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RÉSUMÉ

Ce travail est consacré à une étude numérique concernant les écoulements de

densité variable, ainsi qu'au transport de contaminants dans des milieux poreux saturés

et non-saturés. Divers modèles numériques utilisant des techniques de différences finies,

de volumes de contrôle et de volumes finis pour la formulation des équations gouvernant

les champs d'écoulements ont été développées. La formulation aux volumes finis a été

implantée sur un maillage triangulaire, ce qui a pour principal avantage de pouvoir

directement être appliqué au traitement des domaines irréguliers. Dans cette formulation,

le traitement numérique de l'équation de transport est réalisé en utilisant un schéma basé

sur la méthode des caractéristiques pour le transport convectif, tandis que le terme

diffusif est évalué sur un maillage triangulaire, en utilisant les volumes finis, avec

interpolation linéaire pour la concentration.

Afin de partiellement valider le modèle, les résultats de trois différentes études

récemment publiées dans la littérature ont été simulés. Deux de ces études sont des

recherches expérimentales en laboratoire, tandis que la troisième est une étude basé sur

les mesures prises autour d'un site d'enfouissement de déchets.

La première étude choisie pour la validation est de résultat d ' une recherche en

laboratoire récemment publiée par Schincariol & Schwartz (1990), concernant le

comportement d'une solution saline dense, injectée horizontalement au milieu d'un
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écoulement souterrain de densité moindre. Cette expérience a couvert les milieux poreux

saturés homogènes et non-homogènes. Comme la géométrie du bassin utilisé était

rectangulaire, les méthodes standards aux différences finies ont été utilisées afin de

simuler numériquement le phénomène. Une bonne corrélation entre les résultats

numériques et expérimentaux a été obtenue. En particulier, les expériences de laboratoire

qui ont révélé la présence d ' instabilités induites par la gravité, ayant la forme des ondes

d'amplitude significatives le long de la bordure inférieure du panache a été fidèlement

reproduit par le modèle numérique.

La seconde étude choisie pour valider le modèle est une série d ' expériences de

laboratoire effectuées par Oostrom et al. (1992). Dans chaque expérience, la trajectoire

d ' un dense panache de lixiviat appliqué en surface et marqué à l ' aide de colorants a été

suivie. Ce lixiviat a été synthétisé en utilisant des solutions aqueuses d'Iodure de

Sodium et de Bromure de Sodium. L^montage expérimental consistait en un bassin

rectangulaire contenant un milieu poreux homogène, dans lequel l ' écoulement était induit

par des réservoirs à niveaux constants. Comme dans le cas de la première expérience,

celle-ci a révélé la formation d ' instabilités gravitationnelles dans le panache. Cette série

d ' expériences a été numériquement simulée en utilisant une formulation de volume de

contrôle sur un maillage rectangulaire. Les caractéristiques moyennes de l ' écoulement

ont été fidèlement reproduites par le modèle numérique. Par contre, les instabilités n' ont

été correctement simulées qu'avec un domaine de calcul significativement allongé,

éliminant effectivement l ' influence des conditions frontières imposées à l ' écoulement aux
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sections situées en amont et en aval du point d'injection.

Afin d'avoir une connaissance plus approfondie du mécanisme d'instabilité, une

analyse linéaire de stabilité a été effectuée. Les premiers résultats de cette analyse

confirment qu ' un panache dense est en fait instable, les deux paramètres gouvernant la

stabilité étant un nombre de Rayleigh basée sur la concentration et une longueur

caractéristique, cette dernière dépendant de la dispersivité transversale. Les courbes de

stabilité critiques ont été calculées et présentées. Les estimés des deux paramètres des

panaches observés lors des expériences confirment que leurs valeurs se situent en dehors

des limites de stabilité, tel que prédit par l ' analyse de stabilité.

Finalement, la propagation d'un panache de lixiviat au site d'enfouissement de

déchets à Borden, Ontario a été simulée numériquement en utilisant une formulation en

volumes finis sur un maillage triangulaire. Les mesures prises au site et autour ont été

documentées par MacFarlane et al. (1983). Parce que les données prises in situ, ainsi que

les propriétés du sol sont de faible résolution et entachées d ' incertitude, seule une

comparaison globale a pu être effectuée. Toutefois, il a été possible d'obtenir une

modélisation satisfaisante des longueurs de propagation du panache. Les simulations

numériques ont toutefois révélé que, même à cette échelle, des instabilités

gravitationnelles se forment le long de la bordure inférieure du panache, avec des

amplitudes verticales suffisamment importantes pour altérer le comportement dispersif

du panache. Les estimations du nombre de Rayleigh de la concentration et de l ' échelle
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de longueur caractéristique ont révélé que le panache de lixiviat est instable et pourrait

aboutir au type de comportement prédit par le modèle numérique.

Les analyses et les simulations numériques indiquent qu'un dense panache de

lixiviat pénétrerait à une plus grande profondeur qu ' un panache de même densité que le

milieu récepteur. De plus, si le critère de stabilité est dépassé, des instabilités locales de

grande amplitude peuvent apparaître, modifiant encore plus les caractéristiques

dispersives du lixiviat.

Les modèles numériques développés ont démontré avoir d ' excellentes

caractéristiques de stabilité numérique. La formulation en volumes finis présentée est

robuste et précise. En effet, due aux propriétés fondamentales de l'algorithme d'Euler-

Lagrange pour l'équation de transport, on n'obtient pas de valeurs non-positives de la

concentration ou des oscillations parasites dans la solution, tant qu ' un certain critère de

stabilité de base est satisfait. De plus, il est possible d ' implanter aisément l ' inclusion de

termes sources d ' adsorption et des réactions chimiques au modèle.



ABSTRACT

This work is devoted to a numerical investigation of variable density flow and

contaminant transport in saturated-unsaturated porous média. Numerical models, using

fînite-difference techniques as well as control volume and finite volume formulations of

the governing équations for the flowfield have been investigated. The finite volume

formulation has been implemented on a triangular mesh, the chief advantage being its

capacity to treat irregular computational domains. In this formulation, the numerical

treatment ofthe transport équation is realised using a characteristics based scheme for the

convective transport, while the diffusion term is evaluated on a triangular stencil using

the finite volume formulation with linear interpolation for the concentration. The results

of three separate studies published in the récent literature, two of which were

expérimental investigations under laboratory conditions, while the third consisted of field

measurements taken around a waste landfill site have been simulated for partial validation

purposes.

The first study chosen for validation is the recently reported laboratory

investigation of Schincariol and Schwartz (1990) concerning the behaviour of a dense sait

solution injected horizontally into the middle ofaless dense ambient groundwater flow.

Their experiments covered both homogeneous and non-homogenous saturated porous

média. Due to the simple rectangular geometry of their flow tank, standard

fmite-difference methods were used to numerically simulate the process. Good agrcement
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between the numerical and expérimental results were obtained. In particular, the

experimentally observed appearance of gravitationally induced instabilities m the form

of lobe shaped protuberances along the lower edge of the plume, was faithfully

reproduced by the numerical model.

The second study chosen to validate the model were the laboratory experiments

of Oostrom et al. (1992). In this experiment, the trajectory ofa dense surface applied

leachate plume was tracked using dye techniques. The heavy leachate plumes were

synthesised using aqueous solutions of Sodium lodide and Sodium Bromide. The

expérimental apparatus consisted of a rectangular flow tank packed with a homogeneous

porous medium, the mean Darcy flow being generated by the use of constant head tanks.

Again, thèse experiments also revealed the formation of gravitational instabilities in the

plume. This séries of experiments were numerically simulated using a control volume

formulation on a rectangular mesh. Good agreement as far as the mean flow

characteristics were obtained. However the instabilities were correctly simulated only

when the computational domain was significantly increased lengthwise, effectively

removing the influence of the imposed boundary conditions on the flow, to sections

situated further upstream and downstream from the injection point.

To gain a more meaningful insight into the stability mechanism, a linear analysis

of the stability characteristics was undertaken. The basic results confirm that a dense

plume is in fact unstable, the two parameters governing the stability being a concentration



Xll

Rayleigh Number and a characteristic length scale which is dépendant on the transverse

dispersivity. Curves of critical stability have been traced out and presented. Estimâtes of

the two relevant parameters for the unstable plumes observed in the experiments, confirm

the fact that their values lie outside the stability limits predicted by the simple analysis.

Finally, as a case study, the spread of a leachate plume from a waste landfill site

in Borden, Ontario was numerically simulated using the finite volume formulation on a

triangular mesh. Field measurements taken at and around the site have been reported by

MacFarlane et al.(1983). Due to the lack of résolution and uncertainty in the field data

as well as in the soil properties, only global comparisons were possible. Thèse did

however provide satisfactory agreement as to the propagation lengths of the plume. The

numerical simulations did however reveal that even at thèse scales, gravitational

instabilities form along the lower edge of the plume with amplitudes of vertical extent

sufficiently large to alter the dispersion behaviour of the plume. Estimâtes of

concentration Rayleigh number and characteristic length scales revealed that the leachate

plume is unstable and would lead to the type of behaviour predicted by the numerical

model.

The analysis and numerical simulations indicate that a dense leachate plume

would, as expected, penetrate to greater depths than one of neutral density. Furthermore,

if the stability criteria are exceeded, local instabilities of large amplitude are possible,

resulting in further important modifications to its dispersion characteristics.
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The numerical models reported here have displayed excellent numerical stability

characteristics. The fmite volume formulation presented here is robust and accurate. Due

to the basic properties of the Lagrangian-Eulerian algorithm for the transport équation,

non-positive values of concentration or parasitic oscillations in the solution do not arise,

provided that certain basic stability criteria are satisfied. Addition of source terms to

model adsorption and chemical réactions may be easily implemented.
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CONDENSÉ EN FRANÇAIS

L'eau souterraine constitue une composante importante des ressources hydriques

disponibles, souvent exploitée pour des fins domestiques, industrielles et agricoles.

Récemment, l'intérêt du public a été éveillé face à la contamination des nappes d'eau par

des déchets industriels, par la Uxiviation des dépotoirs et par des activités agricoles

comme l'application des pesticides et des engrais. De plus, à l'occasion d'audiences

publiques tenues aux Etats-unis, des inquiétudes concernant la sécurité des dépôts de

déchets radioactifs souterrains ont été exprimées. Il existe donc un besoin d'outils de

modélisation de la migration d'un panache de contaminant au travers les nappes d'eau.

Ce travail porte sur une étude numérique des écoulements de densité variable,

ainsi que sur le transport de contaminants dans des milieux poreux saturés et non-saturés.

Les équations gouvernant ce phénomène comprennent l'équation de Darcy, l'équation de

continuité pour un fluide incompressible, l'équation de transport des polluants et une

équation d'état qui relie la densité du fluide à sa concentration en polluant. La plupart

des modèles existants qui traitent de ce sujet, considèrent que la densité du fluide contenu

dans le panache est égale à celle du milieu ambiant. En fait, des études ont démontré

qu'une densité de 0.2 % plus haute que celle de l'eau peut modifier considérablement le

comportement du panache. Des sources de polluant, pré-sentes à la surface du sol,

produisent des quantités de lixiviats considérables ayant des différences de densité qui

varient typiquement entre 0.5 % et 4 % par rapport à l'eau pure. Ces différences de
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densité ont pour résultat d'affecter le comportement du polluant pendant son transport

dans l'eau souterraine, rendant la propagation considérablement différente de celle qui

existerait si le panache était de densité "neutre".

La plupart des études touchant les écoulements de densité variable dans les

milieux poreux sont consacrées au traitement du problème des intrusions salines près des

aquifères littorales. Très peu de travaux ont abordé la compréhension des migrations de

lixiviat à partir des dépotoirs de surface.

La majorité des modèles de transport et des logiciels de traitement des

écoulements souterrains utilisent les techniques des différences finies et des éléments

finis. Le modèle SUTRA développé par Voss (1984) est le plus fréquemment utilisé aux

Etats-Unis. Il est disponible dans le domaine public. Un autre modèle, MOCDENSE,

fut récemment développé aux Etats-Unis (Sanford et Konikow, 1985). Dans le présent

travail, diverses techniques numériques comme celles des différences finies, des volumes

de contrôle et des volumes finis ont été étudiées et analysées pour application.

La technique des différences finies a été mise en oeuvre sur un domaine

rectangulaire de calcul avec les équations d'écoulement exprimées en terme de fonction

de courant. La discrétisation dans le temps est une discrétisation avancée tandis que pour

les termes convectifs apparaissant dans l'équation de transport, une technique de

différentiation amont a été utilisée. Les équations algébriques pour la fonction de courant
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ont été résolues par substitution en bloc SOR (Successive Over Relaxation). A chaque

pas de temps, les valeurs de la fonction de courant dans les rangées et les colonnes dans

la matrice de résolution sont obtenues ligne par ligne en faisant alterner la direction de

"balayage" de la solution. En effet, c'est une simple modification de la technique

d'élimination de Gauss.

Pour l'équation de transport, les variables de concentration sont résolues d'une

façon implicite en direction x et ensuite implicite pour une matrice tridiagonale. Les

valeurs de vitesses requises dans cette étape sont fournies par l'étape précédente de la

résolution de fonction de courant. Les valeurs de concentration ainsi obtenues sont

utilisées pour recalculer les valeurs de fonction de courant jusqu'à ce que la convergence

soit atteinte. La solution est ensuite avancée dans le temps pour le prochain pas de

résolution. Si la convergence n'est pas obtenue dans un certain nombre d'itérations entre

les équations de fonction de courant et de concentration, le pas de temps est réduit de

moitié et le processus est répété.

Un autre schéma numérique a été utilisé, celui de la formulation en "volume de

contrôle" inspire par le travail de Patankar (1980). Cette méthode consiste en une

intégration des équations gouvernantes autour d'un volume de contrôle qui, dans la

version originale, était un maillage rectangulaire. Les flux traversant l'interface entre les

volumes sont évalués sur une base physique. La technique de résolution des équations

matricielles obtenue avec cette méthode est légèrement différente de la précédente. Pour
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calculer le champs d'écoulement, on commence avec un champ de pression approximatif

(par exemple une distribution hydrostatique). Ensuite, l'écoulement permanent est obtenu

utilisant la technique point par point de Gauss-Seidel pour la résolution. Des valeurs

initiales pour la concentration étant déjà imposées (par exemple zéro partout excepté dans

la frontière d'entrée du panache où la concentration est égale à un). Ces valeurs sont

utilisées pour calculer la densité à l'aide d'une équation d'état, puis le champ de pression

est ensuite recalculé. Le champ d'écoulement (les vitesses de Darcy) est calculé en

utilisant le champ de pression. Les valeurs de vitesse sont entrées dans l'équation de

transport qui permet le calcul du champ de concentration. Une vérification de

convergence est imposée pour les champs de pression et de concen-tration. Après la

convergence, la solution est avancée dans le temps et le processus est répété. Les

résultats obtenus avec cette formulation sont très satisfaisants d'après la validation en

laboratoire.

Une extension du concept de volume de contrôle est la formulation en volumes

finis. Dans cette dernière, les équations de base sont intégrées sur des volumes de

géométrie arbitraire, ce qui a pour principal avantage de pouvoir être appliqué direc-

tement au traitement des domaines irréguliers. Dans cette étude, la formulation en

volumes finis a été implantée sur un maillage triangulaire qui peut aisément être généré

par des préprocesseurs existants. Dans cette formulation, le traitement numérique de

l'équation de transport a été réalisé en utilisant un schéma basé sur la méthode des

caractéristiques pour le transport convectif, tandis que le terme de diffusion a été évalué
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sur un maillage triangulaire en utilisant les volumes finis avec interpolation linéaire pour

la concentration.

Afin de valider partiellement le modèle, les résultats de trois études différentes

récemment publiées dans la littérature ont été simulés. Deux de ces études sont des

recherches expérimentales en laboratoire, tandis que la troisième est constituée de

mesures prises autour d'un site d'enfouissement de déchets.

La première étude choisie pour la validation est le résultat d'une recherche en

laboratoire récemment publiée par Schincariol and Schwartz (1990), concernant le

comportement d'une solution saline dense, injectée horizontalement au milieu d'un

écoulement souterrain de densité moindre. Cette expérience concernait les milieux

poreux saturés homogènes et non-homogènes. Leur appareil consistait en un réservoir

étroit par rapport à sa hauteur et sa longueur. Le réservoir était rempli avec des billes

de verre de diamètres variés. Des réservoirs à niveau constant étaient installés à l'entrée

et à la sortie du réservoir pour ainsi permettre un bon réglage du débit. Les dimensions

du réservoir d'étude était de 116.8 cm de long par 71 cm de haut et une largeur de 5 cm.

Le réservoir était fermé en haut permettant ainsi des tests sur un milieu saturé. La

solution dense de chlorure de sodium pouvait être introduite par une fente située au

milieu. Comme la géométrie du bassin utilisé était rectangulaire, les méthodes standards

aux différences finies ont été utilisées afin de simuler numéri-quement le phénomène.

Une bonne corrélation entre les résultats numériques et expérimentaux a été obtenue.
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En particulier, les expériences de laboratoire qui ont révélé la présence d'instabilités

induites par la gravité, ayant la forme d'ondes d'amplitudes significatives le long de la

bordure inférieure du panache ont été fidèlement reproduites par le modèle numérique.

La seconde étude choisie pour valider le modèle décrit une série d'expériences de

laboratoire effectuées par Oostrom et al. (1992). Dans chaque expérience, la trajectoire

d'un panache dense de lixiviat appliqué en surface et marqué à l'aide de colorants a été

suivie. Ce lixiviat a été synthétisé en utilisant des solutions aqueuses d'iodure de Sodium

et de Bromure de Sodium. Le montage expérimental consistait en un bassin rectangulaire

contenant un milieu poreux homogène, dans lequel l'écoulement

était induit par des réservoirs à niveaux constants. Comme dans le cas de la première

expérience, celle-ci a révélé la formation d'instabilités gravitationnelles dans le panache.

Cette série d'expériences a été numériquement simulée en utilisant une formulation en

volume de contrôle sur un maillage rectangulaire. Les caractéristiques moyennes de

F écoulement ont été fidèlement reproduites par le modèle numérique. Par contre, les

instabilités n'ont été correctement simulée qu'avec un domaine de calcul significa-

tivement allongé, éliminant effectivement l'influence des conditions frontières imposées

à l'écoulement aux sections situées en amont et en aval du point d'injection.

Afin d'obtenir une connaissance plus approfondie du mécanisme d'instabilité, une

analyse linéaire de la stabilité a été effectuée. Dans cette technique, une perturbation 3-

dimensionnelle dans l'espace et avec une amplification exponentielle dans le temps est
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superposée sur les équations gouvernantes. Sa soustraction de l'équation de base résulte

en une équation différentielle décrivant le comportement des perturbations. Après avoir

imposé des conditions frontières sur les perturbations, il reste à déterminer le profil

moyen de la concentration. Dans cette étude, des considérations physiques (vérifiées par

la suite par calcul) nous ont amené à proposer une forme "Gaussierme" pour la variation

de la concentration dans le plan vertical. Les équations différentielles pour les

perturbations ont été résolues en faisant une expansion en série de fonction de valeurs

propres qui satisfont les conditions frontières. Etant donné que les conditions frontières

sont homogènes, le problème en est un de valeur propre.

Les premiers résultats de cette analyse confirment qu'un panache dense est en fait

instable, les deux paramètres gouvernant la stabilité étant un nombre de Rayleigh basé

sur la concentration et une longueur caractéristique, cette dernière dépendante de la

dispersivité transversale. Les courbes de stabilité critique ont été calculées et présentées.

Les estimés des deux paramètres des panaches observés lors des expériences confirment

que leur valeur se situe en dehors des limites de stabilité, prédites par l'analyse de

stabilité.

Finalement, la propagation d'un panache de lixiviat au site d'enfouissement de

déchets à Borden, Ontario, a été simulée numériquement en utilisant une formulation en

volumes finis sur un maillage triangulaire. Le site de Borden était un camp militaire

durant la période de 1940 à 1976. Pendant ces 36 ans, il a été estimé que 80% des



XXI

déchets se consistaient en cendres, bois et autres débris de construction. Le reste des

dépôts avait une composition de déchets surtout domestiques et industrielles. La

composition du sol et sa conductivité sont apparemment très variables, contenant du sable

et de l'argile. Les mesures prises au site et autour ont été documentées par MacFariane

et al. (1983). Parce que les données prises in situ, ainsi que les propriétés du sol sont

de faible résolution et entachées d'incertitude, seule une comparaison globale a pu être

effectuée. Toutefois, il a été possible d'obtenir une modélisation satisfaisante des

longueurs de propagation du panache. Les simulations numériques ont toutefois révélé

que, même à cette échelle, des instabilités gravitationnelles se forment le long de la

bordure inférieure du panache, avec des amplitudes verticales suffisamment importantes

pour altérer le comportement dispersif du panache. Les estimations du nombre de

Rayleigh de la concentration et de l'échelle de longueur caractéristique ont révélé que le

panache de lixiviat est instable et pourrait aboutir au type de comportement prédit par le

modèle numérique.

Les analyses et les simulations numériques indiquent qu'un panache dense de

lixiviat pénétrerait à une plus grande profondeur qu'un panache de même densité que le

milieu récepteur. De plus, si le critère de stabilité est dépassé, des instabilités locales de

grande amplitude peuvent apparaître, modifiant encore plus les caractéristiques

dispersives du lixiviat.

Les modèles numériques développés ont démontré d'excellentes caractéristiques
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de stabilité numérique. La formulation en volume finis présentée est robuste et précise.

En effet, dû aux propriétés fondamentales de l'algoritbne d'Euler-Lagrange pour

l'équation de transport, on n'obtient pas de valeurs non-positives de la concentration ou

des oscillations parasites dans la solution, tant qu'un certain critère de stabilité de base

est satisfait. De plus, il est possible d'implanter aisément l'inclusion de terme-sources

d'absorption et les réactions chimiques dans la modélisation.
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CHAPTER l

INTRODUCTION

1.1 Général

Groundwater constitutes an important comportent ofmany water resource Systems,

supplying water for domestic, industrial, and agricultural use. In récent years, public

attention has been focused on groundwater contamination by hazardous industrial wastes,

by leachate from landfills, from oil spills, from agricultural activities such as the use of

fertilizers, pesticides and herbicides and by salt-water intrusion. There has also been

considérable concern expressed on the security of radioactive wastes in repositories

located in deep geological formations.

The major processes of contaminant transport through the subsurface région are

advection, dispersion/diffusion, adsorption, decay and source or sinks which dépend on

the three-dimensional configuration of géologie deposits through which flow takes place,

and the physical/chemical properties of the contaminant. Problems relating to the

dégradation of groundwater quality are difficult to overcome due to the heterogeneities

inhérent in subsurface Systems, making zones of degraded groundwater extremely

difficult to detect. The U.S. Environmental Protection Agency (1977) has reported that

almost every known instance of aquifer contamination has been discovered only after a

water-supply well has been affected. Frequently, by the time subsurface pollution is



conclusively identified, it is too late to apply remédiai measures that would be of much

benefit. Groundwater pollution often results in aquifers or parts of aquifers being

damaged beyond repair.

In order to better manage the environment and protect valuable groundwater

resources, identification of the areas and mechanisms by which pollutants can enter the

groundwater flow system coupled with the development of reliable predictive tools

modelling the transport of contaminants within the flow System are required. The

development ofmathematical models that will faithfully represent the physical processes

involved, are invaluable tools for the évaluation of future industrial or waste disposai

sites that may ultimately pose a threat to the surrounding areas. Thèse models may also

be used to design a campaign of field measurements surrounding a particular source when

non-compliance with norms is suspected. Détails of numerical models, as well as

methods of measurement will be presented in the following sections.

1.2 Contaminant transport models

When both forced convection (i.e. transport driven by a hydraulic gradient) and

free convection (i.e. buoyancy driven transport) act together to control solute

concentration, mixed convective flow occurs. Depending on the relative magnitude of

thèse two forces, some of thèse mixed Systems may be characterized by the development

of hydrodynamic instabilities causing perturbations in the hydraulic as well as in the



concentration field of the combined flow. Thèse instabilities are of gravitational origin

and are closely related to the analogous problem of the onset of convection in a fluid

layer heated from below (the so-called Bénard problem).

The appearance of thèse instabilities coupled with the free convective flow can

cause significant variations in the dispersion of the contaminant plume from that which

would normally be expected for the neutrally buoyant case. The primary reason for thèse

instabilities is that within the plume, there will be local régions in which a dense fluid

overlies a light ambient resulting in a System that is gravitationally unstable. Thèse local

instabilities are not to be confused with the "mean" flow which of course, is influenced

by the average density gradients causing descent of the plume.

Numerical models for the simulation of groundwater flow and contaminant

transport in subsurface régions have been in development for more than three decades.

To date, most contaminant transport studies in groundwater have been restricted to

transport due to forced convection, i.e. buoyancy effects due to density variations have

not been included (Bear, 1987, Yeh, 1990, 1992). One ofthe models distributed by the

USGS (United States Geological Survey) is MOC, developed by Konikow and

Bredehoeft (1977), simulating the flow of groundwater that has a constant and uniform

fluid density. The work that has been done on mixed convective flows has focused on

freshwater-seawater interaction in coastal aquifers.



