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Sommaire

Dans cette thèse, nous cherchons à modéliser numériquement les phénomènes

de combustion dans les chambres de combustion et les brûleurs. Un nouveau schéma

numérique a alors été proposé, développé puis testé pour la simulation d'écoulements

bidimensionels cartésiens ou axisymétriques de fluides visqueux incompressibles en

régime laminaire ou turbulent. En outre, le milieu peut être réactif ou non et

éventuellement sujet à la radiation. En effet, la combustion implique les phénomènes

physiques suivants: turbulence, réactions chimiques dans la flamme et transferts de

chaleur par convection et radiation dus aux produits de combustion. Ces phénomènes

sont gouvernés par des équations générales de conservation dont les solutions

analydques ne sont pas triviales.

L'intérêt manifesté à la simulation numérique des phénomènes de combustion

est dû à la recherche accme de l'efficacité dans la conception des brûleurs et des

chambres de combustion et au besoin de contrôler la pollution. En outre, la présence

sur le marché d'ordinateurs plus performants et moins chers a fait de la simulation

numérique une alternative plus intéressante que l'étude expérimentale.

La base de toute la simulation numérique repose sur une bonne modélisation

de l'écoulement. Pour ce faire, il est nécessaire d'utiliser une formulation appropriée

de l'équation de convection-diffusion. Le problème réside alors dans la satisfaction de

la contrainte d'incompressibilité ou encore le couplage vitesse-pression quand la

formulation en variables primitives est utilisée.

Dans cette étude, une nouvelle méthode numérique, appelée "Staggered Control

Volume Finite Elément Method (SCVFEM)" est proposée et développée. C'est une

méthode de volumes finis basée sur la notion de maillage décalé qui utilise la

formulation en variables primitives (u,v,p). La discrétisation du domaine se fait suivant



un maillage non structuré formé de triangles à trois noeuds. Dans cette méthode, la

pression est constante par élément alors que les vitesses sont stockées ou bien aux

milieux des côtés ou bien aux sommets du triangle. L'élément de base utilisé ici est

un élément à ordres inégaux (vitesse linéaire et pression constante). Ils est équivalent

à l'élément Pl non conforme/PO et à l'élément Pl/PO répertoriés par la méthode des

éléments finis.

La méthode SCVFEM peut être considérée comme une extension de la notion

de maillage décalé aux maillages non structurés. Comme nous considérons deux façons

de stocker les vitesses (et toutes les autres fonctions scalaires), la volume de contrôle

pour l'équation de mouvement (et toute les autre équations de transport) sera désigné

par Co-Volume ou par Volume de contrôle Polygonal suivant que les vitesses sont

stockées aux milieux des côtés ou aux sommets des triangles. Ainsi, la Co-Volume est

construit en joignant les centroïdes des deux triangles voisins avec les extrémités de

leur côté commun où la vitesse est stockée. Par ailleurs, le volume de contrôle

polygonal autour de chaque sommet est obtenu en joignant les centroïdes des triangles

voisins avec les milieux des côté voisins correspondants.

Les fonctions d'interpolation utilisées dans chaque élément sont la fonction

exponentielle basée sur l'orientation de l'écoulement et la fonction de pondération par

la masse qui utilise la différenciation amont. Ces fonctions permettent de discrétiser

le terme convectif de l'équation de transport alors que la terme diffusif est approximé

par une interpolation bilinéaire sur le triangle. Le volume de contrôle pour l'équation

de continuité est constitué par le triangle lui-même.

La couplage vitesse-pression est effectué dans un premier temps par une

intégration de l'équation de mouvement sur le Co-Volume afin d'obtenir les

expressions de u et v. Ces expressions sont alors introduites dans l'équation de

continuité qu'on intègre sur chaque élément et qui nous permet d'obtenir une équation

pour la pression. A partir du champs de pression obtenu, on construit un champs du

gradient de pression qu'on introduit dans les équations de mouvement. On peut alors
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résoudre ces dernières sur le Co-Volume ou le volume de contrôle polygonal en

fonction du schéma utilisé.

Toutes les équations discrétisées (pression, vitesse ou toute autre fonction

scolaire) ont des propriétés conservatives. Leur résolution se fait de manière

séquentielle ce qui procure des facilités pour l'extension aux écoulement 3D. En outre,

l'utilisadon de maillages non structurés permet une grande flexibilité dans la

discrétisation de la géométrie. Dans cette thèse, la méthode SCVFEM est étendue aux

écoulements turbulents réactifs avec ou sans radiation. Plusieurs modifications ont pu

améliorer sensiblement la précision et la convergence.

La méthode SCVFEM a certaines propriétés qui la distinguent des autres

méthodes numériques. Premièrement, pour les deux variantes (stockage aux côtés et

aux sommets), il n'est pas nécessaire de spécifier les conditions frontières pour la

pression ce qui évite un énorme problème. Deuxièmement, pour le schéma à stockage

aux côtés, il est facile d'imposer les conditions frontières pour toutes les fonctions

scalaires ainsi que l'intensité de radiation ce que évite la discontinuité engendrée par

les coins. Finalement, pour un même nombre d'inconnues et une même précision

recherchée, le temps CPU pour le méthode à stockage aux côtés est moindre que celui

de la méthode à stockage aux sommets (voir Chapitré 5).

Pour les écoulements turbulents, de forts gradients apparaissent au niveau de

la paroi. Toutefois, en ingénierie, l'intérêt est dirigé vers les propriétés de

l'écoulement principal. Ainsi, un modèle basé sur les grandeurs moyennées conduit à

un système d'équations différentielles pour la vitesse, la densité, les fractions de masse

et l'enthalpie sous une forme conservative. Ces équations introduisent aussi des

corrélations comme la correction du tenseur de Reynolds qui peut être soit

prédéterminée, soit modélisée. Pour des écoulements non réactifs, les équations

gouvernantes sont celles du mouvement et de la continuité; par conséquent la

modélisation du tenseur de Reynolds est nécessaire pour fermer le système d'équations.
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La turbulence est modélisée par le modèle à deux équations k-e standard couplé

avec la loi de la paroi. Toutes les variables transportées sont résolues sur un domaine

de calcul séparé du domaine réel par une distance donnée et les conditions de

glissement pour la vitesse sont alors imposées à la paroi. L'implantation de la loi de

la paroi est basée sur l'approximation du profil de la vitesse au voisinage de la paroi

par une fonction logarithmique bien connue. La détermination de la vitesse de friction

ou du taux de cisaillement à la paroi est effectuée de deux manières différentes: La

première est la méthode classique basée sur l'équilibre de la génération et la

production de l'énergie proche de la paroi et la seconde est une méthode ou l'équation

logarithmique pour la détermination de la vitesse de friction est résolue par un quasi-

newton itératif.

Dans la modélisation des écoulement turbulents réactifs où la moyenne de Favre

est utilisée, la corrélation pour la fluctuation de la densité n'apparait pas. Par

conséquent, l'équation qui gouverne le transport de la fraction de la masse du

carburant a la même forme que celle en absence de réactions chimiques. En outre, le

taux de réaction chimique dans les réactions homogènes est défini comme étant le taux

avec lequel l'un des réactifs forme les produits de la réaction. C'est une fonction de

la température, de la pression et de la composition du mélange et elle est très

influencée par la turbulence et les caractéristiques du mélange. L'objectif de la

modélisation de la combustion est alors la spécification du taux de consommation du

carburant, de la probabilité de réaction et des espèces chimiques.

Plusieurs modèles de combustion basés sur l'approche de conservation scalaire

(conservée scalar approach) sont examinés pour les flammes de diffusion turbulentes.

On cite alors le modèle à chimie rapide, modèle à taux de réaction fini, modèle

d'équilibre chimique et le modèle de micro-flammes. Pour la turbulence, les deux

façons de considérer la loi de la paroi sont utilisées et comparées à travers des tests
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sur les quatre modèles de combustion ci-dessus. Par ailleurs, concernant les

fluctuations des concentrations, les fonctions de probabilité delta et beta sont utilisées.

La contribution de la radiation à la balance énergétique est nécessaire pour

compléter l'équation de conservation de l'énergie et l'équation de transfert radiatif. A

cause de la nature intégro-différentielle de l'équation de radiation et de l'aspect

multidimensionnel du rayonnement, le solution numérique de cette dernière équation

est très complexe. Plusieurs modèles de radiation sont alors considérés pour traiter des

géométries irrégulièrcs.

Une procédure numérique est donc développée pour la résolution du transfert

radiatif dans des enceintes 2D cartésiennes ou axisymétriques isotropes avec des

surfaces grises. La méthode de transfert discret a été étendue aux maillages

triangulaires non structurés et elle couple les équations de convection-diffusion pour

les écoulement visqueux turbulents réactifs avec l'équation de radiation à travers

l'équation d'énergie. La différence majeure entre la méthode actuelle et la méthode de

transfert discret originale réside dans le traitement des aspects géométriques. (voir

Chapitre 4). La procédure est alors utilisée pour la simulation de la combustion dans

un brûleur où le modèle de l'émittance des gaz de combustion est considéré comme

"three-gray plus one-clear gas".

En résumé, les objectifs principaux du présent travail sont:

• Développement de le méthode SCVFEM pour les écoulements turbulents

réactifs à densité variable.

• Implantation du modèle de turbulence à deux équations k-e et la loi de la

paroi pour des géométries complexes.

• Investigation de différents modèles de combustion pour les flammes de

diffusion turbulentes.

• Application du modèle de radiation pour des brûleurs à gaz réel.
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Finalement, la validation de la méthode SCVFEM a été effectuée pour

différents tests et les résultats obtenus ont été comparés aux solutions analytiques, à

d'autres méthodes numériques ou à des résultats expérimentaux.

Pour des cas tests laminaires, une évaluation et une comparaison systématiques

ont été effectuées concernant la précision, la convergence et la capacité de prédire les

recirculations, et ce pour les deux variantes du SCVFEM. Il a été montré que les deux

schémas pouvaient donner des résultats précis pour le longueur de recirculation.

Pour les cas tests turbulents, l'intérêt a été porté sur la prédiction de la

longueur de recirculation dans des géométries complexes par le modèle k-e, et ce pour

les deux manières d'implanter la loi de la paroi qu'on appelera méthode classique et

méthode du quasi-newton. Dans le cas de la marché, les résultats montrent que le

modèle k-e a la capacité de prédire le comportement de l'écoulement mais ne réussit

pas à donner la bonne longueur de recirculation. Il a été aussi trouvé que le point de

rattachement par la méthode classique était mieux que celui donné par la méthode du

quasi-newton. En revanche, les profiles de vitesse fournis par cette dernière sont plus

proches des résultats expérimentaux que ceux obtenus par la méthode classique.

Dans les tests turbulents réactifs, les quatre modèles de combustion ont été

comparés en utilisant les deux méthodes de la loi de la paroi. Il a été trouvé que les

résultats obtenus par la méthode du quasi-newton étaient beaucoup mieux. En outre,

les résultats montrent que les prédictions de la distribution de la fonction de mélange

utilisant les modèles PDF dans la région développée de la flamme étaient meilleurs que

ceux obtenus sans PDF.

Les tests de radiation montrent que dans les problèmes à absorption dominante,

l'actuelle méthode de transfert discret donne d'excellents résultats. Pour des problèmes

de "scattering" purs, on obtient le même niveau de précision que d'autres méthodes.

Ainsi, la présente méthode peut être utilisée pour la simulation du transfert de chaleur

réactif dans des chambres de combustion à gaz avec des géométries quelconques grâce

à l'économie de calcul et la précision raisonnable qu'elle procure.



Dans le test de comparaison de la flamme de diffusion turbulente couplée ou

non avec la radiation, il a été trouvé que dans la région de flamme, la température

maximale prédite avec radiation était de 110 °C plus basse que celle obtenue sans

radiation. Il a été aussi illustré que pour de grands brûleurs et chambres de

combustion, la radiation constitue un mode de transfert de chaleur très important. En

outre, les résultats obtenus avec la schéma SCVFEM sont comparables aux prédictions

obtenues avec la méthode des éléments finis.



Abstract

In the présent study, a new numerical method, named Staggered Control-

Volume Finite Elément Method (SCVFEM) is proposed and developed for

incompressible laminar and turbulent flows, as well as turbulent reacting flows with

emphasis on radiative heat transfer. Based on the primitive variables (u,v,p)

formulation, the discretisation is camed out on a triangular élément, where the

pressure is stored at the centroid and velocities at the midpoint of the sides or at the

vertices. The élément used here is an unequal-order linear velocities/constant pressure

type, équivalent to the Pl non-conforming/PO élément and Pl/PO élément of the finite

élément method. Control volumes and co-volumes constructed around each variable

location leads to two différent SCVFEM schemes, namely Face-centered and Vertex-

centered schemes. A flow-oriented exponential function and the skewed, mass-

weighted upwind interpolation function for the dépendent variables are used. The

pressure-velocity coupling is treated by momentum intégration over the co-volume.

This relation is then used to dérive the pressure équation by integrating the condnuity

équation over each triangular élément. Pressure gradients which appears in the

momentum équations are evaluated by using a reconstruction method for the pressure

variation. The SIMPLE segregated solution algonthm is implemented.

Turbulence is solved by using the standard k-e two-equation model. Near solid

walls, wall function methods are adopted. The implementation of the law-of-the-wall

is based on the universality of a logarithmic velocity profile and the validity of near

wall turbulent equilibrium. The détermination of the friction velocity or shear stress

at boundary is considered using two différent methods. One is the classical

approximation method, which is based on the balance of génération and dissipation of

energy near the wall; another is the direct iteration method, where the logarithm law
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relation for friction velocity is solved by using the quasi-newton iteradon.

Based on the conserved scalar approach, several combustion models are

examined for turbulent difftision flames. Thèse are the fast chemistry, finite reacdon

rate, chemical equilibrium and micro-flame models. The concentration fluctuations are

accounted for by the delta and beta probability density functions.

A numerical procédure for solving radiative heat transfer in 2D cartesian and

axisymmetric enclosures with a gray absorbing, emitting and isotropically scattering

média is developed. The discrète transfer method is extended to an unstructured

triangular mesh and coupled to the advection-diffusion équations for the viscous

turbulent reacting flows through the energy équation.

Finally, validation of the proposed SCVFEM was performed on several test

problems, and then applied to practical problems involving reacting flows.
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Chapter l

Introduction

1.1 Ââms and Motivations of the Thesis

The use of CFD codes for simulating combustion phenomena is becoming a

widespread tool among the scientific and industrial communities. It helps engineers to

optimize the operating conditions, reduce pollutants émission, correct the

measurements, and eventually, to improve the design of new combustors. Most of the

commercial CPD codes, such as PHOENICS, FIDAP, FLUENT and TASCflow can

be used for the simulation of the turbulent reacting flow with a moderate success.

Although others commercial software such as N3S, RAMPANT are working with the

triangular grid for discretization, but so far, we are unaware of any reports on the

simulation of combustion by using thèse codes. Combustors may involve fine

geometrical détails, especially they may comprise the sharp angles, in this situation,

the spatial discretization with unstructured triangular grid is superior to that of

rectangular ones. Although the CFD codes have been well developed, there sdll has

room for improvement. An attempt to use the unstructured triangular grid by using the

control volume finite élément method in conjunction with the vorticity-streamfunction

formulation for the simulation of combustion has been rcported (Elkaim et al., 1993).

However, the method is based on the vorticity-streamfunction formulation which

suffers the difficulties for boundary condition on vorticity and extension to 3D is not

immédiate, it is not satisfîed. Alternatively, to develop an efficient CFD code using

an unstructured triangular grid with primitive variable formulation applied for the

simulation of combustion, is the motivation of the présent work.



The primary goal of this thesis is to propose, develop and test an unequal-

order, Staggered Control Volume Finite Elément Method (SCVFEM) for the

simulation of 2D cartesian and axisymmetric, viscous, incompressible, laminar and

turbulent flows, turbulent reacting flows with and without radiation. The aim is to use

this code to model the performance and techniques for flames in practical furnaces and

combustors.

Stimulus for the numerical simuladon of combustion is due to demands for

higher efficiency furnaces and combustors and the requirement ofcontrolling pollution

formation. Because of the availability of inexpensive computer, this has become a

viable alternative to expérimental invesdgation. Combustion involves the following

physical phenomena: turbulence, chemical réactions in the flame, convective heat

transfer and radiative heat transfer from the products of combustion. The most basic

requirement is the simulation of the laminar flow, for which it is necessary to provide

the appropriate convection-diffusion formulation. The critical issue is the spurious

pressure harmonies problem and the pressure-velocity coupling when the primitive

variable formulation is used.

In turbulent flows, rapid fluctuations are exhibited. However, for engineering

applications interest is mainly in the mean flow properties. Hence a model, based on

the time-averaging, yields a set of differential équations for the mean velocities,

density, mass fractions and enthalpy in the général conservation équations. Thèse

équations have additional corrélation terms, such as M,/M,/ , u,/<j>/ ,and p/u , which

must be either predetermined or modelled. For non-reacting flows, équations of

interest are those governing the mass and momentum, hence, modelling of the

term uu (Reynolds-stress) is needed in order to close this set of differential

équations.

In turbulent reacting flows, when the Favre-averaging is used, the density

fluctuation corrélation does not appear. Hence, équations governing the transport of

fuel mass fraction have a form similar to those of non-reacting flows. The chemical



réaction rate in homogeneous réactions is defined as the rate at which one of the

reactants form products (Khalil, 1982). It is a function of the température, pressure

and composition, and is strongly influenced by the turbulent and mixing characteristics

of the flow. The objective of combustion modelling is to specify the rate of fuel

consumption and to model probability of réaction, at last to détermine the chemical

species and thermal state parameters. The available combustion models will be

described in Chapter 2.

In turbulent flames, besides convection, radiation also becomes important. The

radiation contribution to the energy balance is needed to complète the spécification of

the energy conservation équation. Due to the integro-differential nature of the radiative

transfer équation and the mulddimensional nature of radiation itself, the numerical

solution of the radiative transfer équation is very difficult. Several radiation models

with emphasis on the treatment of an irregular shaped geometries are investigated.

The proposed unequal-order, SCVFEM for turbulent reacdng flow uses the

primitive variables, on an unstructured triangular mesh, staggered grid arrangement.

It provide géométrie flexibility, and ability of extension to 3D flows. In the présent

study, the SCVFEM (Rida, 1993) is extended to complex turbulent reacting flows with

and without radiation. Further refinements have significantly improved the accuracy

and convergence. In summary, the major contributions of the présent work include

following:

® Develop the basic SCVFEM for incompressible laminar and turbulent flows,

turbulent reacting flow with variable density.

• Incorporation of the k-e two-equation turbulence model and the wall function

methods for turbulent flows in complex geometries.

• Investigation of the différent combustion models for turbulent diffusion

flames.

• Develop the radiation model for real furnace combustion gases.



1.2 Outline of the Thesis

In Chapter 2, a review of the existing numerical methods for incompressible

laminar and turbulent flows, turbulent réactive flows with emphasis on radiative heat

transfer is presented for combustion processes.

The governing équations for turbulent reacting flow with variable density, as

well as turbulence models and combustion models will be given in Chapter 3.

Chapter 4 présents the basic Staggered Control-Volume Finite Elément Method

(SCVFEM). The SCVFEM involves the choice of the différent type of interpolation

function, the intégration of the transport équations over the control volumes, the

treatment of the pressure-velocity coupling, the derivation of the pressure équation,

and the segregated solution algorithm, etc.. Considération ofradiative heat transfer,

includes the solution procédure of radiadve transfer équation and the treatment of the

coupling between the energy conservation équation and the radiative transfer équation.

Where, the géométrie considération in the application of the discrète transfer method

are mainly addressed.

In Chapter 5, results are presented to validate the proposed SCVFEM.

Finally, conclusions concerning the computational results are discussed.

Relevant recommendations related to the improvement and extension of the proposed

methods are also presented.



Chapter 2

Literature Review

Numerical methods for various fluid flow and heat transfer problems range

from the classical methods, such as the finite différence method (Roache, 1976,

Patankar, 1980), to the more récent finite élément methods (Chung, 1978, Baker,

1983), and the control volume based methods (Patankar, 1980, Baliga and Patankar,

1980). This chapter reviews the development of thèse différent numerical methods to

the solution of the fluid flow with particular attention to problems involving

turbulence, combustion and radiation. The général governing équations for the scalar

variables such as velocities, température and concentrations of chemical species can

be represented as a set of transport convection-diffusion équations. The spécifie issues

which arise in their numerical solutions are false diffusion or numerical diffusion

(Raithby and Torrance, 1974), spurious pressure harmonies or checkerboard pressure

fields (Patankar, 1980) and the pressure-velocity coupling when the primitive variable

formulations are used.

2.1 False Diffusion

Early investigations of the numerical prediction of convection-diffusion

phenomena have employed fînite différence method based on the centred différence

scheme (CDS). In most circumstances, CDS offers a satisfactory compromise between

accuracy and computational economy when convection does not dominate diffusion.

For convection dominated flow, however, central differencing results in instability or

unphysical oscillatory behaviour when the grid Peclet number is greater than two.



Efforts to overcome this problem has led to the development ofvarious upwind

différence schemes. The mechanism of upwinding has been explained by Gosman et

al. (1969) in their "Donor-Cell" model. While the oscillatory behaviour has been cured

for high Peclet numbers, upwinding is less accurate than the CDS at low Peclet

numbers. Several improvements based on the locally one-dimensional assumption have

been proposed leading to the exponential différence scheme (EDS) and hybrid

différence scheme (HDS) of Spalding (1972). Further refinements such as the power-

law différence scheme (PLDS) ofPatankar (1981) yields a better approximation to the

EDS than the HDS. However, as found by Raithby (1976a), thèse hybrid schemes

work well when the flow is steady, closely aligned with the grid lines, and possesses

no strong cross ftow gradients. In problems that do not conform to thèse conditions,

the locally one-dimensional assumption used in hybrid schemes can give rise to false

diffusion or numerical diffusion.

The skewed upwind différence scheme (SUDS) proposed by Raithby (1976b)

is a first-order accurate scheme. It yields a significant réduction in skewness errors by

using an upwind discretization in a streamwise coordinate System, in which case

skewness errors are entirely absent. Leonard (1979) proposée! a flow-oriented

différence scheme based on a conservative quadratic upstream interpolation (QUICK)

for convection terms. However, the coefficients can become négative when the

convection effects are strong enough (Patel and Markatos, 1986). Thèse lead to the

development of the quadratic upstream extended (QUDSE) and quadratic upstream

extended revised (QUDSER) finite différence schemes (Pollard and Siu, 1982), which

ensures the coefficients are positive. In the récent évaluation of several upwind

schemes, Sharif and Busnaina (1988) found that the SUDS produces the least amount

of numerical or artificial diffusion, however, unacceptable numerical dispersion (over-

and undershoot) is produced when the flow angle is skewed at large angles to grid

Unes. This is because the SUDS does not satisfy the discrète maximum principle, and

the influence coefficients determined by SUDS are not guaranteed to be positive.



Busnaina et al. (1991) found that higher-order and streamwise differencing schemes

produce less numerical diffusion but introduce oscillations in the solution. On the other

hand, lower-order schemes produce excessive numerical diffusion but no oscillations.

Différent modifications of the SUDS scheme have been proposed to improve

its performance. Van Doormaal et al. (1987) proposed a physical advection correction

scheme (PAC) to the SUDS, where the approximation to the convected quantity at a

cell face is modified and it reflects the interactions between the physical processes of

advection, diffusion and source terms. Solutions exhibit little or no spurious overshoots

or undershoots. Busnaina et al. (1991) proposed a modified skew upwind weighted

differencing (SUWD) scheme for discredzing the convection terms, which produces

less numerical diffusion and dispersion than SUDS. Calhoon and Roach (1993)

developed a new upwind procédure which seeks to include the viscous terms so that

boundary and shear layer will not be over-dissipated as with standard upwind scheme.

The method closely parallels the Finite Analytic method (Chen et al., 1988) which is

based on a local analytic solution of the governing équation for an élément in

constructing an algebraic représentation of the partial or ordinary differential équation

and yields a fully conservative method. The différence between the finite analytic

method and the exponential scheme lies in that the transient terms are considered in

the finite analytic method, while it is not considérée! in the exponential scheme in the

derivation of the local analytic solutions.

Conventional Finite Elément Method (FEM) encountered difficulties similar to

those that afflict central differencing schemes. Christie et al. (1976) proposed a one-

dimensional upwind FEM scheme based on skewed weighting functions, which was

extended to two-dimensional problems by Heinrich et al. (1977). Hughes et al. (1979)

proposed another upwind FEM scheme based on a spécial quadrature rule applied to

the advection term. Soon it was realized that, like the finite différence counterparts,

the finite élément upwind procédures tend to produce overdiffusive solution in 2D and

3D as well as in transient situations (Brooks and Hughes, 1982).



In the FEM, the false diffusion can be reduced by a Petrov-Galerkin

formulation with the streamline upwind scheme (SUPG) proposed by Brooks and

Hughes (1982), which may be viewed as a modification to the classical Galerkin finite

élément method. The physical idea of SUPG is to increase control over the advecdve-

derivadve term by adding an artificial diffusion term in the weighting function which

acts only in the streamline direction (Hughes, 1987). Rice and Schnipke (1985) noted

that the SUPG of Brooks and Hughes (1982) can exhibit small non-physical spatial

oscillations in the solution field of a transported scalar. They proposed a monotone

streamline upwind (MSU) finite élément method that présents a streamline

approximation to the convection terms, rather than to modify the weighting funcdon.

They claim that this method is more stable than SUPG. The extension of the MSU

finite élément method of Rice and Schnipke (1985) to quadratic finite élément has been

proposed by Hill and Baskharone (1993), which does not exhibit any non-physical

spatial oscillations, nor suffer from the traditional problem of excessive numerical

diffusion. Shemirani and Jambunathan (1992) found that the methods of SUPG and

MSU, however, generally violate the conservation laws, resulting in global imbalance

of transportée! quantifies. They proposed a Conservation Monotone Streamline Upwind

(CMSU) formulation using simplex éléments. The method is shown to accurately

model the advection phenomena with significantly smaller numerical diffusion than the

existing methods and results are free of all spatial oscillations.

