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SOMMAIRE

Les cycles de vie réduits des produits et l intense compétition globale dans le

marché de la haute technologie ont modifié de façon fondamentale les procédés

physiques de conception utilisés dans l'industrie électronique. Le développement

des méthodes de conception éprouvées et d équipements électroniques sans défaill-

ance dépendent de la modélisation thermique adéquate et de Papplication d une

méthodologie de conception physique reposant sur des bases scientifiques. En

conséquence le contrôle thermique des composantes électroniques a été durant les

dernières décades l'un des principaux champs d'application de techniques poussées

en transfert thermique. Plusieurs des bénéfices associés à une fiabilité améliorée

avec capacité de puissance accrue et à une miniaturisation physique sont le résutlat

d analyses et de conceptions thermiques améliorées qui permettent de stabiliser

les températures des composantes au niveau désiré malgré les variations des con-

ditions ambiantes où la présence d un environnement hostile. Parmi les nombreux

modèles de transfert de chaleur, la convection naturelle et la convection forcée con-

tinuent d'occuper une place importante dans la conception de boîtes életroniques

à cause de leur coût peu élevé et de leur capacité d adaptation aux normes envi-

ronnementales.

Cette dissertation a pour objet de présenter notre travail de recherche actuel,

lequel porte de façon générale sur la chaleur et le contrôle thermique des systèmes

de refroidissement en électronique. Les aspects suivants sont considérés:

• l'environnement thermique des appareils électroniques modernes;
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• les modèles mathématiques du transfert de chaleur dans des canalisa-

tions;

• le développement de simulation numérique;

• les test de comparaison avec des résultats approuvés;

a la convection mixte dans un canal horizontal;

• l'efFet d'une onde thermique en mouvement sur la convection de

Bénard dans une couche fluide;

• la convection mixte dans un canal incliné.

Plus spécifiquement, nous faisons l'investigation de la convection naturelle

et mixte dans un canal à parois lisses dont les frontières sont soumises à des

perturbations thermiques. C est le genre de canal de base que l on rencontre

fréquement dans l'industrie électronique. On étudie numériquement l'interaction

entre les rouleaux de convection résultant de l'instabilité classique de Bénard et le

chauffage discontinu à intervalles réguliers (ou le cas d'une onde thermique spa-

tialement périodique) imposé sur la frontière. L'intensité relative de l'écoulement

forcé et les effets de poussée d Archimède sont examinés pour une plage importante

de nombres de Rayleigh, de Reynolds, et d'autre paramètres géométriques. Le

problème est considéré comme étant bidimensionnel et l on suppose des rouleaux

transversaux. Les équations de base appropriées sont résolues numériquement par

des techniques numériques. Des conditions périodiques sont imposées aux parois

verticales distantes d'une longueur d onde, de sorte que le domaine numérique

peut être limité à une "fenêtre d'observation" d'une seule longueur d'onde qui

peut être placée à une position quelconque le long du canal. Le domaine de calcul
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peut aussi être étendu au canal tout entier, ce qui permet de considérer l'influence

de l entrée et de la sortie et de vérifier que l'hypothèse d'une solution périodique

dont la longueur d'onde correspond à la perturbation est valide.

Les résultats numériques de la présente investigation révèlent que dans le cas

de la convection mixte, il existe un seuil l ) au dessous duquel une solution perma-

nente existe avec une position fixe des cellules convectives et 2°) au-dessus duquel

il n'y a pas d'état permament, les cellules de convection étant emportées vers

l'aval à un rythme irrégulier, périodique dans le temps. Ce seuil a été déterminé

pour des conditions variées incluant le cas où il n'y a pas d'écoulement forcé,

l onde thermique imposée à la frontière se déplaçant à une vitesse prédéterminée.

Des analyses détaillées ont été effectuées pour les champs d'écoulement et de

température, les taux de transfert de chaleur, les cisaillements et les gradients

de pression. Dans des cas extrêmes, la précision du présent code numérique est

comparée aux résultats provenant d'une analyse théorique.

Dans ce mémoire chaque chapitre reflète des projets de recherche relativement

indépendants sur le sujet en question et, par conséquent, chaque chapitre est conçu

pour être indépendant dans son contenu technique. Cependant, pour une vision

efficace de la thèse dans son ensemble, on a utilisé dans la mesure du possible une

nomenclature commune pour tous les chapitres. En plus, les symboles spécifiques

à chaque chapitre sont immédiatement disponibles grâce à une liste de définitions

additionnelle accompagnant chaque chapitre.

Le premier chapitre décrit de façon générale les types de contrôle thermique

utilisés dans la conception de boites électroniques, avec emphase sur le mode de
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refroidissement par circulation d'air, par convection naturelle, forcée et mixte.

On y mentionne sommairement que le mode de refroidissement par convection

naturelle joue un rôle important pour l'équipement en service dans un environ-

nement thermique hostile où dans des endroits peu accessibles, là où la durée de

vie des appareils servant à déplacer l'air est source d'inquiétude. Cette circula-

tion d air le long des composantes génératrices de chaleur a constitué l une des

méthodes les plus populaires de refroidissement. Aussi, un domaine dont l intérêt

est toujours actuel est l étude d écoulements combinant la convection naturelle et

forcée qu on désigne communément par le terme convection mixte.

Le chapitre 2 fournit un modèle mathématique de transfert de chaleur dans

une couche fluide. Un ensemble d'équations couplées, elliptiques aux dérivées par-

tielles est présenté, servant de base à une formulation aux variables primitives ainsi

qu'à une formulation en termes de vorticité fonction de courant. Ces équations

provennent des principes de conservation de masse, de conservation de quantité de

mouvement et de conservation d'énergie. Des conditions aux limites appropriées

y sont aussi discutées.

Le chapitre 3 présente les techniques numériques utilisées dans le présent

travail, techniques déjà appliquées a une large variété de problèmes de génie. Des

méthodes de différences finies et de volume de contrôle y sont présentées. Certains

aspects importants y sont discutés en profondeur, incluant la discrétisation des

équations et des conditions aux limites. Des considérations sur l'algorithme utilisé

pour des systèmes d'équations couplées, sur les conditions aux limites périodiques

et sur les concepts de difFérentiation upwind y sont aussi discutées.
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Dans le chapitre 4, la précision et la fiabilité du code numérique sont contrôlées

par des tests de comparison avec des résultats existants approuvés, comme dans

les cas d'un écoulement entraîné et de la convection naturelle dans une cavité

carrée.

Le chapitre 5 considère la convection mixte dans un canal horizontal avec

segments isothermes, ou sources de chaleur uniformes, régulièrement espacés et

séparés par des parties isolées sur la frontière inférieure, alors que la frontière

supérieure est froide. Cette idéalisation constitue un point de départ utile et

commode pour explorer le transfert de chaleur qui survient dans le refroidisse-

ment de pièces électroniques. Le cas extrême d'une frontière inférieure portée

entièrement à une tenpérature uniforme est examiné. En supposant que la solu-

tion est périodique le long d'un canal s'étendant à l'infini dans les deux directions,

selon la périodicité de la perturbation thermique imposée à la frontière, le domaine

numérique peu alors être limité à une "fenêtre d'observation" avec conditions

périodiques imposées aux sections amont et aval. Cette "fenêtre" peut occuper

une position quelconque le long du canal. L'intensité relative de l'écoulement

forcé et les effets de poussée d'Archimède sont étudiés pour une plage importante

des nombres de Rayleigh et Péclet (ou Reynolds). A des nombres de Reynolds

faibles, les rouleaux des convection demeurent attachés aux éléments chauffants

et donnent lieu à un état permanent. Au-delà d un seuil en termes du nombre de

Reynolds (ou de Péclet), les rouleaux sont emportés dans la direction aval avec

une vitesse variable et selon une récurrence dans le temps. A cause du mouvement

irrégulier des rouleaux de convection, toutes les autres variables physiques sont

caractérisées par une dépendance du temps périodique. En particulier, le nombre
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de Nusselt global relatif à la frontière supérieure et la température moyennée sur la

couche fluide (cette température est une mesure de l'énergie contenue dans le flu-

ide) ne sont pas en phase, tout en ayant une forte dépendance périodique du temps.

Comme conséquence de ce déphasage, la chaleur produite par les éléments chauf-

fants s accumule dans la couche fluide avant d'être relâchée à travers la frontière

supérieure.

Dans le chapitre 6, le mouvement induit par une onde sinusoïdale se propa-

gant dans une couche horizontale d un fluide de Boussinesq est étudié numériquement.

Dans le cas d une onde thermique stationnaire, les résultats confirment ceux

obtenus analytiquement dans le passé. Dans le cas d une onde thermique en

mouvement, il existe une vitesse critique, fonction du nombre de Rayleigh et

de l amplitude de la perturbation imposée, au-dessus de laquelle les rouleaux de

Bénard sont emportés avec la perturbation, de sorte qu'une situation perma-

nente peut être observée dans un référentiel se déplaçant avec l'onde. Au delà

de cette vitesse critique, il n'y a plus de situation permanente et les rouleaux

se déplacent avec une vitesse moyenne plus petite que celle de l'onde thermique.

De fait, le comportement de l'écoulement est non permanent périodique et toutes

les quantités physiques sont caractérisées par une dépendance cyclique du temps.

En particulier, la chaleur est relâchée par coups brusques à travers la frontière

supérieure.

Dans le chapitre 7, la convection mixte dans un canal incliné avec chauffage

discontinu sur le fond et paroi du haut isolée est étudiée numériquement. La

plupart des résultats sont obtenus à partir d'un domaine numérique limité à une

longueur d'onde de la périodicité imposée sur le fond et avec conditions limites
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périodiques aux parois d extrémité. Quelques résultats numériques sont aussi

obtenus à partir d un canal plus réaliste d'étendu limitée, comportant quelques

éléments chauffants, avec conditions aux limites spécifiées à l'entrée et à la sor-

tie. Des inversions d'écoulement locales et globales sont observées, lesquelles sont

fonction des nombres de Rayleigh, de Reynolds et des angles d inclinaison. Ces

inversions d'écoulement peuvent modifier grandement la friction à la paroi, le

gradient, de pression, la distribution de température de même que le transfert de

chaleur. Enfin, une solution analytique est obtenue pour le cas limite où la paroi

tout entière est chauffée.

En résumé, le but principal de la thèse est d'étudier la convection naturelle

et mixte dans des canaux dont les parois sont perturbées thermiquement et de

déterminer ainsi l'efFet combiné de la convection libre et de la convection forcée sur

le transport de chaleur entre des plaques parallèles. Cette étude devrait permettre

d'acquérir une vision en profondeur des mécanismes de refroidissement impliqués

dans la conception de circuits électroniques.



ABSTRACT

Shrinking product life-cycles and intense global compétition in the high-technology

marketplace have fundamentally altered the physical design process used in the

electronics industry. The development of correct-by-design and failure-free elec-

tronic Systems is dépendent on successful thermal modeling and the systematic ap-

plication of a science-based physical design methodology. Consequently, thermal

control of electronic components has been, for récent decades, one of the primary

areas of application of advanced heat transfer techniques. Many of the bene-

fits associated with improved reliability, increased power capability, and physical

miniaturization can be traced directly to improved thermal analysis and design,

which has allowed component températures to be stabilized at a desired level de-

spite variations in ambient conditions or the présence of a hostile environment.

Among the various heat transfer models, natural and forced convection continues

to command substantial attention in electronic package design due to its lower

cost and its environmentally friendly nature.

This dissertation présents our current research work in the sub j ect of heat

management and thermal control in electronic cooling system including:

• thermal environment of modem electronic devices

• mathematical model of heat transfer in channels

• numerical simulation development

• benchmark comparison test
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• mixed convection in a horizontal channel

• effects of a moving thermal wave on Bénard convection in a horizontal

fluid layer

• mixed convection in an inclined channel

In the présent study, we investigate the behavior of natural and mixed con-

vection in a smooth-walled channel with boundaries perturbed thermally, that is,

the basic channel frequently encountered in electronlc industry. The interaction

between convective rolls resulting from. classical Bénard instability and a regu-

larly spaced discrète heating (or a spatially periodic thermal wave) imposed on

the boundary is studied numerically. The relative strength of the forced flow and

buoyancy efFects are examined for a broad range of Rayleigh number, Reynolds

number and géométrie parameters.

The problem is considered two-dimensional and transverse rolls are assumed.

The appropriate governing équations are solved numerically by computational

techniques. Periodicity conditions are imposed on the vertical boundaries of one

wavelength, from which the numerical domain is restricted to a one-wavelength

"window" that can be located anywhere along the channel. The whole channel

used as a computational domain is also calculated from which the influence of

entrance and exit is considered and the assumption of periodic solution with a

wavelength corresponding to the perturbation is validated.

The numerical results of the présent investigation reveal that in the case of

mixed convection, there exists a threshold l below which a steady state solution
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exists with fixed location of the convective cell and 2 above which no steady state

is possible with cells carried downstream at an irregular time-periodic rate. This

type of the threshold has been determined for various conditions including the

case for which no forced flow exist but the imposed thermal wave is moving at

a predetermined velocity, Detailed analyses of flow and température fields, heat

transfer rates and shear stress or pressure gradients have been conducted. In some

extrême cases, the accuracy of présent numerical code is verified by theoretical

analysis.
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Chapter l

INTRODUCTION

1.1 BACKGROUND

The growing use of electronics in both the military and civilian sectors leads

to widespread recognition of the need for thermal packaging and design of elec-

tronic compônents. Particularly the rising level of overall power dissipation and

high density of electronic components make the successful opération of electronic

devices, ranging from microelectronic chips to large power tubes, critically depen-

dent on efficient and reliable heat removed. Consequently, the choice of thermal

control technology and the particular décisions made in the course of evolving the

thermal packaging design often have far-reaching efFects on both the reliability

and cost of the electronic System.

Despite changing demands and the availability of new heat transfer technol-

ogy, direct air cooling of electronic components continues to command substantial

attention. A comprehensive overview of this subject may be found in the ar-

ticle given by Hannemann, R [l], where he concludes that natural and forced

convection are still very popular in electronic cooling Systems due to their lower

cost bands as well as convenient user environments, and that research in creative

packaging and cooling approaches using forced air will be bénéficiai in designing

high performance microsystems.
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1.1.1 Thermal Environment of Modem Electronic Devices

In the thermal control of modem electronic devices, it is necessary to provide

an acceptable "microclimate", for a diversity of components that, while frequently

in close proximity to each other, often display substantially différent sensitivities

to environmental factors and widely varying heat dissipation rates. Some knowl-

edge of the possible range of component and environmental variations is thus a

necessary prerequisite for successful design and development of thermal control

Systems and the rational interprétation of bench and prototype tests. A review

of the aims of thermal control, commonly encountered thermal environment and

the thermal characteristics of several classes of components are presented by Bar-

Cohen [2].

Generally, the thermal management of a complex system like a computer can

be divided into différent structural levels. A typical configuration is shown in Fig.

1.1, where the chip is the smallest component of the System, the module, whose

function is to isolate the chip(s) from the atmosphère and at the same time to

provide the leads for transmission of signais to and from the chip(s), the supply

of power, and the printed wiring board (PWB), which carries modules. Heat pro-

duced by the chip has to travel along multiple conduction paths inside the module,

overcoming what is called internai thermal résistance. On the surface of the mod-

ule, heat is transferred to the coolant, thereby overcoming the external thermal

résistance. At the level of the PWB (printed wiring board), the température of

the coolant increases as the coolant absorbs heat from the modules along its flow

path. This is referred to as the system level thermal résistance. Modules near

the exit of the codant flow are sub j ect to the most sévère thermal environment
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within the System due to the high température of the coolant surrounding them.

Figure 1.2 shows the data for heat loads on chips, modules, and PWBs

(printed wiring boards). The horizontal axis gives the area on the components

for chips and modules which is the projected area on the board. The data belong

to the machines already in commercial opération in the field; those carrying open

symbols represent air-cooling machines, and the shaded symbols represent ma-

chines where indirect water cooling is employed. The arrows indicate the trends

of increasing heat load at all structural levels of the computer.

Figure 1.3 shows another view of the current state of the hardware design

of computer. The vertical axis shows the rate of electrical power consumption by

the computer system, which is approximately equal to the rate of heat génération

by the System. This figure refers not only to the data of mainframes and super-

computers but also to medium-sized computers for office use. The shaded band

covers the data for office computers, central processor volume (CPU) of some typ-

ical computers, and System volume of mainframes and supercomputer. Most of

thèse data belong to the air-cooled machines, with only a few characterizing the

indirect water-cooled machine. An examination of this data collection indicates

that the volumetric power density of medium and small scale computers is com-

parable to that of large-scale computers. However, the design of air cooling for

small computers is just an equally demanding task as for large Systems.

Obviously, the knowledge base established with the past générations of elec-

tronic equipment serves as a vehicle for the development of future générations of

equipments.
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1.1.2 Natural Convection Cooling

With the spread of electronic equipment in many corners of our lives, the

demanda are growing for the élimination of acoustic noise inhérent to forced air-

cooling. As a conséquent, natural convection cooliug is playing an important

rôle for equipment that opérâtes in hostile thermal environments and in remote

locations, where the service life of air-moving devices is a matter of concern.

In actual electronic equipments, however, the présence of components and

other obstacles imposing constraints on the convection of air is almost the rule,

particularly in equipments where increased packing density of components is in-

evitable. Figure 1.4 shows a situation commonly found in electronic equipments,

where heat dissipating components are mounted on the plates and heat trans-

fer from the array is influenced by free convection of the coolant, as well as by

conduction in the plates and by radiation exchange between the plates and their

surroundings. Although the manner in which heat is dissipated along the wall

varies with spécifie packaging and operating conditions, many applications of in-

terest are suitably approximated by smooth plates with symmetric isothermal or

isoflux surfaces, or use of an isothermal/isoflux boundary together with an insu-

lated boundary condition along the adjoining plate [3], [4], [5].

For vertical channels, buoyancy acts exclusively to induce motion in the

streamwise direction and, boundary layers, beginning at inlet, develop on each

surface. For short channels and/or large sparrings, independent boundary layer

development occurs at each surface and conditions correspond to those for an

isolated plate in an infinite quiescent medium. For large length/width, however,
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boundary layers developing on opposing surfaces eventually merge to yield a fully

developed condition. If the channel is inclined, there is a component of the buoy-

ancy force acting normal, as well as parallel, to the streamwise direction, and

conditions may lead to strong flow.

Beginning with the benchmark paper by Elenbaas [6], the vertical channel

orientation bas been studied extensively for symmetrically and asymmetrically

heated plates with isothermal or isoflux surface conditions. For symmetrically

heated, isothermal plates, Elenbaas obtained a semi-empirical corrélation for the

average Nusselt number Nu s as a function of the parameter Râs. In the fully

developed limit, the corrélation is in excellent agreement with the predi étions of

Bodoia et al. [7], who numerically simulated the developing flow with uniform

inlet velocity and température profile, and with the analytical fully developed

flow solution of Aung [8 . Improved agreement was obtained by Aihara [9 , whose

numerical simulation accounted for the pressure defect created by the accélération

of the inviscid fluid at the channel inlet.

For symmetrically heated isoflux surfaces, local heat transfer coefficients have

been measured by Siegel and Noms [10 , and both fully developed and entry région

solutions have been obtained by Aung et al. [8], [11]. Experiments performed by

Wirtz and Stutzman [12] yielded a corrélation for the maximum plate température,

which is in good agreement with the predictions of Aung et al. [11].