1.3 Density gradient models

Surface based pollutant sources release considérable amounts of heavy leachate

into the soil. Freeze and Cherry (1979) note that total dissolved solid concentrations for

leachate from sanitary landfills typically range from 5,000 to 40,000 mg/L (i.e.

approximately 0.5% to 4.0% density différence between the leachate and the

groundwater). This density différence frequently results in considérable modification to

the transport behaviour once the plume pénétrâtes into the groundwater région.

Most of the numerical simulations concerning density effects deals with the

fresh/salt water interface problem. One of the most intensively studied coastal aquifers

in North America is the Biscayne aquifer of southeastern Florida (Kohout, 1960a, 1960b).

Lee and Cheng (1974) and Segol and Pinder (1976) have simulated transient conditions

in the Biscayne aquifer with finite-element numerical models.

One of the most popular models available in the public domain, which may be

used for modelling variable density leachate movement is SUTRA (Saturated-

Unsaturated Transport), developed by Voss (1984), and distributed by the U.S.

Geological Survey. SUTRA has been applied to the analysis of an anisotropic coastal

aquifer system (Souza and Voss, 1987) and to the simulation of a régional aquifer

containing a narrow freshwater-saltwater transition zone (Voss and Souza, 1987). No

attempts have been made to use the model to simulate the behaviour of dense leachate



plumes emanating from disposai facilities.

Another model issued by the USGS and able to incorporate variable density flow

is MOCDENSE (Sanford and Konikow, 1985) which is an extension ofthe model MOC

(Konikow and Bredehoeft, 1977). MOCDENSE has been used by Koch and Zhang

(1992) to simulate dense plumes, emanating from a landfill, in an unconfined, saturated

isotropic homogeneous aquifer.

1.4 Other methods

Another approach to the study of groundwater contamination is with laboratory

experiments as well as field measurements. Laboratory experiments if carefully

performed under controlled conditions, can provide valuable insight into the basic

physical mechanisms underlying the dispersion processes. Some ofthe earliest works on

density effects is that of Wooding (1963) and Bachmat and Elrick (1970), who

experimentally studied the hydrodynamic instability ofmiscible fluids ofvarying density

in a vertical porous column. Paschke and Hoopes (1984) investigated the behaviour of

a buoyant plume in an analogous manner to that used in hydraulics for jets and plumes

discharging into an ambient cross flow. List (1965) using a flow tank, injected dense

solutions into a model of a confined homogeneous aquifer to study the stability of fluids

of différent densities during horizontal flow through an isotropic medium. His

complementary stability analysis indicated that a System composed of a heavier fluid



overlying a lighter one will always be unstable. Schincariol and Schwartz (1990), using

a flow container, experimentally studied the variable density flow and mixing in

homogeneous and heterogeneous média. Oostrom et al. (1992) also studied the behaviour

of dense surface injected leachate plumes in homogeneous porous média. Thèse two

séries oflaboratory experiments were accomplished under carefully controlled conditions.

In both cases, it was observed that the negatively buoyant plumes became subject to

gravitationally induced perturbations along their lower boundary. The experimentally

observed instabilities were in the form of lobe shaped protuberances that manifested

themselves as just mentioned, near the lower edge of the plume. (They may be

interprétée! as being the "salt-fmger" type instability observed in statically unstable layers

with a superposed mean flow component). As they developed spatially and temporally

however, they penetrated deeper and deeper into the plume resulting in considérable

modification to the overall dispersion.

In field measurements, samples may be analyzed by taking them from selected

wells surrounding a suspected source. This method has been used in some of the

investigations on leachate from landfills (Kimmel and Braids, 1980, MacFarlane et al.

1983). It is also possible to design a field experiment where a known tracer is injected

into the soil or an aquifer and the migration ofthe tracer followed over a period oftime.

This approach is especially useful when inhomogeneities and anisotropies in the

surrounding soil characteristics need to be studied and quantified, for example for



purposes of model validation.

1.5 Comparison of methods

The advantages of field measurements are probably self-evident. They provide

"in situ" parameter values. The disadvantages in practice, may lie in the expense

involved; and from a scientific point of view, probably in the nonuniqueness in the

interprétation ofresults. A given measurement may be attributed to différent components.

A laboratory experiment however, may avoid thèse difficulties, it may be designed to

study only some spécifie phenomena at each time. It still requires however, considérable

outlays of time and money in its préparation and exécution; furthermore its flexibility is

limited, especially when a sensitivity analysis needs to be realised. Numerical simulations

are probably the most flexible methods and are also currently the most cost-effective, due

to the enormous strides taken in developing more and more powerful computing

hardware at diminishing cost. However, there are some computational limitations, such

as whether the governing équations correctly describe the physical phenomena, whether

the numerical algorithms correctly represent convergent solutions to the governing

équations, the limits of computer capacity (although this envelope is being pushed

upwards on an almost daily basis!), etc.

As mentioned earlier, surface based pollutant sources release considérable amounts

ofheavy leachate into the soil. Under certain conditions, thèse dense contaminant plumes



may become unstable with the appearance of gravitational instabilities which may result

in the enhancement of the overall dispersion characteristics resulting in large régions

of contamination. The récent expérimental work of Schincariol and Schwartz (1990) and

of Oostrom et al. (1992) has amply demonstrated that negatively buoyant plumes tend

to manifest gravitational instabilities. It appears therefore, that the inclusion of density

effects in modelling the behaviour of a contaminant plume, is crucial to an understanding

of its transport and dispersion characteristics. A perusal of the relevant literature leads

to the conclusion that there does not appear to exist any detailed numerical studies

dealing with the sensitivity of the concentration distribution to the interaction of the

density driven flow and heterogeneities in the hydraulic conductivity.

1.6 Scope and Objectives

Consequently, the thrust ofthe présent work is to numerically study the behaviour

of dense leachate plumes in saturated-unsaturated aquifers with a view to ultimately

predicting the résultant contaminant concentration distribution. Crucial to this study will

be an examination of the density effect on the transport and dispersion behaviour of a

contaminant plume with particular attention being paid to ascertain whether

experimentally observed gravitational instabilities that form along the lower edge of the

plume are reproduced in the numerical model. Appropriate numerical simulation models

for density dépendant flow and transport in saturated-unsaturated porous média will be

developed. One of the motivations of this research lies in the belief that a fundamental



comprehensive study of variable density flow and transport will eventually lead to the

development of accurate simulation tools that would be useful for better management

of the environment.

In Chapter 2, previous work that is relevant to the subject is reviewed. This

comprises experiments, field studies as well as computational work. Chapter 3 describes

the governing équations for variable density flow and transport in saturated-unsaturated

porous média, while Chapter 4, describes the numerical methods retained for simulating

the variable density flow and transport. Chapter 5 and Chapter 7 are devoted to a

comparison of the numerical simulations with the expérimental results provided by

Schincariol and Schwartz (1990) as well as by Oostrom (1992), respectively. Chapter 6

theoretically examines the stability characteristics of a dense plume in a lighter ambient.

Chapter 8 describes the application ofthe présent work to a case study. Conclusions and

recommendations for further research form the basis of Chapter 9.
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CHAPTER 2

REVIEW 0F PREVIOUS WORK

For a majority of aquifer contamination problems, such as leachate from landfill

or spill of various materials, the assumption that the fluid density is independent of the

concentration of the solute generally holds. Two notable exceptions are sait water

intrusion into coastal aquifers (Henry, 1964; Pinder and Cooper, 1970), and the leaching

ofDAPL's (denser than water aqueous phase liquids) from waste disposai facilities into

the ambient moving groundwater (Kimmel and Braids, 1980).

A large body of literature exists that treats the sait water intrusion phenomenon

as a problem involving the flow of immiscible fluids (Mualem and Bear, 1974, Liu et

al., 1981, Taigbenu et al., 1984, Essaid, 1990). Freshwater and saltwater are actually

miscible fluids and therefore, a transition zone caused by hydrodynamic dispersion exists.

Across this zone, the density of the mixed water varies from that of fresh water to that

of sait water. In order to evaluate the behaviour of a saline intrusion, the équations

describing density dépendent fluid flow and mass transport have to be solved

simultaneously (Pinder and Gray, 1977).

The literature available on the leaching of DAPLs from land disposai sites into

ambient groundwater is somewhat limited. However, some of the basic principles of

saltwater intrusion may be applied to the leaching of DAPLs. In the next section,
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laboratory experiments and field évidence of density affected flow and transport are

discussed, followed by an overview of numerical models for density coupled flow and

transport.

2.1 Stability experiments in soil columns

Experiments in which water-saturated, long vertical columns, filled with a

homogeneous isotropic porous material, were connected to an open réservoir containing

an aqueous solution with a density greater than water were reported in a séries of paper

by Wooding (1959, 1962a, 1962b, 1963, 1969). In most of the experiments reported,

there was no initial velocity component. Convection currents developed in the column

at the unstable interface between the two fluids. The denser fluid was marked with a

suitable dye and its motion could be seen to take the form of a long finger which

descended into the column and displaced the lighter fluid. It appeared that there existed

a finite discontinuity or jump in the average fluid properties at the leading edge of the

fmger (Wooding 1962a). Wooding (1959, 1962b) concluded that configurations ofthe

isodensity surfaces vary in shape and rate in a manner much différent from those

predicted by ordinary molecular diffusion alone. Similar studies were performed by

Bachmat (1969). He concluded that whenever a heavier liquid rests on top of another

liquid miscible with the first in a porous medium, a redistribution of the liquid is

spontaneously induced. Even when the initial boundary between both liquids is horizontal

on average, the curvature ofthe actual microscopic boundaries, combined with molecular
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diffusion, will induce a macroscopic rotation of the mixture. The mass flux, as a result,

is much higher than that which would be predicted by local dispersion and diffusion

(Bachmat, 1969).

Krupp and Elrick (1969) summarized the tendency to produce unstable flow

(Fig.2.1) for the four différent combinations oftwo aqueous phase liquids and two flow

directions in a vertical column. They assumed that an increase in the concentration

usually results in an increase in density and viscosity of the solution. In the top portion

of Figure 2.1, a sait solution overlies lighter, less viscous water. When the flow is

vertically downwards, the viscosity ratio indicates the tendency for stable displacement

to be favoured. The density ratio indicates unstable flow, independent of the direction of

flow. For the configuration shown in the lower portion ofFig. 2.1, only the viscosity

ratio in combination with downward flow, suggests unstable displacement. Krupp and

Elrick (1969) experimentally studied each ofthe four possibilities illustrated in Fig. 2.1

and concluded that the density différence between the liquids was a much more

significant factor than the viscosity in causing unstable flow during the displacement.

According to Bachmat and Elrick (1970), the magnitude ofthe vertical flux of sait

through any horizontal plane of the porous material may be expressed macroscopically

in terms of its average over that plane. In général, this flux may be regarded as a sum

of several contributions:

a. ordinary molecular diffusion in a porous material;
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b. mechanical dispersion due to fluctuations of the local vertical component of the

velocity and of the local sait concentration relative to their macroscopic values at

a point in the considered plane;

e. convective dispersion due to fluctuations ofthe macroscopic values ofthe velocity

and concentration at a point in the plane relative to their averaged values in that

plane, and

d. convection by the average velocity over a horizontal cross section of the porous

material.

They also concluded that the vertical spread ofthe sait within the porous material

occurs in the form offingers, the number and configuration ofwhich are not reproducible

in practical experiments. The distribution of fingers is usually asymmetric relative to a

plane passing through the centerline of the column.

2.2 Flow container experiments

Flow container experiments investigating effects of density différences between

leachate or injected solutions and the ambient groundwater on flow and transport, were

reported by List (1965), Paschke and Hoops (1984), Schincariol and Schwartz (1990) and

Oostrom (1992).

List (1965) conducted a séries of experiments in a flow container with inside
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dimensions of 250 cm long, 35 cm deep and 15 cm wide to investigate the stability along

a moving density interface. The confined aquifer model contained a homogeneous sand

with K<^=:85 m/day. In the experiments, saline water with concentrations up to 14 g/L

(1% density contrast) was introduced into the confined aquifer through a slit at the top

of the flow container. The horizontal Darcy flux in thèse experiments ranged from 15 to

36 m/day. List (1965) found that all the contaminant plumes were stable. Realizing that

the stability of the plumes was a result of the combination of a relatively high Darcy

ïïow and low density contrast, he attempted an experiment with a 30 g/L saline input

solution (2.1% density contrast) and a Darcy flux of 1.2 m/day to détermine whether

instabilities could be generated in the expérimental apparatus. The resulting plume was

indeed unstable and lobe shaped waves developed at the lower end of the plume.

List (1965) also included a theoretical analysis of the stability of the two-

dimensional horizontal motion of two miscible fluids of différent density in an infinite

porous medium, with the fluid of higher density, p^, overlaying the lighter fluid of

density pi, in a saturated, isotropic, homogeneous porous medium. The investigation was

carried out by assuming sinusoidal perturbations to the velocity vector and the vertical

density profiles. He obtained a neutral (or critical) stability curve relating the Rayleigh

number, \T, to the wave number of the sinusoidal perturbations, for disturbances which

neither grow nor decay with time, this was the définition of the critical limit. The

Rayleigh number was expressed as
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Where l (L) is the mixing zone between the two fluids, k the intrinsic permeability, e the

porosity, g the gravitational constant, /x the viscosity, and D-r the latéral dispersion

coefficient. Based on his analysis, the author found that the flow is always unstable when

the Rayleigh number \ is positive; that is when Ap=p^-p^ > 0. However; depending on

the magnitude of \ and the wave number ofthe perturbation, the growth rate ofunstable

waves could be so low as to form a quasi-stable flow.

Paschke and Hoopes (1984) developed an analytical model for buoyant plume

characteristics for steady flow in a homogeneous, isotropic aquifer by using mass and

momentum conservation équations. Their analysis showed the buoyant plume to consist

of a near-source région which is influenced by the characteristics of the plume source,

and a far field région in which the plume is influenced primarily by the ambient flow.

The model was developed from the équations of motion, using similarity distributions.

Some of the assumptions made in this model are:

a. the groundwater flow is uniform, steady, and horizontal;

b. the aquifer is fully saturated, homogeneous, isotropic, and of mfinite extent;

e. the leachate, with the same viscosity as water, but a higher density, is miscible

with the ambient groundwater.

Equations for the trajectory and the area of the plume, and the concentration at
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the plume centerline were derived by the authors for the near source and the far field

région. The location of the plume source was chosen as the origin. The vertical

coordinate ofthe centerline trajectory, z^ was shown to be a function ofthe parameters

l, ô, N, and the horizontal distance from the source, Xç. The parameter l is a characteristic

length scale for the plume reflecting the relative importance of the vertical motion due

to the source leakage rate to the ambient groundwater velocity and dispersive mixing,

while ô is a measure of the importance of the source area on the plume behaviour. The

parameter N is a combination of some numerical constants, reflecting velocity and

density différence distributions across the plume. Paschke and Hoopes (1984) found that

in the near source région Zç was proportional to xw and in the far field Zç was

proportional to x<.l/3, which is flatter than in the near source région. They also showed

that the concentration at the centerline of the plume decreases as z in the near source

région and that plume dilution due to mixing causes the concentration to decrease in

proportion to z^2 in the far field, which is faster than in the near source région.

Paschke and Hoopes (1984) conducted experiments in a flow container filled with

a coarse sand to test their analytical model. The K^i of the sand was approximately 0.70

cm/s. The dimensions of the porous medium were 184 x 60 x 30 cm. Forty-nine

sampling ports were installed for extracting fluid samples from the sand tank. The ports

were arranged in seven columns with seven ports in each column. The sand was fully

saturated and the water was kept under a positive pressure head. Constant head tanks on

either end of the flow container controlled the steady flow through the sand. The sait
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water leachate (NaN03) was introduced into the porous medium from a third constant

head tank through a small opening (0.79 cm diameter) in the sand cover. The leakage

rate, Qo(L3/T), the density différence between the leachate and the ambient groundwater,

Apo /Pa (M/L ), and the pore water velocity, Ua(L/T), were varied between the tests. Qo

varied between 0.049 and 0.256 cm3/s, Âpo/p^ between 0.03 and 0.20, and U^ between

0.031 and 0.058 cm/s. Each ofthe experiments was left undisturbed until the plume had

reached steady state conditions. Sampling was begun after approximately 2 pore volumes

of the medium had passed through the apparatus. According to Paschke and Hoopes

(1984), the measured plume characteristics were in reasonable agreement with the model

predictions. The predicted patterns of plume trajectory, concentration, and boundary were

similar to the measured ones. Unstable plume behaviour was not reported by Paschke and

Hoopes (1984). The relatively high flow rates in the flow container probably stabilized

the buoyant plumes.

Schincariol and Schwartz (1990) experimentally studied the variable density

groundwater flow in homogeneous, layered and lenticular saturated porous média. The

dense NaCl solutions were introduced into the middle of the less dense ambient

groundwater in a flow container. The flow container produced a uniform groundwater

flow field at typical groundwater flow velocities for a variety of différent spatial

distributions ofhydraulic conductivity. The flow container was 116.8 cm long, 71.0 cm

wide, and 5 cm deep. The length and width dimensions provided a travel path for the

tracer that was sufficiently long to permit the instabilities to develop. Influent and
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effluent réservoirs were placed at each end of the tank to buffer the effect of the

inflow/outflow. The solutions containing the sait were injected through an injection

chamber into the saturated porous medium. The injected dense NaCl solution was marked

with a coloured dye (Rhodamine WT liquid) to facilitate the photographie monitoring of

flow and transport.

For the experiments in the homogeneous porous medium, the hydraulic

conductivity K was 0.056 cm/s, the average spécifie discharge was between 0.000111 to

0.00217 cm/s, the sait concentration ofthe injected solution ranged from 1000 to 100,000

mg/L. Results show that the tendency for the plume to sink increased as its density

increased. An important feature in many of the triais was the tendency for gravitational

instabilities to alter the plume. Instabilities were manifested by lobeshaped protuberances

that formed first along the bottom edge of the plume and later within the plume.

Enhanced spreading of solute perpendicular to the ambient groundwater flow field

resulted in dilute and concentrated zones within the plume. The threshold at which

density became noticeable was about 1000 mg/L. In the layered medium, the hydraulic

conductivity varied between 0.0019 to 0.3 cm/s; réductions in hydraulic conductivity of

the order of half an order of magnitude or less could influence the flow of the dense

plume. Interfaces between layers seemed to act as barriers. Dense water might accumulate

along bedding interfaces, which when dipping could result in plume migration velocities

larger than ambient groundwater velocities. The plumes developed in the case of the

lenticular porous medium were much more complex than for the other cases. The
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combination ofconvective dispersion and nonuniform flow due to heterogeneities resulted

in relatively large dispersion.

Oostrom et al. (1992) experimentally investigated dense aqueous phase leachate

plumes in homogeneous porous média. The behaviour of contaminant plumes with

différent densities was examined in three flow containers packed with homogeneous

porous média simulating an unconfined aquifer. The dimensions for the flow container

A were 80 x 40 x 5 cm, flow container B 205 x 100 x 7.8 cm, and flow container C 167

x 100 x 5.1 cm. The saturated hydraulic conductivities were 0.9236 cm/s, 0.0718 cm/s

and 0.0417 cm/s, respectively. Each flow container had three chambers: an inlet head

chamber, a chamber containing the porous medium, and an outlet chamber. During an

experiment, the head H] in the inlet head chamber and the head h^ in the outlet head

chamber were kept constant by controlling their water levels. By manipulating the water

level h, and h^ in the two head chambers, différent horizontal discharge rates Q^ and

Darcy Fluxes q^ could be established. An unsaturated zone was allowed to exist near the

top of the porous medium in each of the flow containers. The contaminant plumes

consisted ofNaI or NaBr solutions introduced into each flow container from a Une source

located at the surface of the porous medium and extending over the total width of the

container. Results showed that for a given porous medium, dense plumes were either

stable or unstable depending on the magnitude of the horizontal flow velocity, the

contaminant leakage rate, and the density différence between the contaminant solution

and the ambient groundwater. When a dense plume becomes unstable, lobe-shaped



20

gravitational instabilities develop which are unsteady and tihree dimensional. Their

expérimental results suggest that the behaviour of dense contaminant plumes overlying

a less dense groundwater stream in a homogeneous porous medium dépends on the

magnitude of certain nondimensional parameters. They concluded that the gravitational

instabilities begin to develop when the value of thèse nondimensional parameters exceed

certain critical values.

Although not directly related to dense leachate plumes evolving from land

disposai facilities, some of the results of the expérimental sand-box work by Mulqueen

and Kirkham (1972) is of interest to this study.

Mulqueen and Kirkham (1972) conducted a séries of experiments to study the

leaching of concentrated NaCl solutions, ranging from 3.8 to 15.2 g/1, into tile drains

from a surface layer of salinized sand. Intense fingering developed in all experiments.

This fmgering caused a rapid and erratic redistribution of sait within the model and a

large variation of the sait concentration in the drainage water. It was not possible to

predict when or where a finger would start or how it would subsequently develop.

According to Mulqueen and Kirkham (1972), the behaviour ofthe unstable fmgering was

controlled by the interaction between the density gradients and the hydraulic gradient.
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2.3 Field évidence of density affected flow and transport

Report on changes in leachate plume trajectories or the development of unstable

density currents as a result of density différences between contaminated plumes and the

ambient groundwater have been scarce. Based on the behaviour of some leachate plumes

from landfills and waste dumps, Van der Molen and Van Ommen (1988) concluded that

such phenomena are probably more common than is usually supposed. As an example

they mentioned that for a certain plume in the sandy coastal dunes of the Netherlands,

the downward velocity was about 45 times higher than the vertical velocity from natural

recharge. Studies of leachate from municipal sanitary landfills revealed that the load of

dissolved solids can be substantial. Freeze and Cherry (1979) présent représentative

ranges in leachate concentrations from sanitary landfills. When the total dissolved solids

in the leachate range from 5000 to 40,000 mg/L, an initial density différence between the

leachate and the ambient groundwater of 0.5 - 4.0 % can be expected.

Kimmel and Braids (1980) investigated the plume behaviour of leachate plumes

under the Babylon and Islip landfills on Long Island, New York. They found the highest

sait concentrations near the bottom of the aquifer beneath the landfills. Kimmel and

Braids (1980) assumed that the leachate flowed out ofthe landfill as pulsations ofhigh

density fluid after periods of recharge, and move as pockets, or slugs, diagonally

downward through the aquifer. The vertical velocity of thèse pockets was thought to be

considérable, explaining their présence at the bottom beneath the landfill instead of
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somewhere farther downstream. It was further assumed that thèse pockets retained their

original density while moving vertically, otherwise there would be an insufficient density

gradient to carry them downward, and pockets would not be found near the aquifer

bottom. Relatively little mixing appeared to take place before the leachate pockets

reached the bottom of the aquifer. The movement of leachate is depicted in Figure 2.2.

MacFarlane et al. (1983) studied the migration of contaminants in groundwater

at the Borden landfill which is located within the confines of the Canadian Forces Base,

Borden, Ontario. This landfill occupies approximately 5.4 ha, and received refuse during

1940 - 1976. The landfill has caused the development of a plume of contaminated

groundwater that occupies approximately 39 ha and extends more than 700 meters north

ofthe landfill. Their observations about the vertical downward movement of contaminant

plumes are particularly interesting. They noted that during much ofthe years, flow in the

aquifer was essentially horizontal from the area south ofthe landfill to the area north, but

the zone of leachate contamination beneath the landfill has penetrated downward through

the entire aquifer thickness to a maximum depth of about 20 meters below the water

table. If horizontal flow was the only influence on the distribution of the zone of

contamination beneath the landfill, the plume would only exist at shallow depths. They

pointed out that one major cause for the downward movement appeared to be the

transient downward-directed hydraulic gradient beneath the landfill, especially in the

spring and summer, which produces strong downward flow every year. Another possible

reason could be the greater density of the contaminated water relative to the natural
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groundwater in the aquifer. MacFarlane et al. (1983) stated that, although a

comprehensive analysis was not possible due to the lack of available modelling

techniques, a preliminary assessment of the possible effect of density can be instructive.

They divided the domain below the landfill into two régimes, an upper one consisting

ofhigher average total dissolved solids (TDS) of 2000 mg/1 and a température of 11 C,

and a lower one comprised of groundwater with TDS of 100 mg/1 and a température of

7°C. The upper and lower régime, therefore, had densities of p=1.0012g/cm and

p=1.000g/cm respectively. The authors compared the density driving force, assumed to

be Âp/po =0.001, with the downward components of hydraulic gradient beneath the

landfîll, which were approximately 0.01 in the spring or summer and of the order of

0.001 or less during the remaining months ofthe year. This indicates that in the spring

and early summer, the driving force due to density is small in comparison to the

downward hydraulic gradient caused by mounding ofthe water table beneath the landfill.

During the rest of the year however, the density force is of the same général magnitude

or greater than the downward component of the hydraulic gradient and is not much

smaller than the average horizontal component of the hydraulic gradient in the vicinity

of the landfill.

A third effect that could contribute to downward movement ofcontaminated water

is the lower fluid viscosity in the zone of elevated température beneath the landfill.