Baliga and Patankar (1980) proposed a control volume based finite élément

method (CVFEM) using the flow-oriented, upwind type interpolation that significantly

reduces false diffusion. However, it encountered négative coefficient difficulties in the

discretization équations which can become quite serious when obtuse-angled triangular

éléments, or tetrahedral éléments with a solid angle exceeding v/2 steradian, are used

in problems that involve high Peclet numbers (Saabas, 1991, Masson et al., 1994). A

mass-weighted, skewed upwinding procédure (MWUS) was proposed by Schneider and

Raw (1986), which is based on CVFEM with a quadrilateral élément. They claimed



that the potential for the development of spatial oscillations in the domain does not

exist. The MWUS was also implemented by Saabas (1991) using both three-node

triangular and four-node tetrahedral éléments in two- and three-dimensions,

respectively, and a co-located equal-order primitive variable formulation. Other

applications of MWUS with CVFEM are also found in Afshar (1992) on a

quadrilateral élément, and Masson et al. (1994) on a triangular élément. Similar

' attempts has been used based on a staggered control volume scheme (Rida, 1993) and

will be extended in the présent work.

2.2 Pressure-Velocity Coupling

In incompressible flow problems, another difficulty lies in the calculation ofthe

unknown pressure field, which can be related to the fact that only pressure gradients

appear in the momentum conservation équations. The pressure field is indirectly

derived from the incompressibility constraint, i.e. continuity équation. Because ofthis,

ifvelocities and pressure are stored at the same location, when the central differencing

scheme is applied to both the continuity équation and the pressure gradient terms in

the momentum équations, it has been shown to produce nonphysical oscillations in the

pressure fîeld, or checkerboard pressure field (Patankar, 1980).

2.2.0 Vorticity-Stream function

Early work based on the vorticity-stream function formulation (Gosman et al.,

1969) which satisfîes the incompressibility constraint identically, avoids the necessity

of computing the pressure. This formulation was adopted by Elkaim et al. (1993),

McKenty et al. (1993) and Meng et al. (1992) using the control volume finite élément

method on unstructured tnangular grid for the simulation of the turbulent reacting

flows. However, diffîculties for applying boundary conditions on vorticity and

extension to three dimensions is not immédiate. Due to thèse difficulties, the primitive



10

variable formulation is préférable. The différences between the vorticity-stream

function and primitive variable formulation are discussed by Roache (1976).

To eliminate the checkerboard pressure problem when using the primitive

variable formulation, several methods based on the différent storage locadons for

velocities and pressure have been developed.

2.2.1 Staggered Grid Method

The checkerboard pressure field can be prevented by using a staggered grid

arrangement as first proposed by Harlow and Welch (1965) in their marker and cell

(MAC) method. Since it has been widely used by Patankar and Spalding (1972) in

their SIMPLE (semi-implicit method for pressure-linked équation), and its variants

SIMPLER (Patankar, 1980), SIMPLEST (Spalding, 1980), and SIMPLEC (Van

Doormaal and Raithby, 1984). Essentially, the method consists in storing pressure at

the main grid nodes in the discretized calculation demain, and staggering the velocity

components relative to thèse nodes (Fig. 2. l (a)). In the resulting momentum équation,

pressure appears at adjacent, rather than alternate nodes, and the discretized continuity

équation can use the velocity components at sides directly, and so that no interpolation

is needed.

The staggered grid method has been widely used in the solution of complex

flow problems in regular orthogonal grid, curvilinear orthogonal and non-orthogonal

grids with considérable success (Maliska and Raithby, 1984, Karki and Patankar,

1988, Shyy and Vu, 1991). However, it was found that this approach fails when the

grid undergo bends that exceeds 90° (Shyy and Vu, 1991). The difficulties with

staggered grid approach led to the development of co-located schemes using the

primitive variables formulation. However, most of thèse methods need spécial

procédures to treat the decoupling of the pressure and velocity field.

Extension of the MAC method to triangular éléments can be found in the

complementary volume method of Nicolaides (1989, 1990) and a similar method
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named the dual variable method of Hall et al. (1991). The resulting arrangements are

shown in Figure 2. l (b), where prcssure is stored at the circumcenters, and the velocity

components y. directed along the dual mesh edges which is perpendicular to its edges.

The complementary control volumes or covolumes are formed by joining the

circumcenters of all triangulations. Using thèse methods, the pressure gradients in the

momentum équations can be discredzed directly as in the MAC method. However, to

avoid the reentrant problems when constructing the polygonal control volumes, thèse

methods are restricted to the use ofequilateral triangles and acute triangles (Hall et al.,

1991).

2.2.2 Equal-Order, CeIl-Centered Method

The first equal-order, co-located FVM is the cell-centered method. In the

arrangement shown in Figure 2. l(c) and 2. l(d), all the dépendent variables (u,v,p) are

stored at the cell center. The control volume based on the rectangular grid (Fig.

2. l (e)) has been widely used in the co-located finite volume method computations, by

Rhie and Chow (1983), Reggio and Camarero (1986), Peric et al. (1988), Miller and

Schmidt (1988), Majumdar (1988), Kobayashi and Pereira (1991) and Smith et al.

(1993), etc.. The key feature in cell-centered method for incompressible flow is the

appropriate évaluation of cell-face velocity and pressure, or the treatment of pressurc-

velocity coupling. The spécial procédure bas been classified as Pressure Weighted

Interpolation (Rhie and Chow, 1983, Miller and Schmidt, 1988) and Momentum

Interpolation (Majumdar, 1988) by Smith et al. (1993).

Rhie and Chow (1983) introduced a method of determining the convective

velocities at cell faces which are obtained by interpolations between grid nodes. The

pressure gradient term is excluded from averaging, and treated direcdy by a pressure

différence of the node pressures. Différent from the above method, Reggio and

Camarero (1986) proposed an opposed differencing scheme in which the velocity

gradients are obtained by upwind differencing and pressure gradients by downwind
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differencing. Thèse procédures ensure strong velocity-pressure coupling, and thus

eliminate the pressure wiggles. However, Majumder (1988) found that the results

based on Rhie and Chow's method is under-relaxation factor dépendent, and proposed

a new momentum interpolation method in an iterative solution that is independent of

the under-relaxation parameter used. Thiart (1990) proposed a similar procédure based

on the momentum interpolation method.

2.2.3 Equal-Order, Vertex-Based Method

The second equal-order, co-located method commonly used in FVM, FEM and

CVFEM is the vertex-based method. In this method, the same control volumes for

both the velocity and pressure in the control volume method, or, in the case of finite

éléments, the same shape functions are used. It includes the bilinear velocity/bilinear

pressure élément and the linear velocity/linear pressure élément, as shown in Fig.

2. l(e) and Fig. 2. l(f), respectively. The 4-node quadrilateral élément (Fig. 2. l(e)) has

been implemented by Rice and Schnipke (1986) using the FEM, by Schneider and Raw

(1987) and Afshar (1992) using CVFEM. The triangular élément (Fig. 2. l(f)) has been

used by Prakash and Patankar (1985), and Sabbas (1991) and Masson et al. (1994)

using CVFEM. The procédures for dealing with the pressure-velocity coupling can be

classified as: the method ofPrakash and Patankar (1985), the method of Schneider and

Raw (1987), and the method of Rice and Schnipke (1986).

In the method of Prakash and Patankar (1985), the continuity équation is

integrated over an élément to obtain the discretization équation for pressure. The

velocity field used in the intégration of continuity équation is not the nodal velocity

field but a différent velocity field, derived from the discretized momentum équation

at an élément vertex. This new velocities can be expressed as the pseudo-velocities

plus the pressure coefficients multiplied by pressure gradient. The pressure gradient

is uniform by assuming the prcssure varies linearly over an élément. The quantities,

such as pseudo-velocities and pressure coefficients at any other points in the élément
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are obtained by assuming a linear variation of thèse quantities over the élément.

Because the new velocity field is driven by the pressure différence between adjacent

grid points, its substitution into the continuity équation yields a pressure algebraic

équation that éliminâtes spurious oscillations.

In the method of Schneider and Raw (1987), the convected variables and

pressure at the control volume faces or intégration points, are expressed in terms of

the nodal values using a local discrète analog to the governing differential équation at

the control volume face in order to close the algebraic représentation of the

conservation équations. For the velocity at the intégration points, a one-dimensional

N-S équation was considered by using an upwind differencing for convection modelling

and central differencing for pressure gradient and diffusion terms. The resuldng

intégration point velocity serves the tight coupling with the node velocides and node

pressures. The intégration point velocities are then substituted into the momentum

équation and used to dérive a Poisson équation for pressure. The authors claim that the

method permits accurate convection modelling and preclusion of pressure-velocity

decoupling. Recently, Schneider and Karimian (1992) extended this method for solving

both incompressible and compressible flows.

In the method of Rice and Schnipke (1986), the closure relation between

velocities and pressure is obtained from the discretized momentum équation, where the

velocities at each grid point are expressed as the pseudo-velocities plus the pressure

gradient term. Thèse relations are then substituted into the integrated continuity

équation and used to form the pressure algebraic équation. They showed that the

resulting pressure équation does not exhibit spurious pressure modes.

The equal-order vertex-based method simplifies the book-keeping of the

différent control volumes used in the staggered grid approach. This method assumes

a continuous approximation ofpressure in each élément. Alternatively, when piecewise

constant pressure is assumed in each élément, constitutes the unequal-order vertex-

based schemes in the FEM.
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2.2.4 Unequal-Order, Pl/PO Elément

The unequal-order éléments include a bilinear-velocity/constant pressure

élément (Ql/QO) and a linear-velocity/constant pressure (Pl/PO) élément, as shown in

Fig. 2.1(g) and Fig. 2.1(h), respectively. The 4-node quadrilateral élément (Fig.

2. l(g)) has been used by Benim and Zinser (1986) with SIMPLE-like segregated finite

élément method, by Mukhopadhyay et al. (1993) with an explicit transient CVFEM.

The 3-node triangular élément (Fig.2.1(h)) has been implemented by FIDAP (1991)

using the penalty function method and SIMPLE-like segregated method. However, as

discussed by Benim and Zinser (1986), this type of élément may give checkerboard

pressure oscillation. In the method of Mukhopadhyay et al. (1993), the cell-face

velocity and pressure corrections are derived from an explicit discredzed momentum

équations. Thèse relations are then used in the derivation of the prcssure equadon

which has a strong diagonal dominance ensuring the correct pressure-velocity coupling.

The Pl/PO élément (Fig. 2. l (h)) is used in the présent work. To avoid the

checkerboard pressure field, we suggested that the momentum interpolation can be

used for evaluating cell-face velocity and pressure based on the control volume

method, this is the fundamental approach of the présent study in the treatment of the

pressure-velocity coupling. The interest ofpiecewise constant pressure approximation

over a continuous approximation of pressure is probably a better approximation of

mass conservation, and the possibility of an easy élimination of the pressure, thus

reducing the number of équations (Thomasset, 1982).

2.2.5 Unequal-Order, Pl Nonconforming/PO Elément

From the numerical computation point of view, it is difficult to impose

boundary conditions for dépendent variables at the corner points of the calculadon

domain when using éléments in Figures 2.1 (e), (f), (g) and (h). This is further

compounded when computing the normal direction at thèse points is required for the
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turbulent flow computations. This difficulty can be easily overcome by an arrangement

such as the Pl nonconforming/PO élément of Crouzeix-Raviart (1973), in which

velocides are stored at midpoint of sides, and pressure is assumed piecewise constant

over an élément, as shown in Fig. 2. l (j). This method bas been implemented by

Thomasset (1982) for practical computations in the finite élément methodology. The

application of this type élément using the finite volume TVD schemes for solving the

Euler shock problem may be found in Ware and Berzins (1992). The 4-node

quadrilateral grid in which velocities are stored at midpoint of sides and pressure

constant at center point has been used by Maliska and Raithby (1984), as shown in

Fig. 2. l (i), where the momentum équations for cartesian velocides (u,v) at sides are

solved over the staggered control volume, then it is used only to compute the

contravariant velocity components that enter into the mass conservation constraint.

Using this method, the checkerboard pattern of pressure can be avoided.

While the checkerboard-type pressure problem can be overcome by the most

of the aforementioned methods, no numerical method can be regarded as the best for

all the fluid flow problems. Most of the existing numerical methods have at least one

or more of the following limitations:

• Difficulty in application to the complex geometries.

• No explicit physical interprétation.

® Difficulty to impose the pressure boundary condition.

• Extension to 3 dimensional flows is not immédiate.

Finite élément methods have géométrie flexibility and ease of extension to high

order schemes, but do not lend themselves to an explicit physical interprétation. The

CVFEM combines the intrinsic géométrie flexibility of FEM together with the direct

physical invocation of a conservation principle on the control volumes. The unequal-

order scheme of Baliga and Patankar (1983) and the equal-order scheme of Prakash
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Staggered Grid Arrangement

u

(a) (b)

Equal-Order, CeU-Centered Grid

(e) (d)

Equal-Order, Vertex-Based Grid

-^]U,V,P {^ u,v,p

-^ (e) (f)

Unequal-Order, Pl / PO Elément

^ u,v /^u,v

(g) (h)

Unequal-Order, Pl Non-Conforming / PO Elément

Dp ^ U,V

(i) (j)

Figure 2.1: The storage locations used in the first-order scheme with the primitive
variable formulation
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and Patankar (1985), respectively are typical of this class of schemes. In the method

of Baliga and Patankar (1983), the pressure is computed at fewer grid points than that

of the velocity, but the pressure boundary condition must be provided. In the method

of Prakash and Patankar (1985), the velocity and the pressure are computed at the

same grid points, but it still needs to specify the boundary condition for pressure. Both

the methods of Baliga and Patankar (1983) and Prakash and Patankar (1985) used the

same form interpolation function, i.e. the flow-oriented upwind function without

considération of the source term in the transport équations. In an attempt to improve

his previous equal-order method, Prakash (1986) proposed a second method, where a

new flow-oriented, upwind type shape function includes the effects of the source terms

in the streamwise direction in the transport équations. The same interpolation function

is used to dérive algebraic formulations to both the continuity and the momentum

équations. Hookey and Baliga (1988) modified the interpolation funcdon of Prakash

(1986), to include source term effects in both directions parallel and normal to the

mean flow within each élément. The pressure correction équation involves up to 25

neighbouring nodes in two dimensional problems (Hookey, 1989). This makes

extension to three dimensional flows difficult.

Staggering has proved to be a very effective method to avoid fhe pressure

checkerboard patterns, but in the case of fînite volume it has only been used for

structured grid. This work proposed an extension to unstructured grid of the CVFEM

scheme. The theoretical basis is équivalent to the Pl non-conforming/PO élément and

Pl/PO élément of the fînite élément method.

2.3 Solution Algorithm

For primitive variable formulations, once the required convection-diffusion

formulation is chosen, the essence of the method lies in the treatment of the coupling

between the momentum and continuity équation. Two methods of handling this are the
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artificial compressibility method (Chorin, 1976) and the penalty function method

(Reddy, 1982). The artificial compressibility method is based on the addition of an

artificial time derivative of pressure to the continuity équation. This results in a

pressure distribution such that a divergence-free velocity field is ensured. It is noted

that the added term must vanishes for time-accurate soludons. Turkel (1987) extended

this concept by adding the pressurc time derivative to the momentum équations and can

be considered as a preconditioning method to accelerate the convergence to a steady

state for both incompressible and compressible flows. In FEM, the penalty function

method reduces problems of conditional (or constrained) extremum to problems

without constraints by the introducdon of a penalty on the infringement of constraints

(Reddy, 1982). In the application to incompressible flows, one replaces the

incompressibility constraint by a relation between the velocity and pressure, thus

eliminating the pressure terms in the momentum équations. Comparing the artificial

compressibility method and the penalty function method, Shih et al. (1989) pointed out

that thèse two methods are exactly the same. Both methods need to reconstruct the

continuity équation by adding the extra pressure term, then eliminate the pressure in

the momentum équations. The choice of free parameters is very important for

application of thèse two methods.

2.3.1 Segregated Solution Algorithm

An alternative to artificial compressibility and penalty methods is the use of

fully coupled solution algorithms in conjunction with direct Gaussian élimination type

solution for the numerical solution of the incompressible flow équations. This method

of solution requires less CPU time compared to most other methods for problems of

moderate size. However, as the number ofunknown is increased, the cost becomes too

expensive, both in terms of storage and CPU time. Thus, thèse serious limitations have

led to the development of alternative algorithms based on segregated forms of solution.

A number of segregated solution methods currently employed originate from
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the SIMPLE procédure of Patankar and Spalding (1972). This method solves the

pressure and velocity algebraic équations separately, one at a time. Because of slow

convergence and the need of heavy under-relaxation of the SIMPLE procédure, some

enhancements have been developed.

Patankar (1980,1981) introduced the SIMPLER (SIMPLE-revised) method, in

which a pressure correction équation is used for obtaining only the velocity

corrections, while a separate pressurc equadon is solved for the évaluation ofpressure.

This method brings a significant saving of computation dme compared to the SIMPLE

method. Another variant is the SIMPLEC (SIMPLE-Consistent approximation)

procédure proposed by Van Doormaal and Raithby (1984), using a consistent

approximation for the treatment of the velocity correction fîelds. It avoids the

inconsistency ofthe SIMPLE procédure. The pressure correction équation does not use

under-relaxation. They showed that this is less expensive than SIMPLER for the

problems solved. The SIMPLEST procédure was developed by Spalding (1980), who

recommended an explicit treatment of convection and implicit treatment of diffusion

in the momentum équation. Another enhancement of SIMPLE is called PISO (Pressure

Implicit with Splitting of Operators), proposed by Issa (1985). It is a non-iterative

method for handling the pressure-velocity coupling of the implicitly discretised fluid

flow équations, which is essentially the same as the SIMPLER procédure for

incompressible flows.

2.4 Turbulence Modeling: Two-Equation Models

Based on the pioneering work of Prandtl's mixing length theory and

Kolmogorov's and Prandtl's one-equation models, the turbulence models in use today

employ two differential équations for the turbulent length and dme scales, and

constitute the first complète turbulence models. Variadons of thèse two-equation

models are of interest for practical applications and under further development. Thèse



20

include the High-Reynolds number standard k-c model of Launder and Spalding

(1974), the Near-wall and Low Reynolds number k-e models (Patel et al., 1985), the

k-a> model of Wilcox (1988), the k-r model of Speziale et al. (1992), and the recently

developed Renormalization Group (RNG) k-c model of Yakhot and Orszag (1986), as

well as a Multiple-Scale turbulence model of Duncan et al. (1993).

2.4.1 Standard k-c Model

In the standard k-e model of Launder and Spalding (1974), the turbulence

kinetic energy k and its dissipation rate e are calculated from transport équations in the

fully turbulent flow région, and the Reynolds-stress tensor is représentée! by an eddy

viscosity model constructed from k, e and mean flow field. The turbulent eddy

viscosity can be determined from the transport équation of k and e, defined as:

^-c^ (2J)

For wall bounded flows, wall funcdons are adopted to blend the fully turbulent

région with the near wall région, because of the predominance ofviscous effect in that

région. Used in conjunction with wall functions, the k-e model is reasonably well

behaved, and has been applied to the solution of many practical problems with a

moderate amount of success. Because this model cannot be integrated directly to a

solid wall, particularly in problems where wall transport properties are important, the

development of various Low-Reynolds-number near-wall corrections have been

proposed and will be reviewed.

2.4.2 Low-Reynolds-Number Near-Wall k-c Models

The low-Reynolds-number models avoid the use ofwall functions, and instead,

propose a method for determining the various turbulence parameters all the way to the

surface itself. The eddy viscosity is defined as:
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H, - C^ (2.2)

where f is a damping function. In some versions, e is equal to the actual dissipation

e, while in others it is e = e -D, where D dépends on the version considered and

is non-zero only in the viscosity affected région. The various Low-Reynolds number

versions of the k-e model differ in the form of the damping functions, in the values of

the closure coefficients and in the surface boundary condition imposed on g. Détails

are given by Patel et al. (1985) and Wilcox (1993b).

The Low-Reynolds number k-e models have the undesirable feature ofrequiring

very high numerical résolution near the wall, and perform poorly in adverse-pressure-

gradient boundary layers. Furthermore, the damping functions in thèse models were

developed for attached boundary layers and are not always well behaved in separated

ûows (Rodi, 1991). In attempts to improve such situations, the two-layer model is

adopted. It uses the one-equation model of Noms and Reynolds (1975) near the walls,

because this model performs well in adverse-pressure-gradient boundary layers (Rodi

and Scheuerer, 1986). For flow over a backward-facing step, the two-layer model

predicted the reattachment length with much better agreement with the experiments of

Driver and Seegmiller (1985), and it also produces a small second corner eddy which

is absent in the calculation with standard k-e model.

2.4.3 k-û? and k-T Models

The k-e model is the most widely used two-equation model, while k-u and k-T

models are recentfy developed additions. The major différence between thèse models

lies in the application of wall boundary conditions for the length scale variable and the

source terms introduced in the turbulent variable transport équations.

The k-u model of Wilcox (1988) is a two-equation model based on a transport

équation for the turbulent time scale, where the turbulent kinetic energy k and
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turbulent time scale u are solved. The turbulent viscosity for this model is:

^=Y*^ (2.3)
0

where y* is the model constant, and u is defined by o =€/(p-Jfe).

With no viscous damping of the model's closure coefficients and without

resorting to wall functions, the model équations can be integrated to the solid

boundary. Hence, the k-u model is more computational robust than the k-e model for

the intégration of turbulent flows through the viscous sublayer. Furthermore, it has

been désignée! to predict the proper wake strength in equilibrium adverse pressure

gradient boundary layer flows. However, when this model is applied to free shear

layers, a strong dependency of the results on the freestream value of u bas been found

(Menter, 1992). Wilcox (1993a) proposed a modified version that éliminâtes the

model's freestream boundary condition sensitivity and without destroying its accuracy

for boundary layers in adverse pressurc gradient and for transitional boundary layers.

He shows that the k-u model is superior over all other turbulence models for wall-

bounded flows.

Instead of solving the turbulent length scale transport équation, a modeled

transport équation for the turbulent time scale T=I/U is solved in k-r model of

Speziale et al. (1992). The eddy viscosity for k-r model is:

^=C^ (2.4)

The advantage of this model is in the wall behaviour of T. In the low Reynolds

number form, at a solid wall, the dissipation rate e can have a finite value at fhe wall,

while, the turbulent kinetic energy is zéro. Then the value of w ( u=e/(p'Â;) ) at the

wall is infinity and the value of r ( i =k/e ) at the wall is zéro. This behaviour gives

the k-r model advantages over both the k-e and k-u models at low Reynolds numbers,

because the équations are integrated directly to the wall and thèse boundary conditions
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gready affect the numerical behaviour of the solution.

2.4.4 RNG k-c Model

The Renormalization Group (RNG) k-c model is derived from statisdcal

principles (Yakhot and Orszag, 1986). It is based on Gaussian statisdcs where an

expansion is made about an equilibrium state by using the correspondence principle.

In the high Reynolds number limit, the RNG model is identical to the standard k-e

model of Launder and Spalding (1974). The major différence between the RNG k-e

model and the standard k-e model lies in the near wall treatment. The RNG k-e model

can be integrated direcdy to a solid wall without the need for wall damping functions.

The constants of the RNG k-e model are calculated explicitly by the theory, while, in

the standard k-e model, the constants are obtained from benchmark experiments for

equilibrium turbulent boundary layers and isotropic turbulence, and are given in Table

2.1, respectively. Beyond having the attractive feature ofno undetermined constants,

the RNG k-e model of Yakhot and Orszag (1986) automatically bridges the eddy

viscosity to the molecular viscosity as a solid boundary is approached, thus eliminating

the need for the use of empirical wall function or Van Driest damping. However, in

the RNG k-e model of Yakhot and Orszag (1986), the constant C<i = 1.063 is

dangerously close to one, which constitutes a singular point of the e-transport équation

(Speziale and Thangam, 1992). To overcome this shortcoming, the new version of

RNG k-e model was recently adopted by Speziale and Thangam (1992) for the

calculation of turbulent separated flows. The constants of this model are also given in

Table 2. l.
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Table 2.1: Comparison of model constants of k-e, RNG and new version of RNG

k-e

RNG

RNG*

c.

0.09

0.085

0.085

^1

1.44

1.063

'*

-el

^
1.92

1.72

1.68

°k

1.0

0.7179

0.7179

ae

1.3

0.7179

0.7179

C;i = l.42-Tl(l-T1/T1o)/(l+pT13) (2.5)

It was shown by Speziale and Thangam (1992) that when this model is extended

to include an anisotropic eddy viscosity, the predicted mean reattachment point is

almost identical to the expérimental data. The RNG k-e model has been successfully

implemented by a commercial finite volume program FLUENT (1993), where

turbulent flow results shown based on the RNG k-e model are much better than those

of the k-e model.

2.4.5 A Multiple-Scale Turbulence Model kp-€p-kt-Ct

A multiple-scale turbulence model has been derived by Duncan et al. (1993).

This model splits the energy spectrum into a high wave number régime and a low

wave number régime, which correspond respectively to a région where the turbulent

kinetic energy is produced by interaction with the mean flow and a région where the

turbulent energy is transferred from the production région. Thus two sets of kp-ep-kt-Ct

équations are established, where kp is the kinetic energy contained within the

production région and e? is the rate at which energy is passed from the low wave

number range into the high wave number range, ki is the kinetic energy contained in

the smaller eddies and ei is taken to be équivalent to the dissipation rate at the high

wave number end of the spectrum. The eddy viscosity for this model is defined as:
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^ , ç^V (2.6)
p

where the coefficients are determined by examining the decaying and homogeneous

turbulence. This model has been applied to boundary-free turbulent shear flows with

good agreement with data. Until now, therc are no reports on wall bounded flows

applications of this model.

2.4.6 Turbulence Near-WalI Functions

The wall function is derived by considering that the flow in the near wall région

can be represented by a Couette flow approximation based on the logarithmic form of

the law of the wall. The standard form of the near-wall model is the two-layer law of

Launder and Spalding (1974), given by:

u
<

"T

y+, (y+<11.63)

î-ta(Ey+), (y^ll.63)
K

(2.7)

where E ls a wall roughness parameter, and K is the von Karman constant, u is the

friction velocity and y+ is the dimensionless normal distance from the wall. The wall

function is applied at the first point located within the inner région of the turbulent

boundary layer.

A new way of treating the wall functions was proposed by Chieng and Launder

(1980) and latter by Amano (1984). In the two-layer model of Chieng and Launder

(1980), the near-wall cell is treated as viscous sublayer up to a distance from the wall

and fully turbulent beyond this, the first computational point lies outside the viscous
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sublayer. In this model, the mean génération rate and mean dissipation rate of the k

équation in the numerical cell adjacent to the wall is evaluated, while, the value of e

in the near-wall cell is approximated under local equilibrium condition. In the two-

layer model of Amano (1984), the treatment of the e équation in the near-wall cell

takes into considération the fact that the value of e near the wall is an order of

magnitude larger than that in the fully turbulent core and reaches its maximum at the

wall. Each term in the e equadon is evaluated in accordance with the k équation rather

than approximated under local equilibrium conditions. However, it was found that both

linear and logarithmic profiles deviate from the expérimental data in the buffer layer.

