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SOMMAIRE

Le but de cette thèse est de développer des techniques numériques afin de simuler

des écoulements transsoniques et tridimensionnels, d'une façon précise et efficace,

pour les schémas "Upwind". Deux techniques ont été développées en parallèle: l)

un algorithme URS (Upwind Relaxation Sweeping) très efficace a été suggéré pour

calculer, en régime transitoire tridimensionnel, les équations d'Euler et de Navier

Stockes. 2) un nouveau schéma FVS (Flux vector Splitting) à faible diffusion a été

suggéré pour capturer les ondes de choc et les discontinuités de contact.

Les équations non dimensionnelles d'Euler et de Navier Stockes en trois dimensions,

sous la forme conservatrice et en coordonnés cartésiennes, sont présentés ci-dessous.

Où
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Quand a prend la valeur de l, il s'agit de l'équation d'Euler pour l'écoulement

potentiel et quand a prend la valeur de 0, il s'agit de l'équation de Navier-Stockes.

Pour discrétiser les équations utilisantes la méthode des volumes finies, les équations

sont solutionnées sous forme d'intégrale.

L'algorithme URS doit exécuter une itération sur la relaxation sur tous les plans

verticaux parallèles à l'écoulement, le sens de progression d'un plan à un autre

changeant à chaque étape. L'analyse de la stabilité linéaire démontre que l algorithme

URS sans factorisation est inconditionnellement stable. L'algorithme est indépendant

du chobî global de la direction de balayage. De plus, en choisissant la direction ayant

une relative faible variation de gradient comme direction de balayage, l'algorithme

peut avoir un degré de stabilité plus grand. Vu que les erreurs introduites ne

peuvent être approximées, l'algorithme URS peut atteindre un nombre CFL très

grand, jusqu'à l'ordre de 106 pour un nombre CFL maximum, et par conséquent le
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taux de convergence y est le plus rapide. Les besoins en mémoire sont minimisés car

les matrices ne sont stockées que dans le plan de calcul. De plus le temps CPU est

sauvé parce qu un balayage est capable de solutionner toutes les inconnues dans

l'ensemble du champs de flux.

La différence finie "Upwind" est utilisée pour les termes convectifs et de pression et

la différence finie "centrale" est utilisée pour les termes de flux de chaleur et de

cisaillement. La différence finie "Upwind" est effectuée en utilisant le FVS (Flux

Vector Splitting) de Van Leer. La différence finie de flux du type MUSCL est

utilisée pour évaluer le flux passant à travers l'interface d'une cellule. Il faut tout

d'abord déterminer l'état conservative des variables et par la suite, évaluer le flux

d'interface. La différence finie exacte peut être augmentée jusqu'au troisième ordre.

Pour garder la dominance diagonale et sauver les calculs, la différence finie du

premier ordre est utilisée pour les termes implicites et par conséquence la matrice

M est penta-diagonale. L'équation de matrice pour les cellules (i,j,k) peut par

conséquent être écrite comme suit:

50 t/;:u + Aôt/^ . Cô^ . £ôt/^ . ûôe^

,n, n+1 , DUC"
^inviscid + Ktlsvist

Où les coefficients A, B, C, D et E sont des blocs de matrice 5x5.
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La ligne d itération de Gauss-Seidel est employée pour inverser les matrices au bloc

composé de cellules avec le même indice k. Deux balayages sont effectués au bloc

k, un en avant et l'autre en arrière.

Les équations d'Euler, pour les fluides compressibles et en trois dimensions, sont

solutionnées avec l'algorithme URS pour étudier l'écoulement interne d'une tuyère

non-axisymétrique connectée à un conduit à transition de section; de section circulaire

à une section rectangulaire. Les cas avec et sans tourbillon (Swirl) à l'entrée ont été

calculés. Les résultats obtenus concordent bien avec les résultats expérimentaux. Il

a été trouvé que, pour un écoulement avec un tourbillon à l'entrée, les lignes de

courant transversales se déplacent vers la droite sur la paroi supérieure et vers la

gauche sur la paroi inférieure. Les expériences de calcul démontrent que

l'algorithme URS dépend des dimensions de la grille. Pour le cas de la tuyère non-

axisymétrique avec les réflexions et intersection des ondes de choc, les résultats de

calcul concordent également très bien avec les résultats expérimentaux. Un tunnel

en trois dimensions avec une structure complexe d'onde de choc a été également

calculé. La structure d'onde de choc varie avec les différentes pressions arrières. La

structure de Fonde de choc calculée nèst pas la même que celles obtenues par les

résultats expérimentaux parce qu'un modèle d'écoulement potentiel est utilisé et

qu'une pression exacte n'est pas disponible. Les résultats obtenus démontrent que

l'algorithme URS est très efficace et robuste.

Cinq tuyères non-axisymétriques convergentes-divergentes aux condition de design

sont calculées en solutionnant les équations tridimensionnelles de Navier-Stockes à
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l'aide de Falgorithme URS.

De rapides taux de convergence ont été obtenus. Les calculs ont pour l'objet

d étudier l'effet de la configuration du col, en augmentant le rayon de son arc

circulaire, sur la performance interne de tuyère. La configuration du col a résulté

en un effet positif sur le coefficient de perte mais ne démontre pas d'amélioration

significative sur le taux de poussée interne. L'effet moyen de la configuration du col

sur la pression statique est négligeable. Tous les résultats numériques comme la

distribution de pression statique, le coefficient de perte et le taux de poussée interne

ont été comparés aux résultats expérimentaux et ils se concordent bien. Les codes

d'ordinateur développés dans cet étude pourront être utilisés plus tard comme utile

pour désigner les tuyères.

Le nouveau schéma FVS (Flux Vector Splitting) utilise la composante de la vitesse

normale à l'interface des volumes de contrôle comme vitesse caractéristique et

permet de calculer chaque flux de masse individuel disparaissant au point de

stagnation. La dissipation numérique pour les équations de la masse et de la

quantité de mouvement disparaît avec le flux de masse. Un des termes diffusifs de

Féquation d'énergie ne disparaît pas au point de stagnation. Cependant la diffusion

comprend également le degré de l'erreur de troncature. Une diffusion numérique

plus faible pour les écoulements visqueux peut être assurée davantage en utilisant

l'ordre de la différence finie la plus grande. En conséquence, pour les écoulements

visqueux, le présent schéma peut être plus précise que celui de FVS sans dissipation

de flux de masse au point de stagnation. Le schéma avec le nombre de Mach

polynomiale de degré un, le plus naturel et le plus petit, est très simple et facile à
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mettre en oeuvre.

La forme générale du nouveau schéma FVS en trois dimensions est présentée comme

suite:

Posons
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Pour l'écoulement subsonique,

pn= i<pi.+ pi^ - ^Dp - ^

Pour l écoulement supersonique, c'est la même chose que le schéma FVS.

Le schéma a été testé pour résoudre les équations d'Euler en une, deux et trois

dimensions. Les résultats obtenus sont monotones et les profils de Fonde de choc

sont bien définis. Pour les problèmes de tubes à choc unidirectionnel avec une onde

de choc et une discontinuité de contact, le présent schéma et celui de Roe, en

utilisant la différence finie de premier ordre, donnent des résultats plus satisfaisants

que ceux obtenus à partir des schémas de Van Leer et l'AUSM de Liou Steffen. Pour

les écoulements transsoniques à plus d'une dimension, on obtient des profils

monotones et bien définies des ondes de choc ayant pour la plupart une zone de

transition. Un problème est apparu au point sonique quand la différence finie du

premier ordre est utilisée sur les diffuseurs. Cependant le problème peut être corriger

en utilisant une différence finie d'ordre plus grand. Le schéma converge bien pour

tous les cas testés. Cette méthode est légèrement plus vite que le schéma d AUSM

mais plus lent que celui de Van Leer. Généralement, pour les écoulements

transsoniques testés, les résultats sont semblables à ceux obtenus des schémas

d'AUSM et de Van Leer. Toutefois, en utilisant la différence finie du troisième

ordre, le présent schéma produit des résultats avec moins d'oscillation près des chocs.

Pour une tuyère transsonique, les résultats calculés à partir du présent schéma

concordent bien avec les résultats expérimentaux.



ABSTRACT

The purpose of this thesis is to develop numerical techniques to obtain high

efficiency and accuracy for the simulation of three-dimensional transonic flows by

using upwind schemes. Two parallel techniques have been developed: l) An efficient

Upwind Relaxation-Sweeping (URS) algorithm has been suggested to calculate the

three-dimensional time-dependent full Euler and Navier-Stokes équations. 2) A new

Flux Vector Splitting scheme with low diffusion to capture crisp shock waves and

contact discontinuities bas been suggested.

The Upwind Relaxation-Sweeping algorithm is to implement the relaxation

iteration on the vertical streamwise plane and then to sweep alternately in span wise

direction. The algorithm can reach very high CFL number due ta the unfactored

relaxation scheme without the approximation error introduced. The memory

requirement is greatly reduced because the matrices are only stored in one iterating

plane. The linear stability analysis indicates that the URS algorithm is unconditionally

stable. The algorithm is independent of the global sweeping direction sélection.

However, choosing the direction with relatively low variable gradient as the global

sweeping direction results in a higher degree of stability. The algorithm has been

applied to analyze the internai flow fields of the transonic non-axisymmetric nozzles,

including the throat contouring effect, transition ducts. The computational results

agrée favourably with the experiments.

The new flux vector splitting scheme uses the velocity component normal to

the volume interface as the characteristic speed and yields the vanishing individual
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mass flux at the stagnation. The numerical dissipation for mass and momentum

équations also vanishes with the Mach number approaching zéro. The scheme is very

simple and easy to implement. The scheme has been applied to solve 1-D and

multidimensional Euler équations. The solutions are monotone and the normal

shock wave profiles are crisp. For a 1D shock tube problem with the shock and the

contact discontinuities, the présent scheme and Roe scheme give veiy similar results,

which are the best compared with those from Van Leer scheme and Liou-Steffen's

AUSM scheme. For multidimensional transonic flows, the sharp monotone normal

shock wave profiles with mostly one transition zone are obtained. The results are

compared with those from Van Leer scheme, AUSM scheme and also with the

experiment.



ACKNOWLEDGEMENTS

First of all, l would like to express my greatest gratitude to Professor E.

Bilgen, the supervisor for my Ph.D. study, for his support to carry out the research

work in this thesis.

l would like also to thank Mr. P. Leroux and Mr. V.S. Pachanh, both

undergraduate major, for their calculation of geometrical parameters and some

computation of the 3D inviscid flow fields by using the URS algorithm. l shall be

grateful to Mr. Fan-Ming Meng too for his carrying out some of the computation for

the new Flux Vector Splitting scheme.

l would like to thank very much my wife, Wen-Qing Liu, for her understanding

and support. Particularly, at the last stage of my Ph.D. study, we have our lovely first

baby. Wen-Qing took care of the baby and most of the house work so that l could

have time to complète this thesis.

l would also like to extend my spécial thanks to the people and friends who

gave me help and convenience for my Ph.D. study. Among them, Dr. M.-S. Liou in

NASA Lewis Research Center is the one to whom l shall be particularly grateful for

providing his research papers from which l benefited a lot. l also greatly appreciate

the discussion with him and his encouragement to my work.

FCAR of Québec gorvement is acknowledged for giving me the scholarship

to do a part of this work.

Finally, l would like to sincerely thank the professors in my thesis defence jury

for their examination of my Ph.D. thesis.



CONTENTS

SOMMAIRE v

ABSTRACT xiï

ACKNOWLEDGEMENTS xiv

CONTENTS xv

LIST 0F SYMBOLS xvii

FIGURE CAPTIONS xx

LIST 0F TABLES xxv

LIST 0F APPENDICES xxvi

CHAPTER l INTRODUCTION l

1.1 A Review of Time Marching Techniques ........................ l

1.2 A Review of Upwind Schemes ............................... 10

CHAPTERII GOVERNING EQUATIONS 18

2.1 The 3D Euler and Navier-Stokes Equations ..................... 18

2.2 The Intégral Form of the Governing Equations .................. 20

CHAPTER HI SOME POPULARLY USED UPWIND SCHEMES 23

3.1 Roe's Flux Différence Splitting Scheme, 1981 .................... 23

3.2 Van Leer's Flux Vector Splitting Scheme, 1982 ................... 26

3.3 Liou-Steffen's AUSM Upwind Scheme, 1991 .................... 28



CHAPTER IV THE UNFACTORED UPWIND RELAXATION-

SWEEPING ALGORITHM 31

4.1 Description of URS Procédure ............................... 31

4.2 Stability Analysis ......................................... 36

4.3 Boundary Conditions and Time Stepping ....................... 42

CHAPTER V THE NEW FLUX VECTOR SPLITHNG SCHEME 44

5.1 Construction of the 1D Form of the New FVS Scheme ............. 44

5.2 Numerical Diffusion of the New FVS Scheme ................... 48

5.3 Three-dimensional Form of the New FVS Scheme ................ 51

CHAPTERVI RESULTS AND DISCUSSION 55

6.1 Results for URS Algorithm ................................. 55

6.1.1 Solutions of 3D Euler Equations ............................. 55

6.1.2 Solutions of 3D Navier-Stokes Equations ....................... 65

6.2 Results for the New FVS Scheme............................. 70

CONCLUSIONS 77

REFERENCES 80

APPENDICES 86



LIST 0F SYMBOLS

a speed of sound, a = ^RT

A Jacobian Matrix of the inviscid flux normal to a cell interface,

a single wave amplitude of the round-off error Furier séries

C convective vector of the new flux vector splitting scheme

D numerical diffusion vector of the new FVS scheme

e total energy per unit volume

E convective flux in Liou-Steffen AUSM scheme

F inviscid flux vector in x-direction

G inviscid flux vector in y-direction

g amplification factor of the round-off error amplitude

H inviscid flux vector in z-direction, total enthalpy

i^, iy, i^ unit vectors in x, y and z-direction

LHS Left Hand Side

M Mach number

M,, Mach number based on the velocity component normal to a

cell interface

n normal outward pointing unit vector

n^, Uy, n; components of vector n in x, y and z-direction

P pressure vector of the new flux vector splitting scheme

p pressure of the fluid



XVlll

PI inviscid flux normal to a cell interface

Pe static pressure at the nozzle (or duct) exit

Pt total pressure of the coming flow

Pr Prandtl number

Q volume of a cell, unit matruc, eigenvector matruc

R viscous flux vector in x-direction,

transformée! flux for Van Leer scheme

R' total interface flux of 3D N.S. équations in intégral form

Rinv total inviscid flux

Re Reynolds number

RHS Right Hand Side

S viscous flux vector in y-direction, cell surface area

T viscous flux vector in z-direction, eigenvector matrix of A,

local rotation matrbc for Van Leer scheme, fluid température

U conservative variable vector

Un velocity component normal to the cell interface

U' conservative variables to détermine the split flux

with positive eigenvalues

U+ conservative variables to détermine the split flux

with négative eigenvalues

u, v, w velocity components in x, y and z-direction

x, y, z Cartesian coordinates



Greek symboîs

XIX

a

e

H

\

T

À

A, V

a = l: Navier-Stokes équations, Q!=O: Euler équations

density ofthe fluid

dynamic viscosity

bulk viscosity, =-2ji/3

shear stress

eigenvalue matrix of Jacobian matrix A

forward and backward différence operator

Subscripts

L,R

n

m

ij,k

left side and right side of a cell interface

direction normal to a cell interface

mass flux

mesh point index in x, y and z-direction

Superscripts

Roe's average

split individual flux with positive eigenvalues

split individual flux with négative eigenvalues



FIGURE CAPTIONS

Fig. 4. (l) The sketch of the sweeping for the URS algorithm ........... 90

Fig. 4. (2) The wall boundary condition treatment for 3D

Navier-Stokes équations ............................... 90

Fig. 5. (l) Mass flux of the flux vector splitting schemes .............. 91

Fig. 6.1. (l) The sketch of a transition duct with a nozzle ............... 92

Fig. 6.1. (2) The geometry and the grid of the transition duct l with the nozzle,

grid size 101x31x31. ................................. 93

Fig. 6.1. (3) The convergency histories of the transition duct l with the nozzle 94