Température has a much larger effect on viscosity (or résistance to flow) of water than

it does on the density. Lower viscosity causes the hydraulic conductivity to be
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correspondingly higher. MacFarlane et al. (1983) estimated that in the Borden aquifer,

this effect is small because a température différence of 4 C causes a viscosity différence

of 0.1 cP, which corresponds to a relative increase in hydraulic conductivity ofonly 10%.

Kimmel and Braids (1980) also considered the viscosity effect to be small because the

présence of an electrolyte (e. g., NaCl) in water causes the viscosity of water to be

relatively invariable over a wide température range.

A similar vertical downward movement of the tracer cloud was observed by

LeBlanc et al. (1984) during a tracer test in the Cape Cod aquifer. They also concluded

that vertical components of flow associated with areal recharge and sinking of the denser

tracer cloud into the native groundwater were the cause of the downward movement of

tracer cloud.

2.4 Numerical simulation of variable density flow and transport

In groundwater flow Systems, the density of the groundwater is usually nearly

constant. It may vary slightly as a result of small variations in either température or

pressure or as a result of the présence of trace quantities of dissolved contaminants.

Sometimes however, the density can vary significantly; this can considerably modify the

flow dynamics ofthe System. Frind (1982a) listed four examples of thèse situations:

l. Seawater intrusion in coastal areas.

2 Transport in the groundwater of leachate percolating from landfills and industrial
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waste disposai sites.

3. Long-term sait dissolution from underground sait formations.

4. Transport of sait due to agricultural irrigation.

Some of the earliest work on simulating variable density flow and transport was

that of Henry (1964). He developed an analytical solution for the steady-state sait

distribution in a confîned coastal aquifer by means of a Fourier-Galerkin double-series

expansion. He found that dispersion and gravitational forces interact to cause the

establishment of a saltwater convection cell and that consequently the steady state

condition is one of dynamic equilibrium. His solution was based on the assumption of

a constant dispersive mechanism in the aquifer. It was further assumed that the

propagation of pressure was very fast relative to sait transport and that the release of

water from storage was negligible. Under thèse assumptions, the équation governing

groundwater flow can be simplified to

V(p<7)=0 (2.2)

The sait transport for this problem is expressed by the advection-dispersion équation. A

schematic représentation of initial and boundary condition for Henry's problem is

presented in Fig 2.3.

A transient solution to the seawater intrusion problem was obtained in 1970 by

Pinder and Cooper (1970), who used the method ofcharacteristics. This transient solution

was shown to approach Henry's steady-state solution from two différent starting
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conditions, one starting from an initial sharp interface at the seaward boundary, the other

starting from a sharp interface calculated on the basis of static equilibrium. Steady state,

however, was not attained because of high computing costs.

Lee and Cheng (1974) reformulated Henry's problem in terms ofstream functions

and developed a numerical solution for the steady-state sait distribution using a finite

élément method. They also assumed constant dispersion. Reasonable agreement with

Henry's solution was found.

The first transient solution based on velocity dépendent dispersion coefficients was

developed in 1975 by Segol et al. (1975), using a Galerkin fmite élément method. A

distinctive feature of this work is that they solve for the pressure and the two velocity

components simultaneously at each node in the finite élément grid, thus obtaining a

continuous velocity field. This scheme, now known as the so-called 'three équation

scheme' (Pinder and Gray , 1977), is considérée! a valuable benchmark against which

other solutions should be compared (Frind, 1982a). The calculated velocities are

subsequently substituted into the transport équation and concentration distributions

obtained. The concentration distribution is used to update the fluid density values. This

iterative procédure is repeated until an error criterion is met. Segol's transient solution

also approaches Henry's steady-state solution, but steady state itself was not reached

because of high computing cost.
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One of the most popular models available publicly which may be used for

modelling of variable density leachate movement is SUTRA (Saturated-Unsaturated

Transport), developed by Voss (1984), and distributed by the U.S. Geological Survey.

SUTRA is intended for two dimensional simulation of flow and transport in saturated and

unsaturated porous média. Flow and transport input parameters may vary in value

throughout the simulated région. The dépendent variables in the model are the fluid

pressure p and fluid solute mass fraction C (mass solute per mass of total fluid). Users

of the program have to create rather complicated input files, including initial and

boundary conditions and information on the chosen grid. Basic knowledge of the finite

élément method is required. When SUTRA is used for simulation of Systems with

unsaturated flow or when the simulation includes time dépendent boundary conditions

or sources, some Fortran programming is necessary. The SUTRA. manual (Voss, 1984)

contains comparisons with several published solutions of Henry's problem. SUTRA has

been applied in the analysis of an anisotropic coastal aquifer System (Souza and Voss,

1987) and simulation of régional aquifer containing a narrow freshwater-saltwater

transition zone (Voss and Souza, 1987). No attempts have been made to use the model

to simulate the behaviour of dense leachate plumes emanating from disposai facilities.

Another model issued by the USGS and able to incorporate variable density flow

is MOCDENSE (Sanford and Konikow, 1985) which is an extension ofthe model MOC

(Konikow and Bredehoeft, 1977). The dépendent variables in the model are the hydraulic

pressurejo and solute concentration C. The transient groundwater flow équation is solved
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by an implicit finite différence method and the solute transport équation is solved by a

two step process. Whereas advection is computed by a method of characteristics, the

dispersion is calculated by an explicit finite différence method. The model MOCDENSE

was used by Koch and Zhang (1992) to simulate dense plumes, emanating from a

landfill, in an unconfined, saturated isotropic homogeneous aquifer with permeability

k =k^=10 m , spécifie storativity 10 jand porosity 0.2. A 5.4 m head différence was

imposed on the 300 m high by 1400 m long aquifer. Spécifie information on the recharge

rate and the contaminant leakage rate from the landfill were not included. One of the

conclusions drawn was that hydrodynamic dispersion has a large impact on the density

effects. A large dispersivity leads to increased spreading of the plume and to an overall

réduction in the influence ofdensity variations in the plume. For sufficiently small values

of the dispersivity, convective instabilities and fingering phenomena occur at the

horizontal plume boundaries, which lead to enhanced vertical mixing of the leachate. In

such cases the inclusion of the density effect becomes extremely crucial for a proper

évaluation of the fate of the contaminants.

The équations governing density-dependent transport are the Darcy équation, the

continuity équation for the fluid, the continuity équation for the solute, and the

constitutive équation relating fluid density to concentration. The fluid continuity équation

in non-linear transport problems is often written in terms ofpressure. It was noted (Frind,

1982a) that a disadvantage of this formulation is that numerically large static pressures

may dominate the dynamic pressure changes that cause motion. The resulting scheme
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may therefore operate at less than optimum numerical efficiency. A more efficient way

is to use an "équivalent freshwater head" instead of pressure. Finite élément models with

équivalent freshwater hydraulic head as a dépendent variable or, équivalent freshwater

hydraulic head and contaminant concentration as the dépendent variables were reported

by Frind (1982a,b), Huyakorn et al. (1987), Senger and Fogg (1990a,b) and Galeati et

al (1992). The équivalent fresh water head ^ (L) was defmed by Frind (1982a) as

^=-P-+z (2.3)
Po^

where po (ML~3) is the density of the fresh water.

Frind (1982b) used his model to simulate dense leachate transport in an

unconfined aquifer. The leachate moved from a disposai site on the surface into a

saturated aquifer by means of natural recharge. Unsaturated flow was neglected. For

density différences ofup to 0.71% (10 g/1 total dissolved solids in the leachate) between

leachate and the ambient groundwater, Frind (1982a) showed that the dispersive

mechanism dominated the density effects all the time and no instabilities were observed

with its set of parameters. This may, however, very well be the results of the high

dispersivity values used in its model: OL=IO m, a-^l m.

Huyakorn et al. (1987), using the équivalent freshwater head formulation,

présentée a three-dimensional finite élément model for the simulation of saltwater

intrusion in single and multiple coastal aquifer Systems with either a confmed or phreatic
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top aquifer. They improved the density-coupling of the transport and flow équations

using a Picard sequential solution algorithm with spécial provisions to enhance fast

convergence of the iterative solution. Spatial discretization of three-dimensional régions

is performed using a vertical slicing approach designed to accommodate complex

geometry with irregular boundaries, layermg, and/or latéral discontinuity. Four examples

were presented to demonstrate the model vérification and utility. They concluded that the

model formulation and solution algorithms were cost effective and able to handle a

variety of flow conditions.

Senger and Fogg (1990a,b) used both stream function and équivalent freshwater

heads to simulate steady state flow of variable density groundwater in a régional, cross-

sectional flow model through the Pola Duro Basin, Texas, where fluid densities vary

between 1.0 and 1.15g/cm . Their modelling showed that the régional groundwater flow

pattern in the Palo Duro Basin was not significantly affected by variations in fluid

densities, because the topographically driven flow component dominated buoyancy forces

associated with dense brine. An exception was near the eastern boundary where high

fluid densities caused stronger downward flow. However, the distribution of équivalent

freshwater heads (EFH) was considerably différent when assuming variable densities

versus uniform densities. They concluded that flow velocities computed from an

équivalent freshwater head (EFH) solution showed some irregular scatter compared with

those computed from the stream function solution. The latter velocities were more

accurate than those computed from the équivalent freshwater head (EFH) solution due
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to the typically finer discretization in the vertical direction for régional, cross-sectional

models.

Galeati et al. (1992) numerically solved the problem of density-dependent

transport of sait in an unconfined coastal aquifer by means of an implicit Eulerian-

Lagrangian finite élément formulation. They noted that such a formulation lead to

symmetric positive definite finite élément matrices, unconditional stability, with reduced

numerical dispersion. The final algorithm was suitable for parallel computation. The

method had been used to study the effect of dewatering on seawater intrusion within a

vertical cross section through an aquifer in southern Italy, related to the construction of

a thermoelectric power plant. It should be pointed out that using the concept of

équivalent freshwater head as a basis for analysing variable-density flow may lead to

significant errors in predicted flow directions and velocity magnitudes. Since density is

not a constant at each point in the aquifer, the équivalent freshwater head may not exist

and cannot be extracted from field data. This contradiction may be found in Huyakorn

et al.(1987).

2.5 Numerical methods used in simulating groundwater flow and transport

In modelling groundwater flow and transport, the flow and transport équations are

coupled through the Darcy velocities and the constitutive relation between fluid density

and concentration. As a result of the dependency of the density on concentration, the
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flow and transport équations have to be solved simultaneously, using numerical methods.

The method used by modellers dépends mainly on the properties ofthe équations.

The flow équation is of a parabolic nature. In saturated-unsaturated porous média, it is

a nonlinear parabolic équation. The transport équation, when advection is the dominant

transport process, is of a hyperbolic nature. However, if a System is dominated by

dispersive fluxes, the transport équation is of a parabolic nature. Numerical methods

developed for parabolic partial differential équations are generally not suitable for

hyperbolic équations, and vice versa. The principal numerical methods currently in use

for the flow and transport équations are finite différences, finite éléments, finite volumes,

the method of characteristics and/or some hybrid combination of thèse methods.

The finite différence method is probably the oldest, most popular, and

conceptually the simplest of the numerical procédures (Pinder, 1988). It consists of

discretizing the problem area into rectangular cells which are identified with discrète

points or nodes. Partial differential équations encountered in subsurface simulation are

approximated using a truncated Taylor séries expansion about each point. A set of

approximating algebraic équations thereby replaces the original continuous partial

differential équations. Because the fmite différence approach is conceptually simple and

the resulting set of algebraic équations is amenable to solution using a number of

effective algorithms, this approach plays a very significant rôle in subsurface simulation.
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The finite élément method is based on the weighted residual principle. The

solution of the problem is approximated by a summation of basic functions, the triai

function. This triai function is then substituted into the partial differential équations.

Generally, since the triai function do not exactly satisfy the partial differential équations

a residual results which is not equal to zéro. By selecting a set of appropriate weighing

functions the residual may be forced to zéro in an average sense. This last step générâtes

the necessary algebraic équations that need to be solved for the coefficients of the triai

function. The Galerkin method uses one of the basis functions as the weighing function.

The choice of the nodal System and the order of the weighting and basis functions,

greatly influence the accuracy of the simulations. It has been found that for the transport

équation, when advection terms are important, the standard Galerkin formulation faces

numerical oscillations because it leads to a set of algebraic équations similar to that

obtained using central différences in a finite différence method (Huyakorn 1977, Hirsch,

1988). In the finite différence method, thèse difficulties are overcome by using backward

(upwind) différences to approximate the advective terms, depending on the sign of the

advection velocity. In finite éléments, an upwind finite élément approach has been

developed by choosing weighting functions of asymmetric form which are dépendent on

the direction of flow velocity along each side of the élément (Heinrich et al., 1977,

Huyakorn, 1977, Christie et al. 1976, Roe, 1992).

Patankar (1980) introduced a control volume formulation for the advection-

dispersion équation. The most attractive feature ofthe control volume formulation is that
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the intégral conservation of quantifies such as mass is exactly satisfied over any group

of control volumes and, of course, globally, over the whole calculation domain. The

problem now becomes on how to approximate the flux between the control volume

interfaces. Patankar (1980) constructed an interpolation formula or profile between the

nodes inspired by the exact solution to the steady state problem.

Baliga and Patankar (1980, 1983, 1988) were the first to introduce the idea of

control volume finite élément methods for advection-dispersion problems. They

discretized the domain using three-node triangular éléments. Within each élément, the

transportée! scalar ( in both the convection and diffusion terms ) is interpolated using a

flow-oriented function that considers the relative strengths of advection and dispersion

in the mean flow direction, as well as transverse dispersion. This interpolation function

is derived from a simplified version of the appropriate governing équations, written with

respect to an elemental flow-oriented coordinate System. The aligning of one of the axes

ofthe local élément coordinate System with the mean flow direction in the élément helps

to reduce the false diffusion.

The method of characteristics is an intuitively attractive method for the solution

of the advective-dispersive transport équation. The method utilizes the characteristic

curves and characteristic équation to eliminate difficulties such as numerical dispersion

and oscillations associated with a dominant convective term. Usually one begins by using

the classic finite différence method to solve the flow équation. Fluid velocities are
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obtained through numerical differentiation of this solution and subsequent substitution

into Darcy's law. Mathematical particles identified with fluid concentrations are now

moved along characteristic curves using this velocity field. A new concentration field is

established by averaging the particle concentrations in each finite différence cell. The

resulting field is modified using the change in concentration determined through a finite

différence solution to the characteristic équation which accommodate dispersion. Pinder

and Cooper (1970) calculated the transient position ofthe seawater front by solving the

flow équation for fluid pressure, using a finite différence procédure, and the transport

équation, using the method of characteristics.

The advection-dispersion équation is generally solved numerically with methods

that treat the problem from one of the following three perspectives: the Eulerian,

Lagrangian, or a combination of the two, the Eulerian-Lagrangian perspective. Reviews

and discussions of thèse three groups ofmethods have been provided by Neuman (1981,

1984) and Yeh (1990, 1992).

In the Eulerian approach the équation is discretized by a finite différence or a

finite élément grid System fixed in space. Eularian methods perform well when the

transport problem is dispersion dominated and the concentration distribution is relatively

smooth. The upwind finite différence methods and upwind finite élément methods were

developed to eliminate oscillations for advection dominated transport problems, but

introduce large numerical dispersion. Numerical dispersion has to be controlled by using
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a finer grid system and a smaller time step, or by using higher-order approximations in

space, time or both (Laumbach, 1975, Holly and Preissman, 1980). A drawback of

Eulerian methods is that they often suffer from restrictions on grid size and time step

duration.

In the Lagrangian approach, either a deforming grid or a fixed grid in a

deforming coordinate system may be used. Yeh (1990) pointed out that the Lagrangian

methods also may be used to circumvent the problem of oscillation, but they have sévère

drawbacks. First, for a long-term simulation, excessive déformation of the grid System

will result, which unfortunately is prone to numerical instability. Second, when the région

of interest is composed of multimédia, the deformed grid may cross the material

boundaries, which may cause difficulties in the handling of équation parameters,

especially if sorption and chemical réactions are important. Third, when multiple sources

are encountered, concentration fronts may propagate in différent directions and cross each

other at various angles, which would result in mesh tangling so that the simulation is

stymied.

In the combination Eulerian-Lagrangian approach a fixed grid is used but with

two steps for the computations: the first step is to compute the Lagrangian concentration

with particle-tracking methods, and the second step is to compute the final concentration

with either finite différence, finite élément, or some other numerical method. In this

method one adopts a Lagrangian viewpoint when dealing with the advection terms and
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a Eulerian viewpoint when dealing with other terms in the transport équation. In the

Lagrangian step, either continuous forward particle tracking (Konikow and Bredehoeft,

1977), single step reverse particle tracking (Molz et al., 1986), or the combination of

both (Neuman, 1984, Yeh, 1990, 1992) has been used. The main advantage of a

combined of Eulerian-Lagrangian approach is that it can handle advection dominant

problems, and overcome the problem of oscillations in the solution. The disadvantage of

this approach is that in général the accuracy ofthe Lagrangian-Eulerian approach dépends

on the order of interpolation which is used to obtain the Lagrangian values. A first-order

interpolation can always eliminate oscillation, but its ability to reduce numerical

dispersion dépends on the spatial variation of the solution and time step. Thus this

approach is usually time consuming.
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CHAPTER 3

DEVELOPMENT 0F GOVERNING EQUATIONS

Growing concern about groundwater and soil contamination from a variety of

sources has generated increased interest in the transport of contaminants in the subsurface

région.

In the case ofmiscible solute contaminant transport, différences in fluid properties

are ignored in most mathematical models which treat the contaminant as a passive tracer.

However, it has been shown that many solute contaminant plumes which originate from

waste disposai facilities are significantly denser than the ambient groundwater in natural

aquifers. Due to density différences, thèse dense plumes tend to penetrate deeper into the

underlying aquifers than neutral plumes; furthermore the appearance of gravitational

instabilities lead to an enhanced mixing and dilution of the contaminants. Negatively

buoyant plumes are likely to contaminate aquifers to greater depths than plumes with the

same density as the ambient groundwater (neutral plumes). Although considérable

progress has been made over the last few years, the présent understanding of contaminant

plume behaviour is incomplète, especially when variable density is involved. This is

particularly due to the scarcity of well documented, detailed field and laboratory

experiments. Inthe following section, we will discuss the governing équations of variable
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density flow and contaminant transport in saturated-unsaturated porous média. As a

preliminary step, however, we would like to explain the concept of the continuum

approach to porous média and the représentative elementary volume.

3.1 The continuum approach to porous média

3.1.1 Définition of porous medium

Examples of porous materials are numerous. Soil, porous or fissured rocks,

ceramics, fibrous aggregates, filter paper, sand and a loaf of bread are just a few.

Somewhat less obvious examples, but still part of this group, are large géologie

formations of karstic limestone, where the open passages (such as solution channels or

caverns) may be of substantial size and far apart. AU of thèse materials have some

characteristics in common that permit them to be grouped and classified as porous média.

A porous medium may be defined as (Bear, 1972);

l. A portion of space occupied by heterogeneous or multiphase matter. At least one

of the phases comprising this matter is not solid. They may be gaseous and/or

liquid phases. The solid phase is called the solid matrix. That space within the

porous medium that is not part of the solid matrix is referred to as void space (or

pore space).

2. The solid space should be distributed throughout the porous medium within the

domain occupied by a porous medium; solid must be présent inside each
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représentative elementary volume (defined later). Another basic feature of a

porous medium is that the various openings comprising the void space are

relatively narrow.

3. At least some ofthe pores comprising the void space should be interconnected.

The above définitions demonstrates the hopelessness of any attempt to describe

in an exact microscopic manner the geometry of the internai solid surfaces that bound

the flow domain inside a porous medium. Directing our attention to the fluid or fluids

contained in the void space, and trying to describe phenomena associated with them, such

as motion, mass transport, etc., the same difficulties are encountered. This obliges us to

introduce the continuum approach as a tool for handling phenomena in porous média.

3.1.2 Molecular and microscopic levels

First, the concept of fluid requires some further élaboration. Actually, fluids are

composed of a large number of molécules that move about, colliding with each other and

with the solid wall of the container in which they are placed. By employing théories of

classical mechanics, we could fully describe the motion of a given System of molécules:

e.g., given their initial positions in space and their momenta, we could predict their future

positions. However, despite the apparent simplicity of this approach, it is exceedingly

difficult to solve the problem of the motion of even three molécules (assuming that we

know all the forces, which is also doubtful). In addition, because the number of
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molécules is so large, their initial positions and momenta cannot actually be determined.

Instead of treating the problems, say of fluid motion, at the molecular level, we

may adopt a différent approach, statistical in nature, to dérive information regarding the

motion of a System composed of many molécules, averaging phenomena in the fluid

continuum filling the void space. We refer to the continuum level as the microscopic one.

At this microscopic level, we overlook the actual or molecular structure of a fluid and

regard it as a contimmm.

Essential to the treatment of fluids as continua is the concept of a particle. A

particle is an ensemble of many molécules contained in a small volume. Its size is much

larger than the mean free path of a single molécule. It should, however, be sufficiently

small as compared to the considered fluid domain that by averaging fluid and flow

properties over the molécules included in it, meaningful values, i.e., values relevant to

the description of bulk fluid properties, will be obtained. Thèse values are then related

to some centroid of the particle. Then at every point in the demain occupied by a fluid,

we have a particle possessing definite dynamic and kinematic properties.

Associated with the question of particle size, or of the elementary volume that

should be considered as a point within the fluid continuum, is the définition ofthe fluid

density.
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Density is the ratio between the mass Âm of an amount ofmatter and the volume

At/ occupied by it. Following Bear (1972), let us consider a point P in the fluid, and let

Àm; denote the fluid mass in a sufficiently large volume, AU;, for which P is the

centroid. The average density, ?„ ofthe fluid in AU is p,=Àm,/A[/,. Obviously, ifAC/,

is too large, say of the order of magnitude of the entire field of flow, it is meaningless

to assign the value p, to the point P, Le., to represent the ratio Am/ALr, for the fluid in

the vicinity of P. This is especially true when the fluid is inhomogeneous. To détermine

how small AU, should be in order for p, to represent the fluid in the neighbourhood of

P, we gradually reduce A[/, around P, determining the ratio Am,/À[7, for a séquence of

volumes A [7, : AC/i > A(r/2 > A £,3 •••. The results of thèse computations are shown in

Fig.3.1.

If we start from a sufficiently large AU,, gradual changes may be observed in p,

if the fluid is inhomogeneous. Fluctuations around p, diminish as At/, becomes smaller.

Then as At/, converges on P, a range of practically no changes in p; with changes in Air7,

is observed. However, as At/, is made smaller and the number of molécules in it becomes

smaller too, a range is reached below a certain volume ÂUy where the number of

molécules in AU, is so small that any further réduction of A U, appreciably affects the

ratio Am/At/j. This happens when the characteristic length dimension of AU, becomes

of the order of magnitude of the average distance X between the molécules (mean free

path of molécules). As Air7, —»'0 very wild fluctuations in the ratio Am;/AU; are observed,

and it is meaningless to use p, as a définition for the density ofthe fluid at P. Hence the
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fluid's density at P is defined as:

p(P) = lun p, = lim (A^2,/A^.) C3J

The characteristic volume AUy is called the physical point of the fluid at the

mathematical point P. The volume AUy may now be identified with the volume of a

particle at P. By the procédure just described, a material made of a collection of

molécules in a vacuum is replaced by a contmuum filling the entire space. We obtain a

fictitious smooth medium (instead ofthe molécules), called fluid, for each point ofwhich

a continuous function of space p is defined. For any two close points P and P':

p(P)=limp(P/) (3.2)
p'—p

We can now treat physical phenomena from the molecular level to the

microscopic level. We have a fluid continuum enclosed by solid surfaces — the solid

surfaces of the porous medium. At each point of this fluid continuum we may define the

spécifie physical, dynamic and kinematic properties ofthe fluid particle. In principle the

flow of a fluid in a porous medium may be treated at this level, at which we focus our

attention at what happens at a point within the fluid, regarded as a continuum. For

example, we may use the Navier-Stokes équations for the flow of viscous fluid to

détermine the velocity distribution of the fluid in the void space, satisfying specified

boundary conditions, say, of vanishing velocity, on all fluid-solid interfaces. However,

this approach is usually impractical due to our inability to describe the complex
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configuration of this boundary. Moreover, even if we could solve for values of state

variable, e.g. pressure, at the microscopic level, we could not verify thèse solutions by

measurements at this level.

To circumvent thèse difficulties, another level of description is needed. This is a

coarser level of averaging — the macroscopic level, This is again a continuum approach,

but at a higher level.

The following paragraph deals with the macroscopic approach to the dynamics

of fluid in porous média.

3.1.3 Porosity and représentative elementary volume

In the section 3.1.2 we have seen that essential to the concept of a continuum is

the particle, or the physical point, or the représentative volume over which an average

is performed. This is also tme in the passage from the microscopic to the macroscopic

level. Our task now is, therefore, to détermine the size of the représentative porous

medium volume around a point P within it. From the discussion in the previous

paragraph we know that this volume should be much smaller than the size of the entire

flow domain, as otherwise the resulting average cannot represent what happens at P. On

the other hand, it must be large enough (greater than the size of a single pore) that it

includes a sufficient number of pores to permit a meaningful statistical average required
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in the continuum concept.

