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SOMMAIRE

Dans cette etude on considere 1'eiFet d'un champ magnetique sur la convection

naturelle au sein d'une cavite rectangulaire inclinee contenant un milieu poreux

sature par un fluide electriquement conducteur. Les cotes de la cavite sont main-

tenus a temperature constante alors que les bouts sent isoles thermiquement.

Un champ magnetique uniforme est applique perpendiculairement aux parois

chauffees. Le milieu poreux est isotropique et peut etre modelise selon la loi

de Darcy. Les equations adimensionnelles de base sont derivees et il est montre

que les parametres de base du probleme sont R, Ie nombre de Rayleigh, Ha

Ie nombre de Hartmann magnetique, A Ie rapport de forme de la cavite et ^,

1 inclinaison de la cavite. Une solution analytique approximee est developpee

pour Ie regime de couche limite dans une cavite verticale. Une analyse de sta-

bilite lineaire est presentee afin de determiner 1'efFet du champ magnetique sur

Ie nomrbre de Rayleigh critique marquant Ie debut de la convection dans une

couche horizontale chaufFee pour Ie bas. Une etude numerique du probleme est

conduite afin de verifier et d'etendre les resultats des solutions analytiques. II est

demontre que 1'application d'un champ magnetique modifiait considerablement

les champs de temperature et de vitesse. Les relations entre Ie taux de transfer!

thermique global, decrit par Ie nombre de Nusselt moyen et les parametres de

base, sont presentees. II est observe que Ie nombre de Nusselt moyen decroit avec

un accroisement du nombre de Hartmann. On demontre qu un chanap magnetique

peut etre utilise pour controler la convection dans une cavite.



ABSTRACT

An investigation is conducted to study the effect of an electromagnetic field on fr

convection of an inclined rectangular porous cavity saturated with an electrically

conducting fluid. The enclosure has the long side walls heated isothermally while

the short ends are thermally insulated. A uniforni magnetic field is applied normal

to the heated walls. The porous medium, modeled according to the Darcy's law,

is assumed to be isotropic. The dimensionless governing equations are derived

in terms of the characteristic dimensionless parameters, namely, the Rayleigh

number -ff, the magnetic Hartmann number Ha, the cavity aspect ratio A and

the inclination angle 6. An approximate analytical solution is presented for the

boundary layer flow regime within a vertical cavity. A linear stability analysis is

made to determine the eiTect of the magnetic field on the onset of convection in a

horizontal layer heated from below. A numerical study is performed to assess and

extend the results of the analytical solutions. It is found that with application

of an external magnetic field, the temperature and velocity fields are significantly

modified. The relationships between the overall heat transfer rate, described by

the average Nusselt number and the other governing parameters, are presented. It

is observed that the average Nusselt number decreases with increasing Hartmann

number; and, the effect of the orientation angle is affected by the imposition of a

magnetic field; hence, a magnetic field can be used as an effective mechanism to

control the convection in an enclosure.



RESUME

La convecdon naturelle dans une cavite poreuse chauffee par les cotes

a fait 1'objet de nombreuses etudes dans Ie passe a cause des diverses

applications potendelles dans Ie domaine du genie [1-10]. Tous ces travaiix ont

ete discutes recemment dans un livre par Nield et Bejan [11].

La plupart des investigations disponibles sur ce sujet portent sur Ie cas

d'un milieu poreux sature par un flmde electriquement non conducteur, ce qui

est Ie cas dans la plupart des situations pratiques. Recemment, Ie probleme de

la convection hydromagnetique a ete considere par un certain nombre d'auteurs.

Lorsqu'un fluide electriquement conducteur est sujet a un champ magnetique,

1'ecoulement de ce dernier est retarde par 1'interaction entre Ie coiirant

electrique et Ie mouvement. Malgre les nombreuses applications possibles, tres

peu d'etudes ont considere la convecdon natureUe dans un milieu poreux en

presence d'un champ magnetique. Ce genre de situation se rencontre par

exemple dans les regions geothermales ou la croute terrestre se comporte

comme un milieu poreux. En metaUurgie, la solidificadon de la structure peut

etre considerablement amelioree par im malaxage electromagnetique du metal

liquide. Lors de la solidification, les dendrites a 1'interface du front de

solidification peuvent etre considerees comme une region poreuse.

L'interaction d'un champ magnetique externe avec des courants convectifs

dans un milieu poreiix a ete consideree en premier par Ra 's et al. [12, 13].
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Ils ont etudie I'influence d'un champ magnetique horizontal constant sur la

convection naturelle dans un milieu poreux borde par deux plaques verdcales

mfinies. Le cas d'un milieu poreux borde par ime seule plaque a egalement ete

considere par ces auteurs. Singh et Dikshit [14] ont etudie la convection dans

Ie cas de 1'ecoulement de Couette d'lm liquide electriquement conducteiir dans

un milieu poreux. Des solutions exactes pour les champs d'ecoulements ont ete

obtenues en tenne des parametres de base du probleme. Kumar Jha et Prasac

[15] ont considere Ie mouvement impulsif d'une plaque verticale bordant un

milieu poreux. L'effet des differents parametres sur 1'ecoulement du fluide etait

discute. Une analyse de 1'influence du courant de HaU sur la convection

natiirelle au sein d'un inilieu poreux borde par une plaque verticale a ete

effectuee par Takhar et Ram [16]. Un champ magnetique intense etait impose

selon un angle a avec la direction verticale. L'influence des courants de Hall siir

1'ecoulement etait considere pour differentes valeurs de a. Recemment, Ni et

aL [17] ont analyse Feffet d'un champ magnetique sur la convection naturelle

au sein d'une cavite verticale. Des resultats numeriques, en terme de la vitesse

et du nombre de Nusselt, ont ete presentes afin de mieux comprendre 1'mfluence

du phenomene electromagnetique sur 1'ecoulement d'un fluide dans im milieu

poreux. II a ete demontre par ces auteurs que pour des grandes valeurs de Ha.

1'effet du champ magnedque etait de retarder 1'ecoulement dans Ie milieu poreux

d'une maniere similaire au cas d'une matrice poreuse beaucoup moins

permeable.

Dans la presente etude, on examine 1'effet d'un champ magnetique sur

la convection naturelle dans une cavite inclinee contenant im milieu poreux

sature par un fluide electriquement conducteur. Les cotes de la cavite sont
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maintenus a temperature constante alors que les bouts sont isoles

thermiquement. Un champ magnetique uniforme est applique

perpendiculairement aux parois chauffees. Le milieu poreux est isotropique et

peut etre modelise selon la loi de Darcy. Les equations adimensionnelles sont

derivees et il est montre que les parametres de base du probleme sont R, Ie

nombre de Rayleigh, Ha Ie nombre de Hartmann magnetique, A Ie rapport de

forme de la cavite et 0, 1'inclinaison de la cavite.

Une solution analytique approximee est developpee pour Ie regime de

couche limite dans une cavite verticale. Une analyse de stabilite lineaire est

presentee afin de determiner 1'effet de champ magnedque sur Ie nombre de

Rayleigh critique marquant Ie debut de la convection dans une couche

horizontale chauffee pour Ie bas.

