear interpolation for the velocities at sides is used since the
velocities are stored at vertices of the element. The pressure-velocity closure relation
(Eq. (4.32)) applies to both schemes and is used to derive the pressure discretized
algebraic equation by substituting into the integrated continuity equation. For
convenience, both sides of Eq.(4.32) are divided by coefficient a,, giving:

gml - g _ AP (4.34a)

i 1 ii

with

P " 2, (4.34b)

Substituting Eq.(4.34) into Eq.(4.33), we can obtain the following relation:
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3
Y pr ¥ - @4AP)fs, =0 4.35)
i=1

where, i, is the outward normal of the integration sides i directed from P, to P,
(Figure 4.6). &, is a vector normal to the side i directed from the element "L" to the
element "R", it has the same direction as the vector - in Figure 4.5. The difference
between i, and &, is that: for a given face direction, i, is always the outward
normal of this face, while &, may be inward or outward normals, which depends on

the definition of the co-volume. The pressure difference then can be written as:

&7, >0
AP, = P,-P, = PP,

(4.36a)

or

oA, <0
(4.36b)

AP, = P,-P, = -(P;-P)
Substituting Eq.(4.36) into Eq.(4.35), the final form of pressure equation can
be expressed as follows:
3
COPO + E ciPi = € (4373.)
i=1

with:

c. = pr23 (4.37b)
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3
6--3 4.37¢)
i1
and
3
€ ==Y pris ) (4.37d)
i=1

It should be noted that in Eq. (4.32) the pressure field cannot correct both
velocity components (u,v) but only the normal velocity component. This is because
that velocities (u,v) at the co-volume face are contacted with only two pressure points.
Then the pressure difference caused by these two pressures depends on the face
orientation. Hence, the pressure gradient ( gp/ox,dp/dy ) cannot be determined
uniquely based on these two pressures. To overcome this problem, a pressure
reconstruction method is used to obtain the pressure gradient field by using the
complete pressure field.

Assuming that the pressure varies linearly over the triangle P;P,P;, as shown

in Fig. 4.7, we have,

P = ax+by+c (4.38)

where the coefficients a, b, and ¢ can be determined from the values of pressure at
point P;, P,, P, as well as their corresponding locations, and P,, P,, P; are the

neighbours of the triangle P,.
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Figure 4.7: Pressure reconstruction used for obtaining the pressure gradient in triangle
element P,

The pressure gradients in the element P, can be expressed as:

(ﬁf) _a (ﬂ’.) - b (4.39)
ax J % Jo

These relations are then used in the solution of the momentum equations as
source terms, where the pressure gradients should be directly integrated by volume,
instead of faces. A Neumann type boundary condition for pressure along the normal
direction is used to determine the pressure gradient at boundary elements, as shown

in Figure 4.8, where P,=P, .



99

O P, oP oo

Figure 4.8: The pressure gradient at the boundary element

4.5 Solution of the System

The discretized transport equation for each variable can be written in a matrix

system as follows:

where A is a sparse matrix, x and b are vectors. The solution method uses a LU
factorization with a skyline storage scheme, where only the nonzero length of a column
or row is stored for each equation. Details may be found in Page et al. (1989).

For the steady case, the transient term is dropped from the discretized general

form of the transport equation (4.23) as:
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ald, = Y ahb,,+b! (4.41)
nb

To make the solution stable, usually, the under-relaxation factor method
suggested by Patankar (1980) is used. In the present work, the E-factor formulation
of Van Doormaal and Raithby (1984) is implemented to improve the convergence.
Then Eq.(4.41) becomes:

¢
1 q;
a (1 +E)¢i = §a$¢nb+bi¢+'é-¢? (4.42)

where ¢? is the value of ¢, from the previous iteration. The value of E range from

0.5 to 10 in the computation process.
4.6 Radiation Heat Transfer

The purpose of the present discrete transfer method is to couple the proposed
unstructured grid solver for reacting flows with radiation calculations. This extension
not only retains the original discrete transfer method’s features (Lockwood and Shah,
1981), but also offers others advantages, such as grid concentration, adaptivity and

even moving grids.
4.6.1 Solution Procedure

Consider a 2D infinite arbitrary enclosure containing a participating medium,

as shown in Figure 4.9,
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Figure 4.9: Typical rays in participating medium of an irregular-shaped domain

The surfaces (or walls) of the enclosure are divided into number of subsurfaces,
and the volume of the medium is divided into discrete non-overlapping triangular
elements. The hemisphere which encompasses each surface element is arbitrarily
divided into N (= N x N¢) equal segments from each of which a ray is issued. The
directions of the rays (or beams) are specified by the polar angle 6 and azimuthal angle
¢, and their intensity leaving from each surface, 1);"_ is assumed to be uniform on
each subsurface. The temperature of each of the elements and subsurfaces as well as
the values of the intensity ]‘;’i , are assumed to be known, either from a previous
iteration values or from an initial guess. For a gray surface, the iteration procedure to
update the new set of intensities is described. The new value of I,:,i leaving one

surface AA, is calculated from:
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E
11:'}' = 2 = (l—ew)&!{ +gw=lv= (4.43)

where g, 18 the surface emissivity, E, is the surface emissive power 073 ,
q‘:i and q,; are the heat fluxes leaving from and arriving at the subsurfaces A4 .

The heat flux, q,;

t)

is obtained from the integration of 7 . about the entire

hemisphere on the center point P, of AA, (Chan, 1987),

L N
- 2n Y - _
s = [ s c09,40,= T 1, 050, A0, (4.44)

where 1‘;}. is the incident intensity at P, of a ray within a solid angle AQ,
originating from point Q, on the k subsurface.

The intensities I, and  are obtained by integrating Eq. (3.58) along the
direction of (} , and E* , the modified emissive power defined by Eq. (3.57), is
assumed uniform in each element, from which the following recurrence relation is
established:

*

L. = E_(l_e-GS‘) + Le™®" (4.45)
T

n+l

where, the subscripts n and n+1 designate integration points along the ray separated
by distance és. I, and I, are the values of intensity entering and leaving a triangular
element respectively, and s is the optical length within the volume (see Figure 4.9).
The whole calculation of intensity as well as the radiation sink or source are
based on the following steps:
i) calculate the successive integration locations n+1, n... by aray Q ; from

point P, to the opposing wall Q,.
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ii) the relation Eq.(4.45) is applied along the ray from Q, to P, to obtain
I from the value of - " which is computed by Eq.(4.43). Therefore, q,,; can be
evaluated by summing over all the rays arriving at the hemisphere about P;. A new set
of values 1‘:’,. , is calculated by Eq.(4.43) for all enclosure subsurfaces. The solution
procedure is iterated until the desirable accuracy is achieved.
iii) calculate the radiation sink or source term (v-7) for the energy
conservation equation. The net amount of energy emitted by the n® element by the ray

from a subsurface area of A4, can be expressed as:

S, = (,,~1)cos0,AQ,AA, (4.46)

ni

By shooting out all the rays hemispherically in a set of prescribed directions
and in N solid angles from each of the subsurface, and summing up over all the rays
M, which contribute to the n™ element, the rate of total net loss of radiative energy

from this element volume Ay is given by Chan (1987):

M
adV = 7 dA = 4.47
fAV,,Vq’dV - anq,dA B 'Z____;Sn,i (4.47)

This term is used in the solution of the energy transport equation to couple the

radiative heat transfer with the energy conservation equation.
4.6.2 Ray Tracing

Cartesian Enclosures

The difference between triangular and rectangular elements lies in the treatment
of geometric aspects. For a structured rectangular mesh, the linear interpolation
between the emitted ray and the element sides can be easily calculated. This can be

done by increasing (or decreasing) the index of grid line i or j along the ray’s
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propagation direction, the intersection point can then be determined. Details for the
treatment of rectangular meshes may be found in Shah (1979).

For an unstructured triangular element, the intersection between the emitted ray
and the element sides can be classified in two cases in the present methodology. Case
1 is the usual case, where the ray intersects one side (ab or bc) of an element abc, as
shown in Figure 4.10. This depends on whether the angle between the ray direction
PQ and the wall side ca is smaller than the angle between bP and wall side ca. The
intersection point n can be calculated simply by the linear interpolation between ray
PQ and side ab (or bc).

C

/4

Emitted Wall

Figure 4.10: Geometric calculation in case of the ray intersects with one side of a
triangle

Case 2 occurs when the emitted ray passes through vertex b, as shown in
Figure 4.11 and 4.12 (In this case, the ray cannot cross the vertex a, because ca is the

emitted wall). Around point b, all the neighbouring triangular elements are considered,
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Emitted Wall

Figure 4.11: Geometric calculation in case of the ray passes through a vertex of a
triangle

except for element abc, because the ray has visited this element. For each
neighbouring element, the side which does not include vertex b (example: side ed) is
used to determine the interpolation point n. This can be done by assessing whether the
angle between ray PQ and wall side ca is included inside angles ePa and dPa (Figure
4.11). Special treatment is necessary when ray PQ overlaps with side bd (Figure 4.12).
In this case, the average extinction coefficient and emissive power in elements 1 and
2 is used in the calculation of intensity in Eq.(4.45). The interpolation point n is same
as the point d.

Once the interpolation point n is found, a similar procedure can be used to
determine the point n+1, ..., until the ray impinges a wall cell. In the meantime, we
calculate the distance the ray travels in each element along its path.

The present method is not restricted to triangular elements with acute angles.