We shall now define volumetric porosity and the représentative elementary

volume (REV) associated with it, following the same procédure as that described in

paragraph 3.1.2 for the définition of density. Let P be a mathematical point inside the

domain occupied by the porous medium. Consider a volume AU^ much larger than a

single pore or grain, for which P is the centroid. For this volume we may détermine the

ratio:

n,= n,^U,) = (A£/,)//A^. (3.3)

Where (Àî7y), is the volume ofvoid space within AU,. Repeating the same procédure, a

séquence of values n,(A[7,), ;'=1,2,3,... may be obtained by gradually shrinking the size

of ÀC/j around P as a centroid: At/,: ALri > ÀL^ > A[/3 •••.

For large values of AU;, the ratio n, may undergo gradual changes as AÎ7, is

reduced, especially when the domain considered is inhomogeneous. Below a certain value

ofÀ[/,, depending on the distance ofP from boundaries of inhomogeneity, thèse changes

or fluctuations tend to decay, leaving only small-amplitude fluctuations that are due to

the random distribution of pore sizes in the neighbourhood of P. However, below a

certain value AUy we suddenly observe large fluctuations in the ratio n,. This happens as

the dimensions ofAt/, approach those of a single pore. Finally, as A (7, —> 0, converging

on the mathematical point P, n, will become either one or zéro, depending on whether
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P is inside a porc or inside the solid matrix of the medium. Figure 3.2 shows the

relationship between n; and ÀC/;.

The medium's volumetric porosity n(P) at point P is defined as the limit of the

ratio n, as ÀÎ7, —>• Àt/o:

(A£/,),(^)
n(P) = lim 72,(A^.(P)) = lim v-- ~\ '^~ ' (3-4)

At/^At/n - A£/,-*Aî/n ^ty,l'-^iA UQ U Uf~^i^ UQ

For values ofA[/,< AUy, we must consider the actual présence ofpores and solid

particles; in this range there is no single value that can represent the porosity at P. The

volume AUg is therefore the représentative elementary volume (REV) or the physical (or

material ) point of the porous medium at the mathematical point P. Obviously, the limit

A [7, —>• 0 is meaningless. From the définition ofthe REV it follows that its dimensions

are such that the effect of adding or subtracting one or several pores has no significant

influence on the value of n.

We shall assume that both AUy and AL^, vary smoothly in the vicinity of-P. Then

n (P) = lim n (p/) (3.5)
p'->p

which means that n is a continuous function of the position of P within the porous

medium.
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Thus, by introducing the concept ofporosity and the définition ofREV, we have

replaced the actual medium by a fictitious continuum in which we may assign values of

any property (whether of the medium or of the fluids filling the void space) to any

mathematical point inside it. The continuum model of a porous medium éliminâtes the

need for specifying the microscopic configuration ofthe individual phase and enables the

solution of flow problems through porous média by available methods of mathematical

analysis. The configuration of the void-solid boundary and the interphase boundaries

within the averaging volume, as well as the effect of conditions that prevail on them,

appear in the macroscopic description of the flow in the form of coefficients. The

numerical values of thèse coefficients have to be determined experimentally for any given

porous medium.

3.2 Density dépendent fluid flow in saturated-unsaturated porous média

According to Bear (1987), subsurface water may be divided vertically into zones

depending on the relative proportion of the pore space occupied by water: a zone of

saturation, in which all pores are completely filled with water, and an overlying zone of

aeration or an "unsaturated" zone, in which the pores contain both gases (mainly air and

water vapour) and water.

Figure 3.3 shows a schematic distribution ofsubsurface water. Water (e.g., from

précipitation and/or irrigation) infiltrates the ground surface, moves downward, primarily



48

under the influence of gravity, and accumulâtes, filling all the interconnected interstices

of the rock formation above some impervious stratum. A zone of saturation is thus

formed above this impervious bedrock. In the saturated zone (Fig.3.3) an upper boundary,

the water table, or phreatic surface is defined as the surface on which the pressure is

atmospheric. It is revealed by the water level in a well penetrating the aquifer, which the

flow is essentially horizontal. Actually, saturation extends a certain distance above the

water table, depending on the type of soil. Well, springs and streams are fed by water

from the zone of saturation.

The zone ofaeration extends from the water table to the ground surface. It usually

consists ofthree subzones: the soil water zone, the intermediate zone and the capillary

zone (capillary fringe).

The soil water zone is adjacent to the ground surface and extends downward

through the root zone. The moisture distribution in this zone is affected by conditions at

the ground surface: seasonal and diurnal fluctuations of précipitation, irrigation, air

température and air humidity, and by the présence of a shallow water table. Water in this

zone moves downward during infiltration (e.g., from précipitation, flooding ofthe ground

surface or irrigation), and upward by evaporation and plant transpiration. Temporarily,

during a short period of excessive infiltration, the soil in this zone may be almost

completely saturated.
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The intermediate zone extends from the lower edge of the soil water zone to the

upper limit of the capillary zone. It does not exist when the water table is too high, in

which case the capillary fringe may extend into the soil water zone, or even to the

ground surface. Temporarily, water moves downward through this zone as gravitational

water.

The capillary fringe extends upward from the water table. Its thickness dépends

on the soil properties and on the uniformity of pore sizes. The capillary rise ranges from

practically nothing in coarse materials to as much as 2 - 3 m and more in fine materials

(e.g. clay). Within the capillary zone there is usually a gradual decrease in moisture

content with distance above the water table. Just above the water table, the porcs are

practically saturated. Moving higher, only the smaller connected pores contain water. At

a still higher level, only the smallest connectée! pores are still filled with water. In the

capillary fringe, the pressure is less than atmospheric and vertical as well as horizontal

flow of water may take place.

When the saturated zone below the water table is much thicker than the capillary

fringe, the flow in the unsaturated zone is often neglected. However, in most drainage

problems, or groundwater contamination, from such cause as the migration of fertilizers

and pesticides from agricultural and domestic usage, of solvents and toxic substances

from industrial usage, and of countless other inorganic and organic chemicals into the

topsoil and through the unsaturated zone, the flow in the unsaturated zone may be of
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pnmary importance.

A général form of Darcy's law, which is commonly used to described saturated-

unsaturated flow in porous média, may be used to express the pressure and density driven

components for flow of a nonhomogeneous fluid (Bear, 1972) :

ï//=-^(ë+P^ê) <3-6)
e 5'p ~ 9x, ' "' QXf

where v, is the pore fluid velocity in the i direction (L/T), k,j is the permeability tensor

(L2), p is the pressure (ML~'T'2), g is the accélération due to gravity (LT2), p is the fluid

density (ML ), 4> is the porosity of the porous medium, y. is the absolute viscosity

(ML T ), and S is the degree of fluid saturation in pores.

In order to discuss the relative importance of pressure and density driven flows,

Bear (1972) rewrote Eq.(3.6) in the form

A-Po^ 9 ( ^ ^)_^(P/-PO) 9z (37)
£H ô^.' poff -' £H QXj

where pg is some référence density, usually the density of the ambient groundwater. In

Eq.(3.7) it is assumed that the porous medium is saturated (k^l and 8=1). According to

Eq.(3.7), the motion may be interpreted as being caused by two driving forces: one

resulting from piezometric head différences, where the head ((p/pgg)+z) is referred to a

fictitious homogeneous fluid ofdensity py, and the other resulting from a buoyancy force,

directed vertically upwards, acting on a fluid particle of density P{ embedded in a fluid
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ofdensity pg. Bear [1972] went on to evaluate the orders ofmagnitude ofthe two terms

on the right hand side of Eq.(3.7). The orders of magnitude of the two terms are

0(kpgg/(<^(u)(Àh/L) and 0(kg Ap/^/x), respectively , where Ah and Ap are the

characteristic head and the density différences, L is a characteristic length. The ratio

between the two orders of magnitude is 0 (Ap/po) /(Àh/L). Bear pointed out that we may

distinguish between two cases, according to the relative magnitude of Ap/po with respect

to Àh/L. When Ah/L is so small that (Ap/po)/(Ah/L) »1, the flow is determined mainly

by the buoyancy force and the flow régime is one of free convection. When

(Àp/po)/(Ah/L) « l, the flow is governed mainly by the external head gradients and the

flow régime is one of forced convection. Bear noted that actually the criterion should be

based on a comparison between the vertical component ofthe hydraulic gradient and the

vertically directed buoyancy gradient. A free convection flow régime may still exist when

the horizontal components of the external driving force are large. Obviously, as he

pointed out, the division into two différent flow régimes is not a clear-cut one, and the

définition of a flow régime as belonging to either of the two régimes is rather arbitrary,

especially at intermediate values of (Ap/po)/(Ah/L). Moreover, we have used the

characteristic quotients Ap/po and Ah/L to characterize the entire flow demain. We could

have based the discussion on local values of grad h and Ap/py, as the flow régime may

be différent in différent portions of the flow domain depending on the local values of

grad h.
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3.2.1 Governing équation of groundwater flow with pressure as the variable

The basic fluid mass balance équation or continuity équation is (Bear, 1979)

9^Pl .V.(p<7)=^ (3.8)

where S, represents the sources and sinks, q is the Darcy flux (LT ), has the form

g=(f>Sv=6v (3.9)

here 0 == <^)S is the volumetric fluid content.

The first term ofEq.(3.8) can be expanded by making use ofthe équation ofstate

for the density of a fluid under isothermal conditions, p = p (p,C), which states that fluid

density dépends on the pressure, p, and the concentration of the dissolved solids, C, to

yield

ap^p) , 9(^S^_Qp ^ 9(^Sp^9Ç (3
9t 9p 9t SC 9t

By developing the first term on the right-hand side ofEq.(3.10), we may obtain

(Bear and Verruijt, 1987)

Wp) __^^sp^^p9s)^<i>s9^9^ (3-11)
9t v~"r 9p ~r Qp "r Qp 9t T~9C9t

The first two terms in the brackets on the right hand side represents changes due to

the fluid and soil compressibility respectively, and can be replaced by a suitable
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coefficient of storage, 5p (T L'2) defined as (Bear and Verruijt, 1987)

S,=^S(Î^S(\-4>)a^p9-) (3.12)

In this équation, f3 (LT2M~') is the coefficient of fluid compressibility, and a

(L M ) the coefficient of soil compressibility. ^is an empirical coefficient that represents

the fraction ofthe so il's cross-sectional area occupied by water. The coefficients fî and

a are defined as,

j8 = -Ï-9P- (3.13)
P S?

a = -1-4É (3.14)
1-(^) 9p

The third term ofEq.(3.11) represents the change in storage with fluid pressure

in the unsaturated zone given by the fluid rétention curve. Assuming that the differential

water capacity, e (M'LT2), obtained by differentiation of the appropriate saturation-

capillary pressure relationship, is defined by

9 S d 6
C = (f)^. = ^— (3..

9p

Inserting the coefficient of fluid mass storage and the differential water capacity

in Eq.(3.11), results in

ô(^p) , pçs^c) SP^S9^9^ (3.16)
Qt r^p ~ ' 9t 'r" SC 9t
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Combining Eqs.(3.6), (3.8), and (3.16) gives the expanded density dépendent fluid

mass balance équation, with sources and sinks, for isothermal conditions, as follows

P(^)^^-^-V.[(MP).(V^P^)]^ (3.17)
[l

3.2.2 Governing équation of groundwater flow with stream function as the

variable

The général form of the governing équation for the variable density flow in

saturated-unsaturated porous média was given in section 3.2.1. In this section, we will

discuss a spécial case: the variable density flow in saturated porous média with some

assumptions that allow derivation of the flow équation with the stream function as the

variable.

The Continuity Equation may be rewritten in saturated porous média:

a(?p) + V-(P^) = ^ (3-18)
9 t

Darcy's Law:

^•=-^(i£+p^) (3-19)
p. ~ 9x, ' " Qx',

~J ~"7

Assuming that the relation between density and concentration is given by
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p=po(l+£Cl) (3.20)

e = p"^~po (3.21)

Po

where py is a référence freshwater density, p^ is the density corresponding to the

maximum concentration, C is a dimensionless concentration that varies between zéro and

unity. The dimensionless parameter E has a value in the range of 0.025 - 0.030 for sait

concentration in seawater.

Substituting Eq. (3.20) into Eq. (3.18), the flow équation then becomes

p^^po£^=po(l+eC)V^+po^-VC (3.22)

where S is the mass storage. Following Lee and Cheng (1974) we assume that the fluid

and aquifer are incompressible, so Sp=0, and also since e is much less then unity, the

terms containing e may be neglected. This results in the zeroth order approximation of

the continuity équation which has the form

V.<7=0 or A(^Â(^)=o (3.23)
Qx"A' Qz

A stream function ^ may now be introduced (Senge and Fogg 1990; Lee and Cheng,

1974; Henry, 1964).

Assuming that the principal directions ofhydraulic conductivity coincide with the
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coordinate axes (K^=0), the flow équations may be written as

q. - -K^ (ô(<(po^))) (3.24)
^ ~ "^vô7

,^-^3W^^C)) (3.25)

For two-dimensional flow, the fluid flux defined in terms of a stream function

may be expressed as:

x̂
= 9± (3.26)

Qz

^ - -9± (3.27)
Qx

Eliminating the pressure terms in (3.24), (3.25) by cross differentiation, we arrive at the

équation:

±(-L9^^C) + -^|-^) = 0 (3.28)
9x' K 9x ' 9z' K 9z'

Comparison ofEq. (3.28) and (3.23) shows that horizontal flux in the continiuty

équation is expressed by the stream function gradient and a reletive density term

p ~
(e C = -'- — '-"-'). The latéral density gradient expresses the rotation of the fluid due to

Po

variable density (Senger and Fogg, 1990).
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3.2.3 Mathematical models for the hydraulic properties in the unsaturated zone

The soil water rétention and hydraulic conductivity functions are the crucial

parameters for predicting saturated-unsaturated flow. Their theoretical description and

measurement romains a continuous and sometimes frustrating challenge for hydrologists

and soil scientists. While in situ field measurements undoubtedly are the most

représentative ofactual flow conditions, current methods are likely to remain approximate

in nature. This is due in part to simplifying assumptions inhérent in most field methods,

and in part to problems of obtaining undisturbed samples. Field methods usually require

the use of a tensiometer for the measurement ofwater content using gravimetric, neutron,

or gamma ray techniques. Most current methods are based on simplifying assumptions

about the flow régime during redistribution of soil water after reaching saturated or near-

saturated steady state flow (Nielsen et al 1986).

Direct field methods to détermine the unsaturated hydraulic conductivity are time

consuming, expensive, and usually subject to simplifying assumptions. An attractive

alternative to direct measurement is the theoretical calculation of the hydraulic

conductivity from more easily measured field or laboratory soil water rétention data.

Mualem (1976) derived a new model for predicting the hydraulic conductivity from

knowledge of the soil-water rétention curve. Mualem's derivation leads to a simple

intégral formula for the unsaturated hydraulic conductivity which enables one to dérive

closed-form analytical expressions. Van Genuchten (1980) derived such expressions using



58

the équation for the soil-water rétention curve which is both continuous and has a

continuous slope. The resulting conductivity models generally contain three independent

parameters which may be obtained by matching the proposed soil-water rétention curve

to expérimental data.

Van Genuchten's équation was given by (Van Genuchten, 1980, 1985)

e = Q^ es~er (3.29)
' [\+\ah\"}m

where 6, and 0, are the residual and field-saturated volumetric water contents,

respectively, h is the pressure head, and a, n and m are empirical constants. In practice,

0r and 0; must also be considered empirical. He then noted that using the simplifying

assumption that m = 1-1/n, Eq. (3.29) can be combined with the predictive conductivity

model ofMualem (1976) to yield an expression for K(S} ofthe form

K = K^S^ [!-(!- S}lm )m ]2 (3.30)

where

s-^
here / is an empirical parameter that was estimated by Mualem to be approximately 0.5

for most soils. Equation 3.31 works well for medium and coarse-textured soil, while

predictions for fine-textured materials generally are less accurate (Van Genuchten, 1985).
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3.3 Solute transport in saturated-unsaturated porous média

The major processes of contaminant transport through a groundwater system are

advection, dispersion, diffusion, adsorption, various chemical and biological réactions,

and decay phenomena all of which may be regarded as sources and/or sinks for the

solute ( Bear 1987).

3.3.1 Advection

Advection refers to the transport of a material by the mean motion of a fluid in

a porous medium. This mechanism is often considered to be the major transport process.

The advection flux Jy, expressing the flux carried by the water at its average velocity V,

may be described as (Bear, 1987):

/„ = 0 VC (3.32)
a

3.3.2 Molecular diffusion

Molecular diffusion is the result of the thermal kinetic energy of the molécules,

which in the présence of a concentration gradient, results in a net flux of solute toward

the low-concentration zone (Bear, 1972). At the microscopic level, the flux vector, J(),

due to molecular diffusion is expressed by Fick's law
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J, = -D^C (3.33)

where D^ is the coefficient ofmolecular diffusion in a fluid continuum (equals about 10'5

cm /sec in a dilute System). By averaging (3.33) over the REV, and introducing certain

simplifying assumptions, Bear (1987) derived an expression for the macroscopic flux in

the form

J^ = -D^T*-^7C= -D^-^C (3-34)

where D^' = VD^ is the coefficient of molecular diffusion in a porous medium and T'

often referred to as the tortuosity, is a second-rank symmetric tensor that expresses the

effect of the configuration of the water occupied portion of the RE V. We use the

averaging symbol ~ in Eq. (3.34) in order to emphasize the différence between this

équation and (3.33).

3.3.3 Mechanical dispersion

The process of mechanical dispersion describes the volume-average deviations of

concentration from those predicted by the mean motion alone. Bear (1972,1987) pointed

out that we must refer to what happens at the microscopic level to explain this

phenomena. According to Gillham and Cherry (1982), there are three microscopic

mechanisms that give rise to velocity variations in homogeneous média (Fig. 3.4):

l. The velocity distribution associated with the flow of viscous fluid through a pore.
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The velocity of the soil distribution is zéro at the solid surface and reaches a

maximum at the centre of a pore.

2. Variations in velocity as a result of différences in the porc geometries.

3. Fluctuations in the stream lines with respect to the mean flow direction.

The mechanical dispersive flux J^, is a macroscopic flux that expresses the effect

of the microscopic variations of the velocity in the vicinity of a considered point. It may

be described in terms of a Fick's law, analogous to the molecular diffusive flux (Bear,

1987):

;„ - -D^C (3.35)

Where D,,, is a second rank symmetric tensor called the coefficient of mechanical

dispersion.

According to Bear (1987), by adding the dispersive flux, expressed by (3.35), and

diffusive flux, expressed by (3.34), we obtain J^

f,= -(D^D;)-^C= -D^C (3.36)

where the coefficient D^ is called the coefficient of hydrodynamic dispersion.

The total flux, Çtotai °f a pollutant, by advection, dispersion, and diffusion may

now be written in the form
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Q^i=^CV-D^C) (3.37)

The mechanical dispersion coefficient is related to a dispersivity tensor which

expresses the microscopic configuration of the solid-fluid interface. Following

Scheidegger (1961) and Bear (1961), the dispersivity is a fourth rank tensor with 81

components. Based on certain assumptions on the porous medium and the principle

directions of the dispersivity tensor, the number of nonzero components can be greatly

reduced. In an isotropic porous medium, the components of the mechanical dispersion

tensor are related to two widely used parameters: a^ (L), the longitudinal dispersivity, and

OT (L), the transversal dispersivity. According to Bear (1987), the longitudinal

dispersivity a^ expresses the heterogeneity of the porous medium at the microscopic

scale. Le., due to the présence of pores and solids. In laboratory experiments with

homogeneous sand columns it was found that a^ is of an order of magnitude of the

average sand grain diameter. The transverse dispersivity is estimated as being 10 to 20

times smaller than a^.

For an isotropic porous medium, the mechanical dispersion coefficient may be

expressed as follows (Bear, 1972, 1987) :

W,-a,\V\6,^-a^^- (3.38)

where ôy is the Kronecker delta with ô,j=0 for i ?îj and ôij=l for i=]. So the hydrodynamic

dispersion coefficient becomes
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(D, ), - a,\ V\8^(a^-a^—.D,8, (3.39)

3.3.4 Governing équation for contaminant transport in saturated-unsaturated

porous média

The macroscopic mass balance équation of pollutant can be written as

ô(ip - -^-^-f-Opr.RC.-PC (3.40)

where q^ is the total mass flux (ML'2T-1), expressed by Eq.(3.37),/denotes the quantity

of pollutant that leaves the water by ion exchange or adsorption through the water-solid

interface as a result of chemical or electrical interactions between the pollutant and the

solid surface, T the rate ofwhich that mass ofa polutant is added to the water by various

decay phenomena. Pollutant may be added by injecting polluted water into a porous

medium demain or removed from a porous medium domain by withdrawing (polluted)

water. P and R denotes the rates of water withdrown or added, respectively. 6 the

volumetric water content and C the pollutant concentration in the aqueous phase (M/L ).

Sources and sinks of the pollutant, expressed by the term OpT, results from

various processes, e. g., chemical réactions among components within the liquid,

radioactive decay and biodegradation, and growth due to bacterial activities.
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In order to obtain an expression for f, we turn to the équation for the same

pollutant component in the solid phase (Bear, 1987). Let F denote the mass of the

pollutant on the solid per unit mass of solid. With pg denoting the solid's density and 0;

denoting the solid's volumetric fraction and neglecting any advective, dispersive, or

diffusive flux of pollutant présent in the solid phase, the pollutant mass balance on the

solid surface reduces to

a<8.P^)-. (3.41)
ô/

By eliminating/from (3.40), and substituting (3.37) into (3.40), we obtain

Q(e^l^Q(6^F)-=-^6(CV-D^CVQ^^RC^-PC (3.42)
9t 9t

Equation (3.42) is a single équation in the two state variables, C and F. We need

an additional relationship between C and F. An adsorption isotherm is an expression that

relates the quantity of an adsorbed component to its quantity in the fluid phase, at

constant température. In général, the isotherms may be divided into two classes:

l. Equilibrium isotherms, that are based on the assumption that the quantities ofthe

component on the solid and in the adjacent solution are continuously in

equilibrium. Any change in the concentration of one of them produces an

instantaneous change in the other.

2. Nonequilibrium isotherms, which assume that equilibrium is not achieved

instantaneously, but rather that it is approached at a certain rate which, in général,
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dépends on both C and F.

The most common approach is a spécial form of the Freundlich isotherm,

F=K,C (3.43)

where a simple linearity is assumed between F and C. The coefficient K^ (L M'') is the

slope of the linear exchange isotherm. Further détails and forms of isotherm may be

found in Bear (1987).

It should be mentioned that it has been observed that the dispersivity increases as

the scale of the experiment increases. Field-observed dispersion coefficients are orders

ofmagnitude higher than those found in laboratory scale tests. This scale dependency has

been reported and discussed by many researchers. For more détails the reader is referred

to Pickens and Grisak (1981), Gelhar (1986), Sudicky (1986), Dagan (1986), Arya et al.

(1988), Neuman (1990) and Oostrom (1991).

3.4 Initial and boundary conditions

3.4.1 Initial and boundary conditions for the flow équation

To completely define a unique problem, the governing équations must be

constrained by appropriate initial and boundary conditions. It is assumed that an initial
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distribution of pressure (or stream functions) may be described in the région of interest,

R, as

p = p,{x,y,z,Q) (3.44)

or

^ = ^,{x,y,z,Q) (3.45)

where R is the région of interest and p, or i/', is the prescribed initial condition, which

may be defined or alternatively obtained by solving the governing équation for the steady

state.

The spécification of boundary conditions is the most difficult and intricate task

in groundwater flow modelling. From the dynamic point of view, a boundary segment

may be classified as flow-through or impervious. From the physical point of view, it

may be considered as a soil-air interface, or soil-soil interface, or soil-water interface.

From the mathematical point ofview, it may be treated as a Dirichlet boundary on which

the function values are prescribed, thèse conditions are normally applied using physical

arguments, to the soil-water interfaces such as occur in streams, rivers, lakes, artificial

impoundments, and coastal lines. Neumann boundary conditions on the other hand, are

those in which the gradients of the function are known, thèse conditions do not occur or

may not be specified very often in real-world problems. They may be applied to the

bottom of the média where natural drainage takes place, or to a Cauchy boundary on
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which the total flux is specified. Thèse conditions are normally applied to surface water

bodies with known infiltration rates through their bottom layers of sediment or liners into

subsurface média. An even more mathematically difficult boundary is that on which the

boundary conditions are not known a priori, but are themselves part of the solution to be

sought. In other words, on the mathematically variable boundary, either Dirichlet or

Cauchy conditions may prevail and vary with time. As to which condition prevails at

a particular time may be determined only during the cyclic process of solving the

governing équations. Thèse conditions commonly occur at a soil-air interface.

Independent of the point of view from which they were derived, all boundary

conditions must eventually be transformed into a mathematical statement for quantitative

simulation. Thus, we will specify the boundary condition from the mathematical point

of view in concert with dynamic and physical considérations. The boundary conditions

imposed on any segment of the boundary are taken to be either Dirichlet, Neumann,

Cauchy, or Variable. Thus, the boundary may be split into 4 parts, Bp , B^ , Bç , and

BV denoting Dirichlet, Neumann, Cauchy, and Variable boundaries, respectively. Here

we only give the pressure boundary conditions imposed on the first three types of

boundaries, stream function boundary conditions may be specified in a similar fashion.