Dans Ie cas general d'une cavite inclinee, une etude numerique de ce

probleme a ete conduite. La methode utilisee est basee sur la formulation en

volume de controle proposee par ataakar [19]. Dans cette technique, on

integre les equations de base sur une petite region appelee volume de controle.

Chaque volume est associe avec im point discret sur lequel des variables telles

que la fonction de courant, la vitesse et la temperature peuvent etre calciilees.

Un schema de type loi en puissance a ete adopte pour la fonnulation des termes

de convection-diffusion. Les equations discretisees resultantes ont ete resolues

iterativement en appliquant 1'algorithme de Thomas. Dans la procedure

numerique, on determine tout d'abord Ie champ de temperature a partir de

1'equation d'energie. Ensuite, la fonction de coiirant est obtenue en resolvant

1'equation de quantite de mouvement en udlisant Ie champ de temperature.
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Finalement, Ie champ de vitesse est determine a Faide de la fonction de courant.

A partir de la solution numerique, il est demontre que 1'application d'lm champ

magnetique modifiait considerablement les champs de temperatiire et de vitesse.

Les relations entre Ie taux de transfer! thermique global, decrites par Ie nombre

de Nusselt moyen et les parametres de base, sont presentees. 11 est observe que

Ie nombre de Nusselt moyen decroit avec im accroissement du nombre de

Hartmann. On demontre qu'un champ magnetique peut etre utUise pour

controler la convection dans une cavite.

En resiime, 1'effet d'un champ magnetique transversal sur la convection

naturelle dans une cavite poreuse inclinee, saturee par un fluide electriquement

conducteur, a ete etudie analytiquement et numeriquement. Les principales

conclusions de cette etude sont:

1° Dans Ie cas d'une cavite verticale chauffee par Ie cote {e = 90°), il

a ete montre qu'une simple analyse dimensionnelle pouvait

predire correctement Ie comportement asymptotique du champ de

vitesse dans la Umite R -^ oo. On a egalement obtenu, pour Ie

regime de la couche limite, la dependance du nombre de Nusselt

avec S, A et Ha explicitement en utilisant la methode integrale

proposee par Sim kins et Blythe [4]. L'expression resultante,

Nu=0.51|R/A(l+Ha2)| a ete validee avec des resultats

numeriques obtenus pour des cavites ayant des rapports de forme

A= 4 et 8.

2° L'effet d'un champ magnetique sur la convection de Benard, dans



une couche poreuse chauffee par dessous, ff =180°, a ete

considere. Le nombre de Rayleigh critique pour 1'apparition de la

convection a ete predit, en utilisant la theorie lineaire de la

stabilite. Il a ete trouve que Ie nombre de Rayleigh critique est

donne par

R^=(l+ Ha2 +1 )\r2 ; (a =7T(Ha2 + I)1/4)

de fa^on a ce que lorsque Ha = 0, i.e. en 1'absence d'un champ

magnetique, les formules ci-dessus se reduisent a

R. =47T2 a =TT

qui sont les residtats classiques obtenus dans Ie passe par

La wood [23]. L'effet d'un champ magnedque est done de

stabiliser la couche poreuse et un nombre de Rayleigh cridque

superieiu" est necessaire pour engendrer les mouvements de

convection.

La convection supercridque au sein d'lme cavite chauffee par Ie

bas a ete etudiee numeriquement. Typiquement, on a considere

Ie casA= 6, R = 500 et differentes valeurs de Ha. En 1'absence

d'lm champ magnetique, i.e. quand Ha = 0, les resiiltats

numeriques montrent que six ceUules ayant approximadvement la

meme dimension occupent la couche poreuse. En augmentant Ha
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deO a 4, ila ete trouve que les six ceUules precedentes etaient

remplacees par huit cellules. Cette tendance est en accord avec

les resultats de la theorie de la stabilite selon laquelle Peffet du

champ magnetique est de decroitre la longueur d'onde des cellules

de convectionfa = -n- (Ha2 + l)v4). On a egalement remarque que

1'intensite de la convection etait considerablement modifiee par la

force de trainee induite par Ie champ magnetique. En augmentant

Hade4 a5, il a ete trouve que dix cellules occupent alors la

couche poreuse. Pour cette situation, la convection est tres faible

et Ie transfert de chaleur est presque enderement fait par

diffusion.

3° L'effet d'un champ magnetique sur Ie transfert de chaleur au sein

d'une cavite inclinee a ete egalement etudie. Ce probleme, en

Pabsence d'un champ magnetique, a ete considere recemment par

Calta 'rone et Bories F241 et Mova et al. [25]. II a ete montre

par ces auteurs que, pour des angles proches de zero, Ie mode

prefere de circulation est multicellulaire alors que pour des angles

d'inclinaison plus grands. Ie mode prefere est imicellulaire.

L'angle de transition entre les ecoulements iinicelliilaires et

multicellulaires depend du rapport de fonne de la cavite et du

nombre de Rayleigh. Ce phenomene a egalement ete observe

dans la presente etude poiir Ie cas Ra = 500 et A = 4. Dans Ie

cas d'une cavite horizontale (ff = 180°), les resultats numeriques

indiquent la presence de quatre cellules de convection. En

decroissant 1'angle d'inclinaison jusqu'a 175°, Ie nombre des
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cellules de convection passe alors a cinq cellules. Ce dernier type

d'ecoulement peut etre maintenu jusqu'a ^ = 140°. Pour des plus

petits angles d'inclmaison 1'ecoulement devient unicellulaire.

Dans la region de transition entre les ecoulements multiceUulaires

et unicellulaires, des effets d'hysteresis ont ete observes dans la

presente etude. Ainsi, lorsque 1'angle d'inclinaison est augmente

de e = 140° vers 9 =180°, 1'ecoulement pour un 0 donne ne

correspondait pas exactement aux resultats decrits precedemment.

Par exemple, 1'ecoulement uniceUulaire observe poiir^=140°

peut etre maintenu jusqu'a 5=170°. Pour 8=171°, un

ecoulement unicellulaire englobant deux cellules secondaires est

observe. En augmentant encore 1'angle d'inclinaison, les resiiltats

niuneriques indiquent la presence de trois cellules de convection

dans la cavite, ce type d'ecoulement se conservant jusqu'a

ff =180°. Ce genre de phenomene ne semble pas avoir ete

observe dans Ie passe. Dans Ie cas ou un champ magnetique est

present, ce dernier a im grand effet sur 1'angle de transition entre

les ecoulements imicellulaires et multicelliilaires. Par exemple,

pour une caviteavec A =4etR== 500, 1'ang^e de transition estff =171°

quand Ha = 0 mais il est ^ = 131° quand Ha =3.
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Chapter 1

INTRODUCTION

Natural convection in a rectangular porous cavity heated from the side has

received considerable attention in recent years because of its applications in many

engineering areas. A number of studies analyzing this problem model the system

as a two-diinensional layer framed by two horizontal adiabatic walls and two

vertical isothermal walls. These studies have reported extensive theoretical [1],

[2], [3], [4], numerical [5], [6], [7] and experimental [8], [9], [10] results with regard

to the flow and heat transfer characteristics of the porous layer. The state-of-the

art has been summarized in a recent book by Nield and Bejan [11].

