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Resume

Ce memoire concerne la modellsation geometrique et generation de maillage pour

des composantes de turbines hydrauliques. La inethodologie de design de turbines

necessite une representation geometrique de chaque composantes, c est-a-dire la

roue, Ie difFuseur et la bache spirale. Ceci sert a la generation de malllage pour

la discretisation du domaine de calcul pour les calculs de 1'ecoulement.

Le but de ce travail est de realiser un logiciel pour faciliter et voir automatiser ces

differentes etapes. On decrit diverses approches pour realiser un tel environnem. ent

et on les evalue a la lumiere des besoins particuliers du domaine hydraulique, et de

la nature des donnees qui seront fournies pour ces calculs.

Le probleme est pose dans Ie cadre de la conception assistee par ordinateur

avec comme premiere etape la caracterisation geometrique. Parml les difFerentes tech-

niques de modelisation, on retient 1'approche surfacique.

Les composantes geometriques concernees sont la bache spirale, la roue et la dif-

fuseur. Ces trois geometries peuvent etre representees par Ie deplacement d une

courbe (appelee profil ou section) Ie long d'un autre courbe (appelee dorsale).

Au cours du deplacement, Ie profil change de forme selon une loi prescrite. Ces

difFerentes courbes sont representees par des NURBS et les surfaces engendrees sont

representees par des splines bi-cubiques.
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Une bibliotheque de fonctions a don ete creee pour la representation de courbes

et surfaces basee sur des representation en B-Spline et en NURBS dont:

. Ie calcul des derivees,

. la longueur d arc,

. 1'intersection de deux courbes.

La roue est constituee de plusieurs pales disposees de fa^on axiale autour de 1 axe

de rotation et est bornee par deux surfaces de revolution, Ie moyeu et Ie carter. Les

donnees disponibles pour definir la roue sont deux series de points representant Ie

moyeu et Ie carter ainsi que deux treillis de points definissant les deux cotes d une

pale. Le volume a mailler est construit avec ces surfaces et en completant avec des

surfaces de periodicites issues du bord d'attaque et du bord de fuite. Le maillage

est ensuite engendre par interpolation transfinie sur chaque surface de revolution.

En repetant du moyeu au carter, on obtient un inaillage 3D.

Le modele geometrique du difFuseur est base sur un pr duit tensoriel ou une sur-

face est engendree par Ie deplacement d'une section en profil Ie long d une courbe. Au

cours de ce deplacement, les caracteristiques de la section varient, et leur specification

est faite selon un langage de representation geometrique. Le maillage est du type

multi-bloc avec une subdivision de la section.

La geometric de la bache spirale est une surface engendree par Ie deplacement

d'une section dont la forme varie. La partie la plus delicate a representer est Ie

raccord entre la fin de la bache sur elle-meme pres du canal d amenee. Les coupes

radiales sont remplacees par des surfaces gauches variant de fa^on m.onotone de la

dermere section plane a la surface du bee. Le nnaillage est obtenu par un decoupage

de la section en plusieurs blocs a 1'interieur desquels un raaillage transfini es genere.



Vll

Les diverses representations geometriques pour les composantes de turbines ont

ete realisees a partir d'une librairie de modellsation geometrique, et d'un langage

pour la description de ces surfaces. Get ensemble permet la caracterisation de ces

surfaces a 1'aide de surfaces bi-cubiques. Ensuite, les maillages sont engendres par

blocs en utilisant la technique des interpolations transfinles. Ces outils out ete

appliques avec succes a des geometries reelles issues de composantes de 1'industrie.
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Abstract

The design methodology for turbomachinery requires a suitable geometric mod-

eller to represent the three major components, runner, difFuser, and spiral casing, and

a mesh generation capability to discrete domain. In this thesis, geometric modelling

and automatic mesh generation methods are presented for hydraulic turbomachin-

ery components. The purpose of this method is to automate geometry description

and grid generation of the three major components of a turbomachinery.

A surface geometric modelling system which uses Non-Uniform-Rational-BSplines

(NURBS) representation was created to accurately represent the complex geometric

shapes of all components. It is able to model a spiral casing described by a series of

sections and a diffuser with or without a pillar at the outlet. It also has the ability

of handling the complex three-dimensional shape of blades, and the Intersection be-

tween the blade and the hub or the shroud. A tensor product format makes it easy

to create a Curve/Surface geometry library in one single data structure. This also

makes it very efficient to construct the curves and the surfaces of components using

a blending method.

To generate a good quality 3D curvilinear mesh, a transfinite interpolation

method was developed. It has the ability to generate three dimensional meshes

with an appropriate concentration and smoothness between the blades, inside the
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diffuser and in the spiral casing.

A software package based on this method with a graphical user interface is also

presented. The package has the ability to:

1. Create and modify the 3D geometric model for each components.

2. Construct surfaces delimiting the spiral casing, blade-to-blade channel of the

runner and the diffuser boundaries.

3. Calculate a body-fitted mesh of all the components of the turbomachinary.

This software package works for Kaplan, Francis and Bulb type turbines as well

for pumps.



Condense en fran^ais

Modelisation geometrique et generation de maillage pour des com-

posantes de turbines hydrauliques.

Resume

La methodologie de design de turbines necessite une representation geometrique

de chaque composantes, c'est-a-dire la roue, Ie diffuseur et la bache spirale. Ceci

sert a la generation de maillage pour la discretisation du domaine de calcul pour les

calculs de 1'ecoulement.

Le but de ce travail est de realiser un logiciel pour faciliter et voir automatiser es

diiFerentes etapes. On decrit diverses approches pour realiser un tel environnement

et on les evalue a la lumiere des besoins particuliers du domaine hydraulique, et de

la nature des donnees qui seront fournies pour ces calculs.

Introduction

Le probleme est pose dans Ie cadre de la conception assistee par ordinateur avec

comme premiere etape la caracterisation geometrique. La possibilite d utiliser un

modeleur geometrique commercial n'est pas retenue en faveur d'un logiciel specialise

aux turbines pour faciliter son utilisation. Parmi les differentes techniques de

modelisation, on retient 1'approche surfacique pour eviter les ambigmtes des mod-

eleurs en fils de fer sans toutefois impliquer les difficultes conceptuelles des mod-
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eleur solides. II est montre que ce niveau de fonctionnalite n'est pas necessaire a

1'application envisagee.

/-^'--=...

^

s.^
§1-::'
=!_

"iliil
-1111

Figure 0. 1: Trois composantes
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Les composantes geometriques concernees sont la bache spirale, la roue et la dif-

fuseur qui sont montres a la figure 0. 1. Ces trois geometries peuvent etre representees

par un meme modele conceptuel. C'est-a-dire celui d'une surface engendree par Ie

deplacement d'une courbe (appelee profil ou section) Ie long d'un autre courbe (ap-

pelee dorsale). Au cours du deplacement, Ie profil change de forme selon une loi

prescrite.

Ces dlfFerentes courbes sont representees par des NURBS et les surfaces en-

gendrees, Ie sont par des splines bi-cublques. Ces choix out ete degages essentielle-

ment afin d'evlter des ambigmtes, et permettre une caracterisation simple a 1'aide

de quelques parametres globaux.

Generation de maillages

Le choix dans les techniques de maillages se situe au niveau des maillages dits

structures ou non-structures. Les crlteres sont d'ordre de la complexite des al-

gorithmes et de la fonctionnalite vis-a-vis la complexite geometrique. Dans la

premiere famille, on retrouve les techniques de maillage conformes qui sont facile-

ment eliminees car elles ne permettent pas des extensions en 3D. Les mailleurs is-

sus de la resolution d'equations differentielles elliptiques donnent generalement des

maillages de bonne qualite. En plus ils se pretent bien a une automatisation qui

decoulent des proprietes des equations a resoudre. En effet, ces dernieres assurent

1'unicite des mailles, sans plis et tres lisses. Elles sont cependant couteuses.

Les methodes algebriques, ou interpolations transfinies, offrent des possibilites

aussi interessantes que les methodes basees sur les equations elliptiques, et ce a

molndre cout. Dans leur forme la plus simple, ces methodes ne peuvent toutefois pas

s'adapter a, toutes les topologies rencontrees dans les applications qui nous occupent.

Pour palier a ces cas, on a recours a une technique de decoupage du domaine par
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bloc et on applique ensuite les methodes transfimes.

Leading
part

Trailing part

Figure 0.2: Le profil d'une aube

Ellipae Arc

Section of Draft tubs
Line segment

Figure 0. 3- La section du difiFuseur
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L2

L3

L5 IA

LO

LI

Figure 0.4: la section de la bache spirale

Modelisation geometrique

Pour la realisation de ce projet, une bibliotheque de fonctions pour la repre-

sentation de courbes et surfaces basee sur des representation en B-Spline et en

NURBS a ete creee. On retrouve un certain nombre de fonction de base pour la

manipulation et la representation, telles que Ie calcul des derivees, de la longueur

d'arc, de 1'intersection de deux courbes, etc... Ces diverses fonctions sent ensuite

appliquees aux composantes de turbines hydrauliques. Cette construction se fait a

partir des donnees telles que dlsponibles dans notre application avec comme exemple

Ie profil d'une aube donne a la figure 0. 2, la section du dlfFuseur a la figure 0. 3 et la

bache spirale a la figure 0. 4. Les surfaces correspondantes sont ensuite construites

a 1'aide de produits tensoriels.

La roue est constituee de plusieurs pales disposees de fagon axiale autour de 1'axe

de rotation et est bornee par deux surfaces de revolution, Ie moyeu et Ie carter. Le

volume a mailler est construit avec ces surfaces et en completant avec des surfaces de
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Figure 0. 5: Le volume a mailler est construit

Angle

Mapping

Support

Figure 0.6: Le construction de volume

periodicltes Issues du bord d'attaque et du bord de fuite tel qu'lllustre a la figure 0. 5.
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Figure 0. 7: Le volume de canal

i.sKS:

Figure 0.8: un maillage 3D

Cette construction est montree a la figure 0. 6. Le maillage est ensuite engendre par

interpolation transfinie (cf. figure 0. 7) sur chaque surface de revolution. En repetant

du moyeu au carter, on obtient un maillage 3D (cf. figure 0. 8).
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Figure 0.9: Deux. types de diffuseurs

On couvrira deux types de diffuseurs, avec et sans pile. Dans les deux cas, Ie

modele geometrique est base sur un produit tensoriel ou une surface est engendree

par Ie deplacement d'une section en profil Ie long d'une courbe. Au cours de ce

deplacement, les caracteristiques de la section varie t, et leur specification est faite

selon un langage de representation geometrique. Les maillages obtenus sont illustres

a la figure 0. 9. Us sont du type multi-bloc avec une subdivision de la section.

Bache splrale

La geometrie de la bache spirale est d'un type similaire au diffuseur. C est

une surface engendree par Ie deplacement d'une section dont la forme varie comme

illustree a la figure 0. 10 et 0. 11. La partie la plus delicate a representer est Ie

raccord entre la fin de la bache sur elle-meme avec Ie canal d'amenee. Ceci necessite

la redefinition des surfaces servant de supports tel qu'illustre a la figure 0. 12. En

effet, les coupes r diales sont remplacees par des surfaces gauches variant de fagon



Spine

Normal

XV111

SectioTi

Support

Figure 0. 10: Le deplacement d une section

.

