
Titre:
Title:

Automatic generation of NC tool path programs for multi-axis mould
manufacturing

Auteur:
Author:

Abbas Vafaeesefat

Date: 1994

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Vafaeesefat, A. (1994). Automatic generation of NC tool path programs for multi-
axis mould manufacturing [Mémoire de maîtrise, École Polytechnique de
Montréal]. PolyPublie. https://publications.polymtl.ca/32777/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/32777/

Directeurs de
recherche:

Advisors:
Marek Balazinski, & François Trochu

Programme:
Program:

Non spécifié

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/32777/
https://publications.polymtl.ca/32777/

UNIVERSITÉ DE MONTRÉAL

AUTOMATIC GENERATION OF NC TOOL PATH PROGRAMS FOR

MULTI-AXIS MOULD MANUFACTURING

par

Abbas V AF AEESEFAT

DÉPARTEMENT DE GÉNIE MÉCANIQUE

ÉCOLE POLYTECHNIQUE

MÉMOIRE PRÉSENTÉ EN VUE DE L'OBTENTION

DU GRADE DE MAÏTRE ÈS SCIENCES APPLIQUÉES (M.Sc.A.)

(GÉNIE MÉCANIQUE)

JANVIER 1994

@ droits réservés de Abbas V AFAEESEFAT 1994.

National Ubrary
of Canada

Acauisitions and
Bibliographic Services Branch
395 Wellington Street
Ottawa, Ontario
K1AON4

Biblioth6que nationale
du Canada

Direction des acquisitions et
des services bibliographiques

395, rue Wellington
Ottawa (Ontario)
K1AON4 Vour tile Volie rt ence

Our tile Noire rWSrenca

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF fflS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BmLIOTEIEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRTOUER
OU VENDRE DBS COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DBS
PERSONNE INTERESSEES.

THE AUTHOR RETAD^S OWNERSHIP
OF THE COPYRIGHT IN fflS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT fflS/HER
PERMISSION.

L'AUTEUR CONSERVE LA PROPRffiTE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. N1 LA THESE N1 DES
EXTRATTS SUBSTANTffiLS DE CELLE-
CI NE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

ISBN 0-315-97129-0

Canad'sC

UNIVERSITE DE MONTREAL

ECOLE POLYTECHNI UE

Ce memoire intitule:

AUTOMATIC GENERATION OF NC TOOL PATH PROGRAMS FOR

MULTI-AXIS MOULD MANUFACTURING

Presente par: Abbas VAFAEESEFAT

en vue de 1'obtention du grade de :MaTtre es Sciences Appliquees (M. ScA)

a etc dument accepte par Ie jury d'examen constitue de :

M. FORTIN Clement, Ph.D., president

M. BALAZINSKI Marek, Ph.D., membre et directeur de recherche

M. TROCHU Frangois, Ph.D., membre et codirecteur

M. MAYER Rene, Ph.D., membre

SUMMARY

The need for applying advanced CAD/CAM methods to manufacture

.
sculptured surfaces arises in moulds, stamping dies, forging tools, and tooling shapes.

Most moulds consist of a combination of complex curved surfaces that are difficult

and expensive to produce. Moreover, the manual programming is a task very long

and tedious and it is very difficult to control the tolerances of machined surfaces. The

growing industrial demand motivated the development of computer-aided systems for

the design and manufacture of those free-form surfaces. To address this problem, an

algorithm for multi-axis NC tool path generation on sculptured surfaces is presented.

The algorithm can be divided in 3 parts: surface creation, tool path generation, and

post-processor.

The free-form surface is modeled parametrically by dual kriging. Kriging is

simply the best linear unbiased estimator of a random function. A tool path is defined

by a list of cartesian coordinates that indicate the successive positions of a tool for

machining the surface. A series of profiles on the surface are machined via tool

movements. To reduce tool wear and milling time, the algorithm is driven by the goal

of minimizing the total number of tool motions while maintaining a specified overall

milling tolerance.

Using the cartesian method, cutting curves are defined by the intersection of

a series of parallel planes and the kriged surface. The next step is to select a series

of points from the list of intersection points so that they provide the given tolerance.

Moreover, because of the shape of the tool and surface, some material is left

between two cutting planes called cusp height. Therefore, the distance between two

cutting planes must be calculated to provide the given tolerance.

The interference between the surface and the tool is a critical problem in the

tool path generation. This problem might occur because the curvature of the surface

is less than the curvature of the tool, or because of the effect of tool shape especially

with the ball end-mill. Direct gouge elimination is developed for this problem because

it is precise and fast.

When machining the die cavities, rough cutting can be done using the zigzag

or spiral methods. The surface can then be machined in 3-axis and 5-axis machining

for semi-finishing and final finishing steps respectively.

The selection of the tool shape and size, and the choice of the direction of the

tool axis are two important points in complex surface machining. Tool selection

depends on the shape of the surface, the specified tolerance, the time of machining,

etc, which are all steps that require good machining experience. The direction of the

tool axis also depends on the given tolerance, the shape of the tool and surface, and

the collision problem.

In the 4 and 5 axis machining cases, the gouging due to the rotation of tool

axis and the collision between the tool and the surface are the critical problems. The

direction of the tool axis must be determined such that the cusp height is minimum

without any collision between the tool and surface. To solve the gouging problem,

the distance between two point is divided in to parts until it provides the given

tolerance.

VI

The rotational angles of each axis and the new coordinate of the points should

be determined. This is done in post-processor and depends of the machine tool.

There are four general types of machine tools and equations are obtained depending

of the configuration of each machine.

To validate the algorithm, a complex surface and two turbine blades are

machined in 3-axis mode. Moreover, a convex and a concave surface are machined

in 5-axis. The results show that the algorithm can provide the given tolerances

without any interference and collision between the tool and the surface. Further work

will be required to study the effects of tool shape and the direction of tool axis to

machined region, use of an expert system for selection of tool, simulate a workpiece

and visualise the final shape and use an environment to simplify development work.

ABSTRACT

An algorithm for multi-axis NC tool path generation on sculptured surfaces

is presented where the free-form surface is modeled parametrically by dual kriging.

This interpolation method offers several advantages since it permits to obtain

piecewise linear and "spline" interpolations as particular cases and least square

methods as a limit case. Non-constant parameter tool contact curves are defined on

the part by intersecting parallel planes with the part model surface. Seven essential

elements of this algorithm are introduced: creation of the kriged surface, tool path

generation with direct gouge elimination, tool pass interval adjustment, collision

avoidance, rough cutting process, simulation and post-processor. The whole system

is implementable on a standard micro-computer.

RESUME

Plusieurs types de surfaces parametriques sont couramment utilisees dans

1'industrie. Les surfaces de Bezier, les splines et les B-Splines Rationnelles Non-

Uniformes en constituent des exemples. Le krigeage dual parametrique est une

nouvelle methode tres puissante pour representer des surfaces complexes. Les moules

et etampes, les pales de turbines et les carrosseries d'automobile sont tous des objets

typiquement modelises avec des surfaces complexes.

La programmation manuelle d'une machine outil est une tSche longue et

fastidieuse surtout pour usiner des surfaces complexes. Lorsque la programmation

manuelle est possible, il est difficile de controler les tolerances et de verifier les

interferences possibles entre 1'outil et la surface a usiner.

Pour resoudre Ie probleme, un programme fonde sur 1c krigeage dual des

surfaces parametriques a ete developpe. Le programme calcule les trajectoires d'un

outil a 1'aide de la methode des plans paralleles. La trajectoire de 1'outil est la liste

des coordonnees cartesiennes qui indiquent les positions successives de 1'outil pour

une sequence d'usinage de la surface. Le mouvement de 1'outil sur la piece brute

decoupe une serie de profils de la surface permettant de la sculpter. Les positions de

1'outil sont calculees a partir des coordonnees des points a usiner. Ces points

proviennent de la geometric de la surface krigee.

Deux methodes peuvent 6tre envisagees pour obtenir une suite de

coordonnees d'usinage. La plus simple consiste a definir les points en faisant varier

les parametres u st v de la surface. La deuxieme methode est fondee sur

DC

1'intersection d'une serie de plans paralleles avec la surface parametrique generee.

La courbe generee par 1'intersection de chaque plan avec la surface parametrique

peut etre definie par un grand nombre de points dependant de la resolution utilis^e

pour 1'algorithme d'intersection. Si un grand nombre de points est envoy^ b la

machine outil, 1'usinage prendra beaucoup de temps. II faut done bien choisir certains

points sur la courbe d'intersection qui permettront d'usiner la surface avec une

precision voulue.

Plusieurs methodes ont etc developpees pour choisir ces points. La methode

employee calcule la longueur d'un vecteur projete sur 1c plan definie par Ie point de

depart et Ie point qui donne la deviation maximale. Ce deuxieme point sera choisi

de fagon a ce que la longueur du vecteur projete ne depasse jamais la tolerance

specifiee par 1'utilisateur. La methode employee ici a 1 avantage de fournir une tres

bonne approximation de 1'erreur.

La distance entre deux plans doit etre bien calculee pour donner un fini de

surface tel que defini par la tolerance donnee. Cette distance represente la hauteur

du sommet entre deux trajectoires d'outil (cusp en anglais). La distance entre les

plans d'intersection, depend du rayon de 1'outil, du type d'outil (cylindrique,

spherique), de 1'angle entre 1'axe de 1'outil et Ie vecteur normal de la surface, de la

tolerance donnee et du rayon de courbure. Cette distance est calculee de fa§on a ce

que 1'erreur ne depasse jamais la tolerance donnee pour chaque point sur la courbe.

Les points generes par 1'intersection des plans paralleles definissent les points

de contact entre 1'outil et la surface. II faut ensuite calculer, a partir de chaque point

et de sa normale, la position relative de 1'outil. Cette information sera ensuite

transmise a la machine outil a commande numerique. Mais auparavant, il est

important de verifier que la trajectoire definie est libre d'interferences ou collisions.

Des problemes d'interference entre 1'outil et la surface peuvent survenir lors

de la selection des points de la trajectoire. Premierement, la trajectoire de 1'outil

prevue entre deux points est imprecise car 1c rayon de 1'outil n'a pas ete pris en

consideration. Par exemple, dans 1c cas d'une surface convexe, la distance r^elle est

plus grande que la distance calculee.

Le deuxieme probleme apparait lorsque Ie rayon de courbure de la surface est

plus petit que Ie rayon de 1'outil. Ceci peut entramer un usinage trap fort dans

certaines zones. Pour eviter ce probleme, plusieurs methodes sont presentees. La

methode qu'on a developpee consiste a verifier a chaque point de tel sorte que la

distance entre Ie centre de 1'outil et la courbe soit toujours plus grand que la distance

entre Ie centre de 1'outil et la frontiere du volume de 1'outil. Dans Ie cas ou une

interference est decelee, un point voisin est choisi, pour lequel il n'y aura pas

d'interference.

Dans Ie cas ou 1c moule est une cavite, il faut d'abord faire un degrossissage

pour enlever les materiaux a 1'interieur du moule. Les methodes "zigzag" et "spiral",

qui sont faciles a interpoler avec la surface krigee, ont ete developpees. Ces

methodes sont fondees sur 1'intersection d'un serie de plan horizontaux et paralleles

Xl

avec la surface parametrique. La courbe generee par 1'intersection de chaque plan

sera definie par Ie krigeage. Les points a usiner ensuite peuvent etre calcules par la

methode "zigzag" et "spiral".

Le choix de 1'outil est un probleme critique lors de 1'usinage en mode 4 et 5

axes. Le type de 1'outil doit correspondre avec la forme de la surface, la precision

voulue, et Ie temps d'usinage. D sera done necessaire d'avoir un systeme expert pour

determiner la forme de 1'outil.

Avec les machines outil a 3 axes, il est possible d'usiner dans les trois

directions d'un systeme de reference orthogonal. L'outil se deplace dans la direction

de 1'axe Z et la table se deplace dans les directions des axes X et Y mais il est

impossible de changer 1'orientation de 1'outil. Le contr61e de 1'orientation de 1'axe de

1'outil apporte une plus grande accessibilite a toutes les regions de la piece et peut

apporter une reduction du temps d'usinage.

Les machines outils a 5 axes ne sont pas limitees pour 1'usinage comme Ie sent

les machines a 3 axes. Ils ont deux degres de liberte de plus, ce qui permet de

contrfiler 1'orientation relative de 1'outil. Sur ces machines, la table et 1'outil peuvent

prendre differentes orientations. II est possible de tourner la piece de fagon a changer

1'orientation de 1'axe de 1'outil par rapport a la piece a usiner. Un autre avantage est

de pouvoir usiner les regions d'une surface inaccessible en 3 axes.

II existe plusieurs methodes de choix d'orientation de 1'axe d'outil en mode

XII

d'usinage en 5 axes. La plus simple consiste a orienter 1'outil dans la direction de la

normale de la surface, a condition qu'il n'y ait pas de collision entre 1'outil et la

surface. II existe plusieurs methodes pour eviter 1c probleme de collision. La m6thode

developpee previent les collisions a chaque position en verifiant une serie de points

qui parcourent la surface avec 1c volume de 1'outil. Lorsqu'une collision est d^cel^e,

1'outil est pivote graduellement de fagon a prendre une position orthogonale.

L'autre probleme lors de 1'usinage en mode 4 ou 5 axes est 1'interference entre

1'outil et la surface a cause de la rotation de 1'axe de 1'outil ou de la table de la

machine. Ceci est appele "lineairisation". Cette interference sera augmentee, si on a

plus de variation entre deux vecteurs successifs de 1'axe de 1'outil. Pour resoudre ce

probleme, des points intermediaires seront ajoutes jusqu'a ce que la tolerance

d'usinage soit satisfaite.

Les machines a 5 axes ont differentes configurations. Par exemple, les axes de

rotation peuvent etre autour des axes X et Y, X et Z, ou Y et Z. Pour usiner sur la

machine outil a 5 axes, les coordonnees des positions relatives de 1 outil et les

vecteurs d'orientation des axes de 1'outil sont necessaires. Avec cette information, il

est possible de calculer les rotations autour des deux axes. Les angles de rotation

doivent 6tres calcules par rapport au vecteur d'orientation de 1'outil. Apres ces

rotations, la position relative de 1'outil sera changee et devra etre recalculee.

Le programme de simulation developpe dans ce projet permet de visualiser

les points a usiner et les positions successives de 1'outil. II permet aussi de visualiser

Mil

Ie deplacement de 1'outil durant 1'usinage en mod 3 axes ou 5 axes. Ceci est tres

important car Ie temps de verification sur une machine outil est tres dispendieux.

Une fois que la trajectoire de 1'outil a ete verifiee avec Ie programme de simulation,

elle peut etre transferee a la machine outil pour 1'usinage.

Le programme a ete valide pour verifier les objectifs du projet. Des surfaces

krigees ont ete utilisees:

- un moule d'une bouteille, une surface complexe, et deux pales de turbine pour

usiner en 3 axes

- une surface concave et une surface convexe surface pour usiner en 5 axes

- une surface ondulee pour verifier 1'interference et la collision.

- deux surface pour mesurer la precision de surface usinee.

Le logiciel developpe permet de:

1. definir un trajectoire de 1'outil sur surface krigee.

2. assurer un rugosite globale avec la precision donnee.

3. assurer un trajectoire qui evite les interferences.

4. programmer Ie degrossissage, la semi-finition et la finition en 3, 4, 5 axes avec les

outils cylindriques, spheriques, et toriques.

5. simuler la trajectoire pour visualiser les resultats et sortir directement Ie

programme de machine-outil.

6. kriger un surface "offset" sans interference et marquer les endroits ou une reprise

XIV

d'usinage est requise.

Les prochains travaux tenteront de:

1. etudier les effets des differents outils et des differentes orientations de l?axe de

1'outil, et des rotations de 1'outil sur la region usinee.

2. utiliser un systeme expert pour Ie choix de 1'outil.

3. simuler la trajectoire avec une piece brute et visualiser la piece finale.

4. utiliser un environnement pour faciliter Ie travail.

ACKNOWLEDGEMENT

I would like to thank Marek BALAZINSKI and Frangois TROCHU, my

supervisor and co-supervisor, for their valuable comments which led to the

improvement of this project. I would like also to thank my wife and my little daughter

for their patience during my study.

CONTENTS

PAGE

SUMMARY iv

ABSTRACT vii

RESUME Viii

ACKNOWLEDGEMENT xv

CONTENTS xvi

LIST OF FIGURES XDC

LIST OF APPENDIX xxii

INTRODUCTION 1

DEFINITION 3

CHAPTER 1 SURFACE DESCRIPTION 7

1. 1 Kriging interpolation 7

1. 1. 1 Philosophy of kriging 8

1. 1.2 Dual kriging interpolation 10

XV11

1.2 Parametric curve modelling 12

1. 3 Parametric description of surfaces 13

CHAPTER 2 TOOL PATH GENERATION 18

2. 1 Tool path planning methods 19

2. 1. 1 Parametric machining method 19

2. 1. 2 Cartesian machining method 20

2. 2 Selection of CC points 21

2. 3 Convex interference 24

2.4 Gouge elimination methods 26

2. 5 Tool pass interval adjustment 32

2. 5. 1 Tool pass interval adjustment with ball-mill 33

2. 5. 2 Tool pass interval adjustment with end-mill 34

2.5.3 Distance between two planes 36

2.6 Milling in 3-axis machining 38

2. 6. 1 Zigzag fashion 39

2.6.2 Spiral fashion 39

2. 7 Tool-path generation for RFS 40

2. 8 Comparing tools and selecting the tool axis vector 40

CHAPTER 3 Multi-axis machining 46

3. 1 Multi axis machining problems 47

3. 1. 1 Collision avoidance 47

XV111

3. 1.2 Linearization of tool path 50

3. 2 Multi axis control machining 52

3.2. 1 4-axis control machining 53

3. 2. 1. 1 Four-axis control mode 54

3. 2.2 Five-axis control machining 55

3. 2.2. 1 Table-tilting types 56

3. 2. 2. 2 Spindle-tilting types 61

3. 2.3 5-axis rough cutting 71

ALGORITHM 73

SIMULATION 79

EXPERIMENTS 79

CONCLUSIONS AND RECOMMENDATIONS 83

BfflLIOGRAPHY 85

APPENDIX 92

LIST OF FIGURES

PAGE

Figure 1 A tool position 3

Figure 2 Relation between the adjacent points (inflection) 5

Figure 3 Example of kriging interpolation 12

Figure 4 Parametric surface 13

Figure 5 An example of a kriged surface 17

Figure 6 A rotational surface 18

Figure 7 The tool moves along constant parameter curves on a "fan-shaped

surface 20

Figure 8 Cutting plane and cutting curve definitions 20

Figure 9 Linear curve approximation 21

Figure 10 Estimation of cutting error 22

Figure 11 Initial chordal approximation approach for locating a chord with a

specified tolerance 24

Figure 12 Physical interference between tool and part surface. 25

Figure 13 Convex interference 25

Figure 14 Concave interference in concave relation 28

Figure 15 Adjusting TC points to eliminate gouge 30

Figure 16 Tool pass interval and cusp 32

Figure 17 Tool pass interval calculation 33

Figure 18 Cusp height resulting from end-mill on a convex surface 34

Figure 19 Cusp height resulting from end-mill on a plane surface 36

Figure 20 Projecting tool pass interval onto the cutting plane normal 37

Figure 21 Different contours on intersecting planes 38

XX

Figure 22 Zigzag machining 39

Figure 23 Spiral fashion 39

Figure 24 Spiral fashion with an island 39

Figure 25 Cutting plane and cutting curve definitions 41

Figure 26 The effective radius of an end-mill cutter inclined to a surface 42

Figure 27 Change in cutting speed of ball-end mill due to tool attitude 42

Figure 28 Intervals of a for different tool shapes. 44

Figure 29 Tool axis vector 45

Figure 30 Tool axis interference 49

Figure 31 Linearization for the 5-axis CNC milling process. 50

Figure 32 Linearization for the 5-axis CNC milling process. 52

Figure 33 4-axis configuration 53

Figure 34 4-axis scheme 54

Figure 35 Type 1: table-tilting machining centers [8] 56

Figure 36 Type 2: table-tilting machining centers [8] 57

Figure 37 Table-tilting type with a rotational table on a tilting one [8]. 57

Figure 38 Table-tilting type with a tilting table on a rotation one [8] 60

Figure 39 Fuced bed type of machine [8] 62

Figure 40 Spindle-tilting type with a rotation axis around z and y axis 65

Figure 41 Spindle-tilting type with a rotation axis around z and x axis 69

Figure 42 Number of depth of cut in rough cutting 72

Figure 43 Turbine blade 80

Figure 44 Convex surface 80

Figure 45 Concave surface 80

Figure 46 Curve relative to the tool positions without the interference

XXI

algorithm. 81

Figure 47 Curve relative to the tool positions with the interference

algorithm. 81

Figure 48 Five-axis machining without the collision algorithm. 81

Figure 49 Five-axis machining with the collision algorithm. 81

Figure 50 A concave surface with d= 0. 268 and a tool radius R=r=1. 0 82

Figure 51 A convex surface with d = 0.268 and a tool radius R=r==1. 0 82

LIST OF APPENDIX

Appendbc A : Rotate a frame about a vector 92

Appendix B : Reference manual of the LIBKNC library . 95

Appendbc C : Lists of programs: nckrige. c, nc.c, ncsimul.c 99

INTRODUCTION

The need for applying advanced CAD/CAM methods to manufacture

sculptured surfaces arises in moulds, stamping dies, forging tools, and tooling shapes.

Most moulds consist of a combination of complex curved surfaces that are difficult

and expensive to produce. The growing industrial demand motivated the development

of computer-aided systems for the design and manufacture of those free-form surface

cavities. Currently, sculpture surface modelling is one of the main fields of study in

computer-aided geometric design and manufacturing. Many sophistical surface

description methods have been developed for three dimensional sculptured surfaces.