In order to improve the accuracy, another wall function method is proposed in

which the velocity profile based on the Reichardt law, is defined as:

-"- = -l]n(i+o.4y+)+7.8
MT K

l-exp(-^)-^exp(-0.33y+)
ir 11

(2.8)

Reichardt's law closely matches the experimentally observed velocity profile

across the viscous sublayer (y+ < 5), the transitional sublayer (5 < y+ < 30) and the

fully turbulent layer beyond (y+ > 30). This method has been used by Autret et al.

(1987) and a commercial finite élément program FIDAP (1991).

A three-layer model was implemented by Thangam and Speziale (1992), in

which all three layers, the viscous sublayer, the transitional sublayer and fully

turbulent layer are considered. The law of the wall is then given by:

(2.9)M

u.T

y\

-3.05+5Iny+,

5.5+2.51ny+,

(y+^5)

(5<y+<30)

(y ^30)

It was shown by Thangam and Speziale (1992) that the three layer law of the
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wall, with standard k-e model predicts a reattachment point longer than that of the

two-layer law of the wall for flows over a turbulent backward facing step. However,

the three-layer law of the wall boundary condition does not affect the turbulence stress

profile.

The three-layer near wall model of Amano (1984) is comprised of a viscous

sublayer, a buffer layer, and an overiap layer in the near-wall cell. In the application

of the three-layer model, the fîrst computational point lies outside the buffer layer and

assumes the near-wall cell is large enough. He showed that the three-layer model gives

better predictions than the two-layer model, but the latter requires less computational

time. Détails of the treatment of the three-layer model are given in Amano (1984).

2.4.7 Turbulence Modelling from a Numerical Viewpoint

The turbulence models previously described can be implemented by any well

established numerical method, such as finite différences, finite volume, finite élément,

as well as control volume based finite élément methods. Most of the early works on

turbulence modelling uses the finite-difference and/or finite volume method based on

hybrid central/upwinding differencing scheme, such as Chieng and Launder (1980).

Rhie and Chow (1983) applied the finite volume collocated method to solve the

turbulent flows over airfoils with and without trailing edge séparation. The k-c model

with wall functions was utilized to describe the turbulent flow processes. Their work

used a général curvilinear coordinate System based on the TEACH code with SIMPLE

method, thus eliminating the géométrie limitation ofTEACH code written for cartesian

or cylindrical coordinates. They show that without séparation, the k-e turbulent model

predicted values in reasonably good agreement with the expérimental data; with

séparation, the k-e model predicted poor results.

Zhu and Rodi (1992) have used the finite volume method with standard k-e

model to simulate the axisymmetric confîned jets in a diffuser. It uses an equal-order,

cell-centered grid with all the dépendent variables stored at the géométrie centre of the
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control volumes. They solved the discretized équations based on a curvilinear

coordinate System to treat the complex geometries. Three discretization schemes were

used to approximate the convection terms, i.e. hybrid central/upwind differencing,

QUICK and SOUCUP (Combined Second-Order Upwind, Central differencing and

first-order upwind schemes). They showed that the high-order discretization of the

turbulence équations plays a crucial rôle in accurately simulating turbulent flows.

Morgan et al. (1977) demonstrated the use of a mixing length and a two-

équation turbulence model with the finite élément method. They solved the coaxial jet

flow using the PrandtTs mixing length model and fully developed pipe and channel

flows using the k-1 two-equation model. The solution demain considérée! does not

extend to the wall but terminâtes inside the fully turbulent région. The near wall

boundary condition is treated by the wall function method. Latter, they extended the

method by using the k-e model (Morgan et al., 1979) and solved the same flow

problems, the results compared favourably with other numerical method predictions.

Benim and Zinser (1985) used a segregated solution algorithm with SUPG finite

élément method to solve pipe flows and confined jet flows. The turbulence is solved

by the k-e two-equation turbulence model. Instead of using the near wall first point of

the boundary élément to estimate the wall shear stress, the near wall second point in

the boundary élément is considered. The velocity components as well as the turbulent

quantities k and e are interpolated by bilinear function, a constant pressure is assumed

on a quadrilateral élément.

Comini and Del. Giudice (1985) demonstrated the use of the SIMPLER

algorithm of Patankar (1980) coupled with the k-e model with wall functions. The 8-

node isoparametric éléments are used for all variables. They solved a ftilly developed

channel flow and a backward-facing step flow.

Autret et al. (1987) reported on the solution of turbulent flows by a Galerkin

finite élément method. They solve the turbulent flow over a backward-facing step using

the k-e model. The wall région is treated through the Reichardt's law. They show how
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the numerical reattachment length is underpredicted, and an appropriate choice of C^

can gives qualitatively better results.

Benim (1990) rcported the solution of steady confined turbulent swirling flow

by a SUPG finite élément method. The momentum and continuity équation are solved

using a segregated algorithm. Both the k-e model and the algebraic stress model (ASM)

are considérée!. He showed that the ASM leads to more accurate results for swirling

flows compared to the k-e model.

Manouzi and Fortin (1991) developed a transmission finite élément method to

model the boundary layer flow. The method is based on a domain décomposition into

subdomains near a solid boundary. This boundary élément has both linear and

logarithmic variation for the vertical direction and a quadratic variation in the

horizontal direction. It was found that the latter provides a more accurate

représentation of the logarithmic-linear velocity profile to the boundary of the flow

demain. They calculated the poiseuille flow and flow over a backward-facing step.

Elkaim et al. (1992) developed a numerical procédure to solve turbulent flow

with the k-e model based on a control volume finite élément method. They treated the

pressure-velocity coupling by the vorticity-streamfunction formulation. Both the law

of wall and Low-Reynolds number formulations are implemented to take into account

the wall effects. They found the latter to perform better in recirculation régions.

Zuercher and Rozon (1993) demonstrated the turbulence modelling using the

commercial control volume finite élément method code Aerovisc/TASCflow. Two-

layer and k-e turbulence models with and without an additional dissipation rate

équation source term modification were considered. In the application of two-layer

turbulence model, the computation domain is divided into two régions: away from

walls and near walls. They used the combination of the standard k-e model away from

the wall and a one-equation model in the near wall région. They found that two-layer

model provided improved predictive capability compared to the wall fùnction

approach. For the turnaround duct test case, flow séparation was predicted using the
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two-layer model, whereas it was not using the k-e turbulence model and a log-law wall

function method.

2.5 Combustion: The Conserved Scalar Approach

Chemical réactions usually involve many species and proceed through a large

number of finite rate réaction steps. Essentially, thèse réaction processes can be

described by conservation équations for the mean value of each species, which in turn

leads to computation of the mean réaction rates of each species. Thèse reacdon rates

are inevitably highly nonlinear functions of the température and the concentration of

species, as well as theirs corresponding second-moment corrélations. However,

knowledge of thèse quantities is insufficient to obtain réaction rates, which makes it

very difficult to simulate the combustion process. A simplification of the above

difficulty is the use of the conserved scalar approach (Bilger, 1980). Considering the

turbulent nonpremixed flame with two streams of reactants, where turbulent mixing

is important and the chemical réactions are assumed sufficiently "fast" for all réactions

to go to equilibrium as soon as the reactants are mixed. Then the calculation of the

mean réaction rates in the conservation équations of species is no longer required as

all species may be determined simply in terms of strictly conserved scalar variables.

Following Bilger (1980), the réaction takes place in an irréversible, single step as

follows:

l kg Fuel + s kg Oxidant ^ (s+1) J^ Products (2-10)

where the réaction rate obeys:

Wp=Wols=-Wp/(s+l) (2.11)

and the linear relationships for the conserved scalar variables as:
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PH>=^-Î^

P^=^+iW(5+l) (2-12)

POP=^ÎW^+D

Here, Yp, Yo, and Yp represent the mass fractions of fuel, oxidant and products,

respectively, and s is the stoichiometric ratio of oxidant required to burn l kg fuel.

|8po» ^FP and j8op arc the conserved scalars of the mixture fractions.

The preferred choice of conservée! scalar is the mixture fraction, others may

be formed using the sensible enthalpy. The conserved scalar approach is suited only

when there are two uniform reactant feeds, then linear relationships among all the

conserved scalars exist (Bilger,1980). It is not only useful in one-step réaction, but it

can also be extended to two-step réactions (Nikjooy et al., 1988) and multi-step

réactions such as the chemical equilibrium model of Gordon and McBride (1971).

Based on the conserved scalar approach, the combustion models can be classified as:

the fast chemistry réaction model, probability density function of conserved scalars,

chemical equilibrium model, laminar flamelet model, or the finite rate chemistry with

a two-variable modification, such as eddy-break-up model (Spalding, 1971b) and eddy

dissipation combustion model (Magnussen and Hjertager,1976).

2.5.1 Fast Chemistry Réaction Model

The fast chemistry réaction model assumes that the réaction is so fast that fuel

and oxidant do not co-exist anywhere, except within an infinitely thin flame sheet (both

the fuel and the oxidant will be zéro when the mixture is stoichiometric). According

to the above assumption, Williams (1965) concluded that a linear combination of

species conservation équations for fuel and oxidant, yields an équation whose form is

identical to the conservation équation ofchemically inert species without source terms.

In this model, only one conservadon équation of mixture fraction is solved. Récent

applications of this model by différent numerical méthodologies are made by Kim
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(1987) with finite élément method, by Elkaim et al. (1993) with CVFEM and vorticity

streamfunction formulation, by Liu et al. (1993) with finite volume multigrid method.

The advantage of this model is that it allows the solution to converge easily because

the governing équation of the mixture fraction has no source term. While this model

assumes that fuel and oxidant cannot co-exist, some available expérimental results are

contrary to this assumption and indicate that the fuel and the oxidant may exist at the

same location but at différent times. Modifications to account for this co-presence of

the reactants, were made by Spalding (l 971 a), Lockwood and Naguib (1975) and

BUger (1975).

2.5.2 Probability Density Function Model

Considération of the concentration fluctuations, or unmixedness and

intermittency, has led to the development of the probability density function (PDF)

model. The PDF of conserved scalars by the mean and the variance (e.g. mixture

fraction f and concentration fluctuation variable g) can be specified from three types

of assumed forms, double delta PDF of Spalding (1971a), beta PDF of Jones (1979)

and clipped Gaussian PDF of Lockwood and Naguib (1975). By comparing various

PDF models for the hydrogen-air round jet diffusion, Jones (1979) concluded that

while the double delta PDF gives rise to unrealistic results, the clipped Gaussian and

Beta PDF provide good agreement with little différence. Recently, a comparative study

of the delta and beta PDF models were made by Kim and Chung (1989) with finite

élément method, by McKenty et al. (1993) with control volume finite élément method.

Good agreement being obtained with expérimental data for the conserved scalar field

and for the mean composition. When more accurate forms of the PDF are required,

the direct calculation of PDF is needed (Pope, 1976, O'Brien, 1980).

2.5.3 Chemical Equilibrium Model

For reversible réaction, the fast chemistry assumption implies that the forward
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and back réaction rates are fast compared with the turbulent mixing processes, thus the

composition of the mixture at a given point at any particular instant will be the same

as that reaches if the mixture were isolated and allowed to come to chemical

equilibrium (Bilger, 1980). Bilger suggested that for many species and multiple

réactions, the chemical equilibrium constants of molecular species can be calculated

from the elemental composition and enthalpy defined by a conserved scalar approach.

The most reliable method for the calculation of the equilibrium state of a gas is based

on the minimising of the Gibbs free energy, which is described by Gordon and

McBride (1971). This has lead to a well tested and reliable computer program that has

been used by Liew et al. (1981), Jones and Whitelaw (1982) for différent reacdon

problems. Another discussion of the minimization of free energy technique can be

found in Heywood (1986). In case of methane/air mixtures, Jones (1979) showed that

in their chemical equilibrium results, in the fuel lean régions, negligible quantities of

CO are présent; in the fuel rich région, appreciable CO concentration exists.

2.5.4 Fîameîet Model

In the laminar flamelet concept the turbulent diffusion flame is considered as

an ensemble of thin laminar diffusion flamelets. The model is applicable if the length

scales of the turbulent eddies are much larger than the réaction zone thickness of the

flamelets (Rogg et al., 1986). The laminar flamelet concept can be used to détermine

the composition and température as a function of the conserved scalar (such as mixture

fraction). The flamelet can be specifîed from the réaction mechanism provided by

either expérimental measurement or numerical prediction.

Liew et al. (1981) established their flamelet model on the expérimental data of

Mitchell et al. (1980). They supposée! that the microscopic élément in the model

describing local mixture state and burning, has the structure ofan undisturbed laminar

diffusion flame. This provides unique relationships for all thermochemical variables

in terms of the conserved scalar (or mixturc fraction) alone. Thèse relationships are
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then averaged, for the turbulent flame using an assumed PDF of the conseryed scalar.

By comparing the results between the flamelet model and the chemical equilibrium

model of Gordon and McBride (1971), they showed that their flamelet model yields

substantial improvements in the prediction of mean CO concentration in the fuel rich

régime of an open turbulent methane/air diffusion flame. The spécification of the

flamelet model using numerical prediction may be found in Liew et al. (1984). They

proposée! a simple method for the incorporation of detailed non-equilibrium

hydrocarbon chemistry into a représentative flow field model. The microscopic élément

in the turbulent ensemble is taken to be a stretched laminar flamelet, drawn from a

library of such flamelets in which the extent of local stretching is characterized by

Damkohler number. The application of the flamelet model, were also shown by Rogg

et al. (1986) to partially premixed diffusion flamelets with detailed chemistry, by

Askan-Sardhai et al. (1985) to propane/air réaction, by Cant et al. (1990) to premixed

turbulent flame, respectively. Recently, McKenty (1992) established a micro-flame

model for methane/air flames based on the expérimental data of Mitchell et al. (1980).

The model relates the species mass fraction of the combustion products to the mean

mixture fraction. It is shown that this model gives better predictions of CO and Hz

mass fraction than the chemical equilibrium model for fuel rich mixtures.

2.5.5 Eddy Dissipation Combustion Model

Extension of the conservée! scalar approach to the case of finite rate chemistry

is carried out by considering an additional variable which is affected by the chemical

kinetics. The eddy-break-up (EBU) model of Spalding (1971b) combines the effects

of mixing and kinetics through the use of the eddy break-up rate and the kinetic rate

of réaction in a laminar premixed flame. Magnussen and Hjertager (1976) extended

the idea of the EBU model, and proposed the eddy dissipation concept (EDC) for both

turbulent diffusion and premixed flames. Based on EBU or EDC model, a single step,

irréversible fast réaction described by two differential équations, one for the mixture
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fraction, another for mass fraction offuel are solved. This approach is semi-empirical

and not soundly based in theory (Bilger, 1980). It is however widely used in the

combustion community due to its simplicity and flexibility in applications to 3D

complex geometries (Bai and Fuchs, 1993). Jessee et al. (1993) presented a finite

volume method for the solution of turbulent reacting flows using a finite chemical

kinetics model based on the eddy dissipation concept. Extension of the EBU model to

a two-step global réaction of hydrocarbon fuel described by Westbrook and Dryer

(1981) is carried out by Nikjooy et al. (1988) using the finite volume method, where

the three équations for unburnt fuel, carbon monoxide (CO) and mixture mass fraction

are solved, two of thèse équations have a non-zero EBU source terms. Application of

the EDC model to a four-step reduced réaction mechanism of hydrocarbon fuel

suggested by Hautman et al. (1981) are made by Bai and Fuchs (1993), with the use

of the finite différence together with a multi-grid method and a local grid refinement

technique. Other applications ofEDC model by using the différent numencal methods,

were also found in Benim (1989) with FEM, by Mckenty (1992) with CVFEM and a

vorticity-streamfunction formulation.

2.5.6 Other Methods

Much work is presendy underway in predicting turbulent flows through direct

numerical simulations (McMurty and Givi, 1989), PDF modelling (Chen et al., 1989)

and finite chemical kinetics embedded in the flow calculations (Vos, 1987).

Direct numerical simulation refers to the numerical solution of the exact

aerothermodynamical équations ofthe unsteady turbulent reacting flow field (McMurty

and Givi, 1989). No turbulence modelling is required because of the turbulence is

obtained as the direct solution of the unsteady équation. However, the large disparity

in time and length scales and limited computer capacity, makes this method impracdcal

for most practical applications.

PDF modelling on turbulent nonpremixed methanejet flames was demonstrated
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by Chen et al. (1989) using the Monte Carlo simulation. The chemical réaction models

are considérée as a five-scalar, four-step reduced mechanism and a four-scalar

constrained equilibrium model, respectively. They make use of the PDF submodel to

handle five scalars, while turbulence velocity field is described by a second-order

moment closure. Hsu et al. (1993) developed a PDF approach for compressible

turbulent reacting flows for the use with a CFD flow solver. The PDF of the species

mass fraction and enthalpy are obtained by solving a PDF évolution équation using a

Monte-Carlo scheme. Their scheme is the combined finite-volume Monte-Carlo

procédure. However, the PDF approach has only been used in some simple

applications due to its complexity.

Vos (1987) showed the numerical solution of turbulent reacdng flows using

finite chemical kinedcs with the fînite volume method. He proposed a two-step,

pseudo-time-splitting algorithm for the solution of mass fraction équations. This

technique is also implemented by Coelho and Pereira (1992) for predicdng methane/air

laminar diffusion flame with a finite rate chemical kinetics combustion model using a

local grid refinement technique. In the first step, convection and diffusion of all

species in the standard governing équations are solved by the Gauss-Seidel line by Une

iterative procédure. In the second step, chemical réactions are taken into account for

all mass fractions simultaneously by integrating the stiffordinary-differential équations

with chemical source term using a général chemical kinetics code package CHEMKIN

(Kee et al., 1980). SimUar procédures are adopted by Jessee et al. (1993) for the finite

chemical kinetics calculation using the eddy dissipation concept, but the réaction time

is controlled by the local turbulence rather than by the local résidence time (Coelho

and Pereira, 1992) for the given control volume. In order to predict the CO and N0,

they make use of the simplified thermal NOx réaction mechanism of Miller and

Bowman (1989). Radhakrishnan and Pratt (1988) proposed a fast algorithm for the

calculation of chemical kinetics équations by using exponentially-fitted intégration

algorithms namely CREK1D.
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2.6 Radiation Modelling

Radiation is the dominant mechanism of energy transfer to the walls of large

scale combustion chambers. The difficulties associated with radiation modelling are the

multi-dimensional nature of the phenomena, the integro-differential nature of radiative

transfer équation, and the coupling between the radiative transfer équation and energy

conservation équation (Chiu, 1990). Unlike the flow field, which can be solved directly

by a spatial intégration algorithm, for radiation, both spatial intégration and angular

intégration have to be carried out. There are several radiation models, such as Zonal

(Hottel and Sarofim, 1967), Monte-Carlo (Howell, 1968), Flux (Gosman and

Lockwood, 1973) methods, etc.. The excellent reviews ofvarious radiation models on

combustion System are given by Viskanta and Menguc (1987), and by Howell (1988).

In this section, several well established radiation models are discussed with

emphasis on their application to irregular shaped complex geometries and coupling to

the flow équations. The problems posed by the application to practical furnaces are

presented.

2.6.1 Zonal Method

The Zonal method is based on the view factor and mean beam length concepts.

Essentially géométrie in its approach, the domain is divided into a number of surface

and volume zones about which radiation balance and total energy balance are

formulated. Each zone is considered to be uniform in température and radiation

properties. The heat release and the flow patterns are specified in advance.

Geometrical exchange factors (exchange areas) between each zone pair are supposed

to be known a priori.

The advantage of this method is that it can approach an exact solution for the

radiative fluxes as the number of zones is increased, and even for a relatively coarse

zoning, it can give good results.
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The major difficulty of applying this method is the tedious évaluation of the

direct exchange areas. Attempts to improve the zonal method were made by Larsen

and Howell (1985) with an exchange factor method, by Naraghi et al. (1988) with a

continuous exchange factor method in participating média, by Saltiel and Naraghi

(1991) with an exchange factor method in nonhomogeneous média, respecdvely.

Considering the anisotropically scattering média, Yuen et al. (1992) developed a

Generalized Zonal method. However, there is a difficulty in matching the required grid

sizes for radiation and fluid flow field (Howell, 1988) and the calculation of the

exchange areas remains very difficult for complex geometries (Viskanta and Mengûç,

1987).

2.6.2 Monte Carlo Method

The Monte Carlo method is based on a statistical approach. The exchange

factors are automatically calculated as the randomly chosen energy releases are tracked

through the demain for their lifetimes. This method can in principle be programmed

to include an exact simulation of all important physical processes (Howell, 1988).

Applications may be found in Taniguchi (1969), Steward and Cannon (1971), Gupta

et al. (1983), Burns et al. (1992) and Gorner and Dietz (1993), which illustrate its

geometry flexibility and ability to handle difficult problems.

The drawbacks of this method is that it requires long computation time to

obtain good results due to the method's statistical approach. Another difficulty is the

grid size incompatibility, in which the computational élément size required for

statistical accuracy in the Monte Carlo solution may not be compatible with the grid

size necessary for numerical solution of the energy équation, even given sufficiently

fast and cheap computation capability (Howell, 1988).

2.6.3 Flux Methods

In the flux methods the angular variation of the radiant intensity in space is
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assumed to be of a certain functional form. The integro-differential radiative transfer

équation then reduce to a set ofpartial differcntial équations. The various flux methods

are classified as Flux Model, Spherical Harmonies (P-N) method, Discrète Ordinates

(S^) method according to the différent functions (or weighting coefficients) used.

Because this class of methods is essentially a field method, they can easily be

incorporated into existing flow and réaction solvers.

Flux Models

The flux model includes the 2-Flux model (Siddall and Selcuk, 1974), 4-Flux

model (Lockwood and Spalding, 1971) and 6-Flux model (Patankar and Spalding,

1974) in l-, 2- and 3-dimensional heat transfer problems, respectively. In this model,

the space is divided into 2, 4 and 6 directions along each coordinate direction, and the

intensity is assumed uniform in each direction. DeMarco and Lockwood (1975)

developed a new flux model, in which a six-term Taylor's séries expansion is used to

represent the directional dependency of intensity and resulting in 6 flux partial

differential équations. The result is shown to be better than that of the 6-Flux model.

The application of the various Flux models in combustion chambers may be found in

Khalil (1982).

The flux models provide a very economical tool for predicting radiative heat

transfer in rectangular shaped enclosures (Benim, 1988). However, due to the lack of

coupling between the radiant fluxes, the accuracy with this method is limited. Also,

thèse methods are generally not compatible with arbitrary shaped geometries, and their

application to complex geometries is not straightforward (Benim, 1988). Improvement

of the accuracy of the flux model, has led to the development of the P-N and SN

methods, which has a tight coupling between the radiant fluxes.

Spherical Harmonies (P-N) Method

The Spherical Harmonies (P-N) method assumes that the angular distribution
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of radiant intensity in a medium can be approximated by a finite séries of spherical

harmonies. The intensity is expanded in an orthogonal séries ofproducts of a position

dépendent coefficient and a normalized spherical harmonie ftinction. The order of the

approximation N is the truncation ofthe séries. In principle, as N increases to infinity,

the solution approaches the exact solution of the radiative transfer équation.

A général description of P-N method is given in the book by Davison (1957).

It has been widely used in various problems with good accuracy (Ratzel and Howell,

1983, Mengûç and Viskanta, 1985, Modest and Sikka, 1991). Usually, the P-3 method

is appropriate for the applicadon to engineering problems with good accuracy and

moderate computational time.

The disadvantage of applying the P-N method lies in its inflexibility. Deriving

and using of the expansions of order N greater than 3 becomes very difficult (Howell,

1988). For example, for N equal to 5, the derivations are more complex and costs as

compared to the P-3 method with negligible improvement in accuracy (Mengûç and

Viskanta, 1985).

Discrète Ordinates Method

The discrète ordinales method (SN) (Chandrasekhar, 1960) assumes that the

angular distribution of intensity about a location can be expressed by a discrète set of

intensities which span the entire solid angle of 4^. The angular intégral of intensity is

discretized by numerical quadrature. The discrète ordinates équations are obtained by

évaluation of the radiative transfer équation in thèse specified directions.

The SN method has been widely used in the thermal radiation community: by

Fiveland (1984, 1988), Truelove (1974, 1988), Kim and Lee (1988), Jamaluddin and

Smith (1988,1992), Chai et al. (1993 b,c,d) for simple geometries, by Sanchez and

Smith (1992), Chai et al. (1993 a,c) for complex geometries. The accuracy of the SN

method dépends on the sélection of discrète directions and associate weights, the

choice of quadrature scheme may be found in Carlson and Lathrop (1968), Fiveland
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(1984,1991) and Wakil and Sacadura (1992). The use of the 84 method is found to be

slightly more accurate than P-3 method (Fiveland, 1984). Extension of the SN method

with the finite élément formulation is shown by Fiveland et al.(1993).

For problems where scattering dominâtes, this method works very well, but

errors may arise if it is applied to absorption dominated problems due to the "ray

effect" (Lathrop, 1968). Discussions on "ray effect" occumng on the application of

the SN method are given by Chai et al. (1993d). They concluded that the ray effect

arises by the inability of the discretized intensity distribution to fully represent the

actual continuous intensity distribution, it is independent of the spadal discredzation.

By increasing the number of ordinate directions, the ray effect can be reduced, but

cannot be eliminated (Fiveland, 1984). Similar to the false diffusion concept in fluid

How, they introduced a new concept "false scattering" for radiation which appears in

the application of the SN method, and is a conséquence of spatial discretization and is

independent of the angular discretization. It happens when a beam is not aligned with

the grid line in the multi-dimensional computations.

2.6.4 Discrète Transfer Method

The discrète transfer method was proposed by Shah (1979), and Lockwood and

Shah (1981). Firstly, the surface of the enclosure is divided into subsurfaces, and the

volume of the medium is divided into cells (or Zones); secondly, taking each

subsurîàce as a hemisphere, the emitted radiation is subdivided into beams, where each

beam is assumed to have positive and négative propagation direction (Fluxes); finally,

the beams are drawn hemispherically from each subsurface in prescribed directions

(similar to Monte Carlo method, in random direction). The solution proceeds along

individual rays of intensity, one at a time, instead of solving for all the intensities in

the fîeld. It can be classified as the ray tracing method. A survey of the state-of-the-art

ofray tracing procédure are given by Glassner (1989). This method can be considered

as a combination of the Zonal method, Flux Model and Monte Carlo technique. It
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retains their advantages while avoiding their shortcomings.