Dirichlet conditions :

p = p^x,,y,,z,,t) on B^ (3.46)
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Neumann Conditions:

- a- K-^p = ^ (^'7é,^, Q on B^ (3.47)

and Cauchy conditions:

-S-K-^P+p^z)=g^xb^b'zb'n on Bc (3-48)

where (x^,y^,z^ ) is the spatial coordinate on the boundary ; n is the outward unit vector

normal to the surface, po , c^ , and qç are the prescribed Dirichlet function values,

Neumann flux, and Cauchy flux, respectively.

The conditions imposed on a boundary of the variable-type, which is normally a

soil-air or soil-water interface, treated separately for précipitation and nonprecipitation

periods, take the following mathematical form.

During précipitation periods, we impose

P = Pp^,y^z^f) on By (3.49a)

or

-S-K-^(p+p^z) = qp^x^y^z^f) on By (3.49b)

where p is the allowed pressure which dépends on the allowed ponding depth and q? is

the throughfall ofinfiltration. Either Eq. (3.49a) or (3.49b) is applied to the boundary By
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when the exact boundary conditions cannot in général be predicted a priori. Such a case

would arise at the ground surface where either Dirichlet (ponding) or Cauchy

(infiltration) conditions could prevail. The change over from Dirichlet conditions

specified by Eq. (3.49a) to Cauchy conditions specified by Eq. (3.49b) or vice versa is

déterminée during the cyclic process of solving the governing Equation (3.17).

During a non-precipitation period , we impose

p = pp{x^y^z^t} on By (3.50a)

or

p = p^y^f) on By (3.50b)

or

-S-K-(Vp^pffVz) = q^y^t) on S y (3.50e)

where p^ is the minimum allowed pressure at the air-soil interface and q^ is the

maximum allowed evaporation rate, which is the potential evaporation. Again, only one

of équations (3.50a) through (3.50e) is used at any point on the variable boundary at any

instant of time.

Equations (3.44) through (3.50e) with governing équation (3.17) constitute a



70

général mathematical statement ofthe physics offlow in saturated-unsaturated subsurface

média. Analytical solutions for this général System do not exist. Numerical algorithms

have therefore to be devised to solve the problem.

3.4.2 Initial and boundary conditions for the transport équation

Initial conditions include information on the concentration distribution at t = 0 at

all points within the considered région, R.

C= C(x,y,z,Q) G R (3.51)

Due to physical inputs imposed in the domain's environment, the concentration

C = C(x,y,z,t), may be specified as a known function, say g,(x,y,z,t), at all points of a

given boundary (or boundary segment), Bp, independent of what happens within R; we

can write the boundary condition in the form

C= g,{x,y,z,t) on B^ (3.52)

When the physical phenomena occurring in the environment impose a known flux,

say gz (x,y,z,t), at all points of a boundary segment, Bç, independent of what happens

within the demain considered, the condition

n-{QCV-QD-^C~) = g^{x,y,z,t) on B^ (3-53)

where n is the outward unit vector normal to the surface, may be used . Since both C and
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VC are involved in (3.53), this is a Cauchy boundary condition.

Another type of boundary condition is the Von Neumann boundary conditions.

It has the form

S-(-6D-\?C) = g,{x,y,z,t) on B^ (3.54)

where g3(x,y,z,t) is a known function. An impervious boundary, or a seepage face,

frequently results in this type of boundary condition.

Equations (3.51) through (3.54) with the governing équations constitute a général

mathematical statement of contaminant transport in saturated-unsaturated subsurface

média. Due to the complexity of the problem, numerical methods need to be devised in

order to solve the problem.



72

CHAPTER 4

NUMEMCAL CONSIDERATIONS

Surface contaminant plumes emanating from water disposai facilities are often

denser than the ambient groundwater. Under certain conditions thèse dense plumes may

become unstable, resulting in larger than expected dispersion and contamination of large

régions of an aquifer. For a given aquifer, the stability of dense plumes is governed by

the groundwater flow velocity, the contaminant leachate rate, the coefficients of

dispersion and the density différence between the contaminant solution and the ambient

groundwater. The thrust of the présent work is to numerically study the behaviour of

dense leachate plumes in saturated-unsaturated aquifers and ultimately predict the

résultant contaminant concentration distribution. Of particular interest is to ascertain

whether experimentally observed gravitational instabilities that form along the lower

edge of the plume can be reproduced in the numerical model.

First, using the stream function approach, a standard finite différence method is

employée to simulate the laboratory experiments of Schincariol and Schwartz (1990) on

an intruding negatively buoyant plume. Secondly, a finite volume formulation on a

rectangular mesh will be discussed and implemented to numerically reproduce the

laboratory results of Oostrom (1992) on a dense plume caused by leaching at the surface.

Finally, an attempt has been made to model leachate concentration from a landfill in

Borden, Ontario. Subsurface concentration distributions obtained from core samples have
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been measured and reported by MacFarlane et al. (1983). Of particular interest in this

simulation was to ascertain if the gravitational instabilities observed in the previously

mentioned laboratory experiments would be reproduced numerically at such large scales.

The numerical simulation for this case study was accomplished by a finite volume

implementation ofthe governing flow équations on a triangular mesh. A hybrid technique

using a finite volume formulation in conjunction with a characteristics based method was

used for the transport équation. The results of thèse simulations (which will be discussed

in Chapter 5, 7 and 8) indicate that good agreement between the expérimental results of

Schincariol and Schwartz and of Oostrom are obtained. For the Borden landfill, the

plume simulation demonstrated gravitational instability. The field measurements however

were not sufficiently detailed to reveal this effect. Nevertheless, it may be expected that

the influence of thèse instabilities on the overall dispersion characteristics of the plume

is likely to be important.

4.1 Simulation of the expérimental results of Schincariol and Schwartz

Since the numerical results are to be compared with the expérimental data of

Schincariol and Schwartz, a brief description of their expérimental setup is given here.

For further détails, the reader is referred to the original paper.
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4.1.1 Expérimental apparatus (Schincariol and Schwartz)

A flow tank is filled with a porous medium consisting of various sizes of

industrial glass beads (Fig. 4.1). Influent and effluent réservoirs are placed at each end

of the tank to buffer the effect of the inflow/outflow. A dense Sodium Chloride (NaCl)

solution is introduced into the middle of the lighter groundwater through a centrally

disposed slot. The flow tank produces a uniform groundwater flow field at typical

groundwater flow velocities for a variety of différent spatial distributions of hydraulic

conductivity. The tank itselfis 116.8 cm long, 71.0 cm wide, and 5 cm deep. The length

and width dimensions provide a travel path for the tracer that is of sufficient length to

permit the development of the local instabilities .

The spécifie objectives of this study are to obtain the concentration distribution

using numerical techniques in order to compare with the experimentally observed data.

In the following section, the governing System of équations for the flow régime together

with the appropriate boundary conditions are briefly presented. This is followed by

détails of the numerical methods employed to solve the governing équations.

4.1.2 Governing équations

The général form of the governing équations for the variable density flow and

transport problems in saturated-unsaturated porous média were given in Chapter 3. Since
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the experiment was conducted in isotropic, saturated porous média, we will choose the

two-dimensional flow équation which uses the stream function as the dépendent variable

and the transport équation in which adsorption is not considered and in which sources

and sinks are assumed absent. For the convenience of the discussion, we rewrite thèse

governing équations in the following form

The flow équation in the two-dimensional vertical plane:

_a_^j_aij^ ^ ArJ_A = R^
9x' K^ 9x' 9z' K^ 9z' 9x

The transport équation for the solute (Bear,1972):

<f)-ê + ^c^-DiJ'^=Q (4-2)
Qt Qx,~ " 1J Qxj

The relation between density and concentration:

p=po(l+eC) (4.3)

e = P^x-Po (44)

Po

The volume flux is expressed as:

1. -9± (4'5)

q^ -^ (4.6)yz- ^x

where i and j are space coordinates, q; the spécifie discharge in the i direction (LT1), ky

is the permeability tensor (L2), p, is the fluid viscosity (ML''T-1), p the fluid density
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(ML'3), p the fluid pressure (ML''T2), g gravitational accélération (LT2), (f) the effective

porosity ofthe medium, C solute concentration (ML'3), Dy the dispersion tensor (L2T-1).

Po is a référence freshwater density, p^ the density corresponding to the maximum

concentration and C a dimensionless concentration that varies between zéro and unity,

For an isotropic porous medium in two dimensions, Dy may be written as

(4.7)
D,. =IJ

^
^

^
Az

D^ = ^ +a^

fi.
^D;

+
x iz \l€+<iz

(4.8)

^ = ^ +3r

ft^c
^D;

'fi
(4.9)

^+^

^ = 4>^ = (^-^)- ^^

ftl+^2
(4.10)

where a^, a-^ are respectively the longitudinal and transverse dispersivities. D^' is the

molecular diffusion coefficient.

4.1.3 Dimensionless équations

Introducing the characteristic quantities for length, conductivity, spécifie discharge

and concentration. Equations (4.1) and (4.2) may also be cast in the following
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dimensionless form:

A(_Lil) + A(^3î) = £^^' (4.H)
9x' K Qx' 9z' K- Qz' On Qx

9C_ 9 ,r> ÔC^ 3C'^ 9^ 9C^ 9C^
:+^-3"^>+~^(

9z' 9z'

9C , 9C

^ =-^(^^ +^^)+_^(^^ +^
^T Tx^xx'9x^xz^"Qz^zx~Qx'^zz^ (4j2)

" ôJr '" 9~z

where

x ^ zx = 4, -z = 4 (4.13)

(4.14)

(4.15)

A. = ^ , ' + ~^ , qz +^ (4.16)

/^2+^2 ^IC+€

<p

Kxx

^
%L'

^̂
'

e =

K^-

e
~c.

^
^0

T =
%/
(J)L

q2 _ Q2

Az = a7-=== + ^-=== +ffd (4.17)
\/^2+^2 -W+~€

A. = A. = (^-^—^— (4.18)
W+~€

^=^=9Î (4.19)
% 9Z
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g = ^ = -9^ (4.20)
^ % a^

^ = ^ ^ = ^, ^ = ^ (4.21)IL - ï' "r Z' ^d Z%a, =

where, L, Kg, qo and Co are the characteristic quantities.

4.1.4 Initial and boundary conditions

Initially, the flow is horizontal, so the initial condition for the stream function is

a linear distribution from top to bottom (Fig. 5.1). The initial condition for the

concentration is everywhere zéro. The boundary conditions to be imposed for the stream

function équations may be obtained from information on the fluxes or flow patterns at

the boundaries. For impervious boundaries, a Dirichlet boundary condition is appropriate.

The boundary condition for the concentration is imposed in a similar fashion. The

Dirichlet boundary condition is used for an inflow boundary. Von Neumann boundary

conditions 9C/9z = 0 are imposed on the impervious boundaries (top and bottom of the

container). For the outflow boundary, the "uniform" condition 9C/ôx=0 may be used.
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4.1.5 Numerical scheme

The governing Equations (4.11),(4.12) with the boundary conditions may be

solved numerically. A first order forward différence approximation is used for the time

derivatives. The diffusion terms are treated using second-order central différence

approximations. In the convection dominated flow, spécial attention has to be paid to the

convective terms. It is well known that using the second-order central différence

approximations to discretize the convective terms in the transport équation can produce

wiggles in the solutions at high Peclet number. This may be avoided using upwind

schemes. Upwind schemes such as the first-order upwind scheme, the second-order

upwind scheme, the third-order upwind scheme, and the QUICK scheme (Quadratic

Upstream Interpolation for Çonvective Kinematics) (Leonard, 1979) may be used.

Using higher order upwind schemes, a slight disadvantage appears, in that the

discretized équations are no longer represented by a tri-diagonal matrix but take a penta-

diagonal form.

A général finite différence expression for an arbitrary scalar function in upwind

form may be written as follows:

U-9f\^ = Auf,_^BUf^Cuf,+Duf,^EUf^ (4.22)
Qx

Where A", B", C', Du, and E" aie functions of u whose expression for différent upwind
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Table 4.1 The coefficients for the différent schemes

Scheme A" B" e" D" E"

Central
différence

y

ZLx
u

îLx

l-order

upwind
u\ + u

2à.x
JM
A;r

\u\ -n

2A;r

2-order

upwind
\u\+u
4A;r

u\ + u

àx
3 H
2A^

\u\ -u

A^T

\u\ -u

4A;r

3-order

upwind
u| +y

12 A^
|y| +2u

3A;r
u\

ZLx
\u\ -lu

3A^
\u\ - u

12 A^

QUICK
u\ +u 2\u\+5u
16 ^x 8A;r

3|"1
8À;r

2\u\-5u

8A;r
u\ -u

16 A^

Numerical expérimentation reveals that the first-order upwind scheme can

eliminate the wiggles and, as shown in Table 4.1, the discretized équations are in tri-

diagonal form. It does suffer from the disadvantage however, of introducing numerical

artificial diffusion. By choosing a fine mesh, the truncation errors and artificial diffusion

can be greatly reduced. Consequently in this study, the convection terms in the transport

équation have been treated using the first-order upwind scheme. For the stream function
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équation, the central différence technique can be readily employed as no convection term

is présent. The resulting algebraic équations are solved by a line-by-line iterative method.

4.1.6 Discretized équations

For numerical computations, the governing differential équations (4.11),(4.12) are

cast in discretized form. AU the convection terms in the transport équation have been

discretized with the first-order upwind scheme, while the dispersion terms have been

discretized using central différences. For the time derivatives, the first order forward

(finite) différence scheme has been adopted. The final discretization procédure is

developed as follows.

4.1.6.1 Discretized flow équation

For the flow équation, the discretized représentation with the stream function

formulation is

l 11;M,-^,_ l ^•-^•-V

^,i, A;r2 ^,1, A^r2~zzh-J ~" ~~zzi-^J

^ l ^^-^v_ l ^-^,,--1 (4.23)

KXX'J-{^,,i Az2 ^,,1 À^2~xxij^- ~" ~~xxv~i

'h\J ^i-\J

132AT

where R^KySlqo. Written in compact form
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where

a^,,,,-(a.b)^,^b^,_,,

+e^,i-(e+/) ^.+/'^._i = f/

a =
l

Kzz'^

l

Kzz-{j

l

f^YÏ- : l-^v+i

l

KXX,J.]_"v~2

l
A^-2

l
A;r2

l
Az2

l
Az2

(4.25)

(4.26)

(4.27)

(4.28)

d = R^L-ctlÂ (4.29)
2A^

4.1.6.2 Solution of the algebraic équations

The set of algebraic équations are solved using a line-by-line iterative method.

Then the solution of the discretized équations for each Une may be obtained with the
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standard Gauss-elimination procédure for a one-dimensional System, e.g. the TDMA (Tri-

Diagonal Matrix Algorithm). Patankar (1980) pointed out that the convergence ofthe

line-by-line method is fast, because the boundary-condition information from each end

of the line is transmitted at once to the interior of the domain, no matter how many grid

points lie along the line. By alternating the directions in which the TDMA sweep is

employed, the influence of all boundaries is rapidly transmitted to the interior.

A Block SOR (Successive Over Relaxation) method (Camarero, 1986) has been

used to solve the algebraic équation (4.24). AU the nodes in a given column or row are

solved implicitly in simultaneous fashion. The algorithm is now described for sweeps

executed in either of the two coordinate directions.

S OR implicit by row

The configuration for a typical row relaxation is shown in Fig. 4.2. For example

the System described by Eq. (4.24) is written for the unknown points along the row, the

neighbouring

a^-^-(a^b-) ^-^b^-,^.

+e^l-(e+/) 4ry+/'t\/-l = (/

where -^ is the old value, ^ is the corrected value, and \1/~ is the provisional value. An

old value is corrected by the provisional value and a relaxation factor, u, as follows
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l(/+ = l|; + U(T(;--l|;) (4-31)

Thus one obtains for the provisional values

^~,j= ^+ CF., /œ (4.32)

where the correction is defmed as

^•=^-^ (4-33)

Substituting Eq. (4.32) into Eq. (4.30) one obtains

b.CF,^-a^fCF^^ CF,^ = - RF^-fCF^ (4.34)
CO ~~'~IJ G) "v d) ~-/+1^ --V "~V-

where the residual RFy is defined by

Rf,,.= ^,^.-(^6)^.-^,^.

+ e^^i-(e+f^v+f^v-ï-d

(4.35)

SOR Implicit by column

The configuration for a typical column relaxation is shown in Fig. 4.3. The

différence équation is written for every node along a given column yielding:
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a^,^-{a^b)^-^br,^.

+ei|;-^-(e+/-) ^~,^f^~^ = d

From which as shown previously, the correction équations are obtained

{CF^ - a^fcF^ ^ CF^ - - RF,,- bCF,^ (4.37)

where the residual RF,j is defined by

Rfi, = a^M, -(.s+b)^t, -éi);^
(4.38)

+ e^,i-(e+/')^ +/'^.i-(/

Eqs.(4.34) (4.37) in conjunction with the boundary conditions may be solved by

the standard Gauss-elimination method, for example, using the TDMA ( Tri-Diagonal

Matrix Algorithm).

4.1.6.3 Discretized transport équation

For the transport équation, the discretized représentation is
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C1_CÛ.D^±
AT

^ e n;\..
Jc^._l.

^± c?:\
A^2 ^1+1J A^2 ^-li/'

D^.. i

^1 cntl .
^.... l-V-

^ cîl+l
Az2 ^+1 Az2 ^'-1

D^,.1,+D^.-1, D^1+D^,,-1'xxi^J ~XX'-^J

- (—2__—2_+
A^2

^-z ^u-i^ cn^
Az2 / " V

^ "xzh\J ' "xzi^\ ^ n+î. _ ^xzi^J ' "xzij-\ ^ n+î.

4A^Az v-7+1</+1 4A^A^ ^+1^-1

XZ,-ÏJ+ xzij.\ ç 77+1 ^

M^xLz ^-V+l

'xzi-\J' ^xzij-\ ç n+\

4A^Az "^-V-l

^1+^ ^n+ï
2A;r ^-V ïx

cs+1^.

1J

1z

2A^
^1-J^^Î1..
"y-i Az ^ v

^1-^ ^72+1

î/^x ^-W

^l-^z ^2+1
2A^ ^V+l

(4.39)

To use the line-by-line iteration technique, it is better to cast the discretized

équation separately in the i and then the j direction, respectively. Here n+1 has been

removed for convenience.

For the i direction

^,^b,C^e,C,^=f, (4.40)

where

D"-^
a'~- -(-^f+

A;r2

^1+^,

2A;r
(4.41)
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^=J_.M.^
-/ AT A;r Az

-Ï-ÏAI./ XX,_ij •^'ZZ,J^ ^ZZ,J_]_^^ ^,-^ -,J. •V-
r_ '"2 '"2

Az2 A^2

(4.42)

^ - -(-

XX'^J ^\-Qx

A^2 2A-Ï

(4.43)

^ D^:l D^--l
f. = -^ + __L^-c,,., + Jv 2^ _^ . --^^1 . —^-^

^ ^.l/ ^ij.\ ^ _ ^MJ+D^iJ-Ï

4A^Az ^+1'/+1 4A^z^+1-/'-1

'xzi-\J ^»i^\ ^ ^ "xzi-\J "xzij-\

4ÀAÂZ ^-1^1 ' ^^11A1

(4.44)

^1+^
2Az

+ \(lz\~(lz
A/'-l ' ^TZ '"A/'+l

2Az

Similarly, for the j direction

ajc^+bjc^ejc^^ (4.45)

where

^.... l
"v~^ l o'_ l +

a, = - r_-^-+ l^ryz
~J v Az2 2Az

(4.46)
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^=J-.M.M
~J AT Lx ^.z

D^l ;+ Dxx,_ l , ^, ,. l + ^; ,_^'^J x'-^ ^J^^^
À^2 Az2

(4.47)

zzv+l l a A -.
e.. = -( — -1+ lyzi yz
~j v Az2 2Â^

(4.48)

D^
e", ^xx'^ D^ i ..'xxi^J _ "xxi-^

'AL + _1_ (^,, . + 2I
±j - ~ïr ' ^^~ "/+lt/' ' ~^~ ^'

^ ^xzh\J "xzi^\ ^ _ ^^\J ' ^^ij-\

~^Kx^z ^+11A1 ÎA^Az^+1^1

')xzi-\J+ xzi^\ ^ ^ xzi-ÏJ+DxziJ-\

4A;cA2- ^-1>/+1 ' 4A^Az "'/-1>/'-1

xz;_i , ~ xz,

4A^Az ^'-l'/+

(7J+^
c._,..+

^1-^
e.,..2^x ^~ÏJ' 2A^ ^ÏJ

(4.49)

4.1.6.4 The solution of the algebraic équations

Again, use is made of a line-by-line iterative procédure to solve the algebraic

équations. We choose a grid line (say, in the y direction), assume that the C's along the

neighbouring lines are known from their "latest" value, and solve the C's along the

chosen line using the TDMA. This procédure is followed for all the lines in one direction

and then repeated for the Unes in the other direction.
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4.1.7 Numerical procédure

The numerical solution of the fully coupled governing équations was obtained

using the finite différence methods mentioned above. The solution procédure may be

summarized by the following séquence and described by the flow chart in Fig. 4.2 :

l. Set initial values of all the variables C and ^. The initial concentration field is set

such that it is equal to zéro everywhere except in the middle ofthe left boundary

where there are 4 points set equal to l ; For the stream function field, the linear

distribution is set from the top to the bottom boundaries.

2. Compute the Darcy velocity from the stream function field using Eqs. (4.19) and

(4.20).

3. Thèse values are then substituted into the transport équation (4.12) in which the

advection term has been discretized by a first order upwind scheme. The resulting

set of algebraic équations is solved using a line-by-line iteration method. The

computation is performed by alternately sweeping in the i and j directions.

4. Thèse concentration values are then input into the flow équation (4.11). The

resulting set of algebraic équations is solved using the line-by-line iteration

method. The computation is performed by alternately sweeping in the i and j

directions.

5. A convergence check is now performed to détermine if successive changes in

stream function and concentration value are within prescribed tolérances. If the

convergence criterion is not met, stages 2 and 3 are repeated using updated values
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of concentration and stream function. Subsequent iterations are executed until the

prescribed convergence criterion is satisfied or the maximum allowable number of

nonlinear iterations is exceeded. If convergence of the nonlinear iterations is obtained,

the computation proceeds to the next time level. If the solution fails to converge within

the maximum number of iterations, the time step value is halved, and step l through 4

are repeated.

The criterion for convergence used was that the maximum relative change in the

stream function and concentration satisfy the following inequality:

(^-'-^
^,m

m+i ^-r r.

'ij ~ ^ij

sîO.OOOl (4.50)

m
'y

^ 0.0001 (4.51)

Where m is the number ofiterations. AU computations were performed on a 386 based

IBM PS/2 personal computer running at a clock speed of 20 mHZ.

4.2 Finite Volume method with a rectangular mesh

Since the numerical results described in this section are to be compared with the

expérimental data ofOostrom, a brief description ofhis expérimental setup is given here.
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For a detailed description, the reader is referred to the original papers (Oostrom, 1991,

1992).

4.2.1 Expérimental apparatus of Oostrom(1992)

Three différent flow containers packed with homogeneous porous média simulated

an unconfined aquifer. Each flow container has three chambers (Fig. 4.5). During an

experiment, the head h, and h; in the two head chambers were kept constant. An

unsaturated zone was allowed to exist near the top of the porous medium in each of the

flow containers. The contaminant plumes consisted ofNaï and NaBr solutions introduced

into each flow container from a line source located on top of the porous medium. By

manipulating the water level h, and h; in the two head chambers, différent horizontal

discharge rates Q^ and Darcy flux q^ could be established.