]S
..^-. ''.^^

y '-..A

Figure 0. 11: Deux partie

monotone de la derniere section plane a la surface du bee. Le naalllage est obtenu

par un decoupage de la section en plusieurs blocs a 1 interieur desquels un maillage

transfini est genere.
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Ongan Secdon

Begin section of join part

Figure 0. 12: La redefinition des surfaces

Conclusion

Les diverses representations geometriques pour les composantes de turbines ont

ete realisees a partir d'une librairie de modelisation geometrique, et d un langage

pour la description de ces surfaces. Cet enseinble permet la caracterisation de ces

surfaces a 1'aide de surfaces bi-cubiques. Ensuite, les maillages sont engendres par

blocs en utilisant la technique des interpolations transfinies. Ces outils out ete

appliques avec succes a des geometries reelles issues de coinposantes de 1'industrie.
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Chapter 1

Introduction

1. 1 Problem Statement

Computer integrated manufacturing(CIM) of turbomachinery calls for the coor-

dination of three areas: hydraulic or aerodynamic design, mechanical design, and

automated fabrication with NC machine tools. The hydraulic design phase is subdi-

vided into four steps as shown in Figure 1. 1. Our study focuses on the first two steps

of this process. First, a suitable geometric representation(geometric modeling) of the

major components has to be created. Second, a quality grid that conforms to both

the geometric definition and the expected solution gradients has to be generated.

1. 2 Geometrical Modeling

Geometric modeling as a distinct discipline ppeared in the early 1970s with

the rapid development of computer graphics, computer-aided design(CAD) and

computer-aided manufacturing(CAM) technologies. It refers to a collection of meth-

cds used to define the shape and other geometric characteristics of an object. These
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Figure 1. 1: Situation of hydraulic design in C1M

can be viewed as an extension of the traditional discipline of geometry combined with

numerical or approximation theory. Coupled with computational technology(FEM,

CFD,... ) this yields a powerful tool for the design and analysis of complete config-

urations.

The three most widely used modeling methods are wireframe modeling, surface

modeling and solid modeling[6]. In the hydraulic design of turbomachinery, geomet-

ric modeling is required for an accurate representation of the wetted surfaces of a

particular component. From these surface, a closed domain or volume is defined for

simulation purposes, and it is these surfaces that will support the boundary of the

domain and therefore the boundary conditions.

Because of the complexity of the shapes involved in this research, a Surface

geometric modeling representation was chosen and developed. This will form the

basis for the following aspects of the geometric design of the turbomachines.

1. Representation: The physical shape of a component Is given and presumed to



be fixed. A mathematical approxinaation is computed.

2. Design: A procedure whereby a new shape is created to satisfy soine opera-

tional or aesthetic objectives. This involves the manipulation of the variables

defining the shape until the objectives are met.

3. Discretization: The domain is subdivided into discrete elements where the

partial differential equation(PDE) governing the fluid flow will be solved nu-

merically

These three aspects are, of course, closely related. At first the model represents a

physically nonexistent object. After selecting a model suitable for numerical analyst

and evaluation, the fluid flow inside the domain is simulated. Analysis of the solution

can be achieved by visualization techniques using computer graphics tools. At any

point in this process, the geometric model provides all the underlying geometric

information.

1. 3 Grid Generation

Presented simply, a grid is a mechanism to organize a geometric domain for

calculation purposes. This should be done in such a manner that points (nodes)

and the surrounding neighborhood (elements) can be conveniently located and easily

related in physical space for the discretization.

Grids can be classified into structured and unstructured types depending on

the nature of the connectivity. Structured grids (body-fitted or curvilinear) can be

generated using the following basic techniques [1].

. he Conformal Mapping Technique.



. The Algebraic Function Technique.

. The Elliptic Differential Equation Technique.

The last two methods are the most widely used techniques to generate body-fitted

grids for flow calculations in turbomachinery. In this research, a transfinite method

based on the Algebraic Function Technique is developed to generate an initial three

dimensional grid inside each component of the turbomachine. An elliptic differential

equation technique is then used -to smooth the grid.

1. 4 Turbomachinery Components

A turbomachine is composed of three major coinponents: the spiral casing, the

runner and the diffuser. These are arranged as shown in Figure 1. 2. The geometry

of the spiral casing is a three dimensional spiral shell. The outlet of the spiral

casing Is connected to inlet of the runner. At the junction, there are guiding vanes

and wicket gates to control the flow as it enters the runner, therefore the shape of

the spiral casing changes from that of a pipe to that of a spiral. The shell of the

runner is coinposed of two surfaces: one is called the hub, and the other is called

the shroud. These are connected to the spiral casing. The blade of the runner is

designed as a streanalined surface to produce power efficiently. The outlet of the

runner is connected to the inlet of the d.ifFuser. The inlet section of the diffuser is

circle and the outlet section is a rectangle.

These differences in geometry and topology require different data for their defi-

nition. Accordingly different methods are developed to cope with these differences.

A special geometry description language and geometry interpreter, designed to rep-

resent the geometry of components, have been developed to autonaate the process



of geometry construction. The geometry of each component is defined as follows:
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Figure 1.2- The three major compone t

1. Spiral casing: The data available to define the spiral casing is a series of three-



dimensional sections. All sections are circles attached to both sides of the stay

vane. We define a spine as the centre of these circles and it extends into the

intake pipe. The geometrical representation of the spiral casing is a surface

which is created by skinning the sections.

2. Runner: The runner is defined as a group of blades embedded inside a channel

which is composed of two co-axis surfaces of revolution called the hub and the

shroud. Inside the channel, blades are placed periodically around the co-axis

of the surfaces of revolution.

3. Diffuser: The diffuser is defined by a series of three-dimensional plane sections

cutting across the flow. The center of each sections is placed on a spine which

follows the direction of the flow. Each section is composed of elliptic arcs

joined with segments determining the local shape. This allows for a smooth

transition from a circle at the inlet, to a rectangle at the outlet, while still

describing accurately all intermediate sections.

1. 5 Goals and Objectives

The main difficulties in hydraulic turbomachlnery design come from the rapid

changes in geometry, and the rotation of the runner relative to the joining part of the

spiral, making the flow both complex and unsteady. Most commercial mechanical

CAD/CAM systems were developed to deal with general mechanical design. Due

to the complexity of the geometry of the turbomachine to use them in hydraulic

design would be very complicated.

The goal of this research is to develop a special purpose GAD system for the

hydraulic design of turbomachinery. The users of the system would be engineers



who do computational fluid dynamics(CFD) research to simul t the flow inside each

component of turbomachinery. This CAD system should have the ability to model

the three major components of the turbomachinery. It should also discretize these

model for numerical simulation of the flow inside. An autoinatic grid generation

tool was developed to discretize the geometric representation.

In this system, a surface geometric modeling library which uses Non-Uniform-

Rational-BSplines (NURBS) has been implemented using the C language with object-

oriented methods. Based on this geometric library, a CAD package for hydraulic

design of turbomachinery was built along with a geometry language interpreter and

a grid generation capability



Chapter 2

Geometric Modellers and

CAD/CAM Systems

2. 1 Computer-Aided Geometry Design

Computer aided geometry design(CAGD) is a primary Ingredient in computer-

aided design and computer-aided manufacturing (CAD/CAM) systems, computer

graphics, computer art, animation, simulation, etc. The main objective of the

GAG research is to develop mathematical and numerical concepts and associated

technologies for geometric modeling. There are three common types of geometric

modellers :[6]

. Wireframe modellers

. Surface modellers

. Solid modellers



2. 1. 1 Wireframe Modellers

A wireframe modeller is composed of lines and curves defining the edges of an

object. These systems were initially two dimensional and were intended as drafting

tools. Extensions are currently available to handle three-dimensional representa-

tions. They can define two dimensional objects exactly, but in dealing with three

dimensional objects, they are frequently ambiguous. Figure 2. 1 shows a good exam-

pie, since there are two equally likely interpretations of the object.

.'-:'7">--.

.
<-"^-. "--.

.-^-.-

--;::-. y
" ~-!-^

Figure 2. 1: Ambiguity in wireframe modeller

Another problem is that wireframe systems usually have no internal logical tests

t prohibit nonsense object. Figure 2. 2 shows such an object created by wireframe

system. Implied faces interpenetrate in a way that makes the interpretation of a
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physically realizable solid object impossible.

Figure 2.2: Nonsense object in wireframe modeller

2. 1. 2 Surface Modellers

A surface modeller represents the boundary of an object as a collection of para-

metric surfaces. This approach was first developed to create complicated sculptured

surfaces to replace the classic lofting techniques used in the shipbuilding, automo-

tive, and aircraft industries. Initially parainetric cubic patches of Coon and Fergu-

son and the techniques of Bezier were used to represent these sculptured surfaces.

New ground was broken in the mathematics of parametric surfaces with the advent

of tensor products, Non-Uniform-Rational-BSpline(NURBS)[4]. The advantage of

.these lies in using an homogeneous coordinate system. They can represent both

the classical and the free forms of curves and surfaces in a unique mathematical

form. It has since become a standard representation in geometric modellers, surface

modeling systems should have the ability to:
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1. Construct free form of curves and surfaces by polynomial representation from

a series of points(B-spline, Bezier-spline, NURBS)

2. Construct classic curves and surfaces(ellipse, circle, line, plane, revolution sur-

face, ruled surface, sphere, etc...)

3. Construct more complex three dimensional curves or surfaces by joining sep-

arate curves or surfaces (tensor product NURBS).

A surface modeling based on NURBS can exactly define the shape of most three-

dimensional objects. In addition, a very important feature found in many surface

modellers is the faceting capability. It refers to the generation of polygons on the

surfaces which can then be used in many computer graphics algorithms (hidden line

removal, shading, rendering) to draw a realistic picture of the three dimensional

object.

The liinitation of surface modellers is that they lack the concept of volume since

they do not, in general, define an inside and outside. To define unambiguously the

inside of an object, one requires a closed surface. For practical applications, the

whole boundary of an object cannot be seperated by a single surface, but rather by

a series of "patches joining together. The information on how these patches are

linked to one another is required in order to make a precise difination of inside and

outside. This information is general refered as topology . This is illustrated in

Figure 2.3 where the intersection. of a cylinder with a sphere is ambiguous because

surface modeling lacks the concept of volume. The correct boundary surface of the

new object cannot be created automatically. Comparing with wireframe modeling,

surface modeling can precisely represent the boundary of 3D objects and can produce

all the necessary information for realistic pictures.
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Figure 2.3: Object created by surface inodeller

2. 1. 3 Solid Modeller

Solid modellers were intended to overcome the limitations of the other schemes

by adding the concept of a solid interior. They are developed from surface modellers

by adding the topological definition of an. object. There have been several different

approaches. The two most widely used methods are : Boundary Representations(B-

Rep) and Constructive Solid Geometry(CSG).