Because the number ofbeams is specified in advance, it can be more économie

than the Monte Carlo solution which needs a lot of random beams to obtain good

results. It is flexible and able to handle complex geometries. In application to

absorption média, finer discretization can yield any desired degree of précision, and

even reproduce the exact solutions (Lockwood and Shah, 1981). For gas flames, where

the scattering is zéro, the method can provide excellent results as evidenced by the

work of Abbas et al. (1984, 1986), Fiveland and Wessel (1986), Carvalho et al.

(1987,1988, 1990), Meng et al. (1992). Extension of this method to cylindrical

enclosures for the isotropic scattering medium were made by Carvalho et al. (1991).

Application ofthis method to complex geometries are given by Murthy and Choudhury

(1992), Meng et al. (1993). When scattering is considered, a simple average is used

in the discrète transfer computations, unlike the SN method which use a more accurate

numerical quadrature. This will reduce the accuracy when this method is applied to

solve anisotropic scattering problem.

Discrète transfer method may also suffer from the ray effect, as shown by

Viskanta and Menguc (1987), Carvalho (1991) and Meng et al. (1993), but the false

scattering is not found. This is due to the ray tracing approach, where the intensity is

solved along the "upwind" ray propagation direction.

2.6.5 Other Methods

The radiative transfer équation can be solved by other methods, as the finite

élément method (FEM) (Razzaque et al., 1983,1984, Fiveland et al., 1993) and finite

volume method (FVM) (Raithby and Chiu, 1991), as well as boundary élément method

(BEM) (Bialecki, 1991).

The advantage of using FEM is that it offers the possibility of high accuracy,

and can be used with the same grid as for the flow and energy conservation équation.

Furthermore, it can be applied to complex geometries. However, this method is still
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limited when using very coarse grid, due to the high computational cost (Howell,

1988). Tan (1989) used the product-integration method to solve radiation problems,

significantly reducing the solution time of FEM.

The PVM can give good accuracy on coarse grid. The intensity at the

intégration points are determined from the solution of the radiative transfer équation

using the skewed upwinding procédure (Raithby, 1976b). It satisfies the global

conservation constraints for intensity and heat flux, hence prevents the occurrence of

the "ray effect" encountered in the SN method (Chiu, 1990).

Using BEM, the intégration is over the boundary, no volume intégrais are

présent inBEM, thus itrequires fewer calculations (Bialecki, 1991). However, because

the ray-tracing method is used in BEM computations, it may suffer from the

disadvantages of the discrète transfer method when scattering has to be considered.

2.6.6 Radiation Models for Complex Geometries

Most of the radiation models have the ability to deal with irregular and complex

geometries. The Monte-Carlo method (Burns et al., 1992, Gorner and Dietz, 1993) is

very flexible and can provide high accuracy if a sufficient number of random rays is

chosen. However, at the cost ofcomputation efficiency. The Zonal method (Hottel and

Sarofim, 1967) and its extension, the Exchange Factor method (Naraghi et al., 1988)

can be computationally efficient but have the problems of compudng the exchange

factors in very complex geometries. Saltiel and Naraghi (1990) developed a new

discrète exchange factor method, where the exchange factors are calculated from point

to point. It is flexible because unstructured triangular meshes are used. Lisienko et al.

(1992) présentée! a Zone-Node method for radiating gas in complex geometries, with

two set of grids, a fine curvilinear orthogonal grid for the computation of the flow

field and a coarse grid for the computation of radiation. Haidekker (1991)

demonstrated the radiation solution in complex 3D geometnes using the zonal, the

imaginary plane and the discrète transfer method. Both the blocking technique and the
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curvilinear coordinate System are used to deal with the irregular shaped enclosures,

where the computation meshes are based on unstructured rectangular meshes.

Chai et al. (1993e) présentée a procédure to model radiation in irregular

geometries using the discrète ordinates method. They dealt with the irregular boundary

using the blocking or ladder-like approximation, such as used in past finite différence

procédure based on structured cartesian grids. The finer the mesh, the more realistic

the représentation of the real boundary. However, the memory is used inefficientfy

when the blocking technique is used. Chiu (1990) developed a finite volume method

based on the discrète ordinales approximations ofRTE. For simple demain considered,

the irregular shaped boundary is treated by dividing the azimuthal angle in accordance

with the orientations of the bounding surfaces; for complex geometries, the spécial

treatment of intensity is considered when the angular grid with solid angles straddling

over a boundary surface.

Unlike the discrète ordinates method, the discrète transfer method can make

perfect angular discredzation to match the real boundary. This is because the method

is based on a ray tracing approach, the ray directions are specified in advance on each

emitting surface arbitrarily. Applications of the discrète transfer method for complex

geometries are shown by Murthy and Choudhury (1992) on a non-orthogonal

rectangular grid, by Meng et al. (1993) on unstructured triangular grids.

2.6.7 Emissivity Models

The above approximation methods assume that the radiative transfer équation

is in a form applicable to homogeneous and gray média. For the nongray medium, the

spectral effect of the radiation has to be considered, and the radiative transfer équation

should be integrated over the entire wavelength spectrum. Naturally, this will make

the computation times prohibitive. Under some situations this is not necessary, for

example, in natural gas or oil fîred combustors, only three species contribute

significantly to the radiation in the infrared région. Thèse species are the products of
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the combustion, i.e. carbon dioxide, water vapour and hot soot particles within the

flame produced by the thermal décomposition of fuel lean situations (Khalil, 1982).

The gases radiate in several bands, while the soot emits continuously over a wide

range of wavelength. It is only necessary to represent the spectral effects by several

bands for each species instead of using whole wavelength in real gases ofcombustors.

The simple model of accounting for the spectral effect is Hottel's "emittance

charts" and the "sum ofgray gases" methods (Hottel and Sarofîm, 1967), which were

borrowed from the atmospheric physics, and named "narrow band models" (Goody,

1964). In Hottel's method, the détermination of the coefficients is based on a triai and

error graphical fitting technique ofHottel and Sarofim (1967). For COz-HzO mixture,

the emissivity could be fitted by a "one-clear plus two-gray gas" by Truelove (1974).

When more than two-term fits are considered, Hottel's fîtting method tends to be

rather time consuming. Taylor and Poster (1974) proposed a least-squares technique

for determining the coefficients. For CO^-îliO mixtures the emissivity is fitted by a

"one-clear plus three-gray gas" model, in the température range from 1200 to 2400 K.

Good accuracy is obtained for a large range ofpath length. The application of "mixed

grey and clear gas" formulation to the real furnace gas may be found in Abbas et al.

(1984, 1986), Carvalho et al. (1987,1988,1990).

A more useful approach to modelling the spectral properties of the gases is the

wide-band models of Edwards (1968), in which the band emittance of thèse gases is

considered as a function of total and partial pressure, path length and température.

This method makes the band properties of the gas mixture relatively easy to calculate,

but the computation time is longer than the mixture of gray gas model of Hottel and

Cohen (1958). Docherty and Fairweather (1988) incorporated the wide band model

into the computation of the nonhomogeneous combustion products by the discrète

transfer method, they showed a good agreement with the narrow band model results

for both spectral and total radiative intensities.
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2.6.8 Radiation Modelling in Real Scale Furnaces

Early reports on the modelling ofthe flow, combustion and heat transfer in real

scale industrial furnaces are mainly based on the flux models. Gosman and Lockwood

(1973) have studied the flow, heat transfer and chemical réaction processes in a

gaseous-fired cylindrical furnace. The flow field was solved by the vorticity-stream

function combined with two-equation k-e turbulence model using the finite différence

method. The chemical réaction is considered as a single-step fast chemistry réaction

model. Heat transfer is determined by solving the spécifie enthalpy équation coupled

with radiation. The radiation model is considered as a four flux model. Encouraging

agreement is obtained between the predicted and measured distribution of température

and radiant heat transfer along the fùrnace wall. However, because the effect of the

"unmixedness" phenomena was neglected in the combustion computations, fhe flow

field is unsatisfactory. Considering the unmixedness, Gosman et al. (1978) used a beta

PDF model for the prediction of various gas-fired cylindrical furnaces, where the

radiation transfer is calculated with a new flux model ofLockwood and Shah (1978).

A général procédure for the computation of 3D flow with combustion and heat transfer

bas been descnbed by Patankar and Spalding (1974), where the six flux radiation

model is considered. Latter, this procédure was applied to the case ofthe expérimental

rectangular furnace of the International Flame Research Foundation C[FRF), Holland

by Pai et al. (1978). Farouk and Sidawi (1993) developed a 3D computation model for

the simulation of the turbulent réactive flow of the natural gas fired industrial furnace.

The turbulent flow is simulated by a k-e-g model, and the combustion model is based

on the local instantaneous equilibrium where the combustion process is assumed to be

micro-mixing limited. A gray six-flux model is used in the prediction of radiation

transfer.

Recently, the discrète transfer method has become popular in the prediction of

the large-scale combustion furnaces. Abbas et al. (1984) demonstrated the predictions

of the flow, combustion and heat transfer within a refinery process heater, where the
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radiation transfer is handled by the discrète transfer method with the mixed gray and

clear gas emissivity model. In the considération of the computational economy, the

whole computation domain is divided into two zones with the burner région and the

main combustion chamber région. The radiation calculations were performed

simultaneously on a coarse grid where the radiation source for each How cell is

calculated on a volumetric basis. A similar procédure was implemented by Abbas and

Lockwood (1986) for the prediction of power station boilers. Fiveland and Wessel

(1986) developed a numerical furnace model (FURMO) for 3D pulverized-fuel fired

furnace. They used the discrète transfer method in the solution of the radiation

transfer, where the absorption and scattering coefficients in the radiative transport

équations for particle-gas mixture are considered. The scattering coefficients are

computed using Mie theory (Van De Hulst, 1957) by estimadng the amount of each

particle type in the computational cell, and the absorption coefficient for gas mixture

is calculated using the wide-band model of Edwards (1967). Carvalho et al. (1987,

1988, 1990) and Coelho and Carvalho (1993) have demonstrated the simulation of3D

flow, réaction and heat transfer in industrial glass furnaces and boilers. Most of their

computations are based on the domain décomposition method. The governing équations

are solved by finite-differcnce/finite volume method, and a staggered grid is used for

velocity components. They made use of the discrète transfer radiation model along

with the Hottel's mixed gray gas model. The différent techniques in the application of

the discrète transfer method to the large-scale furnaces are shown. Thèse techniques

involve: update of the radiation variables less frequently than the others, usually every

10 iterations for the radiation calculations (Carvalho et al., 1987, 1990); using coarse

grid for radiation calculations (Carvalho et al., 1990, Coelho and Carvalho, 1993); less

rays per each boundary cell, usually 4 and 8 rays (Carvalho et al., 1988). Fairweather

et al. (1992) reported the prediction of the stmcture and thermal radiation received

around a turbulent reacting jet discharging into a cross-flow. Both flamelet and soot

formation and consumption are derived from a global réaction scheme for hydrocarbon
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combustion. In their computation, the radiation received external to a flame was

computed from converged flow field calculations through the use of a 3D adaption of

the discrète transfer method coupled to a narrow band model of radiative transfer.

The application of the discrète ordinales method to the boiler is reported by

Jessee et al. (1993). The use of the Monte-Cario method with the approximated flow

and heat release to industrial furnaces may be found in Gorner and Dietz (1993).

Most of the aforementioned methods are based on finite difference/finite

volume method, which suffer from the difficulty in dealing with the complex

geometries. The typical example is that the irregular-shaped wall is treated by stepwise

approximation (Carvalho et al., 1987). This difficulty can be overcome by using the

fînite élément method or the control volume finite élément method.

Benim (1989) introduced a finite élément solution ofa turbulent diffusion flame

in furnace. The combustion rates are estimated using the eddy dissipation concept

model. The moment method (Benim, 1988) is used which allows the derivation of an

approximation local field équation for the radiation intensity, and it can be directly

used in irregular grids. The procédure is then applied to the simulation of flame 29 of

the M-2 triais performed in the IFRF, with good agreement with expérimental data and

with finite différence predictions. Engelman and Jamnia (1991) introduced a numerical

procédure for the simulation of the effects of gray-diffuse surface radiation on the

température field of fluid flows using FIDAP. The radiation is solved by using the

view factor methods with non-participating medium. They showed the coupling

between the energy équation and the radiation heat transfer exchange relationship in

their finite élément method. For considering the participating medium, Jamnia (1992)

incorporated the P-l approximation model in the FIDAP code. By testing différent

cases, he showed that the advantage of this method lies in its simplicity of

incorporating in a général purpose code. Meng et al. (1992) presented a control

volume finite élément method for the simulation of the turbulent reacting flow in

furnaces. The flow is solved by the vorticity streamfunction formulation and the k-c
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two-equation model. The chemical réaction is considered as the fast chemistry. The

radiation heat transfer is solved by a discrète transfer method on an unstructured

triangular grid. The heat flux to the furnace wall is good agreement with the

experiment data of the M-2 triais, flame 29 of the IFRF.

2.7 Choice of Overall Numerical Model

Criteria for choosing a model and a numerical scheme lie in its conceptual

simplicity, economy of computation, ability to handle complex geometries and

possibility of extension to three dimensional flow problems. Based on the previous

review, the choice for the basic components of the overall numerical model is as

follows:

Fluid Flow: Control Volume Finite Elément Method

9 Primitive variable (u,v,p)

• Staggered grid arrangement

• Unstructured mesh

* Segrcgated solution algorithm

Turbulence: Two-Equation Model

® k-e model and wall functions

Combustion: Diffusion Fiâmes Models

• Fast chemistry réaction model

• Delta and Beta PDF model

• Eddy dissipation model

® Chemical equilibrium model

• Flamelet model
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Radiation: Discrète Transfer method

• Mixed gray and clear gas model

The proposed numerical method namely an unequal-order, Staggered Contorol-

Volume Finite-Element Method (SCVFEM) for fluid flow and heat transfer has been

developed. The method use primitive variables on a three-node triangular élément.

Pressure is stored at the centroid ofeach triangular élément, while velocity components

and other scalar variables are located at the midpoint of sides or at vertices of each

élément. Depending on the location of the variables, this leads to two différent

schemes: Face-centered scheme when variables are stored at the midpoint ofeach side;

and Vertex-centered scheme when variables are stored at vertices.

The classical technique of staggering of variables used in structured grids is

extended to an unstructured mesh by using two control volumes. The control volume

for the continuity équation is the triangular élément itself. The control volumes for the

momentum équations and the other scalar transport équations dépend on the scheme

used. For the Face-centered, the co-volumes are constructed by joining the centroid

and vertices encompassing the common side of two neighbouring éléments; while, for

the Vertex-centered, the polygonal control volume surrounding each node is

constructed by joining the centroid of éléments to the midpoints of the corresponding

sides. The discretized control volume for any conservation équations is ensured to be

conservative in the whole calculation domain. The intégration of the général

conservation équation is carried out on thèse discretized control volumes. The resulting

algebraic équations for pressure, velocity components as well as other scalar variables

have the conservative properties. A segregated solution algorithm is used.



Chapter 3

Mathematical and Physical Models

3.1 Introductâon

In this chapter, the Favre-averaged équations governing the mass, momentum,

turbulent quantities, and energy are presented for turbulent reacting flows. The

équations are given in 2D cartesian and axisymmetric forms for variable density flows

as encountered in combustors and furnaces. Among thèse, the turbulence is

characterized by two-equation k-e model based on eddy viscosity concept, with the

wall function method near the solid wall. The fast chemistry, finite réaction rate,

chemical equilibrium and micro-flame models are used for turbulent diffusion flames.

The influence of turbulence fluctuation on combustion is introduced by using the

assumed delta and beta probability density functions. Radiation is considered through

the discrète transfer method incorporated in the source term of the energy equadon.

The spectral property of real furnace gases is provided by the mixed grcy and clear

gas model, where only water vapour and carbon dioxide are prcsumed to contribute

significantly to the gaseous radiation.

3.2 Mean Flow Equations

The Favre-averaged transport équations ofmass and momentum may be written

as:
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Continuity Equation:

-(rpw) + -r-(rpv) = 0 (3.1)

x-Momentum Equation:
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y-Momentum Equation:
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(3.3)

The above équations are valid for both cartesian and cylindrical coordinates

with r=l and ot,^=0 or r=y and a^i=l for cartesian or cylindrical coordinates

respectively. When considering swirling flows in axisymmetric burners, the transport

équation of tangential velocity is given as follows:
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0- Momentum Equation:

a/__... . a/___.. . a/____.. 9(_ 9w\ . a L. ^^(rpw) + -^(rpu-w) + ^(rpv-w) = ^[rti^| + ^[rH^.]
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where, in the above équations, u, v and w represent the velocity components in the x,

y and 0 coordinates, respecdvely. P is the pressure, p is the density, and n^ is the

effective viscosity.

3.3 Turbulence Model

In the présent study, the standard two-equation k-e turbulence model (Launder

and Spalding, 1974) with wall function is implemented. The governing équations for

the turbulent kinetic energy and its dissipation rate are given by:

Turbulent Kinedc Energy Equation:

ô/__^ . ô/__^ . 3/_.^.^ 9( V^effQk} . Q(^eff9k}
-r-(rpÂ) + —(rpu-Jfc) + -^(rpv'Jfc) = —\r-M^\ + —|r—w-^
9t~ ' ' 9x'' ' 9y'' ' 9x[ a^ 9xj 9y[ a^ Qy] (3J)

+ r(G^ - pe)

Turbulent Energy Dissipation Rate Equation:

9^^ . 9^...^ . 9/-...^ _ ôf.^ôe^ , ôL^ae1—(rpe) + —(rpu-e) + —(rpve) = —|r—w-r::l| + —|r-
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+ r^C,G, - C,pe)



where Gic is the turbulent génération term:
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(3.7)

It can be seen that terms involving Qp/9x, QplQy in G^ are inserted to account

for variable density effects. Thèse terms come from the pressure-velocity correladon

in the Favre-averaged équations for k and e (Kim and Chung, 1989) and are identically

zéro for constant density flows.

The turbulent eddy viscosity for the k-e model is defined as:

.k2
^= c.p- (3.8)

giving for the effective viscosity:

V-eff = V- + ^ (3.9)

The model constants recommended by Launder and Spalding (1974) are:

'k "e

1.0 1.3

'l ^2 ^|i

1.44 1.92 0.09

This model is valid only in fùlly turbulent flow régions. Close to the solid

walls, the local Reynolds number of the turbulence becomes small, and the viscous

effects dominate turbulent ones. Two methods, either the wall function method or the
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low-Reynolds number modelling method can be used in that région. In the présent

study, only the wall function method is considered.

3.3.1 Wall Function Methods

In the wall function method it is assumed that the shear stress is uniform up to

a distance y within the near-wall région. For the first grid point next to the wall (see

Fig. 3.1), one defines a friction velocity u_ as:

TTp=(vt>vn)

Figure 3.1: Grid point near the solid wall

"•^
(3.10)
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where T, is the wall shear stress. In the two-layer law of the wall, the wall shear
w

stress can be defined by:

Tu> =

^
pM,

^N£y+)
K

(y+ < 11.63)

-v, (y+ ^ 11.63)

(3.11)

where y, is the velocity component parallel to the wall, E and K are the roughness

parameter ( £=9.0 for a smooth wall) and the Von Karman constant (K = 0.42) ,

respectively. y+ is the dimensionless distance in the normal direction from point P

to the wall, which is defined as:

y =
P y ", (3.12)

When considering convective heat transfer, the near-wall heat flux is

determined by (Chung, 1993):

%= 1

^p(T-T^

Pry

p^-ï>,

Pr. ^-ln(£y+) , P(Pr)
Pr.

(y+ < 11.63)

(y+ s 11.63)

(3.13)

where the function p(pr) is given by Jayatilleke (1969) of the form:

-^ . 9.24
Pr.

'^-l l+0.28exp(-0.007-pr

[ Pr.

(3.14)
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here, pr is the molecular Prandd number of gas, pr, is the turbulent Prandd

number, q is specified as a Neumann type boundary condition in the energy

équation.

Once l;.., (or u. ) is found, the near-wall point values for k and e are then

déterminée! from:

(3.15)k.-

ep=

».2

^
KT (3.16)
vyp

The key point in the application of the two-layer wall function method is the

détermination of the wall shear stress at the log law région ( y+^11.63 ). Two

methods are implemented in the calculation of wall shear stress, one is the classical

approximation method, which is based on the balance of génération and dissipation of

energy in the near wall région (Launder and Spalding, 1974); another is the direct

iteration method, in which the friction velocity based on the near wall velocity log law

profile is directiy solved by using a quasi-newton iteration (Garon, 1994).

Classical Approximation Method

In the classical approximation method of Launder and Spalding (1974), it is

assumed that the convection and diffusion term in the streamwise direction are

neglected in the near-wall région. Then the équation for the turbulent kinetic energy

Eq. (3.5) yields that production and dissipation term are in local equilibrium,

i.e. G^ = pe. Based on this assumption, the following relation is established from Eq.

(3.7):
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^fêl ° -

Since it is assumed that the shear stress is uniform over the near wall région, then we

have:

T. ° -fâ

Multiplying Eq. (3.17) with ^ , substituting e = C,, {>k2f\s,, i" the right-hand side, and

using the définition of T.. in Eq. (3.18), it yields:

T,= P^C,
i (3.19)

Then the corresponding friction velocity is given by

A l
,^i (3.20)

u^C;k

This relation avoids problems with singularities at the reattachment point where the

wall shear stress vanishes (Speziale and Thangam, 1992). Substituting Eq. (3.20) into

Eq. (3.11), yields an expression for the wall shear stress as a function of k a"d v. ,
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Tw =

^
l l

p<^2
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K
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< 11

s: 11

.63)

.63)

(3.21)

with y+ as a function of k ,

y' =

l l
pyc^k2 (3.22)

Direct Iteration Method

Since the logarithmic law relation for the velocity profile holds in the near-wall

région, from Eqs. (3.10) and (3.11), we have:

^ = î-ïn(Ey+) (3.23)

Substituting Eq. (3.12) into Eq. (3.23) for y+ , gives:

u. .Eyp|vJ - Zl ïn(c^u^ = Q
K N ^ T'

(3.24)

The détermination of the fnction velocity in Eq. (3.24) is based on two steps.

Firstly, assuming that the near-wall point lies in the viscous sublayer, the linear

relation is used for determining the shear stress, giving:
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V.

Tu- = ^-
vl (3.25)
y

and the friction velocity is expressed as:

ux = ^
ITJ

^
^lvd (3.26)
py

together with the expression y+ in Eq. (3.12).

Secondly, if y+<11.63, then the relation Eqs. (3.25)-(3.26) are applied.

If y +s 11.63, the log law relation Eq. (3.24) is used directly for evaluating the friction

velocity using the quasi-newton iteration. From the value of u. , the near-wall shear

stress can be determined from Eq. (3.10), and the near-wall point k and e are then

determined from Eqs. (3.15)-(3.16).

3.3.2 Velocity Boundary Condition on Arbitrary Wall

The boundary condition for velocities are imposed by using the slip boundary

condition. Firstly, we assume that the wall is impermeable, and that there is equality

between the stress tensor in the flow and the wall shear stress computed from the law

of the wall. For the 2D cartesian coordinates, this is expressed by the following

relation on an arbitrary wall, as shown in Figure 3.2:

V-effj^pt) = ^ ^(-^-^ (3-27)

where, the left hand side of (3.27) represents the stress tensor in the flow, and the

right hand side is the wall shear stress computed from the wall function relation.

Secondly, the shear stress is equal to zéro in the normal direction to the flow

near the wall. The velocity vector V is decomposed into its tangential and normal
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0 x

ÎT

Figure 3.2: Implementing the wall functions for an arbitrary wall

components y and y , and the following géométrie relations are derived for an

arbitrary boundary as:

^.f^eosô^smô
Qn [9n) , on J (3.28)

v_ = wsinô -vcosô

Substituting Eq. (3.27) into (3.28), together with the no-slip condition U.-fî = 0 ,

then the following boundary conditions for cartesian velocides u and v are established,

which are taken as Neumann and Dirichlet type boundary conditions for wall

velocities:
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- Horizontally predominant wall (0< | ô| <-) :

'ï\ = ^ (^L ^"(-^Ol - ^ f-È)
,9n)p cosô [\i^ " ' r ') \Sn)p

Vp = Up tanô

(3.29)

Vertically predominant wall (^ < ô <^) :

Up = Vp COtô

'9v^

9n
-^ [^ ssn(-0,;)\ - cote [^
sinô l 11.^ " ' r '} [9n.

(3.30)

where, in the case of a horizontally predominant wall, the wall shear stress generated

by u velocity is greater than that of by v velocity, the boundary condition for u

velocity is considérée! as Neumann type, then its corresponding v velocity is

determined from the géométrie constraint relation as the Dirichlet type boundary

condition. In the case of a vertically predominant wall, the conclusion is vice versa.

For axisymmetric cylindrical coordinates with swiri, we have:

Op'n = 0

^ff-Jn^P ri) = ^ ^n(-^' fi)

^}n(€p tl) = °

(3.31)

where f and H are the tangential and normal direcdons of the wall, respectively.

The unit vector f is the velocity vector direction (including the swiri
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component), and the unit vector f, is perpendicular to both the direction f, and the

normal direction of the wall ~n , defined as (Figure 3.3):

t, =

N^pll

t^ = nxt^

(3.32)

u

Solution Plane Velocity Vector Plane

Figure 3.3: Velocities at an arbitrary wall

In Figure 3.3, e is defined as the angle between the wall tangential direcdon

and the velocity vector direction. When the three velocities u, v and w are considered,

from Eq. (3.31), we can dérive the following boundary conditions for velocides:
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- Horizontally predominant wall (0^|ô|<-) :

^1 - ^^%"<-t?^)1 - •mô(^].
On) p COSÔ \\^eff " ' ' * ') \àn)p

Vp = Up tanô

^v\ = sine f-^ ^n(-^-^)1 - cosô ^
on ^

(3.33)

Vertically predominant wall (-<|ô|^I.) :

Vn COtôup

<ôv

Qn

Qw

. ^ [^ ^-ff,r,)] - cota [^
}p sinô {^ " ' " "J l, on,

an

w,
= sme|-^^(-^)| - cosô^

^ff

(3.34)

The Eqs. (3.33) and (3.34) reduce to the 2D case when the swiri is null.