Most of the existing studies are concerned with the natural convection heat

transfer through a porous medium saturated by an electrically non-conducting

fluid, which is the case in most practical situations. Recently, the equally impor-

tant problem of hydromagnetic convective flow of a conducting fluid through a

porous medium has been investigated. When an electrically conducting fluid is

subjected to a magnetic field, the fluid motion induces an electric current and,

in general, the fluid velocity is reduced due to interaction between the electric

current and the motion. Very little has been done on the natural convection of

electrically conducting fluids in porous media in the presence of a magnetic field in

spite of its potential applications. For instance, the study of the interaction of the

geomagnetic field with the fluid in the geothermal region, where the earth's crust
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serves as a porous medium, is of great importance to geophysicists. Also, in metal-

lurgical applications involving continuous casting, the solidification structure can

be improved by electromagnetic stirring to obtain a fine-grained structure to get

better final mechanical properties. For dendritic solidification of alloys, dendrites

in the mushy zone can be viewed as a porous medium.

The interaction of an external magnetic field with convection currents in a

porous medium was apparently first considered by Raptis et al. [12], [13]. They

studied (Raptis et al. [12]) the influence of a horizontal constant magnetic field

upon the free convective flow through a porous medium occupying a semi-infinite

region of the space bounded by two vertical infinite surfaces. Raptis et al. [13]

further extended their investigation to study the free convection flow of a conduct-

ing fluid through a porous medium bounded by two horizontal plates. Under the

assumption that the magnetic Reynolds number is very small, so that the induced

magnetic field can be considered negligible, closed form solutions were obtained

for the velocity field in terms of the Grashof, permeability and magnetic parame-

ters. Singh and Dikshit [14] studied the free convection of the Couette motion of

an electrically conducting fluid through a porous medium. Exact solutions for the

velocity field, skin-friction and the volume flux of the fluid were obtained in terms

of the governing parameters of the problem. Kumar Jha and Prasad [15] studied

the heat source characteristics on the free-convection and mass transfer flow past

an impulsively started infinite vertical plate bounding a saturated porous medium

under the action of a magnetic field. Effects of various parameters on the velocity

field were extensively discussed. An analysis of the effects of Hall current on hy-

dromagnetic free-convectlve flow through a porous medium bounded by a vertical
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plate has been theoretically investigated by Takhar and Ram [16]. A strong mag-

netic field was imposed in a direction which is perpendicular to the free stream

and makes an angle a to the vertical direction. The influence of Hall currents on

the flow was studied for various values of a. Recently, Ni et al. [17] investigated

the effect of an electromagnetic field on steady natural convection in a vertical

enclosure filled with a porous medium. Numerical results in terms of velocity and

teniperature plots and Nusselt number distributions were discussed in order to

understand the electromagnetic phenomena during the flow in porous media. It

was demonstrated that for a large Hartmann number the electromagnetic field

retards the flow in porous media just like a less permeable porous matrix.

In the present study, an investigation is conducted to examine the effect of

an electromagnetic field on two dimensional natural convection in an inclined slot

filled with an isotropic porous medium saturated by an electrically conducting

fluid. The magnetic field is applied perpendicularly to the long side walls of the

cavity which are differentially heated. In the special case of a vertical enclosure

an analytical Oseen-linearized solution for the boundary-layer regime is presented.

When the cavity is inclined the problem becomes more complicated and is studied

through numerical simulations. The influences of the governing parameters on the

fluid flow and heat transfer characteristics are well established.



Chapter 2

MATHEMATICAL MODEL

2. 1 PROBLEM DISCRETIZATION

The physical model considered in this paper is shown in Fig. 1. A two-

dimensional inclined rectangular enclosure of height H and width L is filled with

a porous medium saturated by an electrically conducting fluid. The two long side

walls are maintained at temperatures Tff and Tc respectively, while the short end

walls are thermally insulated. A constant magnetic field B' is applied normal

to the heated sides of the cavity. The fluid in this enclosure experiences the

combined mechanism of buoyancy, due to heat transfer through the heated walls,

and the interaction of the magnetic field with the convective motion. The magnetic

Reynolds number is assumed to be small so that the induced magnetic field can

be neglected compared to the applied magnetic field.

2. 2 DIMENSIONAL GOVERNING EQUATIONS

The equations governing the conservation of mass, momentum, energy and

electric charge transfer for laminar flow are written as

^

K

v. y = o

'^V =-^pf +pg^-J'xB'

V . VT/ = aV2T/

(2. 1)

(2. 2)

(2. 3)



V. 7'=0 ; J'=(T(-Vcf>+V'xBf) (2-4)

These equations corespond to having the porous medium modeled accord-

ing to the Darcy's law. The porous medium is assumed to be hydrodynamically,

thermally and electrically isotropic and saturated with a fluid that is in local

thermodynamic equilibrium with the solid matrix. Both viscous dissipation and

Joulean energy dissipation are neglected.

In the above equations V, T' and p' are the intrinsic velocity, temperature

and pressure of the fluid respectively. The terms J' and B' in the momentum

equation are the intrinsic current vector and the magnetic field, respectively. The

cross product of J' and B' represents the electromagnetic reduced momentum

force, called the Lorentz force, on the liquid medium, which is produced by the

interaction of the current and the magnetic field. The term (j) stands for the

electric potential and -V^> for the associated electric field.

As discussed by Garandet et al. [18], for a two-dimensional steady state sit-

uation, Eq. (4) for the electric potential reduces to V2^ = 0. The unique solution

is V^ = 0 since there is always somewhere around the enclosure an electrically

insulating boundary on which 94>/9n = 0, which means that the electric field

vanishes everywhere. The Lorentz force then reduces to a systematically damping

factor.

In Eq. (2. 4) V and B' can be expressed as

V'=(u', v', 0)

5/=(Bo, 0, 0)

(2. 5)

(2. 6)



then

i j k

V'xB' = ^ ^ 0

^ 0 0

= -B'yv'k

Substituting Eq. (2. 7) into Eq. (2. 4), we have

6

(2. 7)

// =<7(-V^+V/xB/)

= a(V x Bf)

= -aB'oV'k

=(0, 0, -<75ou/)

(2. 8)

In Eq. (2. 2), the term J' x B' can be expressed as

i j k

J'xB' = o 0 -aB'^v'

^ 0 0



= -B,(aB,v')J

= -<TB'2, v'J

=(0, -(7B^/, 0)

(2. 9)

Using the Boussinesq approximation:

p = /,o[l - /3(T/ - T'c)} (2. 10)

Eq. (2. 2) in x direction can be expressed as

-u' =-^- ̂ [1 - /3{T' - T^cos0 (2. 11)

Eq. (2. 2) in y' direction can be expressed as

^ Qp' i/2../^l =-^-, - p^g[\ - ^(T/ - T'c)}sznQ - aB^v
K 9y

(2. 12)

The derivative of Eq. (2. 11) with respect to y' yields

tiQu' 9V , _ _^T^
¥w=-W5y'JrMli~-Sy:c'"'> (2. 13)

While the derivative of Eq. (2. 12) with respect to x is

^9vf _ 92p' , , ^9T'_, ^^9v!
¥w = -&w + ''"»^s'rf - <TB'»g?Qx' >9x'

(2. 14)