In Boundary representation, a three-dimensional object can be represented as a

volume bounded by a closed shell with orientation. The shell boundary is composed

of a collection of faces joined to each other along their edges. This solid modeling

system is composed of two parts. One is the geometrical definition of basic geome-

try primitives like points, curves, surfaces etc, and the other is the topology which

defines the relationship between all the geometric primitives building the three di-



13

mensional object. The topologlcal definition of a shell distinguishes the interior and

exterior of a three dimensional object by its orientation. Figure 2. 4 shows a simple

topological representation of a tetrahedron bounded by a shell composed of four tri-

angular faces. Every face is bounded by an oriented loop omposed of three edges.

Every edge is bounded by two vertices. This topological representation defines the

detailed relationship between all the geometric primitives which make up the object.

From these relationships, the geometric modeller can determine if a point is on the

boundary surface, inside the object, outside the object, or on the surface of the ob-

ject. In the second approach, Constructive solid geometry, Boolean operations are
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used to create the three-dimensional objects. Models are constructed as a combina-

tion of simple solid primitives, such as cylinders, spheres, cuboids. The primitives

are combined using the union, intersection and difference operators.

2. 2 CAD/CAM Systems

Computer-Aided-Design(CAD) and Computer-Aided-Manufacture(CAM) refer

to software tools which have been developed to help engineers design and analyse
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products. They differ from geometric odeling systems which can only model the

geometry of objects. CAD/CAM. systems can manipulate objects by applying de-

sign and analysis methods to them until some requirements are met. Those design

and analysis methods differ from one system to another and depend on specific ap-

plications. For mechanical CAD/CAM system, these methods are structural finite

element analysis, numerically controlled machine tool path generation, interference

detection, mechanical analysis, etc... For hydraulic CAD/CAM system, the most

important analysis methods are grid generation and numerical simulation. The re-

lation between hydraulic CAD/CAM sy tern and geometric modeling is shown in

Figure 2. 5.

USER

u

s

E

R

I

N

T

E

R

F

A

c

E

Visualization

< FEM

(mesh)

Analysis
(Solver)

Manufacturing

Geomettric

Design

Figure 2. 5: Computer Aided Manufacturing for turbomachinery
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2. 3 Proposed Modeling Approach

The features and characteristics of various modeling approaches were analyzed

in section 2. 1. The most important requirement was to precisely represent the

boundary surfaces of a closed volume. Both solid modeling and surface modeling

can meet this requirement. Solid modeling systems can handle the solid interior

of objects. However in the present application, since no solid interior geometry

manipulation is required. Here Surface Modeling is more suitable.

The shapes considered by the present methodology include different types of

blades, surfaces of revolution to represent the hub or shroud of the runner, the

skinning type surfaces which represent the shell of the spiral casing and the dif-

fuser. Various curves also need to be considered: lines, classic conic section curves,

splines, etc... To meet all these requirements, a surface modeling package using

Non-Uniform-Rational-BSplines (NURBS) representation is proposed to represent

the geometry of the turbomachinery components. This package should also include

basic operations which can be used to manipulate the various curves and surfaces

like interpolation, skinning, transferring, evaluating, etc...
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Chapter 3

Computer Aided Grid Generation

The numerical methods used in hydraulic design (finite differences, finite vol-

umes, finite elements) require a h which represents the discretization of th

domain under consideration. Grids can be categorized according to various char-

acteristics or according to the method used for their generation. The most widely

used classifications are structured and unstructured grids. The first can be further

subdivided into algebraic, body-fitted, or elliptic grids.

3. 1 Body-Fitted Structured Grid and Genera-

tion Method

The basic characteristic of a body-fitted structured grid is that the coordinate

curves (or surfaces) conform to (or align with) the boundaries. The degree of con-

formity varies from exact at boundaries where these must coincide, to some global

alignment in the interior of the region.

In a structured grid, all nodes are surrounded by exactly the same number of el-
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ements. These elements can be either rectangular or triangular in shape. The global

property of such structured grids is that they can be mapped into a logical square or

logical triangle. For complicated domains, the mapping of a structured grid into a

single logical square or logical triangle may be difficult or impossible. However such

topological limitations can be overcome through domain decomposition, or zoning,

which results in a combination of basic zones or subdomalns. Several methods to

generate body-fitted grids within such basic ones will now be described.

3. 1. 1 Conformal Mapping Technique

The conformal mapping technique consists in a mapping from the physical do-

main in (x, y) to a logical domain in (u, v). The domain of the mapping is referred

to as the logical space U, while the mapping range is referred to as physical space

n. Maps or transformations from logical to physical objects yields a system of co-

ordinates on the physical object. Such maps have two important parameters: the

dimension k of the logical object and the dimension n of physical object, thus they

are labeled XJ^.

X^ :U, ^^ (3. 1)

It is assumed that 0 <n < 3 and 0 < k <n. In general such maps can be written

as:

^ = ^(0 (3. 2)

The coordinate lines in physical space are the images of the coordinate lines in

logical space and are thus given by the curves where one of the components of ^

varies while all other components are held constant. Another restriction is that the

boundary of the physical space must be the image of the boundary of the logical

region under the map. This type of mapping is called conforming mapping.
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The most important quantity in a conformal mapping is the Jacobian matrix J.

It is defined as the:

9Xi
't,3 - ^ (3. 3)

In the case n = k, the Jacobian matrix is a square matrix and the determinant is

defined and referred to as the Jacobian J of the Map X^:

j = det{J)

As a classical example, the choice of

Z=f(w)=^± (^-a^
will map the straight line segment in the w-plane

(3. 4)

(3. 5)

u = 0

-2a < u < 2a (3. 6)

into a circle centered on the origin with r dius equal to a, in the z-plane.

3. 1. 2 Elliptic Partial Differential Equation Technique

DiflFerential Equation Techniques are based on solving systems of elliptic partial

differential equations. A major advantage of this approach is that the interior grid is

very smooth. In our case, an elliptic PDE is used: Poisson's equation[7]. This grid

generation method has two disadvantages: it takes more work to solve an elliptic

equation, and it is hard to control the interior grid distribution. Adding some

concentration will yield a Poisson equation with forcing terms, since the effect of

which is not readily predictable.

The most widely used method is the homogeneous Thompson-Thames-Mastin

method[5j. For a two dimensional domain bounded by four curves, the method can
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Figure 3. 1: Confo ming inap method

be explained by the following heat-transder analogy: one poses that two opposite

sides are thermally insulated while the other pair are set at a given temperature

differential. The method arose from the need for an elliptic generator that would

produce unfolded grids, which translates to a transformation with positive Jaco-

biaa 5 . It requires the inverse transformation,

(=^(x, y) rj=r](x, y), (3. 7)

to satisfy Laplace s equation:

v2^

V2??

v^=^+^=o

V^ = r}xx + 7?yy = 0 (3. 8)

Where the ^, T] represent the logical parameter space, x^y represent the physical
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space. The solution of the resulting field yields a family of constant temperature lines

which are to be used as the body-fitted coordinates curves. Figure 3. 2 illustrates this

method. A second set of curves is obtained by solving the same PDE interchanging

the Dirichlet-and-Neuman conditions.

?=°
dn

/ /// / T=1.0

/ /

/

T=0

/

. dT

dn
=0

Figure 3.2: Constant temperature line of a domain

3. 1. 3 Algebraic Function Technique

The Algebraic Technique generates body-fitted grids by using interpolation in-

stead of differential equations. There are two advantages of this technique: rapid

computation of the grids compared to the Differential Equation Technique, and

direct control over grid point locations. This method consist of a mapping of a

parametric space to physical space. The grid generated in the parametric space is

mapped by means of explicit algebraic transformation equations. This is both easy
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and efficient as the grid is trivially generated in the transformed space and the actual

grid in physical space is computed directly by the numerical evaluation of a chosen

set of expressions. The control of the grid point locations is obtained by applying

some concentration criterion. These advantages are somewhat offset by the fact the

interpolation methods may not generate smooth grids; in particular, boundary-slope

discontinuities propagate into the interior.

The standard method of Algebraic grid generation is known as transfinite inter-

polation. In the one-dimensional case, it is the same as linear interpolation. The

more interesting case is for a two-dimensional domain. A four sided planar grid-

generation problem begins with a description of the boundary of the doniain, that

is, four equations

Xb{u) = 0 Xt{u} =0 0 <u < 1.0

Xi{v) = 0 Xr(v) =0 0<v<1.0 (3. 9)

are needed to represent each part of the boundary. The subscripts b, t, 1 and r

stand for bottom, top, left, and right boundary of the logical domain. The simplest

example of such a parainetrization is the identity map, that is, where the physical

region is the unit square just like the logical region. This parameterization is given

by

Xb{u) = (u, 0) 0<u<1.0

Xf(u) = (u, l) 0<u^l.O

Xi{v) = (0, u) 0<v<1.0

X^v) = (0, u) 0<v<1. 0 (3. 10)

The first degree Lagrange polynomials 1 -u, u, l - v, v are used as blending func-

tions in the basic transfinite interpolation formula as:
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X(u, v) = (1 - v)Xb(u) + vXf{u) + (1 - u)Xi + uX, - (uvXt(l) +

+u(l - v)Xb(l) + v(l - u)Xt{0) + (1 - u)(l - v)Xf, (0)) (3. 11)

A bilinearly blended Coon's patch S(u, v) can also be used to generate the grid

on three-dimensional surface domain as shown in Figure 3. 3. The first two ruled

surfaces are defined as:

<l_2(v)
c_l(u)

d_l(v)

/ \'
c_2(u)

Figure 3. 3: Coon's patch construction

r-d(u, u) = (1.0-u)*S(0, v)+u*S(l, v)

rc(u, u) = (1. 0-v)*S(u, 0)+v*S(u, l) (3. 12)
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where

S(u, 0} = Xb(u) S{u, l)=Xt(u}

5(0, v) = X;(v) 5(l, z;)=X(y) (3. 13)

are four boundary curves. A linear patch is created by bilinearly interpolating the

four corners points as:

rcd(u, v)= [(1. 0-u) u]
5'(0, 0) 5(0, 1) 1.0-v

5(1, 0) 5(1, 1) v

Finally, the Coon's patch S(u,v) is given by

S(u, v) =rc+rd-rcd

Written, in matrix form this is given by

), ") , ". -, ". -., (l-u)
S{u, v) = [1.0-u u] 

"vu '"/ 

+ ,0) 5(u, l)]
^(1, 0)

(3. 14)

(3. 15)

- [1. 0-u v]
5'(0, 0) 5(0, 1) 1.0-v

(3. 16)
^(1, 0) 5(1, 1)

The bilinearly blended Coon's patch does not always yield good results when the

geometry of the region is not convex. So to improve accuracy, Bicubic blended

Goon's patches can be used. These need more input than jus positional. First

derivative information is required. The data required now consists of position vector:

S(u, 0), S{u, l), S{0, v}, S^v) (3. 17)

and first derivative vector:

^(u, 0), 5', (u, l), ^(0, u), ^(1^) (3. 18)



25

The bicubic blended Coon's patch is obtained by the same method as the blended

bilinear Coon's patch. First, two blended surfaces can be constructed from the

position vectors and derivative vectors as:

h^u, v) = H^u)S(0, v)+H^u)S^O, v)