Following Autret et al. (1987) and Chung (1993), in the context of finite

éléments, the wall function method can be implemented by assuming a constant shear

stress up to a distance y within the near wall région of the flow. The wall function

relations and the wall velocity relations can be applied at thèse boundary nodes, as

shown in Fig. 3.4 for both Face-centered and Vertex-centered schemes.
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Face-centered scheme Vertex-centered scheme 

Figure 3.4: Boundary nodes in the near-wall region 

3.4 Turbulent Reacting Flow with Variable Density 

In diffusion flames, the reaction rate is assumed sufficiently fast, then the 

reaction time is negligibly short in comparison to the mixing time. The whole reaction 

process is controlled by the mixing. In this situation, the instantaneous molecular 

species may be determined directly by strictly conserved scalar variables. 

In this section, several combustion models for turbulent diffusion flames are 

summarized, these involve the fast chemistry reaction model, probability density 

function model, eddy dissipation concept model, equilibrium model and micro-flame 

models. 
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3.4.1 Fast Chemistry Réaction Model

The fast chemistry réaction model assumes that: the fuel and oxygen cannot

exist at the same place at any dme; réaction is infinitely fast, single step, and

irréversible; the equilibrium is attained; and all the exchange coefficients are equal.

The fuel and oxygen always combine in a stoichiometric ratio s to produce (s +1) of

products, i.e.

ikgFuel+skgOxygen -* (s+ï)kgProducts

The conserved scalar mixture fracdon f is defined as:

/ = . A (3.35)
^F~^A

and

Ç = m^-mjs (3.36)

where the subscripts A and F denote the air and the fuel stream conditions at inlet,

and m<. and »(„. are mass fraction of the fuel and oxygen, respectively.

The conservation équation for the mixture fraction / is (Khalil, 1982):

^(rç,f) . ^(rp»/) . ^(rpvfl . Â[,^] . Â[.^] (3.37)
9t' "" 9x'' "' 9y'' "' 9x^ a^Qxj 9y^ a^ 9y

where o is the effective schmidt number of the mixture fraction / , taken from 0.6

to 0.9.
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This model assumes that a diffusion flame is divided into two régions:

Région l : the oxidant and the products co-exist, 0 < / < /„

^ =0

mox = mox^\ï~T\ ^ maxA

(3.38a)

Région 2 : the fuel and the products co-exist, f,, < f < l

(f-f.}
mft.= m f» f

^x=0

l-/«j (3.38b)

where f is the stoichiometric value of the mixture fraction, defined as:

\-i

4=|i+^
m'M (3.39)
moxA,

The energy conservation équation for enthalpy can be expressed as:

-^(rpA)4frP"-A)4(rP^) - Afrj^l+Alr^l+s> t3-40»
ôt' ' ' 9x' ' ' 9y' ' ' 9x\^ o^ 9xj 9y^ a^ 9yj

where, 5' is the radiation source or sink, written as the divergence of the radiative

flux, which can be obtained from the solution of the radiative transfer équation.
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In Eq. (3.40), the enthalpy h is defined as:

h= c^T. H^ (3.41)

where the mixture spécifie heat is calculated from each of the gases présent in the

mixture as:

c__ =Tm,-c., (3-42)
'p/nix Z^i "'j "pj

/=1

The spécifie heats for each species are assumed to vary linearly with the

température as:

e,, = ^ + ^..r (3.43)

where the values of a/s and bj's are taken from Khalil et al. (1975).

Furthermore, for adiabatic flame, the enthalpy can also be expressed as the

conservée! scalar, the linear relation between the enthalpy and mixturc fraction can be

expressed as (Bilger,1980):

h = (hp-h^h^ (3.44)

where hp and h^ are the values of enthalpy at fuel and air inlet, respecdvely.

The température can be determined from thermodynamics relation Eq. (3.41)

as:

T = /î-ffA (3.45)

CP^M
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The density of the mixture can be defined by the équation of state:

p = w^- (3.46)
RT

where R is the universal gas constant, P is the pressure, and w__ is the molecular

weight of the mixture, defined as:

w^=
m.^1\

[t^l
-l

(3.47)

This model is simple and easy of application. However, the concentration

fluctuation is not taken into account in this model, because it assumes that the fuel and

oxygen cannot co-exist at the same place at any time. The considération of the

concentration fluctuation, requircs the development of the probability density function

model.

3.4.2 Probability Density Function Model

The following assumptions are made for the simplified probability density

function (PDP) model (Khalil, 1982): the fuel and oxygen may co-exist at the same

place but at différent times; the réaction is infinitely fast, single step, irréversible; the

equilibrium is attained; all the exchange coefficients are equal. Based on a conserved

scalar approach, the simplified PDF approach requires a two-parameter form of the

PDF in terms of the mean f and its variance g which are determined from the

solution of their respective conservation équation. The conservation équation for g is

defined as (Khalil, 1982):
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Ô,._^, Ô,._..._x, Ô/_...._^ _ ôf-^Ô^^. 9(.^€ff9g^^rP8)+^-(rf>u'g)+^-(rpv8) = i^r-s!-^:\+i^r-
Qt' "" 9x'' "' 9y' ' "' 9x{ a^ Qx} 9y[ o^ Qy

'8 "' 'v 8 '/ (3.48)

+ rc.^ w^
^9x) [9y^

€
-rc'fîs

where o.. is theschmidt numberofg, C., and C., are model constants, are given

by 2.8 and 2.0, respectively. Compared with the mixture fraction Eq.(3.37), Eq.(3.48)

has a non-zero source term, which represents the génération and dissipation of the

variable g.

The density-weighted mean value ^(f) of any scalar variables can be evaluated

by using scalar function with a probability density function p(fi:

^ = /^WPœ^/ (3.49)

Two types of the assumed probability density function, delta and beta PDFs are

considered below.

Delta PDF

The shape of the double delta PDF of Spalding (l 97 la), is established by

assuming the rectangular wave variation of f with time, this model can be divided into

four régions:
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Région 1:(0 </< l )

}f.=f+8'

\f.=f-8î

l

Région 2 : ( / < 0.5, f-gi < 0 )

l,PW = ^[ôy.) + ôo

P(f) = ^0(0) ^W

^ = gim^gif))

Û3 = /(f^Slf)

(3.50a)

(3.50b)

Région 3 : ( /> 0.5, f+g7 > l )

r\P(f) =^W +a3ô(1)

a, =(!-/)/( l-/+^/( l-/))

a, =5/((1-/)2+5)

(3.50e)

Région 4: where large oscillations of f are imposed,

[P(f) =(l-/)ô(0)+/ô(l)

[^ =(!-/)/
(3.50d)
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Beta PDF

The beta PDF can be defined as (Jones, 1979):

P(f) = ,r{\ ~f)_ (3.51a)
f^~\l-f)b~ldf

with

^=/fâl^-i1 (3.51b)

b = (l^f^l-ï} (3.51e)

where the fluctuation g must satisfy the following conditions, O^g^g^,^ • This

constraint results in that aï0 and bïQ in the use ofbeta PDF.

3.4.3 Chemical Equilibrium Model

By relating the thermochemical state of the mixture to the mbcture fracdon, it

is assumed that the réaction rate is sufficientiy fast so that the chemical equilibrium

state may be reached. The mixture composition and température are determined from

fby calculation ofchemical equilibrium for the initial reactant concentrations. In order

to reduce computational effort only those species predominately présent in the products

are considered. Follow McKenty (1992), the chemical réaction for methane/air can be

simplified as:

e<pC^+Vo/Vv^ ^ v C^v^CO ^35^
+v^CO+v^O+v,H^Vç0^v^+v^NO

where <p is the équivalence ratio, g is the molar ratio of fuel/air and y are the

coefficient of products.
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The above équation can be solved by using the minimization of free energy

technique by Heywood (1986). The élément mass balance constraints are:

5>,^-fc;=0 for i=l,2,...,Z (3.53)

M

where the stoichiometric coefficient a,, are the number of kilomoles of élément i per

kilomole of species j, b,* is the number of kilomoles of élément i per kilogram of

mixture, and y. is the number of kilomoles of species j per kilogram of mixture. The

equilibrium condition can be given for species as:

H; + 2mn|^| + -Rnn(z) + EÀ^ = 0
v / {''„) M

for j = l,...,» (3.54)

where v =5"' v. , and tij is the chemical potential in the standard state and P is the

mixture préssure, A,, are lagrangian multipliers.

Eqs. (3.53) and (3.54) permit the détermination ofequilibrium compositions for

a given température T and pressure P, thèse nonlinear Systems of équations are solved

by Newton-Raphson method. Detailed description of this model may be found in

McKenty (1992).

3.4.4 Micro-Fîame Model

Because the chemical equilibrium model over-estimates CO levels in régions

where the mixture is very nch or where the turbulence is very high, a laminar micro-

flame model was developed by Mckenty (1992).

For laminar flames it is assumed that the réaction rate is a function of initial

reactant concentrations and of température. The thermochemical state may be

expressed as a function of mixture fraction from expérimental data in laminar flames.

For turbulent flames, it is further supposed that each calculadon point constitutes a
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laminar micro-flame, the turbulence influences this laminar micro-flame through the

effect of the mixture fraction fluctuation g. Then the thermochemical state of the

mixture can be expressed as a function of the mean mixture fraction f. This model is

used for the prediction of CO and HÎ mass fraction in methane/air diffusion flames,

détails of this model may be found in McKenty (1992).

3.4.5 Eddy Dissipation Combustion Model

The eddy dissipation combustion model was proposed by Magnussen and

Hjertager (1976) based on the EBU model of Spalding (1971b). In this model, the

réaction rate of the fuel is controlled by the turbulent mixing rate e/k, and the reactant

with the minimum concentration in the mixture. The use of this model requires to

solve at least two differential équations, one for the mixture fraction f, another for the

mass fraction of fùel /n<.. The conservation équation of fuel can be given by:

9 /__... .. ô/_„.„. .. 9 /„__.... . ô^lJl«rôm/i<V Qi_V-effômfi
^pm^^rpu'm^^rpvm^ = -^r^-^-^-^r^-
9t' • jw 9x" }u' 9y" Ju' 9x[ a^ 9x ) 9y[ a^ 9y

(3.55)

- ^_MpI.nA,[^. "^l
m/u+mju,b ' k \JU' S

wherc m^ and m^. ^ are the mass fractions of oxygen and fuel burnt, respectively.

A is the model constant taken to be 4.0 (Hjertager and Magnussen, 1982).

3.5 Radiative Transfer Equation

The radiative transfer équation (RTE) can be expressed as (Lockwood and

Shah, 198l):



75

d!ai = -^k)I + k^ + ^^ p(Û,ÛWW
^ -a y a ^ 4^J4i/

(3.56)

where l is the radiation intensity in the direction Q , s is the distance along that

direction, kg and k, are the gas absorption and scattering coefficients, Eg is the gas

blackbody emissive power crT(, and j?(Q,Q ) is the probability that incident radiadon

in the direction g/ will be scattered into the increment of solid angle

dû about Q (Figure 3.5). The above équation expresses the change of the intensity

in the specified direction Ô , in terms of absorption and out-scattering, the émission

and the in-scattering by the three terms of the right-hand-side, respecdvely.

dû
II

Figure 3.5: A monochromatic pencil of radiation across an élément volume along the
path of propagation

To solve Eq. (3.56) using the discrète transfer method (Lockwood and Shah,
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1981), we define an extinction coefficient k. = k.+k. , an elemental optical

depth ds* = kjds and a modified emissive power E* '•

k.£t = Al fcA + ^LP^WW | <3-57)
'4if

Then Eq. (3.56) may then be re-written as:

A = -i+E- (3.58)
ds* îi

For a ray travelling through the domain, this équation describes the change of

the ray's intensity when passing through an absorbing, emitting and scattering medium.

The discrète transfer method is based on solving Eq. (3.58) for a number of discrète

représentative rays (or beams) that travel through the considered domain, détails will

be given in Chapter 4 for the solution procédure of radiation.

3.6 Summary of the Transport Equations

The général form of the transport équation can be expressed as:

^).±(rpu^4:(rpv^ - Ak^1+Ak^R (3-59)
Qt'' " Qx' ' " 9y'' " 9x\ 'V9x) 9y{ 'v 9y

The above équation can be used for unsteady, turbulent, variable density,

cartesian or axisymmetnc flows, and can be reduced to laminar flow or constant

density flows as well as steady flows. The meaning of variable ^>, and coefficients F^,

and S^ are given in Table 3.1. For the control volume method, the général form of the

transport équation (3.59) can be written in the vectorial conservation form as:
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7-(rp<|>)+V-J = S^ (3.60)
9tv r"r/ '" "<t>

with the continuity équation:

V<rpv) = 0 <3-61)

where (f) isa. général scalar dépendent variable, p is the density, 5^ is the volumetric

génération rate or source term, J is the combined convection and diffusion flux ofthe

scalar <j>,

J = r(pf<j> -FV<()) <3-62)

where ^ is velocity vector, r is the radius with r=l for 2D cartesian coordinates. F

is the diffusion coefficient (see Table 3.1). In Eq. (3.60), when the diffusion of 0 is

not governed by Fick's Law, the diffusion terms that do not fit the gradient expression

Eq. (3.62) are included in the source term S^ which is listed in Table 3.1. For

examples, when flow is turbulent, time-averaging or Favre-averaging forms of the

governing équations are used, then Eqs.(3.60)-(3.62) are interpreted as the time-mean

or mass-mean values of the relevant variables, and T may stand for the turbulent

viscosity.
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Table 3.1: Values of ^, T and S^, in the général transport équations.

^

Mass

x-Momentum

y-Momentum

Kinetic energy

Dissipation rate

Mixture fraction

Fuel

Fluctuation

Enthalpy

/

m̂ '

g

h

•̂"ff

V-eS

V-eS

t^eff

^

V-eS

V-ea

0̂-.

V-eff

0

ôL. 9u\. ôL. 9v^i^J^f^j
QP 2 9
9x 3 9x '

~ r^L-^(r^v'v)

9 {.... 9u\. ôL. 9v\ ^P
^[r^?-^~rï

-(2^>--j^W-v)

r(G^ - pc)

re
(ç^ - qp€)

0

mt/M>

m/ù+m/u,b
rpA^»m^,^2j

rc^t y\\W
9x) [9yf rcS2PÏ8

rS.



Chapter 4

Numerical Method

4.1 Overview

For the solution of the advection-diffusion équations encountered in the fluid

flow and combustion problems, in this work a staggered control-volume finite élément

method (SCVFEM) is proposed and developed for steady/unsteady, 2-D cartesian and

axisymmetric geometries. The method uses the primitive variables (u,v,p) based on a

triangular élément. There is one degree of freedom for pressure and three for velocities

yielding an unequal order scheme and since the pressure and velocities are not stored

at the same location, the scheme is staggered. Depending on the location of velocities,

there are two related SCVFEM schemes; Face-centered scheme when velocities are

stored at the midpoint of the sides, Vertex-centered scheme when the velocities are

stored at the vertices. The other properties, such as the turbulent kinetic energy k and

its dissipation rate e, turbulent eddy viscosity 11, , mixture fraction f and its variance

g, mass fraction of fuel m^ , enthalpy h, température T and density p, as well as the

source term S, etc. follow the storage location ofvelocities. The following main points

characterise the proposed SCVFEM:

• Combined form of the flow-oriented upwind function and mass weighted

upwind function based on the local Peclet number.

• Treatment of the pressure-velocity coupling by using a control volume mesh

for the velocity field and its dual mesh for the pressure field.

• Pressurc gradient field which appears in the momentum équations is obtained

by using a linear reconstmction of the prcssure field.
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• A segregated solution algorithm similar to SIMPLE method is used.

4.2 The Discretized Equations

The control volumes associated with a typical node i, internai or on a boundary

are shown in Figure 4.1 and 4.4, respectively. When applying the conservation

pnnciple to this control volume, Eq. (3.60) can be written as follows:

4-(.rpWV+ [ "J-nds + f CJ'nds - [ SdV
'laociQt' ' " J a Jo •> iaoci

+[ Sîmilar contributions of other

éléments associated with node i ] (4.1)

+[ bounàary condition, if applicable ] = 0

The contribution to the node i from one élément as shown in Fig. 4.2, consists

of a transient term, a convection-diffusion term and a source term.

Transient Tenu

The intégration of the transient term of Eq. (4.1) can be expressed as:

'-(rp^)dV = -^ipï
îiaociQt^'1'^' 3'11

<t>î+l-<t>îl (4.2)

Af

where Ag is the area of the briangular élément; ^ and ^ are the value of (j> at

the time levels n+1 and n, respectively. Af = f"+l-f" is the time step, pn is the
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Calcuktion Point i

U,V,(j>

Face-centered scheme Vertex-centered scheme

Figure 4.1: Calculation point i of internai élément contributions

density at the time n and at the variable location l.

Convection-Diffusion Term

The intégration of the convection-diffusion flux for dépendent variable <j>, uses

hybrid interpolation. It is based on the flow-oriented upwind function of Baliga and

Patankar (1980) and the skewed mass-weighted upwind function of Schneider and Raw

(1986), where the switch between thèse two interpolation functions dépends on the

local élément Peclet number.

Following Baliga and Patankar (1980), the locally exact interpolation function

is obtained from the 2D cartesian, steady, convection-diffusion équation without source

term expressed as:

Consider a new coordinate System (X,Y) (Figure 4.2), whose origin is located
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j
y

Face-centered scheme Vertex-centered scheme

U,V,<()

Figure 4.2: The local flow-oriented coordinates (X,Y) of an élément

f-Hw^riw - r fê+^'
9x~ " ' 9y~ " [Qx2 Qy2^

(4.3)

at the centroid, wherc the X axis is aligned with the element-average velocity

vector ^ :
av

"1+U2+M3^V1+V2+V3/* (4.4)

where f, J denote unit vectors in global (x,y) coordinates, respectively.

Let U and V be the corresponding velocity components in the (X,Y)

coordinates, then,



83

(/_.= lt^_.ll. F_.=0l»av " ' av

(4.5)

^=v

where <jt,jî denote unit vector in local (X,Y) coordinates, respectively.

Based on (X,Y) coordinates, Eq. (4.3) can be rewritten as:

pl, J* . rf^.^1
~av9X ~[QXÎ 9Y\

(4.6)

The exact solution of Eq. (4.6) in the local flow coordinates (X,Y) is given as

follows:

<|> = AZ+BY+C

z =
r J

p^
exp

p^
'(.x-x^) -l

(4.7)

where j _ is the maximum value of the X coordinates of three vertices of an
'max

élément, and A, B, C are the coefficients, can be uniquely determined in terms of

(X,Y) coordinates of three nodes l, 2, 3 and the corresponding values of </>.

In each élément, the convection-diffusion flux J can be expressed as:

J = JyCC + JyP (4.8a)

where

j, = r(pt/<|> - r^)

Jy = r(pF(j> - r||)

(4.8b)

Based on the exponential interpolation function Eq. (4.7), the convection-
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diffusion flux in Eq. (4.8b) can be expressed as:

\Jx = r(p(U - U^AZ + pUÇBY + Q - FA)

\Jy = r(pVAZ + pV(BY + Q - FB)
(4.9)

The other interpolation function is based on the skewed mass-weighted upwind

scheme (MWUS) ofSchneider and Raw (1986) developed for a rectangular mesh with

a vertex scheme. The extension of MWUS to a triangular mesh with both Face-

centered and Vertex-centered scheme ofSCVFEM are considered in the présent study,

as shown in Fig. 4.3. The procédure for computing the value of ^ is as follows:

If m_>0 then
p

^ =^+(1-^1

/ = mm
m,
—'-,01, :

(mp

(4.10a)

If m_<0 then
p

^=^+(1-/)<|)2

/ = min ï41
(4.10b)

where m.=rrp(^-n)1_s.. is the mass flow rate through the intégration face p,

and m. » m. are the mass flow rates across the intégration face q and t, with a

similar expression to m.. Combining the expressions of Eq. (4. lOa) and Eq. (4. lOb),

together with similar expressions for faces q and t, the values <^»p, 0q and ^ at

intégration points p,q and t can be expressed as:
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Face-centered scheme Vertex-centered scheme

® U, V, (j)

• Intégration Points p, q and t

a Endpoiats of sub-control volume a,b,c and o

Figure 4.3: Intégration paths for the two schemes of SCVFEM

^ = Ol<t>(+^4>i+Ci<l>2+^l<t>g

^ = a2^p+b2^2+c2^3+d2^t

<!>( = Û3<|>ç+^4>3+c3<t>l+^

(4.11)

The simultaneous solutions for <^>p, <^>q, ^ in terms of the nodal values <^>i, ^2,

<^>3 can be determined by inverting a 3 x 3 matrix of élément interpolation coefficients,

which is directly used in the calculation of the convection fluxes at the intégration

faces. To calculate the diffusion terms Q(I)/QX, 9(f>/ôY » a linear interpolation function

with respect to (X,Y) coordinates is assumed:

(j) = $X + Y^ + ô (4-12)

where the coefficients ç, y >8 are uniquely determined from the values of <^ at the
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point 1,2,3 and its corresponding locations. Then the diffusion term can be expressed

as follows:

J^=£. 8i=v (4.13)
9X " 9Y

The intégration of the convection-diffusion flux in Eq. (4.1) can be

approximated by using the midpoint rule as:

J'fîds = f (J^+Jyn^ds
a "a (4.14a)

= [(.W»xWW.]^

!^nds = I^x+Wds ^ ^

= [W"À+W"?.c

where (n^) ,(7îy) and (n^) ,(ny) are the components of normals in the counter

clockwise direction of the intégration faces ~ao and oc respectively. The dépendent

variable <f> and its derivatives Q^19X,Q^19Y appeanng in the convection-diffusion

flux j and j^ are déterminée! from the above hybrid interpolation function, other

variables such as density and viscosity are assumed to vary linearly over an élément.

In the calculation of the coefficients of the convection-diffusion flux, the switch

between the exponential interpolation function and the skewed mass-weighted

upwinding function is determined according to the Peclet number of an élément, i.e.,

when Pe :< Pe,^, the exponential function is used, while, when Pe > Pemu, the

skewed mass-weighted upwind funcdon is used. The maximum Peclet number of an

élément is defined as:
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Pe^ = max
p^̂

X^-X) (4.15)

where X, is the X coordinate at variable locations. The spécification of the Pe^a

follows the exponential différence scheme (Spalding, 1972) and Power-Low scheme

ofPantakar (1981). In the présent work, the values PCmu = 10 for laminar flow and

Pe,^ = 2 for turbulent flow are recommended to the above hybrid schemes. However,

for turbulent swirling flow and turbulent reacting flows, only the mass-weighted

upwind scheme is used.

Source Tenu

The intégration of the source terms can be approximated as:

L,sdv - ^w <4J6)

wherethelinearizationofthe source terms in the transport équations, Sr. and S» are

déterminée! by making use of the always-positive variables rule of Patankar (1980).

The total élément contributions to the conservation équation for the control

volume associated with internai node i are obtained by adding the above expressions

for the transient, convection-diffusion and source terms as:

9-(rp^)dV+ ( °J-nds+ f CJ-nds- f SdV
iaoci Qt' ' " J a J o J iaocl

.»+1 , /1 J-"+l , <-I J."+l , ^OA"=Ci<j)F + C^1 + C,^^' + Ci"^ + Bi

(4.17)

The above expression gives a fully implicit formulation, which avoids the

stability restrictions on the time step.



4.2.1 Boundary Conditions

For a node located at the boundary of the calculation demain, the control

volume arrangements for both schemes are shown in Figure 4.4.

/// ///

a

Face-centered scheme Vertex-centered scheme

• u, v and <t>

a Endpoints of control co-volume

Figure 4.4: The calculation point i located at the boundary

The boundary flux can be approximated by the intégration of the convection-

diffusion flux over the boundary side ça as:

[ Flux out of the control volume side ça ]

'a(J-n)ds
e

(4.18)

Three types of the boundary conditions are considered.
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Tvoe l; Snecifîed Boundarv Condition (Dîrichlet B.C.)

= <i>^,^ (4-19)'i 'rspecifled

Tvpe 2: Specffied Flux Boundanr Çon(Ution (Nçymann B,Ç,)

^ = <^d> (4-20)

where qi, qz are specified by the user, depending on the équation to be solved.

Eq. (4.20) is valid for the whole side cîa , and lt is assumed that 0 prevail at point

i. Then the intégration ofEq.(4.18) becomes:

3-fîds = [r^'H)^-r(q^q^)}^s^
c - ----- ^^

= r^m-q^-q^s^

where m is the mass flow rate over the boundary surface ça. 0 can be approximated

by linear interpolation function or by using the dépendent variable value at point i.

Tvoe 3: Outflow Boundarv Condition

Usually, the distribution of 0 is not known at the outflow boundary, hence, the

uniform flow boundary condition is assumed and the diffusion flux of <^> is considered

to be negligible relative to the convective ûux, i.e.

J^. - ^ •r <4-22)

Then the treatment of outflow boundary condition can be considered as

Neumann type boundary condition which is similar to Type 2.
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4.2.2 Final Form of the Discretized Equations

Expressions similar to Eq. (4.17) can be derived for the contributions of all

éléments associated with the control volume around an internai or a boundary node i.

After substituting thèse expressions into Eq. (4.1), the final form of the discretized

algebraic équations can be expressed as:

^+1 =E^tôl+^+^ (4.23)
nb

where, the summation is taken over all the neighbours ofthe node i. For Face-centered

scheme, the number of neighbours of the node i is always equal to 4, while for Vertex-

centered scheme, the number of neighbours of node i vary.

4.3 Treatment of Pressure-Velocity Coupling

In order to couple the continuity and momentum équations, a pressure-velocity

closure is required for deriving the algebraic pressure équation. In the présent study,

this is established by using the momentum intégration over the co-volume, as shown

in Figure 4.5.

Consider the 2D cartesian or axisymmetric, unsteady, incompressible

momentum équation in its vectorial conservative form:

-9-(rp^) + V'(rp^<8>vr - r^W) = -rW + S (4.24)
9t

where ^ is the velocity vector, p is the density of the fluid and (A is the effective

viscosity. The symbols V and ® denote the gradient/divergence and outer product

operators. P is the pressure, and r is the radius.