Generally, these methods provide users with powerful interactive modification or

shape changing capability. The method based on dual kriging that is presented by F.

Trochu [9] is used to generate the surface model in this paper

With the development of NC technologies, multi-axis control NC machine

tools have been recently introduced on the market to complement the 3-axis NC

machines already in use. Multi-axis control permits to deal with workpieces of

complicated shapes, which cannot be easily machined by conventional 3-axis NC

machine tools. The use of 5-axis machining is likely to be increasingly accepted in the

light of higher efficiency and accuracy. Especially for machining sculptured surfaces,

multi-axis control tools permit saving on the machining time and polishing work

required to achieve a good finish. Some well-established tool control methods have

been introduced for multi-axis machining tool systems that are discussed in this paper

[14, 15, 16].

An algorithm for multi-axis NC tool path generation is presented in this paper.

This algorithm is composed of the eight main modules that are listed below :

1) creation of the kriged surface model.

2) definition of the cutting plane for a given cusp height

3) intersection between the parallel planes and the surface

4) selection of points which give specified tolerance without interference with surface

5) determination of the tool axis vector (in the case of 4 and 5 axis)

6) elimination of collisions

6) rough cutting (if necessary)

7) simulation

8) post-processing

First, the parametric equation of the sculptured surface is generated by dual

kriging. Then, the tool pass interval adjustment technique calculates the maximum

tool pass interval for a specified cusp-height tolerance. Intersection points are

obtained using intersection between a plane and the surface. The initial chordal

approximation method efficiently locates a good initial surface point to calculate the

exact tool motion. Meanwhile, the true machining error is calculated for a concave

or a convex surface. The direct gouge elimination technique works simultaneously

with these procedures. The tool axis vector is determined to give a good finish. The

collision between the tool and the surface is checked when machining in 4 and 5 axis

mode. Then, the angle of rotation about the axes of the machine and three

coordinate values of the tool center are calculated. To avoid errors that can cause

damage to the machine tool, the machining process is graphically simulated. Finally,

cutter locations are converted to the machine coordinate system.

DEFINITIONS

The following terms (some of which are not new) are introduced to avoid

ambiguities in later discussions.

Definition 1 (CC point, CC data, CC path, CL data, offset point)

v
We restrict ourselves to a

toroidal tool but the equations may

basically be adapted to other shapes.

As shown in Figure 1, a point r(u, v)

on the surface part 'touched' by the

tool during machining is called a CC

point (cutter contact point). Let n be

the unit normal vector to the surface

R

n

m

r(u, v) b
Part surface

at r(u, v), then the pair (r, n) is Figure 1 A tool position

called a CC data (cutter contact data). The tool center position is described by the

function P(u, v) defined as:

P(u,v) =r(u, v) +r . n(u, v) +(^-/") . m(u, v) (1)

where R is the tool radius, r is the radius of torus shape, and u and v are the surface

parameters and the vector m(u, v) is defined as (see Figure I):

^^ nW-V. <V,n^>
v'''~ \n(u, v)-V. <V, n(u,v)>

(2)

where Vis a unit vector representing the rotational axis of the cutter. In the case of

a ball-mill, R=r, and the offset point is described by

P(u, v)=r(u, v)+r . n(u, v) (3)

and in the case of end-mill r=0, the offset point is

P(u,v)=r(u, v)-^'- m(u, v) (4)

The bottom centre point b is the cutter reference point and is expressed as

b(u,v)=P(u, v)-r-V (5)

and the pair (b,V) is called a CL data (cutter location data). For a 3-axis NC

machine, V=(0, 0, 1). A sequence of line segments obtained by connecting CC points

sequentially (cutter touched) is called a CC path.

Definition 2 (convex, concave, and inflection relations)

Let (r,, n,) and (r,. , nj) be two adjacent CC data, then unidirectional relations

are defined as (see Figure 2):

CC point r; is convex to ry if (ry - /.;)«n; < 0

CC point r, is concave to r^ if (r, - r,-)-n, > 0

CC point r, is parallel to r if (r - r,)'n, = 0

p,

n,

B
i

n,
rj

Part surface

Fi

Figure 2 Relation between the adjacent
points (inflection)

Now mutual relations between two adjacent CC points are defined. Two CC points,

r; and r^., are said to be in:

. convex relation if they are convex to each other

. concave relation if they are concave to each other

. parallel relation if they are parallel to each other

. inflection relation if one is convex to the other and the other is concave to the first.

If one CC point is convex (concave) to the other and the other is parallel to the first,

they are said to be in a convex (concave) relation. If the CC point r is replaced by

its offset point P in the above definitions, the same relations between two adjacent

offset points, P, and Py , can be defined. For example offset point P, is convex to /»-

if (P. - P,) . n; < 0 and if Pj is also convex to P, , they are in a (mutual) convex

relation [1].

Definition 3 (sculptured surfaces)

In Numerical Control Machining, we come across two types of dimensional

surfaces, the analytical surfaces and the other non-analytical surfaces. A surface that

can be defined in (x, y, z) by a single equation is termed analytic surface. For these

surfaces, calculation of surface slopes, normals and curvatures is straightforward.

Every point on the analytic surface is precisely defined, so interpolation is not

necessary and the surfaces can be evaluated using analytic geometry.

Non analytic surfaces are defined through a grid of points in space and cannot

be defined by a single mathematical relationship. Non-analytic surfaces are otherwise

called sculptured or free form surfaces. The geometry of many surfaces such as

automobile bodies, aircraft structures, ship hulls, turbine blades, impellers and many

other industrial products fall into the category of sculptured surfaces.

CHAPTER 1

SURFACE DESCRIPTION

A major area of interest in integrated CAD/CAM is the design and

manufacture of sculptured surfaces. This has always presented difficulties for

manufacturing engineers. During the design phase , these surfaces have to fit a given

set of data points, and the whole surface should be smooth and continuous. In order

to produce such free form surfaces, various dies and templates with different model

curves are usually needed. Nowadays these dies and templates are still made

manually or by electrical discharge machining in many factories. A large number of

curved templates are required for prototype testing. Although the process is long and

consumes much material and labour, it gives surfaces of relatively low quality.

Many sophisticated surface description methods have been developed for three

dimensional sculptured surfaces. Generally these methods provide users with powerful

interactive shape modification chaining capabilities. The method of free form surface

employed here is based on dual kriging.

1.1 Kriging interpolation

Kriging is a statistical technique proposed in 1951 by Dr. Krige [3] for natural

resource evaluations. Later, Matheron [4] established the mathematical foundation

of the method. As presented in the mathematical framework of geostatistics, kriging

is simply the best linear unbiased estimator of a random function. In this section,

kriging will be briefly presented. First, the philosophy of method is exposed. Then the

basic equations of dual kriging interpolation are stated. Note that a complete

8

derivation of the basic kriging equ tions and the connection with dual kriging can be

found in the literature [9]. For the sake of brevity, the method is presented with X

denoting the position vector X =x, X = (x, y) orX == (x, y, z) for the ID, 2D and

3D cases, respectively.

1.1.1 Philosophy of kriging

The purpose of kriging is to estimate the value of a random function U(X) at

a specified location X = (x, y, z), given a set of measurements or samples U; taken

at positions X,, forl < i < N. The simplest estimation of U(X) can be obtained as

a linear combination of the data available [9]

»w=E^ W (6)

This means that u(X) is evaluated by a linear combination of the random variables

u(X,) at the observation points X;, l < i <N

u^=Y.N.i xiu^ (7)

The set of weights A; will be determined so as to minimize the squared variance of

the estimation error E{[U(X) - U*(X)]2}, where E [U(X)] denotes the mathematical

expectation of a random function, provided that the estimation based on formula (7)

is without bias. This last condition simply means that the expected values of U(X)

and U°i!(X) must be identical, i.e., E [U(X)] = E [U*(X)].

Kriging permits the construction of an approximate function u(X) that fits the

data points, i.e. such that

t/(X,)=[7, l^i^N (8)

In kriging, the random function u(X) is decomposed into the sum of two terms

U(X)=a(X)+b(X) (9)

where a(X) = E [U(X)] is called the drift. The second term b(X) represents a

stationary fluctuation, i.e., such that E[b(X)]=0. The drift can be represented by

polynomials of degree k (k integer > 0) or even by trigonometric functions. The drift

is said to belong to a linear subspace S spanned by M basis functions P, (X), 1 < 1

< M

flw=E?i an^) (10)

The choice of the drift is arbitrary. It represents the average behaviour of the physical

phenomenon. The more closely the drift follows the actual phenomenon, the better

becomes the kriging interpolator. The correction term b(X) is automatically adjusted

in kriging so that the interpolation model matches the data points.

10

1.1.2 Dual kriging interpolation

The fluctuation b(X) depends on the observation points X,. The greatest is the

distance between X and X,, the less should be the effect of sample j on the

interpolated value u(X). Hence it is reasonable to assume here that the correction

weights associated with the data points depend only on the euclidean distance | X

-Xj I , so the fluctuation term can be written as follows [9]:

b^=^b^\X-Xfi (11)

In kriging, K(h) is called the generalized covariance, such as for example K(h)=h, h2

In h, h . The basic dual kriging model can finally be written as

UW=^ atp^x)+^ WX-Xft (12)

Depending on the properties of K(h), the interpolation will be continuous or even

differentiable and, by construction, always matches the data points. All these

properties are interesting, especially for 2D or 3D interpolations, because a great

number of physical phenomena are better represented by smooth functions.

The M + N degrees of freedom a;, 1 </ <M, and b., 1 ^j ^ N, of the

dual kriging model (12) are determined by a system ofM+N linear equations called

the kriging system. A first set of N equations is readily obtained by specifying that the

interpolation matches the data points, but M additional equations are necessary to

11

identify the unknown coefficients in (9). These supplementary equations are called

the no-bias conditions. They consist in adding equations on the drift coefficients so

that a symmetric system of N + M linear equations is obtained (see reference [9]):

^ PW

^w 0

'N

a,

Mi

u.N

0

^ 0

(13)

The function K(h) is always chosen such that matruc [K] of general term k,j = K(|

X; - Xj [) is positive definite. The solution of system (13) yields the coefficients of

the interpolation model, hence permitting the evaluation of interpolated values by

(12) anywhere in the geometric domain. For example, the kriging equation in three

dimensions for a linear drift can be written as follows :

u(x,y)=a^a^, +a^a^Y^^ b^K(h^ (14)

where hj denotes the euclidean distance between the control point (x,y) and sample

(xj' Yi)

h^ (x-xy+(y-y?2^z-zf (15)

12

1.2 Parametric curve modelling

The geometric model is

defined in the three-dimensional

space of cartesian coordinates x, y

and z. The parametric equation of a

curve is defined by three functions

x(t)' y(t) anc^ z(t)- Dual kriging

permits to construct automatically

the equations of smooth parametric
Figure 3 Example

curves. For example, in the case of a interpolation

ia

12

11

10
»

t

7

I

I

«

1

a

1

0

Cubic covariance
(linear drift)

of kriging

linear drift and cubic covariance, the parametric equations of kriged curves can be

written as follows:

x(t)=a^a^^b^\\ y{t)=-, z0)=... (16)

where the parameters tj, 1 < j < n , denote an approximation of the curve length

calculated from tg = 0 by

^i^+[(^i-^)2+(y. i-y.)2+^. i-^2]2> ^UN-1
(17)

The coefficients a,, a^ and Z». arc obtained by requiring that the interpolation model

(16) fits the data points (see Figure 3)

13

x(f;)^;

y(^-)=y,

^^i

(18)

(19)

(20)

for 1 < i ^N and (2) by adding the no-bias conditions as in (13).

U Parametric description of surfaces

t;
t4

t,
^

t^t;

r(u, v)

y

If a deformable curve r =

r(s) is moving in a three dimensional

space (see Figure 4), the successive

positions of the curve generate a

surface, each point of which being

identified by its parameters on the

moving curve and at time t. Thus a
0

parametric equation of the form r =

r(u, v) describes a three-dimensional Figure 4 Parametric surface

surface, with the component functions x = x(u, v), y = y(u, v), z = z(u,v). A surface

consists of two profiles (i.e. A and 5), one is in v and other in u direction. Each

profile makes up a set of curves that moves in the space. The parametric equation

of each curve can be defined by equation (16). The parametric equations of a curve

of profile A in the direction of v with a linear drift and cubic covariance can be

14

written as follows:

x/s)=^+^+SLi 6JS -5;13 ' y/5)"-' z/s)=- (21)

or

K(\s^\3) -
1 s, b, x^ x^ x,,
1 s, b, ^ ^ ^

1 s/ . / = xn xff xu (l^^T) , (l^jsJ)

1 1

sl

1 I 0 0 ^o

5, I 0 0 a,

000

000

The equation (22) can be written as

(22)

{^}.{b}^ (23)

where [b] = {bi...b,...bi a.o a, }T

Solving for [b] gives

[6]=[^r1 ^. (24)

and substitution from (22)

x.j

[x^]T = [:.K<i \s-s, \ 3)... l .] [K,]-1 ^ , ty^)]r=.., [z^)j
... o...

T=... (25)

The parametric equation of a curve for a profile B with a linear drift and cubic

15

covariance can be written as follows:

x'^a^a^^b, \t-t, \\ y/^)=..., z/,(0=... (26)

or

1 f, B1 "1

K(\t, -t^) '', B,

1 1

{J

1 t, B,

00 ^o

00 A.

xii xa xn

'.V Ay A//

xu xij xu (1^1), (1^^)()

000

000

then

[<(Of=[-<I^J3)-l^[^]-1y , K,W=-'EZ/^
... o...

(28)

Considering the equations (25) and (28), we can write

x>j

x^t) = [...K<i\s-s^)... l s] [K,]-1

0 0

0 0

^(I^J3)

[V1

0 ... 0 1 00

0 ... 0 [00

It can be verified that

x(s,, t,) = P,, (s,) = x,,, forl ^ i^ landl ^j <J

1

t

, y(s, t)= ..., z(s, t)=

(29)

16

Generally, dual kriging permits to construct the smooth and differentiable equation

of a parametric surface as follows:

P, \ 0--0 ^(l^. l3)

P(s, t) = [... K(\s-s, \3) , P/5) ..] [^(/t)]-1 - - - [K,(h)}-1
0--. 0 I O-. O ?i(f)

(30)

where P,j(x, j, y,j , z,j), forl < i < 1, 1 ^j <J, area set of ordered data points that

define the surface

x(s,,t^

y^, t^yy

z(^, f,)=z,,

(31)

(32)

(33)

Dual kriging provides a general framework which incorporates several

interpolation techniques. For example when K^(h) = K,(h) = h, a piecewise linear

surface model is obtained. It can be shown also that kriging with K,(h) = ICt(h) = h3

and linear drift is equivalent to a bicubic spline interpolation. The shape function

K,(h) = K,(h) = h2 In h with a linear drift corresponds to a two-dimensional spline.

By changing K, and K(, a great variety of shapes can be represented in this general

framework. The method permits to represent simple and complex surfaces. For

example, Figure 5 shows a surface defined by four curves, and in Figure 6, you can

17

see a surface defined by the rotation of a curve around the x axis [7].

Figure 5 An example of a kriged surface

Figure 6 A rotational surface

CHAPTER!

TOOL PATH GENERATION

A tool path is a list of cartesian coordinates that indicate the successive

positions of the tool for machining a surface. A series of profiles on the surface are

machined via tool movements . The tool positions are calculated from the selected

points obtained from the kriged surface geometry. To reduce tool wear and milling

time, NC generation algorithms for parametric sculptured surfaces are generally

driven by the goal of minimizing the total number of tool motions while maintaining

a specified overall milling tolerance without any interference between the surface and

the tool. It is possible to follow a sculptured surface exactly. However, such a process

would be very computation intensive and would not be cutting under "optimum"

conditions.

In the cases of 4 and 5 axis machining, the direction of the tool axis is a critical

problem because this direction must be determined in such a way that the cusp height

will be minimized without any collision between the tool and the surface.

Various NC tool path generation algorithms have been described in the literature,

and many commercial CAD/CAM systems provide such capabilities. In this chapter,

the different methods that are employed in each step as well as the advantages and

the disadvantages of each method are discussed, and some new methods are also

proposed.

19

2.1 Tool path planning methods

There are many approaches to tool path planning. Two general methods are

presented in this section.

2. 1.1 Parametric machining method

Much of the current research focuses on the constant parameter approach for

locating tool contact curves on the surfaces of the part. This approach is generally

efficient because the tool contact curves are easy to retrieve from the surface

definitions. The drawback of this approach, however, is that the relationship between

the parametric coordinates and

the corresponding physical

(Cartesian) coordinates is not

uniform. Therefore, the accuracy

and efficiency of the constant

parameter approach for tool

path generation may vary

depending on the surface

geometry. A typical example of

this drawback is the

Figure 7 The tool moves along constant parameter
"fan-shaped" surface shown in curves on a "fan-shaped" surface

Figure 7. On such a surface

constant parameter curves are close to one another at one end, but much further

apart at the other. Of course, the curves could be generated with a bigger density

20

at the wide end of the fan, but this would result in an unnecessarily large number of

tool motions at the narrow end [2].

2.1.2 Cartesian machining method

The non-constant

parameter approach for NC tool

path generation does not suffer

from the problem of method 1.

Typically, cutting curves are

defined by the intersections of a
Cutting

set of parallel planes (cutting curve

planes) with freeform surface, as

shown in Figure 8. Users can

define any tooling direction for

each part without being limited

Cutting plane

Surface

by the surface parametrization. y,^e S Cutting plane and cutting curve
definitions

2.2 Selection of CC points

Normal machining errors in NC milling operation is due to the approximation

of surface curves by linear tool motions. Many efficient path generation methods,

which bridge between the surface description and tool control methods, have been

Chordal deviation

n.

21

proposed for multi-axis

computer numerical control

systems. Figure 9 depicts two

points that lie on a curve of a

sculptured surface and two unit
nl r2

normal vectors n; and n^. The

normal vectors of two points

are projected on the cutting

planes. If the curve is to be Figure 9 Linear curve approximation

approximated by a line segment

(chord) from point r^ to r^, the chordal deviation is defined as the maximum distance

from the curve to the chord. Such a deviation defined by the curve and the chord

between two successive cutter contact (CC) points is referred to as the nominal

chordal deviation. Two methods to calculate the nominal chordal deviation are

compared in this section.

< Method 1 >

The simplest method to approximate the nominal deviation is to assume that

the furthest point of the curve from the chord is defined parametrically by half of the

total parametric variation. In this method, the parametric curves on a three-

dimensional sculptured surface are approximated by a sequence of linear segments.

The tool paths for these segments are calculated for ball-type cutters. The method

optimizes cutter movements by

minimizing the number of

intermediate points while the

approximated curves stay within

a specified tolerance.

nl R

a/2

22

R "-2

Figure 10 shows the

geometric relationships between Fig»re 1° Estimation of cutting error

the radius p of the circular path, the unit normal vectors nj , n^, the cutter radius R,

the angular displacement a between two consecutive CC-points, and the overcutting

error e. For a convex segment as in Figure 10, the cutting error is expressed as

. a,

£=P(1-COS(-)) (34)

where

a=co&~i(n^- n^) (35)

The procedure for determining the step length is to estimate the cutting error

using equation (34) and (35) for each curve defined by a given cutting plane. If the

estimated error is different from the specified tolerance, T, i.e., | e-r \ <e where e is of

small magnitude, then a midpoint is inserted and this procedure is executed

recursively.

This technique is generally sufficient for surfaces with a uniform parametric

23

variation, but if the underlying surface definition is characterized by a non-uniform

parametric variation, the error of this approach may become significant.

< Method 2 >

This method first searches for the location of the climax that yields the

specified deviation, then it calculates the end point of the chord. In addition, this

method takes advantage of the planar geometry used for the nonconstant parameter

NC tool path generation

ns

n-p

T

As shown in Figure 11,

the starting point for the initial

chordal approximation is

denoted by r,, the nominal

chordal deviation at r^ is e, and]^-

the end point of the chord is 7-2. r^

The cutting curve tangent vector

is denoted by T. The goal of this Figure 11 Initial chorda! approximation approach
for locating a chord with a specified tolerance

approach is to find the end

point of the chord that yields the specified nominal chordal deviation.

Since the tangent at any point of the cutting curve is contained in the cutting

plane and is the tangent plane of the part surface, this indicates that T is

perpendicular to both the cutting plane normal n and the surface tangent plane

24

normal n,. Thus, T may be calculated by

nxn.
y= I ^

1",X"J

The nominal chordal deviation e at r^ is obtained by,

n-xT
e^r. r:-^-

(36)

'1'r ^T\
(37)

'p

where n x r / \n x T \ represents the unit vector located on the cutting plane

and perpendicular to T [2]. This method is used in the program for searching the CC

points .

2.3 Convex interference

Many tool path

generation algorithms for

sculptured surfaces assume that

the nominal chordal deviation is

the actual machining error. This

is true, however, only when the

surface normal vectors at r^ and

r^ (Figure 12) are parallel, and

both are perpendicular to the

Chordal deviation

r2

True machini. ng error

chord. The true machining error Figure 12 Physical interference between tool and
part surface.

must

25

considering the physical interference between the tool and the part surface, as shown

in Figure 13. Both the nominal chordal deviation and the distance between the tool

center trajectory and the corresponding chord between cutter contact points must be

characterized to determine the true machining error.

rl

a1. '
Gouging

CC point

a1

Typically a pair of tool

center (TC) points define

consecutive tool positions, and

the tool moves linearly from one

TC point to the other. Figure 13

shows a typical convex

interference (i. e gouging). The

objective here is to protect the

CC path (not the part surface)

from gouging. As depicted in the Figure 13 Convex interference

figure 13, lets r^ and r^ be two

adjacent CC points and let P, and n; (i= 1,2) be the corresponding offset points and

unit normal vectors. Then the amount of gouging g, at r, is given by

^, =J?(l-sm(a,)); i=l,2 (38)

where R is the cutter radius and

26

a, =cos-I(^. (-/))

a^cos-\n^. f)

(39)

(40)

where

f= PI-PI
I ?2-Pl I

Then the true error machining d for method 1 is

. Cf,

rf^^<p^)(l-cos(-))

and for method 2 it is

d=g+e

(41)

(42)

(43)

Equations (38) to (43) are also valid for a concave segment, if a negative R value is

used in equation (38).