+H^u)S^l, v)+HJ{u)S(l, v)

hd(u, v) = H^v)S(u, 0) + H^v)S^u, 0)

+H^v)S^u, 1) + H^(v)S(u, 1) (3. 19)

where the H3 are cubic Hermite polynomials and have the form:

H^u) = 2u3-3u2+l

H3, (u) = -2u3+3u2

H^(u) = u3 -2u2 +u

H^u) = u3-u2 (3. 20)

As for the bilinear patch, a bicubic patch based on four corner is d fined:

^03(^)

H3, {v)

-Poo Poi PW PSi

^(U, ^) = [ffo3(")^3M^3(")^33(")] ^10 Pll % PU
lu Du
00 -1 01 1 00 "01

>u DU Duu Duv
10 -1 11 ^10 J( 11

H3M
H3M

(3. 21)

Finally, bicubically blended Coon's patch can be obtained as:

S(u, v)= h^+hd- hcd (3. 22)

3. 2 Unstructured Grid

Unstructured grids are composed of two parts: a set of nodes, and the connec-

tivity between them. Compared to the structured grids, unstructured grids have
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the ability to represent complicated domains. The most widely used element in un-

structured grid is the triangle because the algorithms to generats the triangles are

simpler than those for quadrilaterals. For three dimensional grid, the tetrahedron

element generally is used. But the generation processing is longer than for struc-

tared grids. For the two dimensional domain, one generation technique consists in

two steps: first the nodes inside the domain are generated, then the connectivity is

created. The nodes in both the Interior and on the boundary can be generated by

algebraic or elliptic method. One widely used connection phase technique is based

on the Delaunay-Voronoi method[2].

3. 3 Method Used in This Application

Two facts one must deal with in order to generate grids in turbomachinery

components: the geometric complexity and the concentration requirement of the

grid. Neither the elliptic nor the Algebraic function methods can generate a grid

which respect both the geometry and the concentration.

A method called multiblock structured grid generation is used in this project to

generate the grid. It overcomes the difficulty of single domain algebraic method by

breaking the complicated domain in several simple subdomains. Then a structured

grid is generated Inside each subdomain. After the grid has been generated inside

each subdomain, a smoothing method is used to smooth the grid inside each sub-

domain. Finally a global grid is created by combining those subdomain grids. By

using this method, a quality grid can be generated with good concentration for each

components of the turbomachine.
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Chapter 4

Geometric Modeling System

4. 1 Introduction

A surface geometric modeling library whose kernel uses a NURBS representation

was developped for this project. There are three levels of geometric entities: poiuts,

curves, and surfaces. Both the surface and curve entities depend on the point which

is therefore the basic entity. Every other entity in the library is created from them.

Table 4. 1 shows all entities inside the library.

4. 2 Point and transformation

The point entity in three-dimensional Cartesian coordinate is defined by a vector

with three coordinate values (x, y, z) and is denoted by P{wx, wy, wz, w) in homoge-

neous coordinates. A projection of a homogeneous point into 3-D space is obtained

by dividing the first three coordinates of the point by it homogeneous coordinate

w. The normal 3-D space is situated at w = 1 as:

P{x, y, z) = P(x, y, z, l) (4. 1)
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Tables 4. 1: Geometric entities

Level Geometry entity

Point entity Points, Vectors and transform

Curve entity NURBS curve

Cubic spline curve

B-spline curve

Ellipse and ellipse arc

Polyline

Composite curve

Surface entity BiCubic patch surface

Plane surface

Revolution surface

Ruled surface

Composite surface

A homogeneous transformation is used to inanlpulate the geoinetry objects. It is a

4x4 matrix defined by Eq( 4. 2), the upper left 3x3 naatrix is a rotation matrix, the

upper right vector is a translation vector.

r=

mii mi2 mis a;

m21 m22 ^23 ?/

msi ms2 ms3 2:

00 01

The coefficients m, j are defined by rotation angles around the axes as:

nzii = cosO^cosQy r7ii2 = sinOzCosOsc + cos0zsin0ysin6x

(4. 2)
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mi3 = sinO^sinO,: - cosQ^sinOyCosQ^ m^ = -sin0^cos6y

mz2 = cos0^cos0^ - sin6^sin0ysin0^ m^ = cos0^sin9^ + 5? 0^sin0ycos0^

msi = sinQy m^^ = cos0ysin0^ 77233 = cos6ycos0^ (4. 3)

where the theta^, thetay, theta^ are the rotated angle around the axes.

4. 3 Curve Representation

4. 3. 1 B-Spline Representation

A bounded Non-Uniform polynomial B-spline curve (7(u) is defined by mapping

a bounded segment from a one-dimensional parameter space into homogeneous space

as:

C{u) = ^ B,fc(u)P; a < u <6 (4. 4)

where P, is a set of points called control points, u is the parameter, a and b are

fixed values with 0 ^ a <b and n is the number of the control points. The functions

B^{u) are scalar-valued polynomials of order k in the variable u. They are completely

defined by the order k and a knot vector uj. where a=u-i=... =Uk<: u^+i ̂  u^+s

<, ... <Un ̂  Un+i = .. . = Un+k = b.

The value of B^(u) for a fixed u is calculated with the recursive algorithm as:

B^u) = ^ut +n-k ~u 

Bf^u) + , 
u - u1 -1 

B^-\u)
ui+n-k - 'Ut'-l

]k(u}= ui+n-k~u gk-^
Ui+n-k - '",_!

(4. 5)

where

B,l(u) =1 if ui<u < Ui+i

0 else

(4. 6)



30

PO

Pl (0. 0, 1. 0, 0. 7)

1.0,0.0, 1.0)

(0. 0, 0. 0, 1. 0)

p4 (6.0,0.0, 1.0)

x

P3 (4. 0, -3.0, 0.7)

Figure 4. 1: Degree 2 NURBS with 5 control point and weight

Pl (0. 0, 1. 0, 0. 7)

n
1.0,0.0, 1.0)

(0.0,0.0, 1.0)

p4 (6.0,0.0, 1.0)

x

P3 (4.0, 0. 0, 1.0)

Figure 4. 2: Degree 2 BSpline with 5 control point

4. 3. 2 NURBS Representation

A Rational Bspline C{u) is obtained by projecting a Bspline from homogeneous

space(4D) into three dimensional space as follows:
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^B^{u}Pw
CW = t=ln a < u< b (4. 7)

£^(")^.

The non-rational spline is a special case with w, = constant = 1. The difference

between rational and non-rational Bspline is the influence of the control point P,

conforming to the weight w,. If the weight approaches zero, then the influence of

this control point disappears. By using the weight, the NURBS can be made to

exactly represent the conic curves[4]. Figure 4. 1 and Figure 4. 2 show t,wo NURBS

curves with same x^y values but different weights.

4. 3.3 Some Operations of NURBS

A number of operations for manipulation of the curves are required in the present

work. These will be described.

Evaluating a Derivative

The derivative of a NURBS curve is obtained by differentiating deriving Eq (4. 7).

^ |E ̂ ("  [ . 3[EAfc(^| "
ac(«)_ Lid^ JE^(»)". - lfal8« JE5.*(")fl

[E^(")^|
9u

t=l (4. 8)

L»=l

Any order derivative vector of the NURBS can be calculated by using the recursive

algorithm defined by Eq 4. 5.
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Intersection Between Two NURBS Curves

Computing the intersection of two curves noted -P(u) and Q(v) in three-dimensional

space requires solving the following systems of equations:

PM-Q^v) = 0 (4. 9)

Py{u)-Qy{v) = 0

P. {u)-Q, (v) = 0

where the unknows ar u nd u and Px[u) is the x coordinate of P(u). These are

three nonlinear equations with two unknowns. A Newton-Raphson method is first

used to numerically find the intersection in two dimensions. The intersection point

is then verified in the last dimension to determine whether these two curves do

intersect.

Arc Length of a NURBS Curve

The arc length of a parametric curve is defined as [3]

. ui

S{u)=
.

UQ

9P{u)
Q'u

du

If we define /(u) as:

/(")=
3P{u)

9u

(4. 10)

(4. 11)

we can use the Romberg integration scheme to obtain.

S(u) = I ~ f(u)du
.

UQ

= | o) + /(^i) + 2 E /(". )] - ul^uoh2f"W
where Ug < ^, <ui, h= (ui - uo)/m and uj = UQ + J^ for j = 0, 1,... , m.

(4. 12)
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Discretizing a Curve

In order to generate the grid, parametric curves need to be discretized. There

are two widely used methods: direct evaluation with desired parameter values, or

discretization of the curve with respect to arc length. The latter method is used

when a specific nodal distribution along the curve is sought. The first method is

used when only an approximate distribution is required.

The parametric value Ui corresponding to arc length 5', is obtained by solving

equation:

Si'. = /:'
UQ

9P(u)
9u

du (4. 13)

The position vector is obtained by substituting the value of u; in Eq 4. 7. The Eq 4. 13

was solved iteratively by Newton's method.

4.4 Construction of Curve Entity

The method of construction of the various curve entities (polyline, circular arc,

elliptic arc, cubic spline, and composite curves) will now be described. A NURBS

representation is adopted throughout.

4. 4. 1 Polyline Interpolation

Polylines can be represented by a NURBS of order 2 and by taking w, =1. 0 which

has a uniform parametrization. The NURBS that represents a polyline interpolated

through a series of points can be written as:

C{u}=^B]{u}Pi
i=l

(4. 14)
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4. 4. 2 Ellipse and Circle

A NURBS of order 3 can be used to represent a circle exactly[14] The NURBS

that represents a circle lying on x - y plane with center at the origin and radius of

1.0 as shown in Figure 4.3, can be written as:

9

CW = ^
E^3M^

EA3 (")^.
(4. 15)

i=l

The homogeneous control points of first quadrant arc are (1. 0, 0. 0, 0. 0, 1. 0), (1. 0, 1. 0,

0. 0, ^), (0. 0, 1. 0, 0. 0, 1. 0), the other are obtained by symmetry. A uniform knot

vector is used in this case. Ellipse can be constructed by using same method[14]

(0, 1, 1) (1, 1, 0.717)

1.0,1
(0, 0)

Figure 4.3: NURBS representation of a Circle
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4.4. 3 Cubic Spline

Given a set of points P, (0 < z" < L) and corresponding parameter values UQ, ...... u^,

a cubic spline interpolation through those points with specified boundary condi-

tions[3] can be represented by a NURBS curve C(u) with knot vector u, and un-

known control points J_i,...... C?L+I such that (7(u, ) = P,. A cubic spline can also

be written as a piecewise Bezier curve[3], with the Bezier control points bsi.

Pi=b^ i=Q,\...L

The inner Bezier points &3,±i are related to the P, by

A, &3,-i + A, _i63,+i .
^. = ' "'^' ^ ̂ ^''""" z=l ... ^-1

^-1 -t- i^i

(4. 16)

(4. 17)

If we set A; = Au, = u; - u, _i, then the relation between 63^1 and the control

points are defined as:

A.. d._i+(A;_2+A, _i)d; .
b3t-1 = ' A^ . 1 A. '. J. A. " " ^=2,... ^-!