Integrating Eq. (4.24) over the co-volume Q (see Figure 4.5) around the point
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Si-

k=l

® u, v - Face-centered scheme

© u, v - Vertex-centered scheme

0 P • Intégration Point

Figure 4.5: Co-Volume used for deriving the Pressure-Velocity Closure

i, we have:

JQ ^(rpf)dF + fao(rp1^ ~ r^ff^'Hds =~^rwdv + JQ 5crn4-25)

It should be noted that when dealing with the pressure-velocity coupling the

velocity components are used at midpoints of each side of a triangle. Fig. 4.5 shows

the calculation point i and its neighbouring points k = 1,2,3,4. However, due to the

fact that velocities are stored at vertices in the Vertex-centered scheme (the shadowed

circles at vertices of the triangle, as shown in Fig.4.5), the velocities are obtained at

k= l,2,3,4 locations by a linear interpolation. Let j =1,2,3,4 be the intégration

midpoints of the intégration faces, and L and R represent the left and right centroids

of each élément which share the common side i. Pressure is assumed constant over

each élément and is stored at the centroid of the élément.
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In the following, we will deal with the intégration of Eq. (4.25) by considenng

separately the transient term, the convection-diffusion term, the pressure gradient term

and the source terms as was donc for Eq. (4.1).

Transient Tenu

The intégration of the transient term can be expressed as:

/oi<rpw = ^^r4VL^i (4.26)

where AL and AR are the area of éléments L and R, respectively.

Convection-Diffusion Tenu

For convection-diffusion flux in Eq. (4.25), the midpoint approximation is used

to calculate the intégral. It can be expressed as:

^(rp^7 - rv.^'nds = ^ [rp(v^)»^»+l - r^W)B+1]^. (4.27)
'» "'" Fi

Eq. (4.27) can be treated as the général discretized équation, where <^ = v? by

using hybrid interpolation.

Pressure Gradient Term

The key point of the pressure-velocity closure is the treatment of the pressure

gradient term in the above équation. The pressure gradients in Eq. (4.25) can be

integrated by parts as:
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rWdV = f. ^(Pr)dV - L P^rdV (4.28)
Q. Jû^ ~ ' J a,

where the first term of right hand side of Eq. (4.28) can be calculated by using

Gauss's theorcm along the intégration path j =1 to 4:

V(Pr)riF = <^_ rP^rfy = T r.P;n,5,'o, Tv"^' Jso."""" j^'rm
(4.29)

Since the pressure is assumed constant over each élément, the use of géométrie

condition gives (Appendix A),

^ rWdV = (P^-P^r,^ = AP.^r^, (4.30)

where n^ constitutes the normal of the side s; directed from the triangle L to the

triangle R, as shown in Figure 4.5.

Source Term

The source term in Eq. (4.25) is treated as follows:

^Sffl - A^A"(^,) (4.31)

By summing all the contributions of transient, convection-diffusion, pressure,

and source terms, and the boundary conditions for velocity i? , the final form of the

discretized momentum équation can be expressed as:
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û^"+l + Eû^n+l = W - ÀP.r^,^ ^ ^
*=l

(4.32)

This is the relation of the Pressure-Velocity closure, it will be used in the

derivation of the pressure algebraic équation.

4.4 Pressure Equation and Pressure Gradient

The control volume for the continuity équation is the triangular élément itself,

where the pressure is stored at the centroid of the élément, as shown in Figure 4.6.

0 P

• u, v - Face-centered scheme

@ u, v - Vertex-centered scheme

Figure 4.6: The node cluster involved in the discretized prcssure équation

By integrating the continuity équation (3.61) over the control volume of Po,
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using the midpoint approximation, we have:

£p^.»+l^,=0 (4.33)

where s, is the length of the side i of the triangle Po, the intégration points l, 2 and 3

are the midpoints of each side, and n is the outward normal of the intégration side

of the élément Po, as shown in Figure 4.6.

For the Face-centered scheme, the velocities at points 1,2,3 can be used

directly, because the velocities are stored at the midpoint of sides. However, in

Vertex-centered, linear interpolation for the velocities at sides is used since the

velocities are stored at vertices of the élément. The pressure-velocity closure relation

(Eq. (4.32)) applies to both schemes and is used to dérive the pressure discretized

algebraic équation by substituting into the integrated continuity equadon. For

convenience, both sides of Eq. (4.32) are divided by coefficient a,, giving:

^n+1
= ^ - AP,S, (4.34a)

with

-E<IÀ"+^"+^

v;-^-
a, (4.34b)

si = ri-^ nW
a,

Substituting Eq.(4.34) into Eq.(4.33), we can obtain the following relation:
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£ p,r.« - 5,ÀP^ = 0
i'1

(4.35)

where, n, is the outward normal of the intégration sides i directed from Po to P,

(Figure 4.6). a, is a vector normal to the side i directed from the élément "L" to the

élément "R", it has the same direction as the vector n,», in Figure 4.5. The différence

between fi and g is that: for a given face direction, fi is always the outward

normal of this face, while a, may be inward or outward normals, which dépends on

the définition of the co-volume. The pressure différence then can be written as:

or

a,€, > 0

i - t R ^ L ~ 1 r-'o

ct^-n^ < o

ÂP. = p^-p, = -(P.-po)

(4.36a)

(4.36b)

Substituting Eq.(4.36) into Eq.(4.35), the final form ofpressure équation can

be expressed as follows:

COPO +E C,P. = €
1=1

(4.37a)

with:

2si
e, = p,^- (4.37b)

ai
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co

3

1=1

and

3

1=1

= - ^ e, (4.37e)

^ = - E W(v;'n,) (4.37d)

It should be noted that in Eq. (4.32) the pressure field cannot correct both

velocity components (u,v) but only the normal velocity component. This is because

that velocities (u,v) at the co-volume face are contacted with only two pressure points.

Then the pressure différence caused by thèse two pressures dépends on the face

orientation. Hence, the pressure gradient ( Qp/Qx,9p/9y ) cannot be determined

uniquely based on thèse two pressures. To overcome this problem, a pressure

reconstruction method is used to obtain the pressure gradient field by using the

complète pressure field.

Assuming that the pressurc varies lineariy over the triangle PAPs, as shown

in Fig. 4.7, we have,

P=ax+by+c (4-38)

where the coefficients a, b, and e can be determined from the values of pressure at

point Pi, F;, ?3 as well as their corresponding locations, and Pi, Pz, Ps are the

neighbours of the triangle Po.
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u, v

0 P, ÔP

Figure 4.7: Pressure reconstruction used for obtaining the pressure gradient in triangle
élément Po

The pressure gradients in the élément Po can be expressed as:

'QP>

9x
'sp} -r
.Qy)

(4.39)

Thèse relations are then used in the solution of the momentum équations as

source terms, where the pressure gradients should be directiy integrated by volume,

instead of faces. A Neumann type boundary condition for pressure along the normal

direction is used to détermine the prcssure gradient at boundary éléments, as shown

in Figure 4.8, where p^ = p .
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Figure 4.8: The pressure gradient at the boundary élément

4.5 Solution of the System

The discretized transport équation for each variable can be written in a matrix

System as follows:

Ax = K (4.40)

where A is a sparse matrix, x and b are vectors. The solution method uses a LU

factorization with a skyline storage scheme, where only the nonzero length ofa column

or row is stored for each équation. Détails may be found in Page et al. (1989).

For the steady case, the transient term is dropped from the discretized général

form of the transport équation (4.23) as:
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^<t>. = EaX+^ (4.41)
nb

To make the solution stable, usually, the under-relaxation factor method

suggested by Patankar (1980) is used. In the présent work, the E-factor formulation

of Van Doormaal and Raithby (1984) is implemented to improve the convergence.

Then Eq.(4.41) becomes:

"î^, - E"X<^*? <4'42)

where <(>0 is the value of 0; from the previous iteradon. The value of E range from

0.5 to 10 in the computation process.

4.6 Radiation Heat Transfer

The purpose of the présent discrète transfer method is to couple the proposed

unstructured grid solver for reacting flows with radiation calculations. This extension

not only rctains the original discrète transfer method's features (Locbvood and Shah,

1981), but also offers others advantages, such as grid concentration, adaptivity and

even moving grids.

4.6.1 Solution Procédure

Consider a 2D infinite arbitrary enclosure containing a participating medium,

as shown in Figure 4.9.
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AA.
Lw,l

Figure 4.9: Typical rays in participating medium of an irregular-shaped demain

The surfaces (or walls) of the enclosure are divided into number of subsurfaces,

and the volume of the medium is divided into discrète non-overiapping triangular

éléments. The hemispherc which encompasses each surface élément is arbitrarily

divided into N (= N0 x N<^>) equal segments from each of which a ray is issued. The

directions of the rays (or beams) are specified by the polar angle 6 and azimuthal angle

<A, and their intensity leaving from each surface, /^, is assumed to be uniform on

each subsurface. The température of each of the éléments and subsurfaces as well as

the values of the intensity jj, , are assumed to be known, either from a previous

iteration values or from an initial guess. For a gray surface, the iteration procédure to

update the new set of intensities is described. The new value of /^; leaving one

surface AA, is calculated from:

•W,I
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':, ' ^ - (1-^^ -^ <4-43>
71 71 ÎI

where e^ is the surface emissivity, E^ is the surface emissive power oJA ,

q^ and q^ are the heat fluxes leaving from and arnving at the subsurfaces AA^ •

The heat flux, q^ is obtained from the intégration of JJ. about the entire

hemisphere on the center point P; of Ayl, (Chan, 1987),

^= U2o^cos0^Q'=sJ-cos0'AQ' (4'44)

where jj; is the incident intensity at P| of a ray within a solid angle AQ, »

originating from point Q^ on the k subsurface.

The intensities JJ', and j*^ are obtained by integrating Eq. (3.58) along the
W^l

direction of Q , and E* > the modifiée emissive power defined by Eq. (3.57), is

assumed uniform in each élément, from which the following recurrence reladon is

established:

^ = -^(l-e-6s<) + 7^-ast (4.45)
TC

where, the subscripts n and n +1 designate intégration points along the ray separated

by distance 5s. !„ and In+i are the values of intensity entering and leaving a triangular

élément respectively, and 5s"' is the optical length within the volume (see Figure 4.9).

The whole calculation of intensity as well as the radiation sink or source are

based on the following steps:

i) calculate the successive intégration locations n +1, n ... by a ray Q from

point P; to the opposing wall Qj,.
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ii) the relation Eq. (4.45) is applied along the ray from Q^ to P; to obtain

j_; from the value of j^^ which is computed by Eq.(4.43). Therefore, <7^, canbe
W)l W»X </ A ^ / ' ^^^t

evaluated by summing over all the rays arriving at the hemispherc about P,. A new set

of values jj; , is calculated by Eq.(4.43) for all enclosure subsurfaces. The solution

procédure is iterated until the desirable accuracy is achieved.

iiï) calculate the radiation sink or source term (V'g ) for the energy

conservation équation. The net amount of energy emitted by the n"1 élément by the ray

from a subsurface area of AA; can be expressed as:

^. = (7^r7»)cos9,An..AA. (4.46)

By shooting out all the rays hemispherically in a set of prescribed directions

and in N solid angles from each of the subsurfàce, and summing up over all the rays

M, which contribute to the nth élément, the rate of total net loss of radiative energy

from this élément volume AK. ls given by Chan ( 1987) :

,q/dÂ=Y,S^ (4.47)
'A^ ~tr J^r~~ t^~n''

This term is used in the solution of the energy transport équation to couple the

radiative heat transfer with the energy conservation équation.

4.6.2 Ray Tracing

Cartesian Enclosures

The différence between tnangular and rectangular éléments lies in the treatment

of géométrie aspects. For a structured rectangular mesh, the linear interpolation

between the emitted ray and the élément sides can be easily calculated. This can be

done by increasing (or decreasing) the index of grid line i or j along the ray's
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propagation direction, the intersection point can then be déterminée. Détails for the

treatment of rectangular meshes may be found in Shah (1979).

For an unstructured triangular élément, the intersection between the emitted ray

and the élément sides can be classified in two cases in the présent methodology. Case

l is the usual case, where the ray intersects one side (ab or bc) of an élément abc, as

shown in Figure 4.10. This dépends on whether the angle betwœn the ray direction

PQ and the wall side ça is smaller than the angle between bP and wall side ça. The

intersection point n can be calculated simply by the linear interpolation between ray

PQ and side ab (or bc).

EmittedWaU

Figure 4.10: Géométrie calculation in case of the ray intersects with one side of a
triangle

Case 2 occurs when the emitted ray passes through vertex b, as shown in

Figure 4.11 and 4.12 (In this case, the ray cannot cross the vertex a, because ça is the

emitted wall). Around point b, all the neighbouring triangular éléments are considered,
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Y/////////////////////////,

e p a

EmittedWaU

Figure 4.11: Géométrie calculation in case of the ray passes through a vertex of a
triangle

except for élément abc, because the ray has visited this élément. For each

neighbouring élément, the side which does not include vertex b (example: side ed) is

used to détermine the interpolation point n. This can be done by assessing whether the

angle between ray PQ and wall side ça is included inside angles ePa and dPa (Figure

4.11). Spécial treatment is necessary when ray PQ overlaps with side bd (Figure 4.12).

In this case, the average extinction coefficient and emissive power in éléments l and

2 is used in the calculation of intensity in Eq. (4.45). The interpolation point n is same

as the point d.

Once the interpolation point n is found, a similar procédure can be used to

détermine the point n +1, ..., until the ray impinges a wall cell. In the meantime, we

calculate the distance the ray travels in each élément along its path.

The présent method is not restricted to triangular éléments with acute angles.

It can be applied to obtuse triangles as well.
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'w/////y/y^/^^

e p a

EmittedWaU

Figure 4.12: Géométrie calculation in case of the ray overlaps with side

In the application of this method, the différent grid density is used for the

unstructured mesh. In the case where a high gradient of radiant energy exists of the

demain, the fine grid is adopted. In other régions where the radiant energy is not

notable, a coarse grid can be used. Using variable grid density for différent régions

of the solution demain, can save computing time, while maintaining high accuracy.

The différent solution strategy is adopted to solve turbulent reacting flow

coupled with radiation. For the aerodynamic and réaction solver, a fine grid is

necessary to describe the flow and species. If the radiation solver uses the same grid

as fluid flow solver, it requires long computing dme, especially when the radiation

properties are température dépendent. Based on the same set of the computation grid

as the flow solver, the radiation variables are updated less frequently than that of the

flow and the chemical réactions, usually, per 5 or 10 iterations are preferred.
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Cylindrical Enclosures

Although in cylindrical enclosure, the geometry ofthe domain is quite différent

from the cartesian coordinate, the radiadve transfer équation used is exactiy the same

as the cartesian ones. In a 2D axisymmetric cylindrical enclosure, we are mainly

interested in the radiation heat transfer in the représentative plane (Figure 4.13). In

order to implement the discrète transfer method, even in 2D case, the ray-tracing

procédure used here is same as that of the 3D cylindrical enclosure, i.e. the

représentative directions have to be originated from the whole enclosure (or the whole

wall surface), as shown in Figure 4.13.

tleÇîesetPLtat^e
plane

Radiai Plane

Figure 4.13 Projection of the ray-tracing direction in one quadrant of a cylindrical
enclosure

4.6.3 Treatment of In-Scattering

Unlike the discrète ordinates method (Fiveland, 1984), angular intégrais of the
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intensity in the in-scattering term are discretized by numerical quadrature. In the

présent discrète transfer method, the in-scattenng term, like the emissive power, is

presumed constant over a triangular élément. According to Chan (1987), Eq.(3.57) is

discredzed as:

B"= ^lv<+^p<8wû'^.)7(û'^)-AQ^.) <4'48)

where 7(0 py, )^ is a value averaged over the élément. The arithmetic mean of its
'm av8

values entering and leaving an élément in the Q direction will be taken for

computing purpose, as shown in Figure 4.14. However, mathematically, the accuracy

of angular intégral of the intensity which is based on the arithmetic mean is less than

that of which the numerical quadrature. This leads to the accuracy of the discrète

transfer results for considering the in-scattering term is less than that of the discrète

ordinales method.

It should be noted that in the considération of the in-scattering term, the number

of rays must be large enough to avoid the "ray effect", especially in the case where

the intensity may be zéro at one specified direction in an élément in the application of

ray-tracing procédure (Chai, 1993), this phenomena may be referred to the "statistical

error", due to the method's statistical based approach.

4.7 Solution Algorithm of the SCVFEM

The overall solution algorithm of SCVFEM is based on the following steps:

l. Guess a velocity field and all the other variables.

2. Calculate coefficients in the momentum équations based on the Co-Volume

intégration and then obtain y from Eq.(4.34a) and Eq.(4.34b) by substituting the

values of neighbour velocities. This step suits for both Face-centered and Vertex-
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m

Figure 4.14: The treatment of in-scattering

centered schemes.

3. Solve the pressure Eq. (4.37a)-(4.37d), then obtain the pressure field.

4. Using the pressure reconstruction method, obtain the pressure gradient field

Eq.(4.39).

5. Solve the momentum équations over the Co-Volume (Face-centered scheme),

or Polygonal control volume (Vertex-centered scheme) to obtain the velocity field,

where the source terms ofthe momentum équations include the pressure gradient field.

6. Solve the turbulent équations k and e, update y, and wall boundary

conditions for turbulent flows.

7. Solve the mixture fraction f, mass fraction of fuel, and other combusdon

models for obtaining the concentration of chemical species.

8. Solve the radiative transfer équation to obtain the radiation source and heat

flux at wall.

9. Solve the enthalpy équation if radiation exists.
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10. Compute the température and density field for reacting flows.

11. Return to Step 2 with all renewed values, repeat until the soludon

converge.

The above solution algorithm has a little différence with well known solution

methods, such as SIMPLE algorithm.

In the above solution algorithm, the variable E-factor and the variable under-

relaxation parameters for dépendent variables are used. This strategy makes the

numerical solution converged faster than that of only use constant under-relaxation

parameters. Also, the inner-loops for flow variable (u,v,p), turbulent variables (k,e)

and other transport équations are also tested.

4.8 Features of the proposed SCVFEM

The présent SCVFEM has certain features in both the accuracy and the

treatment of the boundary conditions. Firstly, for both Face-centered and Vertex-

centered schemes, there is no need to impose the boundary condition for pressure.

Secondly, for Face-centered scheme, it is easy to impose the boundary condition for

velocities, transport variables and radiation intensity at each boundary face, it also

avoids the difficulty to impose the boundary condition at the discontinuous corner point

of the computation demain with Vertex-based schemes. Finally, with the équivalent

number of unknowns and the same accuracy required, the CPU time of Face-centered

scheme is less than that of Vertex-centered scheme, this will be illustrated in Chapter

5.

Due to the élément used in the présent SCVFEM with Face-centered scheme

is same as the well known finite élément Pl non-conforming/PO élément (Crouzeix and

Raviant, 1973, Figure 2.1(j)), and it is also very close to that of the complementary

volume method (Nicolaides, 1989, Figure 2.1 (b)), then it is necessary to illustrate the

différences among thèse methods.
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In the Pl non-conforming/PO finite élément method, the discretised momentum

équations for velocity components (u,v) are derived by using the variational method.

The incompressibility constraint is taken into account in the 2D case by the

construction of a zéro divergence basis (Thomasset, 1982), then the pressure is

eliminated, the penalty method is used to solve the discretised équations.

In the complementary volume method, contrast to the more usual approach

using two velocity components (u,v) and one control volume (like SCVFEM does), its

unusual charactenstics are the use of only one velocity component, -normal to each

edge of the triangulation, and two complementary control volumes, one is the

polygonal control volumes consistent of joining the circumcenters of the triangles

surrounding nodes of the triangulation; another is the triangular élément as its control

volume. Thèse two complementary control volumes are used to discretise the

momentum équation and incompressibility constraints in transformed div-curl Systems

of the momentum équations in 2D problems. The tangential velocity components which

is used for the approximation of the convective terms are constructed from the normal

velocity fields.



Chapter 5

Computational Results

The proposée scheme has been implemented and a number of test cases camed

out to validate the code and the scheme. In particular the two nodal arrangements, face

and vertex centered were compared for accuracy and cost. Similarly the two methods

for implementing the wall function were also compared. The différent combustion

models are tested for turbulent reacting flow with variable density.

Finally, the SCVFEM is applied to the practical combustion problems, where

the radiation heat transfer is considered. The results are compared with other

numerical method and the expérimental data.

5,1 Driven Cavity Flow

5.1.1 Problem Description

The steady, 2D-cartesian, laminar recirculating flow of an incompressible

Newtonian fluid contained in a square enclosure where the fluid motion is driven by

a sliding lid as shown in Fig. 5.1 is considered. Results obtained with the SCVFEM

proposed in this thesis using both Pace-centered and Vertex-centered schemes on

unstructured grid, will be presented for Reynolds numbers of 100, 400 and 1000. The

results are compared with the benchmark predictions of Ghia et al.(1982).

The following tests are examined:

A. The same number of éléments for Reynolds number of 100.

B. An équivalent number of unknowns for Reynolds number of 100.
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-*- u»

/////////////////////////////////////////,

Figure 5.1: Geometry of a square driven cavity

C. The capability of the two schemes for high Reynolds number flows.

In the above tests, the boundary conditions for the u,v velocities at solid walls

are equal to zéro, and at the top wall u = l m/s, v = 0. The relaxation E-factors, E"

= Ev = 4 for Re = 100, E" = Ev = 2 for Re = 400 and 1000 are used. The under-

relaxation parameters of u, v and p are taken as 0.5. The maximum élément Peclet

number Pe^x == 10 is used as the limit between the exponential function and the

upwind function.

5.1.2 Comparison of the Face-centered - Vertex-centered schemes

A. The same number of éléments for Reynolds number of 100

Figure 5.2 shows the unstructured mesh containing 832 éléments. Thepredicted

velocity field is given in Fig. 5.3 for Reynolds number of 100.
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Figure 5.2: The computational mesh of a square driven cavity (832 éléments)
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Figure 5.3: The predicted velocity field of a square dnven cavity at Re=100

The u-velocity profile at the vertical centerline and the v-velocity profile at the

horizontal centerline are shown in Fig. 5.4 (a) and (e), respectively. Table 5.1 gives
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the number of iterations and the CPU times needed for both schemes to get the

converged solutions.

Table 5.1: Comparison of the number of iterations and CPU times needed for both

schemes on the same number of éléments (832) for Reynolds number of 100

Scheme

iterations

Residual

CPU (s)

Face-Centered

530

10-7

310.5

Vertex-Centered

215

10-7

153.2

Using 5000 éléments, for both schemes, the u- and v-velocity profiles at the

vertical centerline and the horizontal centerline are in good agreement with the results

of Ghia et al. (1982) at Re = 100, as shown in Fig. 5.4 (b) and (d).
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Figure 5.4: Comparison of the u-velodty at the vertical centreline and the v-velocity
at the horizontal centreline of the cavity for Re =100 with the same number of
éléments for two schemes of the SCVFEM
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B. An équivalent number of unknowns for Reynolds number of 100

Because for a given grid, the number of unknowns is différent for Pace-

centered and Vertex-centered schemes, they should be compared on the basis of the

number of degrees of freedom rather than number of éléments. Two différent grids,

for Face-centered scheme 19x19 nodes, which contains 1008 degrees of freedom

(sides), and for Vertex-centered scheme 31x31 nodes, which involves 961 degrees of

freedom (vertices) are considered. The convergence history of the u-velocity for both

schemes are shown in Fig. 5.5. The u-velocity profile at the vertical centerline and the

v-velocity profile at the horizontal centerline are plotted and compared in Fig. 5.6. The

comparison of the CPU times and the number of iterations are shown in Table 5.2 for

both schemes.

Table 5.2: Comparison of the number of iterations and CPU times needed for both

schemes on the équivalent number of degrees of freedom for Reynolds number of 100

Scheme

iterations

Residual

CPU (s)

Degree of freedom

Face-Centered

535
10-7

220.9

1008

Vertex-Centered

405

10-7

611.0

961

C. Effect of Reynolds number

The effect of Reynolds number on the two schemes is investigated. The

computation meshes used for Re = 400 are 31x31 and 51x51 nodes, and for Re =

1000 47x47 and 81x81 nodes. Fig. 5.7 (a),(c),(b) and (d) show the results for the u-

velocity profile at the vertical centerline and for the v-velocity profile at the horizontal

centerline, respectively. We can see that for sufficiently fine grids there is little or no

différence between thèse two schemes. The différence between the présent predictions
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Figure 5.5: The convergence rate ofthe u-velocity for both Face-centered and Vertex-

centered schemes

and the results of Ghia et al. (1982) is probably due to the upwind interpolation

function (Rida,1993) and insufficient numerical résolution, the grid used in Ghia et al.

is 129x129 nodes. The companson of the CPU times and the number of iterations are

shown in Table 5.3 for both schemes at Reynolds number of 400 and 1000.
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Table 5.3: Comparison of the number of iterations and CPU times needed for both

schemes on Reynolds number of 400 and 1000, respectively

Reynolds Number

Scheme

Grid (nodes)

Iterations

Residual

CPU (s)

Degree of freedom

Reynolds Number

Scheme

Grid (nodes)

Iterations

Residual

CPU (s)

Degree of freedom

Face-C.

31x31

1080

10-6

1.217xl03

2760

Face-C.

47x47

2500

10-6

0.9204xl04

6440

400

Face-C.

51x51

714

10-6

3.58xl03

7600

1000

Face-C.

81x81

4400

10-6

12.047xl04

19360

Vertex-C.

51x51

473

10-"

1.483xl03

2601

Vertex-C.

81x81

5000
10-6

5.77xl04

6561
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5.2 Flow Over an Obstacle

5.2.1 Problem Description

The steady, two-dimensional, laminar flow of an incompressible fluid over an

obstacle mounted in a closed channel is considérée! to examine the accuracy and the

capability of the two SCVFEM schemes for predicting the recirculation length under

inflow and outflow boundary conditions. The expérimental configuration of Carvalho

et al. (1987) is used in this test, as shown in Figure 5.8. The Reynolds number based

on the obstacle height and the average inlet velocity is equal to 145.

^z.

H
umax =0.67m/s

H-0.010 m S-0.005 m e - 0.001 m LI -0.030m 1^ -0.120m

Figure 5.8: Geometry of the flow over an obstacle

The unsteady state formulation is used for obtaining the steady state solution.