2.4 Gouge elimination methods

Cutter interference (part surface gouging) is one of the most critical problems

in NC machining of sculptured surface. When the maximum of the normal curvature

of the surface at a CC point is larger than the normal curvature of the sphere of the

ball-endmill, which is given as 11R (R is the radius of the ball-endmill), then the tool

interferes with the part surface near the contact point. Some methods of overcoming

the gouging problem are presented in this section.

27

< method 1 >

After selecting the CC points, gouge detection is accomplished by comparing

each individual tool motion to all others along the tool path. Each comparison

involves two distinct tool motions and thus four CL-points. Each pair is checked for

gouging in both the concave and convex sense. If either condition holds, the

appropriate corrective action is taken, otherwise the next pair is checked. The

algorithm proceeds by comparing the first tool motion to the last, second to the last,

and so on until the first motion is compared to the second. Then the second tool

motion is compared to the remaining motions in a similar fashion. The method

continues until all possible combinations have been considered [19]. But all

interferences can't be eliminated by this method. Sometime, there is not an

intersection between two distinct tool motions, but there is an interference between

the tool and the surface.

< method 2 >

Assume that a sequence of CC paths is given together with a unit normal

vector n,, that is projected to the cutting plane, at each CC point. Let P, and P. be

the offset point of two adjacent CC points r; and r. respectively, and let r; and r. be

in a concave relation. Then if P; and P. are in convex relation, both CC points

become "interfering points" if they are in an inflection relation. Only the CC point

whose offset point is concave to the other becomes an interfering point (in Figure 14,

r2 is the one), and there is no interference if they are in a concave relation [1].

28

The problem is the same the

one that is described in method 1.

The selection of CC points depends

of the maximum tolerance of the ^ ^

surface. Then, checking the

interference by verifying the relation

between points cannot always give

the correct result.

Part
surface

Figure 14 Concave int rference in concave
relation

< method 3 >

In this method, the intersection between two surfaces are checked in each CC

point selected. One is the free-form surface and the other is the surface that is

generated by the shape of the form of tool. If there is an intersection, the appropriate

corrective action must be taken to avoid the interference. This method is time-

consuming.

< method 4 >

In this method, the nearest distance between the offset point (of selected CC

point)and the surface will be calculated. There is an interference, if this distance is

less than the tool radius. But this method is also time-consuming.

29

< method 5 >

Chen and Raviani [17] presented a method for generating an approximate

offset urface using the normal least squares method. By this method, the intersection

loop of the offset surface is avoided, if R exceeds the minimum radius of curvature

of the contact surface and there is no interference of the tool path if the tool path

is planned on it. But it is time-consuming and inaccurate to generate an approximate

offset surface.

Adapted gouge elimination method

A typical gouge is shown

in Figure 15. In this figure, IP, is

the intersection point and CCO

and CC1 are cutter contact

points. The points TCO and TC1

are offset points from the

corresponding CC points. As

you can see, the IP, is inside the CCO CC1

tool volume. Then, there is an

interference. If the point IP, is in

TCO TCI

v

R

a.

e

Part surface

Ipi
Point to
verify

the spherics region (a ^ ^ Figure 15 Adjusting TC points to eliminate gouge
where

30

ft=ATANG^R-l) (44)

Then

^S^(R-r)2-2S(R-r)cos(l -a) (45)

where R is the tool radius, r is the small tool radius, and S is the distance between

the tool center P and the boundary of tool volume. Solving for S gives,

S2 -1(R -r)sin(a)5 +[(^? -r)2 -r1} =Q

S=(R -r)sma + (R -r)2sma2 -(R2 -2Rr)

If the point IP, is in the cylindric region (a ^ j6), we will have,

s=-
COSff

(46)

(47)

(48)

Therefore, if |P - JP; | < S, there is a gouging.

The new method developed in this paper consists of two cases.

1. Simple case: gouging happens along the path direction.

When the new intersection point (that is obtained using the intersection

between a plane and the surface) is verified to select the CC point, the interference

is checked simultaneously at this point (see Figure 15). This procedure works as

follows:

31

1. read the new intersection point from the list of points (see Appendix B).

2. is there any intersection point in the area contained by the tool diameter, that is

inside the tool volume?

3. If yes, the last point in the list of points is selected as a new CC point. Then the

other points are checked until a point is found where there is no interference

between the tool and the surface, if the tool is located at the point.

4. If no, this point is checked for calculating the nominal chordal deviation.

2. Complicated cases: gouging happens in any direction of the surface.

For a more complicated free-form surface, the gouging will not only happen

along the path direction but may also possibly happen in any direction of the surface.

The checking defined only in the path direction dose not guarantee a good result. A

more general gouging detection method is described as follows. The gouging check

is made between the current offset point (that is checked for initial chordal deviation)

and all the intersection points that are contained by the area of the tool diameter. If

there is an interference, in 3-axis machining, the last offset point is selected. In 5-axis

machining, with an end-mill, it is possible also to change direction of the tool axis to

avoid the interference.

The advantage of this method is that each point is separately checked against

the interference in the same time that normal chordal deviation is calculated.

Moreover, the method is not dependent on the shape tool. Another advantage of the

direct gouge elimination method is that it detects and eliminates gouging tool motions

32

simultaneously to the location procedure. Then, when the CC points are selected,

there is not any interference between the tool and the surface. The time required is

not very long because the offset points are only compared with the points that are

contained by the area of tool diameter. This new method is used for verifying the

interference in the program.

2.5 Tool pass interval adjustment

Tool pass interval
The distance between two

adjacent tool passes is referred to as

the tool pass interval, as depicted in

Figure 16. The cusp is the remaining

material between two adjacent tool

passes, and it affects the smoothness

of the machined part surface. If the

part surface is flat, the tool pass

interval is constant for all tool pigure 16 Tool pass interval and cusp
passes. However, for sculptured

surfaces, the tool pass interval is generally different from one pass to another,

depending on the tool radius and the local surface curvature. Tool pass intervals must

be calculated from a specified cusp height tolerance to ensure surface smoothness.

Cusp

33

2.5.1 Tool pass interval adjustment with ball-mill

The tool pass interval adjustment technique uses the radius of curvature in the

direction of the cutting plane normal. The tool pass interval / on a non-flat surface,

as depicted in Figure 17, can be calculated by approximating the actual surface curve

between r^ and r^ by a circular arc, and observing that

(p+R)2+(p+h)2-R2 = 2(p+7?)(p+/?)cos(0)

where p is the curvature radius of

the surface and

Current and next
cutting plane

(49)

COS0. 1-(1)2 (50>
"Ip

where / is the distance between r;

and r^. Solving for / yields,
R

FI 1/2

p

Part
surface

Center of
curvature

Figure 17 Tool pass interval calculation

2l2
^p 4(/?+^)2(p+A)2-[p2 ^p+(p^)2]

(p^)(/?+A)

and for a concave surface, the value of / is given by

(51)

34

2l2
^p 4<ip-R)\p-hY-[p2 -lRp^p-h)2]

{p-R){p-h)
(52)

where the radius of curvature of the part surface is flat the tool pass interval /

becomes

/=2 2Rh-h2 (53)

2.5.2 Tool pass interval adjustment with end-mill

The expression for an

inclined end-mill cutter on a

different surface is calculated using

the equation of the elliptical cutter

profile projection that is given by,

y

x

p

R
h

R sin 0

a

Figure 18 Cusp height resulting from end-mill
on a onvex surface

^ /. '1
R2 R2sm2((>

(54)

35

x=(h+p')sma (55)

y =(h +/?)COSQ: -(/? +7?sin0). (56)

By combining equations(54), (55) and (56), the elliptical equation becomes,

(h +p)2sin2o;
^

(h +/?)2cos2a -2(h +p)cosa{p +jRsin0) +(/? +^?sin0)2
R2 R2sm2(f)

Rearranging gives

(57)

cos2a;(/i +p)2cos20 -coso;[2(/t +/?)(/? +7?sm0)] +[p2 +2pRsmcf} +(/? +/))2sin20] =0 (5S)

Solving for cosa gives

p +Rsmcf) - (/»+2?sin0)2-cos20[/?2+2/?/?sin0 +(h +p)2sin2^>]
(h+p)cos2(f)

(59)

For a concave surface, the value of cosa is given by

p -Rsin(f> - (/? -Rsm())')2-cosl(f)[p2 -2pRsmcf> +(h -/?)2sin20]

(h -p)cos2(f>
(60)

The resulting cusp height is given by,

sma^-
Ip

(61)

Then

L=2/?sina (62)

36

For a plane surface p approaches oo and therefore cosa = 1 and sina == // 2 x p(see

Figure 19). The resulting cusp height is given by

This can be written as,

h=Rsm(f)-smcf> R2--

/=-^- 2Rhsmcf)-h2
sin(f)

(63)

(64)

y

x

Part surface

R

R sin 0

Figure 19 Cusp height resulting from end-mill on
a plane surface

2.5.3 Distance between two planes

The line on which the tool pass interval is measured, is not generally parallel

to the normal vector of the cutting planes. So, in order to define the next cutting

plane, the tool pass interval / is projected onto the cutting plane normal as shown in

Figure 20. Note that since a circular arc approximation is used to find the tool pass

interval /, angle a can be calculated by

37

a = cos-1(^.) (65)
"Zp/

Denoting the angle between the

cutting plane normal and the surface

normal at the cutting contact point

0 as angle B the projection

magnitude of the tool pass interval

can be calculated by

l/=lcos(a+13-7r) (66)

and for a concave surface

Current

cutting
plane

Next
cutting
plane

Part
surface

Cutting plane
normal

Center of
curvature

Figure 20 Projecting tool pass interval onto
the cutting plane normal

//=Zcos(a-^S) (67)

where I' is the projection magnitude of I. On a flat surface, / lies exactly on the flat

surface and angle DOC is equal to Tr/2; then,

'7^^
//=/cos(a-^.) (68)

The tool pass interval is calculated at all CC points of a tool pass by using the

tool pass interval adjustment method combining with the magnitude projection

formulation. The resulting tool pass intervals at all CC points are compared and the

smallest one is applied to define the next cutting plane.

2.6 Milling in 3-axis machining

Plane I

Plane S

Plane 3

CulUng
pln.uc

Contour

Part surface
Island inside coiitour

38

A standard task in

machining die cavities or

mechanical parts is the removal

of material within a given

boundary. A procedure

developed in this paper, is

needed to cut way the bounded Figure 21 Different contours on intersecting
planes

area, which is called a pocket, in

order to use efficiently a numerically controlled (NC) machine. To find this area,

boundary curves are defined using the intersection between a series of horizontal

cutting planes and the sculptured surface (see Figure 21). The normal vectors of all

the intersection points are projected on the cutting plane and their offset points are

calculated. The CC points which give the chordal deviation and do not have any

interference with the surface are selected. With these points, the equation of the

cutting curve can be defined using kriging.

A pocket can be machined in a zigzag or spiral fashion. Tool path generation

for these two methods are discussed in this section.

2.6.1 Zigzag fashion

The intersection points between the cutting curve and a series of lines that lie

on the cutting plane are obtained (see Figure 22). The distance between lines are less

than the tool diameter. The tool is passed from these points and then, the primary

CC points on the cutting curve is

machined.

Boundary curve

39

Lines

2.6.2 Spiral fashion

Cutting curve

The spiral machining is often Figure 22 Zigzag machining

used in uniform pocket cutting and

requires more difficult cutter path calculations than zigzag machining. In this method,

after having determined the cutting curve, its center is found. The equation of a

surface can then be defined using the method for kriging surfaces. This surface is

composed of two curves. One is a cutting curve and another is a curve where all its

points are equal to the value of the point at the center of the cutting curve.

Figure 23 Spiral fashion Figure 24 Spiral fashion with an island

40

In order to select the CC points, a series of points on the curves are selected

using the surface parameters. The maximum distance between curves is less than the

tool diameter (see Figure 23). If there is an island inside the cutting curve, the

surface can be defined using the cutting curve and the island curve (see Figure 24).

2.7 Tool-path generation for RFS

The tool path generation

algorithm developed for free-form

surfaces is applicable to the rotation-

free surface (RFS), because RFS

can be easily generated by dual

kriging. The cutting curves can be

defined by the intersection of a set

of parallel planes as shown in Figure

25. Then, the offset points which are

not gouging with the surface are
Figure 25 Cutting plane and cutting curve

selected with the previous method. definitions

Cutting
curve

Cutting
plane

2.8 Comparing tools and selecting the tool axis vector

When machining curved surfaces, spherical ball-mills are inevitably used. The

historical reasons are that ball-mills are easy to position in relation to curved surfaces,

41

generate simple and short numerically controlled machining programs and often only

require two-dimensional cutter compensation.

However, when machining plane surfaces, face of end-mills are used. The

reasons are that the flat ended cylindrical endmills match exactly the geometry of the

required surface and that they are readily available with carbide inserts for faster

machining. If a ball-mill was used to face a plane surface it would require many more

passes across the surface to generate the same surface finish as that produced with

an end-mill.

n
v

Part
surface

The same argument holds

when machining a wide class of

smooth low curvature surfaces such

as those encountered with turbines,

propellers, and aircraft structural

components. The critical factor for

rapid and efficient machining of all

these surfaces is that the cutter F;guerc^6u^ ?off^vrefaraedius of an end-mm
shape should match the surface

shape as closely as possible. The profile of an end-mill can be made to match that

of a curved surface by inclining it correctly to the surface normal (see Figure 26) [10].

The effective radius of curvature, r^ , of an end-mill can vary from infinity down to

the cutter radius R, as the inclination of the cutter to the surface normal, 0, changes

from 0 ^0 ^ 90 deg. For relatively small depths of cut, the effective radius, T^ , is

42

given by

reff=
R

sin0
(69)

The effective radius of curvature of a ball-mill is, of course, restricted to the spherical

radius of the cutter [10].

R

Another important difference V

between ball-mills and end-mills n

when machining curved surfaces is

the speed of material removal or

cutting speed. The tool attitude

against the surface partially changes

due to the collision avoidance (see

Figure 27). The change of tool axis Figure 27 Change in cutting speed of ball-end
mill due to tool attitude

direction causes the variation in the

cutting speed though the cutting point is the same. The desired spindle rotation S

given in the following expression

S=v* 1000/(2 *TT *R *sina) (70)

where v and R are the cutting speed and the tool radius respectively. A ball-mill cuts

at a portion of the sphere near the axis of rotation and thus has minimal cutting

speed. In effect, the cutter is rubbing the material away. With end-mills, however, the

material is always cut at the periphery of the cutter at a full and predetermined

43

cutting speed.

A further difference is that ball-mills are usually made from high-speed steels

which do not have the machining capability of carbide insert cutters; they require

careful spherical resharpening and are only available in relatively small sizes. End

mills are readily obtainable in large sizes and with replaceable carbide inserts.

Therefore, the selection of tools in machining sculptured surface is dependent to the

form of surface and requires good experience.

In three axis machining, the tool can be selected as follows (see Figure 28);

1. Machining surfaces whose slope (with respect to the tool axis r) changes

substantially, i.e. 0° < a < 90°. A spherical-end mill may be used, but one should

remember that in horizontal surface regions (a < 10°) the cutting speed decreases

drastically.

2. Machining of nearly horizontal surfaces (a ^ 30). The largest machined strip

width (among tools with the same diameter) is obtained if a toroidal miller with the

small torus radius (/-<0. 2) is applied. Cutting speeds may be kept within a reasonable

interval but in the case of concave surfaces one has to avoid undercutting.

When machining sculptured surfaces on a 5-axis CNC milling machine with an

end mill, the direction vector of the milling cutter must be detennined. The direction

vector consists of a tilting angle and a rotation angle. In the machining of large

44

90'

30

sculptured surfaces (having large

curvature radius), the direction

vector may be based upon the
v

curvatures at the cutting point (CC-
10

point) [10]. But, for smaller p

free-form surfaces or precise parts,

this method is inadequate since the F^ 28 Intervals of a for different t001
outer region of the end mill

interferes with the sculptured surface. Any small error in the direction vector induces

high cusp or deep overcuts in the 5-axis machining process. This is why, machining

surfaces by 5-axis CNC milling with an end mill has been mainly confined to convex

or large concave surfaces [11].

V(0)
V(l)

The direction vector of the

milling cutter must be determined to n

produce minimum cusp heights on

the machined surfaces. The

minimum cusp height can be
obtained, if the tool axis vector is in

the direction of the surface normal Figure 29 Tool axis vector

vector. But to eliminate the concave interference and the convex interference that is

described in section 4.3, it is possible to determine the tool axis vector so that it is

normal to the vector rir2(see Figure 29).

2

Part
surface

45

rlr2=
rl-r2

lrl-r2l

A=
rr xn

l^x"

(71)

(72)

v- Axr^
\Axr^

(73)

where r^ and r^ are two CC points and n and v are normal vector to the surface and

tool axis vector respectively.

CHAPTERS

Multi-axis machinin

Due to the development of CNC machines and software packages, sculptured

surfaces usually are machined with a three-axis milling machine using a ball-end mill

cutter. By using 3-axes milling with ball end mills, the tool engagement modes change

along a given contour, because permanently different parts of the cutting edge are

active. Different cutting speeds appear along the radius. The maximal cutting speed

is reached on the tool diameter, the minimal at the top. However, machinability at

the bottom of the ball-end mill is poor, and sometimes, workpieces of complex

geometry cannot be machined by three-axis milling. In addition, the ball-end mill

always produces a cusp on the machined surface. In order to decrease cusp heights

when machining sculptured surfaces with a ball-end mill cutter, the tool path interval

must be adjusted in consideration of the cusp height. This method requires a long

machining time, and manual polishing is required to remove the cusp. Recently,

robots have been used in the polishing process in order to enhance the efficiency of

die mould production. But robot polishing requires high cost equipment and is a

complex geometry. For these reasons, 5-axis CNC milling has been recommended for

machining free-form surfaces. When using by 5-axes milling and ball mills,

unfavourable cutting condition (v = 0 and chip space) can be avoided by using a tilt

angle. The tilt should be chosen under consideration of possible collisions. The

application of ball end mills in 5 axes milling does not offer any geometrical

advantage. It is just important to machine deep and complex cavities. Generally,

5-axis milling yields smaller cusp heights than three-axis milling. Cutting and polishing

times in this machining process are shorter than those in the three-axis machining

process.

47

3.1 Multi axis machining problems

Collision and linearisation are two critical problems in multi axis machining

that are discussed in this section.

3. 1. 1 Collision avoidance

Tool interference problem is one of the most critical problems in the NC

machining of free-form surfaces. In 3-axis machining, the tool axis is always z axis, but

in multi-axis machining, an offset must be given to the tool along a normal vector to

the surface. The tool and the surface come in contact only at desired surface

locations and the tool axis varies as the part rotates. By this configuration, some

complex surfaces impose an additional source of interference called tool axis

interference (TAI) or collision, that cannot be avoided in three-axis machining even

if detected. In other words, an implicit assumption in three-axis machining is that the

surface geometry is free of such interference. However, TAI is very critical in multi-

axis machining, and may be avoided by rotating the part. Some methods of

overcoming the collision problem are presented in this section.

< method 1 >

In this method, the tool shape is approximated by designating a set of check

points in the circumferential and longitudinal direction of the tool as mentioned by

Yankeuchi and al [18]. The check points are automatically determined and stored as

48

tool shape data. The collisi n check is carried out by examining whether or not the

check points exist within the workpiece. When a collision takes place, the tool

orientation at the cutting point must be changed by finding the collision-free tool axis

vector. This method is practical, if the workpiece is defined in constructive solid

geometry (CSG).

< method 2 >

In this method, the intersection between two surfaces are checked. One is the

free-form of the surface and other is the surface generated by the shape of the tool.

If there is an intersection, the appropriate corrective action must be taken to avoid

it. This method is time-consuming.

< method 3 >

In this method, a line in the direction of the tool axis is generated. The

original point of this line is the tool center and the final point is the length of the tool

in direction its axis. If there are two intersections between the part surface and the

line, a collision has occurred. This method can also be used with 2 or 4 lines that

represent the tool volume. In order to eliminate the collision, the tool axis is changed

toward the z axis until the collision is eliminated. This method is time-consuming.

49

Adaptive collision avoidance

method

The collision avoidance

procedure developed in this

project is explained as follows:

Tool-axis-interference (TAI) is

present if there exists a surface

point r' satisfying the following

conditions (see Figure 30):

v

Part surface

r

r

Figure 30 Tool axis interference

n

p

p7. v>o

\Pr/\2-(Pr/. VY<R2

where V is the tool axis and R is tool radius.

(74)

(75)

If there is a collision, then the vector of the milling cutter is changed in the

manner that cause the smallest cusp height (when machining with an end-mill) and

no interference. Comparing to others methods, this method is fast and precise. This

method is selected in the program.

50

3.1.2 Linearization of tool path

When machining between two positions which have a differential in the tool axis

direction vectors, overcuts are produced by swivel movements around the pivot point.

In order to solve this problem, linearization of the tool path is applied [11].