Fig. 6.1. (4) The Mach number distribution along the center Une of

the duct and the nozzle .............................. 94

Fig. 6.1. (5) Pressure distributions of the duct l and the nozzle ........... 95

Fig. 6.1. (6) The velocity fields of the cross sections with no entrance swirl . . 96

Fig. 6.1. (7) The velocity fields of the cross sections with entrance swirl ..... 97

Fig. 6.1. (8) The Mach Number Contours of Transition Duct l and the Nozzle 98

Fig. 6.1. (9) The spanwise center plane of the duct 2 with the nozzle ....... 98

Fig. 6.1. (10) Pressure distributions of the duct 2 and the nozzle ........... 99

Fig. 6.1. (11) The grid and the geometry of the transonic nozzle .......... 100

Fig. 6.1. (12) Pressure Contours of a Typical Section of the Nozzle ........ 100

Fig. 6.1. (13) Pressure distributions of the nozzle .................... 101

Fig. 6.1 (14) The convergency History of the Transonic Nozzle .......... 102

Fig. 6.1. (15) The grid and the geometry of the 3D channel, grid; 101x31x31 . 103



XXI

Fig. 6.1. (16) The expérimental Mach number contours of the channel at différent

spanwise locations .................................. 104

Fig. 6.1. (17) The calculated Mach number contours of the channel on the walls,

Pe/Pt=0.545 ...................................... 105

Fig. 6.1. (18) Convergency histories of the channel .................... 106

Fig. 6.1. (19) The calculated Mach number contours of the channel at différent

spanwise locations, Pe/Pt=0.755 ........................ 107

Fig. 6.1. (20) The three dimensional grid of the nozzles ................ 108

Fig. 6.1. (21) The sketch of a nozzle geometry ....................... 109

Fig. 6.1. (22) The streamwise sections of the five nozzles ............... 110

Fig. 6.1 (23) Pressure distributions of nozzle Al, • Experiment, - Calculation 111

Fig. 6.1. (24) Pressure distributions of nozzle A2, • Experiment, - Calculation 112

Fig. 6.1. (25) Pressure distributions of nozzle Bl, • Experiment, - Calculation 113

Fig. 6.1. (26) Pressure distributions of nozzle B2, • Experiment, - Calculation 114

Fig. 6.1. (27) Pressure distributions of nozzle B3, • Experiment, - Calculation 115

Fig. 6.1. (28) Calculated lower wall central-line pressure distributions ...... 116

Fig. 6.1. (29) Calculated lower wall central-line pressure distributions ...... 116

Fig. 6.1. (30) Mach number distributions along the nozzle central Unes ..... 117

Fig. 6.1. (31) The dischagre coefficients of the nozzles ................. 117



XX11

Fig. 6.1. (32) The thrust ratios of the nozzles ........................ 118

Fig. 6.1. (33) Spanwise section velocity fields of Nozzle Al ............. 119

Fig. 6.1. (34) Mach number contours at différent sections of Nozzle Al .... 120

Fig. 6.1. (35) Streamwise section velocity field of Nozzle Al ............. 121

Fig. 6.1. (36) Spanwise section velocity field near the exit of Nozzle B2 ... 121

Fig. 6.1. (37) Convergence Histories of Nozzle A2 .................... 122

Fig. 6.2. (l) 1D Shock tube results calculated by using the présent scheme,

grid size: 201, Température and Pressure ........... 123

Fig. 6.2. (2) 1D Shock tube results calculated by using the présent scheme,

grid size: 201, Density and Velocity ..................... 124

Fig. 6.2. (3) 1D Shock tube results calculated by using Roe scheme,

grid size: 201, Température and Pressure ........... 125

Fig. 6.2. (4) 1D Shock tube results calculated by using Roe scheme,

grid size: 201, Density and Velocity ..................... 126

Fig. 6.2. (5) 1D Shock tube results calculated by using Van Leer scheme,

grid size: 201, Température and Pressure ........... 127

Fig. 6.2. (6) 1D Shock tube results calculated by using Van Leer scheme,

grid size: 201, Density and Velocity ..................... 128

Fig. 6.2. (7) 1D Shock tube results calculated by using Van Leer scheme,

grid size: 201, Température and Pressure ........... 129

Fig. 6.2. (8) 1D Shock tube results calculated by using Van Leer scheme,

grid size: 201, Density and Velocity ..................... 130

Fig. 6.2. (9) 1D Shock tube results calculated by using AUSM scheme,

grid size: 201, Température and Pressure ........... 131



xxm

Fig. 6.2. (10) 1D Shock tube results calculated by using AUSM scheme,

grid size: 201, Density and Velocity ..................... 132

Fig. 6.2. (11) 2D Grid of the Inlet-Diffuser, 101x31 ................... 133

Fig. 6.2. (12) Mach number distributions along the walls of the inlet-diffuser

with grid 101 x 31 .................................. 134

Fig. 6.2. (13) The pressure contours of the inlet-diffuser calculated

by using the first order differencing with grid 101 x 31 ....... 135

Fig. 6.2. (14) Mach number distributions along the walls of the inlet-diffuser

with grid 101 x 31 .................................. 136

Fig. 6.2. (15) The pressure contours of the inlet-diffuser calculated by using the

second order differencing with grid 101 x31............... 137

Fig. 6.2. (16) 3D Grid of the Inlet-Diffuser with grid 101 x 31 x 31. To see the

geometry, the bottom of the diffuser is shown at the top ..... 138

Fig. 6.2. (17) Mach number distributions along the walls of the inlet-diffuser

with grid 101x 31 .................................. 139

Fig. 6.2. (18) The Mach number contours ofthe inlet-diffuser calculated by using the

third order differencing with 101 x 31 x 31 ................ 140

Fig. 6.2. (19) Convergence histories of the 3D inlet-diffuser by using the

third order differencing .............................. 141

Fig. 6.2. (20) Convergence history of the 2D inlet-diffuser by using the présent

scheme with grid 101 x 31 ............................ 142

Fig. 6.2. (21) 3D grid of the transonic nozzle with grid 101 x 31 x 31. ..... 143

Fig. 6.2. (22) Mach number distributions along the bottom wall center line of the

transonic nozzle with grid 101 x 31 x 31 .................. 144



XXIV

Fig. 6.2. (23) The Mach number contours of the transonic nozzle calculated by using

the third order differencing with grid 101x31x31 .......... 145

Fig. 6.2. (24) Pressure distributions of the transonic nozzle at

four locations in spanwise directions ..................... 146

Fig. 6.2. (25) Convergence histories of the transonic nozzle

with grid 101x31x31 .............................. 147



LIST 0F TABLES

Table l: Géométrie parameters for the transition ducts .............. 57

Table 2: The design geometry parameters for the five nozzles ......... 66



LIST 0F APPENDICES

APPENDIX A NONDIMENSIONAL VARIABLES ................ 86

APPENDIX B METHOD 0F CALCULATING CIRCULAR-TO-

RECTANGULAR TRANSITION SURFACES ........ 88



CHAPTERI INTRODUCTION

1.1 A Review of the Time-Marching Techniques

The time dépendent Euler and Navier-Stokes équations are the complète

governing équations for the inviscid and viscous compressible flows respectively. The

techniques typically used for the solution of the Euler and Navier-Stokes équations

are the same, even though there are some major différences in the behaviour of the

technique with and without the viscous terms. The time derivatives in the

Euler/Navier-Stokes équations are retained, thus making the équations hyperbolic m

nature. For the steady state problems, the solutions march in the temporal direction

from guessed initial fields and reach the steady solutions when they converge under

the steady boundary conditions. The advantage of solving the time dépendent

équations is that the same code/algorithm is used for the solution of all flow régimes,

low subsonic to hypersonic. The computer CPU time required to reach the specified

time level or the converged solutions stands for the efficiency of a numerical method.

There are two classes of methods of solving the time-dependent hyperbolic

équations: explicit and implicit. Explicit methods, where spatial derivatives are

evaluated using the known conditions at the old time level, are simpler and more

easily vectorizable. The implementation of the boundary conditions is casier. The



coding can be easily extended to include time-accurate solution. Their major

disadvantages lie in the conditional stability dictated by a CFL limit, in which the

numerical domain of dependence must contain the physical domain of dependence

for hyperbolic équation. For 1D Euler équations, the CFL number can be expressed

as: CFL =ÀY/[( | u \ +a)»A?] . Unless the interest lies only in the steady-state solution,

the convergence is usually slower and requires more computational time than an

implicit method. Implementation of multi-grid and vector processing improves

convergence and lowers computational time. The widely used explicit methods are

as follows:

l) The Lax-Wendroff scheme (Lax & Wendroff 1960 & 1964) is second-

order accurate in time and space. This scheme has the advantage of simplicity and

robustness and the flow variables need to be stored only at a single time level.

2) The predictor-corrector method due to MacCormack in 1969 (MacCormack

1969) is a modifiée! version of the Lax-Wendroff scheme. It is also second-order

accurate in time and space and involves a two-step procédure. Hence, the variables

have to be stored in two steps. The method is less complex than the Lax-Wendroff

technique. The CFL limit is one for both thèse schemes (CFL < l).

3) The Runge-Kutta type schemes first suggested by Jameson et al. in 1981

(Jameson & Schmidt & Turkel 1981) have found wide application in both internai



and external flows. The four-stage scheme permits a maximum CFL number of 2-/"2

and is a considérable improvement over the two methods listed above. This technique

is likely to be employed widely for both the time-accurate (unsteady) and the steady-

state solutions.

The advantage and disadvantage of the explicit versus implicit technique

dépend on the computational efficiency, i.e., the computer time required to achieve

a converged and accurate solution. Outside the viscous région, viscous diffusion is not

significant, and grid spacings (Ax, Ay) are chosen to résolve only the convection and

pressure terms, and moderate time steps can be taken. Inside the viscous layer and

near the solid surface, diffusion terms dominate and the fine résolution of the viscous

layer may only be resolved with a fine mesh, and small time steps are required in this

région. This is one of the major drawbacks of the explicit methods, which requires

small time steps to résolve the viscous layer as well as the inviscid shock layers. In

earlier computations, a constant time step was used in the entire région, but this is

not necessary. If the interest lies only in steady state solution, the scheme can be

accelerated by using the time step consistent with the local CFL number for each grid

point. Hence the time step can be chosen to vary to keep the CFL number constant

over the grid. This procédure is called "variable time step" or "local time step" and

significantly increases the convergence rate on highly stretched grids.



The time step limitation of the explicit scheme led to widespread use of

implicit techniques which can be unconditionally stable for all time steps. One of the

most widely used implicit techniques is the Approximate Factorization method (AF-

ADI) suggested by Briley and McDonald in 1976 and Beam and Warming in 1978

(Briley & McDonald 1976, Beam & Warming 1978). Linear stability analysis provide

that the schemes are unconditionally stable in two dimensions. Operational CFL

numbers in the order of 10 appear to provide the best error damping properties.

There is no CFL limit, even though there are some constraints on the time step. As

in the explicit techniques, both finite-volume and finite-difference formulations are

employed. The major computational effort is expended in inverting the block tri-

diagonal matrix System that arises. Pulliam (Pulliam 1986) made some improvements

including diagonalization of the blocks in implicit operators, pressure velocity split,

grid refinement, improved boundary conditions, variable time step, and multi-

gridding. The linear stability analysis indicated that the 3D AF scheme is unstable.

Even so, the AF scheme is still widely used for 3D calculation of the nonlinear

compressible flow governing équations with the artificial dissipation added to suppress

the oscillations. But the stability restriction is more sévère in three dimensions and

makes it only have the order of CFL number as in explicit schemes. After the

beginning of 1980's with the appearance of the flux vector splitting concept, the two-

factor scheme based on an lower-upper (LU) factorization proposed by Steger-



Warming (Steger & Warming 1981) and Jameson-Turkel (Jameson & Turkel 1981)

became popular as an alternative to the ADI method to solve the 3D flow fields.