Combining Eq. (2. 13)-Eq. (2. 14), we obtain

s--^+ aB11^ = -^^sm<> - a^// 9u' ^ji
K9y' VJ< '9x'

9T'

Oy'~
(2. 15)
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Due to the definition of velocity:

,
^^ . ,,^-^

u' = ^7 ; v'
Qy' 9x'

(2. 16)

Substituting Eq. (2. 16) into Eq. (2. 15), the momentum equation can be

written as

^. (^--^=-^ --^) <-)
K Qy'~i ' yK Qy'

The continuity equation and energy equation can be writen as

9u' . 9v'
~Qx'+~9y' (2. 18)

, 9T' , , 9T' , Q2r , Q2T\
u'~^~ + "'7T- == a(^~^ + ~^~^)

9x' ' ~ 9y' "^9x'
(2. 19)

The boundary condition of Eqs. (2. 16-2. 19) are

^'=0, T'=Tc on x'=0

^'=0, T'=TH on x'=L (2-20)

^'=0, ^=0 on y'=±H/2

2. 3 DIMENSIONLESS GOVERNING EQUATIONS

Following dimensionless scales are used in the dimensional gov rning equa-

tions (2. 16-2. 19),



X'

X=V y=~-L
u'

u = v =
alV u~a/L

(2. 21)

^^., r=^
a TH

V T'1

V Tt

It is readily shown that the dimensionless governing equations can be ex-

pressed as

9u 9v

^x+9y

(^^)^^=_^^-^0)
ix

v2r=^5T-^^
9y 9x 9x 9y

where i/» is a dimensionless stream function defined as

(2. 22)

(2. 23)

(2. 24)

u =
9^

9y
v = -

91;
9x

(2. 25)

In the above dimensionless equations the Darcy-Rayleigh number R and the

Hartmann number Ha are

R = KgpL /^T'/afV

Ha = By aK/fi

(2. 26)

The non-dimensional boundary conditions over the walls of the enclosure are
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^=0, T=0 on x=0

,/, = 0, T=l on x=l (2-27)

^=0, :-=0 on y= ±A/2

where A = ff/L is the cavity aspect ratio.

2. 4 DEFINITION OF THE NUSSELT NUMBER

The overall heat transfer rate across the enclosure is expressed by the average

Nusselt number defined as

Nu =q̂'
^
kH iL QT'

Qx'
dy'

lr'=0

kH^T'/L

A/2 QT\

-A/2 OX\^Q

(2. 28)

1 y^/2 QT
A J-A12 9x

dy

The present problem is dependent on the parameters R, Ha, A and 8. Ranges

of these physical parameters are selected to explore the effects of the magnetic

field on natural convection in porous media.



Chapter 3

NUMERICAL APPROACH

This chapter will provide an overview of the role and nature of the numerical

techniques in terms of control volume approaches. This will be followed by a de-

tailed description of a well-tested numerical procedure that can handle the present

problem as well as a wide variety of engineering problems.

The foregoing governing equations (2. 22-2. 25) can be considered as partic-

ular cases of the general differential equation

V. (zT/) = V. (V/) (3. 1)
convective tenn diffusive term

where / is the general dependent variable which can represent velocity component,

temperature and mass fraction. When a particular meaning is associated with /,

the expressions are to be obtained by comparing the actual conservation for the

chosen variable with the general equation, Eq. (3. 1).

3. 1 DOMAIN DISCRETIZATION

The numerical method to be described here is based on the control-volume

formulation proposed by Pantankar [19]. The discretization equations (which are

the algebraic counterparts of the differential equations) are derived by integrating

the governing differential equation over a small region called the control volume.

Each control volume is associated with a discrete point at which the dependent

variables such as streamfunction, velocity and temperature are to be calculated.
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Figure 2 shows a rectangular calculation domain subdivided into control

volumes. The dashed lines denote the faces of the control volumes; these lines

are drawn parallel to the two coordinate directions x and y. The grid points are

placed at the geometric centers of the control volumes. The filled circular dots in

Fig. 2 represent these grid points, and the solid lines joining them are called the

grid lines. A typical control volume around point P is shown shaded. The grid

point P communicates with the four neighboring grid points through the four faces

of the control volume. These points are denoted by E, W, TV, and 5, implying

the east, west, north, and south directions with respect to the center point P. It

can be seen from Fig. 2 that the grid lines are extended to the boundaries of the

calculation domain, and additional boundary grid points are placed at the ends

of the grid lines. Such grid points on the boundary are shown by open circles;

B denotes a typical boundary grid point. A typical near-boundary internal grid

point is shown as 7, and its control volume is also shaded. For this control volume,

one face coincides with the boundary of the calculation domain, and the boundary

grid point B is placed at the center of this face. That both a control-volume face

and a grid point are located at the boundary of the calculation domain makes

it easy to treat different boundary conditions; the control volume around I can

easily accept a given value of / at the boundary.

It is not necessary that the widths of all the control volumes be equal nor

do the successive grid points have to maintain the same spacing between them.

Indeed, a nonuniform grid spacing is often desirable, because it enables one to

deploy a given number of grid points in an optimal manner. In general, a fine grid

is required where the variation of / is steep, and a coarse grid is sufficient where
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/ varies rather slowly.

3. 2 DISCRETIZATION OF THE GENERAL EQUATION

The basis of the numerical method is the conversion of the general differential

equation, Eq. (3. 1), into an algebraic equation relating the value of / at grid point

P to the values at the neighboring grid points. This is done by integrating Eq.

(3. 1) over a typical control volume (Fig. 3) and approximating various terms in

the integration so that they are expressed in terms of the grid-point value of /.

The resulting discretization general equation becomes

apfp == 0'EfE + awfw + "N/TV + as f s + b (3. 2)

3. 2. 1 Discretization of the Momentum Equation

The momentum equation (2. 23)

(1^,,^^=-^^-^)' Qx2 
' 

9y2 ~~^9x"" 9y

can be expressed as

9

9x

^(1 + Ha2)^- + RTsznO
Qx

^^-RTc^
9y [Qy

=0

or

where

9J. ^9^_,
~9x^~9y~'

J^ = (1 + Ha2)^ + RTsinff
J,, =^-~ RTcosO

(3. 3)

(3. 4)

(3. 5)

(3. 6)
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Integrating Eq (3. 5) over the control volume shown in Fig. 3, we obtain

where

e - </w ~T </n - t/s - (3. 7)

J. = [(1 + Ha2)^- + RTsznB Ay

(1+Ha2) ^E-^P , 1
(^)e

+ ̂ RsznO{TE + Tp} Ay

\(l+Ha2)^}-+RTsin0
IX

Ay

Jn =

(1 + Ha^p^w + ̂ Rszn0{Tp + T^)| A,
'x)vi

^-RTcas0\ Aa;

I^N-^P 1

Js =

(^)n
9^

- ^Rcos6(TN + Tp} Aa;

- RTcos0 Aa;
.

9y

^s-iRCO'^+TS^X

(3. 8)

The resulting discretization momentum equation becomes

aptj}p = OE^E + avv^iv + dN^N + 05^5 + b (3. 9)
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where coefficients ap, a®, a^, a^v, as and 6 are given by:

O.E =

aw =

(1 + Ha2)^y
(^)e

(1 + Ha2)^y
(^).