For asymmetric heating Aung [8] obtained closed form solutions for fully

developed flow, while Aung et al. [11 obtained numerical and expérimental results

for developing flow. It was also concluded that expressions obtained for isoflux
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symmetric heating could be used to predict the maximum température on each

of the asymmetrically heated surfaces. Miyatake and Fujiï [13], [14], and Dalbert

[15] extended the available results to include both asymmetric wall température

and heat flux boundary conditions, including the single insulated wall.

Conditions corresponding to a single heated plate, with the other plate in-

sulated, have received considération. Numerical simulations (Miyatake and Fujii

[13], Miyatake et al. [14]), as well as experiments (Sparrow et al., [16]; Miyamoto

et al. [17]) have been performed for both isothermal and isoflux conditions at the

heated plate. For modified Rayleigh numbers up to 3 x 10 , Miyamoto et al.

[17] observed transition to turbulence in upper portions of the channel, with an

accompanying enhancement of the local Nusselt number at the heated (isoflux)

surface.

Factors that may influence the applicability of the foregoing results to PCBs

(printed circuit boards) include edge effects (Sparrow and Bahrami [18]), board

conduction (Burch et al. 19 ), and the effect of protruding components. Stud-

ies concerning applicability of isothermal or isoflux corrélations to PCBs (printed

circuit boards) with regular and irregular arrays of wall protrusions have yielded

mixed results. Birnbrier [20] found that uniform heat flux corrélations did not pro-

vide reliable predictions of component températures on a printed circuit board.

Ortega and MofFat [21] measured heat transfer from a square in-line array of cubi-

cal éléments mounted on one of opposing insulated boards, and average convection

coefficients for air were as much as 50 percent larger than results for an équivalent

parallel plate channel. With respect to the éléments, ûow due to global buoyancy

was viewed as forced convection and heat transfer could be calculated from an
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appropriate forced convection corrélation.

Energy dissipated by an electronic component in a quiescent ambient air

induces a buoyancy-driven flow that ascends from the component as a wake or

plume. A common example concerns free convection heat transfer from a small

rectangular component, flush-mounted to a vertical substrate. The problem was

first considered by Baker [22], [23], who found that the heat transfer coefficient

increased significantly with decreasing heater size and was underpredicted by ac-

cepted free convection corrélations. Heat transfer coefficients in excess of standard

predictions were also measured by Carey and Mollendorf [24 and Park and Bergles

[25]. In the latter study, the coefBcient increased with decreasing width, and the

eflFect was attributed to an induced flow of ambient fluid at the sides of the heater.

For a vertical, in-line array of heat sources, the plume ascending from a

lower source can strongly influence heat transfer at an upper source. For laminar,

two-dimensional flow associated with two isolated sources ûush mounted on a

vertical wall, Sparrow and Faghri 26] numerically delineated the competing efFects

on heat transfer enhancement and dégradation at the upper source due to fluid

accélération and preheating, respectively, by the lower source. The problem has

been considered experimentally by Park and Bergles [25].

There exist numerous applications for which electronic components are pack-

aged within rectangular enclosures. The components may be mounted to one wall

of the enclosure, while one or more of the other walls is cooled. Buoyancy forces

induce a recirculating flow within the enclosure, and heat is transferred by natural

convection from the component surfaces.
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Although the literature on natural convection in enclosures is voluminous,

comparatively little has been reported on the effects of discrète heat sources. The

first such study was performed by Chu et al. [27], who observed a two-dimensional

numerical solution for a single, isothermal heater strip, flush-mounted to a ver-

tical wall of the cavity. The opposite wall was cooled, while all other surfaces

were adiabatic. Calculations were performed for air, with Grashof numbers and

aspect ratios in the ranges 0 < Grn < 10 and 0.4 < H/W ^ 5. The heater size

L and position S were also varied. Over the range of conditions considered, the

average Nusselt number was found to increase as Gr^, where n c^. 0.3. It also

increased with increasing L H, exhibited a maximum for an optimal heater loca-

tion of SU ^ 0.4, and was approximately independent in a subsequent numerical

simulation for water 28]. Experiments performed in air for heating and cooling on

opposite vertical walls [29], [30] confirmed the L l H, S/H, and H/W trends pre-

dicted by Chu et al. [27], but for larger Grashof number (5 x 106 < Grn < 9 x 106).

More recently, two-dimensional numerical simulations [31 and experiments

[32] have been performed for an isothermal protruding heater mounted to one

vertical wall of a rectangular cavity. The remainder of the heater wall and the

opposing wall were insulated, while the top and bottom surfaces were cooled. At

large Rayleigh numbers, Nusselt number data were in good agreement with the

predi étions, but at small Rayleigh numbers the data, which were charàcterized by

large uncertainty, were significantly overpredicted. Irrespective of heater location,

both the numerical simulations and visualizations revealed that the buoyancy-

driven flow was concentrated in the région above the heater. A three-dimensional

simulation has been performed for flow and heat transfer from a 3 x 3 array of
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blocklîke electronic components mounted to one vertical wall of a rectangular

cavity filled with a dielectric liquid [33]. However, theje is need for additional

research to clarify the significance of three-dimensional eiFects and limitations

associated with two-dimensional results.

For inclined channel, Kennedy and Kanehl [34] and Azevedo and Sparrow

[35] performed experiments for inclined channels in air and water, respectively.

For isoflux plates and 30 < y? < 90°, Kennedy and Kanehl found that bottom

plate températures could be reduced by operating at a tilt angle of 75°. They also

observed three-dimensional longitudinal vortices driven by the normal component

of the buoyancy force that resulted from bottom heating. For heated and insu-

lated top and bottom plates, respectively, a two-dimensional recirculating flow

was observed to exist near the unheated wall and the channel outlet. Data ob-

tained for all expérimental conditions, including vertical as well as inclined plates,

were correlated to within ±10 percent.

So far, the above and complementary studies émerge a unified picture of

natural convection cooling in electronic equipments. In principle, thèse studies

are within the scope of classical natural convection internai flow. From such

a fundamental point of view, instabilities, transitions found in Rayleigh-Bénard

convection and nonlinear phenomena are likely to be encountered. A compre-

hensive review of this sub j ect is presented in the book of Bejan 36]. A number

of studies consider the efFect of thermal boundary conditions on convection in a

horizontal layer. Mohanty [37] calculated the unsteady convection in horizontal

channels with arbitrary températures through to steady state flow. An analyti-

cal and expérimental study describes the instability of convection rolls in a layer
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heated from below [38]. In the limit of very low Prandtl numbers, a square pat-

tern of convection cells occurs [39]. Large-scale motion for low Prandtl number

fluid is also predicted by Chapman and Proctor [40]. Linear stability theory has

been used to predict the instability in a horizontal layer with suction through

the boundaries [4l , and the expérimental results on the initial onset of flow for

sudden heating from below were reported [42]. Also, a nonlinear stability analysis

predicts a stable hexagons within a thin fluid layer having a sinusoidal variation

of bottom wall température 43]. It was demonstrated recently that some natural

convection flows may show steady-state solutions with flow in opposite directions

[44]. This multiplicity of solutions is not merely theoretical, as there is experi-

mental évidence for at least two différent stably convective flows under identical

heating and géométrie conditions [45]. In a study by Robillard et al. [46] of free

convection in horizontal porous layers with localized heating from below, a spécial

emphasis is given on the multiple steady-state solutions that can take place within

the cavity through the use of appropriate initial perturbations.

Unlike horizontal fluid layers, inclined layers generally do not have a critical

Rayleigh number for the onset of flow. However, stability analyses are still of

interest in such flow layers. Ozisik et al. [47] investigated the effect of boundary

conditions on the stability of an inclined layer. A power intégral analysis [48]

estabilishes the parameters for instability and also describes the post-stability fiow

taking place in both inclined and vertical layers. It was shown that the inclination

angle has an important rôle in determining the flow direction in a slanted open

rectangular cavity [49]. At small inclination angles, the side wall of a cavity give

rise to a secondary flow in the form of stationary transverse rolls with horizontal
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axes parallel to the shorter side, as opposed to the longitudinal rolls predicted for

an infinite layer [50]. The tilt angle and aspect ratio of an inclined layer strongly

afFect the critical Rayleigh number corresponding the transition threshold from

steady to time varying flow.

1.1.3 Forced Convection Cooling

Blowing air past heat generating components has been the most popular

method of cooling. In 1942, MouromtsefF [51 documented the design analysis for

the cooling of a high-power vacuum tube, which was performed by applying the

corrélations présentée! by McAdams 52]. In most cases of cooling devices by forced

convection of air, the thermal design involves the use of extended surfaces. Kraus

[53] recently appraised Gardner's classic work [54] on the graphical présentations

of the fin efficiency which was published in 1945. The technique of heat transfer

enhancement by extended surfaces has also been useed for devices requiring high-

power dissipation since the early years of electrical and electronics technology.

An example is found in the report by London 55 on the use of louvered fins to

improve the thermal design of a new type of vacuum tube (microwave) dissipating

up to 25 kW. The now popular référence book by Kays and London [56] originated

from the need to provide a database of heat transfer and flow friction for such

design work.

With the advent of integrated circuit technology, new dimensions were added

to the problem of air cooling. For instance, Fig. 1.5 shows a printed wiring board,

28 cm wide and 42 cm long, carrying 72 modules, and dissipating 512 W [57]. Such

a device is common in présent day air-cooled main frame computer. Gîouped in
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the middle of the board are the high-speed memory modules, and the rest are the

logic modules. Heat sinks are designed to accommodate the heat dissipation, 6

W from the logic module, and 11 W from the memory module. A row of such

boards is set in the housing where air is forced through by the blowers. Hence,

the physical situation is described by a model where the modules rest on one side

of the parallel plate channels, leaving free-flow space between the fin tips and the

other side of the channel, and also between the columns of the modules. Heat

transfer problems involved in this example embody the following generic issues

for the présent and future générations of electronic equipment.

Heat transfer from flush-mounted sources

The température distribution in a channel is complex since the air flow over

the columns of the modules has only a finite rate of mass exchange with the air

through the free flow areas between the module columns. The air température

over the modules is higher than that in the adjacent free flow areas. The variation

of air température in the channel is governed by the geometry of the channel, the

size and structure of the module, the location of the modules, the rate of the

heat dissipation from the modules, and the air velocity. It is important for the

equipment désigner to predict the distribution of air température in order to hold

the température of modules below a tolerable level near the channel exit, as well

as to constrain the, température variation among the modules within a permissible

range. Early expérimental data available for such design work were obtained by

Baker [22], [23].

Studies related to heat transfer from an array of discrète isothermal sou-rces
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flush-mounted to one wall of a rectangular channel have been performed by In-

cropera et al. [58]. The array consisted of four equally spaced rows, with three

heaters in each row. Experiments were performed for water and FC-77 without the

pin fins, and results were compared with predictions based on two-dimensional,

conjugate forced convection models for laminar and turbulent flow. The data

were significantly underpredicted in laminar flow, and différences were attributed

to the effects of buoyancy on the expérimental results. In turbulent flow, however,

agreement between the predicted and measured results was good, suggesting that

three-dimensional boundary layer efFects were negligible. Due to the effects of

upstream thermal boundary layer development, average Nusselt numbers in the

second row were approximately 25 percent less than those of the first row, while

Nusselt numbers in the third row were approximately 10 percent less than those

of the second row. The decrease from the third to the fourth row was only 3

percent.

Heat transfer from protruding sources

A common electronic package is one that involves forced air cooling of pro-

truding components on a prmted circuit board. Typically, many such boards are

stacked in a direction normal to the flow, forming parallel plate channels with

the component covered board facing the smooth surface of an adjoining board.

However, unlike the regular array of cubical components, components of varying

dimensions are often arranged in an irregular pattern. Even for a régulai arrange-

ment of uniformly sized components, there is considérable géométrie variability

and there is no définitive characteristic length. Three-dimensional flow compo-

nent edges, séparation downstream of the components, and bypass around the
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components. If the components occupy a large portion of the flow cross-section,

the flow is partitioned into two streams, one of which passes through the array,

contributing to its cooling, while the other passes over the array with little efFect

on cooling. In addition to being influenced by such flow phenomena, heat transfer

from a downstream component may be strongly affected by incomplète mixing in

the channel cross section and hence by the location of the downstream cornpo-

nent in the thermal wake of an upstream component. Further complications may

result from the existence of missing components and the use of barriers or ribs to

enhance heat transfer from downstream components.

Despite the enormous variability of géométrie conditions, systematic at-

tempts have been made to détermine component coefficients and to develop metho-

dologies for treating the efFect of component location in an array. In an early study,

Buller and Kilburn [59] obtained heat transfer data for a single rectangular com-

ponent and successfully correlated the data using a hybrid characteristic length

based on features of both the flow and component geometries. In subsequent

experiments, Sparrow and his co-workers considered an array of components and

systematically examined the eiFect of row number, missing and irregular compo-

nents, and barriers on the average convection coefficient for a single component in

the array [60], [61]. Lemann and Wirtz [62] also considered the effect ofrib spacing

and channel height by placing ten unheated, repeating ribs upstream of a heated,

two-dimensional, rectangular component. Conjugate heat transfer calculations for

two-dimensional developing flow over three repeating, heated, rectangular com-

ponents [63 revealed the effect of recirculating zones and the existence of an

optimum component spacing.



Chapter l. INTRODUCTION 15

Several investigators have suggested méthodologies for treating downstream

effects of nonuniform heating in an array of components. Arvizu and MofFat [64]

proposée! a superposition method to account for the eiFect of thermal wakes on

the température rise of downstream components. In subsequent studies Moffat et

al. [65] obtained thermal wake functions for an in-line array of cubical éléments,

while Bieber and Sammakia [66] applied a superposition method to an array of

flat packs. An alternative was proposée! by Ashiwake et al. [67], who found

that the dispersion of thermal wakes and the réduction of downstream component

températures improved when the components are staggered rather than in-line.

Thermal wake dispersion is known to increase with increasing Reynolds number

[64], [68].

Heat transfer enhancement with fins

The large convection coefficients associated with small surfaces render the use

of single-phase forced convection an attractive method for the cooling of electronic

devices. However, it is possible that additional enhancement may be realized by

employing fins to augment the surface. Such augmentation can result in as much

as an order-of-magnîtude increase in the heat transfer rate without appreciably

altering the heat transfer coefficient.

Expérimental studies by Sparrow and Ramsey [69 for in-line and staggered

arrays of pins wittT tip clearance revealed a row-by-row increase in the pin con-

vection coefficient up to the fourth row, beyond which fully developed conditions

were achieved. Gonvection coefîlcients and pressure drops were larger for the stag-

gered array than for the in-line array. Van Fossen-[70] studied heat transfer frûm
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staggered arrays of short pin fins affixed between two heated copper plates and

showed that the pins enhanced heat transfer by a factor of two over that for a

plain channel with no fins. Simoneau and Van Fossen [71] reported results for

in-line and staggered arrays of pins, and in both cases heat transfer from a row

was enhanced by the présence of upstream rows. More recently, Steuber and Met-

zger [72] performed a comprehensive expérimental study of more than 20 in-line

and staggered pin fin arrangements, with and without tip clearance. The effect of

pin fin configuration on local convection coefficients at the wall of a rectangular

channel to which the pins are attached has been experimentally determined by

Lau et al. [73].

Shrouded arrays of longitudinal fins may also be used to enhance heat trans-

fer from electronic devices. Sparrow and Hsu [74] predicted local Nusselt number

distributions on longitudinal fins for fully developed laminar flow. The results

revealed highly nonuniform heat transfer distributions along the fin and base sur-

faces. With no tip clearance, the Nusselt number attained a maximum between

the base and tip, and with tip clearance, the Nusselt number increased mono-

tonically to the tip. Experiments have also been performed to assess the efFect

of longitudinal fins on heat transfer from discrète sources. Kishimoto et al. [75]

obtained heat transfer data for longitudinal fins mounted to an array of chips,

while Yokono et al. [76] obtained data for a single heater. In both cases, data

were obtained for air flow over unshrouded fins of varying dimensions.

In some instances, heat transfer from electronic components can be enhanced

through the use of boundary layer turbulators, which should be plaçed at appro-

priate locations on printed circuit cards to trip the flow and break up the boundary
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layer. For a fixed air flow rate, the heat transfer coefficient on a module behind

a turbulator is présentée! by Sparrow et al. [77]. Of course, the added pressure

drop due to the turbulators will cause the blower to shift its operating points, and

deliver less air flow. Taking this into account the actual improvement realized in

heat transfer coefficient is around 15% [78] . Nonetheless, turbulator strips have

been used in practice to achieve modest réductions in chip température.

Heat transfer enhancement may also be realized by modulating low Reynolds

number laminar flows in a parallel plate channel. The process, known as resonant

enhancement, may be affected in a grooved channel by actively modulating the

flow rate at the natural frequency of the system or by achieving passive modulation

through insertion of small vortex-shedding cylinders in crossflow [79] [80]. Signif-

icant heat transfer enhancement may be achieved with only a modest increase in

pressure drop.

1.1.4 Mixed Convection Cooling

An area of continuing interest is the study of flows with combined natural and

forced convection often called mixed convection. Under such conditions, flow is

driven by an externally imposed pressure gradient, as well as by buoyancy forces.

If the channel is vertical, buoyancy acts to augment or retard the flow, according

to whether the buoyancy force aids or opposes the imposed flow. if the channel

is horizontal and heating occurs at the bottom surface, buoyancy may induce

a secondary flow which, in combination with the main flow, produces a system

of longitudinal vortices. If the channel is inclined, the buoyancy force has two

components, one parallel to the surface, acting to accelerate or decelerate flow in
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the streamwise direction, and the other normal to the surface, acting to drive the

secondary flow. The relative influence of thèse effects dépends on the inclination

angle.

Two-dimensional, elliptic models have been used to analyze laminar, mixed

convection flow between vertical parallel plates with symmetric and asymmetric

uniform wall température. The models have addressed both developing [81 , [82]

and fully developed [83] flow conditions. Due to local fluid accélération eflfects,

buoyancy enhances heat transfer in the entrance région, particularly for the hotter

of the two walls, but buoyancy has no efFect on heat transfer in the fully developed

région. For asymmetric heating, flow reversai occurs when the parameter Gr/Re

exceeds a threshold value, causing downflow along the cooler of the two walls.

Heat transfer enhancement is most pronounced when the channel is horizontal

and heat is transferred from the bottom surface. Gill and Del Casai [84] analysed

the efFect of buoyancy on fully developed laminar flow between parallel isothermal

planes, and Beckett [85] considérée! the influence ofviscous dissipation in the same

problem.

In experiments performed for laminar flow between asymmetrically heated

parallel plates [86], convection coefficients at the bottom plate were found to

exceed those corresponding to pure forced convection by up to a factor of 6. En-

hancement was due to buoyancy-driven flow, which replacée! warmer particles of

fluid ascending from the plate with cooler fluid descending from the main flow. In

transitional and turbulent flows, The effects ofbuoyancy on heat transfer enhance-

ment at the bottom plate are much less pronounced [87] . Criteria for predicting

the onset of a'secondary flow have been established [58], and a laminar, parabolic,
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three-dimensional model has been used to predict the flow rnorphology [88]. In

the absence of significant wall condition, the developing secondary flow causes

longitudinal variations in the Nusselt number, which have been confirmed exper-

imentally [89]. The strength of the secondary flow and the attendant Nusselt

number oscillations decrease with increasing inclination angle [90]. Récent work

has focused on the existence of travelling transverse waves resulting from the ther-

mal instability caused by the température différence between the two horizontal

plates. A large cross section of the fundamental research on this topic has been

reviewed by Ouazzani et al. [9l], Platten et al. [92] and Fukui et al. [93].