Even though the LU factorization method is stable, the time step is still limited due

to the factorization error. Rai and Chakravarthy ( Rai and Chakravarthy 1986)

suggested a Newton sub-iteration technique to drive the factorization error to zéro

at each time step, which makes the LU factorization method have larger time step

than the noniterative scheme. This idea was successfully applied to 3D viscous flow

fields by Simpson and Whitfield ( Simpson & Whitfield 1992). However, the iterative

approach needs extra computation which is offset to some extent by the larger time

step sizes. Edwards and McRae ( Edwards & McRae 1993) developed their

nonlinear relaxation solver for 3D viscous flows with the mùrture of upwind and

central differencing. The method is shown to be efficient, but it is still related to the

LU factorization.

Generally, as an implicit scheme, Approximation Factorization method is

successfully used to carry out the simulation of différent kinds of flow fields.

However, the factorization scheme has to introduce an error which is proportional

to At or At and therefore restricts large time steps to be used.

With the appearance of upwind scheme for compressible flow in the eariy

1980's (Steger & Warming 1981, Roe 1981, Van Leer 1982), a class of effîcient



implicit unfactored algorithms were obtained. Chakravarthy m 1984 ( Chakravarthy

1984) first suggested the unfactored implicit relaxation method based on using the

upwind scheme for the time marching problems. It made a great progress to reach

an unconditionally stable condition of the implicit scheme. The time step restraint on

AF scheme is broken because the relaxation algorithm does not need the

factoratization error. The time step is therefore substantially greater than that ofAF-

ADI scheme. For the 2D cases reported using Gauss-Seidel iteration (Thomas &

Walters 1985, Zha & Liu & Ma 1989, MacCormack 1985), the CFL number reached

the order of 10 . Therefore very rapid convergency rate has been reached. The order

of iteration number to get the converged solution can be less than 100 or just 10 for

the Newton iteration method which possesses the quadratic convergence rate and is

faster than the Gauss-Seidel iteration. This was a great progress. However, the

encouraging achievements have been mainly limited to 2D problems. For three

dimensional calculations, the achievements are not so impressive. The excessive

memory requircment of large quantity of the matrices to be stored hinders the

application of the unfactored upwind implicit scheme. Even with the présent

supercomputer with large memory resources, the application of direct solver to 3D

problems in général are not possible (Van Dam & Hafez 1989). Thomas, Vatsa and

Nagasu applied upwind schemes to 3D problems by différent numerical schemes (

Thomas & Van Leer Walters 1990, Vatas & Thomas & Wedan 1987, Thomas &



Walters 1990, Nagasu 1990). But the algorithms are still mainly limited to the

approximation factorization method. The advantage of the AF scheme is that it can

be completely vectorizable. But it loses the high convergence rate. Hânel and

Schwane extended the Une Gauss-Seidel iteration to 3D hypersonic calculation (Hânel

& Schwane 1987, 1989). The algorithm was mentioned to be efficient with no

quantitative proof. But the storage requirement was excessively large. Candler and

MacCormack extended MacCormack's 1984 implicit unfactored algorithm to 3D and

solved 3D hypersonic flow fields using the Gauss-Seidel line relaxation with

alternating sweeps (Candler & MacCormack 1987). MacCormack modified the

algorithm by implementing the block tri-diagonal inversions in two directions with

Gauss-Seidel relaxation in the third direction to improve the robustness

(MacCormack 1990). The rapid convergency rate has been obtained by both the

algorithms. One disadvantage for thèse algorithms is the large computational work

per time step, not because of the vectorization difficulty, which is shown to be

achievable by McMaster et al. ( McMaster & Shang & Gaitonde 1989), but mainly

because the Gauss-Seidel iteration for the fully implicit discretization usually needs

more than one sweep, often two, in the sweeping direction. Otherwise the iteration

or " relaxation" may not be built up and the linearization error may not be driven

down enough before the time marches to next time step. Only in the cases of

supersonic flows, one forward sweep in streamwise direction may be enough. It is
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noted that two sweeps for sub- or tran-sonic flows in the global field with one or two

block tridiagonal matrix inversions at the local planes are usually CPU time intensive.

A différent unfactored 3D algorithm is developed by Paoletti et al. using the

conjugate gradient squared (CGS) iterative algorithm with ADI as a preconditioner

(Paoletti & Vitaletti & Stow 1992). The algorithm is therefore called CGS-ADI. This

algorithm uses the spatial central differencing and the artificial dissipation has to be

added. An efficient ADI pre-conditioner is necessary for CGS-ADI. Otherwise a large

number of CGS iterations may be required for each time step and it would offset the

advantages of large time step .

More efforts are needed to develop robust unfactored 3D algorithms for they

have theoretically potentials to obtain rapid convergency rate and save CPU time.

In this thesis, a three-dimensional unfactored Upwind Relaxation-Sweeping

(URS) algorithm has been developed to aim at keeping the high convergency rate

and reducing the memory requirement. URS method is to apply the relaxation

algorithm on the vertical streamwise plane and then sweep plane by plane in

spanwise direction. Making use of the advantages of the upwind scheme, the

algorithm is 11/12 implicit. The 1/12 explicit flux is in the spanwise direction. The

advantages of URS scheme are: l) No approximate factorization error is introduced

and therefore the relaxation algorithm can have very large time step. 2) The residual
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R, the Jacobians and the ÔUn+l which take up most of the memory resources are

stored only in one iterating-plane like the two dimensions; hence the total memory

requirement is greatly reduced. In addition, it only requires one sweep in the global

field and therefore the CPU time per time step is saved. The linear stability analysis

indicates that the URS algorithm is unconditionally stable. Choosing the direction

with relatively low variable gradient as the global sweeping direction will hold higher

degree of stability. For the cases tested for 3D Euler and Navier-Stokes équations,

the algorithm was proved to be efficient and robust (Zha & Bilgen 1992, Zha &

Bilgen 1993, 1994).
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1.2 A Review of the Upwind Schemes

Upwind schemes aim at discretizing the hyperbolic governing équations m

conservative form in the direction of the information travel to capture the

discontinuities based on the characteristic theory. The équations of conservation in

intégral form are valid for all flows, including the ones with finite jumps such as shock

wave and contact discontinuities. The upwind schemes based on the non-conservative

governing differential équations, such as Moretti's À-scheme (Moretti 1987), will not

be discussed in this thesis.

In finite volume codes for the Euler and Navier-Stokes équations, a central

place is taken by the algorithm that accounts for the inviscid interaction of adjacent

fluid cells at their interface. Such an algorithm combines two distinct sets of state

quantities, representing the states on both sides of the interface, into one set of fluxes

normal to the interface. Physically speaking there is only one correct value for the

flux vector. To find it we must solve the Riemann problem governed by the one-

dimensional inviscid flow équations

u . + f(u), = 0

(x measuring distance to the interface) for the initial values

UL x<0

u =

x>0UT
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where UL and UR are the left and right interface states. The idea of solving a Riemann

problem at every mesh interval and at every step is due to Godunov (Godunov 1959).

From a numerical point of view, it seems wasteful ta exactly solve the Riemann

problem at every interface. AU the upwind schemes developed later are aimed at

solving the approximate solution, tuned to the overall accuracy of the discretization.

The differencing schemes used in the 1960-1970's were mainly based on the

central differencing. It évaluâtes the interface flux as:

f(UL, UR) = 1/2 { f(u0 + f(UR) }

This scheme is inherently unstable and needs adding the artificial dissipation to

suppress the oscillation near a shock. Artificial dissipation is some even derivatives

of the variables with the forms similar to the real dissipation. Their accuracy order

is usually equal to or higher than the magnitude order of the differencing truncation

errors. Différent researchers mayuse différent forms ofartificial dissipations. The one

suggested by Jameson, Schmidt and Turkel (1981) is widely used. Adding the

artificial dissipation could be a difficultjob according to différent differencing scheme

and even différent physical problems. Usually the shocks captured by using central

differencing schemes will be smeared to several grid zone width. However, since such

schemes do not have the numerical dissipation, they are usually good at the accuracy

for the boundary layer résolution.
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The characteristic-based upwind schemes blossomed in the late 1970s and

usually are classified into two groups, FIuxVector Splitting (FVS) schemes and Flux

Différence Splitting (FDS) schemes. AU the upwind schemes inherently possess

numerical dissipations to suppress the oscillations near a shock, and therefore, no

artificial dissipation is needed. The numerical dissipation discussed in Section 5.2 is

an example. This makes the computation of the flow fields more independent of the

human factors. However, the numerical dissipations may also distort the real

dissipation if the former is too large, which has been a hot issue for thèse years.

Steger and Warming pioneered the fluxvector splitting scheme m 1979 (Steger

& Warming 1981). They split the flux vectors into subvectors whose associated

eigenvalues are of the same sign, which allows use of one-side (upwind) operators

according to the information travel direction. But the numerical dissipation of this

scheme is too large and does not vanish in any discontinuities, such as shock waves

and contact surfaces. The discontinuities will be smeared ont and the viscous solutions

will be distorted. The scheme is not continuously differentiable at the eigenvalue sign

changes, such as at the sonic and the stagnation point, which may yield a glitch at that

points. In 1982, Van Leer suggested another flux vector splitting scheme (Van Leer

1982). Van Leer's scheme has an eigenvalue equal to zéro in the subsonic région and

leads to a crisp shock profile with at most two transition zones which is sharper than

that of the Steger-Warming scheme. Van Leer's scheme is also better than Steger-
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Warming scheme at the smooth eigenvalue sign changes and the faster convergence

rate due to larger allowable CFL number used (Anderson & Thomas & Roe &

Newsome 1987). The MUSCL-type differencing suggested by Van Leer can also cure

the non-smoothness of Steger-Warming's scheme at the eigenvalue sign changes

(Anderson & Thomas & Roe & Newsome 1987). Generally, Van Leer's scheme can

obtain very good représentations of the inviscid flow fields. However, Van Leer

scheme has the same problem for large numerical dissipations as that of Steger-

Warming's scheme. The accuracy of the boundary layer résolution will be influenced

by the too large numerical dissipation. The flux différence splitting scheme suggested

by Roe (Roe 1981) overcomes the drawbacks of the flux vector splitting schemes.

Roe created a spécial parameter average technique for the matrix of the numerical

dissipation vectors. If an eigenvalue of the Jacobian matrùt vanishes, the

corresponding eigenvalue of the dissipation matrix vanishes too. This leads to a crisp

représentation - with at most one interior state- of steady shocks and contact

discontinuities, if aligned with an interface. Van Leer et al. (Van Leer & Thomas &

Roe & Newsome 1987) made a significant comparison in 1987 for the available

differencing schemes to study the accuracy of each scheme for the viscous flows. They

tested a hypersonic flow over a cône with a cône angle of 10° and compared the

results with the analytical solution. They concluded that Roe's scheme is the most

accurate scheme for both shock and boundary layer résolution; Van Leer scheme is
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good at shocks but broaden the boundary layer due to the large dissipation; Steger-

Wrming's scheme is even worse at both shock and contact discontinuities;

MacCormack's scheme based on the central differencing is accurate for the viscous

flows, but the shock is wider than those obtained by Roe and Van Leer scheme. For

higher order differencing, the accuracy of Van Leer scheme is recovered.

Even though Roe's scheme is accurate, it has some drawbacks. Roe's scheme

does not satisfy the entropy low and may admit the nonphysical solutions, such as

expansion shock waves (Harten & Lax & Van Leer 1983). With the applications of

Roe's scheme, the shortcoming of its robustness has been revelled. The typical

problem is the supersonic blunt body flow for which Roe's scheme gives non-physical

solutions (Liou & Steffen 1991, Bergamini & Cinnella 1993). The flow field structure

of the problem calculated by Roe's scheme changes with the density of the grid and

the scheme fails to converge when the Mach number is high. The other shortcoming

of Roe's scheme is its setup cost which requires 0(n ) opérations per grid point in

each iteration due to the dissipation matrrx opération in its formulation, where n is

the number of équations. Thus a heavy priée is paid for the accuracy obtained.

Efforts for reducing the computational cost has been pursued and the modification

is called the "Harten-Lax/Roe Flux" (Harten & Lax 1981, Roe 1984). Unfortunately,

the scheme suffers from a stability problem in which the residual of the L^ norm is

difficult ta be driven down (Coirier & Van Leer 1991).
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Compared with the Roe's flux différence splitting scheme, the flux vector

splitting schemes are remarkably simple without the matrix opération. From the

numerical efficiency point of view, the flux vector splitting schemes are superior to

FDS, particularly for Van Leer's scheme which can obtain very rapid convergency

rate (Thomas & Walters 1985, 1987, Zha & Liu & Ma 1989, Hânel & Schwane 1989,

Zha & Liu 1990, Zha & Biïgen 1992). Efforts to develop and modify FVS are

necessary because of three reasons: l. The formulations are relatively simple. 2. The

split fluxes are easy to linearize, for the benefit of implicit marching schemes. 3. The

extension to real gases is relatively straightforward.

The reason that the flux vector splitting schemes do not give the accurate

results for viscous flows is that the individual mass flux of the sub-vectors does not

vanish with the velocity approaching zéro (Coirier & Van Leer 1991). Therefore, to

make the mass flux vanish becomes a direction to improve the accuracy of the flux

vector splitting schemes. The High Order Polynomial Expansions (HOPE) scheme

of Liou and Steffen (Liou & Steffen 1991) and the Low Diffusion FVS of Van Leer

(Coirier & Van Leer 1991) aimed at building up the pure FVS schemes with

vanishing mass diffusion. They did achieve the required split mass flux. But the

instability and non-monotonicity of the schemes are not acceptable for practical

calculations. Efforts have been also attempted to improve the original Van Leer

scheme by using some techniques borrowed from flux-difference splitting. First
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suggested by Hànel and then extended by Van Leer (Hànel & Schwane 1989, Coirier

& Van Leer 1991), the "Van Leer/Hànel 90" scheme using the net mass flux and one

side velocity and total enthalpy for the transverse momentum and energy équations

obtained an accurate température profile for the supersonic conical viscous flow.