ON =

as =

Aa;

(U:
A,r

(^),

ap = OE + aw + QN + a-s

b = ^R [(TEsinQ - Twsin8)^y - (TNCOSO + Tscose)^x]

3. 2. 2 Discretization of the Energy Equation

(3. 10)

The energy equation (2. 24) is

92T 92T 9T . 9T
+-^-^ =u^~ +u^- (3. 11)

It can be rewriten as

or

A f.. rr 9T\^9_ (^ _ 9^
3. [UT-^)+ay[VT-^,

QJ. QJ,

=0

+^=0

where Jx and Jy are given by

9x Qy

^=^-
1̂x

9T

J'=VT-ui

(3. 12)

(3. 13)

(3. 14)
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Integrating Eq. (3. 13) over the central volume shown in Fig. 3, we have

Je-J^+Jn-J. =Q (3. 15)

The continuty equation (2. 22) is

9u , 9v

9x Qy

Integrating the continuity equation over the control volume as

So, we have

!:!:(^QdId'-°

UeAy - Uu, Ay + UnAa; - u, A.r = 0

It can be written as

F^-F^+F^-F^O

where

Fe = Ue^V

Fu, = u^Ay

Fn = Un^X

F, = u, Aa;

Mutiplying Eq. (3. 19) by Tp, we have

FeTp - F^T, + F^ - F,Tp = 0

(3. 16)

(3. 17)

(3. 18)

(3. 19)

(3. 20)

(3. 21)
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From Eq. (3. 15)-Eq. (3. 21), we have

(Je - F,T,) - (J, - F^Tp) + {Jn - F^T,} - (J, - F^p) = 0 (3. 22)

Je - F^Tp = OE{Tp - TE)

^ - F^Tp = aw[Tw - Tp}

^ - FnTy = a^(^ - TN}

J, - F,7p = as(Ts - Tp)

(3. 23)

The resulting discretization energy equation becomes

apTp = asTa + a-wTw + OAT TW + asT.s' (3. 24)

where coefficients aEiCi'WiO'N-iQ's and ap are given by

aE=D, A(\Pe\)+max(-F^O)

aw = D^A(|P^|) + max{F^ 0)

ON = -DnA(|Pn|) + maa:(-Fn, 0) (3. 25)

as=D, A(\Ps\}+max{F^O)

ap = OE+ a,w +QN+ el's
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where coefficients D^Dw, Dn, Ds, Pe, Pw, Pn and P, are given by

Ay
De=~^
D^=

£>n=

Ay
(^).
Aa-

Wn
Aa;

D^
9y)

(3. 26)

p. =-^
re=^

Pw =
w

p ^ _".

p. =^
rs=^

Table 3. 1 The function A(|P[) for different schemes

Scheme

Central difference

Upwind

Hybrid

Formula for A( I P|)

1-0. 5[P1

max(OA - O. K>\P\)

Power law maa;(0, (1 - 0. 1 |P|)5)

Exponential \P\l[exp{\P\) - 1]

(3. 27)
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The definition of A(|P|) depends on the different choice of interpolation

scheme for / calculation over the control volume considered. Expressions for

A( |P I) are listed in Table 3. 1.

For the present work, we found that the power-law scheme provide an ex-

tremely good approximation.

3. 2. 3 Discretization of the Velocity

Based on the definition of velocity

Q^
Qy '

Q^
9x

the velocity u and v at the point P are given by

(6y), Un + (6y)^U,
up= (^+(U

(^)^Ve + (^)^w
Vp=

(^)e + (^)z

where

Ur,. =

u, =

Ve. =

(3. 28)

(3. 29)

(3. 30)

^N-^P

(^)n
.^p-^s

(^),
^P -^E

(^)e
^W -^P

(^).

Numerical solutions of the full conservation equations are obtained using the

control-volume finite difference method described by Patankar [19]. A power law
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scheme is adopted for the convection-diffusion formulation. The discretized equa-

tions obtained are solved iteratively, using a line-by-line application of the Thomas

algorithm. The numerical procedure starts with determining the temperature field

T by solving the discretization energy equation (3. 24). Next, the discretization

momentum equation (3. 9) is solved for ̂  using a known temperature distribution.

Finally, the velocity components are evaluated, for points that lie on the faces of

each elementary control volume, using Eq. (3. 29).

3.3 BOUNDARY COF'DITIONS SETTING

With reference to Fig. 2, it can be seen that the grid is a control volume

around each internal grid point of both temperature, stream function, and veloc-

ity components (u and u). We can write a corresponding discretization equation

for this such as Eq. (3. 2). This equation can be regarded as an equation for de-

termining fp. For a near-boundary control volume such as the one around grid

point I in Fig. 2, the discretization equation will contain the boundary value /g

as one of the neighbors. If /B is known, no additional information is needed.

If the MX x NY grids are used, we have boundary conditioins setting as

below.

T{^])=0,

T(MX, 7)=1,

r(^2)=r(z, i),

j=i,..., 7vy

j=i,..., 7vr

i=2, ---, MX

T(i, NY-l)=T(i, NY), i=2, ---, MX
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^(1, ;-)-0, j=l, ---, NY

^MXJ)=0, j=l, ---, NY
(3. 31)

V>(z, l)=0, i=l, ---, MX

^(i, NY)=0, i=l, ---, MX

At bounderay i =1 or i= MX, u = 0. At bounderay ;' = lorj = NY,

v=0.

3.4 CALCULATION PROCEDURE

As indicated in the foregoing sections, the general calculation procedure is

based on the solution of the general / equation. It should be mentioned here

that it is in some sense necessary to use under-relaxation factor for the dependent

variables and other auxiliary quantities to meet the requirement of convergence.

Thus,

/ = Q/new + (1 - ")/<old (3. 32)

Of course, the value of a appearing in Eq. (3. 32) need not be the same, nor is it

necessary to use the same value of a for every grid point.

Although different forms of under-relaxation promote convergence, there is

no unconditional guarantee that the iterative solution procedure will always con-

verge for all kinds of nonlinearities and interlinkages. Also, there are no general

formulas for choosing the optimum values of the under-relaxation factors. To
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this extent, obtaining converged solutions for different problems remains an art.

With sufficient experience and insight, one is normally able to devise an under-

relaxation procedure that produces a converged solution. But a successful outcome

may sometimes be preceded by an experience of divergence.

Prior to calculations, checks were conducted to validate the calculation pro-

cedure by reference to the flow of a vertical pordTis enclosure. In the limiting

case of no magnetic field (Ha = 0), some of the cases considered by Shiralkar et

al. [6] were reproduced. In general it was found that essentially identical flow

and temperature patterns as well as Nusselt number were obtained. For instance

when R = 500 and A = 5. 0, an overall Nusselt number of 5. 02 was obtained in

the present study while that reported by Lauriat and Prasad [20] was 4. 92. As an

additional check on the accuracy of the results the convergence of the numerical

solutions was checked by performing overall energy conservations.

Uniform mesh spacing was used in the x-direction and y-direction. Trial

calculations were necessary in order to optimize computation time and accuracy.

Convergence was verified by employing coarser and finer grids on selected test

problems. During the program tests, 61 x 41, 61 x 61 and 81 x 81 grids were used.