Again, the spécifie objectives ofthe study described in this section were to obtain

the concentration distributions using numerical techniques in order to compare with the

experimentally observed data. In the following section, the governing system of équations

for the flow régime together with the appropriate boundary conditions are briefly

présentée. This followed by détails of the numerical methods used to solve the relevant

governmg équations.
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4.2.2 Governing équations

The général form of the governing équations for the variable density flow and

transport in saturated-unsaturated porous média were presented in Chapter 3. For

convenience of the présent discussion, we rewrite thèse governing équations in the

following form (excluding sources and sinks):

The Flow Equation

p(S^c)^^S9^9^
'p ~' 9t " ~ 9C 9t

(4.52)

-A(P^)-A(PAy(t+P^))=0
9x" H 9x Qz" |i ' 9z

Transport Equation

9 6pC + _9_( oaC- D..-9C ) =0~ô7- +ôA;w/c'-^"â^=u ^

the relation between density and concentration is given by

p=po(l^Q (4.54)

e = pmax-po (4.55)

Po

Introducing p*=-p_ and K,,= ljpog , Eq.(4.52) becomes
Po<? ~ "y ^



93

^ D^.5' D.ôcr
ss PO~W+^C po~9t

(4.56)

-^K^-^K,(9e+^=Q9x"' ~~y Qx ' Qz"~ ~~'J ' Qz P(/

where

S,=p(S^c)g, S,=cf)Se (4.57)

i and j are space coordinates, q; the spécifie discharge in the i direction (LT ), ky is the

permeability tensor (L ), p, is the fluid viscosity (ML T ), p the fluid density (ML'3),

p the fluid pressure (ML~'T'2), g gravitational accélération (L T'2), 0 the water content

(dimensionless), S the saturation (dimensionless), S the mass storage (T L ), defined by

Eq.(3.12), e the water capacity ( M-1LT ), defined by Eq. (3.15). C solute concentration

(M/M), and D,j the dispersion tensor (ML T ). py a référence freshwater density, p^

the density corresponding to the maximum concentration, C a dimensionless

concentration that varies between zéro and unity. For an isotropic porous medium in two

dimensions, Dy may be written as

XX —XZ

^=k^
(4.58)

v

^ = P(^-^—+^r-^— +^) (4.59)
V%2+^ ' {€~+C
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D^ = p(^ , qx ^a, ^ qz +2);) (4.60)

\/^2+^z2 \/^2+^2

D^-D^- p^-^-^=) (4.61)
^f^~€'

^s-K^-K-ï+i: (4'62)

^-K^-K"^^ (4-63)

where a^, a-^ are respectively longitudinal and transverse dispersivities. D^ is the

molecular diffusion coefficient.

4.2.3 Dimensionless équations

Introducing the characteristic quantities for pressure, length, conductivity, spécifie

discharge and concentration, Equations (4.52) and (4.53) may also be cast in the

following dimensionless form:

S^-h,)QP^S,9c---9-. (-^(l+eC)^ )
-ff^ï ^ Q^ "C ^ Q^ ^^ ^ — ' Q^

(4.64)

-_a_(^(l+gC)^+^' (l+eC)2) = 0
KQ ~ ' Sz ÇQ
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ap0c=A(Â.A -D^V^D^Î)^
9r 9x^xx9x ' ^XZQz' ' ~9z^zx'Qx ' ^zz~Q~z'

(4.65)
Qpg^C Qp^C
9x Qz

where

x = 4, ^ = 4 (4.66)

-p = P e - -T, T = ^,
po^A-A,)- C, L- ^

= K.nx~th. ô = -P-
'' YO ~ -Ixo—r—' H -

4.= P(^ , ' + ^ , ' .+D^ (4.68)
W^€ ~ W+^

Az = P(^ , ' + ^ , z .+D^ (4.69)
W^~€ -W^~€

4. = A. = P((^-^)-^=) (4.70)
W^qï

à, -^ à^= ^, ff, - Dd- (4.71)
"L ~L' UT y ^à z%
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^ ^__K Qp_ K Qp _ K^\ +eQ ^^
^ % ^0 a;r ^0 9Z %

, _ q.__ K^Qp_ K^ Qp _ K^l^eQ
Qz=

% KQ Qx K0 9Z %
(4.73)

where. L, Kg, qo and Co are the characteristic quantities.

4.2.4 Initial and boundary conditions

The initial condition for the pressure may be obtained by solving the steady state

flow équation. The initial condition for the concentration is that it is everywhere zéro

except at the location of the source at the top boundary, where it is equal to unity. The

boundary conditions for the flow équation may be imposed as (Référence to Fig. 7.1):

the bottom being impervious, the flux through this boundary is zéro. Since there is no

flux through the left and right boundaries above the water table, zéro flux conditions are

imposée there. At the top boundary, a zéro flux is imposed everywhere except at the

source location. A Dirichlet boundary conditions are imposed at the left and right

boundaries below the water table, where a static pressure distribution is assumed.

The boundary conditions for the concentration is imposed in a similar fashion.

The Dirichlet boundary condition is used for the left and top boundary. Since the bottom

boundary is impervious, a Von Neumann boundary condition with âC/ôz = 0 is imposed
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there. For the right hand side, the condition 9C/ôx=0 may be used.

4.2.5 Discretized équations

4.2.5.1 Control volume formulation of the flow équation

The control volume formulation used here closely follows that of Patankar

(1980). The calculation demain is divided into a number of non-overlapping control

volumes. The differential équation is integrated over each control volume. The result is

the discretization équation containing the values for a group of grid points. The variables

p and C are the mean values over the control volume, and may be considered as being

defined at the centre of each control volume. The discretization équation obtained in this

manner expresses the conservation principle.

The flow équation (4.56) can be rewritten as

S^SE.S^^^^-0 (4.74)
-g ru ^ -cru ^ ^ ^

where we have removed the * for convenience, F^ and F^ are the mass fluxes defined by

^-P^-P^(t^) (4.75)

/?--p^-p^t^) <4-76)
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The intégration of Eq.(4.74) over the control volume shown in Fig. 4.6 would

result in

Az
(S,(p-p').S^C-C'))^-^ ^

+ F. -F... + J7 - T7 = 0
e * w 'n ' s

where the quantifies Fg, P^, F^ and F are the integrated total fluxes over the control

volume faces (e, w, n and s denote east, west, north and south); that is Fg stand for

l F^dy over the interface e, and so on.

Equation (4.77) may be rewritten as

S,(Pp- Pp°)^S, (Cp- C/)^

A/
POÂA-AZ

=^"A-^^+^
-P^^^^Az-p^^(^^)Az (4.78)

8xw ' w "' Lz Po

.p^(U^)A^^A.

-^"<"^)A-^.^A-

where pi, p^, p3, p4 may be obtained by interpolation from the neighbouring nodes. For

example



99

p\ = ^(PE+PP+PN+PNE)

Pl = -,(P£+PP+PS+PSE)

(4.79)

Pî = -^(PW+PP+PN+PNW)

A = -^(Pw+Pp+Ps+Psw)

The discretization équation can now be written as

apPp = SEPE+ awPw+ SN?N+ aS?S+ b (4-79)

where

aE ~~pe Kei^ ^ (4-80)

Az

Sx..
^=P.K\'^- (4-81)

w

aN ~~pn Kn- ^ (4-82)
'n

., - p, K-, ^ (4.83)

0 , sg PO Â^ A^ (4.84)
''"-—It
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b -a^p^-s^c-c^-^xLz

.(^.Knp^)^^-(V^.KS^)^. <4-85)
ïï v ~— v/y A / —" 1~ S

PQ xz A-Y ' ' /' ' po xz A-Y

+ P^J^T^ +-pe)^- P .KWJ,P^ .-p^
Q~~ •yfy\ A _ — / r Wxz' Az P(/ ' "' xz' Lz pp

ap = ^+SW+aN+SS+ap° (4-86)

Here p° and C° refer to the known values at time t, while all other values (pp, pg, pw, p^,

ps, and so on) are the unknown values at time t+At. The hydraulic conductivity at the

interface, say e, may be calculated by the harmonie mean of Ky and K,jE. The

formulation is

î— = — + —e (4.87)
^ KpiJ ^

where the interpolation factor is a ratio defîned in terms of the distances shown in

Fig.4.7.

The reason for using the harmonie mean instead of the arithmetic mean is that
f \ 8G1 (4.88)

8e

our main objective is to obtain a good représentation for the flux q^ at the interface via



101

q.-Ke{p:~PE) (4.89)
qe=~^

which has, in fact, been used in deriving the discretization équation (4.78). The desired

expression for Ke is the one that leads to a "correct" q^.

Consider that the control volume surrounding the grid points is filled with a

porous medium ofuniform conductivity Kp, and the one around E with a porous medium

of conductivity K . For the composite slab between points P and E, a steady one-

dimensional analysis (without sources) leads to

^= .„ . PP,PE. (4.90)
'e (Sx)^IKP^x)^IKE

Combination ofEqs. (4.88)-(4.90) yields Eq. (4.87). It has been found that the

harmonie mean (4.87) performs much better than the arithmetic mean formula (Patankar,

1980) for the reason cited above. Similar formulations may be obtained for the interfaces

w, n and s.

4.2.5.2 Control volume formulation for the transport équation

For the transport équation, the discretized représentation is similar to Eq. (4.78).

Eq. (4.53) may be rewritten as
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ô61PC\ô^a/-=0 (4.91)
9t 9x 9z

where J^ and J^ are the convection and diffusion fluxes defined by

/'= fv-c-D"^-D-aê <4-92)

9C ^ 9C
'Qx vzz Qz

^- ^C-D^-D^ (4.93)

The intégration of Eq.(4.91) over the control volume shown in Fig. 4.6 would

give

(6p^pCp-Qop^opC°p )^x Az

Ac (4.94)

+ ^ -^ + ^, - ^+^=0

here

/. - (P. 1.. C - D^ ^) Az

7,-(p^C-Z^)Az

Jn = (P» ^- ^ - Dn_ 9C) A;r
•n ^rn -^Zn - ~ ZZ Qz

(4.95)

f.-^^C-D^^)^

^- -De^Lx.DW^Lx
'l ~ XZ Qz ~~ ~ XZ Qz

^Dn_9c Lz + Ds^ ^
xz 9x ~~ ~^9x



103

We note that the integrated flow équation (4.77) is

(p,0,- 9°p6°p)^z+ F. -F. -Fn -F, = 0 (4.96)

where

Fe=P^.^Z' F^=P^^Z
(4.97)

F,=p,g^x, F,=p^^

If we now multiply Eq. (4.96) by Cp, and subtract it from Eq. (4.94), we obtain

0°pp°oA^A^
((^,- C\ )" /"' y— ^ ^
"p ^ pl ^f "/ (4.98)

+^-FeCp)-^-F^).^-F^-^-F^) - 0

The spécifie discharge q^, q^ may be obtained from Eqs.(4.62) and (4.63) at the control

volume interfaces. The assumption of uniformity over a control volume face enables the

use of one-dimensional formulations. Terms such as Je-FeCp and J^-F^Cp may be

expressed in the following manner (Patankar, 1980)

j^c^-.^-v ^
f^-P^= a^C^-Cp)

where

^-wwm ^
^=D^A(\P^)^[F^O]
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Here [g, h] is defined to denote the greater of g and h, D will be given below. With

similar expressions for Jn-FnCp and Js-F,Cp, we are now in a position to write the

discretization équation.

The discretization may now be written as

a^Cp= a^a^C^a^asC^b (4.101)

where

^=^A(|^|)+[-^,,0]

a^= D^A{\P^\)+[F^,Q\

^=^A(|^|)+[-^,0]

^=D,A(\P,\)^[F,,0]

(4.102)

ap° = p/ e/ À_^ (4.103)

b=ap°Cp°+S, (4.104)

aP = SE+aW+SN+aS+aP° (4-105)

Here the T' have been defined in Eq. (4.97), and the 'D' are defined as

De^ D^ Dn^ Z?f,
D,-^, D^-^, D.-^x, D,-^ (4-106)
'e 5^~' ~w 5^~' -7! Sz,~" "' 5z/

The Peclet Number is to be taken as the ratio of F to D, Thus P(=F(/D,;, and so on.
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The différent schemes obtained depending on the interpolating function A(|P|), are

shown in Table 4.2.

Table 4.2 The function A(|P|) for différent schemes

Scheme

Central différent

Upwind

Hybrid

Power law

Exponential (exact)

Formulae for A(|P|)

1-0.5 |P|

l

[0, 1-0.5 |P|]

[0, (1-0.1 |P|)5]

|P| /(exp (|P|)-1)

The Power law scheme due to its (computationally) faster évaluation while being

a good approximation to the exponential (exact) scheme has been retained in thèse

simulations.

Term S( in Equation (4.95) may be obtained by using similar interpolation

functions used for deriving pi, p^, p3 and p4, also the same formulae for calculating the

interface conductivity may be used to obtain the coefficients of dispersion at the

interfaces.
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4.2.5.3 Solution of the algebraic équation

The Gauss-Seidel point-by-point method is employed here to solve the algebraic

équation instead ofthe line-by-line iterative method, because in the unsaturated zone the

flux boundary condition may not necessarily be imposed along a Une. This method

calculâtes the values of the variable by visiting each grid point in a certain order. In the

beginning, the guessed values were used to compute the steady state solution. Then this

solution becomes the initial values for the transient problem. Ifthe discretization équation

is written as

w=E-w^ (4-107)

where the subscript nb denotes a neighbour point, then pp at the visited point is calculated

from

^ , T.anbPnb+b (4 108)
ap

where p^' stands for the neighbour-point value présent in computer storage. For

neighbours that have already been visited during the current iteration, p^' is the freshly

calculated value; for yet-to-be-visited neighbours, p^' is the value from the previous

iteration. In any case, p^' is the latest available value for the neighbour-point pressure.

When all grid points have been visited in this manner, one iteration of the Gauss-Seidel

method is complète.
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4.2.6 Numerical procédure

The numerical solution of the fully coupled governing équations was obtained

using the finite volume methods mentioned above. The solution procédure may be

summarized by the following séquence and described by the flow chart in Fig. 4.8:

l. Start with guessed pressure values (may be the hydrostatic pressure distribution).

2. Calculate the steady state flow solution using the Gauss-Seidel point-by-point

method.

3. Set initial values ofthe variable C. The initial concentration field is set such that

it is equal to zéro everywhere except at the source location where the

concentration is equal to l . The solution of the steady state flow équation with

zéro flux boundary condition will be the initial values for the pressure.

4. Thèse concentration values are inputs of Eq. (4.54) to calculate the density, and

then inputs of the Flow Equation (4.79). The resulting set of algebraic équations

is solved using the point-by-point iteration method.

5. Compute the Darcy velocities from the pressure field using Eqs.(4.62) and (4.63).

6. Thèse values are then substituted into the Transport Equation (4.91). The resulting

set of algebraic équations is solved using the point-by-point iteration method.

7. A convergence check is now performed to détermine if successive changes in

pressure and concentration values are within prescribed tolérances. If the

convergence criterions are not met, stages 4 and 5 are repeated using updated
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values of concentration and pressure. Subsequent iterations are executed until the

prescribed convergences criterions are satisfied or the maximum allowable number

of nonlinear iterations is exceeded. If convergence of the nonlinear iterations is

obtained, the computation proceeds to the next time level. If the solution fails to

converge within the maximum number ofiterations, the time step value is halved,

and step 3 through 6 are repeated.

The criterions for convergence used were that the maximum relative change in the

pressure and concentration satisfy the following inequality:

(4.109)1^

m-

'JL

/n+.

t
-p,m)

p.r

hl

c,m

m
'JL

m

max

max

5=0

<

.0001

0.0001 (4.110)

Where m is the number of iterations.

4.3 A combined Finite Volume and Lagrangian-EuIerian method (Characteristics

method) on a Triangular Stencil

The finite volume method was used to obtain numerical solutions to the

équations for groundwater flow. The modified characteristic method in conjunction with

a finite volume formulation was used to simulate contaminant transport. The finite
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volume method ensures global mass conservation while the characteristics method allows

the discrète extremum principle for the unsteady problem to be obtained, which plays an

important rôle in preventing parasitic oscillations and négative values of concentration.

4.3.1. Governing équations

The governing équations for contaminant transport in saturated-unsaturated porous

média in the absence of sources and sinks were given in section 4.2.2. For convenience

we rewrite them as follows where * has been removed.

the Flow Equation

9p ^ e ^ 9C
^POÏt+scp0^

(4.111)

-Â(P^,.^)-A(P^-,,(^+_P_))=O
9x^"IJ 9^ ôzvr"yvôz po-

Transport Equation

-ôlc^(^-^-^)=0 (4.112)
9t Sx; - '/ v Qx.

with the relation between density and concentration being given by

p=po(l^Q (4.113)

e = P""x~Po (4.114)

Po
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Introducing q^ and q^ Dy the coefficient of hydrodynamic dispersion may be written as:

A. =
XX ~ XZ

^ D^

'.2 aî

^=^-^=^r-^ ^D;
v^2+^2 \/^2+^;

(4.115)

(4.116)

^= ^ +a, ^D:
\/^2+<7z2 ~\1^2+^

^ = ^ = (^-^r)
(1^

^2+^:

^--K,,^-K^^-E-)
Po

QZ = ~ AAZ^--A2Z_9P-K (QP^-S-
9x 9z pc,

)

(4.117)

(4.118)

(4.119)

(4.120)

where a^, a-^ are respectively longitudinal and transverse dispersivity. D^ is the molecular

diffusion coefficient.

4.3.2. Domain discretization

The demain of interest is first divided into three-node triangular éléments (Baliga

and Patankar, 1988). The centroid ofthe éléments are thenjoined to the midpoints ofthe
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corresponding sides, which créâtes polygonal control volumes around each node in the

calculation demain. A simple domain discretization is shown in Figure 4.9, the solid lines

denote the demain and élément boundaries, the dashed Unes represent the control volume

faces, and the shaded areas show the control volumes associated with one internai node

and two boundary nodes. In this discretization scheme, curved boundaries are

approximated by piecewise-straight lines.

4.3.3. Control volume conservation flow équation

Consider a typical node i in the calculation domain: it could be an internai node,

like the one shown in Figure 4.10a, or a boundary node, similar to the ones shown in

Figures 4.10b and 4.10e. An intégral formulation corresponding to Eq.(4.111) may be

arrived at by applying the conservation principle for p to a control volume Î2, that is

fixed in space. The resulting intégral conservation équation, when applied to the

polygonal control volume, surrounding node i in Figure 4.8, can be written as follows:

5-, p, 9P-d^+ f 5', p« 4C</Û+ f 07-5ûî9+ f c/-^ûî?
Isï"^ r" ô/~" Jn~c ru ô;1 "" J a ~ "~" Jo

+ [similar contributions from other éléments associated with node i ]

+ [boundary contributions, if applicable ] = 0 (4.121)

where n is a unit outward vector normal to the differential area éléments ds. o, a, e,

represent the centroid of the élément, the midpoints of two corresponding sides,

respectively, and J is the mass flux through ds
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^p^-p^(le.A^) (4.122)
9x.,

. (^/l + _tL __')
~y vô^. po 9xJ

The form ofEq. (4.121) emphasizes that it can be assembled by using an élément by

élément procédure. It should also be noted that the two-dimensional domain being

considered in this description are assumed to have unit depth normal to the plane of

interest, thus volume and area intégrais reduce to area and line intégrais, respectively.

4.3.3.1. Interpolation function for p

In each three node triangular éléments, the pressure is interpolated linearly:

p=Ax+Bz+E (4.123)

In each élément, the constant A, B and E in this interpolation function can be

uniquely determined in terms of the x, z coordinates of the three nodes and the

corresponding values ofp. Thus with référence to the élément 123 shown in Figure 4.11

A = [(^ - ^i)/?i + (^3 - zl)^2 + (^1 - 22)^3]/det (4-1 24)

B= [(^3 - x^)p, + (X, - X^)p^ + (^ - ^)^]/det (4.125)

E= [(A-2 Z, - ^3 Z^P^ + (^3 ^ + ^ ^3)^2 + (;rl 22 - xî z\ )^]/det (4-1 26)

where

det=(-ri22+^-^+;r3zi ~zix2~ ' zîx3 ~ zzx\) (4.127)
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4.3.3.2 Interpolation function for Ky

In each three node triangular élément, the centroidal value of Ky is stored and

assumed to prevail over the corresponding élément.

^_(K^K^Kv) (4.128)
~y 3

4.3.3.3 The formulation for the spécifie discharges

The spécifie discharges may be obtained from Eqs. (4.119) and (4.120) for each

élément. The spécifie discharge for the entire control volume will be the average over

this volume.

^^ ^^ f-^ (f^))" (4.129)

^^ ^-^ f-^ (t+^))" (4.'30)

4.3.3.4. Discretization équations

The discretization équations are obtained by first deriving algebraic

approximations to the élément contributions in the control volume conservation équations,

such as équation (4.121) and then assembling them appropriately. Algebraic
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approximations to the boundary contributions, if applicable, are then derived and added

to the élément contributions.

The following derivations are keyed to node l ofthe élément 123 in Figure 4.11.

In each élément, the mass flux J can be expressed in terms of its components in the x and

z directions:

J=J^JJ (4.131)

The interpolation function (4.123) is used to approximate J^ and Jy:

.4=-P(^+^(^+-^)) (4.132)
0

7,=-p(^A^(^-P-)) (4.133)~z '''~~xz~ ~-zz^ po/

The intégrais in (4.121) are evaluated approximately by using Simpson's Rule:

^f-3ds= - c^ W^Wr- (^
}a 6 """ "" "*"' (4.134)

-(x±^Wa+ 4(^+(^J

S:^-^iw^ww ^
-^Ç^[(^.4(/,)^(/,)J

The intégral involving the term -ï- and —— is approximated as follows
9t 9t
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L^ï^^^
[Ls^da}3£,^LS^^haoc~êr^--- Qt ^\aoc'crv""J Qt

+ [Similar contributions from other éléments associated with node l] (4.136)

For each élément associated with node l, the Gausian intégral rule is used to calculate

the intégration in Eq. (4.136).

Adding up Eqs. (4.132) - (4.136), the total contribution of élément 123 to the

conservation équation for node l is obtained. This total élément contribution can be

compactly expressed as follows

°J-nds +[cf-S(îs+f S^ pn 9P d^ï
}a~ """ Jo~ "~" Jlaoc''-?ru Qt

(4.137)
QC

+ L-.^Po^7^=A Pi +A A+^3 P3+D4
ïaocluoc c'u 9t

detailed expressions for the constants D], D^, D^ and D^ in Eq. (4.137) are given in

Appendix B.

4.3.3.5. Discretization équation for internai nodes

Expressions similar to Eq.(4.137) may be derived for the contributions of all

éléments associated with the internai node i shown in Figure 4.10a, Such expressions,
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when substituted into Equation (4.121) yield the complète discretization équation for

node i. A général représentation of this équation may be cast in the following form

c, Pi = T,cnPn+di (4.138)
n

where the summation is taken over all the neighbours of node i. Equations similar to

Eq.(4.137) may be derived for all internai nodes in the calculation domain.

4.3.3.6 Discretization équation for boundary nodes

For nodes that lie on the boundaries of the calculation demain, the assembly of

élément contributions is not enough to complète Eq. (4.121). The control volume surfaces

associated with boundary nodes have segments that lie along the domain boundaries. The

conservation équations for such control volumes become complète only after the fluxes

crossing the boundary segments are appropriately added to the corresponding, assembled,

élément contributions. Information regarding such boundary fluxes can be obtained from

the prescribed boundary conditions pertaining to the problem of interest.

4.3.4 Modifîed characteristics method in conjunction with a finite volume method

for the transport équation

Applying Lagrangian or material derivation of C with respect to t to transport

équation (4.112), one may rewrite the équation in the following form:
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JO(0c)=V.(0^,.VC)-y.^.C (4.139)

Using finite différence to approximate the time derivatives, results in

^+1);^(1))=V.(^.W7)-V.^ (4.140)

Here C( ) is the Lagrangian (convection) concentration which satisfies the following

équation:

9C(^+V7C^=0 n^t<t^(m\)^t (4.141)

Here V = q / 0 , is the pore velocity.

4.3.4.1 Characteristic method for convective transport

Eq.(4.141) implies that the convection concentration C( ) remains constant along

the characteristic curve defined by

^ = u , ^ = v (4.142)
9t " ' Qt

If V(u, v) is assumed to be constant along the characteristics for nAt < t <:

(n+l)At, and P, (x,, z;) is a node of the triangle élément at t == (n+1) At, the foot

P,'(x,',z,') of the characteristic curve AB (Figure 4.12) passing through P, (x,, z,) is

defined by
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x, = x,-u\x[,z',)Lt
" "' ~ '""~"~ (4.143)

z, = z,-vn{x',,y^t

and in the élément e, with three nodes (x^',z^'), a = 1,2,3.

Linear interpolation of C( ) on the grid at time t = (n+l)At gives:

Cm = C(P',,n^) =EZ»^ (4-144)
ff=l

where

(.aïîxi~a\2zi)~f

4 - —"d —

^ ^a\\zraî\xi)-g (4.146)

d

L,=\-L,-L, (4.147)

an = ^/-^/+Wn^t)-u^t)]^t (4.148)

ai2 = ^-x^[u^n^t)-u^n^t)}^t (4.149)

a^ = z^-z^[v^n^t)-v^n^t)}^t (4.150)

a^ = z^/-z^+[v^n^t)-v^nàt)]^t (4.151)

b, = x^u^n^t (4.152)
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^ = z^v^n^t (4.153)

/=â22Àl-31262 (4-154)

g=anb2-aîA <4-155)

à = auaîî~anai\ (4.156)

From the above équations, we have

min Cf ^ C^ ^ max C/ (4.157)

4.3.4.2 Control volume formulation for transport due to dispersion

Eq.(4.141) is integrated over the control volume S2 in the same fashion as used

for the flow équation. The resulting intégral équation, surrounding node i in Figure 4.10a,

can be written as follows:

2?(6>c) </n + f °/- s ds^ f '/•/? ^+ i^-gCd^ï
la Dt -l a Jo Ja

+ [similar contributions from other éléments associated with node i ]

+ [boundary contributions, if applicable ]= 0 (4.158)

where J is the dispersion flux of C.

7= - D^C (4.159)
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4.3.4.2.1 Interpolation functions for Dy

In each three node triangular élément, the centroidal value of Dy is stored and

assumed to prevail over the corresponding élément.