However, a pressure glitch is accompanied with that scheme (Van Leer 1990). A

successful and promising scheme was suggested by Liou and Steffen for their

Advection Upstream Splitting Method (AUSM) (Liou & Steffen 1991). They

introduced an advective Mach number by combining the split-Mach number

contributions from original Van Leer mass splitting. The AUSM scheme is

remarkably simple and yields vanishing numerical diffusivity at the stagnation. In a

variety of 2D Euler and Navier-Stokes calculations presented m (Liou & Steffen

1991), the scheme was as accurate and convergency as good as Roe's splitting

scheme, which was considérée! as the most accurate by then. AUSM scheme does not

need the matrix opération required by Roe scheme and only possesses 0(n)

opérations per grid point instead of 0(n ) for Roe's scheme. Furthermore, AUSM

scheme performed very well for a 2D supersonic flow over a circular blunt body for

which Roe scheme gave anomalous solutions. However, the AUSM scheme also has

its imperfectness. The scheme tends to oscillate for some solutions ofthe inviscid and

viscous flows (Bergamini & Cinnella 1993). It may be because AUSM scheme

recovers to central differencing at the stagnation and the instability caused by the
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central differencing may spread near the stagnation. Therefore, the efforts to develop

the new upwind schemes merit attention.

In this thesis, a new flux vector splitting scheme is suggested to aim at

obtaining the vanishing individual split mass flux with the Mach number reaching zéro

and keeping the advantages of the FVS, such as being able to capture the crisp

shock profile, the simplicity and the efficiency (Zha & Bilgen 1993). The interface

flux is divided into two parts according to the eigenvalues, the convective vector and

pressure vector. The éléments of the vectors are even simpler than AUSM scheme.

The eigenvalues of the convective terms, the velocity component normal to the

volume interface, are used as the characteristic speeds to attain the goal. The form

of the formulations is natural and therefore the simplest. It works soundly to capture

the crisp monotone shock wave. Moreover, the présent scheme leads to the vanishing

numerical dissipation at the stagnation for the mass and momentum équations. Even

though one of the diffusive terms of the energy équation does not vanish, the

numerical diffusion is within the magnitude order of truncation error and the small

diffusion may be further ensured by using higher order differencing.



CHAPTERH GOVERNING EQUATIONS

2.1 The 3D Euler and Navier-Stokes Equations

The 3D time-dependent, conservation of mass, Navier-Stokes and energy

équations are the governing équations solved numerically in this thesis. The

nondimensional équations for compressible idéal gas in the absence of extemal

forces, in conseryation law form and in Cartesian coordinates are given below

where
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When a is 0, Eq. (l) is the Euler équations for the inviscid flow, and when a is l,

Eq. (l) is the Navier-Stokes équations. The velocities are u, v, w, and e is the total

energy per unit volume. The molecular viscosity p. is determined by the Sutheriand

law and Stokes hypothesis is used for the bulk viscosity À = -2y/3. The Reynolds and

Prandtl numbers are denoted as Re and Pr. Finally, the pressure p is determined by

the ideal-gas law

P = (Y-l )[e - p(u2 +v2 + w2)/2 ] <13)

where -y is the ratio of spécifie heats, taken as -y = 1.4.

The detailed nondimensional variables are given in Appendix A.

2.2 The Intégral Form of the Governing Equations

To discretize the équations using finite volume method, the équations should be

written in the intégral form. Let

R' = (F-^\ + (G-^5)-(y + (H~^T)ii (14)
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Using the Gauss theorem, the intégral form of Eq. (l) is

_wdÇ+fR!-ndS=0 (15)
fÇ 9t ' Js

where Q is the volume bounded by the surface S and n is the outward pointmg

unit vector normal to the surface expressed as:

n = n^ + nyiy + n^ (16)

The équations are discretized in the physical domain on the arbitrary body-fitted grid.

The flux crossmg an interface of two adjacent cells is the normal component ofvector R

given in Eq. (14). Let ?i be the inviscid normal component of R^ passing

through unit interface.

where

^ - ^+ ^ + ^ (17)

Thus

pl= Rin.'n = Fnx + Gny + Hnz



where !!„ is the normal component of the velocity expressed as:

Upwind schemes will be used to evaluate Pi at the volume interface.
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CHAPTER ffl SOME POPULÂRLY USED UPWIND SCHEMES

In this chapter, three upwind schemes widely used are described. It includes

the Roe scheme, Van Leer scheme and Liou-Steffen's AUSM scheme. All thèse

schemes are applied to evaluate the inviscid interface flux of a control volume in this

thesis. To be général, only the three-dimensional forms of the schemes are presented.

3.1 Roe's Flux Différence Scheme, 1981

Roe proposed his scheme in 1D form (Roe 1981). The inviscid flux Pi in 3D

form given in Eq. (18) may be evaluated as the following:

The interface flux can be written as the exact solution to an approximate Riemann

problem

p^l= h pw+ PW - 1-41 (^ - ^ ^1 (20)
2 A 2

where UL and UR are the state variables to the left and right of the cell interface and

A = 9^L = TAT-1 (21)
QU

\A[ = T|A|T-1 (22)
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The diagonal matrbc A is the matrix of eigenvalues of A containing the eigenvalues

[ Un - a, Un + a, Un,Un , Un ]; Siîïd T, T-1 are diagonalizing matrices, all evaluated

at Roe-averaged values such that

PW - P,(U^ = Â[U^ - U, ] (23)

is satisfied exactly. The diagonalizing matruc T is formed by the right eigenvectors of

the matrix A,

r = (TI , ^ , ïg, ^ , ïs) (24)

The expression of thèse eigenvectors given by Liou and Hsu (Liou & Hsu 1989) is:

îl=l

l

u-an

v-an

w -an

H-aU^

l2~

l

u+an

v+an

w+an

H^aU^

T3=

n.

un.

vn^pn,

wn,-P"y

^+p(vn^-wnpj

(25.1)

n.,

un^-pn^

vn,

WHy+pn^

kn^+pÇwn^-un^

M

n.

U»Z+P"y

vn.-pn,

wn.

kn^+p(uny-vn^

(25.2)

where the kinetic energy k=(u2 + v + w^)/2.
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To obtain the dissipation matrbc À , all the variables substituted into Eq. (21)

should be evaluated by using the Roe's average technique. That is:

p= \/PR PL (26)

« = ("J, + u^/p^ /p^)/( l + ^ / p^) (27)

v = (VL + VI»/PR lf>l)K 1 + \/PJÎ / Pl) (28)

w ==(WL+WWP^ /P^/( 1 + /P^i / Px) (29)

H=(HL+ H^PRlPi)l( l + V^7 Pz) (30)

à2 = (v-l)[ S - ( M2 + vz + w2 )/2] (31)
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3.2 Van Leer's Flux Vector Splitting Scheme, 1982

The splitting of Van Leer was originally developed for Cartesian coordinates

(Van Leer 1982). For supersonic flow, |M | > l,

F+ = F, F~ = 0, M, >1, (32)

F- = F, F+ = 0, M, < -l, (33)

and for subsonic flow, \M^\ < l,

m

'm

(y-l)M±2a
Jm 7

/>
/>

/,<^-l)M±2fll24(v2^2)}
'Ml 2(Y2-1) 2V

(34)
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where

/, = ±pa[i(M,± l)]2 (35)

a is the local sound speed and M,; is the local Mach number based on u.

To split Pi in a général 3D form given in Eq. (18), Pi is first transformed into R by

a local rotation matrfac T

10 000

T =

0

0

0

0

nx

_ny

r'

"A
T'

0

ny

n.

r'

"A
T'

0

nz

0

-r'

0

0

0

0

l

(36)

where

R = r-p, =

PUn

P+pU2n

p^
pu^w

(e+p)U,

(37)

'/ = /";2 _.2
+ny

(38)
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y= -unl + vnl (39)
r' r<

w .""A , '«A _„,, (40)
r' r'

The transformed flux R is of the same form as the Cartesian flux vector and thus can

be split using Van Leer's splitting.

R=R^R- (41)

Then

PI = r-1-^ = T-I< R+ + R~ ) = ?i+ + P^ (42)

Thus the splitting formulation for the interface flux has been obtained.

3.3 Liou-Steffen's AUSM Upwind Scheme, 1991

Liou-Steffen's AUSM scheme has a very simple expression. Extension of this

scheme from 1D to 3D is straightforward and no transformation is needed. For the

supersonic flow, it is the same as the Van Leer scheme (or standard upwind scheme)

given by Eq.32 and 33. For subsonic flow, AUSM scheme is as the following:

The interface flux P^ given in Eq. (18) can be written as
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P, = U.

p

pu

pv

pw

f>H

+

0

Pnx

PUy

pn.

0

=^

P<2

pua

pva

pwa

pHa

+

0

pn,

Pny

p\
0

(43)

where the H is the enthalpy expressed as H = (e + p )lp .

For subsonic flow, the flux at the interface is given as follows:

Let

pa

pua

E = | pva

pwa

\(>Ha

(44)

pu=M"i4[^+2y-^iM'.iiAi£+

0

(PL + Ps)^

(PL + PR>y

(PL + PRÏ^

0

(45)
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where

^1=^, + M^ (46)

The Van Leer's splitting is used to evaluate M^ . That is M^=±—(M^±l)2

where Ajif means A^£ =£^ - E^
2 2

There are two choices for the pressure splitting. The first one is the third

order polynomial of Mn and is expressed as:

p± = ^(M^l)2(2^) (47)

The second one is the simplest possible form of the lowest order:

pt = j(l ± M,) (48)

The choice 2 can give a monotone shock profile and the choice l may yield

oscillations near the shock.



CHAPTER IV UNFACTORED UPWIND RELAXATION-

SWEEPING (URS) ÂLGOMTHM

4.1 Description of URS Procédure

The concept of Upwind Relaxation-Sweeping is to select a direction with

relatively smaller variable gradients as the global sweeping direction and to

implement the local relaxation iteration on the block in the main flow direction (Zha

& Liu 1990, Zha & Bilgen 1992). The flow field is calculated by a séries of global

alternating outward/inward sweeps in the sweeping direction with the local

forwardA)ackward Gauss-Seidel iteration on each streamwise plane, one global sweep

per time step. The global sweeping is also the time marching procédure.

Upwind differencing is used for the convective and pressure terms and central

differencing for the shear stress and heat flux terms. The upwind differencing is

carried out by using Van Leer's flux-vector splitting (Van Leer 1982). The

formulations from Eqs. (32) to (42) are used.

MUSCL- type flux differencing (Anderson & Thomas Van Leer 1986) is used

to evaluate the flux passing through the interface of a cell. For instance, the inviscid

flux crossing interface S^+i/z is determined by

pl.,^«17^+ pw^ (49)
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It is to détermine the U" and U+ first and then evaluate the Pi+ and Pi'. The

conserved state variables on the upwind side of the interface are obtained by an

upwind-biased interpolation.

t/-,^l = t/>^+ A<i>[(l-<p)v + (1+<P)Â ïuuk (50)

u^4 = uu^ - ^td+<P)v + d-<P)Â l^i (51)

The symbols A and V denote the forward and backward différence operators:

^,, -1/,,^ -1/.,, Vt/.^ = l/.,, - t/,,^ (52)

The switch <j) is zéro for first-order differencing and unity for higher-order

differencing; <p =-1 corresponds to the fully upwind second-order scheme and

<p = 1/3 to the upwind-biased third-order scheme.

Suppose the sweeping direction is in z-direction with the index k increasing.

Discretize the governing équations (15) neariy fully implicitly for the inviscid terms

and explicitly for the viscous terms, we have:
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Tn+i-TTn
'W ~uij^ n+1 _a*l ^.n+1 _n+l

.rw^+ <<i,/p.:i,/s,4 + <^<^4

i.n+1 _n+l ^a+1 _n+l

+^<^.r^*+^^i

+ ^f^.f^fc'^-f^-^^-i -Ms— (53)

_n

It is noted that P^~ ^ is discretized explicitly. To make the solution independent

of the time step size, the implicit terms should be changed to Delta-form. To

construct the implicit operator for Gauss-Seidel iteration, the Delta-form is only

implemented for the terms with the same k index.

One implicit term left on the LHS is moved to RHS. Eq. (53) is then changed to:

litQ + E{ (^7)A + (^7)t} ]ô(/n+l = 2WCJ'rf + RHS-<MS (54)

where:

ÔUa+l = Un+l -UB, At" = tn+l -1" and n is the iteration index,

r»,n+l _

^H^iwiscid = - w "ï.. + PÏ~ l ..)'^1 + (Plr ï ..+pl~ l ..)'5,-11,4^ ' 'l>4^"ui4 ' ''l'-l^'Al«-l^""4
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+ <P^<1/^+ (^.+ p.;;-l.)-^

+ <<4+^.fs.4 + </'.^-f^4''s.41 (")

To keep the diagonal dominance and save computational work, first order

differencing is used for the implicit terms and therefore the matrix M is penta-

diagonal. The matrùc équation for the cell (i,j,k) therefore can be written as:

B6 U^ . A6U^ + C6U^ . EÔU^ . DbU^

= RHS^, . 2WS^ <56)

where the coefficients A, B, C, D and E are 5x5 block matrices.

The Une Gauss-Seidel iteration is employed to inverse the matrùc at the block

composed of the cells with the same k index. Two sweeps are implemented at the

local block k, one fonvard and the other backward. Implementation of only two

sweep iterations is an approximation. An inner iterative approach such as that

suggested by Taylor et al. (Taylor III & Ng & Walters 1992) to drive down the error

at the local block to tolerable value may allow larger time steps. Such inner iteration

approach is however not employed in this paper. After two local sweeps, the global

iteration proceeds to the next block at k+1. The global sweeping starts with the

inner solid wall with increasing k index. The variables are updated at each block soon

after the two local sweeps for Gauss-Seidel iteration are completed. When the global

iteration sweeps up to the outside solid wall, all the variables at time level n +1 are
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obtained and then the sweeping direction is reversed with decreasing k index to

continue the iteration for the next time step. It is believed that the iteration with

forward and backward sweeps at the local block, and outward and inward globally is

bénéficiai for the information travelling through the entire flow field three-

dimensionally and therefore rapidly. It is noted that RHS^^id m Eq. (55) is not

evaluated completely by using the variables at time level n and contains one term,

P^ i , which is available due to the completion of the iteration at the k-1 block.
y>*~-^

When the global iteration sweeps in the direction with the decreasing k index , the

explicit term in Eq. (53) is P^" i instead of Pi. i ; the implicit term at time
v>*-^ ' /' *+-^

_n+l j.n+1

level n +1 in Eq. (55) is P^~ i instead of P^ i . Supposing each interface
iijk^ lUk-j

sub-flux has the same weight, the URS method is thus 11/12 implicit and 1/12 explicit.