Studies of mixed convection heat transfer from discrète sources are docu-

mented by Kennedy and Zebib [94] and Tomimura and Fujii [95]. For small

heater strips flush-mounted to the wall of a horizontal channel, Kennedy and Ze-

bib observed the formation of longitudinal and spanwise vortices in air due to

heating at the bottom and top surfaces, respectively. Tomimura and Fujii applied

a laminar, two-dimensional model to air flow between parallel plates, with the

top surface insulated and with an array of seven equally spaced discrète sources

flush-mounted to the bottom surface. For vertical and near-vertical orientations,

accélération of the flow by the streamwise component of the buoyancy force en-

hances the local Nusselt number for each source significantly above that associated

with forced convection. More recently, Hasnaoui et al. [96] investigated mixed

convection in a horizontal layer with heating éléments regularly spaced on the

lower boundary. Their results show that at low Reynolds number, a steady state

is possible for which the convective cells remain attachée! to the heating éléments.

Beyond a critical Reynolds number, the cells are carried downstream, reinforçed
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and weakened periodically.

1.2 OUTLINE 0F THE THESIS

The variety in the geometry and packaging distribution of electronic compo-

nents used in commercial and military equipment precludes a description of all

the possible combinations of physical, thermal, and fluid parameters. It is never-

theless, useful to classify, in somewhat idealized form, the various configurations

according to:

• Physical boundary condition (smooth, "sandgrain" roughness, protu-

berance)

• Thermal, circumferential boundary condition (symmetric, variable,

one-side insulated)

» Thermal, axial boundary condition (isothermal, isoflux, axil temper-

ature profile, axil flux profile)

• Flow régime (laminar, transition, turbulent)

• Fluid température profile in channel (developing, fully developed)

a Fluid velocity profile in channel (developing, fully developed)

This rather restricted, idealized classification contains more than 430 distinct

combinations, and it is clearly not possible to analyse each one in détail with the

limits of the présent study. Instead, following a detailed exploration of thermal

transport in a smooth-walled channel with fully developed laminar flow, that

is, the basic channel, attention will be turned to the more common variations,

including the particular contribution of thermal wave on the lower boundary. In

this, we mainly focus on the following cases:
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A. We consider in Chapter 5 the mixed convection in a horizontal channel with

isothermal segment or isoflux segment regularly spaced and separated by insu-

lated parts on the lower boundary and cooled isothermally at the top boundary.

This idealization provides both a convenient and useful starting point for the ex-

ploration of heat transfer in electronic cooling applications. The approach here is

two-dimensional and transverse rolls are assumed. Also periodicity conditions are

applied on the vertical boundaries of the domain to be solved numerically. This

domain is then équivalent to a "window" that can be located anywhere along

the channel. Depending on the values of the Rayleigh and Péclet number (or

Reynolds number), the flow may be steady or unsteady periodic, with or without

rolls. Moreover, for the particular case of a lower boundary maintained everywhere

at a uniform température, the thermal wave characterizing the mixed convection

is carried downstream at a constant velocity and consequently it becomes possible,

by the use of the galilean transformation applied to that window, to eliminate the

time dependence of the solution.

B. In chapter 6, the motion induced by a sinusoïdal thermal wave propagating

in a horizontal layer of Boussinesq fluid is investigated numerically. In the case

of a stationary thermal wave, the results corroborate those obtained analytically

by Kelly and Pal [97]. In the case of a moving thermal wave, there exists a

critical wave velocity for a given pair of values Rayleigh number and magnitude

of perturbation, below which the cells remain attached to the thermal wave, so

that a steady state is observed in a coordinate System moving with the wave.

Above that critical value, the cells are entrained, but at lower velocity and a time

periodic solution is obtained.
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C. Finally, a fully developed opposing mixed convection in an inclined channel

with discrète heating on the bottom and insulated top wall is numerically studied

in chapter 7. Both overall and local recirculating flow are observed for différent

values of Rayleigh number, Reynolds number and inclination angle. Thèse flow

reversai could strongly afFect velocity and température profiles as well as the

stability of the heat transfer and fluid motion in channels.

The remainder of the thesis consists of three additional chapters and accom-

panying appendices.

In chapter 2, a mathematical model is presented based on a set of governing

équations with appropriate boundary conditions, which expresses mass, momen-

turn and energy conservation in the fluid layer. Ghapter 3 discusses the numerical

schemes used to solve the set of équations given in chapter 2. Both finite différence

and control volume methods are undertaken with a vorticity-stream function for-

mulation and a primitive variable approach respectively. In chapter 4, the validity

and reliability of the numerical code is examined by validation tests of driven flow

and natural convection in a square cavity.

In summary, the main objective of this thesis is to study the behavior of

fluid motion and heat transfer in channels with boundaries perturbed thermally

and to observe the effect of relative strength of free and forced convection on the

characteristics of thermal transport between parallel plates.
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MATHEMATICAL MODEL

The problem considered in this thesis is a fully developed laminar flow in chan-

nels with perturbed thermal boundary conditions. The problem is considered

two dimensional and is schematically described in Fig. 2.1, where the upper

boundary is cooled or insulated while the lower boundary is heated at a constant

température or through regularly spaced discrète heating éléments at constant

température or uniform heat flux, the remaining parts being adiabatic. Another

thermal boundary condition on the lower boundary is adding a sinusoïdal tem-

perature distribution of arbitrary amplitude and velocity (thermal wave) to the

uniform température of the lower boundary. Assuming that the resulting motion

due to forced flow and buoyancy efFects is spatially periodic with a wavelength

corresponding to the imposed thermal perturbation, we restricted the domain of

study to one wavelength À with periodic boundary conditions imposed on up-

stream and downstream sections, as shown in Fig. 2.1 by a dotted rectangle

("window"). The hypothesis of a solution with a wavelength corresponding to

the imposed wavelength on the lower boundary will be discussed later on. The

horizontal and vertical cases can be recovered by setting the tilt angle to zéro and

7T/2 respectively.

Basically, the dynamics of a général incompressible flow where buoyancy

effects due to température différences are involved, can be described well by the
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Navier-Stokes équations, together with the energy équation for conservation of

energy and the continuity équation for conservation of mass. Thèse form a set of

nonlinear coupled partial difFerential équations (PDEs).

2.1 PRIMITIVE-VARIABLE FORMULATION

The governing équations are the momentum équation and energy équation

as well as continuity équation in terms of the primitive variables.

Continuity Equation

V-i?=0 (2.1)

Momentum Equation

Dff
Dt

=-Vp+/A72t7+/ (2.2)

Energy Equation

pC,^ = k^T + e + RT^ + ^ (2.3)

where U, p, T. f and e represent the velocity, pressure, température, body force

and internai heat génération respectively. Other parameters p, Cp, k, /^, /?, //^ are

the fluid density, spécifie heat at constant pressure, thermal conductivity, dynamic

viscosity of fluid, thermal expansion coefficient and the viscous dissipation.

Assuming that the laminar flow is incompressible with constant properties,

zéro internai heat génération, negligible viscous dissipation, and tha.t the usual

Boussinesq approximation holds, [p— po)/ po === —f3(T—To) with |/3(7-1—7o)| <€ l,
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we obtain from Eqs. (2.1), (2.2) and (2.3) the following 2-D governing équations

in terms of Cartesian system

Qu 9v
^ +^- = ° (2-4)
Qx ' Qy

Qu . Qu2 9vu l Qp ,Q2u Q2u^ ^ ^,_ _^,
^7 + :E- + ^ = —^ + z/(^i +^i) + t1 - W- îo)](-^sin^) (2.5)

1x 0y poOx ~cfx'

9v , 9uv , ou2 l <9p , /ô2v , <9V
i7+^-+:7ï:-:=—^+ v(^ + i^) + E1 - ^(Î1 - 'z0)^ cos ^) (2-6)

Po

i2ï' f}2rr
J.QT , QuT , 9vT _ k ^T , 92T,

9t ' 9x ' 9y - pC^9xî ' 9yî]

Here, u and v are velocity components aligned with the Cartesian coordinate di-

rection x and y, respectively. Equations (2.4) - (2.7) may be solved simultaneously

to provide a solution for u, v,p and T

The formulation of a problem requiring the solution of a partial diiferential

équation also requires the spécification of appropriate boundary and initial condi-

tions. In the présent mathemat.ical model, boundary conditions are the following.

At the solid walls, y == 0, h, the flow must satisfy the no-slip and impermeable-

boundary conditions and the température or the heat flux must be prescribed.

Hence u == v = 0 and T or Ty are prescribed at thèse boundaries. For the rect-

angular demain shown in Fig. 2.1 by dotted lines, periodic boundary conditions

are assumed to prevail for the physical quantities, on the two a.rbitrary sections

with respect to imposed wavelength. For a flow domain corresponding to a whole

finite extent channel, velocity and température are specified at the entra.nce of the

channel, while at the outlet, extrapolated values of the physical quantifies may
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be used, according to the procédure described by Tomimura and Fujii [95]. The

initial condition is usually set to static state with u = v = T = p = 0, or it may

correspond for instance to some known solution, such as pure conduction.

2.2 VORTICITY-STREAM FUNCTION FORMULATION

One of the main difficulties in determining the flow field via Eq. (2.2) is

the unknown pressure field that appears in the form of pressure gradients in the

momentum équation.

Since the pressure field is usually not of primary interest, it is eliminated by

taking the "curl" of Eq. (2.2). Defining the vorticity as

aî = V x y> (2.8)

we obtain the vorticity transport équation

pm = ^ÎUJ + v x / (2-9)

In the two-dimensional Cartesian System and for a Boussinesq-incompressible

fluid, the above équation reads

9io . Quuj . <9^ ,QÎ^ . Qîu, , /<9T QT .
:^~+^+:^- =v^+^+P9Ç:^:^y-^smy) (2.10)9t ' Qx ' 9y " ^Qxî ' Qy2' ' r'"3v Qx ~"""r Qy

Using the définition of stream function

"^ -=-9ê (2.n)
Qx

the définition of vorticity in terms of the stream function is

V2^ = -a; (2.12)
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the energy équation (2.7) remains unaltered; the velocity u and v appearing in it

may be replacée! on the basis of the stream function •0 using Eq. (2.11), if desired.

The no-slip condition and impermeability at solid boundaries lead to '0 = 0

and ^ =constant along the boundary, while thermal boundary conditions re-

main as given in section 2.1. Also the periodic boundary condition for the one-

wavelength configuration or entrance and outlet boundary conditions for the whole

channel configuration are handled in a similar way as the previous section, so are

the initial conditions.

Unfortunately, it is difficult to détermine the value of vorticity on the bound-

aries. Frequently, the vorticity équation (2.10) is not solved simultaneously with

the stream-function équation (2.12). In that case, the wall boundary condition

for vorticity is derived by evaluating Eq. (2.12) at the boundary, yielding

92^\
UJ\ waU 9n2 waU

(2.13)

where n is in outward direction normal to the boundary. There exist différent

approaches to dérive the vorticity at the wall, which can be found in Roache [98]
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NUMERICAL APPROACH

Prediction of heat transfer and fluid flow processes can be obtained by experimen-

tal investigation or theoretical calculation. Analytical methods are largely pencil-

and-paper procédures that attempt to provide solutions to problems through the

use of simplifying assumptions. Many simplifying assumptions are necessary to

make the problems tractable, but they severely limit the applicability of the re-

sults.

Expérimental investigation can provide some information regarding a par-

ticular problem of interest. However, the limitation on hardware required for

the rnodel and the difEculty in simulating adequately the prototype, makes it

an impractical means of obtaining results for many problems. Nevertheless, the

information obtained from experiments is valuable in validating mathematical so-

lutions of the governing équations. Thus, expérimental data are used along with

computational solutions of the équations.

The availability of the digital computer has stimulated the rapid growth of

another approach to solving complex problems in heat transfer that has become

known as the "numerical" or "computational" approach. With the advent of

electronic digital computers, the introduction of newer numerical techniques are

being proposed almost on a daily basis.

This chapter will provide an overview of the rôle and nature of the numerical
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techniques in terms of finite différence and control volume approaches. This will

be followed by a detailed description of a well-tested numerical procédure that

can handle the présent problem as well as a wide variety of engineering problems.

3.1 FINITE DIFFERENCE METHODS

3.1.1 Finite Différence Formulation

In the finite-différence approach, the flow domain is "discretized' so that the

dépendent variables are considered to exist only at discrète points. The typical

two dimensional grids System is shown in Fig. 3.1, where (î,j), the grid point in

Cartesian coordinate and superscript index n, the marching coordinate. Deriva-

tives are approximated by différences resulting in an algebraic représentation of

the partial difFerential équation (PDE). The nature of the resulting System of al-

gebraic équations dépends on the character of the problem posed by the original

PDE (or system of PDEs).

Usually, the second-order central différence approximation is a frequently

used scheme for solving the governing équations described in the chapter 2. How-

ever, in the convection dominated flow (high Péclet, Reynolds, or Rayleigh num-

bers), using the second-order central différence approxlmation to discretize the

convective terms in the governing équations may produce wiggly solution. An

upwind and its modified schernes can eliminate thèse wiggles. Table 3.1 demon-

strate central différence and différent upwind schemes for a général finite différence

représentation of an arbitrary scalar function shown as below

9uf
= Au/,_2 + Bu/..-l + Cufi + Duf^ + Eufw (3.1)

9x

where A", Bu, Cu, Du and Eu are functions of u
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Table 3.1 Coefficients of the différent schemes

Scheme

Central

différence

Ist upwind

2nd upwind

3rd upwind

A"

0

0

u\ + u

4Aa;

u + u

12Aa;

Bu

u

2A3;

lui +u
2Aa;

\u\ + u

Aœ

\u\ +2u
3Aa-

cu

0

M
Arc

M
2Aa;

w
2Aa;_

Du

u

?Aa-

u| — u

2Aa;

t — u

Aa;

( -2u

3Aa;

Eu

0

0

•u| — u

4A;r

u\ — u

12Aa-

As shown in Table 3.1, the coefficients A" and Eu of the central différence

and the first-order upwind schemes are equal to zéro. The rernaining coefficients

Bu, Cu and Du of /,_i , /, and /,+i form a tri-diagonal matrix. Using the higher

order upwind schemes, the discretized équations are no longer represented by

a tridiagonal matrix. Instead, the algebraic équations become a pentadiagonal

matrix.

3.1.2 Discretization Governing Equations

For numerical computations, the governing differential équation (2.7), (2.10),

(2.12) have to be cast in a discretized form. Owing to the moderate convection

flow of présent problem, all the convective and difFusive terms in the équations

are discretized by the central différence scheme, while the time derivatives are

approximated by forward différences. The discretization procédure is developed

as follows.
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The energy équation (2.7) can be discretized as

m ,,n rpn+l _ ,,n rfin+l ,,n T'n+l _ ,,n rpn+1
l^3~~li,3 i ui+Ï,j-li+Ï~,J ~uï-î.,jli-Ï~,J , VÏ,j+l1 i,j'+l ~ vï,j-ïl_t,J-l

(A<) ^^^~^^^^^^^^^^^^^^^ ' 2(Ay)

m+1 017171+1 i rpn+1
-i+l,J ~ ^J-i,j ~T-li-l,J , ^i,3+l^^^^^^^^

= al(A^)2 ^ + ~(Ay7-

0[(At),(Aa:)2,(Ay)2] (3.2)

This formulation is implicit, since more than one unknown appears in the finite

différence équation, from which it follows that

r-(A<L". . _ a(À<)iT"+i. 4. r (A^". . _ a(A<)iT»+i
[2(Kx)ui+l'j ~ '(Aï)ijjt*+^ + l-2(AÏ)ut-lJ ~ ~(Kxyïli-ï'j '

. 2a(Af) + 2a(A!)iï"+i + r (À<).,n. , _ a(A^TT"+i
L + TAÏF + ~Twy1'^ + [~t^flj-1 ~ (A^J'Î^1 +

(À*) „",_ _ a^t\rn+ï_ ^ 7.n
[2(Ky)vï'j+l ~ ~(KyYïli:3+l = lt:j {'s"s

By defining the coefficients of the unknowns as a, b, e, d and e, and the right-hand

side by /, équation (3.3) may be written as

^Tf+Ï + W-ï + CijTy + d^\ + e,,î%\ = /,,, (3.4)

It is obvious that the coefHcient matrix is pentadiagonal in Eq. (3.4). The solution

procédure for a pentadiagonal System of équations is very time-consuming. One

way to overcome the shortcomings and inefficiency of the method described above,

is to use a splitting method. This method is known as the alternating direction

implicit method (ADI), which is proposed by Roache [98]. The algorithm produces

two sets of tridiagonal simultaneous équations to be solved in séquence. The finite

différence for'm of the energy équation in the ADI formulation is then

in+? /nn _n mn+i _.n rpn+•2 _ 71n. •><" T."'T2. _ il" .T."'T2. nn. T.". .—D". .T.".
'«j * ~' Ti,3 i uï+l,JTi+^~UÏ-l,3-li-^ i ^J+l^tJ+l -Î;<.?-1-(»J-1

~W) " 2(ÀÏ)" ^—

i"+7 ^"+ç , m"+72 OT'" ' 2 l T'" ' 2 T'n 0'7-In i T'n
•i+l,j ~ ^ t J 1~-zt-l,j i -ii,j+Ï ~ ^•Li,3 ~r ±i,]-ï= ar+i'3 FA^ ' ^-1' + 'î"1 (A^ ' ~tlJ-l] (3-5)
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and

1n+2 iin . .Tn+2. — iin .T. 2. i)n...T.n+1. — n". .T."4
'i,3'~J-i,J' i uï+l,j-l-i+^j ~ ui-l,jli-lj , vt~,j+l-l-i,j'+l ~ vi,j-lli,j'-l

(Aî) - 2(A:r) ' 2(Ay)
tn+2 OT'n~*~t l rpn~^"î

'• i+l,j ~ £'J-i,j ~TJ-i-Ï,J i ^i,j+l-_^^^^^^^^

= a[ —AÏp~ + ~(Ayp—J IJ-C

with the truncation error of order [(Af)2, (A.r)2, (At/)2] and is unconditionally

stable. Equations (3.5) and (3.6) are written in the tridiagonal form as

\Trrn+^ j. RTT"+Î _L r'î'T"+k -
ll li-l,j -t- -Dl -tîj - -T- ^1 -lt+l;j = L'\ ^-

and

AW_\ + B^Ty + CÏT^\ = DT, (3.8)

where

_(M_^ _ a(Af)
4(Aa;p-lJ 2(Aa-)2

\T _ \^"1 ,,n , . _
Ll ~ —/l/'A^^U't-l'J r>l \^-\2

BT = 1+?^
(A;r)2

^ _ (A<) ,, "(A<)
'f = 4(AÏ)UÎ+1J ~ 2(AÏ)2

DT = r(A<). un.., i a(A<)jîw_
'Jî = [t(Ky)v':'j-l+2(Ky?[l'i:j-l+

_ a^tl}Tn. + \--w-vn., , + a(At\}Tn.,
~ (A^J^-J + t-4(Ay)VÎJ+l + 2(Ay)2J2tJ+l

AT _ (A<) ..„ "(A<)
'2 - -4(Ày)t/tJ-1 - 2(Ay)2

^ _ , , a(A<)
Bi = l+Tw

^ _ (A<) ,„ "(A*)
'2 - 4(Ay)"tJ+l-2(Ay)2

->T _ r_ÀL,,n . , ^ a(A*) iï»+i ^ n _ a(Af)iT"+i.
Jî = l4(AÏ)ut-lJ+2(AÏ)2J'8-l:?+ll-(AÏ)2J^iJ

r(A<).u",,. i a(A^irn+è
[4(AÏ)<+1J+2(A^J'J1+1J
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The solution procédure starts with the solution of the tridiagonal system

(3.7). The formulation of Eq. (3.7) is implicit in the x-direction and explicit in

the y-direction; thus the solution at this stage is referred to as the x sweep. Solving

the tridiagonal system of (3.7)provides the necessary data for the right-hand side

of Eq. (3.8) to solve the tridiagonal System of (3.8). In this équation, the FDE is

implicit in the y-direction and explicit in the x-direction, and it is referred to as

the y sweep. Graphical présentation of the method is shown in Fig. 3.2.