It can be applied to obtuse triangles as well.
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Figure 4.12: Geometric calculation in case of the ray overlaps with side

In the application of this method, the different grid density is used for the
unstructured mesh. In the case where a high gradient of radiant energy exists of the
domain, the fine grid is adopted. In other regions where the radiant energy is not
notable, a coarse grid can be used. Using variable grid density for different regions
of the solution domain, can save computing time, while maintaining high accuracy.

The different solution strategy is adopted to solve turbulent reacting flow
coupled with radiation. For the aerodynamic and reaction solver, a fine grid is
necessary to describe the flow and species. If the radiation solver uses the same grid
as fluid flow solver, it requires long computing time, especially when the radiation
properties are temperature dependent. Based on the same set of the computation grid
as the flow solver, the radiation variables are updated less frequently than that of the

flow and the chemical reactions, usually, per 5 or 10 iterations are preferred.
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Cylindrical Enclosures

Although in cylindrical enclosure, the geometry of the domain is quite different
from the cartesian coordinate, the radiative transfer equation used is exactly the same
as the cartesian ones. In a 2D axisymmetric cylindrical enclosure, we are mainly
interested in the radiation heat transfer in the representative plane (Figure 4.13). In
order to implement the discrete transfer method, even in 2D case, the ray-tracing
procedure used here is same as that of the 3D cylindrical enclosure, i.e. the
representative directions have to be originated from the whole enclosure (or the whole

wall surface), as shown in Figure 4.13.

Radial Plane

Figure 4.13 Projection of the ray-tracing direction in one quadrant of a cylindrical
enclosure

4.6.3 Treatment of In-Scattering
Unlike the discrete ordinates method (Fiveland, 1984), angular integrals of the
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intensity in the in-scattering term are discretized by numerical quadrature. In the
present discrete transfer method, the in-scattering term, like the emissive power, is
presumed constant over a triangular element. According to Chan (1987), Eq.(3.57) is

discretized as:

P 1 ks 5/ / / 4.48
E* = E(k/zg + _4_%; (G, 0 Qp0) IQp 0 )ag AQ ,o,.) (4.48)

where [ is a value averaged over the element. The arithmetic mean of its

,PxQ,,.)avg
values entering and leaving an element in the g’ direction will be taken for
computing purpose, as shown in Figure 4.14. However, mathematically, the accuracy
of angular integral of the intensity which is based on the arithmetic mean is less than
that of which the numerical quadrature. This leads to the accuracy of the discrete
transfer results for considering the in-scattering term is less than that of the discrete
ordinates method.

It should be noted that in the consideration of the in-scattering term, the number
of rays must be large enough to avoid the "ray effect"”, especially in the case where
the intensity may be zero at one specified direction in an element in the application of
ray-tracing procedure (Chai, 1993), this phenomena may be referred to the "statistical

error”, due to the method’s statistical based approach.

4.7 Solution Algorithm of the SCVFEM

The overall solution algorithm of SCVFEM is based on the following steps:

1. Guess a velocity field and all the other variables.

2. Calculate coefficients in the momentum equations based on the Co-Volume
integration and then obtain ¥, from Eq.(4.34a) and Eq.(4.34b) by substituting the
values of neighbour velocities. This step suits for both Face-centered and Vertex-
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Figure 4.14: The treatment of in-scattering

centered schemes.

3. Solve the pressure Eq. (4.37a)-(4.37d), then obtain the pressure field.

4. Using the pressure reconstruction method, obtain the pressure gradient field
Eq.(4.39).

5. Solve the momentum equations over the Co-Volume (Face-centered scheme),
or Polygonal control volume (Vertex-centered scheme) to obtain the velocity field,
where the source terms of the momentum equations include the pressure gradient field.

6. Solve the turbulent equations k and e, update , and wall boundary
conditions for turbulent flows.

7. Solve the mixture fraction f, mass fraction of fuel, and other combustion
models for obtaining the concentration of chemical species.

8. Solve the radiative transfer equation to obtain the radiation source and heat
flux at wall.

9. Solve the enthalpy equation if radiation exists.
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10. Compute the temperature and density field for reacting flows.

11. Return to Step 2 with all renewed values, repeat until the solution
converge.

The above solution algorithm has a little difference with well known solution
methods, such as SIMPLE algorithm.

In the above solution algorithm, the variable E-factor and the variable under-
relaxation parameters for dependent variables are used. This strategy makes the
numerical solution converged faster than that of only use constant under-relaxation
parameters. Also, the inner-loops for flow variable (u,v,p), turbulent variables (k,e)

and other transport equations are also tested.
4.8 Features of the proposed SCVFEM

The present SCVFEM has certain features in both the accuracy and the
treatment of the boundary conditions. Firstly, for both Face-centered and Vertex-
centered schemes, there is no need to impose the boundary condition for pressure.
Secondly, for Face-centered scheme, it is easy to impose the boundary condition for
velocities, transport variables and radiation intensity at each boundary face, it also
avoids the difficulty to impose the boundary condition at the discontinuous corner point
of the computation domain with Vertex-based schemes. Finally, with the equivalent
number of unknowns and the same accuracy required, the CPU time of Face-centered
scheme is less than that of Vertex-centered scheme, this will be illustrated in Chapter
5.

Due to the element used in the present SCVFEM with Face-centered scheme
is same as the well known finite element P1 non-conforming/P0 element (Crouzeix and
Raviant, 1973, Figure 2.1(j)), and it is also very close to that of the complementary
volume method (Nicolaides, 1989, Figure 2.1 (b)), then it is necessary to illustrate the

differences among these methods.
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In the P1 non-conforming/PO finite element method, the discretised momentum
equations for velocity components (u,v) are derived by using the variational method.
The incompressibility constraint is taken into account in the 2D case by the
construction of a zero divergence basis (Thomasset, 1982), then the pressure is
eliminated, the penalty method is used to solve the discretised equations.

In the complementary volume method, contrast to the more usual approach
using two velocity components (u,v) and one control volume (like SCVFEM does), its
unusual characteristics are the use of only one velocity component, -normal to each
edge of the triangulation, and two complementary control volumes, one is the
polygonal control volumes consistent of joining the circumcenters of the triangles
surrounding nodes of the triangulation; another is the triangular element as its control
volume. These two complementary control volumes are used to discretise the
momentum equation and incompressibility constraints in transformed div-curl systems
of the momentum equations in 2D problems. The tangential velocity components which
is used for the approximation of the convective terms are constructed from the normal

velocity fields.



Chapter 5
Computational Results

The proposed scheme has been implemented and a number of test cases carried
out to validate the code and the scheme. In particular the two nodal arrangements, face
and vertex centered were compared for accuracy and cost. Similarly the two methods
for implementing the wall function were also compared. The different combustion
models are tested for turbulent reacting flow with variable density.

Finally, the SCVFEM is applied to the practical combustion problems, where
the radiation heat transfer is considered. The results are compared with other

numerical method and the experimental data.
5.1 Driven Cavity Flow

5.1.1 Problem Description

The steady, 2D-cartesian, laminar recirculating flow of an incompressible
Newtonian fluid contained in a square enclosure where the fluid motion is driven by
a sliding lid as shown in Fig. 5.1 is considered. Results obtained with the SCVFEM
proposed in this thesis using both Face-centered and Vertex-centered schemes on
unstructured grid, will be presented for Reynolds numbers of 100, 400 and 1000. The
results are compared with the benchmark predictions of Ghia et al. (1982).

The following tests are examined:
A. The same number of elements for Reynolds number of 100.

B. An equivalent number of unknowns for Reynolds number of 100.
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Figure 5.1: Geometry of a square driven cavity

C. The capability of the two schemes for high Reynolds number flows.

In the above tests, the boundary conditions for the u,v velocities at solid walls
are equal to zero, and at the top wall u = 1 m/s, v = 0. The relaxation E-factors, E*
= E' = 4 for Re = 100, E* = E' = 2 for Re = 400 and 1000 are used. The under-
relaxation parameters of u, v and p are taken as 0.5. The maximum element Peclet
number Pe,, = 10 is used as the limit between the exponential function and the

upwind function.
5.1.2 Comparison of the Face-centered - Vertex-centered schemes
A. The same number of elements for Reynolds number of 100

Figure 5.2 shows the unstructured mesh containing 832 elements. The predicted
velocity field is given in Fig. 5.3 for Reynolds number of 100.
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Figure 5.2: The computational mesh of a square driven cavity (832 elements)

/

\

Figure 5.3: The prédicted velocity field of a square driven cavity at Re=100

The u-velocity profile at the vertical centerline and the v-velocity profile at the

horizontal centerline are shown in Fig. 5.4 (a) and (c), respectively. Table 5.1 gives
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the number of iterations and the CPU times needed for both schemes to get the

converged solutions.

Table 5.1: Comparison of the number of iterations and CPU times needed for both

schemes on the same number of elements (832) for Reynolds number of 100

Scheme Face-Centered Vertex-Centered
iterations 530 215

Residual 107 107

CPU (s) 310.5 153.2

Using 5000 elements, for both schemes, the u- and v-velocity profiles at the

vertical centerline and the horizontal centerline are in good agreement with the results
of Ghia et al. (1982) at Re = 100, as shown in Fig. 5.4 (b) and (d).
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Figure 5.4: Comparison of the u-velocity at the vertical centreline and the v-velocity
at the horizontal centreline of the cavity for Re=100 with the same number of

elements for two schemes of the SCVFEM
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B. An equivalent number of unknowns for Reynolds number of 100

Because for a given grid, the number of unknowns is different for Face-
centered and Vertex-centered schemes, they should be compared on the basis of the
number of degrees of freedom rather than number of elements. Two different grids,
for Face-centered scheme 19x19 nodes, which contains 1008 degrees of freedom
(sides), and for Vertex-centered scheme 31x31 nodes, which involves 961 degrees of
freedom (vertices) are considered. The convergence history of the u-velocity for both
schemes are shown in Fig. 5.5. The u-velocity profile at the vertical centerline and the
v-velocity profile at the horizontal centerline are plotted and compared in Fig. 5.6. The
comparison of the CPU times and the number of iterations are shown in Table 5.2 for

both schemes.