Fortunately, the 1/12 explicit discretization weakens little the unconditionally stable

stability for the fully implicit scheme. The gain from the 1/12 explicit discretization

is large: l) the Jacobians and ÔUn+l are only stored in one plane on which Gauss-

Seidel iteration is implemented and therefore the whole storage is greatly reduced;
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2) only one global sweep per time step is needed to solve all the unknowns in a time

level and therefore the CPU time per time step is saved.

It can be seen from Eqs. (53) to (55) that, globally, the URS algorithm is also

like a Gauss-Seidel iteration, but it is not. The updated variables are used soon after

they are available. The différence is that the process of the global sweeping is also

a time marching process in the sweeping direction. For the standard Gauss-Seidel

iteration, the RHS residual is only evaluated using the variables at time level n.

Usually, multiple sweeps, at least two sweeps, are needed in the global sweeping

direction.

The RHS^^t of Eq. (55) or (56) is evaluated by using a third order biased-

upwind differencing. The accuracy of the converged solution is controlled by RHS.

Therefore the algorithm possesses third order accuracy for invisdd steady state flows.

But because central differencing is used for the viscous terms, the général accuracy

of the solution for the 3D Navier-Stokes équations is second order.

The disadvantage of URS algorithm is that it is not fully conseryative for a

given time level because variables at time level n and n +1 are used at the same time

to evaluate the residual. Therefore it may be inappropriate to use URS algorithm for

unsteady problem.

4.2 Stability Analysis

Von Neumann stability analysis is carried out for the linear scalar model

convection équation:
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U, + uU^ + vt7 + wU^ = 0 (57)

This équation can be rewritten using the split characteristic values with non-negative

and non-positive signs as:

17, + (M++M- )t^ + (v++v- )U + (w++w- )Î7, = 0 (58)

where

^="_M:>o, «-=u—iui.O (59)

y- = V+JVI, o, y- = v \ \v\ , 0 (60)

w+= W+JWI.O, w-=w—M,o (61)

Suppose the global sweeping is in the direction with the increasing k index. Using first

order upwind differencing to discretize the model équation, that is: backward

differencing for the positive characteristic values and forward differencing for the

négative characteristic values, we obtain the following 11/12 implicitly discretized

équation:

,n+l rr" rrn+l TTn*1 r7"+l _ TTn+ï
U't'jk - ui'fk ^ ^ui^_ul±ll + ^uïlk—uïl±k

A( h k
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rB+1 rr»+l »r"+l TT»+I Tr"+l Tr"+l
^y* - ui]k-\ ^+1^ - ^ijk ui^lk~uljk

~l " h ' " T

r" — 77n+l
'ijk+l ~ utjk

+ W-—L:——'-'-1 = 0

by rearranging the terms, we have:

l/^l(l+a++P++Y+-a--p--Y-) + a-€i^-"+^

^-t7.;-:lU-P+^-Y+^.Ï-l-^+Y~^l = ° (62)

where:

<,-=^,0, a-=tt^^0 (63)

p- = Y^. ^ o, P- = ^ ^ 0 (64)
k ' ' k

y- =w^,o, y-=w^,0 (65)

h, k and l are the grid intervals in x, y and z directions.

Obviously, we have :

|1+ a+ + P++ Y+- a- -P- -Y-l > |a-H-oc+HP-H-P+H-Y+| W

Thus Eq. (62) is diagonally dominant and satisfies the convergence conditions for

iterative method. It is noted that the diagonal dominance is stronger than the fully
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implicit scheme because the 1/12 explicit term does not make contributions to the off

diagonal éléments. However, only when the amplification factor of the round-off

error is proven to be less than unity, the time marching procédure can be stable.

Suppose the round-off error function is E(x,y,z,t) which can be expressed by

the Fourier séries as :

M-l N-l J-ï . . M-l N-l J-l

E(x, y, z, t) = £ s EAe^'"*2ye<^ = E E EAetee^ete (67)
m=l n=l /=1 m=l n=l /=1

where A is the amplitude of the single wave which is a function of time; a=mki,

b=nk2 and c=jk3 are the wave number in x, y and z direction within 2ir length. Since

the model équation is linear, superposition can be used and we may examine the

behaviour of a single term of the séries. Consider a single term:

e(x, y, z, t) = Aewceibyeict (68)

The error function satisfies the discretized équation with the same form for U due

to the linearity of the model équation. Substitute the single tenu, Eq. (68), into

Eq.(62) and rearrange the terms. We obtain the amplification factor:

A»+l

l - i-eitf

l+a++P++Y+-a--P--Y-+a-ei9-a+e-ie+P-e"t>-P+e-<<t'-Y+e-(lp
(69)

where 0 = ah, (j) = bk, <p = e/ are the différence of wave phase angles
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of two neighbouring grid points in x, y and z directions.

From Eq. (69), we have

g2 = [l - 2Y-cos<p + (y-)2] / { [l+(a+-a-)(l-cose)+(P+-P-)(l-cos<(>)

+y+(l-cos<p)-Y- ]2+[(a++cOsme+(p++p-)sm<t>+Y+sin<p]2 } (70)

where

cos6 ^ l, cos<(> <, l, coscp ^ l

|sm0| ï 0, |sin<t)| ï 0, |sm<p| ï Q (72)

by taking the limits, with:

cos6 = l, cos<(> = l, cos(p ^ l

siû6 = 0, sm<|) = 0, sinq) = 0 (74)

the numerator of Eq. (70) reaches the maximum and the denominator reaches the

minimum. Therefore the amplification factor obtains the maximum value:

\2.

s
( l -Y- )2

Thus we have:

2 _ = a- Y- r = i (75)
nuu

»2 ^L ' 1 (76)

Therefore, we conclude that, for the linear model équation, the URS algorithm with
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\g\ . l (77)

first order differencing is unconditionally stable. Eqs. (66) and (77) still apply when

the global sweeping is in the direction with the decreasing k index due to the

symmetry of the model équation. Therefore the stability is independent of the

sélection of the global sweeping direction.

It can be seen from Eq. (69) that, if y- -» 0 , Af -* °° , the amplification

factor \g\ -» 0 . That is the maximum dumping occurs when y" -* 0 , Af -» <» .

Thèse conditions are weaker than the fully implicit unfactored scheme for which the

maximum dumping occurs when A( -» °° . The extra condition, y" ~> 0 , isdueto

the 1/12 explidt discretization. | y-1 to be smaiï means that fhe œnvection speed | w ~ |

is small when a time step size and grid spacing are fixed. That is, even though the

URS is unconditionally stable and independent of the global sweeping direction, if

we choose the direction with relatively lower variable gradients as the global sweeping

direction, the URS can hold higher degree of stability. This is the theoretical base of

the URS scheme.

It should be reminded that the above conclusions are all based on

discretization using first order differencing on both LHS and RHS. In this thesis,

higher order differencing is employed for the évaluation of RHS to obtain higher

order accuracy solutions. The advantages using first order differencing on LHS are:
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l) the diagonal dominance of the coefficient matrix is retained and therefore the

iteration convergency conditions are satisfied; 2) CPU time can be saved to solve the

implicit operator since only the block tridiagonal matrùces need be inversed. If a

higher order differencing is used for the LHS, the diagonal dominance will be lost

and therefore the under-relaxation must be used. Block penta-diagonal matrixes

must be solved for a higher order differencing and therefore more computational

work is necessary. The disadvantage of the inconsistent differencing order for LHS

and RHS is that the convergency rate will be reduced compared with the consistent

discretization.

4.3 Boundary Conditions and Time Stepping

The wall boundary treatment for 2D flow suggested by Zha et. al (Zha & Liu

& Ma 1989) is extended to the présent 3D calculation. For viscous flow, on the wall,

the solution point is put on the surface of the wall instead of the center of the cell

like the internai point (see Fig. 2). For the cell in the corner, the solution point is just

located on the point of the corner.

The no-slip conditions are set as

u==v=w=0, pi =p2 as 3p/ôn =0 (78)

TI =TS for the adiabatic wall (79)

The wall boundary conditions are treated explicitly. The high convergence rate can

still be reached due to the accurately imposed no-slip conditions.

The time step is determined by the following formulation:
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At=C.(Ay+Az)/(v+w+2a) (80)

where a is the speed of sound. The formulation is very effective for the highly

stretched grid in y and z directions.

For inviscid flows, the conditions for slip and adiabatic wall are used on the solid

surfaces. The flux on the wall is

Zw = E 0 Mv P^y P^ 0 ]r (81)

The pressure is first order extrapolated from the inner points. On the implicit side,

ÔZS.+1 = -^ô[/"+l (82)
'w -ôt/'

ôZ».. ....

where —JL is the Jacobian matrùc and incorporated into the matruc équations. At

the inlet and the exit, the number of the variables determined from the inner points

is based on the characteristic theory and the variables are first order extrapolated.

For subsonic flow at the inlet, total température T', total pressure P' and inlet flow

angle are given. One parameter is extrapolated from the internai field. At the exit,

if the flow is subsonic, static back pressure is given. The rest of the parameters are

extrapolated; if the flow is supersonic, all the parameters are extrapolated.



CHAPTER V THE NEW FLUX VECTOR SPLimNG SCHEME

5.1 Construction of the 1D Form of the New FVS Scheme

At the beginning, we would like to take the 1D Euler équations as an

example to explain how the scheme is constructed. The 1D Euler équations

expressed in Cartesian coordinates and conservation form are

U^F^Q
(83)

where the vectors U and F are given by

u =

p

pu

e

F =

pu

\p+pu2

[(e+p)u

Let

A-w.
QU

(84)

(85)

where A is a 3x3 Jacobian matrix. It is already well known that the matrfaî has three

real eigenvalues, u, u + a , u - a , where a is the sound speed.The following

équation can be derived by splitting the diagonal eigenvalue matrix to two parts

F = AU =Ç/\Ç~IU
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=<?

u

0

0

0

M

0

0

0

u

Q -lî/+ Q
0

0

0

0

a

0

0

0

-a

Ç-1E/ = C+P (86)

where C and P represent the convective and pressure terms:

C = u

p

PM

e

p =

0

\p
\PU

(87)

Obviously, the eigenvalues of the Jacobian of C and P are (u, u, u) and (0, a ,

- a ) respectively. This suggests that the information of the convective tenus

propagate uniformly in the same direction as the velocity vector u goes and the

information of the pressure terms travels with the convective terms at the speed u

and propagate in every direction at the sound speed a . The présent scheme is

contrived to evaluate the interface flux F i at locations such as (i + 1/2 Ax)
2

according to the information travel directions of vector C and P respectively.

The following is the détails of the présent scheme :



For subsonic flow, | u | < a , the pressure terms are determined by

Thus, Eq. (88) can be written as the following général and simple form:

46

^.i =F;. +F,
j+-

L T l R (88)

^4 < + ^-
2

where P± = -^

0

\p(.\±M)

L P(u±a)

(89)

The convective terms are

if a>u>Q, C^ï = CL + C; where C^=q, C^O (90)

if -a<u<0, C ^ = Ci + C; where C^ =0, C; =C^ (91)

Fl-Cl.Pl (92)

FR = CR + p^ (93)

l.
F..î=±(F, + F») - ^1

<+-
2

u

p

pu

e

+

0

pM

pa s

u

p

pu

e

+

0

pM

pa L

(94)
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For supersonic flow, it is the same as the standard upwind differencing scheme. That

1S

F^_ <+F; (95)
2

if uïa, F+ = F^ F- = 0 (96)

if u^-a. F; = 0, F^F^ (97)

It can be proven that the eigenvalues of P+ and P~ are non-negative and non-

positive for the flows with y 2: l . The pressure splitting for momentum équation is

taken from Liou-Steffen's AUSM scheme. The pressure power term in the energy

équation is split using the similar idea. The whole pressure splitting is based on the

acoustic propagation speeds (u±a) or their weights (M±l) foraverage. Thismay

represent the pressure propagation characteristics.

It is clear that the split flux is continuous everywhere. It leads to standard

upwind scheme in the supersonic région. The mass flux is the same as the natural

one and therefore also continuously differentiable everywhere. As shown in Fig. 23,

the individual mass flux vanishes with the Mach number approaching zéro while those

of Van Leer's FVS and Steger-Warming's FVS do not vanish. However, the

individual split flux for pressure term is not continuously differentiable across the

sonic point. When a first order differencing is used this will cause a glitch at the
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sonic point similar to that by Steger-Warming scheme. Fortunately, this glitch can be

removed automatically by using higher order differencing. Liou and Steffen (Liou &

Steffen 1991) reported that this pressure splitting could get smoother transition across

the sonic point than the continuously differentiable one with the higher order

polynomial. This may be true only when higher order differencing is used. The

advantage of this pressure splitting is that it can obtain the monotone shock profile

even when the second order differencing is used. At the stagnation point, unlike the

Steger-Warming scheme, the présent scheme is continuously differentiable.

Except the low numerical diffusion, one obvious advantage of the présent

scheme is its simplicity. Similarly to Van Leer and Liou-Steffen AUSM schemes, it

does not need the matrk opérations required by Roe scheme. The formulations are

polynomial in M (Mach number) and of degree one, which is the lowest possible

degree. The implementation of this scheme is even casier than AUSM scheme.

Though AUSM scheme is already very simple, its interface Mach number containing

both left and right side variables is not so convenient to get the Jacobian matrix when

implicit discretization is to be implemented. The interface flux of présent scheme is

composed of the vectors with the pure left side variables and the pure right side

variables like Van Leer scheme. It is straightforward to construct the implicit

operator.

5.2 Numerical Diffusion of the New FVS Scheme

From Eq. (94), it is seen that the présent flux vector splitting scheme can be exactly

written as a central differencing plus the diffusive terms. For supersonic flow, the
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diffusion is the same as the standard upwind scheme. The focus here is concentrated

in the subsonic région.