Similarly, the vorticity-transportation équation (2.10) can be discretized in

the tridiagonal form as

\W..n+2 _L D(*'^,"+2 ,J_ (<~"*',.,n+2 _ nt"
iïui-l~,j -t- tsÏLOi,j ' -t- UÏUJi+l~,j = ^1 l'l-;

and

lal-.,"+1 _1_ Ru,.,"+1 J_ /^'"-.,»+1 — n"
l2a;.j'-l -t- t)2 LLIi ',] ~ -t- U2u;tj+l = -^2 l0--

A- = -(Ai,»,.._^)
ïï = ~4(Kx)uï-ï'j ~ 2(Kx)

^ = 1+î^
^.x

- - (Aï)... I/(À*)
/1 - 4(Âa;)"'t+lJ 2(Aa;)2

^ - r (À^) .." , ^A<)i,.n ^n_^ÀÉ)l,.,n.
Dï = [i^vJJ-1 + 2(§^]^-1 +[1 - w^-3 +

r ^t\vn... i l/(A^v1.,
[~i(Ky)v'^1 + 2(KyYK'j+l +

in T'n T<n T'n

"•'lî%^c^-s^8i^

^ = -^.,,,-^

BÏ = !+•Jî ~ " ' (Ay)

4(Ay) ""J-1 2(Ày)2

;/(A<)
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- - (A<) ..n _^tL
^ = ^^^^_^^
^ = r (^). u",. i !/(A^i^+A i n l/(A^i^"+i
rî = [î(K^uli-ï'j + 2(A^N-^ + [1 ~ ~(ÏxY^i'r+

r (At\un... i ^A').L"+A
l~4(AÏ)ui+lJ + 2(Kxy^w '

'n T'n Tn Tin

^^i(^m^-'M^rzlsm^

For the stream function équation (2.12), the central différence scheme produce

the représentation of FDE as

^i+ï,j - 2^, ,j + ^,_ij ^ ^j+i - 2^.j + V>,j_i
(A^""-"J+T'"" ^•".'-=-^,; (3.11)

From Eq. (3.11), a général recurrence formula for the line successive over-relaxation

(L.S.O.R.) can be presented by introduction of the relaxation parameter ? as

wî-11 - 21^ + 11^+I + /?^1 = -^^1.' -

2(1 -/3)[^+1]^- -p(^^ ~ ^y}2^ (3-12)

There is no simple way to détermine the value of optimum ft. In practice, a triai

and error approach is used to compute /?opt for a particular problem.

3.1.3 Boundary Condition Discretization

Since the no-slip and impermeable boundary conditions are imposed on the

solid wall, the corresponding vglocity components are set to zéro value and the

stream function are set to either zéro or a constant value. The boundary conditions

of the vorticity are determined from the stream function Eq. (2.13) at the solid

wall and its discretized formula can be presented in terms of first order or second

order forms:
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First order form

2(^w+i —^w-Vw- An)
^H, = -

(An)2
+0(An), ff=[u,v]T (3.13)

Second order form (Woods method)

3(^w - ^w+i+Uw • An) 1^ , ^/A_2^ -_r....ir
^ = -^-^—TrAn)2 '"" -"/ ~ 2WW+1 + °(An')' ff = ^'v]' ^•ï

where An is the spatial increment vector normal to the boundary.

In the présent study, the boundary conditions for the energy équation are

either an imposed température or a specified heat flux. In dimensionless form, we

have

901
Qw = constant or Çw = —

9n
(3.15)

The periodicity conditions are imposed on the vertical boundaries for any

physical variable / yielding

f{x+\,y,t)=f(x,y,t) (3.16)

The treatment in the A.D.I. approach is done by a matrix partition procédure

similar to that utilized by Phillps [99 . Détails may be found in appendix A.

3.1.4 Program Procédure

The général solution procédure, as described by the flow chart in Fig. 3.3,

consists of the following steps.

l. Générale grid according to a uniform or nonuniform mesh

size.
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2. Set initial values of all the variables Uij, u,j, 0;,^, •0,j and 7,^.

3. Set boundary conditions for velocity, stream function, tem-

perature or its derivative normal to the boundary.

4. Compute the température field by solving the energy equa-

tion, alternatively sweeping in x and y directions.

5. Compute vorticity on interior grid points by solving the

vorticity-transportation équation and using velocity and up-

dated température. An A.D.I. scheme is also used.

6. Sol ve the stream function by S.O.R. to obtain the ipij. Up-

dated vorticity ui^j is used.

7. Calculate the vorticity on the boundary by using the stream

function and vorticity at interior points as well as the velocity

on the boundary.

8. Détermine velocity components from updated stream func-

tion.

9. Return to step 4, and repeat the whole procédure until a

converged solution is obtained. The convergence criterion is

defined as following. One checks the continuity équation at

each grid point, the other checks the fractional change of any

variable between two time steps at any node.

i+l _ f n

"J,^/tJI < £ (3.17)
't,J

co 1.1 n. OL VOL u ^ ç b l FFS?'v {ii ^i rl ' ''i" : '~/ "

3.2 FïNFîE 00]^TRÔL YOLpME METHOD

The foregoing governing équations (2.4 - 2.7) can be considered as particular
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'//J r>'<^ V :i ' e- ^i\. ' ! ^.-.^

^W^Q/'T' i. : . ^

cases of the général differential équation

)

f i.œ + v-(^). =r*v.(v/)+ ^ i^-,.U (3.18)
convective tenu difiusive term SOUI'ce term

unsteady tenu

where / is the général dépendent variable which can represent velocity component,

température and mass fraction, Tk is the generalized constant diffusion coefiicient,

and 5' is the source term. When a particular meaning is associated with /, the

expressions for Fk and S are to be obtained by comparing the actual conservation

for the chosen variable with the général équation, Eq. (3.18).

3.2.1 Demain Discretization

The numerical method to be described here is based on the control-volume

formulation proposed by Pantankar [100]. the discretization équations (which are

the algebraic counterparts of the differential équations) are derived by integrating

the governing difFerential équation over a small région called the control volume.

Each control volume is associated with a discrète point at which the dépendent

variables such as velocity, pressure, and température are to be calculated.

..,!,.: '7- .? u-uvl ^ î. !

Figure 3.4 shows a rectangular calculation domain subdivided into control

volumes./ The dashed lines denote the faces of the control volumes; thèse lines are
/

drawn parallel to the two coordinate directions x and y. the grid points are placed

at the géométrie centers of the control volumes. The filled circulai dots in Fig.

3.4 represent thèse grid points, and the solid Unes joining them are called the grid

Unes. A typical control volume around point P is shown shaded. The grid point P

communicates with the four neighboring grid points through the four faces of the

control volume. Thèse points are denoted by E, W, N, and 5', implying the east,
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west, north, and south directions with respect to the center point P. It can be seen

from Fig. 3.4 that the grid lines are extended to the boundaries of the calculation

demain, and additional boundary grid points are placed at the ends of the grid

Unes. Such grid points on the boundary are shown by open circles; B denotes a

typical boundary grid point. A typical near-boundary internai grid point is shown

as J, and its control volume is also shaded. For this control volume, one faces

coïncides with the boundary of the calculation domain, and the boundary grid

point B is placed at the center of this face. That both a control-volume face and

a grid point are located at the boundary of the calculation domain makes it easy

to treat différent boundary conditions; the control volume around l can easily

accept a given value of / at the boundary or a given flux through the boundary

surface.

It is not necessary that the widths of all the control volumes be equal nor

do the successive grid points have to maintain the same spacing between them.

Indeed, a nonuniform grid spacing is often desirable, because it enables one to

deploy a given number of grid points in an optimal manner. In général, a fine grid

is required where the variation of / is steep, and a coarse grid is sufficient where

/ varies rather slowly.

3.2.2 Discretization of the Général Equation

The basis of the numerical method is the conversion of the général difFerential
''î-,, i

équation, Eq. (3.18), into an algebraic équation relating the value of / at grid

point P to the values at the neighboring grid points. This is done by integrating

Eq. (3.18) over a typical control volume (Fig. 3.5) and approximating various
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terms in the intégration so that they are expressed in terms of the grid-point value

of /. The resulting discretization équation becomes

apfp = ÛEÎE + awfw + a-NfN + as f s + b (3.19)

where coefficients ap, a^;, a^y, ON, as and & are given by Patankar [100]:

aE=DeA(\P^)+max(-F,,0)

aw = D^A(\P^\) + max{F^, 0)

ON = DnA(\Pn\) + max(-Fn, 0)
(3.20)

as = £>,A(|P,|) + max(F^O)

ap = OE + a-w + O-N + 05 + a^

6=4/^+ / Spdv
'V - -

with

eD-=T-és- F'=u-^ p'=^-
Sxe ' -c ~"—'7' -" De

T^y ^ _, A, D _ ^w
tu =: ?i -^w ~=~ ^"w^y-i ^w = T-, ~

•-y/ -t-^W

^=I±Àœ. F.=v^x. P.=^- (3.21)'n — —?—ï -t'n — t/n'-1^'; -1 n — ~r^~
In Un

^=p^ F,=v^ P,=^
6y, ' -° "°- ; -° D,

^ Aa-At/
ap=-AT

The définition of A(|P|) dépends on the particular choice of the interpolation

scheme for the calculation of / over the control volume considered. Expressions
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for A( P|) are listed in Table 3.^. For thç présent work, we found that power-law

scheme provide an extremely good approximation.

Table 3.2 The function A(|P|) for différent schemes

S cheme Formula for A ( \P | )

Central différence l - 0.5|P|

Upwind l

Hybrid max{0.1 - 0.5|P|)

Power law ma.z;(0, [l - 0.1|P|]5)

Exponential |P|/[e.rp(|-P|) - l]

It is well known that the général difFerential équation Eq. (3.18), has been

cast into the discretization form with the understanding that the flow field u, is

known. The velocity components u, are governed by the momentum équations,

which are particular cases of the général équation Eq. (3.18). Thus, the fields of

u, can be obtained simply by solving for the général variable /, with its meaning

set as the velocity component u, v. In that sense, a calculation procédure for the

flow field bas already been described. However, if the velocity components and

the pressure are calculated for the same grid points, some physically unrealistic

fields arise as solutions. Thèse diflSculties are discussed fully in the book given

by Patankar [100]. A remedy for this ailment is-the staggered grid in which_the

velocity components are calculated for the points that lie on the faces of the
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control volumes.

Figure 3.6 shows a typical 6x6 control volume configuration and grid point

distribution, where the appropriate control volumes for the velocity components

u and v are also illustrated by light shaded areas. Circle marks indicate grids of

température and pressure, while solid circles and triangular marks corresponds to

grid points of velocity components u and v respectively. Location of the stream

function values calculated from velocity are denoted by star marks.

3.2.3 Discretized Momentum Equations

The staggered locations for the velocity components détermine the corre-

sponding control volumes to be used for conservation of momentum. The two

faces of the control volume around the velocity component Ue pass through the

grid points P and E. The corresponding momentum-equation can be written as

OeUe = E OnbUnb + b + Ae(Pp - ?£;)
(3.22)

0-nUn == E O-nbVnb +b+ An(Pp - PN)

where the term b includes the source terms other than the pressure gradient, and

Ag, An is the area over which the pressure force acts. The coefficient expressions j

are identical to those given in Eqs. (3.20) and (3.21), except that the staggered

geometry of the control volume must be taken into account in determining the

diffusion conductance D and the flow rates F.

\

3.2.4 Pressure-Correction Equation

Let P' denote the pressure correction. The corresponding correction to the

velocity component u* and v* are denoted by u' and v , where u* and v" are the
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velocity field based on an estimated pressure field P*, and satisfy the équation

Thus

ûeU: = E <W:6 + b + Ae(P^ - P^)

On< = E CtnbV^ + b + An[P^ - P^)

p = p* +p'

u = u* +u

v = v* +v

The velocity-correction formula can be written as

(3.23)

(3.24)

u,=u:+d,(Pp -PE), d^=^
Cte

Vn=V^+dn(P'p-P'^, dn=
An

(3.25)

The pressure-correction équation is obtained by substituting the velocity-

correction formulas into the discretized form of the continuity équation, which

can be written as

apPp = OEP'E + awPw + QNP'N + asP's + b (3.26)
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where

a^^y
de

»^(
Ĉtw

. _ (Aa-)2
ON =

an (3.27)
_(A^

a,

o.p = OE + a\y + QN + as

b = « - <)Ay + (v: - v^x

3.2.5 Boundary Conditions Setting

With référence to Figs. 3.4 and 3.6, it can be seen that there is a control

volume around-each internai grid point for the température, the pressure and the

velocity components u and v, and that there will be a corresponding discretization

équation such as Eq. (3.19). This équation can be regarded as an équation for

determining f p. For a near-boundary control volume such as the one around grid

point l in Fig. 3.4, the discretization équation will contain the boundary value

fg as one of the neighbors. If fa is known, no additional information is needed.

On the other hand, if the boundary condition spécifies the boundary flux in some

manner, an additional équation must be written for the évaluation of the unknown

value /B. This équation is constructed simply by equating the given expression

for the boundary flux JB with the formula expressed in terms of jfjg and //

JB - FB/I = {DBÂ(\PB\) + max(FB, 0)}(/B - //) (3.28)
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Furthermore, this équation for fa can be used to eliminate fa from the control-

volume équation for the grid point I. In this manner, the resulting set of équations

will have only the / values at the internai grid points as the unknowns. There

also exist a simple scheme in which we assume that the value f g on the bound-

ary is known in advance for the computation of interior points, then we use the

flux formula and the updated interior points values to evaluate the value on the

boundary.

3.2.6 Computation Procédure

As indicated in the foregoing sections, the général computation procédure

is based on the solution of the général / équation. The momentum équations

require a somewhat separate treatment because of the staggered grid and because

the pressure term is handled in a spécial manner. The overall procédure is based

on the SIMPLE algorithm proposed by Patankar [100]. An A.D.I. procédure is

used for the time intégration of momentum and energy équations while the pres-

sure correction équation is solved by a point successive under-relaxation method

(P.S.U.R.). It should be mentioned here that it is in some sense necessary to

use an under-relaxation factor for the dépendent variables and other auxiliary

quantifies to meet the requirement of convergence. Thus,

/=/3/new+(l-/3)/old (3.29)

Of course, the relaxation factor f3 appearing in Eq. (3.29) need not be the same,

nor is it necessary to use the same value of /3 at every grid point.

Although différent forms of under-relaxation method promote' convergence,

there is no unconditional guarantee that the iterative solution procédure will al-
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ways converge for all kinds of nonlinearities and interlinkages. Also, there are no

général formulas for choosing the optimum value of the under-relaxation factor.

To this extent, obtaining a converged solution for a particular problem remains

an art. With sufficient expérience and insight, one is normally able to develop an

under-relaxation procédure that produces a converged solution. But a successful

outcome may sometimes be preceded by an expérience of divergence.

The convergence criterion requires that the residual | R \ at each point defined

as

\R\=\^E^fnb+b-apfp\ (3.30)

be less than a given value. There is a spécifie and efficient residual in terms of

the mass conservation given by

m^|«, - u^)dY, + (v^ - v^_,)dX,\ < e

i=l,...M^, J=l,...Nm^ (3.31)

Our results were mostly based on that last définition of the residual.
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BENCHMARK COMPARISON TEST

Two benchmark problems, the driven flow and the natural convection in a square

cavity, are simulated numerically in this chapter. The purpose of the présent study

is to validate the computational techniques described in the previous chapter, and

to test the accuracy and the reliability of the numerical code. Steady state results

will be compared with those obtained by U. Ghia [101 and G. De Vahl Davis

[102].

4.1 DRIVEN CAVITY FLOW

The laminar incompressible flow in a square cavity whose top wall moves

with a uniform velocity in its own plane bas served as a model problem for testing

and evaluating numerical techniques, in spite of the singularities at two of its

corners. The configuration of the problem is shown in Fig. 4.1.

4.1.1 Governing Differential Equations and Boundary Conditions

By introducing the scales /i, UQ, h/uo for length, velocity, tirne and the pres-

sure P = (p+ pogy}/(pou^)^ the two-dimensional flow in the square cavity can be

représentée! mathematically in terms of primitive variables as follows:

QU . 9V
~9X+W=0 (4J>

w+?î+m'=^-v^-^~Q7:+~QX+~~9Ïr=Re^u~QX (4'2
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9V . 9UV . ô72
+~Qr ~9X 9Y

^-v'v-^
Re v ' 9Y (4.3)

where Re == uoh/v (Reynolds number)

The zero-slip and impermeable conditions are imposed on the boundaries as

a result of

x=o,i: t/=o, y=o

y=o: U == 0, V=o

y=l: [/==i,v=o

(4.4)

Similarly, the dimensionless governing équations with respect of the stream func-

tion and the vorticity are formulated in the form of

Q^ ^ Q^
^+^+"=0

an , Qu^i , wn i ^,
97 +~9X~ + ~9Y~ = Te'

3^ „ 9^!
~9Y' v --âX

(4.5)

(4.6)

(4.7)

Where the dimensionless scales for stream function and vorticity are Uoh a.nd

Uo/h respectively. The no-slip and impermeable wall condition impose a constant

value of the stream function (XS arbitrarily set to zéro) on all the boundaries.

However, there is no direct condition for f! at the walls. In practice, the boundary

conditions for H are derived from the physical boundary conditions together with

the définition of 0 as given by Eq. (4.5). Thus, at the moving wall Y = l (j =
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NP)

^ly=i = 0

_^ _ 3(^p - ^ - ^p .AF)_1^ ^_ ^^"ly=i = -^ = """" (AV)^^ ~/ - ^;v + o(Ay')

(4.8)

Expressions for n at other boundaries are obtained in an analogous manner de-

duced from Eq. (3.14).

4.1.2 Computational Procédure

For the control volume method, Eqs. (4.1) to (4.3) are discretized and inte-

grated over each control volume. The detailed procédure described in chapter 3 is

then applied. The imposed convergence criterion defined by Eq. (3.31) is that the

mass conservation for each control volume should be satisfied with a residual less

than 10- . A uniform mesh size of 40 x 40 is used for both X and Y directions.

The time increment ranges from 0.001 to 0.1 and under-relaxation coefBcients are

chosen between 0.1 to 0.8 according to the values of the governing parameters.

The problem is also solved by stream function vorticity formulation based

governing équations (4.5) to (4.7). The procédure is also described in chapter3,

and the convergence criterion defined by Eq. (3.17) is set e be less thanlO" . A

uniform mesh size of 40 x 40 is used for both X and Y directions, and the time

increment varied between 0.0001 to 0.001 corresponding to différent Reynolds

number.