Figure 31 shows cutting positions with the total interval of the linear

interpolation. The starting point is known, and the end point is obtained from linear

interpolation which sets

maximum error within the

total interyal to be e^^. as Pivot
point

in three axis CNC ball-end

V(0)
V(k)

V(n)

AS
e(k)

Contact

point
£,.ir(k)

Machined
surface

Part
surface

milling. At the two

positions, direction vectors

of the milling cutter can be

obtained from the

equations discussed in the

next chapter. Cutting axis

direction vectors vary p,^ ^ Linearization for the 5-axis CNC milUng
linearly between two Process-

positions. Thus, a finite interval of interpolation can be obtained on the condition that

the predicted error is constrained within the allowable machining error e^^. If the

maximum error in a finite interval of the kth step is e(k) and the error due to the

influence of rotational axis in a finite interval of the kth step is e,r(k) as shown in

51

Figure 31, its relation is represented by

e^(K)+e(k)^ (76)

and for a convex surface, we have

£,^)^6n (77)

The error in a finite interval of kth step e(k) is approximately described by (see

Figure 31)

:W-^((-^^)\^^)
0.25^ ^'-° S / ^-0 S

(78)

The equations 76 and 77 are changed, depending of the position of the pivot pomt

in different machines.

The vector V(k), from the CC point to the pivot point in the kth step, is given by

v(l!) =
wu

\u^\
(79)

where

(/(t)=^0)+(']^")-]
^ (80)

Then, the relation between the overcut error e,, (k) and the angle variation &6W at the

kth step is approximately described by

^). L(l-cosA^)) (81)

52

where t.9(k) and L are cos .l(V<k-l>. v<k>) and the distance between the pivot point and

the contact point respectively.

Thus, the interval between two points is divided into several small intervals

according to the tolerance. The tool center point and tool axis vector at each divided

point are calculated. It is noted that this correction must be made in a postprocessor

because the parameters of these equations are dependent on the type of the machine

tool. If the new points are calculated on the surface, it is possible to solve this

problem with minimum number of added point (see Figure 32)

Pivot

Therefore, in multi-axis Point

machining if there is a large

variation in the cutting axis

direction vectors between points,

increasing the number of points

can reduce this problem.

V(0) V(n)

New point

Contact

point

7
Machined
surface

2

Part
surface

Figure 32 Linearization for the 5-axis CNC milling
process.

3.2 Multi axis control machining

The post-processor is a section of the program that converts cutting location

(CL) to the coordinate system of the machine. It uses the machine data and the

cutting condition data to calculate the rotation angle of the rotational axis (R axis)

and the tilting axis (I axis) on the basis of the tool axis vector. It also determines the

53

coordinates of the tool center after the rotation.

3.2. 1 4-axis control machining

Machining a rotational-free surface RFS requires the motion of part rotati n

as well as tool interpolation. Some RFS

parts may be machined by sequential
z

operations (turning followed by milling),

but most cannot since they require
X

synchronized part rotation and tool

interpolation. Even if RFS parts can be

machined by a sequential operation,

4-axis operation is desirable because r,, _.. _. ^ ^ ___.. ___r, _____,,.
[-axis configuration

sequential operation requires more

loading/unloading, which is usually done manually and takes a considerable amount

of time. In the 4-axis operation, the whole surface can be machined with one setup

(see Figure 33). Thus, 4-axis operation is a powerful alternative to automation of the

machining process and the reduction of the cycle time [7].

The next section described the equations are developed to find the angle of

rotation and the position of tool center.

3.2.1.1 Four-axis control mode

54

Y

n

I/ p' r(u, v)

v
In the configuration shown in

Figure 34 three Cartesian axes are
z

used for the tool motion and the

fourth axis rotates the workpiece. In

practice, the configuration is often

achieved by attaching a fourth axis

to the original three-axis machine,

giving an additional 4-axis machine.

Because this simple automation

method is economically attractive, it

is increasingly used in machine Figure 34 4-axis scheme

shops.

The rotation angle used to access one offset point P(u, v) on the surface is

determined such that the normal vector n(u, v) is parallel to the XZ plane.

Decomposing the normal vector n into P^, P , P^, we have

9

I = £X(8).P (82)

or

55

100 100

010 = Q C9 -S6

001 0 S9 C0

by inverting the matrbc Ex(0)

nx ax ax

ny cy cy

p_ p._ p
nz oz oZ

(83)

1 0 0

0 C9 S9

o -se ce

me ox ax

ny oy ay

p p p
nz ^ oz .' aZ

(84)

where P is a homogenous matrix of offset points, I is the identity matruc and Ex(^) is

the rotation matrix about x

Q-ATANG2^, PJ (85)

When rotating the workpiece by an angle Q, the new coordinate of point P becomes

P/=EX(Q)-P

The angle 0 and the point P' transfer to the machine coordinate.

(86)

3.2.2 Five-axis control machining

The structure of 5-axis control machining centers is composed of three

translational movements along the x, y and z axes and two rotational movements of

rotation and tilt. According to the type of rotational movements, the machine is

usually classified into one of three categories : table-tilting with two degrees of

56

freedom on the table, spindle-tilting with two degrees of freedom on the spindle, and

table and spindle having each one degree of freedom [8].

In this paper, we use the Pual's method [5] and develop the necessary

equations for finding the angles of rotation and coordinates of tool center

3.2.2.1 Table-tilting types

Table-tilting type machining centers are divided into two types, as illustrated

in Figure 35 and 36:

-type 1 with a rotational table on a tilting one.

-type 2 with a tilting table on a rotational one.

With regards to type 1 and 2,

let us explain the conversion of CL

Data to the machine coordinate

system (MCS). It is supposed that

the direction of the x,y and z axes in

a work coordinate system (WCS)

correspond to that in the MCS and
Figure 35 Type 1: table-tilting machining

that the direction of the z axes is centers [8]
equal to that of the main spindle.

57

Namely, the workpiece is mounted

on the table so that the x, y and z

directions in WCS may correspond

to those in MCS when the table of a

machining center is faced with the

spindle

y ^

< Type 1 >

Figure 36 Type 2: table-tilting machining
centers [8]

As R example of Type 1, let

us consider such a structure as

illustrated in Figure 37(a). The

rotation angles of the table, 6 and 0,

are determined in order to make

tool axis correspond to the z axis.

The motion can be expressed in

z

T-

<o)

Zt J

Xa
Oa '

", \^
r^

'"^;

(b)
terms of a drive transformation ". »_^, .. ".

Figure 37 Table-tilting type with a rotational
matrix D. We will then represent D table on a tilting one [8]-

as

58

D = Ex(<^) . E\Q)

I = D-P

(87)

(88)

D-1 = P (89)

where P is a homogenous matric of offset points, I is the identity transform, and

Ex(0) and Ez(5) are rotational matrices about x and 2 axis by an angle cf) and 8

respectively

1 0 0

0 1 0

0 0 1

1 0 0

0 C(f) -Scf)

0 50 C0

CQ -S6 0

se ce o

0 0 1

nx ax ax

ny oy ay

p p
nz -1 oz ^ flZ

(90)

100 ce -se o

010= seC(f) ceccf) -Scf)

0 0 1 SQS()) C6S(f) C0

ttX OX liV

ny ay cy

p p p
nz . l 02 " nZ

(91)

C9 S6C(f) SeScf)

-se cec4> ces<f)

0 -50 C(f)

nx ox ax

ny ay cy

p p
m ^ os .' aZ

In order to make tool axis correspond to the z axis, we will have

^. ̂ . PJ = (^^ . ^C0 , C0)

Equation (93) can be solved by using

(92)

(93)

59

Q = ATANG2(P^ , PJ 0 < 0 < ZTT

0 = ATANG2{SIGN{P^) P2^ , PJ -? <0 < ?
2 - " ~ 2

(94)

(95)

As the rotation axis does not always intersect the I axis, let us introduce the

temporary coordinate system (TCS), as shown in Figure 37(b), where the origin is the

crossing point between R axis and table plane. In TCS, suppose that the difference

vector of I axis from the origin within yz plane and the position vector of the origin

in the absolute coordinate system (ACS) are S, and S^ respectively [8].

The coordinate values of the tool center point after the rotational movement,

P\ in ACS is described as follows:

P' = M(S.. -^)£X(4>)M(-S;)£Z(6)M(^)P (96)

where M(a) is a matrix concerning the translational movement by a vector a and

Ex(0) and Ez(0) are a matruc concerning the rotational movements around x and z

axis, by the angles <p and ff respectively.

< T^pe 2 >

As an example of type 2, let us consider such a structure as illustrated in

Figure 38 (a). At first, the rotation angles, 9 and 0, are determined in the similar

manner as Type 1. The motion can be expressed in terms of a drive transformation

matrix D. We will then represent D as

I = DP (98)

" ,7
D-1 = P (99) .^ 0 '

" ^«.

where P is homogeneous matrbc of

offset points, I is the identity

transform, and Ey(0) and Ex(0) are

matrix concerning to rotation
Figure 38 Table-tilting type with a tilting table

movement around Y and X axis by on a rotation one [8]

('s

.-"Yr\"
'" :;Sr

^ Si ^
/

(b)

60

D = £y(<t))£x(6) (97)

an angle 0 and 0 respectively.

1 0 0

0 1 0

0 0 1

C0 0 S(f)

0 1 0

-Scf) 0 C(f)

1 0 0

0 C9 -SB

o se ce

nx m ax

ny oy ay

p p p
nz " oz -" aZ

(100)

100 c0 sescf) cescf)

010=0 cff -se

001 -S(f> S8C(f) CeCcf)

nx eec ax

ny cy ay

p p p
nz -1 oz -' aZ

(101)

To make tool axis correspondent to Z axis, we will have

(p» ' ^ ' 0 = (-^ . C'0^^ . C0C0)

Equation (103) can be solved by using

(103)

61

Ccf) 0 -S^)

s<pse co c^se

s<pce -se c<f)Ce

nx ox ax

ny oy ay

p p p
m " oz " aZ

(102)

9 = ATANG2{P_. , PJ -v < e ^^
ay ' ^^ 2 - " ~2'

(104)

d) =ATANG2(-P^ , P2. +P2.) 0< ^ < ZTT
ax . ' cy ctz.

(105)

The temporary coordinate system xyz is set, whom the intersection of the two

rotation axes is the origin of the xy plane, and the table plane is the origin of Z axis.

Supposing that S, is the position vector of the R axis in the Z direction, S, the position

vector of the / axis, and S^ the position vector of the origin in ACS, Pf is described

as follows [8]:

P'=M(S^)E\^M(S, -S^EX(Q)M(S, -S)P (106)

3.2.2.2 Spindle-tilting types

The spindle-tilting type machining centers are divided into two types:

Type 1: having a rotational axis around Z and Y axis

Type 2: having a rotational axis around Z and ̂ T axis(see Figure 39)

62

)
",

The control methods of this

5-axis CNC machine tools are very

similar to those of industrial robots. d>

One of the simplest way to change

from one transform to other is by a
+V . 7.

straight line translation and a

rotation about same fbced axis in

space. If we can find such a line and

axis then we can produce a motion Figure 39 Fixed bed type of machine [8]

of controlled linear and angular velocity. We will, however, develop a system in which

the motion is made in terms of a translation and two rotations. The first rotation will

serve to align the tool in the required final direction and the second rotation will

control the orientation of the tool about the tool axis. As all manipulators end in a

rotary joint, this second rotation in space corresponds to a rotation of the final joint

of the manipulator [5].

If A and B (i. e. P^ and P^) are homogeneous matrices representing starting

and ending configurations of a machine tool with respect to a reference coordinate

system, the straight line motion from the starting configuration to the ending

configuration is expressed in terms of a drive transformation matrix D(h), 0 < h <

1 as

63

T = A -D(h) (107)

A and B express the columns of A and B as vectors \, Ay, A,, Ap, and B^,

Bo, B^, Bp, such that

A =

An. Aa. A^ AK.

Any Aoy Aay APy

An. Ao. A»Z AP.
0001

(108)

B =

^ ^ ^ ^
ny oy ay Py

Bm Bo. BaZ BK
0001

(109)

At the start of motion T=A. The motion D(0) is obtained as D(0)=/and the

end of the motion as T=B. The matrix D(l) is obtained as

or

Z)(l) =A-l-B (110)

Z)(l)=

An£. An£. A£^ A^-A^)
^.Bn AS. A£^ A, (B^)
A^ A^£^ A^£^ A^.(B_-A.

an a o a a a ^ p -p'

000 1

(Ill)

We will choose intermediate values of D representing a translation and two

64

rotations. Both the translation and rotations will be directly proportional to h so that

if h varies linearly with respect to time the motion represented by D will correspond

to a constant linear and two constant angular velocities. The translation will be along

the line joining A and B and will be represented by the transformation T(h). The first

rotation will serve to rotate the approach vector, the direction in which the tool is

pointing from A into the approach vector at B. This rotation will be represented by

Ekz(^i, h02). The second rotation will rotate the orientation vector representing the

orientation of the tool, from A into the orientation vector at B, Ez(h0). We will then

represent D(h) as

D(h) - T(h~) x f^G^Ae^) x E\h^) (112)

where T(h) interpolates the position of the tool end from Ap to B and as h varies

linearly from 0 to 1.

where

T(h)^

1 0 0 hx

0 1 0 hy
0 0 1 hz

0001

(x, y, z) - [B^-Af

(113)

(114)

65

< type I >

01

Zl Xl

A

zi

X2 C

w

YS
zs

X2

YZ

P X

In this type of 5-axis machine , Yl B

tool, we have a rotational axis Xl c
Yl

around z and y axis. E^O^hO^)

represents a rotation of Q^ (y axis) ^

about a unit vector

k=(sinffi, cos^i, 0)T to change its z- Y
z

axis from A to B (see Appendbc A). ^ - - - - - _ ^

where Bp = p =W+ P(u,v), W is Wy ^

translation displacement of the Fi8ure 40 Spindle-tilting type with a rotation
axis around z and y axis

workpiece with respect to a fuced

coordinate system, P(u, v) is the desired path with respect to the fbced coordinate

system, and Ap is the starting configuration of the machine tool (see Figure 40) :

E^0,, h6,) =

S9y(he^C(hQ,) -S6,C9,V(h6^ CO,S(hQ^ 0

-S9,Ce,V(h9^) CQ^h6^C(h9^ S9^S(h9^ 0

-ce,s(he^ -se^he^) c{h9^) o
0 0 01

(115)

where

V(he^) = Versine(he^) = l-cos(A0^) (116)

C(h9^ = cos(h9^) (117)

66

S{he^ = sin(/iff^) (118)

Ez(h0) twists the tool about its z-axis vector to change the y-axis vector from Ao to

Bo.

£z(/!0) =

C(/?0) -S(h<f)) 0 0

5(/z0) C(/?0) 0 0
0 010

0 001

where

5(/i0)=sin(/z<^)

C(/Z0)=COS(/!0)

The right two columns of D(h) are

DQz) =

? ? ce^he^) hx

? ? S9,S{h9^ hy

? ? CC/Zff^) ^
00 0 1

If we set h = 1, we may solve for x, y, z, 6^, 9^, and <f) as follows:

Z)(l)x£z(^)-lx£fa(^, ^)-l=r(l)

^<-(^-^)

(119)

(120)

(121)

(122)

(123)

(124)

67

and

Thus

y=A^(B^)

z<-(^-^)

2n(l)-lx£>(l)xEZ (0)-l=£fc^^, ^)

C^.^=^.5

S9, -S0^ =A.. B.
o a

CQ, =A^. B^
a a

(125)

(126)

(127)

(128)

(129)

(130)

9^ =ATANG2((A^BJ , (^. 5J) 0 < ff <2TT (131)

and

Q,=ATANG2((A^. B^(A,. B^ , (^. 5)) 77" ^ » ^ TT< ^ < ^ (132)
2 ~ '2 - 2

and finally

£fc(^, ^)-l*T(l)-l*Z)(l)=£W (133)

or

then

and

se^e^cQ^ -se^ce^ve^ -ce^se^ o

-se^ce^ve^ ceye^+ce^ -se^se^ o

CQls9Z
0

selse2
0

ce,
0

0

1

x£)(l) =

C(f> -S(f> 0 0

S({) C0 0 0

0 010

0 001

68

(134)

S^ = -Se, C0,Vff^. B^CQy9 ^C0^A^B^-Se, Se,(A^B^ (135)

C0 = -se,ce,V6^£^CQye^ce^AM-se, S0,(AM (136)

tan^> == -^l -7r<(f)<TT
C(f)

(137)

In mode absolute, where the point coordinates and orientations define relation to

coordinate system of machine (not relation to last point), we have

A=

1000

0100

0010

0001

(138)

If d is the length of tool, we will have (see Figure 40),

x = -B +d-ce^'se^ (139)

and

and

y - -B^d. Se,. C6,

z = B -d. Ce^d

Q, = ATANG2(B^, BJ 0 < e, ^ ITT

69

(140)

(141)

(142)

0, = ATANG2(-SIGN(^BJ (5J2^)2 , BJ -j < ^< ^ (143)

< Type 2 >

In this type of 5-aris machine

tool, we have a rotational axis

around z and x axis. E^e^he'i)

represents a rotation of 0^ (x axis)

about a unit vector

k=(conffi, cos^i, 0)T to change its z-

axis from A to B (see Appendfac A). Y

Thus E^0, h0^) is given by

Yl

X2

A

Zl

Y2

Xl

Yl

X2

zs

w

91

^ Xl

62

Wy Wz

Z2
Y2

Wx

Figure 41 Spindle-tilting type with a rotation
axis around z and x axis

70

S9y(h9^+C(h9^) Ce^C9^(h0^) S9^S(he^ 0

-S9,Ce,V(h9,) SQ^h6,VC(ih9,) -Ce,S(hQZ) 0 (144)
-S9,S(h9^) CO\S(h92} C(he^) 0

0 0 01

and with the same method as type 1 we obtain valu s for x, y and z (see Figure 41)

^^. (^-^) (145)

y=A^^-A^) (146)

and

Se,S8, =A^. B^

-0^, ^.5

C0, =A^. B^
a a

(148)

(149)

(150)

Thus

and

0, =ATANG2^. B^-(A^. B^ Q^9, <Z^ (151)

71

6^ATANG2{-SIGN(A^B^ ̂ . Bf^A^. Bf ,̂ . BJ -^<^ ()

and in mode absolute

x=-B +d. S8^SQ^

y=-B^Ce, S0,

z=B^-d-C6^+d
pz

and

9, =ATANG2(B^-B^ 0<9, <2^

and

3.2.3 5-axis rough cutting

(153)

(154)

(155)

(156)

9,=ATANG2{-SIGN(B^) (Bjl. B^, BJ -^<^2<^ <157)

Although three axis is desirable for rough cutting, 5-axis control is often

required for workpiece shapes with multi-values relating z direction. The rough

cutting tool path is generated by shifting the interference-free finishing tool path by

an amount of depth of cut in the direction of tool axis vector. The shift operation is

repeated times with the number depth of cut. The tool center location in rough

72

cutting P' is given as follows:

(158)
P^P+i.d. T (i=l,.... f)

where P, F, rf and / are the tool

center location of finishing tool path,

the tool axis vector, depth of cut and

the number of depth of cut

respectively. Figure 42 Number of depth of cut in rough
cutting

Another method developed in this project consist of the possibility to shift the tool

path by an amount of depth of cut in the direction of z axis vector. if there is no

collision between surface and tool. In this case the points that their z value is more

than z^^ are eliminated (see Figure 42).

/= max min

d

P/=P+i.d.z

(159)

(160)

In this case, it is possible to use a tool with greater diameter to decrease the time of

machining.

ALGORITHM

The algorithm shown in the following pages is developed in the program

NC_KRIGE (nckrige. c). The krigeag subroutine, KG_IntersectPlaneSurf is used to

generate a list of initial points in each cutting curve. The number of intersection

points is specified in the intps. h file with the variable #defined Maxjso . This

variable has to be determined depending of the given tolerance and the area of the

surface.

A series of functions are used to create a list of the tool positions. For more

details on these functions refer to Appendbc B (reference manual of LIBKNC

library). These functions are used to create new path generation algorithms.

The program calculates a tool path on a kriged surface (see Appendbc C).

The surface finish is dependant of the given tolerance (h,, ^ and d^. The program

uses method 2; section 2. 2 and the method discussed in section 2. 5 (CalcCuspHeight)

to calculate d^^ and h^^ respectively. The program verifies simultaneously all

interferences with the subroutine Checklnterference. In the case of 4 or 5 axis

machining, after determining the tool axis vectors by the method described in section

2.8, the subroutine CheckCollision is used to verify the collision between the tool and

the surface by method 4 described in section 3. 1. 1. If necessary, the program uses

the subroutine 3_AxisRougCutting to generate a path for rough cutting in three axis

machining.

The results of NC_krig program are saved in an ASCII file that is used by the

post-processor. Finally, the Finallist of the program is also saved to be used in the

74

simulation program.

75

Inputs:
1-Tool radius "R"
2- Small tool radius "r"
3- Tolerances(hmax, dmax)
4- Plane direction
5- Name of suri:ace kriged file
6- Name of output file
7- Name of simulation file
8- Number of machine axis (3, 4, 5 axis)
9- Check collision?
10- 3-axis rough cutting?

Read the surface kriged file

Find the surface limits

8

Determine the conditions of machining
according to 5 axis or 3 axis rough cutting

Loop for each cutting plane

Definition of a cutting plane
No

Find the intersection points between
the surface and the plane

Yes

Make list of points

(i)
1

76

Calculate the tool positions

P1 = first point in the list

Pr= next position

Yes

Verify the interference ?

No

Calculate the true error(dist)

No

dist > dmax ?

Yes

P2=Pr

77

P2=P2->next

Yes
Verify the interference ?

No
v

Calculate the true
error(dist)

P2=P2->next

Verify the
interference ?

Dist> distmax?
No

Yes

Yes
No

P2->flag = kept point

P1 =P2

End of the position in the list ?