Let

D=\u

p
pu

e

+

0

pM

pa.

the diffusive vector, namely D^, , can be expressed as

i<^ = ^ - D^

Eq. (94) then can be rewritten as

F^ —l F,^ F,] -D
I+î 2 'àW

(98)

(99)

(100)

For the extrapolation schemes with différent order accuracy, the accuracy order of D^

is also différent. D^y is équivalent to adding the following derivatives into Euler

équations if central differencing is used.
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For first order fully upwind extrapolation

ia2D^= i^ " (101)

For second order fully upwind extrapolation

ia4£>
^ =-ï^"' (102)

For third order upwind-biased extrapolation

l ô4£>
^ = --L-^AX3 (103)
^ 12 3x4^

From Eq. (98), it can be seen that almost all the diffusive terms vanish at the

stagnation except only one term, pa , in the energy équation. The vanishing terms

may ensure that their diffusion is small. Even though pa does not vanish, the

dissipation is within the magnitude order of the truncation error. As Eqs. (102) and

(103) show, if a higher order differencing is used, the low diffusion may be

furthermore ensured by the higher order derivatives and the higher power of the grid

spacing. The diffusion generated by pa , —J—&x3 or —T^—^X »may
4 ôx4 12 a^

also be expected to remain small.

In many cases, the gradient of pa near the solid wall may be small.
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Particularly for some practical cases, when the sound speed is only considered as the

function of température as the idéal gas, if the wall is adiabatic and the pressure

gradient normal to the wall is zéro or small enough to be treated as zéro, the

diffusion of pa will disappear by cancellation and therefore the total diffusion will

disappear on the wall no matter which order of differencing is used.

For the ability of the présent scheme to capture shock waves, it is not proven

here by analysis how sharp the shock wave profile will be. But the computational

experiments présentée! later show that the normal shock captured is as crisp as that

obtained by using the Roe scheme and is at most two transition zones.

5.3 Three-Dimensional Form of the New FVS Scheme

PI will be evaluated by using the présent flux vector splitting scheme. The

extension of the scheme from 1D ta 3D is straightforward. Pi in Eq. (18) can be

wntten as:

PI = C + P (104)

where

e = u.

p
pu

pv

pw

e

0

Pnx

Pny

p\

PU.

(105)
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C and P still stand for the convective and pressure terms. Similarly to the 1D

case, the eigenvalues of the Jacobian matrix of the convective vector are (Un, Un, Un,

Un, Un ). The eigenvalues for the pressure term matrix are still (0, 0, 0, +a -a ).

Using the eigenvalues of the convective term Jacobian matrK as the characteristic

speed, the three-dimensional form of this flux vector splitting scheme can be

expressed as the following

p< =p,+ + p,:1 * IL ' ' IR

For subsonic flow, | Un <a , the pressure terms are

p^ ~-pi
2

+ PR-

0

P^M^
J»(l+Af>y

P(l+Mn)^

p(U^à)
L

l

0

Pd-^x

P(l-^)ny

p(l-M>,

PWn-0)

The convective terms are

(106)

(107)

if a>U^O, C,^ = CL + Os where C^=C^, C;=0 (108)

if -a<U^<0, C^ = C; + C; where C; =0, C^ =C^ (109)

^1: = ^+ + -p: (110)
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PI^ = CH + p< (111)

Let

D-\Un

p
pu

pv

pw

e

+

0

PMnnx

PMnny

PMn".

pa .

The général form of the présent scheme in 3D is given as:

Pn ' ^\+ p^ - {v>. - ^

(112)

(113)

For supersonic flow

(/ U^ïa, P,\ = P,. , Pi:=0-n—' - \L ' IL ' ' 1JÎ

if U^-a, P,: =0, P,;=P,'"" "' ' Ijr, "' " Ijî * Ij;

(114)

(115)

The Mach number Mn is based on the normal component of the velocity, Mn = Un/a.

The diffusion terms corresponding to Eqs. (100) to (102) are changea now to the

following forms:

For first order fully upwind extrapolation

lô2D
Dj,t = ^-—^-tM

^ 1^
(116)



For second order fully upwind extrapolation

For third order upwind-biased extrapolation

where n is the direction normal to the cell interfaces
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^= -^An3 (117)
on'

D" - -^' m



CHAPTER VI RESULTS AND DISCUSSION

6.1 The Results for URS algorithm

To validate the URS algorithm, it is applied to solve 3D Euler and laminar

Navier-Stokes équations. The computational cases chosen are all internai flows

involving mainly transonic duct flows due to current interest in nonaxisymmetric

exhaust nozzles.

Unless indicated, the first order differencing for the LHS and the third order

differencing for the RHS were used. AU the calculations started from the rest initial

fields, u=v=w=0, with pressure and température set everywhere to their total values.

6.1.1 Solutions of 3D Euler Equations

Case l: transition ducts with a nonaxisymmetric transonic nozzle.

A transition duct is needed to connect the axisymmetric engine to the

nonaxisymmetric nozzle through a smooth progression of geometrically similar cross

sections which is a séries of superellipse. Figure 6.1. (l) shows a sketch of such

geometry. Two transition ducts with a nonaxisymmetric transonic nozzle designed and

tested experimentally by Burley et al. (Buriey & Bangert & Carison 1986) are

calculated. Figure 6.1. (2) shows the geometry of the first duct and the grid with the
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size of 101x31x31. The characteristic géométrie parameters for the transition ducts

are given in Table l:

Table l. Géométrie parameters for the transition ducts

Duct

Duct l

Duct2

L/D

1.0

1.0

a;i, deg

42.7°

31.6

a'2, deg

25.9o

17.9

where L/D is the ratio of the transition duct length to the entrance diameter, a^ the

maximum slope angle of transition along the sidewall, 0:2 the maximum slope angle

of transition along top or bottom walls. The two ducts have the same constant cross-

sectional area, A^ = 20.1408 in2. The method of calculating circular-to-rectangular

transition surfaces is given in Appendix B. The transition duct must be as short as

possible to minimize the weight of the propulsion System installation. It must also be

long enough to prevent any flow séparation, which could adversely affect performance

and create sévère wall cooling problems. The cooling problem arises because most

turbojet engines rely on a thin film of cool air injected parallel to the waiïs to

maintain températures within thermal limits. Flow séparation causes the cool air to

mû with the hot gases from the engine and then magnifies the problem by

concentrating the hot gases at one or more stagnation. To prevent flow séparation,
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Q:i and a'2 are chosen to be less than 45 as suggested by Stevens et al. (Stevens &

Thayer Fullerton 1981). Therefore with little probability of séparation, the Euler

équations may predict well the général feature of the flow field. In the expérimental

study (Burley & Bangert & Carlson 1986), the entrance flows with and without swirl

were tested. The swirl flow is considered to be able to alleviate some flow séparation

by imparting a radiai component to the velocity vectors. More importantly, they can

be used to reduce the noise associated with the jet exhaust. In the experiment, the

swirl flow was induced by installing 12 vanes with 20° angle inclined to the axis. Both

flows with and without entrance swirl were calculated in this thesis. The wall shape

functions of duct l are third order curves which ensure smooth connection with the

nozzle. Duct 2 has the straight or linear wall shape whose derivative at the

connection with the nozzle is not continuous. The results of duct l with the nozzle

in détail is first presented as the following .

To test the dependence of the convergence rate on the grid size, 51x21x21

and 101x31x31 grid sizes were calculated. The flow with entrance swirl is presented

here, a case with a lower convergency rate. The maximum CFL number used is 500

for the grid 51x21x21 and 540 for 101x31x31. Single précision is used and the

residuals are driven down to machine zéro by using 320 iterations for the coarse grid

and 581 iterations for the fine grid shown in Fig.6.1. (3). It is seen that the

convergency rates are rapid. However, they dépend on the grid size and are slower

for the finer. Figure 6.1. (4) is the Mach number distribution along the center Une

which is from subsonic to supersonic. Figure 6.1. (5) présents the calculated pressure

distributions along the side and bottom wall center-lines compared with the
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experiments with and without entrance swirl flow. The result with no swirl flow in Fig.

6.1. (5) (a) and (b) agrées very well with the experiment. The computational result

almost goes through the expérimental points. The pressure has a sharp rise at the

throat due to the short compression right after the sonic Une and goes down soon

after the throat due to the supersonic accélération. For the case with entrance swiri

flow, expérimental data are only available for the transition duct shown in Fig.6.1. (5)

(e) and (d). It is seen that the pressure values are higher than the expérimental data

near the end of the transition duct. The main reason may be that it is not easy to

simulate the entrance swirl flow accurately. We assumed that the entrance flow had

a uniform swiri angle at the entrance plane. The expérimental swirl device produces

wakes behind the vanes and vane shaft and the flow entering the transition duct is

not uniformly swirled. We also assumed that the swirl at the inlet of the duct is 20.

For the experiment, the swiri vanes have a distance from the duct inlet. The swiri

flow may not be kept exactly at 20° when it approaches the inlet of the duct due to

the influence of the wall boundary layers and the wakes. In fact, our computational

experiments showed that the inlet boundary condition had quite a strong influence

on the results. Despite such approximations, the computational result generally agrées

quite well with the experiment as shown in Fig. 6.1. (5).

It is interesting to see the transverse flow caused by the entrance swiri flow.

To exclude the effect of the geometry, first see the cross flow without the entrance

swirl shown is Fig. 6.1. (6). The section with the superelliptic shape is in the part of

transition duct and the rectangular section in the supersonic part of the nozzle after

the throat. It is seen that the cross flow is symmetric about the horizontal and vertical
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planes. On the two sides of the top and bottom wall center points, the flow goes

towards two différent sides. We may define the two points as the transverse flow

division points. There is no vortex flow in the flow field. The transverse flow is

completely produced by the three-dimensional geometry ofthe transition duct. When

there is an entrance swirl, the transverse flow structure is changed quite much as

shown in Fig. 6.1. (7). Fig. 6.1. (7) is the entrance section with the flow uniformly

swiried. The cross flow circulâtes in one direction induced by the swirl vanes. Such

a flow picture retains for a short distance after the inlet. With the flow going in and

the cross section changing to superellipse, the circulation is split and the typical cross

flow becomes as shown in Fig. 6.1. (7) (b). The flow is not symmetric any more. The

division point on the top wall moves to the right and the one on the bottom wall to

the left. A vortex is kept around the center of the section. Such a cross flow field

structure is maintained along the nozzle from the subsonic part to the supersonic part

till the erit of the nozzle. Most of the flow on the top half goes to the left and on the

lower half goes to the right. The flow velocity near the two side extrêmes has some

tangent components and the magnitude is slightly higher than the one with no

entrance swirl. It is what the designers want to keep the flow attached on the side

walls which may have large divergence angles. Figure 6.1. (7) also shows the différent

locations of the stream division points at différent sections which form the transverse

stream division lines on the upper and lower walls. Such stream division Une locations

were not identified before. Perhaps, care should be taken to study if thèse transverse

stream division Unes cause flow séparation problems. More information may be

obtained however by studying such flow field structures by solving the 3D Navier-
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Stokes équations.

Figure 6.1. (8) demonstrates the Mach number contours of the flow field with

the entrance swirl flow. It shows that the variation of the Mach number in spanwise

direction is large in the transition duct part and becomes relatively more uniform in

the nozzle part. But the flow field in the nozzle part is still highly three-dimensional

for the flow with and without entrance swirl as shown by the transverse velocity field

in Fig. 6.1. (6) and 6.1. (7) even though the geometry is two-dimensional. There is

no shock waves in this flow although it is transonic.

The général flow field feature of duct 2 with the nozzle is similar to that of

duct l and would not be presented here in détail. The significant différence is that

the linear wall shape has the connection with the nozzle which is not continuously

differentiable as shown in Fig. 6.1. (9). Such unsmooth connection will cause the flow

parameter jump due to the abrupt compression on the top and bottom wall and

expansion on the side walls. Fig. 6.1. (10) présents the pressure distributions showing

the jump at the location of connection. The advantage of the linear wall shape is its

simplicity to build. However, the unsmooth parameter distributions may cause flow

séparations.

Case 2: nonaxisymmetric transonic nozzle

This case is only a nonaxisymmetric transonic nozzle with no transition duct,

which is chosen for a preliminary test of the flow with shock waves. Figure 6.1. (11)

shows the geometry calculated which is only a quarter of the whole nozzle due to

symmetry. The flow generally is two dimensional because of the rectangular section.
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Figure 6.1. (12) is the pressure contours of a typical streamwise section. Oblique

shock waves erist after the throat. The shock waves are weak because the Mach

number is only slightly greater than one after the throat. The two shock waves

extending from the lower and upper wall intersect at the center-line of the nozzle and

then reach the wall of the other side. After approaching the wall, the oblique shock

waves reflect. Thèse reflections intersect and reflect again until the flow approaches

the exit of the nozzle. It can be seen from Fig. 6.1. (12) that the intensity of the shock

waves becomes weaker with repeated intersections and reflections. This can be also

quantitatively seen from the pressure distributions given in Fig. 6.1. (13). Fig. 6.1. (13)

(a), (b), (e) are at the bottom wall with différent locations from the center-line

(Z/L=0.) to the one near the side wall (Z/L=0.875). Fig.6.1. (13) (d) is the pressure

distribution along the side wall center-line. Most of the computational points agrée

very well with the experiment (Mary et al. 1980) except the point at the first shock

reflection. The first reflection calculated seems to be not strong enough. The

maximum CFL number used for this case was 130. Figure 6.1. (14) shows the

convergency history which reaches the machine zéro rapidly. It is interesting to note

that the maximum CFL number was greater than 106 when this case was tested by

solving the 3D Navier-Stokes équations using the same algorithm. Such a high CFL

number was possible because the algorithm can sustain very highly stretched grid near

the solid wall. The results are présentée! in next section.