Because of minor differences fless than 1%') and to save on computation cost, the

results presented here are obtained with 61 x 41 for a cavity with an aspect ratio

A = 4 and 61 x 61 with A = 8. The criterion used for the iterative convergence is

t, jnew Jt,;
max

\fi, jold\
< Tf (3. 33)

were /, j stands for temperature and stream function and rj- has been taken as

10-4 for ̂  and 10-6 for T.
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RESULTS AND DISCUSSION

In this section the results of the numerical study are discussed in order to un-

derstand the natural convection of an electrically conducting fluid in an inclined

porous enclosure in the presence of a magnetic field. The non-dimensional param-

eters are the Rayleigh number R, the Hartmann number Ha, the aspect ratio A

and the inclination angle Q. In the present study A = 4, 6 and 8. Computations

are carried out for R ranging from 2x 102 to 5x 103, Ha ranging from 0 to 10

and 0° <, 0 <ISO°. Changes in the field characteristics due to combined effect of

buoyancy and applied magnetic field are discussed in detail. EiFects of the mag-

netic field on the average Nusselt number are also discussed. First, the case of a

vertical cavity will be considered. Then, the case of a horizontal layer heated from

below will be studied. Finally, we will Investigate the influence of the inclination

of the layer on the present problem.

4. 1 VERTICAL LAYER HEATED FROM THE SIDES

We consider the influence of a magnetic field on flow and temperature distri-

butions within a vertical enclosure [Q == 90°). Figures 4a-d show typical contour

maps of stream function and temperature obtained numerically for R = 500,

A == 4 and various values of Ha. In all these graphs the increments between

adjacent streamlines and isotherms are 6t^> = t^max/^-0 and ST = 0. 1 where tpmax

is the maximum value of the stream function. The influence of a magnetic field
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on flow and temperature distributions is apparent from these figures. In the ab-

sence of a magnetic field the flow and temperature fields of Fig. 4a are similar

to the results obtained in the past by many investigators (see for instance Nield

and Bejan [11]). Thus the flow field comprises a unicellular flow of relatively high

velocity, circulating around the entire cavity. Due to boundary layer effects the

temperature field is characterized by sharp drops in temperature near the vertical

walls. It is interesting to note that, if the magnetic field is relatively strengthened

the flow circulation is progressively inhibited by the retarding effect of the electro-

magnetic body force. Thus the maximum intensity of circulation is ̂ max = 31. 069

for Ha =0 but is only z^max = 0. 619 for Ha = 10. For large Ha, Fig. 4d indicates

that the convection is almost suppressed and the isotherms are nearly parallel to

the vertical wall, indicating that a quasi-conduction regime is reached. Finally, it

is observed from Fig. 4 that, although the thicknesses of the vertical boundary

layers increase with Ha, the opposite effect is observed for the flow upon the hori-

zontal walls. Thus, the flow pattern in Fig. 4d is characterized by a weak vertical

flow but a very strong horizontal flow through very thin hydrodynamic boundary

layers near the horizontal walls.

Figures 5 and 6 show the vertical velocity profiles and temperature profiles

respectively at mid-height of the enclosure for R = 500, A == 4 and various values

of Ha. In both graphs the results are presented only forO < a; < 0. 5 due to

the centro-symmetry of the problem. Since the porous medium has been modeled

according to the Darcy's law the fluid is allowed to slip on the solid boundary, as

indicated by Fig. 5, 6. In fact, independent of Ha, the fluid velocity is maximum

on the wall and then drops back to zero in the core region of the cavity. The
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suppression of the velocity held by the magnetic field is demonstrated in Fig. 5. It

is clear that with the increase in Ha the vertical velocity is considerably decreased,

specially in the vicinity of the solid wall. The effect of Ha on temperature profiles

is depicted on Fig. 6. In the absence of a magnetic drag (Ha = 0), the convective

motion within the cavity is maximum since the only resistance to the flow within

the porous media is due to the presence of the solid matrix. A maximum quantity

of heat is extracted from the wall as indicated by the relatively high temperature

gradient prevailing in this area. However, as the strength of the magnetic field is

progressively increased the retarding effect caused by the Lorentz's force becomes

gradually more important and adds to the bulk frictional drag induced by the

solid matrix to slow down the convective motion. As a result relatively less heat

is removed from the wall where the temperature gradient decreases accordingly.

Thus, for Ha = 3, convection has been almost completely damped by the magnetic

field (see Fig. 5) and the resulting temperature distribution is now very close to

the pure conduction regime shown as a dotted line in Fig. 6.

In general, the quantities of interest involved in the present problem are

related in so complicated a way that would not allow estimations of their orders

of magnitudes by a scale analysis. However, for a vertical cavity, for the limiting

case of boundary layer flow regime, an order of magnitude estimates can be derived

on scaling grounds.

In the boundary layer regime, i.e., when -R » 1, most of the fluid motion is

restricted to a thin layer S' along each vertical wall. Recognizing S' and H as the x

and y' scales in the boundary layer region of interest {S' « H) the conservation



26

equations (2. 23) and (2. 24) require the following balances

(1 + Ha2)^ ~ R^- (4. 1)

AT AT
r^

V~A^~V (4. 2)

where 6 = (S'/H) is the dimensionless thickness of the horizontal boundary layer,

and AT is the dimensionless temperature difference across the boundary layer.

Obviously, from the thermal boundary conditions, Eqs. (2. 27), AT ~ 1.

Solving the balance equations for v and 6 one obtains

S ~ [A(l + Ha2)/R]l/2 (4. 3)

v ~ R/(l + Ha2) (4. 4)

The order of magnitude of the velocity component u is obtained from the

continuity equation (2. 22) as

u^v^r. [R/(A{l+Ha2))}1/2 (4. 5)

The scale for the stream function can be obtained from Eq. (2. 25) as

V'~[^A/(l+ffa2)]1/2 (4. 6)

The total heat transfer rate from one side wall to the other is given by

g' ~ kH^J- (4. 7)
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The average Nusselt number, defined as the total heat transfer over the pure

heat conduction through the cavity, has the following scale

q' kHAT'/S'
Nu = - =

1 Rll2
^ - kH^T'/L " AV2 (1 + Ha2)1/2

in which ̂  = kH^T'/L is the heat transfer in the pure-conduction limit.

(4. 8)

In the absence of a magnetic field (Ha = 0) the above scales reduce to those

predicted by Bejan [21] while studying the boundary layer regime within a porous

cavity heated isothermally from the sides. The above results are expected to

be valid only when the vertical boundary layers are slender (S' « H), i.e., for

R/(l+Ha2) » 1. Also, the vertical boundary layers must be distinct (S' « L}

which requires that [R/(l+ Ha1}}1!2 » A1/2.