Yes

No

78

8 2

Calculate the distance
of the next plane cutting

Remove the points
non-kept from the list

3 axis rough cutting ?
Yes

Find all of the positions No
for 3-axis rough cutting

Save tool positions

SA

4 or 5 axis mode ?
Yes

Define the tool axis vector

Check the collision
I

Save the tool positions
and directions

No

Save the tool
positions

End of program

SIMULATION

It is very important to ensure the correctness of NC programs before they are

used in regular production, to avoid errors that can cause damage to the machine

tool or workpiece. The traditional verification for NC program has been direct

proofing runs' on soft materials, which can be expensive and time consuming. So

regardless of the method used to generate the NC program, it is generally checked

before final milling. Here, the simulation program developed in this project, is

executed by using two free-form surfaces and a tool surface. In the case of 3-axis

machining the tool axis is constant and we can verify the path of tool center and CC

points. In the case of 5-axis machining, the tool surface or free-form surface,

depending on the type of machine tool, is translated and rotated 'according to the CC

points and tool axis using the equations that described previously. The simulation

program (ncsimul. c see Appendix C) permit to see the tool path and the moving of

tool during machining in 3-rough cutting and 3 , 4 and 5 axis.

EXPERIMENTS

Some kriged surfaces are used to validate the algorithms: 1) the complex

surface shown in Figure 5, 2) the turbine blade shown in Figure 43, 3) a convex and

a concave surface for measuring the precision of surface for machining in 3 axis, the

convex and the concave surfaces shown in Figure 44 and 45 for machining in 5 axis,

and a wavy surface for verification of interference and collision.

^

80

Figure 43 Turbine blade

<k'aa^s""K;sss;.

Figure 44 Convex surface

Figures 46 and 47 show the

results of the interference algorithm.

The curve above the surface

indicates the path of the tool center.

In the first case, when the tool

follows this curve, there is

interference between the tool and

the surface. This situation is

corrected by the interference

iii'
i!!"!!i!!
iliiiliii

Figure 45 Concave surface
algorithm (see Figure 47). It is noted

that some regions of the surface are not machined within the given tolerance. These

regions must be machined with a smaller tool.

81

Figure 46 Curve relative to the tool
positions without the interference
algorithm.

Figure 47 Curve relative to the tool
positions with the interference
algorithm.

^

^

^

Figure 48 Five-axis machining without
the collision algorithm.

Figure 49 Five-axis machining with the
collision algorithm.

Figure 48 and 49 show the results of the collision algorithm. The surface is

machined in 5-axis mode where the tool is in the direction of the surface normal

vector of surface. Figure 49 shows that the algorithm can correct the tool axis vector

to avoid the collision.

Figure 50 and 51 show the results of the interference algorithm because of the

82

tool shape. Because of the gouging effect, the selected points on a convex surface are

different than for a concave surface and we need more points in the case of a convex

surface to obtain the same tolerance.

^

Jl

Figure 50 A concave surface with d= Figure 51 A convex surface with d =
0.268 and a tool radius R=r=1. 0 °-268 and a t001 radius R=r=1.0

CONCLUSIONS AND RECOMMENDATIONS

The CAD/CAM system is developed in this paper to solve the problems of

manual programming and controlling the tolerances, when a kriged surface complex

is machined in 3, 4, or 5 axis. The cartesian machining method was selected for

finding the intersection points using the intersection between the surface and a series

of parallel planes. This method decrease the machine time specially for irregular and

complex surfaces. The new method is developed to select CC points from intersection

points that provide the given tolerances while the interference between the tool and

the surface is avoided simultaneously. The two method "zigzag" and "spiral" are

developed for rough machining the die cavity. The end-mill and ball-mill are

compared according to the tolerances of machining, cutting speed and the

accessibility.

In the case of 4 and 5 axis, the new method for avoidance the collision is

presented and some suggestions for solving the linearization problem are given. The

equations to find the rotary angles of machine axes and the coordinates of tool center

are developed according to the type of machine tool. Five axis rough cutting is

developed in order to machine a surface with a small depth of cavity.

The new algorithm is executed in the program NC_Krig. This program defines

a tool path on a complex surface defined by kriging. This path has the following

property:

1. The smoothness of the surface is equal given tolerance hn,^ and dmax*

84

2. The points on the path avoid all the interference between the tool and the

surface.

3. The collision is checked at each point.

4. The algorithm is valid for the end-mill, the ball-mill, and the torus-mill.

5. Rough cutting in 3 axis can be done with a specific depth.

6. The algorithm is valid for machining in 3, 4 and 5 axis.

7. The simulation program shows the tool path and movements.

8. A post-processor can convert new positions and orientations of the tool to the

machine.

This program can be also used to

1. Find an offset surface without interference.

2. Determine the region that was not machined because of the interference.

Recommendations

1. Study the effects of the tool axis and the type of tool surface on the machined

region.

2. Further study on linearization is needed.

3. Use an expert system to select the proper tool size and type.

4. Simulate a workpiece and visualise the final shape and tolerances.

5. Use an environment to make testing easier.

BIBLIOGRAPHY

1. CHOI. B. K. , JUN. C. S , july/august 1989, "Ball-end Cutter Interference

Avoidance in NC Machining of Sculptured Surfaces", Computer-aided design, vol 21

No 6, 371-378.

2. HUANG. Yunching, OLIVER. James H, 1992, "Non-constant Parameter Tool Path

Generation on Sculpture Surfaces", Computers in engineering, ASME, Vol. 1, 411-

419.

3. KRIGE. D. G, 1951, "A Statistical Approach to Some Basic Mine Valuation

Problems on the Witwatersrand", J. Chem. Metal. Min. Soc. S. Afr., S2, 119-139.

4. MATHERON. G, 1973, 'The intrinsic random functions and their applications",

Adv. Appl, Prob.5, 439-468.

5. PAUL. Richard, November 1979, "Manipulator Cartesian Path Control", IEEE

Translations on systems, man, and cybernetics, vol. smc-9, no 11.

6. SUH. Suk-Hwan, LEE. Kee-Sang, " Solving Tool-Interference Problem for

Four-Axis NC ", Machining Processing of the 1992 IEEE international Conference

on Robotics and Automation Nice, France-May 1992 Computer Automated

Manufacturing Lab, 790-600.

7. SUH. Suk-Hwan, LEE. Kee-Sang , "A Prototype CAM System for Four-Axis NC

86

Machining of Rotational-Free-Surfaces", Journal of manufacturing systems, vol 10,
No.4.

8. TAKEUCHI. Yoshimi, WATANABE. Takahiro, 1992, "Generation of 5-Axis

Control Collision-Free Tool Path and Postprocessing for NC Data" , Annals of the

CIRP vol 41/1/1992, 539-542.

9. TROCHU. F, 1993, "Presentation of a Contouring Program Based on Dual Kriging

Interpolation", Engineering with computers, Vol 9, 160-177

10. VIKERS. G. W, QUAN. K. W, 1989, " Ball-Mills Versus End-Mills for Curved

Surface MaChining ", Transaction of the ASME, Vol. Ill, 22-26.

11. CHO, H. D., JUN, Y. T. and YANG, Y., 1993, "Five_axis CNC Milling for

Effective Machining of Sculptured Surface", INT. J. PROD. RES., Vol. 31, No. ll,

2559-2573.

12. CHOPU, Jui-jen and YANG, D. C. H, 1991, "Coordinated Motion Generation of

Five-axis CNC/CMM Machines in CAD/CAM Integration", Sensors, Controls, and

Quality Issues in Manufacturing, ASME 1991, 151-161.

13. T6NSHOFF, H. K, HERNANDEZ-CAMACHO, J, 1989, " Die Manufaturing by

5-axes Milling", Journal of Mechanical Working Technology, 20, 105-119.

87

14. PAUL, R. P, 1981, "Robot Manipulators: Matematics, Programming, and Control"

MFT Press. Cambridg, Massachuestts.

15. PAUL. Richard, November 1975, "Manipulator Path Control", Proc. IEEE Int.

Conf. cybernetics and Society, 147-152.

16. CHOU, Jui-jeu and DYANG, D. C. H., February 1992, "0n the Generation of

Coordinates Motion of Five-Axis CNC/CMM Machinee", Journal Engineering for

industry, Vol. 114, 15-22.

17. CHEN, Y. J.,and RAVANI, B., 1987, "0ffset Surface Generation and Contouring

Computer-aided Designe", ASME Journal of Mechanisms, Transmissions, and

Automation in Designe, 109, 133-142.

18. YAKEUCHI, Y. and IDEMURA, T. 1991, "5-Axis Control Machining and

Grinding Based on solid model", CIRP Annals, 40/1/1992, 455-458.

19. OLIVER, J. H., WYSOKI, D. A. and GOODMAN, E. D., February 1993, "Gouge

Detection Algorithms for Sculptured Surface NC Generation", Journal of Engineering

for Industry, Vol. 115, 139-144.

20. CHI, B. K., PARK, J. W. and JUN, C. S., June 1993, "Cutter location Data

Optimization in 5-axis Surface Machining", Computer-aided design, Vol. 25, No. 6,

377-386.

88

21. LEE, An-chen, CHEN, Da-pan, and UN, Chinh-lung, 1990,"A CAD/CAM system

from 3D coordinate measuring data", INT. J. PROD. DES., Vol. 28, No 12, 2353-

2371.

22. SUH, Suk-Hwan and LEE, Kee-sang, 1992, " Solving Tool-Interference Problem

for Four-Axis Nc Machining", Proceeding of the 1992 IEEE International Conference

on Robatics and Automation Nine, France.

23. SUH, Yong Seok and LEE, Kunwoo, 1990, "NC Milling Tool Path Generation for

Arbitry Pockets Defined by Sculptured Surface", Computer-Aided Design, Vol. 22
No. 5, 273-284.

24. CHOI, B. K, LEE, C. S, HWANG, J. S. and JUN, C. S, 1988,"Compound

Surface Modeling and Machining", Computer-Aided Design, VOL. 20, No 3, 127-136

25. LEE, Y. S, CHOI, B. K, and CHANG, T. C, 1991, "Cut Ditribution and Cutting

Selection for Sculptured Surface Cavity Machining", INT. J. PROD. RES., Vol30, No

6, 1447-1470.

26. LONEY, Gregory C., and OZSOY, Tulga M., 1987, " NC Machining of Free Form

Surfaces", Cmputer-Ainded Designe, VOL. 19, No 2. 85-90.

27. BORROW, James E, 1985, "NC Machine Tool Path Generation from CSG Part

Representations", Computer-Aided Design, Nol 17, No 2, 69-76.

89

28. LEE, Yuan-Shin and CHANG, Tien-Chien, 1991, " CASCAM - An Automated

System for Scculptured Surface Cavity Machining", Computers in Industry, 16, 321-

342.

29. SASTRI, J. P., and KUMAR, S. Vasantha, 1986, " Computer Aided Manufacturing

of Sculptured Surfaces of Impeller Blades on 5 Axes CNC machins", 12th AIMTDR

Conference, IIT Dehl, 120-123.

30. KRAMER, Thomas R., " Poket Milling with Tool Engagement Detection", Journal

of Manufacturing Systems, Vol 11, No 2, 114-123.

32. YAU, Hong-Tzong, Menq, Chia-Hsiang, 1991, " Concurrent Process Planning for

Machining and Inspection of Sculptured Surfaces", Transactions ofNAMRI/SME, 32Q-

326.

33. MARCINAK, Krzysztof, 1991, "Geometric Modelling for Numerically Controlled

Machining", Oxford Science Publications.

34. MORTENSON, Michael E., 1985, "Geometric Modeling", John Wiley & Sons.

35. FAUX, I. D., and PRATT, M. J., 1980, "ComputationaI Geometry for Design and

Manufacturing", Ellis Horwood Publishers.

36. VIKERS, G. W ,LY, M. H., and GETTER, R. G., " Numerically Controlled

90

Machine Tools", Ellis Horwood Publishers.

37. KIM, Kwangsoo and BIEGEL, John E., 1988, "A Path Generation Method for

Sculptured Surface Manufature", Computes ind. Engng, Vol. 14, No 2, 95-101.

38. KIM, Kwangsoo and BIEGEL, John E., 1988, "An Integrated Approach to

Sculptured Surface Design and Manufacture", Computes ind. Engng, Vol. 14, No 3,
271-280.

39. TANG, K., WOO, T., and GAN, J., 1992, "Maximum Intersection of Spherical

Polygons and Workpiece Orientation for 4- and 5- Axis Machining", Journal of

Mechanical Design, Vol 114, 477-485.

40. ZHU, Gui, 1990, "Avoiding Iterference in Manufacturing a Free-Formed Surface

with a Cylindrical End Milling Cutter", Computers in Industry, 14, 367-371.

41. ZHU, Cui, 1991, 'Tool-path Generation in Manufacturing Sculptured Surface with

a Cylindrical End Milling Cutter", Computers in Industry, 17. 385-389.

42. MARCINAK, Krzysztof, 1987, "Influence of Surface Sahape on Admissible Tool

Positions in 5-Axis Face Milling", Computer-Aided Design, Vol 19, No. 5, 233-236.

43. BROOMHEAD, P. and EDKINS, M, 1986, "Generating NC data at the Machine

Tool for the Manufacture of Free-Form Surfces", INT. J. PROD. RES., Vol 24, No.

91

1, 1-14.

44. MASON, Frederick, November 1991, "5 x 5 for High-productivity Airfoil Milling",

American machinist, 37-39.

45. KIMMEL, R. and BRUCKSTEIN, M. A, 1993, "Shape Offsets Via Level Sets",

Computer-Aided Design, Vol. 25, No. 3, 154-162.

46. February 1987, "5-axis Model Making Saves Time and Money", Production

Engineer.

47. BALA, M. and CRANG, T. -C., 1991, "Automatic Cutting Selection and Optimal

Cutting Path Generation for Prismatic Parts", INT. J. PROD. RES., Vol. 29, No 11,

2163-2176.

48. RAMARAJ, T. C., ELEFTHERIOU, Eleftheriou, and RAMARAJ, Rama,

1989, "Integration of Design and Manufacture of Complex Geometries Through Solid

and Surface Modeling Techniques", Journal of Mechanical Working Technology, 20,

141-152.

49. TROCHU, F. and LAROCQUE, S., 1992, "Presentation d'un Logiciel de

Modelisation Geometrique par Krigeag Dual", Huitieme Congres Canadien de

L'education en Ingenierie, 278-285.

AP END A: Rotate a fra e about a vector

In order to rotate a frame about a vector rotated of an angle 0^ from the y or

orientation vector of a coordinate frame, we will first develop a transform function

H(K, ̂ 3) to rotate any transform X about a vector k and angle 0^ [5].

Y = H(K-Q^)xX (161)

We will perform the rotation about the vector k by constructing a coordinate

frame C with k as the z unit vector, and then rotate the angle 6^ about the z axis of
c.

The frame represented by X with respect to base coordinates is equal to a
frame Z with respect to coordinate frame C. Thus we have

x=c*x

or

z=c-^x

The frame Z rotated about the z axis and angle 5, is given by

Z=EZ(.Q,)

where

^(^) =

ce^ -se^ o o

S9^ Cff^ 0 0

0 010

0 001

(162)

(163)

(164)

(165)

93

The rotated Z frame is with respect to the coordinate frame C. In order to relate it

to base coordinates we must pre-multiply by C

7=C*£Z(6,)*Z (166)

and substituting from (A3)

Y=C*EI(Q^)*C~l*X (167)

The transform function H(k, G^) is then

H(K,Q^C*E\Q^C~l (168)

where C is a coordinate frame with k as the z axis. Evaluating the expression for H(k,

G^ symbolically yields

H(K, O,)=

KKve^ce, KKve. -Kse, KKVQ^KSQ^ o
KKV6^KS6, KKVe^CB, KKVQ.-KSO, 0
KK/Q^-KSQ^ KyVQ^KSe^ KKVB^CQ^ 0

0 0 0

(169)

In the first case the vector k is obtained by rotating the y axis of a coordinate

frame an angle ff^ about the z axis. Thus k is given by

-se^ ce^ -se^ o o

CB^ = S9^ Cff, 0 . 1
0 0 0 1 0

(170)

and H(k, 9^) simplifies to

94

HW,) =

se^e^ce^ -se^ce^ve^ ce^ o

-SO^CQ^VQ^ CQ0^C0^ S0,Sff^ 0

-C8lse2
0

-se^se^ ce2 °

0 1

(171)

In the second case the vector k is obtained by rotating the x axis of a coordinate

frame an angle ̂ 3 about the z axis. Thus k is given by

ce^ ce^ -se^ o i

se^ = se^ ce^ o . o
0 0 0 1 0

(172)

and H(k, ^3) simplifies to

HW,) =

ce^ve^ce^ SB^CQ.VQ^ se^ o

se^CQ. ve^ s2e^ce^ -ce^se^ o

-S6ls92
0

ce^se^
0

ce,
0

0

1

(173)

A endix B: Reference manual of the LIBKNC libra

MANIPULATION OF DATA OF PATH

The algorithm for selection the CC points and the algorithms that foresee the

interference and collision use repeatedly the normal and the offset of the tool center

in the calculations. For this reason, a list of positions is created that contains all the

necessary information during the program. The information of the list is also used

for validation and visualisation algorithms.

A doubly linked list is defined with the following structure :

typedef struct ncpos c NCPos_c;

struct ncpos_c

{

double puv[2];

Precis J: pxyz[3J;

Precisj vnmil[3];

Precis J vaxis[3];

Precis_t poffset[3];

NCPos_c *prev;

NCPos_c *next;

PosFlag flag;

};

/* STRUCTURE for a position on the surface */

I* parameters (u,v) of the position */

/* coordinates (x,y,z) */

/* unit vector of normal */

/* unit vector of tool axis orientation */

/* coordinates of the tool-center offset */

/* previous position in the list */

/* next position in the list */

^position is ON or OFF */

Each position first contains the parameters (u, v) of the position on the surface and

96

the correspondent cartesian coordinates (x,y, z). The unit vector of the normal, the

unit values that define the orientation of tool axis and the relative positions of tool

center are also recorded in each position. Two pointers, *prev and *next, are used

to move through the list. Finally, a index flag is needed in the algorithms for define

the points that must be removed from the list.

A group of procedures are used to create, modify, manipulate and rec rd the lists of

positions. These procedures are described in the Appendbc D in the programme nc. c.

The following examples show how it can be used:

NCPos c

Precis t

*listl;

KGJntersectSurfPlane (surf, a, b, c, d, npoints, int^points);

listl = NC_MakeListFroniXYZ (surf, intj)oints, npoints);

The procedure NC_MakeListFromXYZ will create a list of position from the

coordinates (x,y, z) which from the intersection between the plane and surface. The

normals will be calculated at each position. Then, we calculate the positions relative

of the tool and change the orientation of the tool axis for 5 axis machining:

NC_CalcOffset(listl, R, r);

NC_Set5axisInfo(listl);

97

The information of each position can be modified very easily. For example, to change

the index flag of each position in the list, one can write:

pos = listl; I* began from the appointed position by listl */

do {

pos- >flag = PON; f* give the value PON to flag in the position pos */

pcs = pos- >next; /* go to the next position in the list */

} while (pos); I* continue until pos=NULL */

It is also possible to search for the positions containing a special information. The

next example search all the positions with flag = = PON and removes them:

pos = listl; /* began to seek the first position */

while (pos) { /* loop until pos is no-NULL */

pos = NC_SearchForFLAG(pos, PON);

/* seek the next position where flag^PON, and return

this position */

(/ (pos) pos = NC_DeletePos(&list, pos);

/* if this position is no-NULL, remove it

and return the new location of the position */

}

Several lists can be created independently to joint with a principal list. For example,

if two lists (listl and list2) were created, the second can be joined to the other in

inverse order:

NC_AppendListToList(listl, &list2, 1); /* Note: the 1 appoint the inverse order */

98

The above examples show how it is possible to create and manipulate the list of

positions. The information of a list can be extracted and saved for using in the

simulator or post-processor. For example,

NC_OutputSampSet("points. bin", listl);

save in the binary file, a sampset of offset points from the list listl

Appendix C: Lists of programs: nckrige. c, nc.c,

ncsimul-c, nc.h

100

/***********************************^ ** *jk*** * * ** A***************************
NC_Krige:

Calculates the tool path for machining complexe surfaces using kriging.