Table 5.2: Comparison of the number of iterations and CPU times needed for both

schemes on the equivalent number of degrees of freedom for Reynolds number of 100

Scheme Face-Centered Vertex-Centered

iterations 535 405

Residual 107 107

CPU (s) 220.9 611.0
Degree of freedom 1008 961

C. Effect of Reynolds number

The effect of Reynolds number on the two schemes is investigated. The
computation meshes used for Re = 400 are 31x31 and 51x51 nodes, and for Re =
1000 47x47 and 81x81 nodes. Fig. 5.7 (a),(c),(b) and (d) show the results for the u-
velocity profile at the vertical centerline and for the v-velocity profile at the horizontal
centerline, respectively. We can see that for sufficiently fine grids there is little or no

difference between these two schemes. The difference between the present predictions
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Figure 5.5: The convergence rate of the u-velocity for both Face-centered and Vertex-
centered schemes

and the results of Ghia et al. (1982) is probably due to the upwind interpolation
function (Rida, 1993) and insufficient numerical resolution, the grid used in Ghia et al.
is 129x129 nodes. The comparison of the CPU times and the number of iterations are
shown in Table 5.3 for both schemes at Reynolds number of 400 and 1000.
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Figure 5.6: Comparison of the u-velocity at the vertical centreline and the v-velocity
at the horizontal centreline of the cavity for Re=100 with an equivalent number of

unknowns for two schemes of the SCVFEM
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Table 5.3: Comparison of the number of iterations and CPU times needed for both

schemes on Reynolds number of 400 and 1000, respectively

Reynolds Number 400

Scheme Face-C. Face-C. Vertex-C.
Grid (nodes) 31x31 51x51 51x51
Iterations 1080 714 473
Residual 106 10°¢ 106

CPU (s) 1.217x103 3.58x10° 1.483x10°
Degree of freedom 2760 7600 2601
Reynolds Number 1000

Scheme Face-C. Face-C. Vertex-C.
Grid (nodes) 47x47 81x81 81x81
Iterations 2500 4400 5000
Residual 10°¢ 10°¢ 10°¢

CPU (s) 0.9204x10* 12.047x10* 5.77x10*
Degree of freedom 6440 19360 6561
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Figure 5.7: Comparison of the u-velocity at the vertical centreline and the v-velocity
at the horizontal centreline of the cavity for Re=400 and Re=1000 for two schemes

of the SCVFEM
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5.2 Flow Over an Obstacle

5.2.1 Problem Description

The steady, two-dimensional, laminar flow of an incompressible fluid over an
obstacle mounted in a closed channel is considered to examine the accuracy and the
capability of the two SCVFEM schemes for predicting the recirculation length under
inflow and outflow boundary conditions. The experimental configuration of Carvalho
et al. (1987) is used in this test, as shown in Figure 5.8. The Reynolds number based
on the obstacle height and the average inlet velocity is equal to 145.

Upnax =0.67m/s

H=000m S§=-0005m e=000lm L;=0030m I, =~0120m

Figure 5.8: Geometry of the flow over an obstacle

The unsteady state formulation is used for obtaining the steady state solution.
For the Face-centered scheme, a non-uniform Mesh A contains 3728 elements (5711
sides as unknowns) is considered, as shown in Figure 5.9. While, for Vertex-centered

scheme, three sets of computational meshes are used, Mesh A contains 1984 nodes
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(3728 elements) as unknowns; Mesh B involves 3202 nodes (6128 elements), and Mesh
C contains 4355 nodes (8386 elements) are used.

Figure 5.9: The computational mesh of the flow over an obstacle

5.2.2 Results
The predicted velocity field is shown in Figure 5.10.
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Figure 5.10: The predicted velocity field of the flow over an obstacle

Figures 5.11 and 5.12 show the distribution of the u-velocity profile at four
stations downstream from the obstacle: x/S = 2.4, 4.4, 11, 24 for the different meshes
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using the two schemes. From these results, we found that the accuracy of the Face-
centered scheme with Mesh A (with 5711 sides) is comparable with that of the Vertex-
centered scheme with the fine Mesh C (4355 Nodes), and both results are in good
agreement with the experimental data. Table 5.4 gives the predicted recirculation
length obtained with each mesh for both the Face-centered and Vertex-centered

schemes.

Table 5.4: The predicted recirculation length of the flow over an obstacle by using two
schemes of the SCVFEM.

Mesh Unknowns Scheme Recirculation Length
Mesh A 5711 Sides Face-centered 10.28 m

Mesh A 1984 Nodes Vertex-centered 12.40 m

Mesh B 3202 Nodes Vertex-centered 10.77 m

Mesh C 4355 Nodes Vertex-centered 10.57 m
Experiment 9.0-11.0m

From this test, we can see that both Face-centered scheme and Vertex-centered
scheme predict the recirculation flows under inflow and outflow boundary conditions.
From Table 5.4, it is seen that the recirculation length predicted by the Face-centered
scheme with Mesh A and for Vertex-centered scheme with Mesh B and C are close
to the experimental reattachment point obtained by Carvalho et al. (1987) in the
regions (9 < x/S < 11).
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Figure 5.11: Comparison of predicted and measured u-velocity profiles at sections x/S
= 2.4 and 4.4
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= 11 and 24



127

5.3 Turbulent Channel Flow

5.3.1 Problem Description

To validate the proposed wall function method and to show its independence
with respect to wall orientation, turbulent channel flows at 0° and 30° angles are
considered as given in Figures 5.13 (a) and (b). The Reynolds number based on the
channel height and inlet velocity is 11,400.

(@

(b)

L=18m

\,./ H=0.05m

Yp =0.003m

Figure 5.13: A schematic of the turbulent channel flows

The computational mesh contains 4274 elements (2250 nodes), as shown in
Figure 5.14.
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Figure 5.14: The computational mesh of the turbulent channel flows

For this test the Face-centered scheme using the steady state formulation is
used. The relaxation E-factor for all the dependent variables are taken as 1, the under-
relaxation parameters for u, v, p, k and e are equal to 0.3. A uniform inlet velocity
of 1m/s, and the inlet turbulent kinetic energy and its dissipation rate are determined

from:

5.1)

with X=0.003, ¢=0.03.

The convergence criterion of a dependent variable ¢ is determined from the
summation of the discretized transport equation over all the control volumes with
respect to the inlet total flux of ¢ ,

ml N nel 04n
Y |ad; +l§ ad, -a, ¢;-b, 5.2)

Residu,, = domain

E (p‘-;'ﬁd)A)i,,m

where, the computation is stopped after the residuals of all the dependent variables are
less than 1073,
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5.3.2 Results
The fully developed velocity profiles at the channel exit are plotted for both the

0° and 30° angles cases in Figure 5.15 which shows they are identical.

1.2 . : ‘ ‘
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Y

Figure 5.15: The developed velocity profiles at the exit of the channel flows with 0°
and 30° angles
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5.4 Turbulent Flow Over a Backward Facing Step

5.4.1 Problem Description

The steady, 2D turbulent flow over a backward facing step is considered to
validate the present turbulent model and the wall function methods. This is a flow
which separates and reattaches enclosing a recirculating region. Accurate experimental
data for this problem is available from Westphal et al. (1984), and numerical
predictions with k-e two-equation model are available in the work of Autret et al.
(1987). The Reynolds number based on the step height and the inlet velocity is 42000.
This test problem is to assess the accuracy of the proposed SCVFEM to solve a
complex turbulent flow problem. The geometrical configuration of the flow and

boundary parameters are depicted in Figure 5.16.

s L L
— H
i VYoo L
? /77
h =00508m H =25h §=5h L =200 y=000lm

Figure 5.16: The geometrical configuration of the turbulent flow over a backward
facing step

In this problem, two sets of tests are conducted. One is to compare the two
numerical schemes, i.e. the Face-centered scheme and Vertex-centered scheme, where

the 3-layer wall function of Speziale and Thangam (1992) with the classical
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approximation method is used. Another set of tests is the implementation of the 2-layer
wall function by using two different methods; the classical approximation method of
Launder and Spalding (1974) and the direct iteration method of Garon (1994) described
in Chapter 3.

At the inlet a flat velocity profile with a value of unity is prescribed and
boundary conditions for the turbulent parameters in Eq. (5.1)are ) = 0.003, a=0.03.
Following Autret et al. (1987), the downstream channel length L is taken 20 step
heights downstream from the step corner. The unsteady state formulation is used for
obtaining the steady state solution using a computational mesh of 10826 elements (or
5580 nodes). In the test of the implementation of the 2-layer wall function methods,
the downstream channel length L is extended to 30 step heights downstream of the step
corner, to ensure that the local error for all of the quantities was of the same order as
the interior values (Thangam and Speziale, 1992). Calculations are based on the steady
state formulation, in which the E-factor varies from 1 to 5. Furthermore, the variable
under-relaxation parameters for u, v, p vary from 0.3 to 0.6, for k, ¢ are taken from
0.6 to 0.8, and for turbulent viscosity p, is from 0.3 to 0.6. Three set of grids are
considered, they are: Mesh A with 3640 elements (or 1921 nodes), as shown in Figure
5.17, Mesh B with 7144 elements (or 3713 nodes), and Mesh C with 16034 elements
(or 8217 nodes). The maximum residues of all dependent variables in the calculation

domain are less than 1x10* for converged solutions.