4.1.3 Results

Figure 4.2 illustrâtes solutions for incompressible flow of driven cavity for the



Chapter 4. BENCHMARK COMPARISON TEST 49

cases of Re = 100, Re = 400 and Re == 1000. Thèse results have been obtained by

the control volume approach (results from the finite différence method are omitted

for brevity). A view of the induced roll given by the streamlines is seen that this

roll becomes stronger as the Reynolds number increases. This behavior has been

noted in the article by U. Ghia et al. [101] Figure 4.3 shows the velocity profiles for

U along vertical Unes and V along horizontal Unes passing through the géométrie

center of the cavity. Solid and dotted Unes represent results from finite différence

method and from control volume approach respectively. The solutions of U. Ghia

et al. [101] using a fine mesh size of 129 x 129 are shown by circle marks. For

Re = 100, all results agrée well with one another, indicating that for this value

of -Re, the coarser grid of 40 x 40 of the présent work was quite adéquate. As Re

increases, however, the inadequacy of coarse meshes gradually becomes apparent.

This is particularly évident in the région near Umini a-nd Vmax-

4.2 NATURAL CONVECTION IN A SQUARE CAVITY

We consider the two-dimensional flow of a Boussinesq fluid of Prandtl num-

ber 0.71 in an upright square cavity shown in Fig. 4.4. X and Y are dimensionless

coordinates with the flow demain 0<X<l,0<y<l. Both velocity com-

ponents are zéro on all boundaries. Horizontal boundaries are insulated. Vertical

boundaries are maintained at différent uniform température.

4.2.1 Governing Equations

With /i, Q'//I, /l2/», AT for length, velocity, time, température and the pres-

sure P = /i.2(p + pogy)/(poCt'2), the dimensionless governing équations are

QU . QV
^+gy=0 (4.9)
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9R+wl^9Y£=pr^_9L
Qr ' QX ' 9Y 9X (4.10)

9V , 9UV , ÔV2 „ ^2T. ^
^+^+W=prvlv-W+prRae (4.11)

^l^^^e (4.12)
Qr ' 9X ' 9Y

where Pr = i//a (Prandtl number) and Ra == g/3^h3/vct (Rayleigh number). The

appropriate boundary conditions are

X=0: [7==0, V==0, 0=1

X=l: [7=0, V=0, 0=0

90

(4.13)

y == o, i : [/=o, v = o, ^ = o

The dimensionless governing équations based on stream function vorticity formu-

lation are illustrated as

Q^^9U0^9V0___^
~9r+~9X+~8Y= (4.14)

<9fî , 9U^ . <9VÎÎ ^ ^^ . ^ ^ <9^
+ ^ + ^ == PrV2n + Pr^a,Qr ' QX ' QY -• • -- . -•-—^^ (4.15)

v2^? = -n (4.16)

^M. v=-sï~9Y' v ~~~QX (4.17)
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where the dimensionless scales for stream function and vorticity are ah2 and a

respectively. The corresponding boundary conditions are

x=o: ^=o, [/=y=o, ^=1

x = l : ^==0, i/=y=o, 0=0 (4-18)

y=o,i: ^=o, [/=v=o, ^=o

The vorticity on the boundary is treated by Woods method described in Chapter

3.

4.2.2 Computational Procédure

The governing équations (4.9) to (4.12) are solved by the control volume

approach; the stream function-vorticity based governing équations (4.14) to (4.17)

are solved by thefinite différence method. Uniform mesh sizes of (10 X 10), (20x20)

and (40 x 40) are used t.o model the présent problem.

Figure 4.5 shows t.he effects of Rayleigh number on the natural convection in

a square cavity in terms of isotherms (right) and streamlines (left). Those tem-

perature and ûow patterns have been obtained frorn the control volume approach.

Comparable température and flow patterns (omitted for brevity) have been ob-

tained from. the finite différence method. Tables 4.1 to 4.8 provide a quantitative

comparison for a number of typical parameters. Umax a'iid Vmnx are respectively

the maximum horizontal velocity on the vertical mid-plane and the maximum

vertical velocity on the horizontal mid-plane. The overall Nusselt number on the
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left and right sides are defined respectively as

Nul =- L ^\dY Nur =-
'o C'Alo Jo

i 90
dY (4.19)

l9X\:

Tables 4.1, 4.2, 4.3 and 4.4 are used for comparison between benchmark [102] and

the présent results based on the control volume approach; tables 4.5, 4.6, 4.7 and

4.8 compare the benchmark and the results based on the finite différence method.

It may be found from those tables that the présent results are very accurate for

a fine-mesh size of (40 X 40), although, as expected, the deviation becomes larger

as the Ra is increased. It also noticed that in table 4.4 the results for mesh size

of 10 X 10 is smaller than the benchmark. This undershoot phenomenon at large

Ra and very crude mesh size is found to occur from time to time.

Thus we have two numerical methods to solve the problems specified in the

introduction. Most of the solutions coming in the next chapters will be based on

the finite deference method.

It should be mentioned here that the galilean transformation used for the

study of mixed convectîon in a horizontal channel with entirely heated bottom

provides a way to check the accuracy of the time dépendent numerical computa-

tion. We first solve the case of no forced flow, i.e., natural convection producing

classical Bénard cells in a fixed frame. Secondly, we solve the same problem in

a référence frame ("window") that moves at a predetermined velocity Va; the

problem becomes time dépendent, and the transverse rolls move in the opposite

direction at the same velocity. The results obtained from the moving frame can be

transformed into values with respect to the fixed frame by Eq. (5.9). Those values

can be compared with the values obtained numerically from the fixed frame. A
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good agreement is then found with the maximum discrepancy within 1% for ^,j

at the moving velocity Va. == 10.

TABLE 4.1: Results for Ra = l x 103

Parameters

max

max

max

Nui

NUr

Benchmark

1.174

3.649

3.697

1.117

1.117

10 x 10

1.2561

3.684

3.777

1.141

1.141

Error (%)

6.99

0.97

2.17

2.12

2.12

40 x 40

1.1800

3.656

3.698

1.119

1.119

Error (%)

0.51

0.19

0.08

0.18

0.18

TABLE 4.2: Results for Ra = l x 104

Parameters

^max

mar

max

Nui

NUr

Benchmark

5.071

16.178

19.617

2.2,38

2.238

10 x 10

5.2633

15.873

17.983

2.461

2.461

Error (%)

3.79

1.89

8.33

9.94

9.94

40 x 40

5.0861

16.129

19.609

2.259

2.259

Error (%)

0.24

0.30

0.04

0.94

0.94
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TABLE 4.3: Results for Ra == l x 105

Parameters

^Imax

max

max

Nui

Nur

Benchmark

9.612

34.73

68.59

4.509

4.509

10 x 10

10.512

35.152

73.353

5.411

5.411

Error (%)

9.36

1.22

6.94

20.00

20.00

40x40

9.737

34.981

68.955

4.620

4.620

Error (%)

1.30

0.72

0.53

2.46

2.46

TABLE 4.4: Results for Ra = l x 106

Parameters

max

max

max

Nu,

NUr

Benchmark

16.75

64.63

219.36

8.817

8.817

10 x 10

21.148

75.631

189.52

8.188

8.188

Error (%)

26.26

17.02

13.60

7.14

7.14

40x40

17.531

66.798

223.49

9.417

9.417

Error (%)

4.66

3.35

1.88

6.80

6.80
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TABLE 4.5: Results for Ra = l x 103

Parameters

max

max

max

Nui

NUr

Benchmark

1.174

3.649

3.697

1.117

1.117

20x20

1.170

3.569

3.594

1.122

1.122

Error (%)

0.32

2.21

2.79

0.44

0.44

40 x 40

1.1722

3.617

3.673

1.121

1.121

Error (%)

0.15

0.89

0.64

0.31

0.31

TABLE 4.6: Results for Ra = 1-x 104

Parameters

max

max

max

Nui

NUr

Benchmark

5.071

16.178

19.617

2.238

2.238

20x20

5.111

15.861

18.508

2.314

2.314

Error (%)

0.78

1.96

5.65

3.40

3.40

40 x 40

5.0654

16.084

19.385

2.269

2.269

Error (%)

0.11

0.58

1.18

1.37

1.37
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TABLE 4.7: Results for Ra = l x 105

Parameters

maa;

max

max

Nui

NUr

Benchmark

9.612

34.73

68.59

4.509

4.509

20x20

10.091

36.015

57.790

4.873

4.873

Error (%)

4.98

3.70

15.71

8.07

8.07

40 x 40

9.6592

34.865

66.168

4.6379

4.6379

Error (%)

0.49

0.39

3.53

2.86

2.86

TABLE 4.8: Results for Ra = l x 106

Parameter

max

max

max

Nui

NUr

Benchmark

16.75

64.63

219.36

8.817

8.817

20x20

20.675

78.613

191.75

9.7321

9.7321

Error (%)

23.43

21.64

12.59

10.38

10.38

40 x 40

17.472

67.223

200.25

9.4578

9.4578

Error (%)

4.31

4.01

8.71

7.27

7.27



Chapter 5

MIXED CONVECTION IN A HORIZONTAL

CHANNEL

Mixed convection in a horizontal channel heated from below has received consider-

able attention due to its important application in electronic packaging design and

other energy related industrial processes. Many past studies have been devoted

to that sub j ect with emphasis on thermal boundary conditions applied on the

two walls. A large cross section of the fundamental research has been reviewed

recently by Ouazzani et al. [91]. In those research, they found that the lower

heated wall gives rise to transverse or longitudinal rolls according to the values of

the Reynolds and Rayleigh number. Relatively little work has been doue on mixed

convection through a channel with discrète heating from below. Tomimura and

Fujii [95] discussed the need for understanding such phenomena in order to predict

accurately the maximum température encountered on the wiring board in elec-

tronic equipments. Kennedy and Zebib [34] presented numerical and expérimental

results on the efFect of free convection on a forced laminar horizontal channel flow

with a local heat source on the bottom surface. Numerical and expérimental re-

sults have also been obtained by Incropera et al. [58] who determined convection

heat transfer from discrète heat sources in a horizontal rectangular channel. Re-

cently, the forced convective heat transfer between horizontal fiât plates heated

periodically from below has been studied numerically by Hasnaoui et al. [96].-
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The présent work provides numerical solutions for mixed convection in a hor-

izontal fluid layer cooled isothermally at the top and heated at the bottom either

by heating éléments of uniform température regularly spaced or by localized heat-

ing sources. The relative strength of the free and forced convection is numerically

examined for a wide range of Rayleigh, Péclet (or Reynolds) numbers.

5.1 MATHEMATICAL FORMULATION

The geometry considérée! in this study is a two-dimensional fluid layer of

infinite extent, bounded by two horizontal impermeable surfaces, as shown in

Fig. 5.1. The upper surface is assumed to be cooled at constant température

Te, and the bottom is assumed to be heated wlth either uniforrn température

Th or uniform heat flux q generated from heating éléments which are regularly

spaced at distance b along the surface while the rest of them is adiabatic. Also

we consider the existence of an externally imposed flow with average velocity KO

within the layer. Assuming that the laminar flow is incompressible, that the fluid

properties are constant, except for the density variation with température and that

the Boussinesq approximation holds, we obtain the following set of dimensionless

équations expressing the conservation of energy and momentum:

90 , 9UQ ^9V6 ^ l ^
9Ï+Jx+:W=p7R^'e (5-1)

^ , QUÛ ^9Vfl ^ l ^ , Ra 90
'9^^~9X~^~9Y~=Tev "^ JrWôX ^

n = -V2^ (5.3)

u=a^- y=-Ê " (5:4)
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The above équations are deduced using the following scales:

Length:

Velocity:

Time:

Température:

Vorticity:

Stream function:

The governing parameters are

h

UQ

h/uo

AT

uo/h

huQ

the length of heating éléments:

the periodicity of heating éléments:

the Rayleigh number:

the Prandtl number:

the Reynolds number:

A = a/h

B=b/h

Ra = g/3^Th3/va

Pr = v f a

Re = u^hjv

Except for the limit case A = B, we assume that -0, the regular space of

heating éléments, imposes a periodicity À to the solution according to

\=nB n =1,2,... (5.5)

Thus, multiple solutions, each one corresponding to a particular n, may theoreti-

cally occur for a given set of governing parameters. Such a behavior has already

been discussed by Robillard et al. [46] for jRe=0 (no forced flow). They arise from

the fact that there is a conflicting situation between the base flow of arbitrary

wave length B occurring at low Ra and the natural wavelength (À c^ 2) of the

Bénard cells. However, there is no such relationship as équation (5.5) for the limit

case A = B. In practice, experiments [91] reveal that the wavelength takes a value

in the neighborhood of 2, for which the Nusselt number reaches a maximum.
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In this study, we consider only the case B = 2 and we assume that À = B.

Consequently the demain to be solved is restricted to the rectangular window

shown in Fig. 5.2, with the requirement that periodicity conditions are used for

the vertical boundaries. The thermal and dynarnical boundary conditions are

Lower Boundary (Y = O):

for all X, ^ = 0, U = V = 0

for 0.5 < X < 1.5, 6 = l, or -^ = -l; elsewhere 7^ = 0

Upper Boundary (Y = l):

for all X, ^ = l, 0=0, U = V = 0

(5.6)

(5.7)

Vertical Boundaries (X = 0, À):

0(0,Y,r)=0(\,Y,T)

v&(o,y,r)=^(À,y,r)

fi(o,y,r)=n(À,y,r)

£/(0,y,r)=£/(A,r,T)

y(o,y,r)=y(À,y,r)

periodicity conditions (5.8)

5.2 NUMERICAL METHOD

Finite diiFerence techniques with uniform mesh size (40 X 40) are used in the
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numerical approach to discretize the entire domain. Détail procédure is described

in chapter 3.

Numerical computations are carried out with time increments varying from

0.0001 to 0.001, until the flow and température fields reach the steady (or sta-

tionary periodic) state.

In order to verify the accuracy of the numerical code, some of the cases con-

sidered by Ouazzani et al. [91] and Fukui et al. [93] for pure natural convection

between horizontal parallel plates isothermally heated from bottom were repro-

duced. The results show a nice agreement with the maximum différence of about

2% between the two studies for Ra ranging from 2 x 103 to 5 x 105.

5.3 RESULTS AND DISCUSSION

In the présent investigation, all computations are doue at a Prandtl number

equal to 0.71, which is the value for air at standard conditions.

5.3.1 Entirely Heated Wall With Uniform Température (A = B)

By using the référence scales of h, h2/a, a/h, AT = Th — Te, cx/h and a

for length, time, velocity, température, vorticity and stream function, the dimen-

sionless governing équations (5.1) to (5.4) is modified by substituting î/Pr to

Re, and the dynamical boundaries conditions on bottom and top walls become

vp;, = —Pe/2 and ^< = Pe/2, where Pe = uoh/cc is the Péclet number. For this

limit case, a galilean transformation may be used which moves the window at

a predetermined velocity Va. Being considered a référence frame (X,Y) moving

at an arbitrary horizontal velocity Va relative to the boundaries, thfi following
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relationships hold:

X =X-VaT

Û == U- K

^=^-VaY

(5.9)

Other variables such as îî, 0, V have the same spatial distribution in both fixed

and moving frame. However their time dependence is modified as follows. Let

nX,Y,r)=f(X+Var,Y,r) (5.10)

where / stands for such physical variable, we have

9f\
9r\

9f
moving frame UT\ fixed frame^ (5.11)

Governing équations remain unchanged when expressed in the moving référence

frame, except the boundary conditions are modified as below:

Lower Boundary (Y = O):

for all X, ^ = -(pe—K), U = -K (5.12)

Upper Boundary (Y = l):

for all X, ^ =
^ - K)

u=-v. (5.13)

Figure 5.3 shows a typical result in terms of flow and température fields,

streamline at left and isotherms at right. As mentioned earlier the value of the

wavelength À was found experimentally [91 to be in the neighborhood of 2. The
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result shown in Fig. 5.3 was obtained with the assumption that A = 2. In Fig.

5.3a, the window is fixed and the solution obtained is of the same type as in [91]

and [103]. In Fig. 5.3b, Va has been chosen in such a.way that the window moves at

the velocity of the transverse rolls (Vc) and therefore a steady state is represented.

Since Vc is large than Pe, a net flow between the two boundaries equal to Pe — Vc

is imposed in the direction at which the upper and lower boundaries are moving

with respect to the window Eqs. (5.12) and (5.13). The steady state was obtained

by a successive approximation procédure incorporated to the numerical approach.

In the steady state représentation of the flow field, the streamlines correspond

to the paths of the fluid particles. The température pattern of Fig. 5.3a is time

dépendent and moves with the rolls in the positive X direction, while in Fig. 5.3b,

it demonstrates a time independent pattern in X direction.

The velocity of the transverse rolls (Vc = 10.723) in Fig. 5.3a is the result

of the proper estimate of the time dépendent terms in governing équations. The

galilean transformation Eqs. (5.12) and (5.13) relocates the computation of this

velocity into the convective terms of the same équations. Comparison between Vc

of Fig. 5.3a and Va of Fig. 5.3b shows a good agreement between the two types

of computation.

In Fig. 5.4, the ratio VclPe is shown as a function of Ra. Our results (table

5.1) indicate that this ratio is practically independent of Pe. This fact was already

reported in [91]. The curve corresponding to the présent investigation is slightly

above unity and corresponds roughly to the value reported in [103].
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Table 5.1 The ratio Vc/Pe

Ra

2000

4000

6000

8000

10000

15000

Pe

5

5

8

5

10

5

10

13

5

10

5

10

20

V./Pe

1.1126

1.0939

1.0946

1.0817

1.0823

1.0730

1.0735

1.0734

1.0656

1.0662

1.0521

1.0526

1.0523

5.3.2 Partially Heated Wall With Uniform Température

For the case when the lower boundary is partially heated, all computations

were done at values A = l and B = 2, with an imposed wavelength \ = B. This

particular choice for B avoids the conflicting situation already mentioned between

the base flow and the Bénard cells. With the same considération of the 5.3.1, the
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dimensionless governing équations are based on Péclet number and its related

dynamical boundary conditions. For the ranges of Rayleigh and Péclet numbers

investigated (0 < Ra < 15000; 0 < Pc < 20), it was found that the resulting flow

and température fields rnay be either steady or unsteady (time periodic), with or

without convective cells. Figure 5.5, based on the numerical results obtained in

the présent investigation defines the régions corresponding to those characteristics.

From Fig. 5.5, one may note that there exists for a given Ra > ~2500 a critical

Pe (-Pccr) beyond which the cells are carried downstream. If Pe < Pecr, the cells

remain attached to the heating éléments (steady state régime). Figures 5.6 and

5.7 show the flow and température fields given by streamlines (left) and isotherms

(right) respectively. Figure 5.6a and 5.6b correspond to steady state régimes.

Figure 5.7 corresponds to a time periodic régime. At Pc = 0, a nonzero flow field

always exista for Ra > 0. A typical result corresponding to Ra = 10000 is shown

in Fig. 6a. The présence of an imposed flow between the two boundaries (Pe > 0)

destroys the symmetric characteristic in Fig. 6a. However a steady state might

still be reached, as shown in Fig. 6b, provided that the imposed flow is not too

strong, Le., provided that Pc remains below a threshold value. The convective

cells remain then attached to the heating éléments with their center displaced

downstream. Beyond the threshold value, the resulting flow and température

fields are comparable to those obtained by Prasad et al. [104] for the case of an

individual heating élément at lower boundary of a horizontal porous layer. the

convective cells are carried downstream in an irregular (time periodic) motion.