For the Face-centered scheme, a non-uniform Mesh A contains 3728 éléments (5711

sides as unknowns) is considered, as shown in Figure 5.9. While, for Vertex-centered

scheme, three sets of computational meshes are used, Mesh A contains 1984 nodes
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(3728 éléments) as unknowns; Mesh B involves 3202 nodes (6128 éléments), and Mesh

C contains 4355 nodes (8386 éléments) are used.
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Figure 5.9: The computational mesh of the flow over an obstacle

5.2.2 Results

The predicted velocity field is shown in Figure 5.10.
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Figure 5.10: The predicted velocity field of the flow over an obstacle

Figures 5.11 and 5.12 show the distribution of the u-velocity profile at four

stations downstream from the obstacle: x/S = 2.4, 4.4, 11, 24 for the différent meshes
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using the two schemes. From thèse results, we found that the accuracy of the Face-

centered scheme with Mesh A (with 5711 sides) is comparable with that of the Vertex-

centered scheme with the fine Mesh C (4355 Nodes), and both results are in good

agreement with the expérimental data. Table 5.4 gives the predicted recirculation

length obtained with each mesh for both the Face-centered and Vertex-centered

schemes.

Table 5.4: The predicted recirculation length of the flow over an obstacle by using two

schemes of the SCVFEM.

Mesh

Mesh A

Mesh A

Mesh B

MeshC

Experiment

Unknowns

5711 Sides

1984 Nodes

3202 Nodes

4355 Nodes

Scheme

Face-centered

Vertex-centered

Vertex-centered

Vertex-centered

Recirculation Length

10.28 m

12.40 m

10.77 m

10.57 m

9.0- 11.0m

From this test, we can see that both Face-centered scheme and Vertex-centered

scheme predict the recirculation flows under inflow and outflow boundary conditions.

From Table 5.4, it is seen that the recirculation length predicted by the Face-centered

scheme with Mesh A and for Vertex-centered scheme with Mesh B and C are close

to the expérimental reattachment point obtained by Carvalho et al. (1987) in the

régions (9 < x/S < 11).
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Figure 5.11: Comparison ofpredicted and measured u-velocity profiles at sections x/S
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5.3 Turbulent Channel Flow

5.3.1 Problem Description

To validate the proposed wall function method and to show its independence

with respect to wall orientation, turbulent channel flows at 0° and 30° angles are

considered as given in Figures 5.13 (a) and (b). The Reynolds number based on the

channel height and inlet velocity is 11,400.

///

Um= l m/s

"t-

1

L

L

H

~777

^

L - 1.8 m

H - 0.05 m

Yp =0.003 m

Figure 5.13: A schematic of the turbulent channel flows

(a)

(b)

The computational mesh contains 4274 éléments (2250 nodes), as shown in

Figure 5.14.
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Figure 5.14: The computational mesh of the turbulent channel flows

For this test the Face-centered scheme using the steady state formulation is

used. The relaxation E-factor for all the dépendent variables are taken as l, the under-

relaxation parameters for u, v, p, k and e are equal to 0.3. A uniform inlet velocity

of Im/s, and the inlet turbulent kinetic energy and its dissipation rate are determined

from:

k = À-u3
C..k

6 = -H
(5.1)

a'H

with \=0.003, a =0.03.

The convergence criterion of a dépendent variable ^ is determined from the

summation of the discredzed transport équation over all the control volumes with

respect to the inlet total flux of <|> ,

né
.n+1 ,v\ _ j.n+1 n

wr+^La^'r~a^~b>

Résidu^. =
k=l 'demain

^ (pv'fî^A)inlel

(5.2)

where, the computation is stopped after the residuals of all the dépendent variables are

less than 10-3.
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5.3.2 Results

The fully developed velocity profiles at the channel exit are plotted for both the

0° and 30° angles cases in Figure 5.15 which shows they are identical.

0.7
0.00 0.01

«-«-•-

0' ANGLE

30" ANGLE

0.02

Y

0.05 0.04 0.05

Figure 5.15: The developed velocity profiles at the exit of the channel flows with 0°
and 30° angles
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5.4 Turbulent FIow Over a Backward Facing Step

5.4.1 Problem Description

The steady, 2D turbulent flow over a backward facing step is considered to

validate the présent turbulent model and the wall function methods. This is a flow

which séparâtes and reattaches enclosing a recirculating région. Accurate expérimental

data for this problem is available from Westphal et al. (1984), and numerical

predictions with k-e two-equation model are available in the work of Autret et al.

(1987). The Reynolds number based on the step height and the inlet velocity is 42000.

This test problem is to assess the accuracy of the proposed SCVFEM to solve a

complex turbulent flow problem. The geometncal configuration of the flow and

boundary parameters are depicted in Figure 5.16.
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Figure 5.16: The geometrical configuration of the turbulent flow over a backward
facing step

In this problem, two sets of tests are conducted. One is to compare the two

numerical schemes, i.e. the Face-centered scheme and Vertex-centered scheme, where

the 3-layer wall function of Speziale and Thangam (1992) with the classical
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approximation method is used. Another set of tests is the implementation of the 2-layer

wall function by using two différent methods; the classical approximation method of

Launder and Spalding (1974) and the direct iteration method ofGaron (1994) described

in Chapter 3.

At the inlet a flat velocity profile with a value of unity is prescribed and

boundary conditions for theturbulentparameters in Eq. (5.1)are \=0.003, a=0.03.

Following Autret et al. (1987), the downstream channel length L is taken 20 step

heights downstream from the step corner. The unsteady state formuladon is used for

obtaining the steady state solution using a computational mesh of 10826 éléments (or

5580 nodes). In the test of the implementation of the 2-layer wall funcdon methods,

the downstream channel length L is extended to 30 step heights downstream of the step

corner, to ensure that the local error for all of the quantities was of the same order as

the interior values (Thangam and Speziale, 1992). Calculations are based on the steady

state formulation, in which the E-factor varies from l to 5. Furthermore, the variable

under-relaxation parameters for u, v, p vary from 0.3 to 0.6, for k, e are taken from

0.6 to 0.8, and for turbulent viscosity ^ is from 0.3 to 0.6. Three set of grids are

considered, they are: Mesh A with 3640 éléments (or 1921 nodes), as shown in Figure

5.17, Mesh B with 7144 éléments (or 3713 nodes), and Mesh C with 16034 éléments

(or 8217 nodes). The maximum residues of all dépendent variables in the calculation

domain are less than 1x10^ for converged solutions.

5.4.2 Results

Figures 5.18 and 5.19 show the predicted velocity field and turbulent kinetic

energy field, respectively. The distributions of u-velocity and turbulent kinetic energy

k are compared with the expérimental data of Westphal et al. (1984) at stations

downstream from the step, located at x/H = 4, 8, 12 and 20.
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Figure 5.17: The computational mesh of the turbulent flow over a backward facing
step

rrrrrriHifiiirssiniiiiis

Figure 5.18: The predicted velocity field of the turbulent flow over a backward facing
step

A. Comparison between classical approximation method and direct iteration

method

To compare the results obtained with the classical approximation method and

the direct iteration method in the implementation of the 2-layer wall function, three
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Figure 5.19: The predicted turbulent kinetic energy field of the turbulent flow over a
backward facing step

sets of the computational grids, Mesh A, B and C are used in the calculation with the

Face-centered scheme. Table 5.5 gives the predicted reattachment length and CPU

times. As the mesh becomes finer, the predicted reattachment length increases for both

the classical approximation method and the direct iteration method, although

underpredict the reattachment length, measured by Westphal et al. (1984) at about

7.33. Furthermorc, it is also found that the predicted reattachment length by the

classical approximation method is longer than that obtained by the direct iteration

method. The profiles of u-velocity and turbulent kinetic energy k with Mesh C are

plotted in Figure 5.20 and Figure 5.21. From Fig. 5.20, we found that at section

x/H=20, the velocity profiles obtained by the direct iteration method is much better

than that of by the classical approximation method. The reason may be that the wall

shear stress obtained by the direct iteration method is more realistic than that of the

classical approximation method in the fully developed turbulent flow régions.
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Table 5.5: The predicted reattachment length of the turbulent flow over a backward

facing step using Face-centered scheme

Mesh

A

B

e

Degree of

freedom

5560 sides

10850 sides

24250 sides

Classical Approximation

Method

Reattachment CPU (s)

5.45

5.76

6.13

3.1107xl03

1.9296xl04

1.6888xl05

Direct Iteration Method

Reattachment CPU (s)

5.05

5.254

5.40

8.5271xl03

5.1828xl04

2.7425xl05

B. Comparison between Face-centered scheme and Vertex-centered scheme

A comparison between results obtained from the Face-centered and Vertex-

centered schemes and the 3-layer wall function of Speziale and Thangam (1992) with

classical approximation method for the wall function was carried out. The predicted

reattachment length obtained by Face-centered scheme is 6.01, while that from the

Vertex-centered schéme is 5.935 with the same mesh of 5580 nodes. The predicted

profiles of velocity and turbulent kinetic energy are also shown in Figure 5.22 and

5.23 for both schemes. From Fig. 5.22 and Fig. 5.23, it is found that the predicted

velocity and turbulent kinetic energy by the Vertex-centered scheme are in better

agreement with the experiment than those by the Face-centered scheme. One possible

explanation is that in each boundary élément, only one node is used to compute the

wall shear stress in the Face-centered scheme. Thus the computed wall shear stress is

approximately constant along the boundary side. In the Vertex-centered scheme, there

are two boundary nodes along each boundary side, so that the computed wall shear

stress varies lineariy.
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5.5 Turbulent Flow Over a Pipe Expansion

5.5.1 Problem Description

The proposed SCVFEM is also applied to 2D axisymmetric turbulent flow in

a sudden pipe expansion. The expansion rado is 2.0 and the Reynolds number of 2 x

10 is based on the mean inlet velocity and outlet diameter. The schematic of flow and

boundary parameters are given in Figure 5.24. Predictions ofthe velocity and turbulent

kinetic energy based on both Face-centered and Vertex-centered schemes are compared

with the expérimental data. The expérimental data for velocity and turbulent kinetic

energy profiles at several streamwise locations are measured by Chaturvedi (1963).

The numerical predictions of this problem using the finite élément method has been

given by Kim (1987).
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Figure 5.24: The flow parameters and the géométrie dimensions of a pipe
expansion

The uniform inlet velocity is 31m/s, the inlet turbulent parameters defined in
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Eq. (5.1) are \= 0.005, a =0.03. The steady state formulation with the factor E =

2.0 for all the dépendent variables is used, and the under-relaxation parameters for u,

v, p, k, e are 0.2, for the viscosity ^ is 0.3. The computational mesh for both Face-

centered and Vertex-centered schemes contains 2640 éléments (4053 faces, 1414

vertices), as shown in Figure 5.25. The 2-Layer wall function with classical

approximation method of Launder and Spalding (1974) is used in the computation.

Solutions are converged at the maximum residues of all dépendent variables are

smaller than 10'3.

Figure 5.25: The computational mesh of the turbulent flow over a pipe expansion

5.5.2 Results

Figures 5.26 and 5.27 show the predicted velocity field and turbulent kinetic

energy field, respectively.

Figures 5.28 and 5.29 show the predicted and measured axial velocity and

turbulent kinetic energy profiles at four downstream locations: X/D(, = l, 3, 6 and 8.

From Fig. 5.28, we can see that the différence between the predicted and measured

velocity profiles in the inlet région is small. At sections x/Dg =1,3 and 8 the velocity

profiles compare very well with the expérimental ones, while, at section x/D<, = 6, the

différence increases near the axis. The reason for this différence is the underprediction
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Figure 5.26: The predicted velocity field of the turbulent flow over a pipe expansion

Figure 5.27: The predicted turbulent kinetic energy field of the turbulent flow over a
pipe expansion

of the turbulent kinetic energy near the centerline région for both Face-centered and

Vertex-centered schemes, as shown in Fig. 5.29, which leads to an overprediction of

the velocity. The reason is because the turbulent viscosity becomes smaller with the

underprediction of the turbulent kinetic energy, leading to a large velocity.

The reattachment point found by Chaturvedi (1963) was 4.1Dg, which is

compared to the predicted reattachment point for Face-centered scheme of 3.82Do, and

for Vertex-centered scheme of 3.75D,,.
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5.6 Turbulent Flow In an Annular Turnaround Duct

5.6.1 Problem Description

Turbulent flow in a turnaround duct présents a sévère test for séparation. The

occurrence of séparation is dépendent on the turning angle and the radius of curvature.

As a benchmark test of turbulent flows involving strong séparation, the steady flow in

a 180° degree curved annular turnaround duct is selected. A schematic of the problem

is given in Figure 5.30. Expérimental studies of this ûow have been conducted by

Sharma and Ostermier (1987), the numerical predicdons are given by FIDAP (1991).
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À
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Figure 5.30: Problem schematic of turbulent flow in an annular turnaround duct

The computation mesh comprises of 2070 triangular éléments as shown in

Figure 5.31 with concentration towards the walls.

This is a 2D axisymmetric case, a flat velocity profile with a value of unity is
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prescribed at the lower duct inlet. The Reynolds number based on duct width and inlet

velocity is 100000. Fiât profiles for the turbulent kinetic energy k = 0.001 and the

turbulent dissipation rate e = 0.0009 are also specified at the inlet, which correspond

to a low turbulence intensity of 0. l %.

The unsteady state formulation with Face-centered scheme is used for obtaining

the steady state solution. The under-relaxation factors for u,v are 0.2, for p is 0.12,

for k and e are 0.15, for turbulent viscosity is 0.2.

Figure 5.31: The computational mesh of an annular turnaround duct

5.6.2 Results

Figures 5.32, 5.33 and 5.34 depict the velocity, pressure and turbulent kinedc

energy fields, respecdvely. The occurrence of séparation and the conséquent

recirculation zone downstream of the bend is clearly discernible in the velocity vector

fields. The tendency of the pressure distributions and the predicted séparation features

reasonably correspond to the FIDAP predictions. The u-velocity profiles at 0° and 180°

degree locations are plotted in Figure 5.35, and compared with expérimental data of

Sharma and Ostermier (1987).
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Figure 5.32: The predicted velocity fîeld of turbulent flow in an annular turnaround
duct

Figure 5.33: The predicted pressure field of turbulent flow in an annular turnaround
duct
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Figure 5.34: The predicted turbulent kinetic energy field of turbulent flow in an
annular turnaround duct
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• EXPERIMENT (Sharma Si Ostermier, 1987)

Figure 5.35: u-velocity profiles at 0° and 180° degree locations
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5.7 Confined Axisymmetric Turbulent Diffusion FIame

5.7.1 Furnace of Lewis and Smoot (1981)

5.7.1.1 Problem Description

The geometry for this test is a cylindrical combustor with coaxial injectors,

where the natural gas is injected by the primary tube and the air through the secondary

annulus, as shown in Figure 5.36. The total pressure of the combustor is 94 KPa. In

the fuel stream, the uniform inlet gas velocity is 21.3 m/s and the flow rate is 2.84

g/s, with the température 300 K. In the air stream, the uniform inlet air velocity is

34.3 m/s and the flow rate is 36.6 g/s, with the preheated température 589 K.

The available expérimental measurements for natural gas combustion have been

carried out by Lewis and Smoot (1981) together with the numerical predictions of

Smith and Smoot (1981) using the chemical equilibrium combustion model with the

finite différence method. Nikjooy et al. (1988) have used the fast chemistry réaction

model and the finite-rate chemistry model with the fînite volume method, and Elkaim

et al. (1993) and Mckenty et al. (1993) with the fast chemistry, PDF, eddy dissipation,

chemical equilibrium and micro-flame models with CVFEM.

In the présent computations, both the classical approximation method of

Launder and Spalding (1974) and the direct iteration method of Garon (1994) have

been used, together with four combustion models, i.e. fast chemistry, eddy dissipation,

chemical equilibrium and micro-flame models. Considering the concentration

fluctuation of the flame, the beta and delta PDF models are also tested.

The computation mesh involves 3107 sides (2014 éléments), as shown in Figure

5.37. In the computations, the Face-centered scheme is used for all the test cases. E

varies from l to 2, and the under-relaxation parameters for the others dépendent

variables, such as u, v, p, k, e, f, m,,,, h, T are taken from 0.2 to 0.5, that for the
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Figure 5.36: Geometry ofcoaxial combustor ofLewis and Smoot (1981)

density is from 0.1 to 0.3 and that for the viscosity is from 0.2 to 0.4. The inlet

turbulent parameters with \ =0.003,0=0.03 are used. The model constants are:

Figure 5.37: The computational mesh of furnace of Lewis and Smoot (1981)
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5.7.1.2 Results

Figure 5.38 depicts the predicted velocity field using the fast chemistry réaction

model, where the wall function is implemented by the direct iteration method. Figure

5.39 shows the contours of the mean mixture fraction based on fast chemistry, delta

PDF and beta PDF, respectively. The PDF models exhibit a fàster axial decay rate

than does the non-PDF model. The delta PDF bas the fast decay rate of the mean

mixture fraction. The fast chemistry réaction model predicts a shorter recirculation

length (1.5846D) than either the delta PDF (1.6633D) or the beta PDF (1.6403D).

Figure 5.40 shows the contours of the mean température for thèse models. At the

mixing région near the inlet, the température rises quickly at some distance

downstream ofthe corner and the flame front is developed. The fast chemistry réaction

model yields a narrow, high température flame front, the beta PDF produces a wide

flame front, while the delta PDF créâtes a relatively narrow flame front.

Figure 5.38: The predicted velocity field of furnace of Lewis and Smoot (1981) using
the fast chemistry réaction model
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Figure 5.39: Contours of mixture fraction in a confined axisymmetric turbulent
diffusion flame of Lewis and Smoot (1981) obtained by the fast chemistry, delta PDF
and beta PDF models, respectively
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Figure 5.40: Contours of température in a confmed axisymmetric turbulent diffusion
flame of Lewis and Smoot (1981) obtained by the fast chemistry, delta PDF and beta
PDF models, respectively



153

Because thepredicted results show large différences between using the classical

approximation method and the direct iteration method in the implementation of the 2-

layer wall functions, comparison of the combustion results are presented for thèse frwo

cases. Furthermore, the comparison between the présent SCVFEM and other numerical

method is also presented. Next, we will présent the predicted results of mixture

fraction and mass fraction of various species in several locations using the différent

combustion models.

A. Results based on the Classical Approxunation Method

The predicted radiai mixture fraction distnbutions for fast chemistry, chemical

equilibrium, micro-flame and eddy-dissipation combustion models were computed

using the classical approximation method in the implementation of the wall functions

(Launder and Spalding,1974). Thèse are shown at four sections x = 0.095 m, 0.175

m, 0.246 m and 0.327 m are plotted in Figure 5.41. In all cases, the mixture fraction

is overpredicted in the mixing zone of the two jets. The disagreement can be attributed

to the inadequate physical modelling of turbulence and the approximation of the wall

functions. In the fully developed outlet région, the mixture fraction distributions for

all the models become uniform, with a value of about 0.072. The predicted radiai mass

fraction distributions of COi, ïlîO, CO and îl^ based on the above four combustion

models at developed section x = 1.375 m are presented in Figure 5.42. It was noted

that the chemical equilibrium model and the micro-flame model have the capability of

predicting the chemical species of CO and H;, which is not possible with the fast

chemistry and eddy dissipation concept models in the présent work. The micro-flame

model gives the best results over all the models considered. For the concentration

fluctuations, the delta and beta PDF models are considered. The predicted radiai

mixture fraction based on the PDF models in four sections at x = 0.095 m, 0.175 m,

0.246 m and 0.327 m are depicted in Figure 5.43. It can be seen that the fast

chemistry réaction model predicts the fastest decay rate among the three models at the
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mixing zone. However, neither model provides a satisfactory prediction near the

centerline in the developing région. This apparent deviation may be mainly attributed

to the turbulence model and wall functions.

B. Results based on the Direct Iteration Method

Using the direct iteration method in the implementation of the wall fùnctions

(Garon,1994), the predicted radiai mixture fraction for fast chemistry, chemical

equilibrium, micro-flame and eddy dissipation combustion models are plotted in Figure

5.44 at four sections x = 0.095 m, 0.175 m, 0.246 m and 0.327 m, respectively. It

can be seen that the mixture fraction distributions for all sections are close to the

expenments. Figure 5.45 shows the predicted radiai mass fraction distributions ofCO;,

HzO, CO and H; using the above four combustion models at developed section

x= l. 375m. Figure 5.46 shows the predicted radiai mixture fraction distribution at

same four sections based on the PDF models. The results are also again close to the

experiments at all four sections. From thèse rcsults, we may conclude that the results

based on the direct iteration method are much better than that of the classical

approximation method. The reason may be referred to that the wall shear stress

obtained by the direct iteration method is more realistic than that of the classical

approximation method.

C. Comparison with Vorticity-Streamfunction Results

The SCVFEM predictions are also compared with the Vorticity-Streamfunction

results of Mckenty (1992) using the fast chemistry réaction model. In the results of

Mckenty (1992), the numerical solution is based on the control volume finite élément

method with the vorticity-streamfunction formulation on a mesh of 750 nodes. In the

présent predictions, two sets of computational grids, 2024 sides (720 nodes, 1301

éléments) and 3107 sides (1094 nodes, 2014 éléments) with the direct iteration method

are considered, respectively. The mesh for the vorticity-streamfunction formulation
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(750 nodes) is équivalent to that ofthe primitive variable formulation (720 nodes, 2024

sides). In Figure 5.47 the predicted radiai profiles of the mixture fraction are

compared with the measurements of Lewis and Smoot (1981). It can be seen that the

results of the SCVFEM with 720 nodes are almost same as that of the Vortivcity-

Streamfunction with 750 nodes. It was shown that when the grid becomes finer, the

mixture fraction decay near the centeriine decreases. AU results are very close to

experiments of Lewis and Smoot (1981).

D. Computational Efforts

Calculations were performed on a RISC 6000 model 520 work station, all the

results are converged at the maximum residues for all the dépendent variables less than

10-3. For the coarse mesh with 2020 sides, the CPU time is 2.2817xl04 seconds for

the fast chemistry model. For the finer mesh with 3107 sides, the CPU times are

2.878xl04 seconds for the fast chemistry model, 4.4936xl04 seconds for the eddy

dissipation model, 3.466xl04 seconds for the chemical equilibrium model, 2.3849xl04

seconds for the micro-flame model, 3.296x10 seconds for the delta PDF and

1.8417xl05 seconds for the beta PDF models.
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5.7.2 Furnace of Lockwood et al. (1974)

5.7.2.1 Problem Description

A second simulation of turbulent reacting flows is that of Lockwood et al.

(1974), which is différent from the furnace of Lewis and Smoot (1981) bofh in

dimension and inlet conditions. The flow geometry is shown in Figure 5.48.

±yL

L

_L

— Y2

YAÏZ ——

w//////////^'.

Fuel Ri K2

"fy,-'

»3

///

R

RI - 0.010 m RZ - 0.022 m RS » 0.039 m R ° 0.105 m

Yi " 0.001 m Va » 0.004 m Va = 0.008 m L ° 1.900 m

Figure 5.48: Geometry of coaxial combustor of Lockwood et al. (1974)

In thèse experiments, the fuel and air are entered as coaxial jets into a suddenly

expanding chamber. In the présent study, the fuel-air ratio of 0.0635, with Reynolds

number equals to 16,030 is selected. The inlet fuel velocity is 21.57m/s, with the fuel

température 344 K, the inlet air velocity is 13.46m/s with the air température 301 K.

The fuel is the town gas, with a composition of 27 % of €N4, 8 % of CO;, 4 % of N2,

55 % of ÏÏ2, 4 % of CO, 2 % of CzHg and other. The calorifîc value of this mixture is

2.63 x 104 kJ/kg.
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The computational mesh comprises 2028 sides (1306 éléments), as shown in

Figure 5.49. In this test, only the fast chemistry model with the Face-centered scheme

is considered, because the predicted mixture fractions for each combustion model for

first test shows a little différence. Both the classical approximation method and the

direct iteration method are used for the calculation of wall functions. Others

parameters, such as turbulent inlet conditions, boundary conditions, turbulent model

constants and relaxation parameters are the same as for the test of Lewis and Smoot

(1981).

Figure 5.49: The computational mesh of the furnace of Lockwood et al. (1974)

5.7.2.2 Results

Figures 5.50, 5.51 and 5.52 show respectively the velocity, mixture fraction

and température fields obtained with the classical approximation method and the direct

iteration method. The predicted recirculation zone by the classical approximation

method is 1.238D and 1.095D by the direct iteration method. The mixture fraction

obtained by the direct iteration method exhibits a faster axial decay rate than that of

the classical approximation method. As can be seen in Figure 5.52, the flame front

obtained by the classical approximation method is longer than that of by the direct

iteration method. In Figure 5.53, the predicted radiai mixture fraction profiles are
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compared with the measurements of Lockwood et al. (1974). It can be seen that the

measurements exhibit a faster axial decay rate than do the predictions for all the cases.

At all four stations, the direct iteration method predicts a faster decay rate than the

classical approximation method. The predictions have the same qualitative trends as

the expérimental data. Calculations were performed on a RISC 6000 model 520, the

CPU times spent by the classical approximation is 1.2699 x 104 seconds, and by the

direct iteration method is 1.9625 x 104 seconds.

(a) Classical Approximation Method

(b) Direct Iteration Method

Figure 5.50: The predicted velocity field of the furnace of Lockwood et al. (1974)



166

L
(.