5.4.2 Results

Figures 5.18 and 5.19 show the predicted velocity field and turbulent kinetic
energy field, respectively. The distributions of u-velocity and turbulent kinetic energy
k are compared with the experimental data of Westphal et al. (1984) at stations
downstream from the step, located at x/H = 4, 8, 12 and 20.
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Figure 5.17: The computational mesh of the turbulent flow over a backward facing
step

Figure 5.18: The predicted velocity field of the turbulent flow over a backward facing
step

A. Comparison between classical approximation method and direct iteration
method
To compare the results obtained with the classical approximation method and

the direct iteration method in the implementation of the 2-layer wall function, three
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Figure 5.19: The predicted turbulent kinetic energy field of the turbulent flow over a
backward facing step

sets of the computational grids, Mesh A, B and C are used in the calculation with the
Face-centered scheme. Table 5.5 gives the predicted reattachment length and CPU
times. As the mesh becomes finer, the predicted reattachment length increases for both
the classical approximation method and the direct iteration method, although
underpredict the reattachment length, measured by Westphal et al. (1984) at about
7.33. Furthermore, it is also found that the predicted reattachment length by the
classical approximation method is longer than that obtained by the direct iteration
method. The profiles of u-velocity and turbulent kinetic energy k with Mesh C are
plotted in Figure 5.20 and Figure 5.21. From Fig. 5.20, we found that at section
x/H=20, the velocity profiles obtained by the direct iteration method is much better
than that of by the classical approximation method. The reason may be that the wall
shear stress obtained by the direct iteration method is more realistic than that of the

classical approximation method in the fully developed turbulent flow regions.
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Table 5.5: The predicted reattachment length of the turbulent flow over a backward

facing step using Face-centered scheme

Mesh | Degree of | Classical Approximation Direct Iteration Method
freedom Method

Reattachment CPU (s) Reattachment CPU (s)

A 5560 sides 5.45 3.1107x10° 5.05 8.5271x10°
B 10850 sides | 5.76 1.9296x10* 5.254 5.1828x10*
C 24250 sides | 6.13 1.6888x10° 5.40 2.7425x10°

B. Comparison between Face-centered scheme and Vertex-centered scheme

A comparison between results obtained from the Face-centered and Vertex-
centered schemes and the 3-layer wall function of Speziale and Thangam (1992) with
classical approximation method for the wall function was carried out. The predicted
reattachment length obtained by Face-centered scheme is 6.01, while that from the
Vertex-centered scheme is 5.935 with the same mesh of 5580 nodes. The predicted
profiles of velocity and turbulent kinetic energy are also shown in Figure 5.22 and
5.23 for both schemes. From Fig. 5.22 and Fig. 5.23, it is found that the predicted
velocity and turbulent kinetic energy by the Vertex-centered scheme are in better
agreement with the experiment than those by the Face-centered scheme. One possible
explanation is that in each boundary element, only one node is used to compute the
wall shear stress in the Face-centered scheme. Thus the computed wall shear stress is
approximately constant along the boundary side. In the Vertex-centered scheme, there
are two boundary nodes along each boundary side, so that the computed wall shear

stress varies linearly.
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Figure 5.20: Comparison of numerical predictions of velocity with measurements of
Westphal et al. at x/H=4,8,12 and 20 by using both Classical Approximation and
Direct Iteration methods, respectively
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Figure 5.21: Comparison of numerical predictions of turbulent kinetic energy with
measurements of Westphal et al. at x/H=4,8,12 and 20 by using both Classical
Approximation and Direct Iteration methods, respectively
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Figure 5.22: Comparison of numerical predictions of velocity with measurements of
Westphal et al. at x/H = 4, 8, 12 and 20 by using both Face-centered and Vertex-
centered schemes, respectively
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Figure 5.23: Comparison of numerical predictions of turbulent kinetic energy with
measurements of Westphal et al. at x/H =4, 8, 12 and 20 by using both Face-centered
and Vertex-centered schemes, respectively
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5.5 Turbulent Flow Over a Pipe Expansion

5.5.1 Problem Description

The proposed SCVFEM is also applied to 2D axisymmetric turbulent flow in
a sudden pipe expansion. The expansion ratio is 2.0 and the Reynolds number of 2 x
10° is based on the mean inlet velocity and outlet diameter. The schematic of flow and
boundary parameters are given in Figure 5.24. Predictions of the velocity and turbulent
kinetic energy based on both Face-centered and Vertex-centered schemes are compared
with the experimental data. The experimental data for velocity and turbulent kinetic
energy profiles at several streamwise locations are measured by Chaturvedi (1963).
The numerical predictions of this problem using the finite element method has been
given by Kim (1987).
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¥y =0002m Yy, =0.002m ¥3=0004m Y =31mfs

Figure 5.24: The flow parameters and the geometric dimensions of a pipe
expansion

The uniform inlet velocity is 31m/s, the inlet turbulent parameters defined in
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Eq. (5.1) are \=0.005, ¢=0.03. The steady state formulation with the factor E =
2.0 for all the dependent variables is used, and the under-relaxation parameters for u,
Vv, P, k, € are 0.2, for the viscosity K, is 0.3. The computational mesh for both Face-
centered and Vertex-centered schemes contains 2640 elements (4053 faces, 1414
vertices), as shown in Figure 5.25. The 2-Layer wall function with classical
approximation method of Launder and Spalding (1974) is used in the computation.
Solutions are converged at the maximum residues of all dependent variables are
smaller than 1073,

Figure 5.25: The computational mesh of the turbulent flow over a pipe expansion

5.5.2 Results

Figures 5.26 and 5.27 show the predicted velocity field and turbulent kinetic
energy field, respectively.

Figures 5.28 and 5.29 show the predicted and measured axial velocity and
turbulent kinetic energy profiles at four downstream locations: x/D, = 1, 3, 6 and 8.
From Fig. 5.28, we can see that the difference between the predicted and measured
velocity profiles in the inlet region is small. At sections x/D, = 1, 3 and 8 the velocity
profiles compare very well with the experimental ones, while, at section x/D, = 6, the

difference increases near the axis. The reason for this difference is the underprediction
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Figure 5.26: The predicted velocity field of the turbulent flow over a pipe expansion

F_igure 5.273 The predicted turbulent kinetic energy field of the turbulent flow over a
pipe expansion
of the turbulent kinetic energy near the centerline region for both Face-centered and
Vertex-centered schemes, as shown in Fig. 5.29, which leads to an overprediction of
the velocity. The reason is because the turbulent viscosity becomes smaller with the
underprediction of the turbulent kinetic energy, leading to a large velocity.

The reattachment point found by Chaturvedi (1963) was 4.1D,, which is

compared to the predicted reattachment point for Face-centered scheme of 3.82D,, and
for Vertex-centered scheme of 3.75D,.
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Figure 5.28: Comparison of predicted and measured axial velocity profiles at four
downstream sections: x/D, = 1, 3, 6 and 8
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Figure 5.29: Comparison of predicted and measured turbulent kinetic energy profiles
at four downstream locations: x/D, = 1, 3, 6 and 8
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5.6 Turbulent Flow In an Annular Turnaround Duct

5.6.1 Problem Description

Turbulent flow in a turnaround duct presents a severe test for separation. The
occurrence of separation is dependent on the turning angle and the radius of curvature.
As a benchmark test of turbulent flows involving strong separation, the steady flow in
a 180° degree curved annular turnaround duct is selected. A schematic of the problem
is given in Figure 5.30. Experimental studies of this flow have been conducted by
Sharma and Ostermier (1987), the numerical predictions are given by FIDAP (1991).

Figure 5.30: Problem schematic of turbulent flow in an annular turnaround duct

The computation mesh comprises of 2070 triangular elements as shown in
Figure 5.31 with concentration towards the walls.

This is a 2D axisymmetric case, a flat velocity profile with a value of unity is
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prescribed at the lower duct inlet. The Reynolds number based on duct width and inlet
velocity is 100000. Flat profiles for the turbulent kinetic energy k = 0.001 and the
turbulent dissipation rate e = 0.0009 are also specified at the inlet, which correspond
to a low turbulence intensity of 0.1%.

The unsteady state formulation with Face-centered scheme is used for obtaining
the steady state solution. The under-relaxation factors for u,v are 0.2, for p is 0.12,

for k and € are 0.15, for turbulent viscosity is 0.2.