Figure 5.7 shows the séquence of flow and température fields occurring over

one full cycle, for the case Ra = 10000 and Pc = 5. For each one of the seven flow
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fields shown, it is observed that the convective cells alternate from top to bottom,

being respectively in the clockwise and counterclockwise direction. Moreover it is

observed that thèse cells are reinforced when moving over the heating éléments

and weakened elsewhere. The cell motion is quite irregular, with a nonuniform

(periodic) velocity Vc in the downstream direction, as shown in Fig. 5.8. It is

therefore impossible, by a galilean transformation, to reduce the actual problem

of a layer partially heated from bottom to a steady state.

Figure 5.9 gives Vc, the time averaged velocity of the cells, as a function

of Pe. Extrapolation of the curves corresponding to différent Ra toward the

abscissa provides the critical Péclet number (Pecr) which séparâtes steady state

from unsteady behavior. Vc drops sharply when Pc approaches Pe.c.r- It ina-y also

be observed from Fig. 5.9 that the ratio Vc/Pewl.l for Pe^>Pecr i.e., the cells

tend to move on the average in a way comparable to'the motion observed for the

limit case A = B. Also the order of the curves corresponding to différent Ra in

Fig. 5.9 reproduces the tendency of the ratio Vc/Pe shown in Fig. 5.4 decreasing

with the increment of Ra.

A particular feature of the mixed convection within a layer having regularly

spaced heating éléments along its lower boundary is the irregular (cyclic) way

by which heat is transported to the top boundary. We consider the following

définitions l of the Nusselt number relative to the top boundary:

rx90\

Nu = Jo 9Y

l 9Y

dX
r=i

^T^x
y=i

(5.14)
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and 2° of the parameter Oa.v'-

Q^=\ f [10dYdX (5.15)
r0 JO

Qav is a- measure of the heat energy by unit volume contained within the layer.

Figure 5.10 shows the time dependence of Nu and 0a,v It indicates clearly that

heat is released by bursts from the fluid layer to the top boundary.

The time averaged Nusselt number Nu is shown in Fig. 5.11 as a function

of Pe. There is a tendency for Nu to decrease with Pc. Also each of the curves

corresponding to différent Ra shows a discontinuity at Pe = Pecr •

5.3.3 Partially Heated Wall With Uniform Heat Flux

AU computations were done at values A = l and B == 2 with imposed

wavelength À = B.

For the range of Ra and Re considered (0 < Ra < 50000; 0 < Re < 12), it

was found that the resulting flow and température fields may be either steady or

unsteady (time periodic) with or without cells. Régions corresponding to those

différent types of solutions can be identified in the Ra — Re graph of Fig. 5.12.

One may note in Fig. 5.12 that there exists, for a given Ra > 3000, a critical Re

(Rëcr}, beyond which the cells are carried downstream, while when Re < Rccr,

the cells remain attached to the heating éléments (steady state régime).

Figures 5.13 and 5.14 show the flow and température fields given by stream-

Unes (left) and isotherms (right) respectively. Figures 5.13a and 5.13b represent

steady state régimes. Figure 5.14 represents a periodic régime at difFerent times

during one period. At Re = 0, the pure free convection produces symmetric type
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of flow and température fields, as shown in Fig. 5.13a. The limit case Re —>0

was obtained numerically by setting Re = 1/Pr in governing équations (5.1) and

(5.2) and ^(Y = l) = 0 in boundary condition (5.7). For Re > 0, a net flow

is imposed between the two boundaries and the symmetric characteristic in Fig.

5.13a is destroyed. However a steady state may still be reached, as shown in Fig.

5.13b, provided that Re remains below the threshold value. The two convective

cells remain then attached to the heating éléments, but their centers are displaced

downstream, with the imposed flow circulating between them. If the imposed flow

is too strong, Le., if Re > Rccri the convective cells are carried downstream in an

irregular periodic motion. A séquence of flow and température fields covering one

full cycle is shown in Figs. 5.14a to 5.14g. The convective cells shown in those

figures alternate from top to bottom, being respectively in the counterclockwise

and clockwise directions. It may be observed also that thèse cells are reinforced

when they move over the heating éléments and weakened elsewhere. The cell mo-

tion is quite irregular with a nonuniform periodic velocity Vc in the downstream

direction, as shown in Fig. 5.15. It is noticed on this figure that for Re = 2.5,

which is just above the threshold value (2.25 < Recr < 2.5 from Fig. 5.12), Vc is

characterized by strong peaks separated by long time intervals where it is barely

above zéro. This corresponds to a jerky motion of the cells from one heating

élément to the others. This behavior is attenuated with increasing Re, as shown,

by the curve corresponding to Re = 8 on the same figure. This irregular motion

o£ the cells gives rise to a periodic time dependence for other physical variables

such as ones appearing in Fig. 5.16, where NUA is the Nusselt number based on



Chapter 5. HORIZONTAL CHANNEL 69

the température averaged over the heating élément defined by

NUA = ffA (5.16)

l rA
where ÔA = "T / ^(X,0)c?, and the superscript (*) refers to pure conduction

fo

température field at Re = 0. '9max and 19min correspond respectively to the

counterclockwise and clockwise cells.

It is important for the equipment désigner to predict the distribution of air

température in order to hold the température of modules below a tolerable level

near the channel exit, as well as to constrain the température variation among

the modules within a permissible range. Figure 5.17 shows the time dependence

of this maximum température and its position Xmax along the surface élément.

The physical quantifies of Figs. 5.15 and 5.16, time-averaged over one period and

denoted by Vc, NUA, ^max and ^min a-re given in Figs. 5.18, 5.19 and 5.20 as

functions of Re, for three différent values of Ra.

Vc ïs observed to drop sharply when Re is decreased toward Rccr. Also

with increasing Re, Vc is seen to reach an asymptotic value slightly above unity.

Thus, on the average, the cells tend to move slower than the imposed flow with

increasing Re. This particular behavior in cell motion contrasts sharply with

the one observed in past literature for the case of a uniformly heated channel as

investigated by Ouazzani et al. [91] and also différent with the case of partially

heated wall with uniform température discussed in section 5.3.2. For those cases,

the ratio of the cell velocity Vc to the imposed mean flow velocity is above unity for

any Re (or Pc), with a tendency to decrease toward unity, when Re is increased.

The time dependence of the Nusselt number NUA appearing in Fig. 5.16a
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indicates that the heat is released by bursts from the fluid layer to the top bound-

ary. Since the heat is supplied at a steady rate from the heating éléments, Oavi

the température averaged over the entire domain and Nui, the Nusselt number

relative to the top boundary, must be time dépendent and satisfy the following

relationship:

Nut - l = \RePr^- (5.17)

with

rx 90
dX (5.18)

On

ut=L ~9Y\.

=-!- l f1 ffdXdY (5J
'o Jo

The energy conservation at each time step is illustrated by the agreement between

the two curves of Fig. 5.21, which correspond to each side of équation (5.17).

This particular behavior in heat transfer from the bottom to the top boundary is

accompanied by a maximum température on the surface of the heating éléments

that varies strongly with time, as it was shown on Fig. 5.17. This feature is

of important practical conséquence in the design of cooling Systems of electronic

packages. The convective patterns may be unsteady, giving rise to température

peaks at the surface of individual heat generating éléments.

5.4 SUMMARY

The mixed convection taking place within a horizontal fluid layer with regu-

larly spaced heating éléments on its lower boundary bas been numerically studied.

For the lirait case of a uniformly heated lower boundary (A = B), a galilean trans-

formation has been successfully applied to reduce the problem to a steady state.
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By comparison to a uniformly heated channel for which the cells are carried

downstream with a constant velocity for any Reynolds number (or Pélect num-

ber), the case with localized heating is more complex. For low enough Reynolds

numbers (or Pélect number), the cells remain attached to the heating éléments and

a steady state is achieved. Beyond a given threshold value of the Reynolds num-

ber (or Pélect number), the cells are carried downstream with a time dépendent

periodic velocity.

Due to the irregular motion of the convective pattern in the downstream

direction, all other physical variables are characterized by a periodic time depen-

dence. In particular, the overall Nusselt number relative to the top boundary

and the température averaged over the fluid layer (which is a measure of the heat

energy contained in the fluid) are not in phase and show a strong periodic time

dependence. Physically this indicates that the heat produced at a steady state

by the heating-éléments accumulâtes within .the fluid layer before being released

through the upper boundary.

The présent study has been restricted to an imposed wavelength of the heated

éléments along the bottom equal to twice the channel height, Le., equal to the

natural wavelength that was found to occur in the case of a uniformly heated

bottom.
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EFFECTS 0F A MOVING THERMAL WAVE ON

BÉNARD CONVECTION IN A HORIZONTAL FLUID

LAYER

Since Schubert and Whitehead [105 proposed that the traveling thermal wave

caused by solar radiation is responsible for the fact that the upper atmosphère of

the planet Venus ratâtes approximately 60 times faster than the planet itself, the

study of natural convection with a periodically changing surface température has

received an increasing interest. A comprehensive review of this subject may be

found in the article by Hinch and Schubert [106]. Whitehead [107] performed a

moving-flame experiment with liquid mercury and observed that the mean surface

flow was up to four times greater than the heater speed. His expérimental data

were also confirmed by a theoretical analysis of flows driven by buoyancy and

surface tension. To détermine whether the thermal wave is capable of producing

mean flows which exceed the phase velocity by a few orders of magnitude, Busse

[108] studied analytically the effects of a thermal wave propagating in a horizon-

tal fluid layer on the flow behavior. His results show that the génération of a

mean ûow dépends on the existence of harmonies in the fluctuating velocity field.

The présence of a, thermal wave represents in fact the possibility of producing the

appropriate harmonies in the velocity fields that are responsible for nonvanishing

Reynolds stresses. Young et al. 109] solved a similar problem numerically under
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three sets of boundary conditions: rigid upper and lower boundaries with sym-

metrical heating; free upper boundary and rigid lower boundary with heating at

the top; free upper and lower boundaries with symmetrical heating. Their anal-

yses also showed the possibility of producing large mean flows when the thermal

forcing becomes large but the fluid viscosity is not necessarily small.

The Works mentioned above are limited to cases in which the flow is generated

exclusively by thermal wave, with the mean velocity of the fluid much smaller or

much larger than the source speed. However, the efFect of a moving thermal wave

on Bénard convection bas not been discussed so far, although the mechanism of

interaction between a thermal wave and Bénard cells is of considérable interest.

In the case of a stationary thermal wave, the problem has been treated by

the stability theory by many investigators (see, for example, Kelly and Pal [l 10],

Kelly and Pal 97], Kelly and Pearlstein [111 ). Their analyses have, in part, been

motivated by the désire to model expérimental imperfections such as thermal

noise, and boundary misalignment or roughness. The results obtained are also of

great interest in the context of bifurcation theory and in the study of nonlinear

Systems in général. Yet, very few numerical investigations have been devoted to

thèse problems.

The purpose of the présent numerical study is to investigate the efFect of a

moving thermal wave on Bénard convection. Also, in the limit case of a stationary

wave, attention will be focused on the effects of the spatially periodic boundary

condition on the amplitude of convection, and the stability of the multiple so-

lutions in the supercritical régime. Here, the thermal wave takes the form of a
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sinusoïdal perturbation superposed on the hot température of the lower boundary,

with a wavenumber K equal to the critical wavenumber Kcr of the classical Bénard

problem. Moreover, we assume that the solution will be periodic in the x direction,

with a wavelength corresponding to the imposed perturbation. This may appear

a bold assumption in the context of finite amplitude Bénard cells. On one hand,

the linear stability analysis alone admits a whole band of wavenumbers at a given

supercritical Rayleigh number Ra. On the other hand, expérimental observation

indicates that a single wavenumber, function of the Rayleigh and Prandtl numbers

(Ra, Pr), ïs selectively amplified (see, for instance, Chen and Whitehead [l 12],

Pocheau and Croquette 113]). One may therefore question the periodicity re-

sulting from the interaction between an imposed periodic disturbance and a finite

amplitude Rayleigh-Bénard convection of potentially différent wavelength. There

is however some ground for the above assumption. Firstly, past experiments by

Chen and Whitehead [112] for the range of Ra^r < Ra < 2.5Racr indicate that

a disturbance with an arbitrary wavenumber ( not too far from kcr ) imposed

as a boundary condition will promote a convective pattern corresponding to that

wavenumber. Secondly, nonlinear analyses for finite amplitude convection, with

Ra slightly above Ra,cr (see, for instance, Segel [114]), precludes the possibility

of a mixed equilibrium containing both disturbances, Le., only one will survive.

It also appears from thèse studies that initial conditions strongly détermine the

précise wavenumber selected. In the présent study, the disturbance is maintained

indefinitely. Also the problem is solved in a référence frame moving at the same

velocity of the thermal wave. From that point of view, the problem is to some

extent similar to the mixed convection in a horizontal layer with heating éléments

regularly spaced on the lower boundary, as considered by Hasnaoui et al. [96].
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Their results show that at low Reynolds numbers (Re), a steady state is possible

for which the convective cells remain attached to the heating éléments. Beyond a

critical Reynolds number (Recr), the cells are carried downstream, reinforced and

weakened periodically.

As mentioned earlier, the wavelength of finite amplitude convection is af-

fected by the Prandtl number. Experiments have shown that the wavelength

increases with Ra at low Pr. The opposite behavior occurs at high Pr. There

is an abundant literature on the problem of wavenumber sélection. In most of

the theoretical articles on the subject, spécifie géométrie or thermal boundary

conditions are considered. Among those articles, the works by Buell and Cat-

ton [115] and [116] are respectively for axisymmetric and ramped convection. In

both cases, results indicate that the wavenumber for finite amplitude convection

would remain close to Kcr with increasing Ra, if the Prandtl number remains in

the neighborhood of 0.7. Thus, in an effort to minimize the discrepancy between'

the imposed periodicity at the boundary and the natural periodicity of finite am-

plitude Bénard cells for the range Ra^r < Ra < 4.6-Rdcr, we solve the problem

numerically by choosing Prandtl number equal to 0.71.

6.1 MATHEMATICAL FORMULATION

The problem considered here consists of a fluid layer of infinite extent,

bounded by two horizontal impermeable walls, as shown in Fig. 6.1. The up-

per boundary is uniformly cooled with a température Tf. The lower boundary is

heated at a température Tf, = Tb+asinÇK'x-^t), where o- < Tb-Tt = AT, is the

amplitude of the thermal wave. The wavenumber K is set equal to the critiçal
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wavenumber K'^ ^ v/h.

Assuming that the Boussinesq approximation holds and that all fluid proper-

ties are constant, except for density in the buoyancy term, the 2-D flow considered

here can be formulated in terms of stream function ^ and the vorticity uj with

respect to fixed coordinates (a-, y) as

<^^M^r (6.i)
9t ' 9x ' 9y

ôm QUU} Qvw _„ „ 9T
, +^n+ ^r = ^^ + ^^ (6.2)

9t ' 9x

V2^» = -^ • (6.3)

9^ ^ 9^
u=^' v=-^ (6-4)

With the boundary condition t^b = ^t = 0, we assume there is no main flow

generated between the plates.

Here, a coordinate system (;£, y) which moves with the imposed thermal wave

may be used in which the governing équations can be written as

^^4+Ô4=^ (6.5)
9t ' 9x ' 9y

9ù 9ûûj QVU} _o „ „ ÔT
• +^+ ^ = V^2Ù + ^-ù (6-6)

V2^ = -û (6.7)

^_9^ _ 9^
Û=^, V=-^T (^•î

ix
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The relationship between variables in the fixed coordinate system (a:, y) and

those in the moving system (£, y) are

X = X + Vu^

y =y

U = Ù+ Vu,

v = v

T=T

(6.9)

U) = W

A

^ = ip + v^y

Moreover, the time derivative is transformed from one coordinate system to

the other according to

Qf\
9t\

8 f
moving frame

9f
fixed frame

+Uw^: (6.10)

with ^=^
9x 9x

where / stands for any physical variable and Vu, = J/K' is the velocity of

the imposed thermal wave.

Introducing the scales A, a/h, h2/a, a, a/h2 and AT for length, velocity,

time, stream function, vorticity and température, respectively, Eqs. (6.5) - (6.8)

take the following dimensionless form

|9^^=v^ (6.11)
QT ' QX ' 9Y
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9û , QUÛ . ôyn ^ „,„ . ^ ^ 90
+ :—r + r— = PrV2Û + PrRa—_

9r ' 9X ' QY -••--•- •-~~9x

v2^ = -ù

Ù=9^ V--91
QY' ' 9X

(6.12)

(6.13)

(6.14)

where Pr = v/a (Prandtl number) and Ra = gP^\Th3/i/a (Rayleigh number).

The governing parameters are Pr, Ra, K and Vv,, with K = Kcr = TT.

The boundary conditions in the moving System then become

At the lower boundary (Y == 0)

6=l+6sïn(KX)

^=0

v = o, 0=-v^

(6.15)

A

At the upper boundary (Y = l)

0=0

^ = -^, (6.16)

V = 0, Û = -K/

where Vw = T/K is the dimensionless velocity of the thermal wave, or equivalently,

the imposed velecity in the négative X direction.

The solution is assumed to be periodic in X, based on the wavenumber

Kcr- Consequently, the domain to be solved numerically may be restricted to a
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rectangular window shown in Fig. 6.2, with the periodic condition imposed on

the vertical boundaries for any appropriate flow quantity F

F(X, Y, r) = F(X + À, y, r) (6.17)

The overall Nusselt numbers at the upper and lower boundaries are defined

respectively as

l fx Q6\
Nut

\Jo 9Y\
l f> 90

,0

dX
r=i

dX
y=i

Nub = —
'0

l fA 90
9Y

l f> QQ
,0

dx
r=o

r=o
dX

Note that NU{ and Nu^ must satisfy the energy balance

QQav
Nub - Nui =

9r

where Oav is the average température of the fluid layer, defined by

l /1 rx
0a. = T / / BdXdY

'0 JQ

l
À
l /l /-Â î..-- .^
^ / / OdXdY

'0 ./O

(6.18)

(6.19)

(6.20)

(6.21)

Another quantity of interest, the pressure decrement in one wavelength, AP,

can be determined from the shear stress at the boundaries according to the rela-

tionship [109]

AP =A$
Jo y=o

9Ù\
9Y\ r=i

)dX (6^22)
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6.2 NUMERICAL METHOD

The numerical method used here is based on finite différence techniques,

which has been discussed in the chapter 3.

A uniform mesh size was used for both x and y directions, and a grid of

40 x 40 for A = 2 was found to model accurately the flows described in this work.

The time increment ranged from 0.0001 to 0.001.

With 6 set to zéro (classical Bénard cells), the numerical program was checked

to reproduce satisfactorily the Nu vs Ra dependence (see, for instance, Ostrach

and Kamotani [l 17], Fukui et al. [93], Ouazzani et al. [91]. Those results were

practically unafFected in a moving frame of référence with Vw < 15. For 6 = 0

and 0 < Vw < 15, the solution was of course time periodic when observed from

the moving frame. The time-averaged cell velocity Vc was deduced from the time

period T characterizing the unsteady solution (T/c = ^/T)i al:l(i ^c was equal to

—Vu, within 1%. The détermination of Vc, the "instantaneous" velocity of cells

bas limitations inhérent to the time and space discretization.

6.3 RESULTS AND DISCUSSION

For all the cases investigated in the présent study, the Prandtl number Pr

was set equal to 0.71 which is the value for air at standard conditions.

6.3.1 Stationary Thermal Wave

In the absence of a thermal wave (6 = 0), convection is possible only when the

Rayleigh number Ra is greater than a critical value -ffûcr = 1707.8, and occurs as a

supercritical bifurcation from the conduction state. This phenomenon is depicted
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in Fig. 6.3 by a solid Une, which is determined by a well-known supercritical

amplitude relation given by Malkus and Veronis [118 .