Case 3: three-dimensional channel

This channel is designed by Benay, et al. (Benay & Delery & Pot 1986 ) for
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an expérimental study. Figure 6.1. (15) shows the geometry and the grid with

101x31x31 size. The channel has three flat walls and a humped lower wall. The

upstream part of the hump is a ramp, inclined approrimately at 7 degree from the

horizontal. This ramp is followed by convex circular surfaces of 100 and 180 mm

radius defined to ensure slope continuity everywhere. The angle formed by the hump

crest and Une, and the channel axis is equal to 60 degree. The maximum height of

the hump is 20 mm and the channel section is 120 mm wide and 100 mm high at the

inlet. In the experiment made at ONERA, this channel yielded complex 3D flow field

produced by the shock wave/boundary layer interaction. Figure 6.1. (16) shows the

expérimental Mach number contours. The back pressure was not obtained due to

some expérimental difficulties. Therefore, différent back pressures were tested m the

calculation to match the flow field structure. Figure 6.1. (17) shows the Mach number

contours on the walls corresponding to a dimensionless back pressure of 0.545,

defined as the ratio of the back pressure to total pressure. This value is taken from

Cambier and Escande (1990) who solved the Reynolds averaged Navier-Stokes

équations and obtained qualitative agreement with the experiment. The shock wave

structure calculated in this paper is obviously différent from the expérimental one and

is very complex. It can be seen from Figs. 6.1. (16) and (17) that the calculated

starting point location of the shock agrées quite well with the experiment. The

expérimental shock wave is also oblique in the lower half of the channel and becomes

normal above the channel center-line. The calculated shock wave keeps the same

oblique angle up to the upper wall. The transverse shock location is not normal to

the axis of the channel. Near the right side wall, the oblique shock is reflected on the
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upper wall and then on the bottom wall. Across the channel, two shock waves

interact and À-shape shock wave forms. The upstream root of the À shock has a

weak reflection on the upper wall. The downstream root of the À shock has quite

strong reflections on both upper and left walls. The intensity of the shock wave

becomes stronger near the right side wall. This agrées with the experiment. Because

of the very complex shock wave structure, the computational convergence is usually

difficult and the problem represents a good case to test the convergency behaviour

of the URS algorithm. To study the convergency rate under the influence of the

différent order differencing used for the LHS and the RHS, both the first order and

the third order differencing were tested for the RHS. Figure 6.1. (18) shows the

convergency histories. It is seen that the convergency rate with the first order on the

LHS the third order on the RHS is slower than with first order differencing used on

both sides. There are two reasons for this outcome. Firstly, the inconsistent

differencing order used for the LHS and the RHS wiiï reduce the convergency rate

as mentioned in the section of stability analysis. Secondly, when the third order is

used for the RHS, the numerical diffusion is less and the shock waves are sharper

than those captured by using the first order differencing. The crisp shock wave

profiles make the convergence more difficult than by using the first order

differencing. The second reason for the slower convergency rate is considered to be

more important. It is interesting to note from Fig. 6.1. (18) that most of the iterations

are in the high residual level and used to form the shock waves. After overcoming

the large residuals from the shock waves, they go down very sharply to the machme

zéro and never go up again. The CFL number for this case is largely reduced
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compared with the previous two cases. With the first order differencing on the RHS,

the maximum CFL number is 32, with the third order on the RHS is 24. The case

with 0.645 dimensionless back pressure gave a very similar flow field structure. When

the back pressure is 0.755, only one normal shock wave exists in the flow field which

is shown in Fig. 6.1. (19). In this case, the convergency rate is faster due to a simpler

shock wave structure in the flow field. Even though the back pressure ratio of 0.755

gives a normal shock which is similar to the expérimental results, this agreement does

not mean that 0.755 is the correct back pressure. Actually, this shock location is

ahead of the expérimental one and the shock wave shape is also quite différent. The

reason for not having a similar flow field structure with 0.545 back pressure to those

expérimental and theoretical (Cambier & Escande 1990), may be due to nonexistence

of wall boundary layers. The strong shock waveAîoundary layer interaction on the

lower wall will cause a flow séparation and make the shock less oblique. The

incidence shock may almost normally interact with the upper wall boundary layer with

no reflection. No-slip wall boundary conditions for viscous flows could weaken the

shock reflection. On the contrary, the slip wall boundary conditions for the Euler

équations could make the shock reflection casier when the shock has an oblique

angle. The obseryed deviation of the flow field structure for this case may be mainly

because the Euler model has been used. For such complex shock wave structures,

the Navier-Stokes model would give better results. The other possibility of the

observed deviation may be because the back pressure has been assumed to be

uniform, which is usually not true even though this assumption has produced

qualitative agreement with the expérimental results (Cambier & Escande 1990). The
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back pressure is a key factor to détermine the shock wave structure. A more accurate

back pressure sélection would result in a better solution. Despite the shortcomings,

the efficiency and robustness of the URS algorithm has been still demonstrated for

this case.

6.1.2 Solutions of 3D Navier-Stokes Equations:

Effect of Throat Contouring on Nonaxisymmetric Nozzles

Five nonaxisymmetric converging-diverging nozzles named as Al, A2, Bl, B2

and B3 (Mary et al. 1980) were calculated at the design conditions by solving 3D

laminar Navier-Stokes équations using URS method. The purposes are to test URS

algorithm for 3D Navier-Stokes équations and to study the internal-performance

effect of throat contouring, the result of increasing the circular-arc throat radius. The

flow fields of the nozzles are supposée! to be symmetric about the center plane in y

and z- direction. Therefore only the lower half or 1/4 part of a nozzle shown as

Fig.6.1. (20) is calculated to reduce the computational work. Nozzle Al and Bl are

the baseline nozzle geometries with the same circular-arc throat radius. Nozzle A2,

B2 and B3 are modified from the baseline designs by increasing the circular-arc

throat radius while keeping all géométrie parameters constant except for © and e

shown in Fig.6.1. (21). The design parameters which vary in this calculation are

presented in Table 2.
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Table 2. The Design Geometry Parameters for the Five Nozzles

Parameter

Ae/At

L, cm

re

©, deg

e, deg

Al

1.09

11.56

0.68

20.84

1.21

A2

1.09

11.56

2.74

22.33

1.21

Bl

1.80

11.56

0.68

20.84

10.85

B2

1.80

11.56

2.74

22.33

11.24

B3

1.80

12.25

2.74

20.42

10.85

Figure 6.1. (22) shows the five streamwise sections of the lower half parts of the

nozzles. AU the five nozzles have the same throat area. Nozzle Al and A2 were

calculated for half of the nozzles with the grid size of 101x31x51 and Nozzle B1,B2

and B3 for a quarter of the nozzles with the grid size of 67x31x31. Figs. 6.1. (23) to

(27) are the pressure distributions of each nozzles at différent locations, where L is

the width of the nozzles. The calculated results compare well with the experiments.

The pressures rise sharply in the vicinity of the throats. It is the tendency for the flow

séparation. But the flows do not separate for the five nozzles at the design conditions.

The computational pressure distributions for Al and A2 on the left and right walls
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are almost exactly the same. This means that the flow field is symmetric about the

center plane in the span wise direction. The span wise section velocity vector fields

shown later also give this symmetry. It accords with the spéculation. But the

expérimental data on the left and right side waiïs are not so symmetric near the

throat as shown in Fig. 6.1. (23) and Fig. 6.1. (24). The reason is unknown yet. The

effects of contouring occur in the upstream of the nozzle throat. Static pressures near

the throat are generally higher for the contoured nozzles than for the baseline

nozzles as shown in Figs. 6.1. (28) and (29). Figure 6.1. (30) is the Mach number

distributions along the center Unes of the nozzles which indicates that all the nozzles

are choked at the throats. Contouring at the nozzle throat by increasing the circular-

arc radius has a positive effect on the discharge coefficient. Figure 6.1. (31) shows

that the discharge coefficients of A2 and B2 nozzles are higher than those of Al

and Bl. The expérimental discharge coefficient ofB3 is less than that of B2 although

they have the same value of throat radius. The inconsistency in the effect of throat

radius on discharge coefficient is not yet understood. Comparison of calculated

internai thrust ratio with the expérimental F/Fi results is given m Fig. 6.1. (32) which

indicates that throat radius, and therefore throat contouring, has no significant effect

on thrust ratio. The average effect of throat contouring on the internai static pressure

is negligible.

The flow fields are highly three-dimensional in the vicinities of the corners due

to the boundary layer interaction between the side walls and the lower or upper walls,

particularly after the throat, where the main flows are supersonic. At the design

conditions, with the increase of the nozzle divergence angle, the secondary flow

becomes weaker. Fig. 6.1. (33) shows the spanwise section velocity vector fields for
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nozzle Al. Nozzle Al is the same nozzle as the case 2 previously présentée! for the

results of Euler équations. There are oblique shocks and reflections in the flow field.

Fig. 6.1. (33) indicates that there is very weak secondary flow before the throat where

the flow is subsonic and the secondary flow becomes much stronger after the throat

where the flow is supersonic. Fig. 6.1. (33) (b), (e) , (d) and (e) show that the cross

velocity vector fields are différent at différent locations. The cross flow is at the

corners for Fig. 6.1. (33) (b) where the oblique shock wave after the throatjust grows

up. Fig. 6.1. (33) (e) shows that there exist cross flow near the center plane in y-

direction. It is made by the shock wave and side wall boundary layers mteractions,

where the shocks from lower and upper wall intersect. After the shock intersection,

the cross flow is again concentrated in the corners as shown in Fig. 6.1. (33) (d).

Fig. 6.1. (34) présents the Mach number contours at différent locations in z-direction.

In the middle plane (Z/L=0.0), the shock wave and reflections are cleariy seen. Near

the two side walls, the shock intensity becomes weaker. Nozzle Al is the only one

containing shock waves in its flow field among the five nozzles. Fig. 6.1. (35) is a

streamwise section velocity profile. There is no flow séparation in the flow field. The

transverse flows of nozzle Al and A2 are stronger than those of Bl, B2 and B3. This

phenomenon can be seen from Fig. 6.1. (36) which shows the flow of a cross section

of nozzle B2.

To test if the algorithm is grid size independent, two grid sizes of 51x21x21

and 101x31x51 were tested for Nozzle A2. The grids are highly stretched to test how

tolerable the algorithm can be for the stretched grid. The maximum aspect ratio of

the mesh for the grid of 51x21x21 is 1.2016xl04 and for grid of 101x31x51 is

4.703xl03. The program can stand even higher aspect ratios. The maximum CFL

numbers used for grid l are CFL, =7.1526xl03 , CFLy=1.043xl07 and CFL, =
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3.4785xl04. For grid 2, CFL, =2.679xl03 , CFLy= 1.8034xl05, CFL,=8.1857xl03.

CFL^, CFLy and CFI^ are the CFL numbers in x, y and z direction respectively. Fig.

6.1. (37) shows the convergence histories which indicate that similar convergence

rates are obtained for the two cases. It seems that the algorithm is not grid size

dépendent. It may be true only for this case with simple geometry. As indicated in

case l for the Euler équations, the URS algorithm is grid size dépendent. 86

iterations are enough for the solution of grid l to be converged and 98 iterations are

needed for grid 2. With the highly stretched grid 101x31x51, there erists at least 10

points in the boundary layer in the y direction and 7 points in the z direction. AU the

five cases have similar CFL number and convergency rate.

AU the calculations are conducted on an IBM RISC 6000, Server 520. Due to

the computer power limitation, the maximum grid size that can be used was about

101x31x51=159681. This grid size may still not be fine enough to analyze the 3D

viscous flow fields in détail.
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6.2 Résulta for the Flux Vector Splitting Scheme

To judge the viability of the new flux vector splitting scheme, 1D, 2D and 3D

Euler équations were solved.

Case l: 1D shock tube

Case l is a one-dimensional shock-tube flow. As a model problem, consider

a tube of large extent in which a diaphragm séparâtes a perfect gas at rest with

différent static pressures but at a uniform température. With the rupture of the

diaphragm, an expansion propagates into the high-pressure gas, while a shock wave,

followed by a contact discontinuity, propagates into the low-pressure gas. Détails of

this flow are described in standard texts (John 1984). In the présent calculations, the

initial pressure ratio across the diaphragm is taken as 10 to l. The initial location of

the diaphragm is taken at X/L = 7.0. To compare the présent scheme with the

others, Roe's flux différence splitting scheme, Van Leer's flux vector splitting scheme

and Liou-Steffen's AUSM scheme were also used to solve the same 1D problem. All

the solutions were calculated by using the explicit first order accuracy differencing.

Figs. 6.2 (l) and (2) are the solutions of the présent scheme with the CFL number

0.95. The solutions are monotone. A crisp shock profile is seen, while the contact

discontinuity is composed of more grid zones. It is seen that the présent scheme also

gives good agreement with the exact solution for the expansion waves. The solutions

of Roe's scheme are shown in Figs. 6.2. (3) and (4). The shock wave and the contact

discontinuity profiles show no distinguishable différence between the solution of the

présent scheme and the Roe scheme. In comparing the results, the front of the

expansion waves calculated by the présent scheme is sharper than that of Roe s
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scheme. It is noted however that the results of the both schemes agrée well with the

exact solution. Figs. 6.2. (5) and (6) show the results of Van Leer scheme when the

CFL number is 0.95. The profiles of the shock and the discontinuity are basically the

same as those of the présent scheme and Roe scheme. But there are large spikes at

the tail of the expansion waves for all the parameters. The computational

experiments indicated that the spikes became less when the CFL number was

decreased. The spikes basically disappeared when the CFL number was down to 0.45

at a loss of sharp shock profiles as can be seen in the Figs. 6.2. (7) and (8). Figs.

6.2. (9) and (10) présent the results of the AUSM scheme. It was noted that the CFL

number for AUSM scheme could not be greater than 0.4 for this 1D shock tube

problem, otherwise the iteration became unstable. The maximum CFL number used

in our calculation for the AUSM scheme was 0.35. Similarly, with Van Leer scheme

when the CFL number was 0.45 as shown in Figs. 6.2. (7) and (8), both the shock

and the contact discontinuities were somewhat diffused because the CFL number was

far from the upper limit of the explicit scheme, CFL= l. As indicated in a text book

by Hoffmann (1989), this is a common phenomenon for most of the differencing

schemes. Among thèse four schemes tested for this 1D shock tube problem, only the

présent scheme and the Roe's scheme gave the most satisfactory results.

Case 2: transonic inlet-diffuser

Case 2 is a 2D transonic Inlet-diffuser shown in Fig. 6.2. (11) designed and

studied by Bogar et al. (Bogar & Sajben & Kroutil 1981). It is a 3D diffuser that can

also be treated as 2D. It contains a normal shock wave in the downstream of its

throat. The calculation was implemented first using first order differencing on the

streamwise plane as a two dimensional case. The explicit two-stage method (Liou &
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Hsu 1989) was used for the présent scheme and AUSM scheme and the 2D implicit

upwind-relaxation method for the Van Leer scheme (Zha & Liu & Ma 1989).