The boundary-layer approximations to the governing equations can now be

obtained from the results of the above order of magnitude analysis. When the

following dimensionless variables are used

.--
Î

u'lA
u" =

l2=

af

". ^ ^-^z
a/

... _ 

v'12 ^_TI - ^

^=a7Z Tt= AT/ (4. 9)

LH

R/{l+Ha2}

the approximate forms of Eqs. 2. 23 and 2. 24 can be obtained as

9v* 9T*
Ox* Qx*

,
QT* , ^r* 52r*

u*:-+v*-
9x^ Qy^ 9x*2

(4. 10)

(4. 11)
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Defining the boundary-layer variables as (Gill, [22])

r*=To(y*)+$(^, ^)
(4. 12)

where $ and ^

tions

^=, /,o(2/*)+^(^, y*)

0 as a;* -> oo, we can establish the necessary boundary condi-

at a-* = 0, </'* = 0 r*-o
(4. 13)

at ^-. oo, ^=^o(y*) T*=To(!/*)

In the above equations ̂ o(y*) and To{y*) are the dimensionless stream func-

tion and temperature distribution within the core of the cavity.

The dimensionless nonlinear governing equations (4. 10)-(4. 11) and the bound-

ary conditions (4. 13) are exactly the same as those derived by Weber [1] and Simp-

kins and Blythe [4] while studying boundary layer flows within a porous layer in

the absence of a magnetic field (Ha = 0). The analytical results obtained by

Simpkins and Blythe [4], on the basis of an integral relation approach, will be

used here since they proved to be in excellent agreement with numerical solutions

of the boundary layer equations. Translating their results in our notation it is

readily found that, for the present problem, the average Nusselt number is given

by

NU=^A(1RH^1'1 (4. 14)

Figure 7 shows the dependence of the Nusselt number Nu on the Rayleigh

and Hartmann numbers. Results are presented for 5 x 102 < -R< 5x 103for
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which a boundary layer flow regime prevails. The analytical results, Eq. (4. 14),

are continuous lines; numerical results obtained for A = 4 and 8, shown as solid

symbols, are seen to agree well. In the absence of a magnetic field, Eq. (4. 14)

reduces to Nu = 0.51 (R/A)1/2 as predicted by Simpkins and Blythe [4]. For this

situation, the numerical results obtained in the past by Lauriat and Prasad [20]

for A = 5 are also indicated in the graph for comparison.

Another view of the effect of Ha on the heat transfer is found in Fig. 8 where

Nu is plotted as a function of Ha for R = 200, 500 and 1500. The numerical

results, obtained for A = 4, are depicted by the solid lines while the dotted

lines represent the boundary layer regime, Eq. (4. 14). For a given Rayleigh

number, when Ha is relatively small, the flow is in the boundary layer regim

and the numerically predicted Nusselt number is in good agreement with the

analytical solution. The boundary layer regime prevails up to a given value of

Ha above which this regime ends due to the progressively retarding effect of the

electromagnetic body force. As the value of Ha is made larger the strength of the

convective motion is progressively suppressed and the boundary layer regime is

followed by the asymptotic and conduction regime for which Nu-> 1. Naturally,

the Hartmann number ranges for asymptotic and conduction regimes are also

extended as R is made larger.

4. 2 HORIZONTAL LAYER HEATED FROM BELOW

The effect of a magnetic field on the Benard convection in a horizontal layer

heated from below {0 = 180°) will be now considered. For this situation there is

a critical Rayleigh number below which the fluid is at rest and heat transfer is by
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pure conduction only. Since we have not found in the literature a linear stability

analysis of the influence of a magnetic field on the Benard flow within an infinite

horizontal porous layer heated from below we include a brief outline here. The

problem is self adjoint so that the principle of exchange of stability holds. Thus,

the time derivative in the governing equations does not need to be considered.

The linearized local form of Eqs. (2. 23)-(2. 25) for small perturbations about the

conductive state are

82u . Q2u ^92T
a9^ +9y2 = 

~ W

V2T=u

(4. 15)

(4. 16)

where the superscript ' indicates perturbations from the pure conduction state

and a = (1 + Ha2). The above equations must satisfy the following boundary

conditions:

u=T =0 at x= 0,1 (4. 17)

The solution to Eqs. (4. 15)-(4. 17) is obtained by assuming that

=U(x)eiav f=T{x)eiay (4-18)u

Substitution of Eq. (4. 18) into Eqs. (4. 15) and (4. 16) and eliminating U

from the resulting equations we obtain

a0IV - a2(a + l)en + a46 = Ra20 (4. 19)

This equation admits solutions of the form 0 = Csin(mry) where C is an

arbitrary constant and n an integer so that the boundary condition, Eq. (4. 17),

is satisfied.
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Substituting 0 into Eq. (4. 19) it is readily found that the assumed flow is

neutrally stable when

R.r=
an47T4 + a2(a + l)n27T2 + a4

a'
(4. 20)

so that the minimum value occurs at n = 1 and ORcr/Qa = 0, that is, when

R. =(l+ Ha^\)\2 , (n=l, a = TT^a2 + 1)1/4) (4. 21)

In the absence of a magnetic field, i.e., when Ha = 0, the above results

reduce to

^^47T2 , (ra=l, a-7r) (4-22)

which are the classical results obtained in the past by Lapwood [23]. Figures 9a-d

show typical streamlines and isotherms obtained numerically for A= 6, jR= 500

and various values of Ha. In the absence of a magnetic field, i.e., when Ha = 0, it

is seen from Fig. 9a that six cells of approximately equal size and intensity occupy

the width of the porous layer. The shape of the cells is observed to be skewed by

the strong convection, .<pm ax 
= 15.40, resulting from a relatively high R considered

here. The large distortion of the isotherms in Fig. 9a is also an indicator of the

intensity of the convection within the fluid layer. A step increase in the strength

of a magnetic field from Ha = 0 to 4 results in the response as shown in Fig.

9b. The six-cells mode obtained for Ha = Q is now replaced by a eight-cells

pattern. This trend is in agreement with the linear-stability theory, Eq. (4. 21),

according to which the effect of the magnetic field is to decrease the wavelength

of the incipient cells (cf = 7;(Ha2 + 1)1/4). Also, the strength of convection is

considerably decreased by the drag induced by the magnetic field, as indicated by
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a weak distortion of the isothermal lines and the value of the maximum stream

function which is now only ^maa; = 3. 03. As the Hartmann number is further

increased, up to Ha = 5, ten-cells of approximately equal size and intensity are

seen to occupy now the width of the cavity. For this situation the isotherms of

Fig. 9d indicates that the convective regime is very weak. In fact this situation is

very close to the purely diffusive regime which, in an infinite porous layer, would

occur according to Eq. (4. 21) when Ha > 6 and R = 500.

Figure 10 presents relationship between the average Nusselt number and the

Hartmann number for the case with A = 6 aiid R == 500. Naturally the heat

transfer is maximum in the absence of a magnetic field since the convection is

maximum for this situation. In general, Nu decreases steeply with the imposition

of an external magnetic field since this latter reduces considerably, as discussed

earlier, the strength of convection. At Ha ̂  3. 6, a slight increase of Nu is observed

which results from the transition in the number of cells within the cavity from six

to eight. At Ha ̂  4. 5 another bifurcation from a eight-cell to a ten-cell pattern

occurs. Afterwards, the convective motion is more and more inhibited by the

magnetic drag. At Ha ̂  5. 0 a bifurcation from a ten-cell to a twelve-cell pattern

occurs, but the convection is now so low (Nu ~ 1) that it does not affect the heat

transfer.