C^=±(Ra^Ra^^ (6.23)
1er

where ^lext is the extrême value of the stream function and is taken as a measure

of the convection amplitude; C\ is a constant, determined from numerical results

by the least square fit method, and was found to be 0.2396. At Ra > Râcr, the

two stable convection states correspond to counterclockwise and clockwise cells

respectively. Note that with the periodic boundary conditions (Eq. 6.17), the

cells have no preferred location along the x direction in the solution domain.

When a stationary thermal wave (6 = 0.1 in Fig. 6.3) is imposed on the

lower boundary, convection occurs at all values of Ra. Kelly and Pal [97] have

shown that the amplitude of convection is then governed by a cubic équation of

the forrn

(W^)3 = (Ra^RacT)(W^ + C,6 (6.24)
''CT

In the range 0 < Ra < Ra,cr, convective cells can be observed along the layer,

alternating from clockwise to counterclockwise motion. The cells are always in

phase (curve with solid squares) with the thermal wave, the upward flow being

located above the maximum température of the lower wall. As Ra is increased

beyond Rocr, no abrupt change occurs near the Racri although }Sext increases

more rapidly and remains above the curve corresponding to classical Bénard cells.

This solution branch is called "preferred branch" according to Ehrhard and Muller

[119] and "natural branch" according to Nield and Bejan [120]. Infact, numerical

computations starting from the rest state always converge toward this branch.
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As discussed by Kelly and Pais [97], there are three theoretical possible so-

lutions for Ra well above Rocr- However, only the one in phase with the thermal

wave is stable with respect to a phase shift. This is confirmed by the présent

numerical résulta. A search for a second solution was done by starting the com-

putations from initial conditions corresponding to the solution of the preferred

branch. Figures 6.4a and 6.4b show the time évolution of }Sext, and of its position

along the X coordinate, from the initial conditions {Ra == 8000 and }S est = 8.416).

At time T = 2, by changing S to —S, the thermal wave is phase-shifted suddenly

by 180°. After a relatively short transient period, the system reaches an almost

time-independent state (quasi-steady state, '9ext = 7.987), which corresponds to

the isolated branch of Fig. 6.3. However, as time passes, the cells gradually move

by half a wavelength to a final location where they are in phase with the imposed

thermal wave and ^est goes back to the preferred value. This behavior may be

clearly seen in Figs. 6.4a and 6.4b. The imposed thermal wave is symmetrically

located with its maximum température at center on the ordinate of Fig. 6.4b.

After a short period of initial transient starting at r = 2, the quasi-steady state

is reached at T ^ 2.25. At r c^ 11, ^>ext disappears at the left of the flow domain

and reappears at the right.

From the numerical results of the preferred and isolated branches obtained

in this way, the constant C-i in équation (6.24) was found to be 0.582.

6.3.2 Moving Thermal Wave

As mentioned in the previous section, the problem may be considered in a

référence frame moving with velocity Vw (Fig. 6.2), in which the thermal wave
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becomes stationary and a net flow Vw is seen in the opposite direction. For small

Vw, stationary cells are observed in this référence frame as if they are attached to

(and travel with) the thermal wave.

As Vw is gradually increased, it was found that there exists a critical Vu, for

a given pair of values Ra and S, below which the cells remain attached to the

thermal wave, but beyond which they are carried downstream. Figures 6.5 and

6.6 show the efFect of Vw on the fluid flow and heat transfer in terms of streamlines

(left) and isotherms (right). Note that in thèse figures, the maximum température

is located at the center of the lower boundary.

When Vu, = 0, a symmetric pattern is obtained for both température and

flow fields, as shown in Fig. 6.5a. It corresponds to the preferred branch described

earlier, and consists of two counter-rotating cells with an upward flow above the

"hot " point. As Vu, is increased, the symmetry is destroyed, such that the convec-

tive cells become skewed and displaced downstream, as can be seen in Fig. 6.5b

(Vu, = l). However, the flow is still steady as the convective cells remain attached

to the thermal wave.

When Vw = 2, a steady state no longer exists, and the cells are carried

downstream with Vw in a periodic fashion. Figure 6.6 for the flow and température

fields at différent times during one full period T = 1.2834 clearly shows how the

shape and intensity of the cells changes as they move.

The time-averaged vebcities of the cells, Vc and Vc for Ra = 8000 and 6 =

0.3, are plotted as functions of Vw in Figs. 6.7a and 6.7b. The threshold value

Vwcr ^ 1.2489 is obtained by extrapolation of the numerical results. Figure 6.7b
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shows that Vc/Vu, tends asymptotically toward zéro as Vu, —> oo. Thus, for an

observer in the fixed frame, the entrainment of the convective cells by the moving

thermal wave is gradually reduced to zéro with increasing Vw

Figure 6.8 shows the variations of Vu,cr wlth Rayleigh number (2000 < Ra <

8000) for two values of 6 (0.1 and 0.3). In this figure, the lower limit Râcr = 1707.8

corresponds to the critical Rayleigh number for Bénard cells. One can remark that

the amplitude S ïs a parameter that influences strongly the value of Vu,cr such that

the ratio Vwcr/<f) only increases slightly as 6 is decreased from 0.3 to 0.1. Thèse

curves also show that Vw^r/S attains a minimum value at Ra cï 3500 Thus as Ra is

decreased from 3500 to Ra,cn the convective cells are carried more easily with the

thermal wave. This behavior might be explained by the fact that the convective

cells dépend more and more upon the thermal wave itself when Ra —> Râcr-

However, when Ra is increased from 3500, it is rather difficult to see why the

Bénard cells remain attached for higher values of Vw

The unsteady state obtained for Vu, > Vwcr is characterized by a periodic

A

motion relatively to the thermal wave, as shown in Fig. 6.9a where Vc is given

as a function of time. Other quantifies of interest, such as the extrême stream

function (Fig. 6.9b), the overall Nusselt number Nut and Nui, (Fig. 6.9c).

It is of practical interest to predict AP, the pressure decrement in one wave-

length. As discussed by Busse [108] and Young et al. [109], a mean flow can be

generated by a moving thermal wave under the condition of zéro pressure drop.

Conversely, we can calculate the pressure decrement necessary to maintain a zéro

mean flow in the présence of a thermal wave. From the time-averaged pressure
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decrement AP, shown in Fig. lOa as a function of the thermal wave velocity,

it appears that as Vv, is increased from 0 to Vu,^-, the pressure decrement AP

lineariy increases from 0 to attain a maximum value at Vw = Vwcr- At this point,

AP suffers from a sudden drop in the same manner as Nu (Fig. 6.10b), before it

continues to increase with Vw, but at a much slower rate.

The time-averaged Nu and ^ext are given in Figs. 6.10b and 6.10e as func-

tions of Vw A discontinuity is also observed for thèse quantifies at Vw^- A

particular feature of the periodic state is the way by which heat is transferred

from the lower boundary to the upper. It may be noticed in Fig. 6.9c that Nui

and Nub are out of phase in their cy clic variations. Thus the heat content in

the fluid média must also be time-dependent. During one cycle, part of the heat

coming from the lower boundary is at first stored within the layer before being

released though the upper boundary. It should be noted that the energy balance

expressed by Eq. (6.20) at each time step is satisfied to a high degrèe of accuracy

by the présent numerical code, as it can be seen in Fig. 6.11 where the left and

right hand side terms of Eq. (6.20) have been calculated separately, and shown

by a dotted line and a solid line, respectively.

The efFect of a moving thermal wave on Bénard cells in a fluid layer with a

zéro pressure decrement has also been investigated. Following the procédure of

Young et al. [l 09], we set the stream function to zéro at the lower boundary and

vary the stream function at the upper boundary in order to satisfy AP = 0. The

numerical calculations are performed in the moving coordinate System (X, Y).

In accordance with the momentum conservation in the horizontal" direction,
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we have

<9<?(1)
QT

= -Pr[îî(l) - îî(0)] (6.25)

l rx _ ^_
where H = ^ / ÇidX.

\JQ

Figure 6.12 gives the time-averaged net flow }St (based on the fixed coordinate

System) as a function of the wave velocity. This clearly shows that a moving

thermal wave always générâtes a net flow in the opposite direction of the thermal

wave for all Vu, -^ 0. A similar behavior was observed experimentallyby Whitehead

[107]. Figure 6.12 is qualitatively similar to Fig. 6.10a. In fact, by comparison

with the case of imposed zéro net flow discussed previously, there exists also a

critical wave velocity for given values of Ra and 6 (for instance, Vw^r = 0.776 for

Ra = 8000 and 6 = 0.3), below which a steady state is obtained with cells attachée!

to the thermal wave. Above that threshold, the cells are carried downstream and

the net flow oscillates with a time-averaged value increasing linearly with Vu,, as

shown in Fig. 6.12.

6.4 Summary

The effect of a moving thermal wave imposed as a boundary condition on

Bénard cells in a horizontal layer of infinite extent has been studied numerically

for the range of Rocr < Ra < i.QRûcr and for a constant Prandtl number of 0.71.

The wavelength of the modulation has been set equal to the critical wavelength

of the incipient Bénard cells and we have assumed that the resulting periodicity

of the solution would correspond to the imposed disturbance, thus reducing our

solution demain to one wavelength.
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The main finding is the occurrence of a threshold for the velocity of the

thermal wave, below which the Bénard cells are carried along with the disturbance.

That threshold dépends upon the amplitude e and upon the Rayleigh number Ra.

Below the threshold, the convective cells are attached to the imposed thermal

wave so that a steady state may be observed in a référence frame moving with

the thermal wave. Above this threshold, no steady state can be obtained and

the cells move with a time-averaged velocity lower than the thermal wave. In

fact, the flow exhibits an unsteady periodic behavior in which all flow quantifies

are characterized by a cyclic time dependence. In particular, heat is released by

bursts frorn the fluid layer through the upper boundary.



Chapter 7

MIXED CONVECTION IN AN INCLINED CHANNEL

WITH LOCALIZED HEAT SOURCES

Channels formed by parallel plates or fins are a frequently encountered configura-

tion in natural and forced convection cooling by air of electronic equipment. Many

scientists are involved in the research subject of heat transfer in channels. How-

ever, just a few studies have been reported thus far in the literature for channels

with arbitrary inclination angles. Tomimura et al. 95] have explored the aid-

ing mixed convection flow and heat transfer between inclined parallel plates with

localized heat flux over their length. Their results demonstrate that the temper-

ature field is considerably afFected by the inclination angle and much afFected by

the discrète heating because of the intermittent development of thermal boundary

layer. Lavine [121] [122] has derived a one-dimensional analytical model for fully

developed aiding and opposing mixed convection between inclined parallel plates,

where a flow reversai régime is observed that strongly afFects température distri-

bution, wall friction and velocity profile. The analytical solution is then confirmed

by expérimental results [123].

The purpose of this chapter is to investigate numerically the idealized case

of a two-dimensional laminar flow in a channel of infinite extent and arbitrary

inclination angle with one of the walls isolated while discrète heating éléments

with uniform heat flux are regularly spaced along the other wall that is elsewhere
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adiabatic. A forced flow of arbitrary intensity is imposed between the walls. The

heat from each heating élément is conveyed downstream and a steady state is

achieved for which the température field is characterized by a spatial increment

which repeats at each heating élément in the downstream direction. Consequently,

the flow field and température gradients are assumed to repeat periodically along

the channel according to the imposed periodicity of the heating éléments on the

lower boundary. The numerical flow domain used for most of the results is thus

restricted to one wavelength of the imposed periodicity with periodic conditions

applied at the two end boundaries. Some numerical results were also obtained from

a whole channel configuration with a few heating éléments and specified entrance

and outlet conditions. This last configuration requires a large mesh size and much

more CPU time. Its main purpose is to validate the one-wavelength configuration

by showing l that the flow field tends to repeat along the channel according to

the imposed periodicity of the heating éléments and 2° that the velocity profiles

at a distance far enough from the entrance and outlet, do agrée with those of the

one-wavelength configuration. Finally an analytical solution is given in appendix

B for the limit case where the entire boundary is heated. The approach for this

solution is based on a parallel flow hypothesis. The developments are similar to

those by Bejan and Tien [124], Vasseur, Robillard and Sen [125] and follow closely

the work by Lavine [122], [122].

7.1 MATHEMATICAL FORMULATION

The problem considered here is illustrated in Fig. 7.1. It consists of a

two-dimensional fluid layer of infinite extent in the x direction, bounded by two

inclined parallel plates at an angle y with the horizontal direction. The upper wall
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is insulated and the bottom is heated with uniform heat flux q generated from

heating éléments of length a which are regularly spaced at a distance 6, while

the remaining surface is adiabatic. Moreover, an external flow with downward

mean velocity (opposing flow) UQ is imposed. Assuming that the laminar flow is

incompressible with constant properties, that the usual Boussinesq approximation

holds, p = po[ï—P(T—Tr}}, and that the heat generated from the heating éléments

is totally carried downstream by the forced flow, we obtain the following set of

dimensionless équations expressing the conservation of energy, momentum and

mass:

90 , QU6 , W0 l ^
^+'9X+:W=p7R^'e (7-1)

on , QU^I , ÔTO l ^^ , Aa ,90 , 96 _
^+ir+iF=i;v2fi+7^^œ8v+^8my' (7.2)

n = -V2f (7.3)

Q^f 9^
v ° W v = -Hx <7-4>

Equations (7.1-7.4) have been nondimensionalized by defining X, Y, U, V, 0, îî

and ^ as

X = ^ Y = ^ (7.5)

U=^ V=^ (7.6)
UQ UQ

e=T^' Aï'=f (-7-7)
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"=^ »=A (7.8)
UQ nuQ

The intensity of the natural convection and the strength of the forced convection

are characterized by the Rayleigh number, Ra = •3r ^ and the Reynolds
O.V

number Re = -^—^ respectively. The other parameters A = a/ h, B = b/h, y
v

and Pr = v/a are the dimensionless length of heating éléments, the dimension-

less periodicity of the heating éléments, the inclmation angle and the Prandtl

number respectively. The numerical approach solves the time-dependent form of

the energy and vorticity équations as given by Eqs. (7.1) and (7.2) with initial

conditions corresponding to static states of both velocity and température fields.

Two flow domains are considered for the solution of Eqs. (7.1 - 7.4): the

whole channel configuration with entrance and outlet sections, shown in Fig. 7.2a

and the one-wavelength configuration shown in Fig. 7.2b. This last flow domain

is based on the assumption that the solution is periodic in x direction according

to the periodic spacing of the heating éléments. Consequently, it is aimed at

reproducing the flow conditions in a channel of infinite extent. Both flow domains

have the same thermal and dynamical boundary conditions for the lower and

upper walls. Those conditions are:

Lower Boundary (Y = O):

for all X, ^ = 0, U= V = 0

for each heating élément, 7^7 = —l l~'"

elsewhere, -^7 =0
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Upper Boundary (Y = l):

forallX, ^=1, -^=0, U=V=0 (7-10)

The boundary conditions for the vertical boundaries are diiferent for the two flow

domains. For the whole channel configuration, they are

atZ=0, 0=0, U=-6(Y2-Y), V=Q

(7.11)
92F
9X2

^X=L, -^=0

where F stands for any physical variable. The conditions at the outlet correspond

to those used by Tomimura et al. [95] and Yûcel et al. [126].

For the one-wavelength configuration, we assume that B, the regular spacing

of the heating éléments imposes its periodicity to the solution. Every physical

quantity -F, including the température gradient, satisfies the following periodic

condition on the two vertical boundaries.

F(X+B,Y,T)=F{X,Y,T) • (7.12)

However, the température itself does not satisfy this condition. In fact, at each

wavelength B, the température must be increased by a factor e such that

T(X+B,Y,T)=T{X,Y,T)+C (7.13)

where C = A /(RePr) is defined on the basis of energy balance. The increment C

implies of course the existence of a conductive heat flux in the upstream direction

that the convective heat flux must compensate.

The présent problem contains six governing parameters, namelyi'the Rayleigh

number Ra, the Reynolds number Re, the Prandtl number Pr, the spacing of the



Chapter 7. MIXED CONVECTION IN AN INCLINED CHANNEL 93

heating éléments J9, the individual length of the heating éléments A, and the

inclination angle y>. As shown in the appendix B, for the limit case of an entirely

heated wall (A = B), the number of governing parameters is reduced to two, Pi

and Pi.

7.2 NUMERICAL METHOD

The numerical procédure used here is based on finite différence techniques.

The procédure has been discussed in chapter 3.

The uniform mesh size were used for both X and Y directions, and a grid of

40 x 40 for B = 2 was found to be an acceptable compromise between accuracy

and computer time, while for the whole channel configuration with five heating

éléments, a grid of 20 x 150 was used. Spot checks of accuracy, however, were

made using more refined grids. The time increment ranged from 0.0001 to 0.001.

The température was set to zéro as a référence value at a suitable location of

the grid (either at the entrance of the whole channel configuration or at X = 0,

Y = 0 for the one-wavelength configuration). Also the computation was started

from 0=0 everywhere as an initial condition.

Results from the présent numerical code are compared with the analytical

solution given in appendix B for the limit case A = B (entirely heated bottom

wall). Figure 7.3 shows velocity profiles obtained from both approaches for Pi =

100 and P-i = -70, 70 and 140.

7.3 RESULTS AND DISCUSSION

For all the cases investigated numerically in the présent study, the length
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A of the heating éléments and the spacing B were maintained equal to 1.0 and

2.0 respectively. Also, the Prandtl number Pr was set equal to 0.71, which is the

value of air at standard conditions. The ranges of Rayleigh and Reynolds numbers

were respectively 0 < Ra < 10000 and 0 < Re < 10. The inclination angle ip was

varied between 0° and 90° so that the forced flow was downward with the heating

éléments on the bottom wall.

In Figs. 7.4 and 7.5, a comparison is doue between numerical results ob-

tained from the one-wavelength configuration and those from the whole channel

configuration for a typical case of Ra == 500, Re = l and y = 75 . Flow and

température fields are shown respectively by streamlines and isotherms in Figs

7.4a and 7.4b. Heating éléments correspond to the shown by heavy Une segments

regularly spaced on the bottom wall. The whole channel configuration includes

five heating éléments with entrance and outlet conditions given by Eq. (7.11).

With those boundary conditions, a definite recurrence, or periodicity of the flow

field and température gradients is observed which corresponds to the spacing B

of the heating éléments. This periodicity could be improved by increasing the

length of the channel and the number of heating éléments. However, this would

require prohibitive C.P.U. time. In Fig. 7.4a and 7.4b, one can notice the great

similarity of flow and température fields for both configurations. Figures 7.5a and

7.5b show velocity and température profiles taken at locations D and E identifiée!

in Figs. 7.4a and 7.4b. It is seen that profiles from both configurations are quite

similar. Such a similarity was also found for the other values of the parameters •

Ra, Re and y (results are omitted for brevity), and it was concluded that results

from one-wavelength configuration could adequately represent the flow behavior
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in a long channel, away from the entrance and outlet régions.

Flow and température fields, as functions of the Rayleigh number, for a

fixed Reynolds number Re = l, are shown in Fig. 7.6, with streamlines (left)

and isotherms (right). When the Rayleigh number is zéro (Fig. 7.6a), a parabolic

velocity profile is produced with the maximum velocity midway between the walls.