Figure 5.31: The computational mesh of an annular turnaround duct

5.6.2 Results

Figures 5.32, 5.33 and 5.34 depict the velocity, pressure and turbulent kinetic
energy fields, respectively. The occurrence of separation and the consequent
recirculation zone downstream of the bend is clearly discernible in the velocity vector
fields. The tendency of the pressure distributions and the predicted separation features
reasonably correspond to the FIDAP predictions. The u-velocity profiles at 0° and 180°
degree locations are plotted in Figure 5.35, and compared with experimental data of
Sharma and Ostermier (1987).
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Figure 5.32: The predicted velocity field of turbulent flow in an annular turnaround
duct
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Figure 5.33: The predicted pressure field of turbulent flow in an annular turnaround
duct
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Figure 5.34: The predicted turbulent kinetic energy field of turbulent flow in an
annular turnaround duct
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Figure 5.35: u-velocity profiles at 0° and 180° degree locations



148

5.7 Confined Axisymmetric Turbulent Diffusion Flame
5.7.1 Furnace of Lewis and Smoot (1981)

5.7.1.1 Problem Description

The geometry for this test is a cylindrical combustor with coaxial injectors,
where the natural gas is injected by the primary tube and the air through the secondary
annulus, as shown in Figure 5.36. The total pressure of the combustor is 94 KPa. In
the fuel stream, the uniform inlet gas velocity is 21.3 m/s and the flow rate is 2.84
g/s, with the temperature 300 K. In the air stream, the uniform inlet air velocity is
34.3 m/s and the flow rate is 36.6 g/s, with the preheated temperature 589 K.

The available experimental measurements for natural gas combustion have been
carried out by Lewis and Smoot (1981) together with the numerical predictions of
Smith and Smoot (1981) using the chemical equilibrium combustion model with the
finite difference method. Nikjooy et al. (1988) have used the fast chemistry reaction
model and the finite-rate chemistry model with the finite volume method, and Elkaim
etal. (1993) and Mckenty et al. (1993) with the fast chemistry, PDF, eddy dissipation,

chemical equilibrium and micro-flame models with CVFEM.

In the present computations, both the classical approximation method of
Launder and Spalding (1974) and the direct iteration method of Garon (1994) have
been used, together with four combustion models, i.e. fast chemistry, eddy dissipation,
chemical equilibrium and micro-flame models. Considering the concentration
fluctuation of the flame, the beta and delta PDF models are also tested.

The computation mesh involves 3107 sides (2014 elements), as shown in Figure
5.37. In the computations, the Face-centered scheme is used for all the test cases. E
varies from 1 to 2, and the under-relaxation parameters for the others dependent

variables, such as u, v, p, k, ¢, f, mg, h, T are taken from 0.2 to 0.3, that for the
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Figure 5.36: Geometry of coaxial combustor of Lewis and Smoot (1981)

density is from 0.1 to 0.3 and that for the viscosity is from 0.2 to 0.4. The inlet

turbulent parameters with A=0.003,a=0.03 are used. The model constants are:

Figure 5.37: The computational mesh of furnace of Lewis and Smoot (1981)
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5.7.1.2 Results

Figure 5.38 depicts the predicted velocity field using the fast chemistry reaction
model, where the wall function is implemented by the direct iteration method. Figure
5.39 shows the contours of the mean mixture fraction based on fast chemistry, delta
PDF and beta PDF, respectively. The PDF models exhibit a faster axial decay rate
than does the non-PDF model. The delta PDF has the fast decay rate of the mean
mixture fraction. The fast chemistry reaction model predicts a shorter recirculation
length (1.5846D) than either the delta PDF (1.6633D) or the beta PDF (1.6403D).
Figure 5.40 shows the contours of the mean temperature for these models. At the
mixing region near the inlet, the temperature rises quickly at some distance
downstream of the corner and the flame front is developed. The fast chemistry reaction
model yields a narrow, high temperature flame front, the beta PDF produces a wide

flame front, while the delta PDF creates a relatively narrow flame front.

Figure 5.38: The predicted velocity field of furnace of Lewis and Smoot (1981) using
the fast chemistry reaction model
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Figure 5.39: Contours of mixture fraction in a confined axisymmetric turbulent
diffusion flame of Lewis and Smoot (1981) obtained by the fast chemistry, delta PDF
and beta PDF models, respectively
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Figure 5.40: Contours of temperature in a confined axisymmetric turbulent diffusion
flame of Lewis and Smoot (1981) obtained by the fast chemistry, delta PDF and beta

PDF models, respectively
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Because the predicted results show large differences between using the classical
approximation method and the direct iteration method in the implementation of the 2-
layer wall functions, comparison of the combustion results are presented for these two
cases. Furthermore, the comparison between the present SCVFEM and other numerical
method is also presented. Next, we will present the predicted results of mixture
fraction and mass fraction of various species in several locations using the different

combustion models.

A. Results based on the Classical Approximation Method

The predicted radial mixture fraction distributions for fast chemistry, chemical
equilibrium, micro-flame and eddy-dissipation combustion models were computed
using the classical approximation method in the implementation of the wall functions
(Launder and Spalding,1974). These are shown at four sections x = 0.095 m, 0.175
m, 0.246 m and 0.327 m are plotted in Figure 5.41. In all cases, the mixture fraction
is overpredicted in the mixing zone of the two jets. The disagreement can be attributed
to the inadequate physical modelling of turbulence and the approximation of the wall
functions. In the fully developed outlet region, the mixture fraction distributions for
all the models become uniform, with a value of about 0.072. The predicted radial mass
fraction distributions of CO,, H,0, CO and H, based on the above four combustion
models at developed section x = 1.375 m are presented in Figure 5.42. It was noted
that the chemical equilibrium model and the micro-flame model have the capability of
predicting the chemical species of CO and H,, which is not possible with the fast
chemistry and eddy dissipation concept models in the present work. The micro-flame
model gives the best results over all the models considered. For the concentration
fluctuations, the delta and beta PDF models are considered. The predicted radial
mixture fraction based on the PDF models in four sections at x = 0.095 m, 0.175 m,
0.246 m and 0.327 m are depicted in Figure 5.43. It can be seen that the fast

chemistry reaction model predicts the fastest decay rate among the three models at the
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mixing zone. However, neither model provides a satisfactory prediction near the
centerline in the developing region. This apparent deviation may be mainly attributed

to the turbulence model and wall functions.

B. Results based on the Direct Iteration Method

Using the direct iteration method in the implementation of the wall functions
(Garon,1994), the predicted radial mixture fraction for fast chemistry, chemical
equilibrium, micro-flame and eddy dissipation combustion models are plotted in Figure
5.44 at four sections x = 0.095 m, 0.175 m, 0.246 m and 0.327 m, respectively. It
can be seen that the mixture fraction distributions for all sections are close to the
experiments. Figure 5.45 shows the predicted radial mass fraction distributions of CO,,
H,0, CO and H, using the above four combustion models at developed section
x=1.375m. Figure 5.46 shows the predicted radial mixture fraction distribution at
same four sections based on the PDF models. The results are also again close to the
experiments at all four sections. From these results, we may conclude that the results
based on the direct iteration method are much better than that of the classical
approximation method. The reason may be referred to that the wall shear stress
obtained by the direct iteration method is more realistic than that of the classical

approximation method.

C. Comparison with Vorticity-Streamfunction Results

The SCVFEM predictions are also compared with the Vorticity-Streamfunction
results of Mckenty (1992) using the fast chemistry reaction model. In the results of
Mckenty (1992), the numerical solution is based on the control volume finite element
method with the vorticity-streamfunction formulation on a mesh of 750 nodes. In the
present predictions, two sets of computational grids, 2024 sides (720 nodes, 1301
elements) and 3107 sides (1094 nodes, 2014 elements) with the direct iteration method

are considered, respectively. The mesh for the vorticity-streamfunction formulation
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(750 nodes) is equivalent to that of the primitive variable formulation (720 nodes, 2024
sides). In Figure 5.47 the predicted radial profiles of the mixture fraction are
compared with the measurements of Lewis and Smoot (1981). It can be seen that the
results of the SCVFEM with 720 nodes are almost same as that of the Vortivcity-
Streamfunction with 750 nodes. It was shown that when the grid becomes finer, the
mixture fraction decay near the centerline decreases. All results are very close to

experiments of Lewis and Smoot (1981).

D. Computational Efforts

Calculations were performed on a RISC 6000 model 520 work station, all the
results are converged at the maximum residues for all the dependent variables less than
107, For the coarse mesh with 2020 sides, the CPU time is 2.2817x10* seconds for
the fast chemistry model. For the finer mesh with 3107 sides, the CPU times are
2.878x10* seconds for the fast chemistry model, 4.4936x10* seconds for the eddy
dissipation model, 3.466x10* seconds for the chemical equilibrium model, 2.3849x10*
seconds for the micro-flame model, 3.296x10* seconds for the delta PDF and
1.8417x10° seconds for the beta PDF models.
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Figure 5.41: The predicted radial mixture fraction distribution at different axial stations
based on four combustion models using the classical approximation method
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Figure 5.42: The predicted radial distribution of major species mole fraction at station
1.375m based on four combustion models using the classical approximation method
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Figure 5.43: The predicted radial distributions of mixture fraction at different stations
based on PDF models using the classical approximation method :
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Figure 5.44: The predicted radial distribution of the mixture fraction at different
stations based on four combustion models using the direct iteration method
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Figure 5.45: The predicted radial distributions of major species mole fraction at station
1.375m based on four combustion models using the direct iteration method
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Figure 5.46: The predicted radial distributions of mixture fraction at four stations
based on PDF models using the direct iteration method
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5.7.2 Furnace of Lockwood et al. (1974)

5.7.2.1 Problem Description
A second simulation of turbulent reacting flows is that of Lockwood et al.
(1974), which is different from the furnace of Lewis and Smoot (1981) both in

dimension and inlet conditions. The flow geometry is shown in Figure 5.48.