^. -2 -t- ZA,_i -f- Z_^t

(A, +A.+i)J, +A,_i^ ^
.3;+i = x 'A.. /^A'. ^A'., ^ "^ ^'=1,.. -^-2 (4. 18)

^»-i -r ^a -t- ''-'ii'+i

Near the endpoint of the curve it becomes

AiJo + Aoc?i&2 =

^3£-2 =

AO+AI
(A£, _iC?L-2 + ^L-ldL-1

A^_2 + AL-I

now 6; can be eliminated to get the equation

(A, _i + A. )P. = a, d. _i + ^, J, + 7, d;+i

The coefficients a,, ̂ ,, 7; are defined as:

(4. 19)

(4. 20)

01. 1 =
A,2

A, _2 + A, _iA.
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A, (A, _2 + A,_i) , A,_i(A, +A;+i)
" ~ A. _2 + A, _i+A, ' A, _i + A, + A.+i

7. =
A?_,

A, _i + A, + A,-+i
(4. 21)

A linear system can be obtained from Eq 4. 21:

"o Po 7o

ai /?i 71

d-i

do
ro

(4. 22)

rL-i

rL
Ct^-l ^L-l 7£-1 C?I-

UL PL 7£ rfi/+i

Here r; = (A, _i + A. )P,.

This system has L+3 unknowns with L+l equations. Extr boundary conditions

must be given to eliminate c?_i and C?L+I . There are two common types boundary

conditions: specified tangent vectors at the end points; or specified zero curvature

at the end points. For any arbitrary boundary conditions rf_i = &i and c?^+i = ^,

a tridiagonal system can be obtained as :

^o 7o

o;i ^i 71

do r-o - o'o * d-i

(4. 23)

rL-i

rL- 7L* C?L+1

Q'L-1 PL-I ^L-l dL-l

CtL ^ C?£,

The tridiagonal system is solved by Gaussian elimination. Different parameteriza-

tions yield different node vectors of the NURBS and coefficients Q!,, /?, ^,. In this

work two types of parameterization naethods are chosen. One is uniform, that is
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Au, = u,+i - u, == 1. 0. The other is based on chord length, that is, Au; = Ui+i - ui

=\\pw-pi \\.

4. 5 Composite Curve

A single curve or surface cannot handle all the objects occuring during design

activities. The composite curve and surface allow more freedom to the designer

when only Co degree continuity is required. In this application, composite curves

will be used to define the profile, the generatrix curve of the surface of revolution,

the sections, etc. A composite curve is constructed by joining two or more curves

in sequence. At their junction, two curves must have the same boundary point.

An individual NURBS curve within a composite curve does not necessarily have

the same orientation. The operations which apply on a single curve cannot be

applied directly on a composite curve. An algorithm was developed to transfer the

parameter value between the composite . curve and each single curve. The relation

between the parameter of the composite and the parameter of constituent curve is

defined as:

U composite = ^IUi z=l,....,n
1=1

I = 1

(4. 24)

J = -1

same orzentatzon

opposed orientation

(4. 25)

In this section we will apply these concepts and methods to specific objects found

in turbomachine.
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4. 5. 1 Blade Profile

Leading

part

Pressure side

saution side

Trailing part

Figure 4.4: Profile represented by a composite curve

The blade of the runner is defined by a series of cross sections called profiles.

These are curves which lie on surfaces of revolution called supports. The profile

also can be regarded as the intersection curve between the support and the blade

surface. In the present application, it is represented as a composite curve. Figure 4.4

illustrates a profile composed of four curves: the pressure and suction sides, and the

leading and trailing edges curves.

4. 5. 2 DifFuser Section

The difFuser is defined similarly by a serie of sections which are also compos-

ite curves. Figure 4. 5 shows a typical section consisting of eight curves, four line
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segments and four elliptic arcs.

EUipseArc

Section of Draft tube
Line segment

Figure 4. 5: DlflFuser Section represented by a composite curve

4. 5. 3 Spiral Casing Section

Figure 4. 6 sho s a section of spiral casing represented by a composite curve

which is composed of 6 single curves.

4. 6 Construction of the Surface Entity

4. 6. 1 Tensor Product NURBS Surface

Whereas a curve requires one parameter for its definition, a surface requires two:

(u, v), where UQ <u ̂  ui, UQ <v <ui. A tensor product NURBS surface of degree
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LZ

L3

L5 L4

LO

LI

Figure 4.6: Spiral casing Section constructed by using 6 single curves

(p, q) has the form:

p{^ = ^J:1
^ZBMBWP... ^ ^

=EE^J(^^)^
E'LBWBWU'i. 

i=13=l

i=l j=l

(4. 26)
'ij

The control points Pij, are arranged in a topological rectangular array called the

control net. The -Bf(u) and 5j(u) are the univariate rational basis functions defined

by Eq 4. 7. The R^'j is the bivariate B-spline basis function defined by

K!"(^)= _^WBW^,,
l'i, j Vu' u} ~ m n

EEBMBWW r^

r=l s=l

(4. 27)

Since the tensor product NURBS surface represents a bidirectional curve scheme,

the previously described operations on NURBS curves can be easily extended to

surfaces. Fixing one of the parameters, that is u = u, UQ <, Ui < Ui, then allowing

v to vary from VQ to Vi yields a NURBS curve C{v) = P(u,, u) on the surface. All

the operations applicable on the curve are available for the curves on surface.
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Figure 4. 7: NURBS surface with control point net

4. 6. 2 Surface of Revolution

A surface of revolution is obtained by rotating a curve which lies in the XZ-plane

around the Z-axis. A full surface of revolution is obtained by revolving the curve

360° about the Z-axis. The required surface has the form

9 n

S(U, V) = Y, ^Ri, 2;j, g(ui, v)Pij
i=1. j=l

Figure. 4. 8 shows a sphere created by revolving a circular arc.

(4. 28)

4. 7 Composite Surface

A composite surface is a collection of individual surfaces which are joined together

to form a continuous, more complex surface. In the present work, only the most

widely used Bicubic Patch Composite Surface(BPCS) is implemented.
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Figure 4.8: Sphere created by revolving a arc

4. 7. 1 Bicubic Patch Surface

For two given points Po, Pi and two tangent vectors P^, P^, an Hermitian

interpolation can be defined by

P(u) = ^M-Po + ^i3(u)Pi + H^(u)P^ + HJ(u)P^ (4. 29)

For a bicubic patch, bidirectional Hermitian interpolation also can be defined in

the form:

P{u, v) = [H^u)H, (u)H^uW(u)] (4. 30)

Poo Poi % -PO"! ^o3(^)

PlO Pll PIUO -PU ^13(^)

-POO PO\ PSS PS! H^v}
>u_ pu puy puv ff3^
To -rii -rfo' -riT -"31u.

where the H[u) and H{v) are the Hermite polynomial defined by Eq 3. 20. The 4x4

matrix is called the geometric coefficient matrix. It is composed of the positions of
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the 4 corner points, the tangent vectors of the 4 corner points and the twist vector

of the 4 corner points [7]

4. 7. 2 Bicubic Patch Composite Surface (BPCS)

A BPCS is constructed by assuring the continuity of the two joined patches at

a common boundary. To create a Cl BPCS from a MxN lattice, first, piecewise

cubic curves are fitted to all rows and columns of the lattice using methods which

were developed in section 4. 4. 3 for curves. Note that all curves in the 'u' direction

will have the same parametrization, and so will all the curves in 'v' direction. This

will create a mesh of C2 piecewise cubics that will represent the boundary curves

of all the patches. From these curves, the 8 corner tangent vectors at the 4 corner

points can be evaluated for each patch. There remains to evaluate the four twist

vectors at the corners. For simplicity, in our case, zero twist vectors will be assumed,

guarantying smoothness at the corner which four patches share. So the bicubic patch

with zero twist vector at the corners can be written as:

iv pr
00 -' 01

P^v)=[H3, {u)H3, {uW{u)HJ(u)]
>u DU
00 -1 01

lu Du
10 -' 11

lv uv
10 ^ 11

-POO -POI

PlO Pll

0 0

0 0

Figure 4. 9 shows how to create a patch with wirefram net.

HW
HW
^3(u)
H3, {u)

(4. 31)

4. 7. 3 Evaluation of a Bicubic Patch with Parameters

Eq 4. 31 can be written into matrix form as:

P(u, u)^H(u)*M*H(v)r (4. 32)



44

10

del

du

p
00

POI

dc2

dv

u

Figure 4. 9: A patch of composite bicubic surface

The first and second partial derivatives are written as:

Pu(u, v) = 9H(U) * M* H(v)T = Hu(u) *M * H(v)T

Pv(u, v) = H(u) * M * H^) = H(u) * M * HV(v)T
Puu(u, v) = 3HU(U) 4= M * H(v)T = Huu(u) * M * H(v)T

Pvv(u, v) = H(u) * M * ^v) = H(u) * M * HVV(v)T
Puv{u, v) = Hu(u) * M * H^) = Hu(u) * M * HV (v)T (4. 33)

The normal vector can be evaluated by:

n = Pu *PX (4. 34)
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4. 7. 4 Evaluation of Composite Bicubic Surface

As for the composite curve, the evaluation of a composite surface with parameters

can be transformed into the evaluation of a patch with new parameters. The patch

and the parameters are obtained by internal mapping between the BGPS and the

constituent patches. There are no orientation problem here, so the mapping is very

simple.

The parameter values of the composite surface (Ui, Uj) are arranged in a topo-

logically rectangular array called the knot control net. Each rectangle corresponds

to one bicubic patch. So for a given (U, V) value for the composite curve, we can

find the corresponding patch Pij by

P(U, V} = Pi, j{u, v~) if u, <u< u;+i v^<v < Uj+i (4. 35)

and corresponding paraineter value are:

u' = U -U{ v' =V - v, (4. 36)

Then, the evaluation is obtained by evaluating the bicubic patches as mentioned in

section 3. 6. 3. Figure 4. 10 shows two BCPS surfaces of the blade of Kaplan runner.
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CHLOE IV 12

Figure 4. 10- Two BCPS Surface of blade
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Chapter 5

Runner

In the current and following chapters, we will apply the various geometric mod-

eling methodologies described in the previous chapters to the practical geometric

components of a turbine. A runner is composed of a number of identical blade,

positioned around an axis of revolution and within a axisymmetric passage bounded

by two surfaces of revolution, the hub and the shroud. For the purposes of analy-

sis, only one fraction of this configuration is required. It is the volume or domain

bounded by two consecutive blades, called the 'blade-to-blade' channel. Because of

the periodicity of the blade, the flow between two blades is sufficient to represent

the flow inside the runner

Figure 5. 1 shows more explicitly this channel bounded by the hub and the shroud

with two blades between them. For calculation purposes, this volume should be

closed. There are two possible constructions. Figure 5. 2 shows the first type of

construction. A channel is constructed by two blades and an extensions from the

leading edge to the inlet and from the trailing edge to the outlet. These extensions

are usually tangent to the camber surface of the profile.
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Figure 5. 3 shows another type of construction. A channel constructed by creating

two periodic surfaces between the blades.