4.3 INCLINED CAVITY

The effect of a magnetic field on the natural convection heat transfer within

a tilted cavity will be now discussed. This problem, in the absence of a magnetic

field, has been considered recently by Caltagirone and Bories [24] and Moya et
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al. [25]. It was demonstrated by these authors that, at tilt angles close to zero,

the preferred mode of circulation is multiple cell while at greater tilt angles, the

preferred mode is single cell. The transition angle from multiple to single cell

convection patterns was shown to depend on the aspect ratio and the Rayleigh

number. This phenomenon is illustrated in Figs. 11-13 where the streamlines

are shown forA= 4, i? = 500 and various values of the inclination angle Q.

When the cavity is horizontal (9 == 180°) Fig. lla shows that four cells develop

with alternate directions of rotation (Benard's cells). As the inclination angle 0 is

decreased to 175° a five cell convection is obtained as illustrated by Fig. lib. At

this stage a remark must be made with regard to the numerical procedure followed

here. In order to speed up the computational procedure the converged velocity

and temperature fields, obtained from a numerical run with a given inclination

angle 0, were used as initial conditions for another run with a small change in

the tilt angle. In this way it was found that the five cell convection prevails (Fig.

lie, d) up to 0 > 140 . For smaller tilt angles an evolution from multiple cells

to single cell convection is observed. Thus, for 0 = 140°, the flow in Fig. lie

is characterized by a single cell where all the fluid inside the porous material

circulates in the same sense and the streamfunction has only one extreinum value.

In the transitional region between multiple and single cell convection, flow

hysteresis effects were observed in the present study. Thus, when the inclination

angle increased from 0 = 140° back to 0 = 180° the flow field did not revert to the

previous solutions for the same 9. For instance, the single cell solution observed

for e == 140° could be maintained np to 0 = 170°. Increasing 9 to 171° it is found

that the flow consists now of one main cell with secondary cells developing within.
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This type of flow pattern, illustrated in Fig. 12a, has been observed in the past

by Moya et al. [25]. As the tilt angle is increased further three cells develop with

alternate directions of rotation and are maintained up to 0 = 180° (Fig. 12b).

Similar phenomena have been observed on various values of Ha (Fig. 14-17). It is

noted that, this flow "hysteresis" has not been observed in the past. In addition,

the flow pattern change is slower with increasing Ha. Fig. 13 shows the patterns

of isothermal lines and streamfunction of Ha = 3 with increasing the tilt angle

up to 0= ISO0.

The average Nusselt number Nu and maximum streamfunction i^max for

aspect ratio of four and for several Hartmann numbers is shown in Figs. 14, 15 as

a function of the tilt angle. As the inclination Q approaches 0° the Nusselt number

tends toward unity, indicating that the heat transfer is mainly due to conduction.

This is expected since 0=0° corresponds to the case of a cavity heated from

the top which causes no convection as the density gradient is stable. Most of the

change in the heat transfer occurs in the range 0° < 0 < 90° where the cavity

is heated from the top. Also, it is observed that, for a given inclination angle,

the Nusselt number decreases with an increase of the Hartmann number since the

convection is considerably decreased with the application of the magnetic field.

As the inclination angle is increased above 90°, the enclosure starts to be heated

from the bottom. Each curve passes through a maximum which depends upon

Ha. As demonstrated by Moya et al. [25] the peak in Nusselt number occurs

approximately at an inclination angle for which the most vigorous convection flow

is developed. As the inclination angle is increased further the curves are seen

to pass through a second maximum. Contrary to the case of the first maximum
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which was obtained for a single cell mode, the second maximum is due to the

appearance of a multiple cell convection. The transition angle from single to

multiple cell convection patterns depends strongly upon the magnetic field. For

instance, a transition from one-cell to three-cell pattern occurs at 0 = 171° when

Ha = 0 but it is at about 0 = 141° when Ha = 1.7. Therefore, the second peak

in Nusselt number takes place at a lower transition angle when the Hartmann

number is increased. Also, Fig. 14 indicates that, for Ha = 3, not only there is a

transition from one-cell to three-cell pattern at 0 c^ 131° but a second transition

from three-cell to five-cell pattern occurs at 0 ^ 143°. Naturally, due to the flow

hysteresis discussed before, the transition angles obtained when the inclination

angle is decreased from 6 = 180° towards 0° are different from those of Fig. 14.

From the numerical results (not presented here) it was found that the transition

from multiple to single cell convection occurred in general at lower angles. For

instance, when Ha = 0, a transition angle 6 c^ 140° was obtained. Finally, it must

be mentioned that the occurrence of the first maximum, for the single cell mode,

was not affected by the hysteresis effect.

Figures 16 and 17 show the average Nusselt number Nu and maximum

streamfunction 4>max respectively for aspect ratio of four and for several Hart-

mann numbers with decreasing tilt angle from 0 = 180° to 0 = 0 .



Chapter 5

CONCLUSIONS

The effect of a transverse magnetic field on buoyancy driven convection in an

inclined rectangular porous cavity, saturated with an electrically conducting fluid,

is studied both numerically and analytically. Main conclusions of this study are

summarized as follows:

1° In the case of a vertical cavity heated from the side {6 = 90°) it is shown

that a simple dimensional analysis can predict correctly the asymptotic behaviour

of the velocity field in the limit R-> oo. Also, in the boundary layer regime, the

dependence of the Nusselt number on R, A and Ha is obtained explicitly following

the integral approach of Simpkins and Blythe [4]. The resulting expression, Nu =

0. 51[R/A(l+Ha2)}l/2 was confirmed by comparing the numerical results obtained

for cavities with aspect ratios A = 4 and 8.

2° The effect of a magnetic field on the Benard convection, within a porous

layer heated from below 6 = 180° has been considered. The critical Rayleigh

number for the onset of convection has been predicted, using a linear stability

theory. For supercritical convection, the adjustement of the roll pattern, after a

change in the Hartmann number, is illustrated for a given Rayleigh number and

a cavity with an aspect ratio A = 6. Results for the heat transfer as a function of

Ha are presented.

3° The effect of the orientation angle on the present problem was found
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to be considerable. The transition angle from single cell to multiple convection

pattern is considerably affected by the imposition of a magnetic field. Thus for a

cavity with R = 500 and A = 4 the transition angle \s 6 = 171 when Ha = 0 but

it is 6> = 131° when Ha = 3.0.
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Fig. 4 Computed contour maps of the streamfunction and isothermal lines
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Fig. 9 Computed contour maps of the streamfunction and isothermal lines
for a horizontal cavity heated from below



52

Co))) lot (f(b))l ra |o))l |((o))l |o))| |((o)

c)

(o))l M\ M\ ((fo))) Kfo))) (((o))l |((o)}| (((o))) {((o))l (((o)

d)

Fig. 9 (Continual)



53

6 cells 8 10-j-12

Nu

0 5 10 15 20 2530
Ha2

Fig. 10 Nusselt number Nu versus Hartmann number Ha



<^'

^.

^

^

^ b)

(0

c)

Fig. 11 Computed contour maps of the streamfunction and iso hermal lines

for an inclined cavity ^



^ (S
' i <

-1
-

S3 c; E"

ss



56

a)
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Fig. 12 Computed contour maps of the streamfunction and isothermal lines

for an inclined cavity
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Fig. 14 Effect of inclination angle on the Nusselt number for A= 4, R= 500

and various values of the Hartmann number
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