L
.............................. SN ¥ 7 S—
: Fy
i Y2 3
{ N :
------ }-Ai-r------ R
V2722222222 R,
Fuel — [R| RZ
R; = 0010 m R, =0022m R; = 0039m R =0.105m
Y1 =0.001m Y2 =0.004 m Y3 =0,008 m L =1900m

Figure 5.48: Geometry of coaxial combustor of Lockwood et al. (1974)

In these experiments, the fuel and air are entered as coaxial jets into a suddenly
expanding chamber. In the present study, the fuel-air ratio of 0.0635, with Reynolds
number equals to 16,030 is selected. The inlet fuel velocity is 21.57m/s, with the fuel
temperature 344 K, the inlet air velocity is 13.46m/s with the air temperature 301 K.
The fuel is the town gas, with a composition of 27% of CH,, 8% of CO,, 4% of N,,
55% of H,, 4% of CO, 2% of C,H, and other. The calorific value of this mixture is
2.63 x 10* kJ/kg.



164

The computational mesh comprises 2028 sides (1306 elements), as shown in
Figure 5.49. In this test, only the fast chemistry model with the Face-centered scheme
is considered, because the predicted mixture fractions for each combustion model for
first test shows a little difference. Both the classical approximation method and the
direct iteration method are used for the calculation of wall functions. Others
parameters, such as turbulent inlet conditions, boundary conditions, turbulent model
constants and relaxation parameters are the same as for the test of Lewis and Smoot
(1981).

Figure 5.49: The computational mesh of the furnace of Lockwood et al. (1974)

5.7.2.2 Results

Figures 5.50, 5.51 and 5.52 show respectively the velocity, mixture fraction
and temperature fields obtained with the classical approximation method and the direct
iteration method. The predicted recirculation zone by the classical approximation
method is 1.238D and 1.095D by the direct iteration method. The mixture fraction
obtained by the direct iteration method exhibits a faster axial decay rate than that of
the classical approximation method. As can be seen in Figure 5.52, the flame front
obtained by the classical approximation method is longer than that of by the direct
iteration method. In Figure 5.53, the predicted radial mixture fraction profiles are



165

compared with the measurements of Lockwood et al. (1974). It can be seen that the
measurements exhibit a faster axial decay rate than do the predictions for all the cases.
At all four stations, the direct iteration method predicts a faster decay rate than the
classical approximation method. The predictions have the same qualitative trends as
the experimental data. Calculations were performed on a RISC 6000 model 520, the

CPU times spent by the classical approximation is 1.2699 x 10* seconds, and by the
direct iteration method is 1.9625 x 10* seconds.

(b) Direct Iteration Method

Figure 5.50: The predicted velocity field of the furnace of Lockwood et al. (1974)
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(a) Classical Approximation Method

(b) Direct Iteration Method

Figure 5.51: The predicted mixture fraction field of furnace of Lockwood et al. (1974)

(b) Direct Iteration Method

Figure 5.52: The predicted temperature field of furnace of Lockwood et al. (1974)
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5.8 Results of Radiation

The discrete transfer method was implemented and applied to the 2D cartesian
rectangular and triangular enclosures and axisymmetric cylinder furnaces using an
unstructured triangular mesh. The following examples were chosen to compare the
proposed procedure with exact solutions, original discrete transfer method (Lockwood
and Shah, 1981) and other approximate methods. For cartesian coordinate, the tests
involve:

¢ Absorbing/Emitting in a black rectangular enclosure

® Scattering in black rectangular enclosures

® Scattering in a gray triangular enclosure
For axisymmetric cylinder coordinate, the following tests are considered:

® Radiant heat transfer in idealized axisymmetric furnaces

¢ Radiant heat transfer in axisymmetric Delft furnace
5.8.1 Absorbing/Emitting in a Black Rectangular Enclosure

The discrete transfer method in the present methodology was applied to a
rectangular enclosure with cold black walls and a purely absorbing/emitting medium
maintained at an emissive power of unity, as shown in Figure 5.54. The surface heat
transfer rate was computed for three optical conditions k,L=0.1, 1.0, 10.0. Three sets
of comparisons of the surface heat transfer rates are made. The first are the parametric
analysis of the discrete transfer method for the absorbing medium (keL=1.0). The
second set, are comparisons between the present discrete transfer method using
triangular mesh solutions and the original discrete transfer method using a rectangular
mesh (Lockwood and Shah, 1981). Finally, are comparisons between the present
method and the exact solutions (Shah, 1979), as well as the S, discrete ordinates

solutions (Fiveland, 1984).
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Figure 5.54: A schematic of rectangular geometry with absorb/emit medium

Parametric analysis of the discrete transfer method

The effect of the number of element and the number of rays on the solution was
evaluated for the case of k,L = 1.0. The comparison for 50, 98 and 200 elements and
the exact solution (Shah, 1979) is shown in Fig. 5.55. For 50 elements, at least N6 x
N¢ = 4 x 16 are needed. Whereas for 98 elements, Ng x N¢ = 4 x 8 are necessary
to closely match the exact solution. For 200 elements and N x N¢ = 4 x 2, we do
not obtain good results, however, when increasing to N6 x N¢ = 4 x 4, the results are
in excellent agreement with the exact solution. This test shows that the number of the
azimuthal angle N¢ must at least be equal to 4, otherwise, we can not obtain good

results, even for relatively fine grids (200 elements).
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Figure 5.55: Minimum number of rays needed by the different meshes to closely
approximate the exact solution for absorbing medium kL. =1.0

Comparison with original DT method

In this test case, we will compare the surface heat transfer rates of the original
discrete transfer method (Lockwood and Shah, 1981) and the present discrete transfer
method. The original discrete transfer method, using a 10 X 10 rectangular mesh and
64 rays per corresponding wall location, closely reproduced the exact solutions (Shah,
1979) for 3 optical thicknesses. For the comparison, 100 triangular elements and 64
rays for each corresponding wall location were used. Figure 5.56 shows the geometry
and the unstructured triangular mesh. Fig. 5.57 and Fig. 5.58 are the comparisons
between the present method solutions and the exact solutions. It is shown that the
results very closely match the exact solutions. The CPU time with the present discrete
transfer method was 0.95s on a IBM 3090 180 VF computer for an optical thickness
equal to one. This problem was also solved on an 800 elements using 64 rays, the
CPU time in this case was 9.25 seconds. For the pure absorbing/emitting medium, the
discrete transfer method with rectangular mesh and with the triangular mesh gives

excellent results.
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Figure 5.56: Unstructured triangular mesh for 2-D square enclosure

Comparison with other methods

Comparisons with the S, discrete ordinates method (Fiveland, 1984) are also
shown in Figs. 5.57 and 5.58. For the absorbing/emitting media, it is clear that the
present discrete transfer results provide excellent agreement with the exact solution and

are better than those obtained with the S, discrete ordinates method.
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Figure 5.57: Surface heat transfer rate for a square enclosure with cold walls and
absorbing medium for k,L=0.1
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Figure 5.58: Surface heat transfer rate for a square enclosure with cold black walls and
absorbing medium for kL. = 10.0
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5.8.2 Scattering in Black Rectangular Enclosures

This test is focused on isotropic radiative transfer in a square enclosure with
black walls and a scattering cross section of unity shown in Fig. 5.59. The emissive

power of one surface is set to unity, the others are set to zero.
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Figure 5.59: Geometry of a square enclosure with black walls and a scattering cross
section of unity

Equal Aspect Ratio

The "ray effect” is the basic problem arised in the radiation computations. It
appears in the angular discretization and it is independent of the spatial discretization.
The reason can be referred to the inability of the discretized intensity distribution to
fully represent the actual continuous intensity distribution. Care must be taken to avoid

the "ray effect", as suggested by Viskanta and Mengii¢ (1987), the discrete transfer
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method may be subject to this behaviour in both absorbing and scattering media. In
scattering media, the "ray effect” tends to be more notorious (Carvalho, 1991). Then
the number of elements has been increased to 800 and the number of rays per
boundary surface to 64. Figure 5.60 shows the variation of the centerline incident
radiant energy in a rectangular enclosure for an equal aspect ratio. The present discrete
transfer solutions are compared with results from a Zonal analysis and the P,
differential approximation (Ratzel and Howell, 1982), and with the S, discrete
ordinates method (Fiveland, 1984). It can be seen from these results that the discrete
transfer method using an unstructured triangular mesh compares well with these

methods.