The first type of construction was chosen for this work because it allowed a fines

control on concentration near the blade.

5. 1 Hub, Shroud and Support Surface

The hub and the shroud are defined as surfaces of revolution obtained by rotating

a curve on the X-Z plane around the Z-axis. Because of the sharp corner on the

hub, a composite curve description will be required. It is composed of a cubic spline

and a polyline is chosen.

Because the hub and the shroud control the flow, it is natural to choose surfaces

of revolution between the hub and the shroud as supports. These are created by

N^'
IS

.*

^'1

Figure 5. 1: Francis runner with tw blade
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Figure 5.2: H type blade-to-blade channel

Figure 5.3: C type blade-to blade channel

linear Interpolation between the hub and shroud. Figure 5. 4 shows the generatrix

curves that create these supports.
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Figure 5. 4: Linear interpolation hub and shroud in R-Z plane

5. 2 Blade and Profile

The blade is a closed surface bounded by the hub and the shroud. It can be

characterized by two sets of curve. The first set traverses from the hub to the

shroud, and the second is a set of profiles lying on the support surfaces. These two

families of curves form a mesh such that the intersection of one family with the other

results in a lattice of nodes. These nodes serve as a basis for defining the blade by

means of interpolation as shown in Figure 5. 5. This closed surface can be split into

two surfaces alone the leading and trailing edges, one is called pressure side, the

other is call suction side.

5. 2. 1 Blade Definition Data

The data that define the blade are two untouched MxN lattices of points in 3D

representing the suction and pressure side respectively. These data are obtained by

measuring real blades in physical space and do not necessarily correspond to the

profiles used to design the blade. An example of two such lattices of points defining
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Figure 5. 5: Kaplan runner blade

a blade are shown in Figure 5. 6. As given, this data does not describe a closed

surface and it must be treated to yield such a closed surface to represent the blade

for simulating the flow inside runner

Figure 5. 6: Two lattices for representation of the suction and pressure sides



52

5. 2. 2 Calculation of the Leading and Trailing Edges

Two distinct BCPS surfaces can be constructed from two lattices using the

method developed in section 4. 3. 3. Because of these two lattices are not connected

together, the piecewise cubic curves of those two BCPS are also not connected.

Figure 5. 7 shows two curves from such surfaces corresponding to the same column

number on either side of the blade. We see tha the leading and trailing edges of

the blade are missing.

Figure 5. 7: Part of profile create by input data

To construct a closed surface to represent the blade, these two surfaces must be

connected by recreating the leading and trailing edges. Three possible methods to

achieve thi construction are consist in closing the gaps by:

1. Connecting two points with a line.

2. Using an elliptic arc to connect the two points.

3. Passing a cubic spline through the two points.
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The first method evidently cannot yield good result. As for the second method,

it is impossible to find an elliptic arc which will match to the first order continuity

the two segments, because the two curves are not plane curves.

The third method will generate the desired result if the boundary conditions

are chosen appropriately. By using a cubic spline with tangent vectors at the two

boundary points, a curve with geometric continuity can be obtained.

The next step is to identify the leading and trailing edge point. This is arbitrary

to some extents and depends on the actual flow field. Because this is a very narrow

curve, either the middle point on the spline, or the intersection of the camber line

with the spline can be chosen as the leading edge point. The same method is applied

to the trailing edge.

Evaluating the curve representing the leading and trailing edges will give two

new columns of points that can added to the data to create two M by (N+2) lattices

of points which will completely define the blade.

5. 2. 3 Construction of Blade Profiles

The specification of the profiles for the construction of the blade are such that the

first and last profiles do not necessarily lie on the hub and the shroud respectively.

There could be small gaps between the blade and the hub, and between the blade and

the shroud. However for computational purposes, it is important that the volume

bounding the computational domain be closed. Consequently it is necessary to define

additional profiles that lie on the hub and shroud. These can be obtained by first

extending the blade surface in profile direction, then computing the intersection

of the blade surface with the support surface(i. e in this case the hub or shroud).

The intersection curve will be served as the profile on the hub and shroud. The
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profiles between the first one(on the hub) and the last one(on the shroud) can also

be obtained by intersecting blade surface with a group supports between the hub and

shroud. This is a very expensive process. The surface-surface intersection algorithm

in geometry modeling is carried out using numerical approximation. In this work,

the approximation is obtained by intersecting one family of curves of one surface,

with the other. This results in a MxN points net lying on the blade surface. The

final intersection is obtained by fitting a curve through those points.

By fitting piecewise cubic curves to all rows of the two Mx(N+2) lattice another

group of curves is obtained. Those curves will not touch either the hub or the shroud,

but can be extended to intersect the hub and the shroud. Linear or quadratic can

be used in this case.

The intersection between the surface support and blade can be simplified to a 2D

ur e-curve intersection if a cylindrical coordinate system is used and the support

is a surface of revolution. Which can be written as:

^i(u) = 0, Zi(u) =0, 0=0

The equation of a curve can be written in the form:

R^v) = 0, Z^v) = 0, 0{v~) = 0

(5. 1)

(5. 2)

The intersection between the surface and the curve is formulated as the solution

of the following two equations:

Ri{u) = R^v)

Zi(u) = Z2(u) (5. 3)

Those are nonlinear equations for which the well known Newton's method can be

used. After solving these equations, can substitute v into Eq 5. 2, to obtained the
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value (R, T, ^>). The parameter value u of the intersection point along the revolution

surface and the angle ̂  will later be used to create the blade-to-blade channel. The

curve-curve intersection is shown in Figure 5. 8.

CHLOE IV 11

Figure 5.8: Intersection between revolution surface and curve

Figure 5. 9 shows a series of profiles created from the input lattice which defines

the blade in 3D.

5. 3 The Blade-to-Blade Channel

The channel is a six-sided closed volume. It reaches from one blade to the next,

from the hub to the shroud and by extending the blade's length from the distributor

of the turbine to the outlet plane as shown in Figure 5. 10. These extensions result

In two surfaces, going from the leading edge of the blade towards the distributor
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Figure 5. 9: A series of profiles to defining a blade

and from trailing edge toward outlet surface. This volume can be divided into three

parts: before the blades, between the blades, and after the blades.

Figure 5. 10: Blade-to-blade channel
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The part between the blades is bounded by the two blades (the pressure side of

one blade and the suction side of the other blade) and the appropriate portions of

the hub and shroud. These are the physical boundaries. The angle between two

blades is related to the number of blades through:

27T
a =

Nblade
(5. 4)

The problem is to create the upstream and downstream section of the domain.

A mapping method was used by extending the camber line of each profile on the

support. The choice of such a mapping should preserve two parameters, one is the

angle . ;/?, another is the arc length 5' of the generatrix curve. This will ensure a

boundary which will be generally aligned with the flow.

Defining the surface of revolution as:

R(u) = 0, Z(u) =0, ^ = ^ (5. 5)

a conformal mapping which preserves the arc length S and angle .0 is defined as:

dS2=dR2+dZ2 d^=d^ (5. 6)

Because this transf rmation is conformal, the result is a mapping of that surface

onto a plane S - ib. To oreserve the arc length along the generatrix curve of the

revolution urface, we set

. U f^

S{u) = I dS ^= I' d^
'uo JipO

(5. 7)

The profile is obtained by intersecting the blade with the support using a curve

surface intersection method. All those intersection points can be mapped from RZ^!

space to S -if) space by substituting the parameter value u obtained from Eq 5.3

into Eq 5. 7.
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If we chose the relative arc length, we get:

Sr, {u) =
s,

s,total
(5. 8)

Here Sfotat is the total arc length of the generatrix curve. A profile in mapped space

can be obtained by interpolating a cubic spline through these points.

Because the blade will control the general flow direction, it is expected that the

streamline in the mapping space will roughly match the camber line of the profile

at the leading and trailing edge point. Its extrapolation from either the leading

or trailing edges is such that the tangent vector of these curves will match the

tangent vector of the camber line at these points. Hermite cubic interpolation will

be used. It requires position vectors and tangent vectors at each end point. There

are two unknown vectors: the position vector and tangent vector at the inlet and

the outlet. These vectors can be specified and manipulated by the user to design

the channel. Mapping these curves back to RZ^ space will yield the required 3D

periodic boundary on each support. Figure 5. 11 illustrates this procedure.

This procedure is repeated on each profile and support and resiilts in as many

extension curves as there or profiles in turn these are discretized to create a MxN

point lattice from which a bicubic patch composite surface is constructed. Finally,

rotating this surface by an angle which is defined by Eq 5. 4, another periodic bound-

ary surface is obtained. Those two surfaces together with the hub and the shroud

complete the boundary surface of the channel.

5. 4 Grid Generation of the Channel

The transfinite interpolation method is used to generate the initial body-fitted

grid for the blade-to-blade channel. The grid is then smoothed by a differential
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Angle

Mapping

Support

Figure 5. 11: Construction of the periodic boundary on the support

equation method. In the mapping space, the blade-to-blade channel is bounded by

two profiles and the extrapolated curve which extends from the camber line of those

profiles as shown in Figure 5. 12.

To generate a grid of good quality for the runner, two curves one joining the

leading edges, the other joining the trailing edges are constructed to enforce the dis-

tribution of the grid as shown in Figure 5. 12. Three Coon's patches are constructed

from the inlet to curvel using the 2 upstream extension curves; from curvel to

curve2 with the pressure side and suction side of the profile; and from curve2 to the

outlet using the downstream extension curves. This configuration also allows for

controlling the grid near the blade, leading edge and trailing edge.
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Boundary Curve

Cmve2

Profit

Figure 5. 12: Streamline with a profile

5.4. 1 Concentration

Grid concentration near the leading edge and trailing edge as well as near the

blade is usually required. This is achieved by controlling the distribution of point

on the curve with a law defined by a NURBS curve. This law can be represented

as a curve L(u) between 0. 0, 0. 0) and (1. 0, 1. 0). A uniform distribution can be

represented by a straight line. When concentrating near the beginning point, the

straight line become a curve towarded to point (0. 0, 1. 0) with a small slope near

(0, 0). When concentrating towards the end, the curve towards to (1. 0, 0. 0) with a

slope greater than 1. 0 near (0, 0) as shown in Figure 5. 13.

This can be achieved by using an order 2 NURBS with three control points

(0. 0, 0. 0, 1. 0), (1. 0, 0. 0, w), (0. 0, 1. 0, 1. 0)or(0. 0, 0. 0, 1. 0), (0. 0, 1. 0, w), (1. 0, 1. 0, 1. 0)

The shape of the curve can be control by changing the value of w from 0. 0001 to 1. 0.
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(1, 1)

Concentr ion

(0, 0)

Figure 5. 13: Concentrate law of points

When the weight approaches 0. 0, the NURBS become a straight line, -there is no

concentration, w approaches 1. 0, very good concentration is obtained. Figure 5. 14

shows the control NURBS weight from 0. 0001 to 1. 0 with step 0. 1.

Figure 5. 14: Concentrate at one end and at both ends

The Figure 5. 15 is the grid in mapping space with concentration. The Figure 5. 16
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is the grid on the support with concentration.