Written by: Abbas Vafaeesefat
Serge GravelLe

Ecole PoLytechnique, Universite de Montreal, December 15 1993
^*rt*^l^*****^*******************A A A* it A * * A**************************/

(^. include <stdLib. h>
#incLude <math. h>

ffinclude <Libkg.h>
^include <LibkgL. h>
^include <l1bkap. h>
^include <mymacros. h>

ffinclude "nc. h"
^include "intps. h"

/*PROTOTYPES */

NCPos_c*Threeaxisrough(NCPos_c *finalList, Precis_t *homepos, Precis_t dd);
void Define_vaxis_EM(NCPos_c *finallist);

void Check_ColLision(HandLe_t surf, NCPos_c *list, Precis_t R/Precis_t r);
int CheckInterferenee(NCPos_c-*list, Precis_t R, Precis_t r)7
void Calcule_Cusp_h(HandLe_t surf/ NCPos_c *List, Precis_t *normaLj3lan,

Precis_t R, Precis_t h, Precis_t *point);
void De-finePLane(Precis_t *normal7 Precis_t *point, Precis_t *a,

Precis_t *b, Precis_t *c, Precis_t *d);
Precis_t CaLcD(NCPos_c *pr/ NCPos_c *p1/ Precis_t R);
char*InputName(char *text, char *name);
doubLeInputFLoat(char *text/ double dflt);

/* GLOBAL VARIABLES */

Prec1s_tplannorm[3]=<:1., 0., 0. 3-;
Prec-is_tdistmax2=0.02,distmax/distmax1=0.02;

int main()
.c

/* DEFAULT VARIABLES */

Precis t
R = 0. 1875,
r = 0. 1875/

h = 0. 02,
RR/
rr,
hh,
theta = 0.,
homepos[33 = {0., O. / 4. 3-;

charnameCSO] = "bouteil. bin",
outnameCSO] = "nc_3axis.dat",
li'stnameCZO] = "nc_3axis. List",
three_axis_roughC20] = "t_axis_rough. dat"/
list_axis_rough[203 = "t_axis_rough. List";

Suitch_tfiveaxismode=OFF,

101

/* VARIABLE DEFINITION */

NCPos c

t_axis_rough=OFF,
CheckCoLLision=OFF;

*List,
*Lastl1st,
*finalList1,*finallist,
*pos, *p1, *p2, *pr;

Handle t

Precis t

i nt

FILE

float

char

surf,

*result/

alpha,

samp;

point1[3], *point1uv,
a/ b, c, d/dd=r/thick,
thick1=0. 0/thick2=0. 0,
d i st,
ui, vi;

i/m, j,
CI = 1,
k =0;

*fp;

input;

*name2/ *name1,*name3, *name4, *name5;

/* INPUT DATA FROM USER (doesn't work yet) */

pnntf("\n\n\nPOLYFAB: Usinage automatique de surfaces compLexes");
printfC" par kngeage parainetrique\n---\n");
R = InputFtoatC" Radius (R)", R);
r = InputFLoatC' radius (r)"/R);
h = InputFLoatC" cusp height (h)"/h);
distmaxl = InputFloatC' chord deviation distmax = ", distmaxl);
thick1=InputFloat(" thickness ="/thick1);

theta = InputFLoatC' normal onentation (in degrees)"/theta);
plannormCO] = cos(theta*3. 1415926/180);
plannormd] = sin<theta*3. 1415926/180);
plannormC23 = 0.;
namel = InputNameC" surface filename", name);
name2 = InputNameC' data fiLename",outname);
name3 = InputNameC' list fiLename", Listname);

input = InputFLoatC' 3 axis rough cutting (0-OFF, 1-ON)", t_axis_rough);
t_axis_rough = (input) ? ON : OFF;

if(t_axis_rough == ONX
dd = InputFLoatC" depth of cut =", dd);
thick2=InputFLoat(" thickness =", thick2);
RR = InputFLoatC- Radius (R)", R);
rr = Input FLoatC' radius (r)"/R);

distmax2 = InputFloatC' chord deviation distmax = ", distmax2);

hh = InputFloatC" cusp height (h)", h);
name4=InputName(" data filename", three_axis_rough);
name5=InputName(" list fitenant", List_axis_rough);

.>
input = InputFloatC" 5 axis mode (0-OFF, 1-ON)"/fiveaxismode);
fiveaxismode = (input) ? ON : OFF;

if(fiveaxismode==ON){

input = InputFloatC" check collision (0-OFF, 1-ON)", CheckCoLlision);
CheckColLision = (input) ? ON : OFF;>

pr i ntf ("\n-----------__________^» 5;
printf("SUMMARY:\nTOOL: R = %f r = %f \n", R, r);

102

printf("TOLERANCES: h = Xf distmax = %-f plane normal = (%f, %f/ %f)\n
"/ h, distmax, pLannorm[03,ptannormC13/pLannorm[23)

pnntf ("surface in: '/. s output data in: Xs\n", name1, name2);
printfC'five axis mode is: %s\n", ((fiveaxismode) ? "ON" : "OFF"));

pnnt-fC'check collision is: %s\n", ((CheckCoLlision) ? "ON" : '"OFF"));
pnntf^"3 axis rough cutting is: %s\n\n", ((t_axis_rough) ? "ON" : "O'FF"));

1f(t_axis_rough==ON)<:

pnntf("\nCASE FOR 3 AXIS ROUGH CUTTING :\n\nR = %f r = y.f ", RR, rr);
pnntf("\nh = %f distmax = Xf \n", hh, ciistmax2);

printfC'Depth of cut is: Xd\n", d);

printfC'-

/* READ SURFACE FROM FILE */

if((fp = fopen(name1, "rb")) != NULL)

KG_SetInputFiLe(fp);
if(!(surf = KG_LoadSurf()))
printfC'error ");

fcLose(fp);
3-
else
printf("error... ");

--\n\n");

if(t_axis_rough ==ON)

m=2;
>else{:m=1;>

for(j=0;j<m;j++)
<

/* HAKE LIST OF STARTING POSITION (HOME POSITION) */

finallist = NC_CreateList();
for(i=0;i<3;i-++) finalList->pxyzl:i3 = homeposCi];

/* INTERSECT PLANES WITH SURFACE AND REMOVE UNWANTED POINTS */

/* STARTING POINT ON SURFACE AT u=0, v=0 */

NC_FindLimits(surf, ptannorm, 20, Sui, Svi);
KG_InterpoLSurf(surf, ui, vi/ 0, 0, pointt);

printf("\n Starting point (%f/%f, %f)\n\n", point11:0], point1C1]/point1C23);

if(t_axis_rough ==ON BS !j){h=hh;R=RR;r=rr; distmax = distmax2;thi'ck=thick2;>
else

<h=h;R=R;r=r;distmax = distmax1;thick=thick1;3-

/* LOOP FOR EACH CUTTING PLANE */

for(i=0;i<111;i++)
<:

/* DEFINE PLANE AND INTERSECT, PUT RESULT IN A NEU LIST */

DefinePlane(pLannorm/point1, 8a/8b/8c/Sd);
pnntf("\nPlan: %fx + %fy + %fz + %f = 0\n", a/ b, c/ d);

if (IntersectPlaneSurf(surf/a,b, c, d/Salpha,Sresult)

103

!= KGSUCCESS) <KG_PnntError("No Intersection") ;break;>
printfC'Xd points of intersection between plane and surface\n", alpha);
if CaLpha) .Cpnntf("\n 0 points of intersection "); break;>

List = NC_HakeListFromXYZ(surf, result, alpha);

free (result);

/* CALCULATE OFFSETS IN THIS LIST */

NC_CalcOffset(List, R/ r/thick);

if (fiveaxismode==ON) NC_Set5axisInfo(List);

/* TOOL PATH GENERATION */

p1 = list;

while(p1->next)
.c
k = 0;
pr = pl;
pr->fLag=PON;

whi Le(pr->next)

pr = pr->next;
CI = CheckInterference(pr, R, r);
if (!CI) {pr=pr->prev; k=1; p2=pr; break;]-
dist = Abs(CalcD(pr/p1, r));
if <dist > distmax) < pr=pr->prev; break;>
>

if(!(pr->next)) < pr->flag=PON; break;}

if (CD {.
p2 = pr;
while(p2->next)

if (kX

p2 = p2->next;
CI = Checklnterference(p2, R, r);
if (!CI) -Cp2=p2->prev; k=k+1; break;>

dist = Abs(CalcD(pr,p2/r5);
if (dist > distmax) -Cp2=p2->prev; break;>

>

do -C
p2 = p2->next;
CI = Checklnterference(p2, R, r);
if(CI) break;

V whiLe(p2->next);

p2->fLag = PON;
P1. =. p2/-
if(!(p1->next)) break;
>

/* CALCULATE CUSP HEIGHT TO FIND POINT IN NEXT CUTTING PLANE */

CaLcule_Cusp_h(surf, list, pLannorm, R, h, pointl);
printf ("Point in new plane = (%f/Xf/Xf)\n"/
point1[0], point1C13, point1C2]);

104

/* REMOVE UNEEDED POINTS FROM LIST/ ADD TO THE FINAL LIST*/

pos = list;
whi Le (pos) (

pos = NC_SearchForFLAG(pos/POFF);
if (pos) pos = NC_DeletePos(8tist,pos);

lastlist = finaLlist;
while (lastList->next) lastList = Lastlist->next;

/* last argument changes List direction for zigzag */

NC_AppendListToList(finaLlist/ Blist, (i-(i/2)*2));

>

if(t_axis_rough ==ON 68 !j)(

final List1=Threeaxisrough(fingLList,homepos, dd);

finallistl);

NC_Output3axis(name4, final Listl);

NC_UnteList (nameS,

/* VERIFY PATH FOR COLLISION */

if <fi"veaxismode==ON)-C
if(r<R)Define_vaxis_EH(finalList);

if(CheckCollision==ON)Check_ColLision(sur1:,finaLLi'st, R, r);
NC_Output5axis(name2, final list);

y

else
<:NC_Output3axis(name2, finallist);>

if(r<R)NC_CalcOffset(finaLList, R/ r/thickl);
NC_UriteList(name3/finalList);
return 0;
>

/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA**********
/* SUBROUTINES */
/**************AAAAA*****AAAAAAAAAAAAAAA*AA******<HHt****************/

/***ic**1rk1ti^*1c1c1c1rkl!l^iclTkk*iti^

Function Verifies if there is interference between the tool
and the surface.

Syntax CheckInterference(NCPos_c *list/ Precis_t R /Precis t r)

Remarks 'List' expects a list structure
'R' expects the radius R of the tool

'r' expects the small radius of the tooL

Return value Returns a 0 if an interference was found.
Returns a 1 if no interference exists.

AAAA****************'AA*****jt*****************AAit,t)t*****************/

int CheckInterference(NCPos_c *list, Precis_t R /Precis t r)

105

i nt
Precis t

NCPos c

for(k=Q;k<2;k++)
{

if(ci)

CI = 1, j/k/n=0;
distance[33/s/a/b,dist1,

aLpha=1,theta, pi=3. 141592654;
*pos;

pos
do

List;

if(k)-Cpos = pos->next;>eLse<pos = pos->prev;>
for(j=0;j<3;j++)distanceCj3 = pos->pxyz[:j3 - List->poffsetCj3;
dist1 = sqrt(Dotprod(di"stance, distance));
for(j=0;j<3;j++)<:distance[j3=distance[jj/dist1;>

for(j=0;j<3;j++)distanceCj3=-1*distancei:j3;
alpha= acos(Dotprod(distance, List->vaxis));
if(r)<theta=atan((R/r)-1. 5;3-eLse {theta = pi/2;>
Tf(atpha>=theta 8S alpha<=pi/2)

s=(R-r)*sin(atpha)+sqrt(Sqr(R-r)*Sqr(sin(alpha))-(Sqr(R)-2*R*r));
if(dist1< s){:CI.= 0;break;>

else
if(a(. pha<theta)-C

s=r/cos(alpha);
if(dist1<s){CI = 0; break;>

>eLse
if(alpha>=pi/2)<:

for(j=0;j<3;j++)distanceCj] = pos->pxyzCj3 - list->poffsetCj];
b= Sqr(dist1)-Sqr(Dotprod(distance, tist->vaxis));

if(b< Sqr(R+0. 0000001}) .CCI = 0; break;>
>

>while(CI/pos 86 Sqr(list->poffset[0]-pos->pxyz[0])+
Sqr(list->poffsetC13-pos->pxyz[1:X=Sqr(R));

return CI;
>

/IsltiiiiltliMliiti^iclciciclcirkltltiti^l^irivid^lcl^lcMlr^

Function Calculates the distance 'd' which will be compared
to 'dmax' in order to find the position P2.

Syntax CaLcD(NCPos_c *pr, NCPos_c *p1, Preci"s_t r)

Remarks 'pr' the changing point
'pl' the starting point
'r' the radius of the tool

Note that the distance calculated includes the correction distance
'g' which compensates for the tool radius.

Return value Returns the distance d.

1t1t*it^iiiiiTkic1rki!lt1titit*ifkit^Akiik^kiktit1i1ciTklTk1^

Precis t

{

CaLcD(NCPos_c Apr, NCPos_c *p1, Precis_t r)

Precis_t *c, s, *cc, d, g;
int i;

106

c = Crossprod(pr->vnrmt, ptannorm);
ec = Crossprod(pLannorm, c);

for(i=0;i<5;i++) c[i3 = p1->pxyz[i] - pr->pxyz[i3;

d = Abs(Dotprod(c, cc));

g= r* (1 - (Dotprod(pr->vnrmL, p1->vnrmL)));

for(i=0;i<3;i++) cd] = pr->pxyzd] - p1->pxyzd3;

i-f (Dotprod(c, p1->vnrmL) > 0) g = -g;

free (c);
free (cc);

return (d + g);
>

/******^*******M**********ibbk**'Whk^**^^*^******^t*************

Function Calculates the parameters for an algebraic plane given
a unit normal and a point.

Syntax De-finePLane(Precis_t *normal, Precis_t *point, Precis_t *a,
Precis_t *b, Prec1s_t *c , Precis_t *d)

Remarks 'normal' is a pointer to a unit normal vector
'point' is a pointer to the coordinates of a

point on the plane

'b'/ If' 'rlld' are pointers to the parameters for the
algebraic equation of a plane:

a*x + b*y + c*z + d = 0;

Return value On successful completion, the parameters witl be
stored at the addresses given to the procedure.

1i^kkkAkklTk1rlrirki!iTkirkiMrk1^1ciritit1t*kMkA^^

void DefinePlane(Precis_t *normal, Precis_t *point, Precis_t *a/ Precis_t *b,
Precis_t *c, Precis_t *d)

Precis_t length;

length = sqrt(0otprod(normal, normal));

*a = normaL[0]/length;
*b = normal[13/length;
*c = nonnaL[23/length;

*d = -(*a) * pointCO] - (*b) * pointd] - (*c) * point[2];

/**^MM**-jMMr***A*AA*A*****A*************^)hMHMh ***************

Function Calculates the distance to the next parallel plane
so that the cusp height does not exceed hmax.

Syntax CalcCuspHeight(Handte_t surf, NCPos_c *L-ist,
Precis_t *norinaLj)Lan, Precis_t R, Precis_t h. Pr ecis_t *point)

Remarks 'surf is a handle to the kriged surface
'list' is a pointer to the beginning of the List of positions
. normaLj^Lan' is a pointer to the plane normal vector
'R' is the radius of the tool
'h' is the maximum cusp height allowed (hmax)
point' is the pointer to where the coordinates of the

107

point caLculated should be stored.

Return value Stores the coordinates of the point which will be
used to define the next plane.

^*********<Mrt*********^*************<MMt^*******1bttt*****^***/

void CaLcule_Cusp_h(HandLe_t surf, NCPos_c *list, Precis_t *normaL_pLan/
Precis_t R/ Precis_t h/ Prec-is_t *point)

Imin = 999. 9, L, t = 0. 2;
result!:?], ppoi"nt[33, puvC23/ *normal_pp;
theta, p, s, DOC, AOB, pi=3. 141592654;
i/ out_-fLag;

*pos, *posmin;

Precis t
Precis t
Precis t
i nt
NCPos_c

pos = list;
pos = pos->next;
do {

if(pos->flag == PON)
<:
for(i'=0;i<3;i++) ppointCi] = t * normalj)lanCi] + pos->pxyz[i];
KG_ProjectPointOnSurf(surf, ppoi'nt, 70, 3, 8out_flag, result);
if(!(out_flag)) printf("\n erreur de projection... Calcule_Cusp... \n");
KG_xyz2uv(surf, result, SpuvCO], SpuvCI]);
normatjip = KG_InterpoLSurfNormatOnUV(surf, puv, 1);
theta = acos(normalj3p[:0] * pos->vnrm 1[0]+

normal_ppC13 * pos->vnrmLE13+
normal. _pp[23 * pos->vnrmL[23);

s = sqrt(Sqr(pos->pxyzE03-result[0]) +
Sqr(pos->pxyz[1]-resuLt[13) +
Sqr(pos->pxyz[23-resuLt[2]));

p = s / tan(theta);

/* for a concave surface */

if«resultCO]-pos->pxyzC03)*pos->vnrml[0]+
(resu tt[1]-pos->pxyz[13)*pos->vnrmI C13+
(resu Lt C2]-pos->pxyzC2])*pos->vnrm LC2]
> 0){

I = (p/((p-R5*(p-h))) * sqrt(4*Sqr(p-R)*
Sqr(p-h) - Sqr(Sqr(p) - 2*R*p+Sqr(p-h)»;

DOC = acos(l/(2*p));
AOB = acos(Dotprod(pos->vnrml, normalj3lan));

1= I * cos(AOB-DOC);
>

/* for a convax surface */

eLseC
L = (p/((p+R)*(p+h))) * sqrt(4*Sqr(p+R)*Sqr(p+h)

- Sqr(Sqr(p) + 2*R*p+Sqr(p+h)));
DOC = acos(l/(2*p));
AOB = acos(Dotprod(pos->vnrml, normaLj3Lan));

I = L * cosCDOC+AOB-pi);
>

if d > 2*R || p>599.) I = 2*sqrt(2*R*h-Sqr(h));

if (L <= Lmn) { Imin = L; posmin = pos; 3-

> while (pos=pos->next);

for(i=0;i<3;i++) pointCi] = posmin->pxyz[i] + normalj3lanCi3*Lmin;

108

free(normaLj3p);
free(resuLt);

>

/************************* ** * ** * A***********************************

Function Verifies if there are any coLLisions between the
tool and the surface at each position in the list .

Syntax CheckCoLlision(HandLe_t surf, NCPos_c *list, Precis t R)

Remarks 'surf is a handle to the kriged surface.
'List' is a pointer to the beginning of the list of positions
'R' is the radius of the toot

Note, if a collision is found, corrections are done to the orientation vector at that position.
Return value none.

<^^*^***********^*^***i ********) ******^*^**********^***<Mt^/

void Check_CoLlision(Handle_t surf, NCPos_c *List/ Precis_t R, Precis_t r)

Precis_t m[3], distC3], ui, vi', pointC3],

int
NCPos c

i/j/n=50/k;
*pos;

s, a, b/ppoint[50][503[33;

for(i=0;i<n;i++)

for(j=0;j<n;j++)

pos = list;
ui = i*1. 0/(n-1. 0);
vi = j*1. 0/(n-1. 0);
KG_InterpoLSurf(surf, ui, vi, 0, 0, point);

for(k=0;k<3;k++) ppoint[i]Cj3[k3=pointCk3;

>

dot
for(i=0;i<n;i++)
for(j=0;j<n;j++)

for(k=0;k<3;k++) pointCk3=ppointCi3Cj]Ek3;
if(r<R)<:
for(k=0;k<5;k++)

pos->poffset[k3 = pos->pxyz[k3 + (pos->vnmil[k]5*R;

for(k=0;k<3;k++) distCk] = pointCk] - pos->poffset[k3;

if(Dotprod(dist, pos->vaxi's) > 0.)C

b= Sqr(sqrt(Dotprod(dist/dist)))-Sqr(Dotprod(dist, pos->vaxis));
if(b< Sqr(R+0. 0000001))
<:
if(pos->vaxis[23<1.) pos->vaxisC2] = pos->vaxisC2] + 0. 2;
s = sqrt(Dotprod(pos->vaxis, pos->vaxis));
for(k=0;k<3;k++) pos->vaxis[k] = pos->vaxis[k3 / s ;

1=0;
. break;

109

>whi Le(pos=pos->next);

/1riciTkic1c1<icic*1c*1s1^i^ic*Mt*i!l<ir^*l!*1:1s*1s1:i^i, i:iticM**ici:1c1c*M^*irk1c1^^

Function Inputs a string of text. If none are entered, the
default is used.

Syntax *InputName(char *text, char *name)

Remarks 'text' is text of the question to be printed to the screen
'name' is the default string

Return value Returns the string of characters.

1c*'i~k*i:i:1r^*1ii!lsitirk1ti:i!*i<l!*l!***i<itii*1tMviti^idt**irk*1^1^^

char *InputName(char *text/ char *name)
{

char *input;
MALLOC (input, char/ 25);

pnntf("\n%s i'/.sl > ", text, name);
gets(input);
if (*i'nput==NULL) return name;
else return input;

/*******lMhMHh *******A'*********it*A*AAAAA)t****)t*********************

Function Inputs a floating point number. If nonthing is entered,
the default is used.

Syntax InputFLoatCchar *text, double dflt)

Remarks 'text' is the text of the question to be printed to the screen
'dfLf is the default number

Return value Returns the number.

A********]l[******iMMnMMk***************************iHtibHMk^^**Jh ***/

double Input Float(char *text, double dflt)

char input[25];

printf("\n%s L7.il > "/text/dftt);
gets(input);

if (*input==NULL) (return dflt;>
else return atofdnput);

>

/**** A******* ***^*^**************************)t**A * * A**************

Function Defines the orientation the tool axis

Syntax void Define_vaxis_EM(NCPos_c *finaLlist)

Remarks 'finaltist' expects a list structure

**************************^ rt********************************/

110

void Define_vaxis_EH(NCPos c *finaLList)
<

Precis t

int
*p2, *p1;

pp12[3], l, *A, *p;
i;

NCPos c
p1=finallist;
p1= p1->next;

whiLe(p1->next)
-c
P2=p1;
p2 = p2->next;
for(i=0;i<3;i++)-C pp12[i] = p2->pxyzEi3 - p1->pxyz[i];>
I = sqrt(Dotprod(pp12, pp12));
for(i=0;i<i;i++) pp12Ci3 = pp12[i3 / I.;
A = Crossprod(pp12, p1->vnrmt);
L = sqrt(Dotprod(A, A));
for(i=0;i<3;i++) ACi3 = ACi3 / L;
p = Crossprod(A, pp12);
t = sqrt(Dotprod(p/p));
for(i=0;i<!;i++) p1->vaxis[:i3 = pd] / L;
p1=p2;
}

/Itlrtcliltiti^ltitlcitlci^islviddci^icirkltitifitMltMlclclciciclciTklci^lr^lTir^^

Function Verifies if there are any coLLisions between the
tool and the surface at each position in the List .

Syntax *Threeaxisrough(NCPos_c *finaltist , Precis_t *homepos,

t thick)

Remarks 'finallist' is a pointer to the beginning of the list of positions
'homepos' is the start point of tool

'dd' is depth of cut
'thick' is the thickness for fimshin

Return value List of positions.