Unequal Aspect Ratio

For an enclosure with an high aspect ratio of L,/L, = 5.0 and k,L, =1.0, the
centerline incident radiant energy was obtained by using 200 elements and 64 rays per
wall location. Figure 5.61 shows the comparison between the present discrete transfer
solution, the discrete transfer using a rectangular mesh solution (Carvalho et al., 1991)
and the results obtained by Modest (1975). The CPU time was 73 seconds on a IBM
RISC 6000 Work Station. For the low aspect ratio case we chose L,/L, =0.1 and k,L,
=1.0, i.e. the emitting wall is ten times smaller than side walls. Calculations were
performed on a fine grid with 840 elements and 64 Rays. The results are compared
with the discrete transfer solution on a rectangular mesh (Carvalho et al., 1991) and
the results of Modest (1975), as shown in Figure 5.62. The results by the present
discrete transfer with triangular mesh are lower than the results obtained by Modest.
This is due to the aspect ratio of the geometry, as few rays emitted from the hot
surface will reach the elements, called "ray effect". The same behaviour can be
observed in the results of Carvalho et al. (1991).
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Figure 5.60: Centerline incident radiant energy for aspect ratio L,/L,=1 in a
rectangular enclosure with a scattering medium k,.L,=1.0
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Figure 5.61: Centerline incident radiant energy for aspect ration L,/L,=5 in a
rectangular enclosure with a scattering medium k,L,=1.0
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Figure 5.62: Centerline incident radiant energy for aspect ratio L,/L,=0.1 in a
rectangular enclosure with a scattering medium k,L,=1.0

5.8.3 Pure Scattering in a Gray Triangular Enclosure

The calculation is performed on a complex geometry, a triangular enclosure
with sharp edges with a hot obstruction shown in Figure 5.63, where the scattering
coefficient are set to unity. The computational mesh, shown in Figure 5.64, includes
639 triangular elements. Near the hot obstruction and inside the sharp angles, the grid
is refined. The isolines of emissive power are given in Figure 5.65. From this result,
we can see that near the hot obstruction surface, a high gradient of emissive power
exists and a fine grid is necessary to capture this behaviour. Inside the sharp angles

where the emissive power is weak, a fine grid is also needed.
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Figure 5.63: Geometry of the triangular enclosure with sharp edges contain hot
obstruction
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Figure 5.64: The computational mesh for triangular enclosure

Figure 5.65: Contour plot of emissive power for the triangular enclosure with sharp
edges contain hot obstruction, E,, from wall to hot obstruction is 0 to 1, interval 0.05
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5.8.4 Radiant Heat Transfer in Idealized Axisymmetric Furnaces

The geometry of a simplified cylindrical furnace is considered, as shown in
Figure 5.66. This example is chosen to benchmark the discrete transfer model with
unstructured mesh for an axisymmetric cylindrical coordinates. The gas (T,) and wall

(T,,) temperatures are assumed to be known.
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Figure 5.66: Geometry of cylindrical furnace

The incident (q;) and net (q,) radiant heat fluxes at walls are presented. They can be

expressed as:

s N
2n £ - _
qi=f¢=ofefolw,icos6id0i = gl:IW.icoseiAgi

+

9 = 49,719

where q* is the heat flux leaving from the wall.
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This problem has been studied by Benim (1988) using the finite element method
based on the moment method as radiation model. It is showed that the moment method
predictions are comparable with the flux models. The zone method, being regarded as
nearly exact solutions, is assumed to give the best solutions. Follows Benim (1988),
three different cases are considered for this problem. The diameter is assumed to be

the characteristic length for all cases.

Case 1
The dimensions of the furnace (Figure 5.66) are assumed to be:
D = 1.69 m, L=10.5m (L/'D = 6.2)

The constant gas and wall temperatures are prescribed as:

T, = 1273 K, Ty = Tey = Tys = 7713 K
The walls are assumed to be black, e,=¢,=6,=1.0 .

The optical depth is assumed to be 7,=0.423 . The computational mesh
contains 836 triangular elements (470 nodes) is shown in Figure 5.67, near the wall,
the grid is refined. In the computations, the number of rays for each surface is given
by N0xN¢ = 2x8. Figure 5.68 shows the predicted net radiative heat flux along the
furnace walls (side wall and cylinder bottom) using the DT method with unstructured
grid. The results are compared with the zone method (Richter & Bauersfeld, 1974) and
the moment method (Benim, 1988) predictions. The side wall heat flux is symmetric
about the middle of furnace length (x/D = 3.1), and it is plotted up to this distance.
The present procedure gives the better agreement with the zone method predictions,
the maximum derivation of the present DT method from zone method results is about
2%, which is better than that of the moment method predictions with 6% error
(Benim, 1988). The computer CPU time required for the present method is 68.1
seconds at IBM RISC 6000/model 520.
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Figure 5.67: The computational mesh of furnace, Case 1
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Figure 5.68: Net radiant heat flux variation along furnace walls, Case 1

Case 2
Different from Case 1, the dimensions of the furnace are changed to be
D = 2.22 m, L=625m (L/D = 2.8)

The wall temperatures and emissivities are prescribed as:
Ty = Taz = Tys = 300 K, &,;=€,=E,; = 0.5

W

The gas temperature is assumed to be constant in the radial direction, but varies

180
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linearly with the axial distance according to T, = -272 x + 2050 K.
The results are compared with the zone method (Lowes et al., 1973) and the
moment method (Benim, 1988) predictions. Figure 5.69 shows the computational mesh

involving 908 triangular elements (510 nodes), the grid is refined near the solid wall.

SNENENL NN

Figure 5.69: The computational mesh of furnace, Case 2 and Case 3

The variation of the incident heat flux along the side wall is presented in Figure 5.70
for three values of the optical depth, 7, = 1.11, 0.444, 0.222, respectively. The
agreement of the present results with the zone method predictions is excellent for all
three values of the optical depth. The net radiant heat flux variation along the side wall
is presented in Figure 5.71. Again, it is found that the present results agree very well
with the zone method predictions for all three values of the optical depth. The present
results for both the incident and net heat flux variations along the furnace wall are
much better than that of the moment method predictions. The computer CPU time
required is 883.90 seconds for r, = 1.11, 1031.14 seconds for 7, = 0.444, and
1178.46 seconds for 7, = 0.222, respectively at the IBM RISC 6000/model 520. It is
found that when the optical depth becomes shorter, the computational time becomes

longer.
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Case 3

This case is almost same as Case 2, except the left wall temperature is changed
to be: T,, = 1300 K.

The results are compared with the zone method and moment method predictions
of Michelfelder (1976) and Benim (1988). Figure 5.72 gives the incident heat flux
along the side wall for 7, = 0.444. The present prediction shows an excellent
agreement with the zone methods results. The CPU time is 1031.47 seconds at the

same computer as Case 1 and Case 2.
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Figure 5.72: Incident heat flux variation along side wall, Case 3
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5.8.5 Radiant Heat Transfer in Axisymmetric Delft Furnace

The discrete transfer predictions were compared with the experimental results
obtained by Wu and Fricker (1971) in the cylindrical axisymmetric Delft furnace of
the IFRF (Industrial Flame Research Foundation), and were also compared with the
discrete ordinates method results using the S4 approximation of Jamaluddin and Smith
(1988). The geometry and radiative properties of the medium and walls are shown in
Figure 5.73, the measured temperatures inside the furnace with the rectangular mesh
3x17 are given by Jamaluddin and Smith (1988). \

For comparison, a structured triangular mesh with 3x17x2, together with 16

rays per node is used in the present DT method computations.
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Figure 5.73: A schematic of Delft furnace

N

The comparison shown in Figure 5.74 clearly demonstrates that the Discrete
Transfer results agree with the experimental and discrete ordinates S4 approximations.
The CPU time required to obtain this result was 6.86 seconds in IBM 3090 180 VF

computer.
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Figure 5.74: Wall heat flux distribution for the Delft furnace

5.8.6 Summary

The discrete transfer method was extended to an unstructured triangular mesh
and applied to the prediction of radiative heat transfer for two-dimensional cartesian
and axisymmetric enclosures containing an absorbing-emitting and isotropic scattering
media. By comparison with the original discrete transfer method, exact solution and
other numerical solutions, we have shown that for absorption dominant problems, the
present discrete transfer method has given excellent solutions. For pure scattering
problems, we obtain the same level of accuracy as other methods. The present method
can be used for the computation of radiative heat transfer in gas combustion chambers
with arbitrary geometries due to the computational economy and reasonable accuracy
of this method.
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5.9 Turbulent Diffusion Flame Coupled with Radiation

5.9.1 Problem Description

The present SCVFEM is assessed by investigating flame 29 of the M-2 trials
performed at the International Flame Research Foundation (IFRF) (Michelfelder and
Lowes, 1974). The furnace comprises a rectangular refractory chamber with 6.25m
long and 2m x 2m in cross-section, and includes seventeen double-loop cooling-pipes
used to provide thermal loading for system. Since the present mathematical model is
axisymmetric, the furnace configuration is approximated by a cylinder having the same

cross-sectional area as sketched in Figure 5.75.

R; =00163m R, =003m R, =0088m R=108m L =625m

¥ = 0001 m Y, =0.004m Y; =0.008m Y4 = 0,001l m

Figure 5.75: Geometry of experimental furnace M-2 trials flame-29 of Michelfeder and
Lowes (1974)

The computation for this test is a non-swirling natural gas diffusion flame with
axial fuel and coaxial air injection, the input thermal load is 3000 kW. The inlet mass
flow rate of the natural gas through the central nozzle is 280 Kg/h, dry air with mass
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flow rate of 3126 Kg/h and oxygen with mass flow rate of 170 Kg/h are injected
through the coaxial nozzle. The IFRF M-2 trials were specifically conducted to provide
detailed data for evaluating radiation models, detailed information about the
experimental set-up can be found in Michelfelder and Lowes (1974). The numerical
solution of this problem by the finite element method has been given by Benim (1989),

by the control volume finite element method can be found in Meng et al. (1992).