Figure 5. 15: Grid in parameter space

Figure 5. 16: Grid on the surface of revolution
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Once the grid on each surface of revolution is generated, grids on each supports

are stack to produce a 3-D grid. Figure 5. 17 shows grid of a blade-to-blade channel.

-:^^^?1;'

Figure 5. 17: 3D Grid of the complete blade-to-blade channel
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Chapter 6

DifFuser

There are two different types of diffusers: with and without a pillar at the outlet.

Figure 6. 1 shows the sections of the diffuser with a pillar. The geometry of both

types is defined by two series of sections lying on plane supports distributed along

a spine curve. The shape of the sections changes gradually from a half circle at the

inlet to a rectangle at the outlet. The difference between those types is that the two

sections, in the case without a pillar, will share a common edge, whereas in the case

with a pillar, at some intermediate support, those two sections will be separated by

the pillar. Both types are treated in the same way, i. e it is assumed the pillar is

alway present, either real or virtual. For the case without the pillar, the thicknes

is zero.
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Figure 6. 1: Section of difFuser with pillar

6. 1 Geometry interpreter and description lan-

guage

There are different methods to describe a 3D object for a computer system.

The most common method in CAD/CAM system is to use a graphical interface

with menu, icon, keyboard, mouse etc... to interactively create a 3D object. This

method presents difficult when dealing with 3D object on a 2D screen.

In the present work, the geometry objects are a group of objects with a similar

geometrical characters. They are more easily defined and described by a group of op-

erations. Instead using a graphical user interface, a geometry interpreter(geometry

compiler) was designed to create 3D objec.t from a geometry description language(GDL).

Like other computer languages, this requires a compiler, which acts as an interpreter

between the GDL and the computer. Besides defining the geometry, this language



66

can also be used to describe specific manipulations or operations. The advantage

of this method is that a user can define the geometry with keywords (token) having

a close to mathematical terms. The relation between geometry compiler, geometry

library, YACC (a UNIX compiler building tool), and the user is shown in the Fig-

ure 6. 2. The overall system has 'three' key components. At the root there is the

geometry library which created the model. The compiler provides the links between

the source description file and this library. For the purpose of display, a graphical

image will be generated from the geometry object.

Geometry
library

USER
geometry
source

file YACC
Geometry
Compile

Computer

Geometry
Model

Image
Graphic
Interface

Figure 6. 2: Relationship between language compiler and others

Like any computer language, the GDL is composed of grammar rules, tokens,

parameters, and delimiters. A sentence must be formed from token, parameter,

delimiter. The token can be mathematical terms. A parameter is either a. integer

or a float number used to define the identity of the geometric entity or quantity.

Delimiter include commas(, ), semicolon(;) and left or right parenthesis. Here are



67

some examples of the GDL.

1. A point:

point 1 {0. 0, 0. 0, 0. 0}

2. A line defined by two point:

line2 {point 1, point 2}

3. A composite curve defined by two lin s and one arc:

curve 1 {line 1, /me 2, arc 3}

4. A plane support defined by one original vector and two direction vectors:

plane 1 {point 11, point 12, point 13}

5. A section in three-dimensional space is defined as:

section 1 {curve 21, curve 22..... curue 29}

6. A diffuser is defined by a series of section in three-dimensional space:

diffuser 1

{{section 1, plane 1},

{section 2, plane 2},

{section 3, plane 3},

{section 4, plane 4},

{section n-1, plane n-1},

{section n, plane n} }

A more complete example is shown in appendix A for a dlffuser. The geometry

interpreter provides tools for imposing structure on the input to a GDL. When the
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GDL source is scanned by the input scanner, a lexical analyzer picks up items from

the input stream. When a grammar rule corresponding to a token has recognized,

then an action (a C function) is invoked. Actions are fragments of C language code.

They return values which can be used by other actions. The geometry compiler

is implemented with UNIX'S YACC and LEX utility. It has basic error handling

abilities.

6. 2 Definition of the DifFuser Geometry

6. 2. 1 Mapping of the Sections Curve to 3D Space

The section is defined by a planar support and a 2D closed composite curve in

the parameter space. This curve may consists of elliptic arcs and line segments.

The section in three-dlmension space is obtained by mapping the 2D parameter

composite curve into 3D space using a 4x4 homogeneous transformation.

Secb 3D

Section o oY plane

Figure 6. 3: Transformation of the section curve to 3D space
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The plan support is defined by its origin, 0, and two vectors, U, V lying within

the plane:

0 = [Xo, Vo, Zo]

U = [Xi, Fi, Zi]

V = [X,, Y,, Z,} (6. 1)

A transformation T can be obtained easily from those three vectors.

T=

mii mi2 mis a;o

mzi m22 mss i/o

ms-i ms2 mss 2:0

00 01

(6. 2)

Applying this transformation to the composite 2D curve represented by:

yields,

C{u}=^B^u}P,
t=l

CTW = EA'M-P.

= E^(^)[r*p.]

(6. 3)

(6. 4)
i=l

Thi equation illustrates that the transformation of a NURBS curve is equivalent to

applying it to its control points.

6. 2. 2 Surface definition of the DifFuser

The surface of the diffuser can be generated by a skinning operation, that is

the surface swept by a closed section as it travels along a spine. Consider the case
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with a pillar. Thi ction starts initially as two half circular sections in contact

along a diameter. As the section sweeps through space, the half circles shape, and

eventually separate into two distinct sections, thus creating a fork-like object.

Because of the sharp corners appearing on the sections at the outlet, it is im-

possible to model the surface of the difFuser with a single bicubic composite surface.

Therefore in the region the diffuser surface will be represented by four bicubic sur-

faces.

A typical section is composed of four segments and two elliptic arcs, as shows

in igure 6. 4. However at the inlet it is composed of only two elliptic arc and one

segment, while at the outlet, the elliptic arcs degenerate to points, so that the section

is then composed of four segments. To define the four bicubic surfaces, the section

must be divided into four curves. Because the elliptic arcs degenerate to points, the

best location to spite the curve is the middle of the arc.

Lattices are required to create the BCSP. They are obtained by discretlzing the

four groups of curves with respect to the arc length. From these, bicubic composite

surfaces can be constructed as described in section 3. 7. 2. two neighboring surfaces

will share a common cubic spline on the boundary. This will ensure that the node

n the two side will match. This result is shown in Figure 6. 4 for a difFuser without

pillar. Figure 6. 5 shows a similar construction for a diffuser with pillar.

6. 3 Grid Generation of the DifFuser

As discussed in chapter 3, we will now describe a multi-block structured grid

technique for the difFuser. This process consists of two steps: first the surface(or

shell) is discretized, then transfinite interpolation is applied to generate the interior
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grid points. The resulting grid can be further improved by smoothing using an

elliptic differential equation method.

6. 3. 1 Surface Mesh.

Each of the four bicubic surfaces is represented by patch defined as:

P = >S'(u, u) UQ < u^ ui VQ <V <Vi (6. 5)

v is along flow direction u is across. On Each patch, a number of curves correspond-

ing to fixed values u, of the parameter u are generated. These curves are piecewise

Figure 6.4: Different section of difFuser
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igure 6. 5: Shell of two types diffuser

cubic splines C{v) represented as:

C(v)=S(u,, v) (6. 6)

A group of new sections(composed of four curves) alone the spine are obtained

by evaluating these four surface with u,. Discretizing these new sections with fixed

values Vi of parameter v, yields a net or surface grid as shown in Figure 6. 6.

The grid point concentration near the pillar is obtained by controlling the dis-

tribution of u. Figure 6. 6 shows the new sections generated with concentration near

the pillar. It should be noted that the sections obtained from u = constant do not

correspond exactly to the original defining sections from blue prints. Furthermore,

the number and distribution of the sections for grid generation purposes are difFer-

ent from the original sections used for defining geometry. Because these sections are

generated from surface, they are not even planar sections.
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Figure 6. 6: New section of diffuser with pillar

6. 3. 2 Multi-Block Volume Mesh

A typical mesh for a closed section using the standard elliptic differential tech-

nique is shown in Figure 6. 7. Inspection shows two drawbacks. First the corner is

not well represented and second it is difficult to generate a concentration toward

the solid surface with this configuration. The multiblock method can solve these

problems by dividing the domain into a number of simple zones, and then generating

a mesh within each of them.

There are many different ways of subdividing a section, and Figure 6. 8 shows a

particularly appropriate way for CFD calculations. The configuration is controlled

by specifying the ratio between the area of the central rectangular zone and the area

of the complete section. The bilinear Coon's patch method is used to generate the

grid inside each zone.
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Figure 6. 7: A typical mesh of elliptic technique

6. 3. 3 Grid Control

A quality grid with good concentration can improve the results from numerical

computations. For the present components this is required at two places: near

Figure 6.8- Divide section
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Figure 6.9: Grid of inlet and middle section

the pillar, and near the solid boundary. Concentration near the pillar has already

been mentioned in the previous section. The concentration toward the boundary

is applied by controlling the distribution of the parameters when discretizing the

bilinear Coon's patch of each zone as described in chapter 4. For the multiblock

grid, it is important to match the nodes on the internal boundaries. The bilinear

Coon's patch interpolation will ensure this if the same concentration is applied to

adjoining zones. Figures 6. 9 and 6. 10 show the grid at three different sections with

concentratiou towards the boundary.

These figures show that bilinear interpolation can generate good grids for this

type of sections, specially near the boundary.

6. 4 Generating an Unstructured grid

An unstructured grid includes two parts: the coordinates of each node, and

the connectivity between them. From the previous section, the nodes on internal
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^ ' '. . '. . *. -"!

Figure 6. 10: Grid of outlet section

bound ries are duplicated as each zone has its own structure. These nodes must be

merged. The Figure 6. 11 shows an example of nodes that need to be merged alone

internal boundaries.

Replace node iiumber of one side by anofher side

Figure 6. 11: Merge the node on internal boundary

The difFusers with and without pillar are treated in the same way For difFuser
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without pillar, a zero thickness pillar is given. The nodes on this zero thickness

pillar are duplicated and then need to be merged. The diffuser with pillar consists

of two volumes sharing a common boundary surface from inlet to pillar. The nodes

before the pillar are merged and the connectivity is established. The Figure 6. 12

shows a unstructured grid for a difFuser with pillar.
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Figure 6. 12: Grid of difFuser with pill r
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Chapter 7

Spiral Casing

The spiral casing consists of a straight cylindrical tube connected to a spiral

tube of decreasing cross-section. It is described by a series of sections lying on

planar supports distributed along a spine curve. The spine curve is a straight line

at beginning, it then turns into a spiral curve. The supports are positioned in a way

such that their normal vectors are tangen to the spine. At the inlet, they are parallel

to each other, in the spiral sections they are oriented along radial planes. Because

of symmetry, only half of the spiral casing need to be modeled. The figure 7. 1 shows

the sections distributed along the spine.