JCX-.

'XX Q '

_D^+Dx^D^ (4.160)
^-3>

-Z?i -^ -ZZ)

-ZZ-3~

4.3.4.2.2 Interpolation function for C

In each three node triangular élément, the concentration is interpolated linearly:

C=Ax+Bz+E (4.161)

where the constants A, B and E are

A=[(^-^)q+(z3-^)q+(^-^)^]/det (4.162)

B= [(^3 - ^) C; + (x, - ^3) q + (^ - x,) q]/det (4.163)

E= [(^ -^ - A'3 -Z2) cl + (A'3 zl + x\ Z3) 62 + (X1Z2 ~ X2ZÏ ) C3]/de1 (4-164^

with det given by Eq. (4.127)
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4.3.4.2.3 Discretization équation

In each élément, the flux J can be expressed in terms of its components in the x

and z directions:

^JJ-(D^D^,-(^D^ (4.165)

where i and j are unit vectors in the x and z directions, respectively.

The interpolation given in Eq. (4.161) is used to approximate J^ and J,,:

7, - -A D^-B D^ , J^--A D^-B D^ (4.166)

where A and B are given by Eqs. (4.162) and (4.163), respectively.

Using Eq.(4.166), and with référence to élément 123 in Fig. 4.9, the intégral in

Eq.(4.158) that represents the dispersion transport of C can now be approximated as

follows (Baliga, 1980, 1988):

f^f-n ds = (A ^-5 D^)(y,-y^ ^ ^

-(AD^BD^(x,-x^

f^f-n ds = -(A D^B D^}(y,-y^ (4j68)

^AD^BD^(x,-x^

The other intégral in the équation are approximated as follows:



122

^j.qCdv = 4£V-<7q (4.169)

D(6C)^ = A^C^-(6C^ (4 ^
laoc

where A» is the area ofthe élément 123:

A^ =-ld^ (4.171)
'e

2

with det given by Eq.(4.127).

Substituting Eqs.(4.162) and (4.163) into Eqs.(4.167), and (4.168), and then

adding up Eqs. (4.167) -(4.170), the total contribution of élément 123 to the conservation

équation for the control volume surrounding node l is obtained. This total contribution

can be expressed compactly in the following form:

D(ec) dSï + f 07^âî9+ f C7-5û'9+ fy-gCd^ï
'n Dt Ja Jo JaDt J a -l o Ja ' (4.172)

= ^ q +^ q +^3 q + ^4

Detailed expressions for the constants E,, E;, £3, and £4 in Eq. (4.172) are given in

Appendix C.

Expressions similar to Eq. (4.172) may be derived for the contributions of all

éléments associated with the internai node i shown in Fig. 4.10. Such expressions, when

substituted into Eq.(4.158), yield the complète discretization équation for node i. As
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discussed in Section 4.3.3.6, the surfaces of control volumes associated with boundary

nodes have segments that lie along domain boundaries. The conservation équation for

such control volumes become complète only after the contributions of specified fluxes

of C crossing the boundary segments, given in the form of boundary conditions for the

problem of interest, are appropriately incorporated into the corresponding assembled

élément contributions.

The discretization équations for the flow équation and for the dispersion transport

équation are solved by the Gauss-Seidel point-by-point iterative method which has been

discussed in Section 4.2.2 .

4.3.5 Numerical considérations

The numerical solution of the fully coupled governing équations was

accomplished using the finite volume methods combined with the modified characteristic

method discussed above. The solution procédure may be summarized by the following

séquence and described by the flow chart in Figure 4.13:

l. Start with guessed pressure values (may be the hydrostatic distribution).

2. Calculate the steady state flow solution using the Gauss-Seidel point-by-point

method.

3. Set initial values ofthe variable C. The solution ofthe steady state flow équation
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with zéro flux boundary conditions will be the initial pressure for the transient

problem.

4. Thèse concentration values are then inputs of the flow équation (4.139). The

resulting set ofalgebraic équations is solved using the Gauss-Seidel point-by-point

iteration method.

5. Compute the Darcy velocities from the total head field using Eqs.(4.130) and

(4.131).

6. Thèse values are then used to compute the convection contributed part of the

concentration, followed by the calculation ofthe dispersion contribution using the

Gauss-Seidel point-by-point iteration method.

7. A convergence check is now performed to détermine if successive changes in

pressure and concentration values are within prescribed tolérances. If the

convergence criterions are not met, stages 4 and 5 are repeated using updated

values of concentration and stream functions. Subsequent iterations are executed

until the prescribed convergence criterions are satisfied or the maximum allowable

number of nonlinear iterations is exceeded. If convergence of the nonlinear

iterations is obtained, the computation proceeds to the next time level. If the

solution fails to converge within the maximum number ofiterations, the time step

value is halved, and steps 3 through 6 are repeated.

The criterions for convergence used were that the maximum relative change in

the stream function and concentration satisfy the following inequality:
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/n+l _

~-u — ^-u—\ ^0.0001 (4.173)
1m
'y max

(~i m+Ï _ f m

s; 0.0001 (4.174)
m

V max

Where m is the number of iterations.

The finite volume model was tested by simulating the laboratory experiments of

Oostrom (1992) and the Borden landfill site. The results of thèse comparisons will be

presented in Chapter 8. It is useful to indicate here, that if all the angles of the triangles

are acute, a discrète extremum principle for the unsteady problem, (which plays an

important rôle in preventing parasitic oscillations and négative values of concentration

in the numerical simulation) may be obtained.
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CHAPTER 5

COMPAMSON BETWEEN THE NUMEMCAL SIMULATIONS

AND THE EXPERIMENTAL RESULTS 0F SCHINCARIOL AND SCHWARTZ

The numerical model for simulating the expérimental results of Schincariol and

Schwartz has been detailed in Chapter 4. This chapter is devoted to presenting the détails

of the boundary conditions and parameters used in the simulation.

A flow tank is filled with saturated porous média. A dense Sodium Chloride

(NaCl) solution is introduced through a slot in the middle of the tank. Figure 5.1

represents the computational demain and the associated boundary conditions. For the

impervious boundaries AB and CD, an appropriate Dirichlet boundary condition is

imposed:

^ = TJJ, on AB
rï ^ ^ (5.1)

^ = ^^ on CD

For sides AD and BC, the flow is supposée uniform, the boundary condition may

then be expressed as:

ijr = i|r^+(^2-^1) ^ QO AD

Ï-. „ se
9x
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The boundary condition for the concentration is imposed in a similar fashion. The

Dirichlet boundary condition is used for side AD. AB and DC being impervious. Von

Neumann boundary conditions 9C/9z := 0 are imposed there. For the side BC, the

condition 9C/9x=0 may be used.

5.1 Results for homogeneous média

According to the experiments ofSchincariol and Schwartz (1990), conducted with

the homogenous medium, the relevant parameters were estimated as follows:

Ko = K, = K,= 5.6 x 10 -2 cm/s

qo= (1.16 ,5) x 10-4cm/s

L = 70 cm

(j) = 0.38

O;L = 0.310 cm

Q;T = 0.0217 cm

po= 0.9983 g/cm3

The flow field and plume dispersion were simulated for a 2000 mg/L , a 5000

mg/L and a 10,000 mg/L NaCl source in a homogeneous medium.

As expected, for the homogeneous medium, the tendency for the plume to sink

increases as its density increases. As observed by Schincariol and Schwartz (1990) in the
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laboratory, gravitational instabilities are manifested by lobe shaped protuberances that

form first along the bottom edge ofthe plume and later penetrate into the plume. Figures

5.2, 5.3 and 5.4 are the numerical simulations, which indicate the development of the

instability over time for a 2000 mg/L, 5000 mg/L, and 10,000 mg/L NaCl source,

respectively. Figure 5.5 is a comparison between the expérimental results and the

numerical ones for a 5000 mg/L source in the homogenous medium (Fan and Kahawita,

1994). The numerical simulation appears to match the expérimental observations fairly

well, the time at which the instabilities begin to develop being almost the same as the

experiments would suggest. The amplitude behaviour of the instabilities are smaller than

those noted in the experiments. This may have been caused by local variations in the

expérimental conditions but is more likely due to errors in the estimation of the relevant

parameters used in the simulation.

The denser plumes with initial concentration of 25,000 and 100,000 mg/L

exhibited a différent behaviour from that just described. Figures 5.6 and 5.7 are the

numerical simulations, which show the development of the plume over time for the

25,000 mg/L and 100,000 mg/L NaCl source, respectively. Thèse solutions were so dense

that they quickly sank to the bottom of the chamber. This behavior is consistent with

what was observed in the experiments.
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5.2 Results for heterogeneous média

In this part of the study, the simulation was restricted to the flow field occurring

in the layered medium. In the laboratory experiments, each layer was composed of a

porous medium having a distinct conductivity and mean particle diameter. This required

différent hydraulic conductivities and longitudinal dispersivities to be specified for

différent layers in the numerical simulation. The transverse dispersivity was chosen to be

10 times less than the longitudinal dispersivity. The différent values for conductivity and

longitudinal dispersivity used in the simulation are summarized here:

KI = 3.0 x 10-' cm/s , O-L = 0.065 cm

K:2 = 5.6 x 10-2 cm/s , a^ = 0.0310 cm

K:3 = 2.2 x 10-2 cm/s , c^ = 0.0210 cm

K:4 = 1.2 x 10-2 cm/s , CTL = 0.0150 cm

KS= 1.9 x 10-3 cm/sec , a^ = 0.0085 cm

Other parameters used were:

L = 70 cm

<^> =0.38

The spécifie discharge qo to be used, was estimated according to the average

linear velocity in each layer. This resulted in a value for

qo= 1.6325 x 10-4 cm/s

which appears to be slightly larger than the average spécifie discharge used m the

laboratory experiment, where the value was 1.38x10 cm/s.
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Figure 5.8 and 5.9 indicate the development ofthe instability over time for a 5000

mg/L and 10,000 mg/L NaCl source. Figure 5.10 and 5.11 represent a comparison

between the expérimental results and numerical simulations (Fan and Kahawita, 1994).

The results obtained from both the experiments and the numerical simulation showed that

the interface between layers acted as a sort of barrier for the denser flow.

The overall comparison between the laboratory experiments of Schincariol and

Schwartz (1990), and the présent numerical simulations appear to be satisfactory. Again,

the times at which the instabilities along the lower edge ofthe plume manifest themselves

are comparable. The discrepancies in the amplitude of the instabilities as well as in the

characteristic length scales of the plume may be attributed to the uncertainties in the

estimation ofthe relevant parameters and also in the lack of précision in the expérimental

data. It bears repeating here, that the résolution of the concentration values in the

laboratory experiments was comparatively poor so that direct comparison was difficult.

However, a rather consistent behaviour in the numerical simulations when compared to

experiment is the slightly lower rate ofgrowth ofthe top surface ofthe plume indicating

that some adjustments to the transverse dispersivities may be needed.

In order to provide some insight into the conditions that govern the stability of

a dense plume injected into the middle of a horizontal flow, a simplified linear stability

analysis of the flow was undertaken in which the disturbances were assumed to be three

dimensional. This stability analysis will be presented in Chapter 6.
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CHAPTER 6

STABILITY ANALYSIS

6.1 Theoretical development

Consider a dense layer of fluid in a homogeneous porous medium that is bounded

above and below by a lighter fluid environment. The stability of this layer is to be

investigated with respect to three dimensional disturbances that are assumed to be small.

The governing linearized équations for the perturbations C', h', u', v', w' which are

respectively the concentration, pressure and the three components of velocities may be

written as:

9C^.^9^=D(^.W.W) . (6.1)
9t Qz ' Qx2 5y2 Qz2

ôi/+ô^+ô^=0 (6.2)
9x 9y 9z

^--KQ{pl^og) (6.3)
9x

^__^9(P'/P^ (6.4)
9y

^-K(9(p'l^.l.sC') (6.5)
9z
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where Co = Co (z) is the base concentration distribution, which is a function of z only.

D is the coefficient of molecular diffusion, e = (p^ - p^l p^in, where p^, ?„,„ are the

densities corresponding to the maximum and minimum concentrations, respectively.

In keeping ofthe standard hydrodynamic stability theory, an arbitrary disturbance

may be decomposed into periodic components in the longitudinal and latéral directions.

It is therefore assumed that the perturbations C', p', u', v', w' have the form:

u' = u{z) exp (i^x+k y) + gt) (6.6)

v' = Vp{z) exp (Y(^+ kyy) + gt) (6.7)

w'•= w(z)evp(i(k^x+ky)^qt) (6.8)

^/=^(z)exp(/(^+^7)+^) (6.9)

C'= <^(z)exp(y(^+^7) + ^) (6.10)

where k^ and ky are the wavenumbers in the longitudinal and latéral directions

respectively and q is a time amplification factor.

Since only neutral disturbances are of interest here, i.e. disturbances that are

neither amplified nor attenuated with time (critical stability), we substitute the above

perturbations into Eq.(6.1)-(6.5) with q=0. First, substitute Eqs. (6.8),(6.10) into Eq.(6.1),

results
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w^-D(d^-c'(k^)) <6'11)

Then eliminating pp(z) from Eqs. (6.3), (6.4) and (6.5) by cross differentiation, we
obtain

Qu' Sv'

Qy 9x
0 (6.12)

a<0^ = j^^ (6.13)
Qz 9y Qy

Substituting Eqs. (6.6), (6.7), (6.8), (6.10) into Eqs. (6.2), (6.12) and (6.13),
results in:

u^v^A =0 (6.14)

u^-v^ik^Q (6.15)

^-w,ik,= KeC,ik, (6.16)

Eliminating u p(z) and v (z) from Eqs (6.14), (6.15) and (6.16), results m

û^-(^+^2)^ = K^k^k^C, (6.17)
dzî

•;r "y " p "" v"^r J'"^/ "p

Equations (6.11) and (6.17) together constitute the following System of differential
équations:

(c!—-aî)Wp=KazsCp (6.18)
dz

^-^c/^ (6.19)
dzî "'~p dz D

where a2 = k^ + k\ d = dldz'.
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Eliminating Cp, results in:

(dlwE-a^)^(fwf-^^-^w£K^ (6.20)
<fe4 " dzï ' " v <fe2 " '^ ^ D

Defming dimensionless quantities $= La, w=w (L/D), R=(KeL)/D, Co = Co/(C^-

€„,„), z'=z/L, the final dimensionless form ofthe differential équation for the perturbation

W, V1Z.,

{^-^w-^R^w (6.21)
dz'L " dz'

Here Rg = (KeL)/D may be interpreted as a concentration Rayleigh number.

The boundary conditions assumed for Eq. (6.21) are ofthe fixed type both above

and below the liquid layer. AU perturbations are then specified to vanish at thèse

boundaries. This results in the following conditions for w:

w=QW=Q (6.22)
9z'

Equation (6.21) together with (6.22) is a homogeneous system with homogeneous

boundary conditions and therefore constitutes an eigenvalue problem. Equation (6.21) was

solved approximately by expanding the eigenfunction in a Fourier séries as indicated in

Equation (6.23) with the requirement that it satisfies the boundary conditions (Eq.(6.22))

at z'=l and z'=-l.
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w=-^- + ^ (af.osim-z1 + b^mmrz') (6.23)
2 ^Ï

On the basis ofwhat could be expected as being physically a realistic behaviour,

the concentration profile Co was assumed to follow a Gaussian distribution:

(6.24)(2c2)
"0

where e == a/L, cr being the standard deviation of the Gaussian distribution, e may be

interpreted as being a sort of concentration length scale.

Substituting thèse expressions into the differential équation with the relevant

boundary conditions, we obtain

-^-(f)4 + ^ ((mr)2 +<f)2)2 (af.osn'Trz1 + b^smmrz')
21 ^" ' '''" " ' (6.25)

dCr. a^, J°.

= <A2 R, ^(^^^osmTz^b.smmrz'))
dz' ^ ^î

When Eq. (6.25) is multiplied by cos m7rz', sin miTZ', respectively, then

integrated from z'=-l to z'=l, the System of équations for evaluating the Fourier

coefficients are obtained. For numerical computations, the infmite séries expansion in

Eq.(6.25) has to be truncated to a finite number, say N. Thus, we have the following

équations:
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Multiplying by cos m-rz' and then integrating z' from -l to l:

for m=0,

^^(•^^^
2\l Ji dz'

<A2<A2^ /r de,
COSTTZ dz' a,./ ^""^ "^ ul

l

^ ~J-, dz'

. f^ œs2^z/dz/^- (6-26)
Ji dz'

+ f ^ sm-rrz'dz' b,
Ji dz' """""' -1

+ / _Z^ smÎTTZ'dz' b,+---)
Ji dz'

for m=l,

<^R, \ dC, __„/,„/
a0 = —T l -T7 COSTTZ'dZ' SQ

Z\\ Ji dzl

+ (/ ——u COS'7T^'/COS7TZ (fe ^^ ^ ^ ^...^...^ ,

4. f ^O COS7TZ/COS27TZW^--- (6-27)
Ji dz'

l

+ / -—" cos'rrz'simrz'cfz' b,^ ^ ^,,.^,,.^ .1

+ f -—° cos'n-2'/sin27T^/rfz/ &,+•••){ ^ ——••- "' -2
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Generally, for m=N

ft>2^
^ = ^ l^ COSN7Tzldzl ab

2^ Ji dz'

^R^\dC,

l

(/——" cosNTTZ'cosTTZ'dz'a^
l2 VJ. ^Z/ """^' "" ^""" "" ul

l^V -l

^fn<:7-TT7//77/^+.-- (6.28)+ / ——" COSNTTZ'COSÎTTZ'dz' à, + •••

Ji dz'

+ / —-" cosNTTZ'smrrz'dz' b,^ dz' ——"— -i

l

+ / zzu-cosNTTZ'sm'î'îTZ'dz1 b^+---)

Ji dz'

Multiply by sin IUTTZ', then integrate z' from -l to l:

for m=l,

b, - ^Rl f û^sm^z/ a,
^ z\\ Ji <fe/^

2̂ j^
-£ (/ —-^ Sm'7TZ/COS7T^/ûrZ/ à,-^ ^—— ^

-. f^ s^z'œsl'rrz'dz1 ^- (6-29)
Ji dz'

l ^
+ f ——° simr2'/sin'n-^/(/^/ e,
{ dz' "—••' "' ^

l ^
+ f -—° sm'n-z/sin2'n-z/(/2'/ &,+•••)Jl ^ ——— "- -2
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for m=N,

^ = ^ f ^sinNrrz'dz' ^
'" 2À^ J, dz^

. ^ /f ^.(^ —-^smN'ïï'z'cosTTZ ' dz' a,^^.,,.^ ^..^ ^ ^
À2, ^ <&"N

l

^smN7TZ/cos2TTZ/dz' a,^- (6-30)
Ji dzr

\ da
+ / ——° smN'TTZ'sm.'TTZ1 dz' b^Ji ^7—"— - -i

+ f ——° smA/7T2'/sin27TZ/(/z/ &,+•••)

Ji dz'

here

À^ = (mr)2 + (f)2, Q^n^N (6.31)

The boundary condition (6.22) gives:

^-s^^-a^---+(-ï)N s^ = 0 (6.32)

and

-Trb^27T^+3Tr^+---+(-l)NTT b^ = 0 (6.33)

Eqs. (6.26)-(6.33) may be written in matrix notation as:

[A]=<^J5][A] (6.34)

The équation of neutral stability is then:

<^-<A2^AI=0 Os^ 2^+1 (6.35)

where
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w
s, s,

^4
(6.36)

w=

xoo XQÏ X02

XÏO x\\ XY1

XQN

X,IN

'•N-1,0 ^N-ï,ï ^N-Ï,3 ^N-1,N\

(6.37)

w=

^01 ^ ^03

11 -'12 -'13

^ON

IN

N-l,l ^N-1,2 -'N-Ï.3 -lN-Ï,Ni

(6.38)

10 -' 11 -' 12 Y,IN

-* y* ^*
: 20 121 -'22

.*

'•ZN

[^] (6.39)

-*_

'N-1,0

l
2

0

.*

' N-l.ï

-l

0

N-1,2

l

0 •••

'*-

' N-Ï.N

(-1)"

0



140

w=

^11 -^12 -^13 "" ^\N

•^1 ^îî -^3 '" -^LV

^N-1, l

0

-7T

•W-1,2

0

2TT

^N-1,3

0

-37T

^N-\,N

0

••• (-l)"mr

(6.40)

l \dC,
i2J. dz'
^-1

0-^n^N-l, ï-^m-^N

X =— f——7 cosmrz/cosnnrz' dz',
2 J //y/
^-1

J_ f^cos/^
À^/'
O^n-^N-ï, \<.m^N

Ynm=~. \ ——;cosmrz/smnnrz/dz',
^ Ji àz'

i i-^sin^'c
^]-.àzr

l^n^N-ï, ï^m^N

y ^— \ -—o-sm.mTZ/cosnnTzi àz,
" ^ ^dzr

± f^sin^'s
À;J, A'"

\<.n<.N-\,\<.m<.N

Z =-— l——°-smmTZ/smn]TTZ/dz/,

^ Jldzl

dC^
X^ =-L f °^ cosmrz' dz/, O^n^N-ï

2^ Ji dz!

(6.41)

(6.42)

(6.43)

(6.44)

(6.45)
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Y^ = J- f âc^ smnTrz' dz', l <.n<.N-1 (6.46)
^° ~ 2À; J, ^z7^"' ""

The infinite séries expansion in Eq.(6.23) was truncated to between sixty and one

hundred terms ( N was between 60 to 100) depending on the concentration length scale

e. Various checks on the précision of the computations were performed chiefly by

increasing the number of terms in the séries. This revealed that the calculations were of

sufficient accuracy.

6.2 Results and discussion

A complète neutral stability curve is obtained by varying $ and finding the

corresponding eigenvalue Rg (the concentration Rayleigh Number) for a given value of

the concentration length scale e. Treating e as a parameter allows différent neutral

stability curves to be traced. Figure 6. l indicates the neutral stability curves obtained by

plotting Rg vs. $ for e = 0.1, 0.3, and 0.5. Figure 6.2 continues the neutral stability

curves for e = 0.1, 0.05, 0.03 and 0.02.

It is interesting to note that as e is reduced from 0.5 to 0.1, the neutral stability

curves in Fig.6.1 indicate that the flow becomes less stable. Figure 6.2 demonstrates

however that a further réduction in e for example from 0.1 to 0.02, leads to the opposite

effect. This behaviour has been clarified in the plot of minimum Rg vs. e presented in
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Fig.6.3.

The results ofthe stability analysis indicate that contrary to what might normally

be expected, the shape of the mean profile plays an important rôle in governing the

stability of the plume. This "shape" effect has also been noted in studies of pure Bénard

convection by Sparrow et al. (1964). The concentration Rayleigh number Rg still reflects

on the basic stability of the plume. The rôle of the parameter e however, is to modify

this behaviour as a function of the plume width. A very small value of e implies a

narrow dense plume that would simply tend to descend rapidly due to its négative

buoyancy, without any manifestation of gravitational instabilities. Furthermore, if the

plume descends vertically, the further complication of the gravity vector now being

parallel to the plume axis means that the only possibility of any instability developing

is along the plume front. This is not generally observed, due probably to the local

modification to the flow field in the form ofrelatively strong vertical currents. Very large

values of e would imply a plume that is so wide that even locally, vertical density

gradients are small resulting again in a stable plume. It is now possible to assume the

following behaviour.

As the plume is discharged, its density is high but its width is narrow, causing

it to descend at a rapid rate. During this period its width grows by entrainment of the

ambient until at some point, a critical combination of the parameter e and the

concentration Rayleigh number is reached. Gravitational instability is initiated which
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becomes visible at some further distance downstream. Figures 6.4 and 6.5 présent some

typical instantaneous concentration profiles computed at différent downstream cross-

sections for the experiment of Schincariol and Schwartz. The profile at the cross-section

near the point ofentry ofthe plume may be approximated as a Gaussian distribution with

e = 0.02. From the experiments of Schincariol and Schwartz (1990), it is possible to

estimate the concentration Rayleigh number Rg for each NaCl source with L = 70 cm,

K = 0.056 cm/sec and D = 3 x 10 . The results are presented in Table 6.1. From the

results ofthe stability analysis, for c=0.02, the minimum R, is about 121. Référence to

Table 6.1 indicates that only for the source concentration of 1000 mg/L, is Rg less than

121. Thus gravitational instability will not occur for this value of the source

concentration while for the other concentrations the stability limit will be exceeded.

Thèse predictions correspond fairly well with the expérimental observations of

Schincariol and Schwartz (1990).

Table 6.1 Concentration Rayleigh Number for Each NaCl Source

NaCl Concentration (mg/1)

1000

2000

5000

10000

(Pmax - PoVPo

0.00070

0.00140

0.00361

0.00701

R.