0.03

^
_0.13

),23

0.9 OS

(a) Classical Approximation Method

L
L

0.03,

.0.32' 0,23
0,13

0.9 OS

(b) Direct Iteration Method

Figure 5.51: The predicted mixture fraction fîeld offurnace ofLockwood et al.(1974)

^) ^ "^ yoo^

^oo

1500

^70o

(a) Classical Approximation Method

(b) Direct Iteration Method

Figure 5.52: The predicted température field of furnace of Lockwood et al. (1974)
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5.8 Results of Radiation

The discrète transfer method was implemented and applied to the 2D cartesian

rectangular and triangular enclosures and axisymmetric cylinder furnaces using an

unstructured triangular mesh. The following examples were chosen to compare the

proposed procédure with exact solutions, original discrète transfer method (Lockwood

and Shah, 1981) and other approximate methods. For cartesian coordinate, the tests

involve:

8 Absorbing/Emitting in a black rectangular enclosure

9 Scattering in black rectangular enclosures

• Scattering in a gray triangular enclosure

For axisymmetric cylinder coordinate, the following tests are considered:

• Radiant heat transfer in idealized axisymmetric furnaces

9 Radiant heat transfer in axisymmetric Delft furnace

5.8.1 Absorbing/Emitting in a Black Rectangular Enclosure

The discrète transfer method in the présent methodology was applied to a

rectangular enclosure with cold black walls and a purely absorbing/emitting medium

maintained at an emissive power of unity, as shown in Figure 5.54. The surface heat

transfer rate was computed for three optical conditions kgL=0. l, 1.0, 10.0. Three sets

ofcomparisons ofthe surface heat transfer rates are made. The first are the parametric

analysis of the discrète transfer method for the absorbing medium (kgL=1.0). The

second set, are comparisons between the présent discrète transfer method using

triangular mesh solutions and the original discrète transfer method using a rectangular

mesh (Lockwood and Shah, 1981). Finally, are comparisons between the présent

method and the exact solutions (Shah, 1979), as well as the 84 discrète ordinates

solutions (Fiveland, 1984).
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Figure 5.54: A schematic of rectangular geometry with absorb/emit medium

Parametric analysis of the discrète transfer method

The effect of the number of élément and the number of rays on the solution was

evaluated for the case ofkgL = 1.0. The comparison for 50, 98 and 200 éléments and

the exact solution (Shah, 1979) is shown in Fig. 5.55. For 50 éléments, at least N0 x

N<^> = 4 x 16 are needed. Whereas for 98 éléments, N0 x N<^> = 4 x 8 are necessary

to closely match the exact solution. For 200 éléments and N0xN^ = 4 x2, we do

not obtain good results, however, when increasing to N0 x N^» =4x4, the results are

in excellent agreement with the exact solution. This test shows that the number of the

azimuthal angle N<^> must at least be equal to 4, otherwise, we can not obtain good

results, even for relatively fine grids (200 éléments).
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Comparison with original DT method

In this test case, we will compare the surface heat transfer rates of the original

discrète transfer method (Lockwood and Shah, 1981) and the présent discrète transfer

method. The original discrète transfer method, using a 10 x 10 rectangular mesh and

64 rays per corresponding wall location, closely reproduced the exact solutions (Shah,

1979) for 3 optical thicknesses. For the comparison, 100 triangular éléments and 64

rays for each corresponding wall location were used. Figure 5.56 shows the geometry

and the unstructured triangular mesh. Fig. 5.57 and Fig. 5.58 are the comparisons

between the présent method solutions and the exact solutions. It is shown that the

results very closely match the exact solutions. The CPU time with the présent discrète

transfer method was 0.95s on a IBM 3090 180 VF computer for an optical thickness

equal to one. This problem was also solved on an 800 éléments using 64 rays, the

CPU time in this case was 9.25 seconds. For the pure absorbing/emitting medium, the

discrète transfer method with rectangular mesh and with the triangular mesh gives

excellent results.
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Figure 5.56: Unstructured triangular mesh for 2-D square enclosure

Comparison with other methods

Comparisons with the 84 discrète ordinates method (Fiveland, 1984) are also

shown in Figs. 5.57 and 5.58. For the absorbing/emitting média, it is clear that the

présent discrète transfer results provide excellent agreement with the exact solution and

are better than those obtained with the 84 discrète ordinates method.
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5.8.2 Scattering in Black Rectangular Enclosures

This test is focused on isotropic radiative transfer in a square enclosure with

black walls and a scattering cross section of unity shown in Fig. 5.59. The emissive

power of one surface is set to unity, the others are set to zéro.

Ew=o

Ew = 0 l1
€w =1

•/////////////////////////////////////////////,

"w ks -l

y////////////////////////////////////////////
E^-l

6W =1

LX

r
iE'-°nL

Figure 5.59: Geometry of a square enclosure with black walls and a scattering cross
section of unity

Equal Aspect Ratio

The "ray effect" is the basic problem arised in the radiation computations. It

appears in the angular discretization and it is independent of the spatial discretizadon.

The reason can be referred to the inability of the discretized intensity distribution to

fully represent the actual continuous intensity distribution. Gare must be taken to avoid

the "ray effect", as suggested by Viskanta and Mengûç (1987), the discrète transfer
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method may be subject to this behaviour in both absorbing and scattering média. In

scattering média, the "ray effect" tends to be more notorious (Carvalho, 1991). Then

the number of éléments has been increased to 800 and the number of rays per

boundary surface to 64. Figure 5.60 shows the variation of the centeriine incident

radiant energy in a rectangular enclosure for an equal aspect ratio. The présent discrète

transfer solutions are compared with results from a Zonal analysis and the ?3

differential approximation (Ratzel and Howell, 1982), and with the 84 discrète

ordinales method (Fiveland, 1984). It can be seen from thèse results that the discrète

transfer method using an unstructured triangular mesh compares well with thèse

methods.

Unequal Aspect Ratio

For an enclosure with an high aspect ratio ofL^/Ly =5.0 and k,Ly =1.0, the

centerline incident radiant energy was obtained by using 200 éléments and 64 rays per

wall location. Figure 5.61 shows the comparison between the présent discrète transfer

solution, the discrète transfer using a rectangular mesh solution (Carvalho et al., 1991)

and the results obtained by Modest (1975). The CPU time was 73 seconds on a IBM

RISC 6000 Work Station. For the low aspect ratio case we chose L^/Ly =0. l and k,Ly

=1.0, i.e. the emitting wall is ten times smaller than side walls. Calculations were

perfbrmed on a fine grid with 840 éléments and 64 Rays. The results are compared

with the discrète transfer solution on a rectangular mesh (Carvalho et al., 1991) and

the results of Modest (1975), as shown in Figure 5.62. The results by the présent

discrète transfer with triangular mesh are lower than the results obtained by Modest.

This is due to the aspect ratio of the geometry, as few rays emitted from the hot

surface will reach the éléments, called "ray effect". The same behaviour can be

observée in the results of Carvalho et al. (1991).
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5.8.3 Pure Scattering in a Gray Triangular Enclosure

The calculation is performed on a complex geometry, a triangular enclosure

with sharp edges with a hot obstmction shown in Figure 5.63, where the scattering

coefficient are set to unity. The computational mesh, shown in Figure 5.64, includes

639 triangular éléments. Near the hot obstruction and inside the sharp angles, the grid

is refined. The isolines of emissive power are given in Figure 5.65. From this result,

we can see that near the hot obstruction surface, a high gradient of emissive power

exists and a fine grid is necessary to capture this behaviour. Inside the sharp angles

where the emissive power is weak, a fine grid is also needed.
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Figure 5.63: Geometry of the triangular enclosure with sharp edges contain hot
obstmction

Figure 5.64: The computational mesh for tnangular enclosure

Figure 5.65: Contour plot of emissive power for the triangular enclosure with sharp
edges contain hot obstmction, E^ from wall to hot obstrucdon is 0 to l, interval 0.05
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5.8.4 Radiant Heat Transfer in Idealized Axisymmetric Furnaces

The geometry of a simplified cylindrical furnace is considered, as shown in

Figure 5.66. This example is chosen to benchmark the discrète transfer model with

unstructured mesh for an axisymmetric cylindrical coordinates. The gas (Tg) and wall

(TJ températures are assumed to be known.

l
Tl

v//////////////////////^^^^

Figure 5.66: Geometry of cylindrical furnace

The incident (q,) and net (c^,) radiant heat fluxes at walls are presented. They can be

expressed as:

N

î.=0e2oz;'tcœ(W = î;J";.'cose.ÀQ.

^ = ^.-î1

where q+ is the heat flux leaving from the wall.
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This problem has been studied by Benim (1988) using the finite élément method

based on the moment method as radiation model. It is showed that the moment method

predictions are comparable with the flux models. The zone method, being regarded as

nearly exact solutions, is assumed to give the best solutions. Follows Benim (1988),

three différent cases are considered for this problem. The diameter is assumed to be

the characteristic length for all cases.

The dimensions of the furnace (Figure 5.66) are assumed to be:

D = 1.69 m, L= 10.5 m (L/D = 6.2)

The constant gas and wall températures are prescribed as:

Tg = 1273 K, T,i = T^ = T^ = 773 K

The walls are assumed to be black, s =e 2=6 3=1.0 •

The optical depth is assumed to be r.=0.423 • The computational mesh

contains 836 triangular éléments (470 nodes) is shown in Figure 5.67, near the wall,

the grid is refined. In the computations, the number of rays for each surface is given

by N0xN<^ = 2x8. Figure 5.68 shows the predicted net radiative heat flux along the

furnace walls (side wall and cylinder bottom) using the DT method with unstructured

grid. The results are compared with the zone method (Richter & Bauersfeld, 1974) and

the moment method (Benim, 1988) predictions. The side wall heat flux is symmetric

about the middle of furnace length (x/D = 3.1), and it is plotted up to this distance.

The présent procédure gives the better agreement with the zone method predictions,

the maximum derivation of the présent DT method from zone method results is about

2%, which is better than that of the moment method predictions with 6% error

(Benim, 1988). The computer CPU time required for the présent method is 68.1

seconds at IBM RISC 6000/model 520.
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Différent from Case l, the dimensions of the furnace are changed to be

D = 2.22 m, L = 6.25 m (L/D = 2.8)

The wall températures and emissivities are prescribed as:

Twl = T^ = T^ = 300 K, 5 ,=£.=£ . ='' <'wl~Gw2~6w3 ~ u"

The gas température is assumed to be constant in the radiai direction, but varies
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linearly with the axial distance according to Tg = -272 x + 2050 K.

The results are compared with the zone method (Lowes et al., 1973) and the

moment method (Benim, 1988) predictions. Figure 5.69 shows thecomputational mesh

involving 908 triangular éléments (510 nodes), the grid is refined near the solid wall.

Figure 5.69: The computational mesh of furnace. Case 2 and Case 3

The variation of the incident heat flux along the side wall is presented in Figure 5.70

for three values of the optical depth, r., = 1.11, 0.444, 0.222, respectively. The

agreement of the présent results with the zone method predictions is excellent for all

three values of the optical depth. The net radiant heat flux variadon along the side wall

is présentée in Figure 5.71. Again, it is found that the présent results agrée very well

with the zone method predictions for all three values of the optical depth. The présent

results for both the incident and net heat flux variations along the furnace wall are

much better than that of the moment method predictions. The computer CPU time

required is 883.90 seconds for T., = 1.11, 1031.14 seconds for T., = 0.444, and

1178.46 seconds for r,, = 0.222, respectively at the IBM MSC 6000/model 520. It is

found that when the optical depth becomes shorter, the computational time becomes

longer.
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Figure 5.70: Incident heat flux variation along side wall, Case 2
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Case 3

This case is almost same as Case 2, except the left wall température is changed

to be: T^ = 1300 K.

The results are compared with the zone method and moment method predictions

of Michelfelder (1976) and Benim (1988). Figure 5.72 gives the incident heat flux

along the side wall for r^ == 0.444. The présent prediction shows an excellent

agreement with the zone methods results. The CPU time is 1031.47 seconds at the

same computer as Case l and Case 2.

1000 Zone (Michelfelder, 1975)
Moment Method (Benim, 1988)
Discrète Transfer (Présent)

r = 0.444
0

-•—<kl

x/D

Figure 5.72: Incident heat flux variation along side wall, Case 3
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5.8.5 Radiant Heat Transfer in Axisymmetric Delft Furnace

The discrète transfer predictions were compared with the expérimental results

obtained by Wu and Fricker (1971) in the cylindrical axisymmetric Delft furnace of

the IFRF (Industrial Flame Research Foundation), and were also compared with the

discrète ordinales method results using the S4 approximation ofJamaluddin and Smith

(1988). The geometry and radiative properties of the medium and walls are shown in

Figure 5.73, the measured températures inside the furnace with the rectangular mesh

3x17 are given by Jamaluddin and Smith (1988).

For comparison, a structured triangular mesh with 3x17x2, together with 16

rays per node is used in the présent DT method computations.

0.45m

5 m

w 425 K •w =0.8

/////////////////////////////////////////////////////////////////////^^^

kg= 0.3 m-1

y////////.

Figure 5.73: A schematic of Delft furnace

The comparison shown in Figure 5.74 clearly demonstrates that the Discrète

Transfer results agrée with the expérimental and discrète ordinates S4 approximations.

The CPU time required to obtain this result was 6.86 seconds in IBM 3090 180 VF

computer.
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Figure 5.74: Wall heat flux distribution for the Delft furnace

5.8.6 Summary

The discrète transfer method was extended to an unstmctured triangular mesh

and applied to the prediction of radiative heat transfer for two-dimensional cartesian

and axisymmetric enclosures containing an absorbing-emitting and isotropic scattering

média. By comparison with the original discrète transfer method, exact solution and

other numerical solutions, we have shown that for absorption dominant problems, the

présent discrète transfer method has given excellent solutions. For pure scattering

problems, we obtain the same level of accuracy as other methods. The présent method

can be used for the computation of radiative heat transfer in gas combustion chambers

with arbitrary geometnes due to the computational economy and reasonable accuracy

of this method.
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5.9 Turbulent Diffusion FIame Coupled with Radiation

5.9.1 Problem Description

The présent SCVFEM is assessed by investigating flame 29 of the M-2 triais

performed at the International Flame Research Foundation (IFRF) (Michelfelder and

Lowes, 1974). The furnace comprises a rectangular refractory chamber with 6.25m

long and 2m x 2m in cross-section, and includes seventeen double-loop cooling-pipes

used to provide thermal loading for System. Since the présent mathematical model is

axisymmetric, the furnace configuration is approximated by a cylinder having the same

cross-sectional area as sketched in Figure 5.75.

_iyL

: t AU

Y/AV/////////.
: fy4 Fuel

.y,

J RI l R2
R3

L

T
•T y,"

///

R ^

RI - 0,0163 m R! - 0.03 m Ra - 0.088 m R - 1.08 m L - 6.25 m

YI - 0.001 m y, - 0.004 m Yj - 0.008 m Y4 " 0.001 m

Figure 5.75: Geometry of expérimental furnace M-2 triais flame-29 ofMichelfeder and
Lowes (1974)

The computation for this test is a non-swirling natural gas diffusion flame with

axial fuel and coaxial air injection, the input thermal load is 3000 kW. The inlet mass

flow rate of the natural gas through the central nozzle is 280 Kg/h, dry air with mass
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flow rate of 3126 Kg/h and oxygen with mass dow rate of 170 Kg/h are injected

through the coaxial nozzle. The IFRF M-2 triais were specifically conducted to provide

detailed data for evaluating radiation models, detailed information about the

expérimental set-up can be found in Michelfelder and Lowes (1974). The numerical

solution of this problem by the finite élément method has been given by Benim (1989),

by the control volume finite élément method can be found in Meng et al. (1992).

5.9.2 Numerical Détails

Figure 5.76 shows the computation mesh, which includes 2662 triangular

éléments (1419 nodes). The eddy-dissipation combustion model coupled with radiation

is solved by using the discrète transfer method. The 2-layer wall function is

implemented by the classical approximation method. An attempt to use the direct

iteration method has failed for this test. The reason may be due to the inlet fuel

velocity which is high (about 120 m/s). The équations for u, v, p, k, e, f, m^, h are

solved, in addition to the radiative transfer équation. Due to the highly non-linear

property of thèse coupled équations, the combustion and radiation solutions are based

on the converged turbulent flow and transport équations solutions as the initial fields.

The E-factor is taken as 2 for all transport équations, and the variable under-relaxation

parameters for all équations are taken from 0.3 to 0.7. The divisions of the solid

angle N0xN<t) = ljc4 is used in the radiation computadons. The inlet turbulent intensity

is taken as 4.5% ( \= 0.003 )» and the inlet mixing length is given as 0.03 D. For

the energy équation it is assumed that the heat transfer coefficients are known be

experiments, where the cooling pipes-refractory wall combination of the furnace was

replaced by an équivalent speckled wall with a température distribution based on

measurements.
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The following set of model constants are used,

c, cl C2 °-* a< °f ^ aA A

0.09 1.44 1.92 1.0 1.3 0.7 0.7 0.7 4.0

Since the standard turbulence model constants do not perfbrm very well for

round free jet, as recommendedbyBenim (1989), themodel constants C and C^

are modified for the first half of the furnace as C =0.075, ^=1.89.

For C02-H2Û mixtures the emissivity is fitted by a one-clear three-gray gas

model of Taylor and Poster (1974) in the température range 1200 - 2400 K. In this

model, the total gas emittance is expressed as:

'.-Ec'iA.'nIi-^""-"'-'1] <5'3>
n=l

where the summation for n is over the gases of the assumed mixture, b,

and b are the weighting constants; p and p are the partial pressure of water

vapour and carbon dioxide respectively, and L is a characteristic path length for a flow

computational cell, taken as the square root of the sum of the squared sides of the

élément. Table 5.6 gives the values of the parameters under this model for a total

pressurc of l bar and pjp = 2 for gas combustion. The value of absorption

coefficient kg for the calculations is obtained from the "pseudogray" approximation

(AbbasetaL, 1984),

e^=l-e^L (5.4)

In the computations, when the température is lower than 1200 K, the constant

absorption coefficient kg = 0.15 m-1 is assumed. The CPU time in IBM RISC/6000

model 520 is about 8.2 hours to obtain the converged solutions with residues for all
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dépendent variables less than 10'3.

Table 5.6: Values of the coefficients kg^ \n and b2,n in the gas emissivity équations

for a COz-HzO mixture applicable to the température range 1200-2400 K.

n

l

2

3

4

k.n

0

0.69

7.4

80.0

\n

0.346

0.266

0.252

0.118

b2.a

0.0000473

0.0000719

-0.0000741

-0.0000452

5.9.3 Results

Figures 5.77 and 5.78 depict the predicted velocity field and température field,

respectively.

Figure 5.76: The computational mesh ofM-2 triais flame-29

The predicted radiai température profiles with and without radiation inside the

furnace at four axial stations x = 0.555m, 1.295m, 2.775m and 5.735m are plotted
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Figure 5.77: The velocity field of M-2 triais flame-29

(a) WITHOUT RADIATION

(b) WITH RADIATION

Figure 5.78: The température field of M-2 triais of flame-29 (deg. OC)

in Figure 5.79. The results with radiation are also compared with the finite élément

solution ofBenim (1989), as shown in Figure 5.80. From Figure 5.79, in the mixing

zone of the furnace (x=0.555m-1.295m), due to the fuel and oxygen is not fully
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mixed, the température distributions at this région have shown a little différence

between them with and without radiation. In the middle région of the furnace (x =

2.5-4.Om), the fuel and oxygen are fully mixed and burned, the mixture gas

température is very high (up to the maximum température of 1550 °C at flame front,

as shown in Fig. 5.78), then the radiation heat exchange between éléments become

very strong, the predicted maximum température with radiation is l 10 °C less than that

of without radiation in this région. From this température différence, we can see that

the radiation is important for the large scale furnace calculadons. Also, with radiation,

the predicted température distribution becomes smooth in the flame zone. Outside the

flame zone, due to a lower mixture gas température, the radiation becomes weaker,

then the différence between with and without radiation is small. Near the exit of the

furnace, the predicted température distribution with radiation is lower than that without

radiation. The SCVFEM results are comparable with the finite élément soludons of

Benim (1989), as shown in Fig. 5.80, and they are agrée well with experiments.

Axial température profile and axial concentrations of combustion products CO^

and HzO are also plotted in Figure 5.81 and 5.82, the results are compared with the

expérimental data.

The variation ofthe incident radiative heat flux along the furnace wall is shown

in Figure 5.83. The result ofthe SCVFEM is comparable with the experiment and that

of the finite élément method (Benim, 1989).
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Conclusions

The staggered control volume finite élément method (SCVFEM) has been

developed for the analysis of incompressible laminar and turbulent flows, turbulent

reacting flows coupled with and without radiation, the following conclusions are

drawn:

l. The présent SCVFEM bas been shown to predict successfùlly the various

flow fields involving the complex physics in complex geometries.

2. The présent algorithms share many useful features with successful finite

différence, finite élément and control volume finite élément algorithms while retaining

certain advantages of above algorithms such as the géométrie flexibility, explicit

physical interprétation, the imposition of natural boundary conditions and no necessity

to impose the boundary condition for pressure.

3. The SCVFEM with Face-centered scheme has great features which is prier

to most ofthe numerical methods with Vertex-centered scheme in the imposition ofthe

boundary condition. With Face-centered scheme of SCVFEM, the imposidon of the

boundary condition for velocities, transport variables and radiation intensity at each

boundary surface is straightforward, it avoids the difficulty with Vertex-centered

scheme to impose the boundary conditions for above variables at the discontinuous

corner point in the computational domain. Furthermore, with the équivalent number

of unknowns and the same accuracy required, Face-centered scheme gives less CPU

time than Vertex-centered scheme.

4. The sequential SCVFEM with the skewed, mass-weighted upwind

interpolation function provides a robust approach for the computation of complex

turbulent flows and turbulent reacting flows.

5. For turbulent flow over a backward facing step, the k-e two équation model

with wall function method is used. The implementation of the wall function is based

on two methods, i.e. the classical approximation method and the direct iteration
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method. The predicted recirculatfon length by using the classical approximation method

is longer than that of by the direct iteration method. Both the classical approximation

method and the direct iteradon method underpredict the recirculation length by the

error of 16% and 26%, respectively. At the fully developed flow région, the velocity

profile obtained by the direct iteration method is very close to the experiments, it is

better than that of by the classical approximation method. Also, the results obtained

by Vertex-centered scheme is better than that of by Face-centered scheme.

6. The proposed SCVFEM with related combustion models has been

successfully applied in the simulation of the 2D, confined axisymmetric turbulent

diffusion flames, the agreement between experiments and predictions is reasonable.

The predicted mixture fraction profiles by using the direct iteration method is very

close to experiments, it is better than that of by using the classical approximadon

method. It seems that the direct iteration method is more diffusive than the classical

approximation method.

7. The discrète transfer method was extended to an unstructured grid. From the

benchmark tests, we found that for absorbing/emitting média, it gives excellent results;

for pure scattering média, the results obtained by the discrète transfer method is

comparable to other numerical methods.

8. The SCVFEM with combustion and radiation models are successfully applied

to the prediction of practical furnace. For real furnace gas flame, the predicted

température and radiant heat flux to the furnace wall agrée well with experiments.

From this tests, it is illustrated that the radiation heat transfer is very important for the

large scale combustion furnace. Also, it is demonstrated that the classical

approximation method is computational robust over the direct iteration method for the

détermination of wall functions in practical applications.



Recommendations

A few recommendations are intended as improvements and extensions of the

présent SCVFEM:

l. Because it is easy to impose the boundary condition for dépendent variables

with Face-centered scheme, extensions of the présent SCVFEM with Face-centered

scheme to second-order scheme and 3-Dimensional flows are straightforward. Also,

the extension of the présent incompressible SCVFEM to compressible flow is possible.

2. In order to use the présent SCVFEM for the simulation ofturbulent swiriing

flows, the additional improvements in the k-e model (such as RNG k-e model) or the

use of more advanced an algebraic second-moment model (ASM) and a Reynolds-stress

transport model (RSM) are necessary.

3. In order to predict the pollution products and more chemical species, the

fînite chemical kinetics combustion model should be considered for further study.

4. For gas combustion, the extension ofthe présent discrète transfer method to

3-dimensional tetrahedral éléments is straightforward. However, when considering an

anisotropic scattering média, the discrète ordinates method is recommended.

5. For turbulent flows and turbulent reacting flows, an adapdve remeshing

method will be considered in the future.
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Appendix A: Intégration of Pressure in Axisymmetric Coordinate

Substituting Eq. (4.29) into Eq. (4.28), it gives:

^ _„.<_ r o ^
/„. ^PIV . £ r,^ -
•e /=1 PdV\

^Q;-J

(A. l)

when splitting Eq. (A. l) into theirs respective half co-volume, it becomes:

rWdV = Y. r.P,n,s. -{ _
Jo/T— ^-rrn ^Pj (A.!)

^r,PM-\^p
J=3 - - - - ^A^jtJ

wherej = 1,2,3 and4 represent the midpiontof intégration faces, A^ and A^ are

the area of the left and right half co-volume, and P^ and P^ are pressure of the left

and right éléments, respectively.

Considering the intégration (A. 2) of left half co-volume, as shown in Figure

A. l, it can be rewritten as following:

PLrYn^\ , {PLrîn^Z\ { 0rvp^=r/l"^M?'2^2i-i
1^ [PlTWl [PLVy^l [^PL

(A.3)

According to the geometry depicted in Figure A. l, the normals of each faces

can be written as follows:
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with the radius relations:

s^ = -^i + àx^j

s^ = -Ay^i - ùxj

SA = W + àxoJ

ri =r + ^i +Ayz

r2= r + iAy2

ro= r + 2^0

(A.4)

(A.5)

Next, we want to dérive the géométrie relation between the intégration face

j =1,2 and the co-volume side 0. Mathematically, we want to verfy the following

relations is held or not:

7Wi+/W2+/Wo â ° (A.6)

or the équivalent x- and y-components form of Eq.(A.6) as:

Wo-WWz â ° (A.7a)

Relation of (A.7aï

Substituting the radius relations (A.5) into Eq.(A.7a), we have:
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Ax2

Figure A. l: Left half co-volume used in the derivation of pressure intégration for an
axisymmetnc coordinate

roÀyo = (r+^Ayo)Ayo

= r(A^+Ay2)+^(Ayi+A^)2

(A.8a)

and

-riÀyi-r2Ày2 = ~(/'+-^+Ay2)Ayi-(r+^)Ày2

= -r(Ayi +A^) - ^(Ayi +^)2

(A.8b)

Summing the relations (A.8a) and (A.8b), then the reladon (A.7a) is held.
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Relation of (A.Tb)

TgA^ = (r+—+—)(AX2-AXi)

(A.9a)
Àyi. .. Ay2 .. Ayi ..A^

= r(A^-AXi)+^-y+AX^-A^-^.-AXi-^

r^-r^ = (,r+-^-+Ay^^-(r+-^)àx^

(A.9b)
Ay2 . .. Ayi

= -r (&x^ -AXj) - AJ^— + AXi -— + AX^Ay^

Summing the relations Eq. (A.9a) and (A.9b), then we have:

r^r^-r^-^^ (A.10)

Then the équation (A.Tb) is not held.

The area of the left co-volume is:

Au = -|l-AX2Ayo+Ay2Axol

= ^ l -AX^Ayi +Ay2) + ^(^-^) | (A. l l)

AW2 ÀWl,

then Eq. (A. 10) becomes:
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rgAXg + r^ - r^x.^ = A^ (A. 12)

Substituting Eq. (A.7a) and (A. 12) into Eq. (A.3), then it becomes:

J^ rWdV= -r,n^ (A. 13)
'QIC

Similar result is obtained for right hand side intégration of the co-volume, it

gives:

^ rWdV-r^s^ (A. 14)
'Q^

Summing Eq. (A. 13) and (A. 14), we have:

^ rWdV = r,fî,s^ - P,) (A. 15)

Eq. (A. 15) is used in the derivation of the pressure-velocity coupling relation

for obtaining the pressure algebraic équation.
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