The method used to create the spiral casing is the same as for the diffuser: it is

based on a geometric description language and a geometry interpreter. The sections

along the spine curve are obtained by a transformation of a basic section in 2D space

into a three-dimensional space on a given support as shown in Figuer 7. 2.
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Figure 7. 1: Sections of spiral casing along spine

7. 1 Geometry of the Spiral Casing

Although similar in principle to the diffuser, the spiral casing presents several

important differences at the junction of the surface. To simplify the problem, the

spiral casing is broken into two parts: a spiral pipe of circular section and a section

ring of rectangular section as shown in Figure 7. 3.

A typical section i shown in Figure 7.4. The square section touches one side of

the spiral section. The difficulty is to model the spiral part after it has gone around

360° and must be joined to the inlet. Because in this region, the sections of the

spiral casing touches a stay vane which controls the direction of the flows from both

side Figure 7. 5. The problem is like to finding the intersection of the stay vane with

two portions of the spiral casing. The sections are cut by the stay vane. Figure 7.5
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Figure 7.2: Transformation of the section
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Figure 7. 3: Two parts of spiral casing

shows this region.
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Concave

Square section Sph-al Section

Figure 7. 4: Typical section of spiral casing

Guiding Blade

Figure 7. 5: Project of junction part

7. 1. 1 Sections

The evolution of the sections from the inlet to the stay-vane is shown in Fig-

ure 7. 6. It starts with a full circle, one part is cut by the stay vane, the section

develops into complex shapes. At the end, the section will again touch the stay

vane, but from the other side. At the very end of the casing, only one vertical line is
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Figure 7. 6: Evolution o-f original sections along the spine curve

left. This will generate a grid with a singularity at this location. The problem can

be overcome by defining the sections. To prevent the singularity, the new sections

are constructed so they all have the same topology. They are built as a blending

between the initial first section and the back side of the stay-vane. These have the

same topology from the beginning to the end, that is, they are always composed of

five curves. It is noted that the new sections are not plane sections, because they do

not lie on a planar support. Figure 7. 7 shows these new supports. The new sections

should lie on the surface of the casing which is defined by the original sections. This

surface is a ruled surface through each of the original sections and is cut by the stay

vane as shown in Figure 7. 8.

The new sections are built this way: first, a ruled surface through each of the

original sections constructed, then this surface is discretized resulting in a lattice of

points. Finally, a series of cubic spline curves are obtained by interpolating each

column of the lattice points. Because of the presence of sharp corners, five ruled

surface are created. Therefore, five curves of a composite curve are obtained from

those surfaces. Part of a ruled surface between two sections is shown in Figure 7.9

Figure 7. 10 shows the new sections lying on the original ruled surface. The new

shell of the spiral casing which is defined by combining these new sections is shown
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Origan Sectit

Begin section of join part

Figure 7 7: New section near junction part

in Figure 7. 11.

7. 2 Grid Generation of the Spiral Casing

The multiblock method will be used to generate the grid of the spiral casing.

The method to generate the nodes inside the spiral casing is as the same as the one

used in the difFuser. Each section is divided into four zones as shown in Figure 7. 12.

The concentration is applied near the boundary and near the small concave. The

nodes on the internal boundary between the zones are eliminated as described in

the previous chapter

The section ring has a section which Is a simple square attached to the spiral
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Linear inteipolate
between two circle

create ruled surface

igure 7. 8: Intersection of the spiral casing with stay vane

Figure 7. 9: Part of the Ruled surface between two sections

section. This is easily meshed, note that the nodes on the boundary between the

section ring and spiral casing also need to be eliminated. Figure 7. 13 shows a grid

for a typical spiral casing.
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Figure 7. 11: New shell after redefined section
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Figure 7. 13: Grid of Spiral Casing
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Chapter 8

Conclusion and Discussion

In this work, a computer-aided geometry and grid-generating software package

for hydraulic turbine has been presented. The methods described in this research

have achieved the goal of automaticaly generating grids for the computer simulation

of the flow inside components of the hydraulic machine. The software include

two major parts. One is a 3D geometry language and library for curves and surface

representation and manipulation. The other is an automatic grid generation tool for

the hydraulic turbine components. The described software has been implemented,

tested and applied to the modeling of practical geometries to illustrate the package's

applicability for a variety of models ranging from Francis and Kaplan. turbines to

bulb turbines.
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Appendix A:

Geometry description of difFuser

//- SECTION 1 -

SUPPORT PLAN 1

(

POINT_ORIG(0.000000,0.501705,-0.375000)

POINT-U (1.000000,0. 501705,-0.375000)

POINT-V (0. 000000,1.505115,-0.375000)

)

POINT 1 ( Q.000000,-0.501704 )

POINT 2 ( Q. 501704, -0.501704)

POINT 3 ( 0.000000,0.000000 )

P INT 4 ( -0. 501704, -0. 501704 )

POINT 5 ( 0.000000,-1.003409 )

COURBE ARC-ELLIPSE 1 ( // CERCLE

POINT-CENTRE 1

POINT-INITIAL 2
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POINT-FINAL 3 )

COURSE POLYLINE 2 ( POINTS 3,3 )

GOURDE ARC-ELLIPSE 3 ( // CERCLE

POINT-CENTRE 1

POINTJNITIAL 3

POINT-FINAL 4 )

GOURBE POLYLINE 4 ( POINTS 4, 4 )

COURBE ARC-ELLIPSE 5 ( // CERCLE

POINT-CENTRE 1

POINTJNITIAL 4

POINT-FINAL 5 )

COURBE POLYLINE 6 ( POINTS 5, 5 )

COURBE ARC-ELLIPSE 7 ( // CERCLE

POINT-CENTRE 1

POINTJNITIAL 5

POINT-FINAL 2 )

COURBE POLYLINE 8 ( POINTS 2, 2 )

SECTION 1 // TYPE=1 (

COURBE S 1, 2, 3, 4, 5, 6, 7, 8 )

// - SECTION 2 -

SUPPORT PLAN 2 (

POINT-OMG(0.000000,0.547275,-0.900000)

POINT-U (1.000000,0. 547275,-0.900000)

POINT-V (0. 000000,1.641825,-0.900000))

POINT 6 ( 0. 000000, -0. 547275 )
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POINT 7 ( Q.547275,-0.547275 )

POINT 8 ( 0. 000000, 0. 000000 )

POINT 9 (-Q.547275,-0.547275 )

POINT 10 ( Q.000000,-1.094550 )

GOURDE ARC-ELLIPSE 9 ( // CERCLE

POINT-CENTRE 6

POINTJNITIAL 7

POINT-FINAL 8 )

COURBE POLYLINE 10 ( POINTS 8,8 )

COURBE ARC-ELLIPSE 11 ( // CERCLE

POINT-CENTRE 6

POINTJNITIAL 8

POINT-FINAL 9 )

COURBE POLYLINE 12 ( POINTS 9, 9 )

COURBE ARGJELLIPSE 13 ( // CERCLE

POINT-CENTRE 6

POINTJNITIAL 9

POINT-FINAL 10 )

COURBE POLYLINE 14 ( POINTS 10, 10 )

COURBE ARC-ELLIPSE 15 ( // CERCLE

POINT-CENTRE 6

POINTJNITIAL 10

POINT-FINAL 7 )

COURBE POLYLINE 16 ( POINTS 7,7 )

SECTION 2 // TYPE=1 (
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COURBE S 9, 10, 11, 12, 13, 14, 15,16 )

// - SECTION 3

SUPPORT PLAN 3 (

POINT-ORIG (0. 000000,0.625000,-!.795455)

POINT_U (1.000000,0.625000,-1.795455)

POINT-V (0. 000000,1. 875000,-1.795455))

//- SECTION 17 -

SUPPORT PLAN 17 (

POINT-ORIG(0.000000,2.361818,-2.405734)

POINT-U (1.000000,2.361818,-2.405734)

POINT-V (0. 000000,2. 361818,-1.629594))

POINT 148 ( 0.848863,0.000000 )

POINT 149 ( -0.848863,0.000000 )

POINT 150 (-Q.848863,-0.776136 )

POINT 151 ( Q.848863,-0.776136 )

COURBE ARC-ELLIPSE 129 ( // CERCLE

POINT-CENTRE 148

POINTJNITIAL 148

POINT-FINAL 148 )

COURBE POLYLINE 130 ( POINTS 148, 149 )

COURSE ARCJELLIPSE 131 ( // CERCLE
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POINT_CENTRE 149

POINT-INITIAL 149

POINT-FINAL 149 )

COURBE POLYLINE 132 ( POINTS 149, 150 )

COURBE ARC-ELLIPSE 133 ( // CERCLE

POINT_CENTRE 150

POINTJNITIAL 150

POINT-FINAL 150 )

COURSE POLYLINE 134 ( POINTS 150, 151 )

COURBE ARC-ELLIPSE 135 ( // CERCLE

POINT-CENTRE 151

POINTJNITIAL 151

POINT-FINAL 151 )

COURBE POLYLINE 136 ( POINTS 151, 148 )

SECTION 17 // TYPE=6 (

COURBES 129, 130, 1 1, 132, 133, 134, 135, 136)

// - SECTION 18 -

SUPPORT PLAN 18 (

POINT-ORIG(0.000000,7.272727,-0.877273)

POINT-U(1. 000000, 7. 272727, -0. 877273)

POINT-V (0. 000000,7. 272727, 0.881818) )

POINT 152 ( 1. 065909, 0. 000000 )

POINT 153 (-1. 065909, 0. 000000 )

POINT 154 (-1.065909,-1.759091)

POINT 155 ( 1.065909,-1.759091)
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COURBE ARC-ELLIPSE 137 ( // CERCLE

POINT_CENTRE 152

POINTJNITIAL 152

POINT-FINAL 152 )

COURBE POLYLINE 138 ( POINTS 152, 153 )

COURBE ARC-ELLIPSE 139 ( // CERCLE

POINT_CENTR 153

POINTJNITIAL 153

POINT-FINAL 153 )

COURBE POLYLINE 140 ( POINTS 153, 154 )

COURBE ARCJ5LLIPSE 141 ( // GERCLE

POINT_CENTRE 154

POINT JNITIAL 154

POINT_FINAL 154 )

COURBE POLYLINE 142 ( POINTS 154, 155 )

COURBE ARC-ELLIPSE 143 ( // CERCLE

POINT-CENTRE 155

POINTJNITIAL 155

POINT-FINAL 155 )

COURBE POLYLINE 144 ( POINTS 155, 152 )

SECTION 18 // TYPE==6 (

GOURDE S 137, 138, 139, 140, 141, 142, 143, 144)

ASPIRATEUR (

SECTION 1, SUPPORT 1

SECTION 2, SUPPORT 2



96

SECTION 3, SUPPORT 3

SECTION 4, SUPPORT 4

SECTION 5, SUPPORT 5

SECTION 6, SUPPORT 6

SECTION 7, SUPPORT 7

SECTION 8, SUPPORT 8

SECTION 9, SUPPORT 9

SECTION 10, SUPPORT 10

SECTION 11, SUPPORT 11

SECTION 12, SUPPORT 12

SECTION 13, SUPPORT 13

SECTION 14, SUPPORT 14

SECTION 15, SUPPORT 15

SECTION 16, SUPPORT 16

SECTION 17, SUPPORT 17

SECTION 18, SUPPORT 18 )
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