*1c1c1r)!lt1ticit*1t*1c1t1^i<1<*i^l!i!lTid^i<isis1sirk1t1rk1c1rk*

Precis_t dd, Precis

NCPos_c *Threeaxisrough(NCPos_c *finaLList /Precis_t *homepos, Precis_t dd)

<

i nt
NCPos c

do

Prec i s_t x, z/zmi n=999., zmax=-999. 9;
f=0, j/m/ k/i, n;
*fi'nallist1,*pos1/*pos,*pos2;

finaLList1=finalList;
finallist1=finallist1->next;
pos1=finallist;
pos1=pos1->next;
pos= NC_CreateList<);
pos2=pos;

z=pos1->poffset[23;
if(z<zmin)zmin=z;
Tf(z>zmax)zmax=z;

3-whi le(pos1=pos1->next);

n=itrunc(zmax - zmin)/dd;

do

Ill

finalList1=finallist1->next;
3-uhtle(finaLList1->next);

for(j=1;j<=n;j++)
{

ifdnX
m = j-(j/2)*2;

?else-Cpos1=finallist;>
pos1=finaLList1;

else
<

1=0;
for(i=1;i<f;i++)

(

if(!m)<: pos1=pos1->next;>

pos1=pos1->prev;

if(pos1->poffset[2] + dd*(n-j) < zmax
<:

pos2 = NC_AddPosAtBot(pos);
pos2->flag=PON;
pos2->vaxis[03=0.;
pos2->vaxis[13=0.;
pos2->vaxis[2]=1.;

pos2->poffset[0]=pos1->poffset CO],
pos2->poffset C13=pos1->poffset[13;
pos2->poffsetC23=pos1->poffset[2]+dd*(n-j);
x=pos2->poffsetE23;

>

.>

x < zmax)

pos2 = NC_AddPosAtBot(pos);
pos2->flag=PON;
for(j=0;j<3;j++)pos2->poffsetC]]=homepos[j3;

return pos;
>

112

/***^***M***^***^****^********^rt***^****^*)»************************
nc. c:

Subroutines for creating, manipuLating and outputing a linked list
containing the information for a tool path.

Uritten by: Abbgs Vafaeesefat
Serge GravelLe

EcoLe Polytechmque, Univers-ite de Montreal, December 15 1993
1rk1d!l^1dcirk1ci!lrk1c1rklTki!l!lvl!*i!l!l!is1^1<it1(ic1(isirtt1<1tic*1{1ri<1^^ A****** ********/

^include <stdlib. h>
ffinclude <math. h>

Sinclude <Libkg.h>
^include <Libkgt. h>
^include <Libkap.h>
ffincLude <myniacros. h>

#1ncLude "nc. h"

NCPos_c *NC_SearchForUV(NCPos_c *startpos, Precis_t uu, Precis_t vv)

NCPos_c *pos;

pos=startpos;

whiLe(pos)
<

if (pos->puv[03==uu 8S pos->puvC1]==vv) break;
pos=pos->next;

return pos;

NCPos_c *NC_SearchForFLAG(NCPos_c *startpos, PosFlag flag)

NCPos_c *pos;

pos=startpos;

while(pos)

if (pos->flag==flag) break;
pos=pos->next;

>

return pos;

NCPos_c *NC_SearchForXYZ(NCPos_c *startpos, Precis_t xx, Precis_t yy/ Precis_t zz)

NCPos_c *pos;

pos=startpos;

while(pos)
<

if (pos->pxyzC03==xx S8 pos->pxyz[1]==yy 88 pos->pxyz[23==zz) break;
pos=pos->next;

113

return pos;

void
{

NC_ShowList(NCPos c *list)

NCPos_c *pos;
int counter=0;

pos=L1st;

NC_ShowHeader();

while(pos)
.c

NC_ShowPos(pos);
++counter;
pos=pos->next;

>

pnntf("\n%d positions i this list\n", counter);

void NC__ShowHeader(void)
{

pnntf("\n");
printf("\n
pnntf("\n
pnntf("\n
pn-ntf("\n ===--

px

ax

py

ay

PZ

az

nx

t ex

ny

tcy

nz

tcz

FLAG *=PON");

");
-");

:=====");

void NC_ShowPos(NCPos c *pos)

char onoff[23=-C- . /'*. >;

printf("\n %6. 3f 7.6.3f \%7. 2-f 7. 7. 2f 5;7. 2f|X7. 3f X7. 3f %7. 3f| Sic",
pos->puv[0], pos->puv[13/
pos->pxyz[0], pos->pxyz[1]/ pos->pxyz[2]/
pos->vnrml[03, pos->vnrml[1], pos->vnrml[23,
onoffCpos->flag]);

printf("\n |%7. 3f%7. 3f%7. 3f|%7. 3f%7. 3f%7. 3f|",
pos->vaxisC03, pos->vaxis[1], pos->vaxis[2],
pos->poffsetCO], pos->poffsetC13, pos->poffsetC2])/

NCPos c *NC CreateList(void)
(

NCPos_c *ll'st=NULL;

return (NC_NewPos(8list,NULL,NULD); /* returns pointer to new List */

NCPos_c *NC_AddPosAtTop(NCPos_c **List)

return (NC_NewPos(&*List, NULL, *List));

114

NCPos c *NC AddPosAtBotCNCPos c *List)
c ~ ~

NCPos_c *pos, *temp=NULL;

pos=List;
uhite(pos->next) pos=pos->next;

return (NC_NewPos(8temp, pos, NULD);

NCPos_c *NC_InsertPos(NCPos_c *List/ NCPos_c *pos)

NCPos_c *temp=NULL;
return (NC_NewPos(Stemp,pos, pos->next));

NCPos_c *NC_NewPos(NCPos_c **tist, NCPos_c *prev, NCPos_c *next)

NCPos_c *newpos;
int i;

/* create new position in memory */
if (!(newpos = (NCPos_c *)maLLoc<sizeof(NCPos_c))))

(pnntfC'Not enough memory to allocate buffer\n"); exit(1);>

/* and imtiaL-ize data */
newpos->puvEO]=0.;
newpos->puvC13=0.;

for d=0; i<3; i++) -C
newpos->pxyzCi 3=0.;
newpos->vnrmL[i]=0.;
newpos->vaxis[i]=0.;
newpos->poffsetCi3=1.;

newpos->f Lag=PON;

/* step one: Link new with prev and next */
newpos->next=next;
newpos->p rev=p rev;

/* step two: link prev and next with new */
Tf(prev!=NULL) newpos->prev->next=newpos;
i f(next!=NULL) newpos->next->prev=newpos;

/* change List pointer to newpos unless this is a new List */

if(*list!=NULL 8 prev==NULL) *list=newpos;

return newpos;

NCPos_c *NC_DeletePos(NCPos_c **List, NCPos_c *pos)

NCPos_c *nowpos;

/* detach links to pos */

115

if (pos==NULL) -C
pnntf("\nNCPos_note: Nothing to erase!");
nowpos=NULL;

else if (pos->prev==NULL 8S pos->next==NULL) {. /* erase Last item */
pnntf("\nNCPos_note: List erased!");
*list=NULL;
nowpos=NULL;
>

else if (pos->prev==NULL) { /* item at top of List */
pos->next->prev=NULL;
*List=pos->next;
nowpos=pos->next;

else if (pos->next==NULL) <: /* item at bottom of list */
pos->prev->next=NULL;
nowpos=pos->prev;
>

else <
pos->prev->next=pos->next;
pos->next->prev=pos->prev;
nowpos=pos->next;
>

/* erase info by freeing memory */
-free(pos);

return nowpos; /* NOTE: the nowpos acts Like the delete key */

NCPos_c *NC_HakeListFromUV(Handle_t kgsurf, Precis_t *uvlist, int nb_pts)

NCPos_c *Li st/ *pos;
Precis_t *uu, *vv,

*pxyz,
*vnrml,
normaLdir=1.,
vaxis[3]={0.,0., 1. >;

int i;

pxyz = (Precis_t *) maLLoc(3*sizeof(Precis_t));
vnrml = (Precis_t *) maLloc(3*siz f(Precis_t));

for (i=0; i<nbjits; i++) .C

if (i) pos = NC_AddPosAtBot(list);
else <

List = NC_CreateList();
pos = list; }

uu = (uvlist+2*i);
vv = <uvList+2*i+1);

pos->puvCO] = *uu;
pos->puv[1] = *vv;

pxyz=KG_InterpolSur-fOnUV(kgsur-f, uu, 1, 0, 0);

pos->pxyz[03 = *pxyz;
pos->pxyz[13 = *(pxyz+1);
pos->pxyz[2] = *(pxyz+2);

vnrml=KG_InterpoLSurfNormalOnUV(kgsurf, uu, 1);

116

/* if (*(vnrml+2) < 0) -Cnormaldir = -1. ;}
else -Cnormaldir = 1. ;>
inclure si probleme avec direction des normaLes*/

pos->vnrmL[03 = normaldir * (*vnrml);
pos->vnrmL[1] = normaldir * (*(vnrml+D);
pos->vnrmLC23 = normaLdir * (*(vnrmL+2));

free(pxyz);
free(vnrmL);

return List;

pos->vaxi's[03 = vaxisCO];
pos->vaxisC13 = vaxisd];
pos->vaxis[23 = vaxis[23;

pos->flag = POFF;

NCPos_c *NC_MakeListFromXYZ(Handle_t kgsurf, Precis_t *xyzlist/ int nbjits)

NCPos_c *Li st, *pos;
Precis_t puvC23,

pxyzC33,
*vnrmL,
normaLdir=1.,
vaxisC33=<0. /0. /1. 3-;

1nt 1;

vnrmL = (Precis_t *) malloc(3*sizeof(Precis_t));

for (i=0; i<nbj3ts; i++) <

if d) pos = NC_AddPosAtBot(List);
else {

list = NC_CreateList<);
pos = List; >

pxyz[0] = *(xyzList+i*3);
pxyzCI] = *(xyzList+i*3+1);
px/2[2] = *(xyzList+i*3+2);

pos->pxyz[03 = pxyzCO];
pos->pxyzC1] = pxyz[13;
pos->pxyz[23 = pxyz[23;

KG_xyz2uv(kgsurf, pxyz, SpuvCO], 8puvE1]);

pos->puvC03 = *puv;
pos->puvC1] = *(puv+1);

/*

vnrml=KG_InterpoLSurfNomiaLOnUV(kgsurf, puv, 1);

if (*(vnrml+2) < 0) -Cnormaldir = -1. ;>

117

free(puv);
free(vnrmL);

return list;

else -Cnormaldir = 1. ;>
inclure si probleme avec direction des normales*/

pos->vnrml[:03 = normaldir * (*vnrml);
pos->vnrmL[13 = normaldir * (*(vnrmL+D);
pos->vnrmLC23 = normaldir * (*(vnrml+2));

pos->vaxisC03 = vaxisCO];
pos->vaxisC1] = vaxis[13;
pos->vaxisC2] = vaxis[23;

pos->fLag = POFF;

i nt
{

NC_OutputSampSet(char *name, NCPos_c *list)

Handle_t samp;
NCPos_c *pos;
Precis_t *points=NULL;
FILE *fp;
Hedium_t i=0;

/* count number of items in the List */
pos=list;
do -C i++; > while(pos=pos->next);

/* store the data in a temporary variable */
if (!NALLOC(points, Precis_t, i*3))

printfC'Memory ALlocation Error (SampFromList)");

i=0;
pos=list;
do <:

*(points+(i*3)) = pos->poffset[03;
*(points+(i*3)+1) = pos->poffsetC13;
*(points+(i*3)+2) = pos->poffset[2];

i++;
> while(pos=pos->next);

samp = KG_NewSampSet(i,3, 0/points, NULL)/ /* i should be medium_t, NULL=-1*/

KG_StatusSampSet(samp);

if ((fp = fopenC name, "wb")) != NULL) {
KG_SetOutputFite(fp);
KG_StoreSampSet(samp);
fcLose (fp);

>

else
.Cprintf("\nFiLe error: UnteListAsSampSet\n"); exit (1);3-

KG_DeleteSampSet(samp);

free(points);

118

Handle t
.c

Hand Ie_t
NCPos_c *pos;
Precis t

i nt

NC_NewSampSetFromList(NCPos_c *List, int TYPE)

samp;

*points=NULL;

i=0;

/* count number of items in the List */
pos=list;
do -C i++; > while(pos=pos->next);

/* store the data in a temporary variable */
if (!MALLOC(points, Precis_t, 1*3))

printfC'Nemory Allocation Error (SampFromList)");

i=0;
pos=li'st;
do <

if (TYPE==1) {
*(points+(i*3)) = pos->poffsetC03;
*(points+(i*3)+1) = pos->poffset[1:;
*(points+(i*3)+2) = pos->poffset[23;

else <
*(points+(i*3)) = pos->pxyz[03;
*(points+(i*3)+1) = pos->pxyz[1];
*(points+(i*3)+2) = pos->pxyz[2];

i++;
> while(pos=pos->next);

samp = KG_NewSampSet(i, 3, 0, points/NULL); /* i should be medium_t, NULL=-1*/

free(points);

return samp;
>

void
{

NC_UnteList(char *name, NCPos_c *List)

NCPos_c *pos;
FILE *fp;

if((fp=fopen(name/"wt"))i=NULD
<

pos=List;
do
{

.fprintf(fp/"%Ld\n", pos->fLag);
fpnntf(fp/"%lf %lf\n", pos->puvC03, pos->puv[13);
fprintf(^p, "%lf %lf %Lf\n", pos->pxyzl:03, pos->pxyzE13, pos->pxyz[23);
fpnnff(fp/"%Lf YA-f %lf\n"/pos->vnrml[0], pos->vnrmLC1], pos->vnrml[2]);
fprintf(fp, "%lf %lf %lf\n", pos->vaxisE03/pos->vaxisE1], pos->vaxis[23);
fpnntf(fp, "%lf%lf%lf\n", pos->poffsetC03/pos->poffset[1],pos->poffset[23);
fprintf(fp
fpnntfCfp

> while(pos=pos->next);

else printfC'file error-sg");

fclose(fp);

119

NCPos c *NC ReadListCchar *name
{

NCPos_c *pos, *list;
int i=0;
FILE *fp;

if((fp=fopen(name, "rt"))!=NULL)
(

while(!feof(fp))
<

if (1)

else <:
pos = NC_AddPosAtBot(list);

list = NC_CreateList();
pcs = list; >

fscanf(fp, "%d" /8(pos->flag));
fscanf(fp, "XLf%Lf"/8(pos->puvC03)/ 8(pos->puv[1]5);
fscanf(fp, "%Lf%LfXLf",8(pos->pxyz[0])/a(pos->pxyzC1]),8(pos->pxy2 C2]));
fscanf(fp, "%Lf%lfXlf", 8(pos->vnrml[03)/S(pos->vnrmLC135/a(pos->vnrmL[23));
fscanf(fp/'%intf%Lf"/S(pos->vax1s[03),8(pos->vaxisl:1]),S(pos->vaxis[2]));
fscanf(fp, "%lf%Lf%L-f",S(pos->poffsetC03)/S(pos->poffset[13),8(pos->poffset[2]));
1++;
>;

y

else printfC'fiLe error-sg");
fclose(fp);

pos = NC_DeLetePos(8list/pos);

return list;

void
.c

NC_Output5axis(char *name, NCPos_c *list)

NCPos_c *pos;
FILE *fp;

if((fp=fopen(name, "wt"))!=NULL)
<:

pos=List;
do
.c
fpnntf(fp, "%+lf %+Lf %+lf ",

pos->poffset[0]/pos->poffset[13,pos->poffset[23);
fpnntf(fp, "%+lf %+Lf %+lf\n",

pos->vaxis[0], pos->vaxisC13, pos->vaxis[23);
3- white(pos=pos->next);

else printfC'file error-sg");

fclose(fp);

void
{

NC_Output3axis(char *name, NCPos_c *List)

NCPos_c *pos;
FILE *fp;

i -f ((fp=fopen(name, "wt"))! =NULL)

120

pos=List;
do
<

fprintf(fp, "%+Lf %+Lf %+lf\n",
pos->poffsetCO], pos->poffset C13 /pos->poffset C23);

> while(pos=pos->next);

else prinffC'file error-8g");

fclose(fp);

void
(

do

NC_Set5axisInfo(NCPos_c *List)

NCPos_c *pos;

pos = list;

<

pos->vaxis[0] = pos->vnrml[03;
pos->vaxis[13 = pos->vnrml[13;
pos->vaxisC23 = pos->vnrmL[23;

> while(pos=pos->next);

void NC_CaLcOffset(NCPos_c *list, Precis_t RR, Precis_t rr, Precis_t thick)

Precis_t a, m[3] /a1;
NCPos_c *pos;

int i;

do
pos = list;

{

a = Dotprod(pos->vnrml, pos->vaxis);

m[03 = pos->vnrml[0] - a * pos->vaxis[03;
mCI] = pos->vnrml[13 - a * pos->vaxis[13;
m[2] = pos->vnrml[23 - a * pos->vaxisC2];
a1 = Dotprod(m, m);
ford=0;i<3;i++) mCi3=m[i3/a1;

pos->poffset[0] = pos->pxyzl:0] + (pos->vnrml[0])*(rr+thick) + m[03*(RR-rr);
pos->poffset[1] = pos->pxyzC1] + (pos->vnrmll:1])*(rr+thick) + m[13*(RR-rr);
pos->po-ffsetC2] = pos->pxyzC2] + (pos->vnrml[2])*(rr+thick) + m[23*(RR-rr5;

y while(pos=pos->next);

Precis_t DotprodC Precis_t *v1, Precis_t *v2)
{

return (v1[0]*v2[03 + v1C13*v2I:1] + v1C23*v2C23);

Precis_t *Crossprod(Precis_t *v1, Precis_t *v2)

Precis_t *v. Length;

121

HALLOCCv, Precis_t, 3);

v[03 = v1C1]*v2C23 - v1C2]*v2[1];
v[1] = -v1C03*v2[2] + v1[23*v2[03;
vC23 = v1C03*v2C13 - v1C13*v2CO];

length = sqrt(Dotprod(v, v));
vCO] = v[03/Length;
v[1] = v[1]/Length;
vC23 = v[23/Length;

return v; /* NOTE: returns vector of unit Length */

void
{.

NC_AppendListToList(NCPos_c *List1/ NCPos_c **List2, int REVERSE)

NCPos_c *pos, *pos2, *pos3;

/* GO TO BOTTOM OF LIST */
pos = tistl;
whiLe(pos->next) pos=pos->next ;

if (REVERSE) <:
pos2 = *List2;
wh-i Le(pos2->next) pos2=pos2->next ;

while (pos2->prev)
<

pos->next = pos2;
pos3 = pos2->prev;
pos2->prev = pos;
pos = pos->next;
pos2 = pos3;

>

pos->next = pos2;
pos?. ->prev = pos;
pos2->next = NULL;

*List2 = NULL;
>

else <
pos->next = *list2;
pos->next->prev = pos;
*list2 = NULL;

Precis_t *NC_MakeIsoPath(Precis_t us, Precis_t uf/ Precis_t vs, Precis_t vf,
Precis_t du, Precis_t dv, int

*npoints)

Precis_t *puv, *puvref, u, v;
i nt n;

if (!du || !dv) return;

n = ceiLC (Abs(uf-us)/du+1) * (Abs(vf-vs)/dv+1)*2);
MALLOCCpuv, Preci's_t, n);

puvref = puv;

for (v=vs; v<=vf; v+=dv) -C
for (u=us; u<=uf; u+=du) -C

*puv = u; ++puv;
*puv = v; ++puv;

122

»

puv = NULL;

*npoints = n/2;

return puvref;
>

void

{

Precis t

Precis_t
Precis t

Medium t
i nt

NC_FindLimits(Handle_t surf, Precis_t *normaL/ int ndivisions/
Precis t *ui. Precis t *vi)

*puv, *pxyz, uv, duv, alpha, beta/ poi'ntCS];
uf, vf;
xmax = -99999. 9, xmin = 99999. 9, x;
i, imin, imax;
], npoints;

npoints = (ndivisions+1)*4;

HALLOCCpuv, Precis_t, npoints*2);

duv = t. /ndivisions;

uv=0.;
for (j=0; j<=ndivisions; j++)

puvEO+j*8] = uv;
puv[1+j*8] = 0.;
puv[2+j*8] = 0.;
puvC3+j*8] = uv;

puv[4'f-j*83 = uv;
puv[5+j*83 = 1.;
puvC6+j*83 = 1.;
puv[7+j*8] = uv;

uv+=duv;
>

pxyz = KG_InterpoLSurfOnUV(surf, puv, npoints/0, 0);

alpha = -1*asin(normaL[23); /* assumes that normal is unit vector */
beta = -1*atan2(normalE13/normaLCO]);

for (i=0; i<npoints; i'++)
.c

/* TRANSFORM EACH POINT R(beta, z)*R(alpha, x)*pxyz
pointCO] = *(pxyz+i*3)*cos(beta) -

*(pxyz+i*3+1)*sin(beta)*cos(alpha) +
*(pxyz+i*3+2)*sin(beta)*si"n(aLpha);

point[13 = *(pxyz+i*3)*sin(beta) +
*(pxyz+i*3+1)*cos(beta)*cos(alpha) -
*(pxyz+i*3+2)*cos(beta5*sin(aLpha);

pointCZ] = *(pxyz+i*3+1)*sin(alpha) +
*(pxyz+i"*3+2)*cos(aLpha); */

x = *(pxyz+i*3)*cos(beta) -
*(pxyz+i*3+1)*sin(beta)*cos(alpha) +
*(pxyz+i*3+2)*sin(beta)*sin(alpha);

if (x<xmin) . Cxmin=x; imin=i";3-
if (x>xmax) <xmax=x; imax=i;>

*ui = puv[i'nnn*2];
*vi = puvCimin*2+13;

123

uf = puvCimax*23;
vf = puvCimax*2+13;

free(puv);
free(pxyz);

void NC_DefinePlane(Precis_t *normal/Precis_t *point, Precis_t *a, Precis_t *b/
Precis_t *c, Precis_t *d)

(- . -
Precis_t Length;

Length = sqrt(Dotprod(nonnaL/normal));

*a = normaLCO]/Length;
*b = norma1[1]/Length;
*c = normaL[23/Length;

*d = -(*a) * poi-nt[0] - (*b) * point[13 - (*c) * point[23;

124

/iciflslritititMitMitititMltMMislc^lrklrklsititiiicirklTklclt^icicisiri^
ncsimuLS.c

Simulate the machining process in Saxis mode.