91

182

471

915

It appears therefore, that the transverse dispersivity plays a dual rôle in governing
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the stability of the plume. On one hand, for plumes with relatively high initial

concentrations, it would increase the spread rate of the plume, driving it to the critical

stability point, while on the other hand, plumes with low initial concentrations will be

rapidly diluted to the point that the mean vertical density gradients will be too low to

amplify small perturbations. The plume will therefore behave stably. In order to

investigate the validity of this hypothesis, numerical experiments were conducted in

which for a given initial concentration, the plume was allowed to develop in the

streamwise direction with différent values of the transverse dispersivity. The results

indicated that if the transverse dispersivity was set too low, the plume remained narrow

and stable. (Presumably at some distance downstream, the spread will be sufficient to

cause gravitational instabilities to appear). If the transverse dispersivity value was too

high, the plume spread rapidly and again remained stable. It was only at some

intermediate values between thèse two extrêmes, that the characteristic lobe shaped

protuberances appeared. Thèse results tend to broadly confirm the hypothesis described

earlier.
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CHAPTER 7

COMPAMSON 0F THE NUMERICAL SIMULATIONS

WITH THE EXPEMMENTS RESULTS 0F OOSTROM

In this chapter, the migration of a dense contaminant leachate plume in an

unconfmed aquifer will be examined. Some numerical simulations will be compared with

the expérimental results of Oostrom. Chapter 8 will be devoted to the simulation of the

contaminant transport in the Borden, Ontario landfill as a full scale case study.

The numerical model used to simulate the experiments ofOostrom (1991, 1992)

was presented and discussed in Chapter 4. In this chapter, we will discuss the boundary

conditions and the parameters used in the simulation.

A flow tank is filled with a porous medium. Contaminant solutions in the aqueous

phase are introduced from a source situated at the top of the unconfined aquifer. The

solution pénétrâtes downward through the unsaturated zone into the saturated zone. This

experiment is meant to simulate the leaching of contaminants from a landfill site. The

head hi in the inlet head chamber and the head h; in the outlet head chamber were kept

constant. Figure 7.1 represents the computational domain and the boundary conditions.

ABCH is the saturated zone, HCDEFG is the unsaturated zone. In the numerical

simulation, the variables are pressure p*, p*=p/pog and concentration C. For p*, the

Dirichlet boundary condition is imposed on sides HA and BC and the remaining
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boundaries use a flux boundary condition. For concentration C, a Dirichlet boundary

condition is imposed on sides DE, EF, FG, GH and HA; Von Neumann boundary

conditions are imposed elsewhere.

In the unsaturated zone, the characteristics ofthe porous medium were calculated

with Eqs. 3.29 and 3.30. According to the water rétention curves, the empirical constants

a, n and m were 0.0471 cm'1, 6.271 and m=l-l/n (Oostrom, 1991). The other parameters

were estimated (Experiments Nos: 4 and 5 in flow container C, (1991)) as follows:

Ko = K, = K, = 3.738 - 4.17 x 10 -2 cm/s

0 = 0.35

OL = 0.02 cm

ÛT. = 0.002 cm

po= l.OOOOg/cm3

S = 0.0001

qL = 0.0167 cm/s

Initial conditions for p* were obtained by computing the steady state solution with

zéro density différences, q^=0 and hi, h^ constant. Initial conditions for the concentration

were zéro values everywhere.

The results ofthe numerical simulation will be presented in three groups. In each

group, the behaviour of a neutrally buoyant plume, as well as that of dense plumes (with

density différences of 0.0072, 0.014 and 0.028) have been studied.. The first group in
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the simulation ( Figures 7.2 - 7.5) used a computational demain identical to that of the

physical demain, 170 cm long (in the x direction) and 100 cm high (in the z direction),

with h,, h; equal to 80 and 78cm, respectively. Figure 7.2 indicates the concentration

contours ofthe neutral plume at time 10, 20, 30,40 and 50 hours. The predicted plume

barely pénétrâtes the water table, most ofit being transported within the capillary fringe;

this is in agreement withthe observed expérimental results (Oostrom, 1991). Figures 7.3,

7.4 and 7.5 détail the predicted instability development for density différences of 0.072,

0.014 and 0.028, respectively. From Figure 7.3, 7.4 and 7.5, the increasing tendency for

the plume to sink as its density increases may be noted. Figure 7.6 is the plume outlines

curves from expérimental result for the dense plume (density différence: 0.014,

corresponding to the numerical simulation in Figure 7.4). The plume boundaries are

drawn from the front and back ofthe flow container. Comparing Fig. 7.4 and 7.6, it may

be seen that after 30 hours, the numerical simulation appears to match the mean plume

trajectory ofthe expérimental observations fairly well. At the initial stages (10 and 20

hours) however, the numerical solution does not indicate that the contaminant travels

much faster in the z direction than in the (longitudinal) x direction as registered in the

experimented results. Furthermore, the numerical simulation does not reproduce the

gravitational instabilities which form along the bottom edge of the plume.

By analysing the numerical results, it appeared that the computational domain was

not sufficiently long to remove the influence of the downstream Dirichlet boundary

conditions which cause horizontal flow. Thus a second séries of simulations were
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performed using a longer computational domain, i.e. 300 cm by 100 cm, with h,, h; equal

to 80 and 77. The results are présentée! in Figures 7.7 to 7.9. Comparing Fig. 7.8 and

Fig. 7.4, reveals that the predicted plume front has been modified, with the plume itself

having a greater tendency to sink. For a density différence of 0.028, instabilities may be

observée along the bottom edge of the predicted plume (Fig. 7.9).

Encouragea by thèse results, a third group of simulation was conducted using a

even longer demain, i.e. 500cm by 100cm with h,, h; equal to 82 and 77. The results are

présentée! from Figs. 7.10 to 7.12. Comparing Fig 7.11 to the expérimental results in

Fig.7.6, it may be observed that the numerical simulation now reproduced the

gravitational instabilities but with a smaller amplitude. This may have been caused by

local variations in the expérimental conditions as well as errors in the estimation of the

relevant parameters used in the simulation, especially the parameters in the unsaturated

zone. With the parameters used in the simulation, it appears that in the unsaturated zone,

the horizontal velocity is too large compared with the expérimental results, this cause the

plume to spread too quickly resulting in a local réduction of the density différence. Fig.

9.12 is the instability development for a contaminant source with a density différence of

0.028, The gravitational instabilities which form along the bottom edge ofthe plume are

évident.

The overall comparison between the laboratory experiments of Oostrom (1991)

and the présent numerical simulations appear to be satisfactory. The discrepancies in the
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amplitude of the instabilities may be attributed to the uncertainties in the estimation of

the relevant parameters, especially in the unsaturated zone. The lack of expérimental

précision and errors in the expérimental data could also be a factor.
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CHAPTER 8

SIMULATION 0F THE CONTAMINANT TRANSPORT

IN THE BORDEN (ONTAMO) LANDFILL

8.1 Brief introduction to the Borden Landïïll

As described by MacFarlane et al. (1983), landfill opérations at the Borden site

spanned a period of 36 years, from 1940 to 1976. Gartner Lee and Associâtes Ltd.

(1977) established that about 80% ofthe refuse deposited during the life ofthe landfill

opération consisted of ash, wood and construction debris. The remaining refuse is

composed of mainly domestic and commercial wastes.

According to MacFarlane (1980), the unconfmed aquifer is locally very

heterogeneous due to complex distributions of beds and lenses of fine to medium and

coarse-grained sand. Some of the beds have a considérable silt content. The unconfmed

aquifer lies on an extensive deposit of clayey and sandy silt. The aquifer is thickest at

the southwestern part of the area and thinnest at about 9.5 m near the northern end

(Fig.8.1). The silt-clayey layer beneath the aquifer was identified as a relatively

impervious layer that separated the unconfined aquifer from the deeper aquifers used for

water supply.
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The range ofhydraulic conductivity was from 0.05x10 cm/s for silt fme-grained

sand to 0.01 cm/s for fine, medium-grained sand. The average porosity was 0.38. Mean

total précipitation averages 82.8 cm yr. , ofwhich 58.67 cm is in the form ofrain, and

24.05 cm is snow.

The water table is farthest below ground surface in the landfill area and in the

area northeast ofthe landfill. The maximum water-table depth is about 7-9 m. The refuse

in the landfill is entirely above the water table except from late March to June, when the

water table is at its highest because of recharge from snowmelt and spring rain. The

contour map of water-table élévation used in the simulation is shown in Figure 8.2, thus,

groundwater flow in the study area is northward with h] equal to 222 m and h; equalto

220m.

8.2 Numerical simulation

The numerical model used in the simulation has been presented in Chapter 4. The

calculation demain and triangular mesh are indicated in Figure 8.3. Due to the lack of

information about the properties of the aquifer, we assumed that the unconfmed aquifer

is homogeneous and the characteristics ofthe unsaturated porous medium were calculated

with Eqs. 3.29 and 3.30 with o:, n and m being 0.0471 cm-1, 6.271 and m=l-l/n. The

infiltration rate was 25 % ofthe total precipatation as referenced by Ahmed (1992). The

other parameter values used in the simulation were:
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Kx = Kz = 0.01 cm/s = 8.64 m/day

q^ = 25% x 82.8 cm/year = 0.00058 m/day

(j) = 0.38

BL = 0.001 m

a^ = 0.0001 m

po= l.0000 g/L

hi == 222.0 m

hz = 220.0 m

Sg = 0.00001

The initial condition for p was obtained from a steady state solution with q^ equal

to zéro. Zéro values everywhere were the initial conditions used for C except inside the

landfill, where C was set equal to l. Boundary conditions for p and C were imposed in

a similar fashion to that for p*, C in Chapter 7. At the ground surface, the flux q^ was

only imposed at the landfill location.

Figure 8.4 traces the development ofthe neutrally buoyant contaminant plume at

times of 10, 20, 30 and 40 years. Figures 8.5 to 8.8 are the trajectories of the dense

contaminant plumes at times 10, 20, 30 and 40 years, the density différences being

0.0014, 0.0025, 0.0036 and 0.0055, respectively. Comparing Figure 8.4 to 8.5, it may be

seen that a density différence of 0.0014 is not enough to cause gravitational instability.

However, from Figure 8.6, 8.7, and 8.8, the increasing tendency to sink as well as for
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the plumes to became gravitationally unstable may be noted. The denser plumes have a

tendency to contaminate larger régions by virtue of their increased vertical extent. More

importantly, the gravitational instabilities serve to enhance this spreading which would

not normally be anticipated on the basis of density différences alone.

Figure 8.9 is the field measurement for chloride and sulfate in 1979/1980, which

is about 40 years after landfill opération. From Fig. 8.8 it may be seen that the calculated

contaminant plume with a density différence of 0.0055 is compatible with the field

measurements. The discrepancies in the amplitude immediately beneath are probably the

influence of the initial conditions used in the numerical simulation. Other factors, such

as the hydraulic conductivity, water table map, or infiltration rate used in the simulation

may also cause thèse différences.

Figure 8.10 is the numerical simulation with the same parameters of Fig. 8.8

except that the infiltration rate (q^) bas been imposed on the entire ground surface. A

comparison between Figs. 8.8 and 8.10, indicates that the infiltration imposed on the

ground surface results in faster descent of the plume.

In Chapter 6, we concluded that the transverse dispersivity plays an important rôle

in governing the stability of dense plumes. With high transverse dispersivity, the initial

concentration will rapidly be smoothed out to the point that locally, the vertical density

gradients will be too low to amplify any disturbance. In order to verify this conclusion,
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some additional calculations to check the influence of the transverse dispersivity were

performed. Figs. 8.11 and 8.12 are the numerical simulation results using the same

parameters of Fig. 8.8 except that the transverse dispersivity has been set to 0.1 m and

0.5 m, respect! vely. From thèse two figures, it may be seen that for ^=0.1 m, the

gravitational instability has formed along the lower edge of the plume; for 0.^=0.5

however, no instability is apparent. Estimâtes of the concentration Rayleigh number with

L=37m, K=8.64 m/day, e=0.0055 and D=a-^V (V is the average velocity, the maximum

value being about 0.06 m/day) were made and the results presented in Table 8.1. The

profiles of cross section near the landfill may be approximated as half Gaussian

distributions with c=0.03. From the stability analysis, for c=0.03, the minimum Rg is

about 94. Référence to Table 8.1 indicates that for a-j- less than 0.1 m, Rg falls within the

unstable région; for a-j. greater than 0.5 m, R^ is outside the unstable range.

Table 8.1 Concentration Rayleigh Number for différent transverse dispersivities

(density difference= 0.0055)

a^(m)

0.0001

0.01

0.1

0.25

0.5

l

Ra

293040

2930.4

293.04

117.216

58.608

29.304
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A further clarification is of pertinence here: although for thèse simulations, the

concentration profile is not strictly Gaussian, its influence on the results of the instability

analysis appear in an intégral évaluation which is less sensitive to the détails of its shape.
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CHAPTER 9

CONCLUSIONS AND RECOMMENDATIONS

The work présentée! here has concentrated on studying variable density effects on

negatively buoyant leachate and intrusion plumes in saturated-unsaturated porous média

using numerical techniques. Various numerical formulations of the relevant governing

équations for the hydrodynamic field and the transport of a variable density contaminant

have been tested. The ultimate aim is to incorporate thèse formulations into reliable,

robust simulation models for the migration of dense or neutrally buoyant plumes in

homogeneous or heterogenous porous média.

Three différent numerical approximations to the governing équations have been

investigated:

the standard finite différence approximation

a control volume formulation

a finite volume formulation closely related to the control volume

formulation

a hybrid Euler-Lagrange algorithm for the transport équation implemented

on a triangular mesh

The finite différence and control volume formulations have been implemented on

a cartesian mesh and validated using published data obtained from laboratory
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experiments. Thèse methods have been found to be computationally efficient, providing

satisfactory solutions with minimal demand on computing resources. For example, it was

possible to simulate the laboratory experiments using a 386 based Personal Computer.

An important disadvantage with thèse methods arises however, when the physical domain

to be modelled does not lend itself to a cartesian discretization. For such cases, either

finite élément or finite volume formulations on non-orthogonal computational éléments

are more appropriate. The body of literature available on fmite élément and, to a lesser

extent, on finite volume techniques suggests that for the same results, finite volume

techniques are computationally more robust as well as being mofe efficient.

A numerical model using a finite volume formulation has been implemented on

a triangular mesh, the chief advantage as just mentioned, being the applicability to the

treatment of irregular computational domains. The numerical treatment of the transport

équation in the model is realised using a characteristics based scheme for the convective

transport, while the diffusion term is evaluated on a triangular stencil using the finite

volume formulation with linear interpolation for the concentration. Attempts to validate

the model with field measurements taken around the Borden, Ontario waste landfill site

have been partially successful.

The numerical efforts described here have been complemented with a stability

analysis based on the plume mean flow characteristics. This part of the study was

inspirée by the expérimental observations in the two laboratory experiments referred to
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earlier, which indicated that negatively buoyant plumes tend to exhibit gravitationally

induced instabilities along their lower edge. The simple analysis described in the présent

work provides a satisfactory insight into the mechanism for the development of the

instability.

Two characteristic parameters: a concentration length scale and a concentration

Rayleigh number are found to govern the stability of the plume. Estimâtes of thèse two

parameters in the laboratory experiments as well as in the Borden landfill site indicate

that thèse plumes will be inherently unstable. The laboratory experiments visually

confirm the appearance of the instability. Complète validation for the Borden site is

unfortunately not possible due to the lack of sufficiently detailed field data. The

numerical model does however indicate that the dense leachate plume would be unstable.

Perhaps the most important ramification ofan unstable plume is the exaggerated increase

in the vertical dispersion due to the appearance of the lobe shaped protuberances

characteristic of this type of instability.

Future work should be devoted to numerically incorporating the effects of

adsorption and chemical réactions on the leachate plume. The numerical aspects of this

task will not necessarily be trivial. Further research into computationally more efficient

algorithms is also very desirable since any évaluation of a "real-case" disposai site will

require simulation of the contaminant migration over a typical period of the order of a

hundred years.
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APPENDIX A

UPWIND SCHEMES

Upwind schemes for approximating the convection terms.

(l) First-order upwind:
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(2) Second-order upwind:
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(3) Third-order upwind;
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(4) QUICK:
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To summarize the schemes described above, a général form can be written as follows

"/"-+/?"/'. + r'uf. + D"/' .+/?")u~~_. \i = A " 7r-2 + -° " T/-l + (- "^ +^" ^+1 + -c "-r/+2 (A.5)
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APPENDIX B

Constants D), D;, 03 and D4 in Eq. (4.138)

In the three-node triangular élément 123 shown in Fig. 4.9, the dépendent variable

p is interpolated using the function given in Eq.(4.123):

p = Ax+Bz+E (B.l)

The constants A, B and E in Eq. (B.l) can be uniquely determined in terms ofthe

(x,z) coordinates of the three nodes and the corresponding values of p:

^ ^ (^-Z3)^+(^-^)^+(^i-^)^3 (B.2)
d e t

^ ^ (^3 -xî)Pï +(;srl -xz)Pz +(A2 -X^Pï (B.3)

det

E = ^2z3-x3z2)Pl+(x3ZÏ -x\z3)Pî +(X1Z2 - xî zl~) PZ (B.4)

det

det= x^z^-^x^+x^z^-x^-x^z^-x^z^ (B.5)

The mass flux may be written as

j = K._ 9P + K..9P + ^.._D^ (B.6)
Jx ~ "XXQx ' "xz~9z ' "Azh
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/' ' KJt ' K"î f K-fs (B'7)

here

K....-kx^-. ^_.=^AP. ^.._=^=MP (B.8)^xx ~ —~. —' ^zz ~ —^—' ^xz ~ ^zx ~ —::— v""

Substituting Eq.(B.l)-(B.5) into Eq.(B.6) and (B.7), and used symbol f,, f;, f3, g,,

g2 and g3 as follows:

f ^ K^zl-z^+K^-xî)

^ det

f , K^(z3-zl)+K^xl-x3) (B.9)
^ det

f ^ K^zl-zz)+^^2-^

^ det

_ K^Z1-Z^+K^XÎ-^

(BIO)

^=—deT

^

^

C-3

^

det

-^l)+^

det

-^)+^

(^1

(^

~xî)

-^

Eq.(B.6),(B.7) may be written as
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J. = flPl+f2P2+f3P3+^Pff (B-n)

.4 = Sï Pi +gi Pl +^3 ?3 + ^P S (B-12)

Finally, Di, D;, 03 and D^ may be obtained

D^-^z,-z^-{x,-x^Y^-z^-{x,-x^

(^p-pc)^poA
t 3

D^-^-z^-^-x^Y^-z^-^-x^} (B.14)

^3=-(((^-^X+(^-^)^)-((^-^^-(^-^^) <B-15)

D, - - (- (^-^)(^P^4^p^p2,)

+ (^-^)(^p2^4^p^p2,)

+ (z,-z^ (K^^K^K^)

- (^-^)(^p2^4^p^7^p2,))/(6*po) <B-16)

- ^(P(^+c))^of

W+l-^fl

+ " ^ ^S^eY^-

here A is the area of the triangular 123, (5' p+ cp) and (<f)SpoS) are the average value

over the triangular 123 and
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f," = ^ [(^+4(^)^(^)J ^=1,3

ë? = 2 [^+4^+(^)J ^=1,3

f,c = A [(^>.+4(^+(^] 7=1,3

ë^ = A [(^,+4(^(^)J ^=1,3

(B.17)
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APPENDIX C

Constants E], E;, £3 and £4 in Eq. (4.172)

In the three-node triangular élément 123 shown in Fig. 4.9, the dispersion

concentration C is interpolated using the function given in Eq.(4.161):

C = Ax+Bz+E (C.l)

The constants A, B and E in Eq. (B.l) can be uniquely determined in terms ofthe

(x,z) coordinates of the three nodes and the corresponding values of C:

(C.2)

(C.3)

l3^ ^1 "V^3"l -^1^3^ l-^"V"11^2-^2^1

det

det= x^z^+x^+x^z^ -x^ -x^z^-x^ (B.5)

The diffusion flux may be written as

^ = D^ + D^ (C.6)
'" - ^xx~Qx ' ^xz~Qz

A-(Z^L

_ (^-^)

(x^-x^C^

e,

^

+

+(^3-zl)

det

+(^-^)

d e t

^

Cz

(x^-x^)

+0

+(-

^

?1

h

-(

-^)

-^l)

x\zî-

^

^

x^z^
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/'= D'f.f D^ <c-7)

Substituting Eq.(C.l)-(C.5) into Eq.(C.6) and (C.7), and used symbol fi, f;, f3, g,, g^ and

g3 as follows:

^ P^(^-Z3)+^(^-^)

^ det

f , D^Z3-zï)+D^xl-x3) (C.8)
^ det

D^ZÏ-zî)+D^xl-x^
^ =
^3 det

D^(Z2-Z3)+-D^(X3-X2)
êï 'det

_ D^Z3-zï)+D^-x3)

ê3 =

det

D^z,-z,)^D^,-x,)

det

Thus Eq.(C.6),(C.7) may be written as

J.-f.C^C^C, (C.10)
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Jz =§1CÎ+82C2+83C3 (c-n)

Finally, E], E;, Ey and £4 may be obtained

E, - -((^) ^-(^-^) ^^f (Q12)

E, = -((z,-^)/,4-(^-^)^) (C.13)

EZ = -((^-^3+(^-^)^) <c-14)

E,--^A^.,c,4 (C.'S)^ M 3 ' v y^ 3

here A is the area ofthe triangular 123.
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<' ^
Flow Direction

<" ^
Tendency tp cause

unstàble by

Viscosity Density

Salt+H20

H,0

H2Û

Salt+HsO

Down

up

Down

Up

No

Yes

Yes

No

Yes

Yes

No

No

Figure 2.1 The four possible configuration ofliquid configuration and flow direction

in a vertical column and the resulting tendency to produce unstable flow

(KmppandElrick,1969)
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'-20-^

-^

y

EXPLANATION

HYDROLOGIC BOUNDARY

LINE 0F EQUAL DILUTION-Number
is dUution factoi (see text section

"Flow of Leachate")

REGION 0F APPROXIMATELY UNI-
FORM CONCENTRATION-CO is ini-
tial concentration of leachate-emiched

ground water at downgradient side

of landfdl

DIRECTION 0F GROUND-WATER
FLOW

LEACHATE POCKET-Direction offlow

and idealized shape of high-density
leachate pocket

WATER TABLE

>999W^ LANDFILL DEPOSITS

Figure 2.2 Leachate movement and dispersion in groundwater

beneath a landfill (Kimmel and Braids, 1980)
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y Y y / ^ / /^^^^^ ^/yyyy^// y y^ y ^yyyyyy^yy/ y

/
constant
saltwater
head

C=Cs

P=PsgZ

///////^////////////^////'//'/'////'/////'//

Figure 2.3 Boundary conditions for Henry's problem (Henry, 1964)
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Figure 3.1 Définition offluid density (Bear, 1972)
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Figure 3.2 Définition ofporosity and représentative elementary volume (REV)

(Bear, 1972)
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k^\^'û^>^:

(l) (2) (3)

Figure 3.4 Components of mechanical dispersion

(Gillham and Cherry, 1982)
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Flow
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Hydraulic
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H
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3==0

ç

Flushing
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Figure 4. l Flow container used in the experiment ofSchincanol and Schwartz (1990)
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Figure 4.2 The configuration for relaxation along a row
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Figure 4.3 The configuration for relaxation along a column
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Input: Tune step

Parameters

Boundary information
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Input: Initial stream function

Initial concentration

Compute
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Compute concentration

Compute stream function

(^ stop_^)

Test for Convergence

Update

Initial concentration

and
Initial stream function

Yes

Figure 4.4 Flow chart of computation procédure
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CHAMBER
M.EDIUM
CHAMBÉR HEAO

CHAM8ER

INFLOW f .-S^l:-:;-^^^^;::::::::^:;::;

(0,0)

OUTFLOW

Fig"re 4.5 Flow container used in th. .vn.^
^theexperimentof0ostrom(l992)
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Control volume

Figure 4.6 Control volume for a quadrilateral mesh
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Figure 4.7 Distances associated with the interface e



196

Start

Input: Time step

Parameters

Boundary information

Input: Initial pressure and initial concentration

Compute density

Compute pressure

Compute

Darcy velocity

Compute concentration

(^ stop_^)

Test for Convergence

Yes

Time limit reached ?

Update

Initial concentration

and

Initial pressure

Yes

Figure 4.8 Flow chart of computation procédure
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Figure 4.9 An irregular shaped calculation demain and its discretization into

three-node triangular éléments and polygonal control volumes
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(b)
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(e)

Figure 4.10 Détails ofthe discretization in Fig. 4.9 and related nomenclature

(a) an internai node;
(b) a boundary node with three associated éléments;
(e) a boundary node with one associated élément.
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(n+l/2)^t

> x

Figure 4.12 Sketch of a characteristic curve AB
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Start

Input: Time step
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Boundary information
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Compute density
Compute pressure

Compute

Darcy velocity

Compute concentration

(^ Stop^)
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and

Initial pressure
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Figure 4.13 Flow chart of computation procédure
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Figure 5. l Calculation demain and boundary conditions
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50-100% Source 10cm-
Concentration

10-25% Source
Conceniration "0 l'ocm

(25-50% can be classified in either group)

Expérimental Results

(Reproduced from Schincariol and Schwartz [1990])

Concentration isolines

Min: 0.1, Max: 0.9

Numerical Simulation

Figure 5.5 Instability development for a 5,000 mg/1 NaCl source in homogeneous

média at (a) t=12 hours, (b) t=54 hours, and (e) t=72 hours
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