Because the implicit operator with the first order differencing was used for the Van

Leer scheme, the calculation only converged for the RHS with first and third order

accuracy differencing. Therefore the results of Van Leer scheme will be presented

only for the first and third order differencing. Fig.6.2. (12) shows the Mach number

distributions along the bottom and top walls. It is seen that the shock profiles are

very sharp. The Mach number transition from the supersonic peak to the subsonic

bottom takes only one grid width for both the présent and the AUSM scheme. The

Van Leer scheme needs two transition zones. AU thèse three shock profiles are

monotone without oscillations, overshoots or undershoots. But as mentioned before,

because the pressure splitting is not continuously differentiable at the sonic point for

the présent and the AUSM scheme, a glitch appears at the sonic point position as

Fig.6.2. (12) shows. In contrast, the Van Leer scheme obtains the smooth transition

at the sonic point. Fortunately, this drawback can be removed automatically by usmg

higher order differencing as it will be seen later. Fig. 6.2. (13) présents the pressure

contours of the flow field. The présent and the AUSM scheme gives the sharper

normal shock than the Van Leer scheme. The glitch at the sonic point was not

revealed in the report of Liou and Steffen (Liou & Steffen 1991) who used the

AUSM scheme with a second order differencing, except one case with a first order

differencing, which was quasi two-dimensional. The latter was not suitable to show

the glitch.

In the next step, to see the performance of the présent scheme for higher

order differencing, calculations were carried out using a second order differencing.
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MUSCL- type flux differencing (Anderson & Thomas & Van Leer 1986) is used to

evaluate the flux passing through the interface of a cell for the higher order

differencing. Again the explicit two-stage method was used for both the présent and

the AUSM scheme. Fig.6.2. (14) shows the Mach number distributions using the fully

upwind second order scheme. It is seen that both the présent and the AUSM

scheme obtains the smooth transition at the sonic point and the glitch disappears.

Furthermore, the shock profiles remain monotone without using any smooth limiters.

The shock transition is almost in one zone at the top but it is two transition zones at

the bottom. Fig.6.2. (15) shows the pressure contours of the flow fields obtamed by

using the two schemes. It is seen that two pressure fields are almost indistinguishable

and the shocks are sharp at the top and also at the bottom but with two zones.

To sec the results with still higher order differencing, computations were

carried out with third order biased upwind schemes. Thèse results are obtained from

the three-dimensional solver using the URS algorithm with the nonuniform grid in

the 3D inlet-diffuser as shown in Fig.6.2. (16). The computations were carried out in

3D, however the results are presented only for the central plane since the section

is rectangular in spanwise direction and the results are nearly the same. In Fig.6.2.

(16), the bottom of the diffuser is shown at the top so that the geometry can be seen

better. The lower figure shows the typical section in streamwise direction. The Mach

number distributions along the top and bottom walls are presented in Fig.6.2. (17).

It can be observed that with all three schemes, oscillations appear in the vicinity of

shock as expected (Anderson & Thomas & Van Leer 1986). The oscillation

amplitude of présent scheme (Z/B) is the smallest among the three schemes and

those of the AUSM and Van Leer are almost the same. The smaller oscillation
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amplitude of the présent scheme may be due to the fact that the présent scheme is

a Mach number polynomial of degree one, the lowest degree. The other two schemes

are necessarily of degree two. The oscillations may be removed by using some

smooth limiters to switch the scheme to lower differencing order at the shock location

as many researchers have done in the past (Anderson & Thomas & Van Leer 1986,

Liou & Hsu 1989). Such work is not done in this thesis. Once again, it can be seen

in Fig.6.2. (17) that a smooth transition at the sonic point is obtained by using a third

order differencing and one transition zone shock profiles are obtained for all three

schemes. In fact, the results of the présent scheme completely agrée with those from

Van Leer and AUSM except for the shock oscillations. The Mach number contours

of the flow fîelds are presented in Fig. 6.2. (18). It is seen that all three look very

similar with sharp shock waves. In comparison with Figs.6.2. (13) and (15), some

closed iso-Mach number lines appear at the top just before the shock waves, which

are caused by the oscillations near the shock. It is also clear that the Van Leer

scheme with third order differencing produces sharper shock wave than the one with

a first order differencing in Fig. 6.2. (13). Fig. 6.2. (19) is the convergency histories

for the three-dimensional calculations of the inlet-diffuser. Single précision was used

for the 3D calculations and the residuals were reduced to 10 . It is seen that the

convergence rate of the Van Leer scheme is the best showing its advantage. Those

of the présent and AUSM schemes are ahnost the same, with time steps double that

of the Van Leer scheme. For this case, the présent scheme is a little faster than

AUSM scheme. To see the convergence history with a third order accuracy in a 2D

case, calculations were also carried out by using the upwind-relaxation algorithm for

the two-dimensional grid shown in Fig.6.2. (11). Double précision was used and the

residual was reduced to machine zéro as shown in Fig. 6.2. (20). It is seen that after
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10 accuracy, the residual decreases continuously, which shows the présent scheme

converges without computational difficulties for this case.

Case 3. Transonic Nozzle

Case 3 is a study on a rectangular converging-diverging nozzle shown in Fig.

6.2. (21). Due to symmetry, it is sufficient to study a one quarter of the nozzle shown

in the figure. Although this nozzle is three dimensional, it behaves almost like a 2D

case for the variation in the spanwise direction is small. However, it is again a case

solved by using three dimensional Euler équations and the results can be compared

to expérimental ones, in particular pressure distributions at various planes (Mary et

al. 1980). It is noted that there is no shock for this case. The computations were

carried out by using the URS algorithm with third order differencing for all three

schemes and the results are compared. The Mach number distributions along the

center-line of the nozzle are presented in Fig. 6.2. (22) and the Mach number

contours on the central plane in Fig. 6.2. (23). Fig. 6.2. (22) shows again that the

présent scheme completely agrées with Van Leer and AUSM scheme and the sonic

transition is smooth. Fig. 6.2. (23) shows that the Mach contours are very simiïar with

no discemible différences. Fig. 6.2. (24) is the pressure distributions of the nozzle at

différent spanwise locations. First three figures on the top are on the bottom wall

of the nozzle and the last at the center-line as indicated in Fig. 6.2. (24). The results

generally agrée favourably with the experiment (Mary et al. 1980). The pressure

distributions at and near the central plane (Z/L = 0.0 and 0.45) agrée with the

experiment better than that at Z/L = 0.875. It may be because the real flow near the

central plane mainly behaves as two-dimensional flow. When it is near the side

wall (Z/L = 0.875), the interactions of the side waiï boundary layers cause a strong
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three-dimensional effect, which can not be captured by using the 3D Euler équations.

The disagreement is mainly at the throat where the flow has the tendency to

séparation. Similar results is seen on the last figure in Fig. 6.2. (24), which illustrâtes

the pressure distribution along the side wall center-line. Fig. 6.2. (25) shows the

convergency histories of the transonic nozzle with the grid of 101 x 31 x 31. It is seen

that for this case the présent scheme is about 15% faster than AUSM and 70%

slower than Van Leer scheme.



CONCLUSIONS

An Upwind Relaxation-Sweeping (URS) algorithm for three dimensional

compressible Euler and Navier-Stokes équations has been developed in this thesis.

The linear stability analysis shows that the unfactored Upwind Relaxation-Sweeping

algorithm is unconditionally stable. The algorithm is independent of the global

sweeping direction sélection. Further, by choosing the direction with relatively low

variable gradient as the global sweeping direction, the algorithm can have a higher

degree ofstability. Because ofno approrimation error introduced, the URS algorithm

can reach very high CFL number,up to the order of 10 for the maximum CFL

number, and therefore obtain very rapid convergence rate. The memory requirement

is greatly reduced since the Jacobians are only stored in one iterating plane. In

addition, the CPU time per time step is saved because one global sweep is able to

solve all the unknowns in the entire flow field.

The three-dimensional compressible Euler équations are solved by the URS

algorithm to study the internai flows of a non-axisymmetric nozzle with a circular-to-

rectangular transition ducts. The cases with and without entrance swirl flow were

calculated. The résulta agrée well with the experiments. It is found that transverse

stream division Unes move to the right on the upper wall and to the left on the lower

wall for the flow with entrance swirl. The computational experiments show that the

URS algorithm is grid size dépendent. For the case of a non-axisymmetric nozzle with

shock reflections and intersections, the computational results also agrée well with the

experiment. A 3D channel with complex shock wave structures has also been

calculated. The shock wave structure varies with différent back pressures. The
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calculated shock wave structure has deviations from the expérimental results mainly

because an inviscid flow model is used and an accurate back pressure is not

available. The results show that the URS algorithm is efficient and robust.

Five nonaxisymmetric converging-diverging nozzles at design conditions were

calculated by solving the three-dimensional Navier-Stokes équations using the URS

algorithm. Rapid convergency rates have been obtained for the calculations. The

calculations are to study the nozzle internal-performance effect of throat contourmg

as a result of increasing the circular-arc throat radius. Throat contouring resulted in

a positive effect on discharge coefficient but showed no significant improvement in

internai thrust ratio. The average effect of throat contouring on the internai static

pressures is negligible. AU the computational results presented as static-pressure

distributions, discharge coefficients and internai thrust ratios have been compared

with the experiments and they are in good agreement. The computer code developed

in the study can be used as an effective tool for the nozzle design.

A new flux vector splitting scheme with low numerical diffusion has been

suggested in this thesis. This scheme uses the velocity component normal to the

volume interface as the characteristic speed and yields the vanishing individual mass

flux at the stagnation. The numerical dissipation for the mass and momentum

équations vanishes with the mass flux. One of the diffusive term of the energy

équation does not vanish at the stagnation. But the diffusion is within the magnitude

order of truncation error. The low numerical diffusion for viscous flows may be

ensured further by using higher-order differencing. Consequently, for the viscous

flows, the présent scheme may be more accurate than the flux vector splitting

schemes without the mass flux vanishing at the stagnation. The scheme with the

Mach number polynomial of degree one, the natural and lowest degree, is very
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simple and easy to be implemented.

The scheme bas been tested to solve 1D, 2D and 3D Euler équations. The

solutions are monotone and the normal shock wave profiles are crisp. For a 1D

shock tube problem with the shock and the contact discontinuities, the présent and

Roe schemes using the first order differencing gave the most satisfactory results

compared with those from Van Leer and Liou-Steffen's AUSM schemes. For the

multidimensional transonic flows, the sharp monotone normal shock wave profiles

with mostly one transition zone are obtained. A glitch appears at the sonic point

when the first order differencing is used for the transonic inlet-diffuser. But the glitch

can be automatically removed by using a higher order differencing. The scheme

converges well for the tested cases, slightly faster than AUSM scheme and slower

than Van Leer scheme. Generaiïy, for the tested transonic flows, the results agrée

completely with the AUSM scheme and Van Leer scheme. However, using a third

order differencing, the présent scheme produces results with least oscillations near

the shock. For a transonic nozzle, the results calculated from the présent scheme

agrée well with the experiment.
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APPENDIX A NONDIMENSIONAL VARIABLES

The normalization of the goveming équation (l) is obtained by using the

following nondimensional variables:

x -y - v -e
x=î ' y=t ' JP=Ttï ' e=-^ '

p.,": PA

u .-_ v -._ w T _ P
u=— , v=— , w=— , p=— ,
"« "« "» p..

u^ -
t=t-^ , T=C^— ,

' ' "p -2 '
M;

To keep the state équation the same form, the gas constant and the spécifie heats

also have to be normalized:

r -CP ^ -CX »=A
-p—fT ' vv-77- ' JV-T^

^ ^p ^p

The normalization of the viscous terms are as the following:



87

î.-.=-^ . ^=-cw- . î__=-c%-
bw-2 ' "yy-2 ' ''""2 '

PU» P": PM~

Î,=_^L . T,^ . ^_=_^"xy—î ' kyz-2 ' "n-2 »

PM» PU» PU:

?t - H-

.M"z'p" n«_c>»
jte—^-^ , Pr=-

To express the variables conveniently, the bars representing the nondimensional

parameters are omitted in the governing équations from Eq. l to 13 in Chapter II.



ÂPPENDIX B METHOD 0F CÂLCUIATING CIRCULAR-TO-

RECTANGULAR TRANSITION SURFACES

The method of calculating circular-to-rectangular transition surfaces give by

Burley (Burley & Bangert & Carison 1986 ) is presented here for référence.

A circle, an ellipse, and a rectangle are all spécifie cases of superellipses. The

locus of points which make up a superellipse is defined by the équation

( 2 )n . ( y - l (Al)
a ' ' b

The area enclosed by the superellipse A^ can be computed from the following

équation (Beyer 1978) :

^ , r(l/Tl)24afc (A2)
~cs (T(2/n)-2ii)

where T refers to the " gamma function and is defined as

F(n) = f"(e~tt^)dt (n > 0) (A3)
0

Calculation of the gamma function is addressed by Hart et al(1968)

With Acs, a and b defined as continuous analytic functions of x (axis distance

from the entrance), the transition surface is determined by iteratively computing ^(x)
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from Eq. (A2). For practical applications, a rectangle (?] = oo) can be accurately

approximated with T} > 50. In this thesis, T] S 100 is used to represent a rectangle.

The axes for duct l are determined by the following équations

a(x) = r - (r-w)(x/02[3-2(;c/f)] (A4)

b(x) = r - (r-h)(xfl)î[3-2(x/î)] (A5)

where r is the radius of entrance circle, w the width and h the hight of erit rectangle,

l the transition duct length. Thèse équations have zéro first derivatives with respect

to x at x=0 and x=l; therefore, a smooth transition is formed.
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Fig. 6.1. (2) The geometry and the grid of the transition duct l with the

nozzle, grid size 101x31x31.
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Fig.6.1.(8) The Mach number contours of transidon duct l and the nozzle

Fig. 6.1. (9) The spanwise center plane of the duct 2 with the nozzle
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Fig. 6.1. (11) The grid and the geometzy of the transonic nozzle

Fîg. 6.1. (12) pressure Contours of a Typical Section
of the No2zle
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Fig. 6.2. (21) 3D grid of the transonîc
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