5.9.2 Numerical Details

Figure 5.76 shows the computation mesh, which includes 2662 triangular
elements (1419 nodes). The eddy-dissipation combustion model coupled with radiation
is solved by using the discrete transfer method. The 2-layer wall function is
implemented by the classical approximation method. An attempt to use the direct
iteration method has failed for this test. The reason may be due to the inlet fuel
velocity which is high (about 120 m/s). The equations for u, v, p, k, ¢, f, mg, h are
solved, in addition to the radiative transfer equation. Due to the highly non-linear
property of these coupled equations, the combustion and radiation solutions are based
on the converged turbulent flow and transport equations solutions as the initial fields.
The E-factor is taken as 2 for all transport equations, and the variable under-relaxation
parameters for all equations are taken from 0.3 to 0.7. The divisions of the solid
angle N@xN¢ =1x4 is used in the radiation computations. The inlet turbulent intensity
is taken as 4.5% ( A=0.003 ), and the inlet mixing length is given as 0.03 D. For
the energy equation it is assumed that the heat transfer coefficients are known be
experiments, where the cooling pipes-refractory wall combination of the furnace was
replaced by an equivalent speckled wall with a temperature distribution based on

measurements.
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The following set of model constants are used,

C, C C, 0, g, o Opie  Op A

009 144 192 1.0 13 07 07 07 4.0

Since the standard turbulence model constants do not perform very well for
round free jet, as recommended by Benim (1989), the model constants C, and C,
are modified for the first half of the furnace as C,=0.075, C,=1.89.

For CO,-H,0 mixtures the emissivity is fitted by a one-clear three-gray gas
model of Taylor and Foster (1974) in the temperature range 1200 - 2400 K. In this

model, the total gas emittance is expressed as:

4
€ = Y (by,+b,, |1 - 0] 5-3)
n=1

where the summation for n is over the gases of the assumed mixture, b,
and b,, are the weighting constants; p, and p are the partial pressure of water
vapour and carbon dioxide respectively, and L is a characteristic path length for a flow
computational cell, taken as the square root of the sum of the squared sides of the
element. Table 5.6 gives the values of the parameters under this model for a total
pressure of 1 bar and p /p =2 for gas combustion. The value of absorption
coefficient k, for the calculations is obtained from the "pseudogray" approximation

(Abbas et al., 1984),

¢ - 1-e™t 5.4

In the computations, when the temperature is lower than 1200 K, the constant
absorption coefficient k, = 0.15 m™ is assumed. The CPU time in IBM RISC/6000

model 520 is about 8.2 hours to obtain the converged solutions with residues for all
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dependent variables less than 107,

Table 5.6: Values of the coefficients k, ,, b, , and b, , in the gas emissivity equations

for a CO,-H,0 mixture applicable to the temperature range 1200-2400 K.

n 1<g’n bl,n bz,n

1 0 0.346 0.0000473

2 0.69 0.266 0.0000719

3 7.4 0.252 -0.0000741

4 80.0 0.118 -0.0000452
5.9.3 Results

Figures 5.77 and 5.78 depict the predicted velocity field and temperature field,

respectively.

Figure 5.76: The computational mesh of M-2 trials flame-29

The predicted radial temperature profiles with and without radiation inside the

furnace at four axial stations x = 0.555m, 1.295m, 2.775m and 5.735m are plotted
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Figure 5.77: The velocity field of M-2 trials flame-29
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Figure 5.78: The temperature field of M-2 trials of flame-29 (deg. °C)

in Figure 5.79. The results with radiation are also compared with the finite element
solution of Benim (1989), as shown in Figure 5.80. From Figure 5.79, in the mixing

zone of the furnace (x=0.555m-1.295m), due to the fuel and oxygen is not fully
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mixed, the temperature distributions at this region have shown a little difference
between them with and without radiation. In the middle region of the furnace (x =
2.5-4.0m), the fuel and oxygen are fully mixed and burned, the mixture gas
temperature is very high (up to the maximum temperature of 1550 °C at flame front,
as shown in Fig. 5.78), then the radiation heat exchange between elements become
very strong, the predicted maximum temperature with radiation is 110 °C less than that
of without radiation in this region. From this temperature difference, we can see that
the radiation is important for the large scale furnace calculations. Also, with radiation,
the predicted temperature distribution becomes smooth in the flame zone. Outside the
flame zone, due to a lower mixture gas temperature, the radiation becomes weaker,
then the difference between with and without radiation is small. Near the exit of the
furnace, the predicted temperature distribution with radiation is lower than that without
radiation. The SCVFEM resuits are comparable with the finite element solutions of

Benim (1989), as shown in Fig. 5.80, and they are agree well with experiments.

Axial temperature profile and axial concentrations of combustion products CO,
and H,0 are also plotted in Figure 5.81 and 5.82, the results are compared with the
experimental data.

The variation of the incident radiative heat flux along the furnace wall is shown
in Figure 5.83. The result of the SCVFEM is comparable with the experiment and that
of the finite element method (Benim, 1989).



193

2000 T T - T T T T
x=0.555m x=1.295m
1600 n 5

1200

TEMPERATURE (deg. C)

0.0 0.3 0.6 0.9

2000

1600

—
N
[+
o

800

400 |- 4 F

TEMPERATURE (deg. C)

0.0 0.3 0.6 0.9 0.0 0.3 0.6 0.9

r (m) r (m)
——SCVFEM, WITH RADIATION
------ SCVFEM, NO RADIATION
e EXPERIMENT (Michelfelder & Lowes, 1974)

Figure 5.79: Comparison of the radial temperature profiles at four axial stations for
turbulent reacting flows coupled with and without radiation using SCVFEM
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Figure 5.80: Comparison of the radial temperature profiles at four axial stations for
turbulent reacting flows coupled with radiation between the SCVFEM and the finite
element method predictions
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Figure 5.82: The centerline axial concentrations profiles of CO, and H,0 of M-2 trials
flame-29
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Figure 5.83: Comparison of the incident heat flux along the furnace wall between

using the SCVFEM and the finite element method



Conclusions

The staggered control volume finite element method (SCVFEM) has been
developed for the analysis of incompressible laminar and turbulent flows, turbulent
reacting flows coupled with and without radiation, the following conclusions are
drawn:

1. The present SCVFEM has been shown to predict successfully the various
flow fields involving the complex physics in complex geometries.

2. The present algorithms share many useful features with successful finite
difference, finite element and control volume finite element algorithms while retaining
certain advantages of above algorithms such as the geometric flexibility, explicit
physical interpretation, the imposition of natural boundary conditions and no necessity
to impose the boundary condition for pressure.

3. The SCVFEM with Face-centered scheme has great features which is prior
to most of the numerical methods with Vertex-centered scheme in the imposition of the
boundary condition. With Face-centered scheme of SCVFEM, the imposition of the
boundary condition for velocities, transport variables and radiation intensity at each
boundary surface is straightforward, it avoids the difficulty with Vertex-centered
scheme to impose the boundary conditions for above variables at the discontinuous
corner point in the computational domain. Furthermore, with the equivalent number
of unknowns and the same accuracy required, Face-centered scheme gives less CPU
time than Vertex-centered scheme.

4. The sequential SCVFEM with the skewed, mass-weighted upwind
interpolation function provides a robust approach for the computation of complex
turbulent flows and turbulent reacting flows.

5. For turbulent flow over a backward facing step, the k-e two equation model
with wall function method is used. The implementation of the wall function is based

on two methods, i.e. the classical approximation method and the direct iteration
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method. The predicted recirculation length by using the classical approximation method
is longer than that of by the direct iteration method. Both the classical approximation
method and the direct iteration method underpredict the recirculation length by the
error of 16% and 26 %, respectively. At the fully developed flow region, the velocity
profile obtained by the direct iteration method is very close to the experiments, it is
better than that of by the classical approximation method. Also, the results obtained
by Vertex-centered scheme is better than that of by Face-centered scheme.

6. The proposed SCVFEM with related combustion models has been
successfully applied in the simulation of the 2D, confined axisymmetric turbulent
diffusion flames, the agreement between experiments and predictions is reasonable.
The predicted mixture fraction profiles by using the direct iteration method is very
close to experiments, it is better than that of by using the classical approximation
method. It seems that the direct iteration method is more diffusive than the classical
approximation method.

7. The discrete transfer method was extended to an unstructured grid. From the
benchmark tests, we found that for absorbing/emitting media, it gives excellent results;
for pure scattering media, the results obtained by the discrete transfer method is
comparable to other numerical methods.

8. The SCVFEM with combustion and radiation models are successfully applied
to the prediction of practical furnace. For real furnace gas flame, the predicted
temperature and radiant heat flux to the furnace wall agree well with experiments.
From this tests, it is illustrated that the radiation heat transfer is very important for the
large scale combustion furnace. Also, it is demonstrated that the classical
approximation method is computational robust over the direct iteration method for the

determination of wall functions in practical applications.



Recommendations

A few recommendations are intended as improvements and extensions of the
present SCVFEM:

1. Because it is easy to impose the boundary condition for dependent variables
with Face-centered scheme, extensions of the present SCVFEM with Face-centered
scheme to second-order scheme and 3-Dimensional flows are straightforward. Also,
the extension of the present incompressible SCVFEM to compressible flow is possible.

2. In order to use the present SCVFEM for the simulation of turbulent swirling
flows, the additional improvements in the k-¢ model (such as RNG k-¢ model) or the
use of more advanced an algebraic second-moment model (ASM) and a Reynolds-stress
transport model (RSM) are necessary.

3. In order to predict the pollution products and more chemical species, the
finite chemical kinetics combustion model should be considered for further study.

4. For gas combustion, the extension of the present discrete transfer method to
3-dimensional tetrahedral elements is straightforward. However, when considering an
anisotropic scattering media, the discrete ordinates method is recommended.

5. For turbulent flows and turbulent reacting flows, an adaptiVe remeshing

method will be considered in the future.
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