Written by: Abbas Vafaeesefat
Serge GraveLLe

Ecole PoLytechm'que, Um'versite de HontreaL/ December 15 1993
************^**^rtiM ***^-iM ^)U****AA*A*A**AA******)t**jt*****/

ffinclude <stdLib. h>
^include <math. h>

ffinclude <L-ibkg. h>
ffinclude <Libkgt. h>
^include <Libkap.h>
ffincLude <mymacros. h>

iifincLude "nc. h"

char *InputName(char *text, char *name);
double InputFloatCchar *text, double dflt);

void mai'nO
(

Handte_t

Precis t

Precis_t

SmalL_t

Limits t

Switch t

display, dispLay2,
view,
surf1/ asamp, acurv/ curvt/ curv2/
too 11, tooL2;

ptooL1[9]/
ptool2[9],
dx, dy, dz,
testpt1C33=<:0., 0., 0. >,
testpt2[3]=<1., 2., 3. >/
R=. 09375, r, HL,
alpha, beta/
PI = acos(-1.);

Zdist=0,

nbjiu = 20,

lim ;
RESHOW,

At, A2, A3,
P2C33,
SiC33={0., 0., 0. >/ Sa[:33=-CO. / 0., 0. >;

nb_pv = 20 ;

SHOUOFFSETS = OFF,
SHOUXYZ = OFF;

GLPen_c penl = <: YELLOW_COLOR/ SOLID_LINE_STYLE/
THICK_LINE_UIDTH, CROIX_MARK_STYLE, NORMAL_HARK_SJZE/
255, ISOLINES_RENDER > ;

GLPen_c pen2 = { LIGHTBLUE_COLOR, SOLID_LINE_STYLE/
NORMAL_LINE_WIDTH, CROIX_MARK_STYLE/ NORHAL_HARK_SIZE,
255, ISOLINES_RENDER > ;

GLPen_c pen3 = <: GREEN_COLOR/ SOLID_LINE_srfLE,
NORNAL_LINE_UIDTH/ CROIX_MARK_STYLE, NORHAL_HARK_SIZE/
255, ISOLINES_RENDER >. ;

GLPen_c pen4 = <: WHITE_COLOR, DASHED_LINE_STYLE,
NORMAL_LINE_UIDTH, CROIX_HARK_STYLE, NORHAL_HARK_SIZE,
255, ISOLINES_RENDER > ;

GLPen_c pen5 = <: RED_COLOR, DASHED_LINE_STYLE/
NORHAL_LINE_WIDTH, CROIX_MARK_STYLE, NORMAL_HARK_SIZE/
255, ISOLINES_RENDER > ;

Angle inc=900, azi'm=900, twist=0;

125

float xtrans, ytrans, zoom;
Coord dist=0.;

APRefer c

APGeom_c

*ref_surf,

*obj_surf=NULL,

*ref_tool1,
*ref_tool2,
*ref_curve;

*obj_tool=NULL/
*objs, *objt, *pprevobj, *prevobj, *obj_curve=NULL;

static num_plt=0;
char fich_pltC13]= "plot", *extjitt = ". hpg";

NCPos_c *path,
*pos;

int i/k/t=9;
float f, tt, pp, pi=3. 141592654;
char *clef/name7[20] = "nc_5axi's.dat";
Long device = 0;
short data;
FILE *fp/*ff;
char surfnameC] = "bouteiL.bin",

pathnamel:] = "nc_3axis. List"/
winnameC] = "NC_Simul",
output[203= "output",
*name1,
*naine2,
*name3,
*name4;

/* INPUT DATA FROM USER */

R = InputFLoatC'Tool Radius (R)", R);
r = InputFloatC'TooL radius (r)", R);
HL = Input Float("Too I length (HL)", R*1Q);
Zdist = InputFLoatC'Uorkpiece origin height", Zdist);
SaC23 = Zdist;
name1 = InputNameC'Surface filename"/surfname);
name2 = InputNameC'PathList fiLename",pathname);
name3 = InputNameC'Uindow Text",winname);
name4 = InputNameC'5-axis file", output);

/* INITALIZE GRAPHICS WINDOW */

GL_Im tGraphi cs()/
minsize(900,700);

GL_UinOpen(name3);
AP_SetUindowConfig();

/* READ LIST OF POINTS DEFINING TOOL PATH, KRIG CURVE */

path = NC_ReadList(name2);

GL_SetCurveResolution(60);
asamp = NC_NewSampSetFromL'ist(path, 1);
KG_SetProfiLeA(ALONG_NORH, LINEAR_COVAR, LINEAR_DRIFT, 0. 0);
curvl = KG_Kr1gCurve(asamp);
display = GL_NewCurveFromKGCurve(curv1, NULL, 0);
ref_curve = AP_ObjectReference(CURVE_nPE, curvl, display);
obj_curve = AP_NewGeomObjeot(obj_curve, ref_curve, ON, RED_COLOR);

asamp = NC_NewSampSetFromList(path, 0);
K6_SetProfiteA(ALONG_NORH, LINEAR_COVAR, LINEAR_DRIFT, 0. 0);
curv2 = KG_KngCurve(asamp);
display = GL_NewCurveFromKGCurve(curv2/ NULL, 0);
ref_curve = AP_ObjectReference(CURVE_TYPE, curv2/ display),

126

obj_curve = AP_NewGeomObject(obj_curve/ ref_curve, ON, RED_COLOR);

ff = fopen(name4, "wt");
i-f (ff == NULL) {printf("\nFILE NOT FOUND"); exitd); >

/* READ SURFACE FROM FILE AND HAKE OBJECT*/

fp = fopen(name1, "rb");
if (fp == NULL) <:printf("\nFILE NOT FOUND"); exitd ; >

KG_SetInputFiLe(fp);
surfl = KG_LoadSurf();
fclose(fp);

GL_SetSurfResoLution(70,70);
displays = GL_NewIsoSurfFromKGSurf(surf /NULL/nbj)u,NULL,nb_pv);
ref_surf = AP_ObjectReference(SURFACE_TYPE, surfl, displayZ);

/* KRIG TOOL PARTS (1 S 2) AND MAKE THEM OBJECT */

ptool1[03 = 0. ; ptooLICI] = 0. ; ptooL1[23 = HL;
ptooL1C3] = 0. ; ptooL1[4] = -R; ptooLICS] = HL;
ptool1C6] = 0. ; ptooL1[73 = -R; ptooL1C83 = 0.;

KG_SetProflleA(ALONG_NORM, LINEAR_COVAR, LINEAR_DRIFT, 0. 0);
asamp = KG_NewSampSet(3, 3, 0, ptooll, NULL);
acurv = KG_KngCurve(asamp);
tooL1 = KG_KngSur'fFromCurveRevolution(acurv, lz', 360. 0);

display = GL_NewPolySurfFromKGSurf(toolt, 36, 36);
ref_tooL1 = AP_ObjectReference(SURFACE_TYPE, tooll/ display);

ptooL2[:03 = 0. ; ptooLZCI] = -R ; ptool2C23 = 0.;
ptooLZCS] = 0. ; ptool2C43 = -R+r-r/sqrt(2.); ptooLZCS] = -r/sqrt(2.);
ptool2C6] = 0. ; ptooL2C7] = -R+r; ptool2C8] = -r;

KG_SetProfileA(POSITION_NORM, LINEAR_COVAR, LINEAR_DRIFT, 0. 0);
asamp = KG_NewSampSet(3, 3, O/ ptoolZ, NULL);
acurv = KG KngCurve(asamp);
tool2 = KG_KngSurfFromCurveRevolution(acurv, 'z', -360. 0);

/*tooL2 = KG_KngSphere(1. 2);*/

display = GL_NewPolySurfFromKGSur-f(tool2, 36, 36);
ref_tool2 = AP_ObjectReference(SURFACE_TYPE, tooLZ/ display);

KG_DeLeteSampSet(asamp);
KG_DeleteCurve(acurv);

/* FIRST, PLACE TRANSFORMED COPIES OF THE REF_OBJS INTO OBJ_LISTS */

NC_Output5axis(name7, pos);

/* COMPUTE ANGLES */

i = 0;
/* go to last position of the pathOO*/
pcs = path; do (pos=pos->next;> while(pos->next);

do
<

if (!pos->vaxisEO] SS !pos->vaxisC13) (tt=0. ; pp=0. ;>

127

else <
tt = pos->vaxis[0]/pos->vaxisC13;
tt = atan(tt);
if(pos->vaxisl:1] < 0)tt=tt+pi;
else<
if(pos->vaxisCO]< 0 88 pos->vaxisf:13>0)tt = 2* pi+tt;>
pp =sqrt(Sqr(pos->vaxis[0])

+Sqr(pos->vaxis[13))/pos->vaxis[:2];
pp = atan(pp);

if(!pos->vaxis[2])pp=pi;
if (lpos->vaxisC03 S& pos->vaxis[1]<0) {tt=pi;>
if (!pos->vaxisC1] 8S pos->vaxis[03>0) tt=pi/2;

if (lpos->vaxisl:13 SB pos->vaxis[0]<0) tt=-pi/2;
if (pp>1. 4)pp=1. 4;>

/* COMPUTE NEW POSITION */
At = cos(tt)*Sa[03 - sin(tt)*SaC13 - SiCOJ;
A2 = s1n(tt)*Sa[03 + cos(tt)*SaC1] - S1-E13;
A3 = SaC23 - SKZ1;

p2[0] = cos(tt)*pos->poffsetC03
- sin<tt)*pos->poffset[13 + A1 ;

p2C13 = cos(pp)*sin(tt)*pos->poffset[03
+ cos(pp)*cos(tt)*pos->poffset[13
- sin(pp)*pos->poffsetC23
+ cos(pp)*A2 - sin(pp)*A3 ;

p2[2] = sin(pp)*sin(tt)*pos->poffset[:0]
+ s1n(pp)*cos(tt)*pos->poffsetl:1]
+ cos(pp)*pos->poffset[2]
+ sin(pp)*A2 + cos(pp)*A3 ;

t++;
fpnntfCff, " N X3d GDI X %7. 5f Y %7. 5f Z %7. 5f A %7. 3f C !!;7. 3f \n", t, p2CO]+SiC03-SaE03,
p2[1]+Si[13-SaC13,p2l:2]+SiC2]-SaC23, pp*180/pi, tt*180/pi);

/* ADD TRANSFORMED SURFACE TO LIST */
obj_surf = AP_NewGeomObject(obj_surf, ref_sur-f, ON, GREEN_COLOR);

GL_PushHatrix();
GL_LoadMatnx(obj_surf->modeling);

GL_Translate(-p2[03, -p2C13, 0.);
GL_Rot (pp*180. /PI/ lxl);
GL_Rot (tt*180. /PI, 'z');
GL_Translate(SaC03/ SaCI], Sa[2]);

GL_GetNatnx(obj_surf->modeling);
GL_PopHatnx();

YELLOW_COLOR);

/* ADD TRANSFORMED TOOLS TO LIST */
obj_tooL=AP_NewGeomObject(obj_tooL/ ref_tooL1/ ON/

GL_PushMatnx();
GL_LoadMatnx(obj_tooL->modeLing);

GL_TransLate(0., O. / p2[Z3);
GL_GetHatnx(obj_tooL->modeting);
GL_PopHatnx();

YELLOU_COLOR);
obj_tool=AP_NewGeomObject(obj_tooL/ ref_tool2, ON,

GL_PushHatrix();
GL_LoadMatnx(obj_tool->modeling);

GL_TransLate(O. / 0., p2C23);
GL_GetHatrix(obj_tooL->model. ing);
GL_PopM atnx();

> whiIe (pos=pos->prev);

obj_surf = AP_NewGeomObject(obj_surf, ref_surf, ON, GREEN_COLOR);
obj_tool = AP_NewGeomObject(obj_tool, ref_tooL1, ON, YELLOU_COLOR);

obj_tool = AP_NewGeomObject(obj_tooL, ref_tooL2, ON, YELLOU_COLOR);

128

/*

/* INITIALIZE A VIEU */

view = GL_NewVieu (-1. 0, 1. 0, -1.0, 1.0);
GL_SetViewPosit1on (view, 1. ,900,900,0);
AP_CalcGeoniObjectsLimits(obj_surf, SLim);
L1m. zroax=lim. zmax+HL+R;
GL_SetViewLimits(view. Slim);
GL_SetViewLookAt(view, (l. im. xinin+lim. xmax)/2/(Lim. ym1n+Lim. ymax)/2,

(Lim. zmin+Lim. zmax)/2); */
GL_SetViewLookAt(view, 0., 0., 0.);
GL_ZoomViewFitLimits(view);

/* SIMULATE BY DISPLAYING ALL OBJECTS */

(fifdef _6L_
qdevice(RAWKEYBD) ;
qdevice(REDRAW) ;

ffendif

while (device != ALTQKEY 88 device != ESCKEY)
<:

switch (device = AP_GetInput(Sdata))
-c
RESHOW = OFF;
case REDRAW:

GL_ReshapeView(view 5;
RESHOU = ON;
break;

case ALTAKEY:
6L_SetViewPan(view/ 0., 0.);
GL_ZoomViewFitLimits(view);
RESHOU = ON;
break;

case LEFTKEY:
azim -= 150; if (azim<=0) azim=3600;

GL_SetViewPositi'on (view, dist/ azim, inc, twist);
RESHOU = ON;
break;

case RI6HTKEY:
azim += 150; if (azim>=3600) azim=0;

GL_SetViewPosition (view, dist, azi'm, inc, twist);
RESHOU = ON;
break;

case UPKEY:
inc += 150; if (inc>=3600) inc=0;

GL_SetViewPosition (view, dist/ inc/ inc, twist);
RESHOU = ON;

129

break;

case DOUNKEY:
inc -= 150; if dnc<=0) inc=3600;

GL_SetV1euPosition (view/ dist, inc, inc, twist);
RESHOU = ON;
break;

case ALTHKEY:
num_pLt++ ;
sprintfC fichj3Lt+4, "%02d\0", num_pLt) ;
strcat(fich_plt, ext_plt) ;
Tf(i(fp = fopen(fichjsLt, "wt")))

{ pnntf("graph_f1Le error\n"); exit(1);>
GL_InitPlotterHP(fp) ;

GL_PushHatnx();
GL_SetVi'ewTransform(view);
AP P LotGeomObj ect(obj_surf) ;
AP_PLotGeomObject(obj_toot);
AP_P LotGeomObj ect(obj_too L->next);
if (SHOUOFFSETS == ON) AP_PlotGeomObject(obj_curve);
if (SHOUXYZ == ON) AP_PLotGeomObject(obj_curve->next);
GL_PopHatnx();

GL_EndPlotterHP() ;
fcloset fp) ;
break ;

case OKEY:
if (SHOUOFFSETS == ON) (SHOUOFFSETS = OFF;>
else <SHOUOFFSETS = ON;>
RESHOU = ON;
break;

case PKEY:
if (SHOWXYZ == ON) -CSHOUXYZ = OFF; >
else (SHOWXYZ = ON;>
RESHOU = ON;
break;

if (RESHOU == ON) -C
GL_SetViewProjection(view);
GL_PushHatrix() ;
GL_CLearView(view, BLACK_COLOR) ;
GL_SetViewTransform< view) ;

GL_SetPenStyLe(Spent);
AP_DrawGeomObject(obj_surf);

GL_SetPenStyle(SpenZ);
AP_DrawGeoniObject(obj_tool);
AP_DrawGeomObj eot(obj_tool->next);

GL_SetPenStyte(Spen3);
GL_DrawV1euLimits(view) ;

GL_SetPenStyte(8pen4);
if (SHOUOFFSETS == ON) AP_DrawGeomObject(obj_curve);

GL_SetPenStyle(SpenS);
if (SHOUXYZ == ON) AP_DrawGeomObject(obj_curve->next);

GL_PopNatrix();

130

swapbuffersO;

ftfifdef GL
unqdevice(RAUKEYBD) ;
unqdevice(REDRAW) ;

#endif

swapbuffersO;

getcharO;

objt=obj_tooL;
objs=obj_surf;
do {

GL_SetViewProject1on(view);
GL_PushMatnx() ;
GL_CLearView(view, BLACK_COLOR) ;
GL_SetViewTransform(view) ;

objs=objs->next;
ob]t=obj t->next->next;

GL_CLearVieu (view, BLACK_COLOR);

GL_SetPenStyle(&pen3);
GL_DrawViewLimits(view) ;

GL_SetPenStyLe(Spent);
AP_DrawGeomObject(objs);

GL_SetPenStyle(8pen2)/.
AP_D rawGeomObj eot(objt);
AP_D rawGeomObj ect(obj t->next);

GL_PopHatrix();
swapbuffersO;

while (device != NKEY SB device != ALTHKEY)
(device = AP_GetInput(Sdata);
if (device == SKEY) swapbuffers;>

if (device == ALTHKEY) .C
num_pLt++ ;
sprintfC fich_pLt+4, "%02d\0", numjilt) ;
strcat(-fichjilt, extj^lt) ;
if(!(fp = fopenC .fich_plt, "wt")))

< printf("graph_file error\n"); exit(1);>
GL_InitPLotterHP(fp) ;

GL_PushMatrix();
GL_SetViewTrans-form(view);
AP_PlotGeomObj ect(obj s);
AP_PlotGeomObj ect(objt);
AP_PlotGeomObj ect(obj t->next);
GL_PopMatrix();

GL_EndPlotterHP() ;
fcLoseC fp) ;
break ;

>

device = NULL;

> while (objs->next);

AP_VisitGeomObjects(obj_surf, AP_DeleteGeomObject);
AP_VisitGeomObjects(obj_tool/ AP_DeleteGeomObject);

131

GL_DeLeteView(view);
GL_EndGraphics();

char *InputName(char *text, char *name)
<

char *input;
HALLOC (input, char, 25);

pnntf("\n%s [%s] > "/text/name);
gets(input);
if (*i'nput==NULL) return name;
else return input;

double InputFloatCchar *text, double dftt)
{

char input[253;

pnntf("\n%s f/. -fl > "/text/dflt);
gets(input);

if (*input==NULL) (return dflt;>
else return atof(input);

132

/* Header file for nc. c */

typedef enum

POFF/
PON

3- PosFlag;

/* 0, NULL, FALSE */
/* 1, TRUE */

typedef struct ncpos_c NCPos_c;
struct ncpos_c
<

Precis_t puv[23;
Precis_t pxyzC3]/
Precis_t vnrml[33;
Precis_t vaxisC3];

Precis_t poffset[33;
NCPos_c *prev;
NCPos_c *next;
PosFlag flag;

>;

NCPos_c *NC_NewPos(NCPos_c **List, NCPos_c *prev, NCPos_c *next);
NCPos_c *NC_CreateList(void);
NCPos_c *NC_AddPosAtTpp(NCPos_c **List);
NCPos_c *NC_AddPosAtBot(NCPos_c *Li st);
NCPos_c *NC_InsertPos(NCPos_c *List, NCPos_c *pos);
NCPos_c *NC_DetetePos(NCPos_c **list, NCPos_c *pos);

NCPos_c *NC_MakeListFroinXYZ(Handle_t kgsurf, Precis_t *xyzlist, int nb_pts);
NCPos_c *NC_HakeListFromUV(HandLe_t kgsurf, Precis_t *uvList, int nbj)ts);

void NC_ShowHeader(void);
void NC_ShowPos(NCPos_c *pos);
void NC_ShouList(NCPos_c *ti3t);

NCPos_c *NC_SearchForUV(NCPos_c *startpos, Precis_t uu, Precis_t vv);
NCPos_c *NC_SearchForFLAG(NCPos_c *startpos, PosFlag flag);
NCPos_c *NC_SearchForXYZ(NCPos_c *startpos, Precis_t xx, Precis_t yy, Precis_t zz);

void NC_Set5axisInfo(NCPos_c *List);
void NC_CaLcOffset(NCPos_c *list, Precis_t R, Precis_t r, Precis_t thick);
void NC_AppendL-istToList(NCPos_c *list1, NCPos_c **list2, int ORDER);

void NC_UnteList(char *name, NCPos_c *list);
NCPos_c *NC_ReadList(char *name);

void NC_Output3axis(char *name, NCPos_c *List);
void NC_Output5axis(char *name, NCPos_c *list);
int NC_OutputSampSet(char *name, NCPos_c *List);

HandLe_t NC_NewSampSetFromList(NCPos_c *list/ int TYPE);

Precis_t Dotprod(Precis_t *v1, Precis_t *v2);
Precis_t *Crossprod(Precis_t *v1, Precis_t *v2);

Precis_t *NC_MakeIsoPath(Precis_t us, Precis_t uf, Precis_t vs/
Precis_tvf, Precis_tdu/ Precis_t

dv, int *npoints);
void NC_FindLimits(Handle_t surf, Precis_t *normal, int ndivisions,

Precis_t *ui/ Precis_t *vi);
void NC_DefinePlane(Precis_t *normal, Precis_t *point/

Precis_t *a, Precis_t *b/Precis_t
*c, Precis_t *d);

	SKM_C550i23120715510
	SKM_C550i23120715530
	SKM_C550i23120715550