The température field of that figure is the one obtained for pure forced convec-

tion, without any buoyancy efFect. With Ra increasing from zéro, the velocity is

reduced near the top wall and increased near the bottom wall in order to maintain

the mass conservation. This change in flow behavior corresponds to the occur-

renée of a convective cell of infinite extent superposed to the forced flow. Such

phenomenon also exists for the case of entirely heated wall for which an analyt-

ical solution is given in appendix. The first term on the right hand side of Eq.

(B.28) corresponds to that convective cell. This convective cell grows with Ra,

and beyond a critical value, an upstream flow is produced near the top wall (Fig.

7.6c). For such conditions, results obtained from the whole channel configura-

tion indicate that a clockwise recirculating flow occurs which extends over the

whole channel length from entrance to outlet. Consequently, the upstream flow

appearing in Fig. 6c, corresponds to a recirculating flow extending to infinity

in both x directions (overall recirculating flow). This overall recirculating flow

becomes more pronounced as Ra is increased beyond 250 (Figs. 7.6c to 7.6g). In

Fig. 7.6g, the upstream flow is almost équivalent to the downstream flow near

the bottom wall and the forced convection contributes in a negligible way to the

velocity profile. The effect of localized heating is apparent in Fig. 7.6c to 7.6f,

where two-dimensional features are caused by a recirculating flow which does not
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extend beyond one wavelength (local recirculating flow).

As it can be expected, the above behavior in the flow field strongly influences

the température gradients. For the whole set of Figs. 7.6a to 7.6g, the isotherms

always intersect the adiabatic boundaries at right angle as they should and the

heating éléments at an angle that insures the constant heat flux boundary condi-

tion. However, it is noticed from the shape of isotherms that, with increasing Ra,

the fluid near the top wall become hotter than the fluid near the bottom wall.

The effect of the inclination angle is shown in Fig. 7.7 with Fig. 7.7a cor-

responding to Fig. 7.6d. It is noticed in Figs 7.7a to 7.7d that the overall re-

circulating flow remains clockwise (ûow reversai near the top wall) but decreases

with increasing inclination angle up to y c^. 70°, while the local recirculating flow

remains relatively strong up to ip ^ 60°. At 70°, the overall recirculating flow is

zéro. However there exists a local recirculating flow just above the heating ele-

ment in the counterclockwise direction (Fig. 7.7e). _ For inclination angles above

70 , local and overall recirculating flows occur in the counterclockwise direction.

This reversai in the direction of the recirculating flows modifies the température

field, the fluid near the top wall becoming colder than the fluid near the bottom

wall.

The overall and local recirculating flows are defined from the following pa-

rameter (flow reversai parameter)

ç,(Z)=-[l-^,+vU - (7.14)

where $mar and $mm are respectively the maximum and minimum value of the

stream function at a given location X along the wavelength. The flow reversai



Chapter 7. MIXED CONVECTION IN AN INCLINED CHANNEL 97

parameter is given in Fig. 8 as a function of X for Ra = 500, Re = l and y = 0 ,

20 , 60 , 70 , 80° and 90 . Upstream flow near the top and near the bottom are

identifiée! by continuous and dashed lines respectively. The overall recirculating

flow is given by the minimum value of the flow reversai parameter along the

wavelength (<?r,n,n)) whereas the local recirculating flow is given by the différence

îrmax ~ <?rmin ? î'-ma.i being the maximum value of the flow reversai parameter along

the wavelength. The flow reversai parameter is X independent for the entirely

heated bottom wall, the local recirculating flow being a feature of localized heating

on the bottom wall.

Figure 7.9 defines the limit between flow reversai (either overall or local flow

reversai) and no flow reversai. It is seen that for the case of entirely heated bottom

wall, A = B, there is no separate influence of the Reynolds number and this limit

corresponds to a fixed critical value of ~ 50 for the coefficient Ra/(Re2Pr) of

Eq. (7.2). The coefficient Ra/{Re2Pr) = Fr~2 (where Fr is a Froude number)

expresses the ratio of buoyancy forces to inertia forces. With discrète heating,

for instance, with A = J3/2, the critical value of the coefficient Ra/(Re2Pr)^

as obtained numerically, decreases first with Re increasing from zéro. When Re

increases further, it reaches an asymptotic value of ~ 62.

The variation of the total heat flux along the channel is known a priori as it

must increases linearly over each heating élément by the quantity A and remain

constant elsewhere. This behavior can be used to check the local energy balance

of the présent numerical code. The local quantifies Q*, Qc. and Ç, defined as
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w=-f^r
Q^X) = PrRe f^UOdY (7-15)

'0

Q(X) = QW + Ç,(D

are the conductive, convective and total heat fluxes respectively. Here we compute

Q* and Qc separately. When added up, thèse two quantifies must reproduce the

known function Q adequately. Also Q increases at each wavelength by the same

increment Q{B) - Ç(0) = A, so that only the différence ÂQ(X) = Ç(X) - Ç(0)

is relevant within the présent framework. Moreover, as the conductive heat flux

based on the X derivative of 0 repeats integrally at each wavelength, the convective

heat flux is also an increasing function of X. Figure 7.10 provides the separate

values AÇ" = Ç*(X) - Ç*(0) and AÇc = Çc(^) - Qc(0) as obtained numerically,

by solid and light marks respectively. In Fig 7.9a, the effect of Ra is shown from

three sets of data corresponding to Ra = 0, 500 and 1000, for the same Re = l

and inclination angle y = 0. In Fig. 7.10b, the eiFect of the inclination angle is

shown with three sets of data corresponding to ip = 60 , 70 , 80 for the same

Re = l and Ra = 500. It may be verified in Figs. 7.10a and 7.10b that each pair

of curves AÇ* and AÇc adds up to reproduce faithfully AÇ.

7.4 SUMMARY

Fully developed mixed convection taking place within an inclined fluid layer

with regularly spaced heating éléments on its lower boundary and insulated on its

top boundary -bas been studied numerically. Both a one-wavelength configuration
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and a whole channel configuration are explored from which we conclude that the

results obtained from the one-wavelength configuration could represent adequately

the flow behavior in a long channel, away from the extrance and outlet régions.

The numerical results reveal that the buoyancy efFects produce an overall

recirculating flow, i.e., a recirculating flow that extends over the whole channel

length. This flow is comparable to the one obtained when the bottom wall is

entirely heated. Its direction and intensity are related to the Rayleigh number

and inclination angle of the channel. A particular feature of discrète heating is

the occurrence of local recirculating flow. Thèse local recirculating ûows produce

the two-dimensional features of the solution.

The heat generated from the heating éléments must be carried downstream

and the mechanism involved in this process is forced convection. For this process

to occur, the température must increase at each wavelength by the same incre-

ment. As a conséquence, the conductive heat transfer is in the upstream direction

and must be compensated by the forced convection.



Chapter 8

CONCLUSIONS AND RECOMMENDATIONS

There is a widely accepted need for improved methods of designing efficient ther-

mal packaging Systems for electronic components. This need has been accentuated

by the rising level of overall power dissipation and by the high packaging density of

electronic components. The choice of thermal control technology and the partic-

ular décisions made in the course of evolving the thermal packaging design often

have far-reaching efFects on both the reliability and cost of the electronic sys-

tem. Despite the availability of many diiferent heat transfer models in electronic

package design, direct air cooling of electronic components continues to receive

considérable attention due to its lower cost and its environmentally friendly na-

turc.

Irrespective of various configurations of electronic components used in com-

mercial and military equipments, a smooth-walled with fully developed laminar

flow channel, that is, the basic channel is paid great attention in the présent work,

from which the heat transfer problem is explored numerically. The 2-D govern-

ing équations expressing the conservation of mass, momentum and energy in such

channels are derived with respect to fixed and moving frames. Also the periodicity

conditions are applied on the vertical boundaries of the demain to be solved. This

demain is then équivalent to a "window" that can be located anywhere along the

channel.
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The numerical simulation bas been performed for several cases: 1° mixed

convection in a horizontal channel with isothermal or isoflux segments regularly

spaced, 2° mixed convection in inclined channels with localized heating sources, 3°

convective heat transfer in channels with moving thermal wave on the boundary.

From this comprehensive analytical study it is concluded that:

d By comparison to a uniformly heated channel for which the cells are carried

downstream with a constant velocity for any Reynolds number (or Péclet number),

the case with localized heating is more complex. For low enough Péclet number

(or Reynolds number), the cells remain attached to the heating éléments and a

steady state is achieved. Beyond a given threshold value of the Péclect number

(or Reynolds number), the cells are carried downstream with a time dépendent

periodic velocity.

a Due to the irregular motion of the convective pattern for the localized heat-

ing, all other physical variables are characterized by a periodic time dependence.

In particular, the overall Nusselt number relative to the upper boundary and the

température averaged over the fluid layer (which is a measure of the heat energy

contained in the fluid) are not in phase and show a strong periodic time depen-

dence. Physically this indicates that the heat produced at a steady rate by the

heating éléments accumulâtes within the fluid layer before being released through

the upper boundary.

a The effect of a moving thermal wave imposed as a boundary condition on

Bénard cells in a horizontal layer of infinite extent shows that there exists a

threshold for the velocity of the thermal wave, below which the Bénard cells
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are carried along with the disturbance. The convective cells are attached to the

imposed thermal wave so that a steady state may be observed in a référence frame

moving with the thermal wave. The threshold dépends upon the amplitude 6 and

upon the Rayleigh number Ra. Above this threshold, no steady state can be

obtained and the cells move with a time-averaged velocity lower than the thermal

wave. In fact, the flow exhibits an unsteady periodic behavior in which all flow

quantifies are characterized by a cyclic time dependence. In particular, heat is

released by bursts from the fluid layer through the upper boundary.

D In the case of fully developed opposing mixed convection taking place within

an inclined fluid layer with regularly spaced heating éléments on the lower bound-

ary while the top boundary is insulated, local and overall recirculating flow are

observed to occur in the channel either near the top wall or bottom wall. Those

features are obtained both numerically and analytically. The flow reversai pa-

rameter is introduced to calculate the intensity of recirculating flow qualitatively.

It is found that the recirculating flow is considerably afFected by a number of

parameters of Rayleigh number, Reynolds number and inclination angle, which

is then strongly influence the flow and température profiles as well as heat flux

distribution.

This kind of idealized channel studied in this work does not exists as much

in the complex modules of electronic equipment. However, the présent studies

provide a broad view of natural and mixed convection in channels with boundary

perturbed thermally which-may in turn be helpful to understand the cooling

mechanism in electronic devices and to manipulating the electronic package design.
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Appendix A

MATRIX PARTITION PROCEDURE

Suppose we have a set of algebric équation présentée! by a matrix as

where

A B

C D
mxm

E,

E2
mxl

Fl

F2
-j mxl

[A]=

ai,1 ai,2

02,1 "2,2

ûl,m-l

Om-1,1 Clm-2,1 ' " " Om-l,m-l

[-0] = [ai,m a2,m • • • <îm-l,m]

[C] = [ûm,l am,2 • • • Clm,m-l]

[D] = [am,m]

[E,]=[X,X, ... X^-if

m = [x^

[Fz] = [&l &2 ••• ^-l]T

?] = [bm]

m-lxm-1

(A.l)
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Setting

m = [E!] + [E,-]

[E,] = [E}} + [E,]

we obtain two équations described by

[A][^+] + [Apf] + [5][£,+] + [BK] == [F,] (A.2)

[C}[EÎ\ + [CK] + [D}[Ef] + [DK] = [F,] (A.3)

By setting [Ey] = 0 and [A][Et] = [Fi], from Eq. (A.2), we then have [A}[E^\ =

-[B][E^]. Let [EÎ] = -[ET'][E}]-\ we obtain the relationships [A][EÎ] = [B]

and [E{\ = [A]-1[B]. The Eq. (A.3) becomes

[CW] - [C][EîW] + [D][EÏ] = [F,] (A.4)

l
Setting [D\ - [C][EÎ] = G, we have [Ef] == ^{[F^ - [C][Et]) and [^-] =

—[£'Ï'][-E'^], consequently

(A.5)

where

E,

E,

Et

E}
+

£f

0

[Et] = [A]-l[Fi]

[Eî\ = ^2} - [C][Et])

^1-] = -[A]-1W,+]



Appendix B

ANALYTICAL PROCEDURE 0F MIXED

CONVECTION IN AN ENTIRELY HEATED

CHANNEL

The mixed convection in an inclined channel entirely heated from the bottom wall

and insulated on the top wall can be characterized by dimensionless governing

équations expressing the conservation of mass, energy and momentum:

90 , 9U0 ^QVO _ l ^
9^r+Jx+:W=p7R^'e (B-1)

9fl , oufî , wn l ^^ , Ra ,90 , 96 _,_
^+^+^=^n+^[^cos^^sin^ (B.2)

îl = -V2^ (B.3)

9^ _- 9}S
u=^-. v=-^ (BA~W v ~~ ~'9X ^

Assuming that the flow is characterized by parallel streamlines and by a constant

température gradient in the X direction, we take

U = [/(Y), V = 0 (B.5)

and

e = ex + $(Y) + Qr (B.6)
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where C is a constant température gradient in X direction which is determined

on the basis of energy balance, and Or is a référence température that can be set

to zéro without loss of generality. Similar approaches have been used by Bejan

and Tien [124], Vasseur, Robillard and Sen [125] and Lavine [12l], [122]. By thèse

assumption, the dimensionless governing équations (B.l) - (B.4) become

cu = -lèir^" (B-7)
'rHe

U"'=Jîa^{Ccosy+^'smy) (B.8)

UdY = l (B.9)
'0

U(0) = U(l) = 0, $/(0)=-1, $/(1)=0 (B.10)

Integrating Eq. (B.7) over the channel cross-section, and making use of boundary

condition Eqs. (B.9) and (B.10), it may be readily deduced that

C'=^L (B-n)

<è" = U (B.12)

DifFerentiating Eq. (B.8) with respect to Y and making use of Eq. (B.12) yields

d4U , Ra _
57î=(7^smï')t/ (B-13)

There exists two possible solutions for the above équation (B. 13) corresponding

to a spécifie range of the inclination angle.
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l 0 < if < 7T (downward forced flow)

Setting M = Pv4 and Pi = -^-^- smy, the solution of Eq. (B.13) leads to

U = Ci sinh(My) + €2 sm(MY) + €3 cosh(MY) + C^ cos(Mr) (B.14)

where (7i, Cî, Cs and €4 are constants to be determined by boundary conditions.

Substituting Eq. (B.14) into Eq. (B.12), we have

$ = -^- sinh(Mr) - -^ cosh(Mr) + ^ cosh(Mr)
M-i -~~^—- / MÎ -----v—- / • ^2

-<^œs(MY)+C,Y (B.15)

Defining parameter ?2 = D_2 n-2 cos fi ^<1' (^-^) becomes

U"'=P2+P^ (B.16)

Substituting Eqs. (B.14) and (B.15) into Eq. (B.16), we have €5 = -~-^. Using
'l

boundary conditions U(0) = 0 and <I>/(0) = —l, we have Ça == —C^ and Ci =

PÎ
Ci + (l — ^-)M, consequently the velocity and température field become

PÏ

U = C'i[sinh(My) + sin(My)] + C'3[cosh(My) - cos(Mr)]

+M(l-^2)sm(Mr) (B.17)
'l

$ = ^{C'i[smh(Mr)-sm(My)]+C'3[cosh(My)+œs(My)]

-M(l-^)sin(My)}-^r (B.18)
'l f\

The constants Ci and Cs can be déterminée! by using boundary conditions [/(!)=
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0 and $'(1) = 0

c,=

-M(l - ^) sin(M) cosh(Af) - cos(Af)

§M + M(l - ^) cos(M) sinh(M) - sin(Af)

sinh(M) + sin(M) cosh(M) - cos(M)

cosh(M) - cos(M) sinh(M) - sin(M)

(B.19)

Cs=

sinh(M) + sin(M) -M(l - g) sin(M)

cosh(M) - cos(M) ^M + M(l - ^) cos(M)

sinh(M) + sin(M) cosh(M) - cas (M)

cosh(M) - cos(M) sinh(M) - sin(Af)

(B.20)

2° —7T < Ift < 0 (upward forced flow)

In a similar procédure as the above specified inclination angle range, the

velocity and température distribution in this case can readily be obtained as

U = AT. [cos(NY) smh(NY) + sm(NY) cosh{NY)} + A^ sm(NY) sinh(NY)

+27V(1 - -^) sin(^y) cosh(^y)
'l

(B.21)
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$ = ^A2[œsh(Ary)sin(JVy)-smh(^y)cos(^r)]-

^ A4 cosh(NY) cos(NY) -îNr

^(1 - ^) sinh(^F) cos(A^y) - ^Y (B.22)

with N = (-Pi/4)1/4

The constants A-i and A^ are specified according to boundary conditions, U{1) = 0

and $/(1) = 0

Al = .i^l"^"1 - iî) 8inl N + 'i -mw '^w (B.23)

A4 = _2 ./JL^2 „{-(!-^)[sm(^)cos(^)+sinh(7V)cosh(7V)]-
sinz 7V — sinh" N ^ ' P\

^2[sin(AO cosh(N) + cos(N) smh(N)}} (B.24)
'l

In the limit case of a horizontal channel, y = 0, the dimensionless governing

équations become

cu=^" (B-25>

u'"^c (B-26)

By making use of Eq. (B. 11), the (B.27) then becomes

u'"=p^ (B-27)

which leads to th.e following solution by exploying boundary conditions U{0) =

U(l) = 0, / UdY = l
ro

U = ^p^ (2Y3 - 3F2 + Y) - 6(V2 - Y) - (B.28)
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Also from Eq. (B.25) and related boundary contions $'(0) = —l and $/(1) = 0,

the température distribution can be easily obtained as

r5 y4 y3 ^4

$ = _^__f;'_ _^_+^_)_.I_+y3_y24Re2Pr2 ^T - y ^ y^ - Y ^ J -^ ^-
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Fig. 4.2 Streamline pattern of driven-cavity flow
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b) Ra=SOOO Pe=10 Va = 10.728 (Steady State)

Fig. 5.3 Velocity and température fields (A = -B)
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l) Pe = 0

b) Pe = 1.5

Fig. 5.6 Steady state flow and température fields (Ra = 10000)
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Fig. 5.7 Unsteady (periodic) fiow and température fields at différent

times during one cycle (Ra = 10000, Pe =5, T = 0.4026)
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a) Re = 0

b) Re =2

Fig. 5.13 Steady state flow and température fields (Ra = 20000)
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Fig. 5.14 Unsteady (periodic) flow and température fields at diflFerent

times during one cycle (Ra = 10000, Re =4, ï = 2.1770)
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Fig. 5.15 Velocity of convective cells function of time
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a) V^, = 0

b) K, == l

Fig. 6.5 Steady state flow and température fields

(Ra = 8000, S = 0.3)
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Fig. 6.6 Unsteady periodic flow and température fields at différent times

during one cycle (Ra = 8000, V^ =2, 6= 0.3 and ï = 1.2834)
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Fig. 6.9 Time dependence of Vc, ^max, ^ min, Nu^

and Nui (Ra = 8000, V^ = 5, 6= 0.3)
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Fig. 6.10 Time average value AP, Nu and ^ext function of

thermal wave velocity V^ (Ra = 8000, 6 = 0.3)
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Fig. 7.2 Numerical domain
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Fig. 7.3 Velocity profiles of entirely heated wall
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Fig. 7.4 Comparison between the one-wavelength configuration and

the whole channel configuration [Ra = 500, (/? = 75°)
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Fig. 7.5 Velocity and température profiles at given locations D & -F
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Fig. 7.6 Flow and température fields as function of Ra
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Fig. 7.7 Flow and température fields as function of -
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Fig. 7.10 Local heat flux profiles






