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RÉSUMÉ

Dans les systèmes de production d’électricité, la maintenance régulière des unités de produc-
tion est essentielle pour éviter des pannes imprévues et coûteuses, pour maintenir l’efficacité
du système et pour prolonger la durée de vie de l’équipement. Cependant, l’arrêt des gé-
nérateurs pour maintenance préventive réduit temporairement la capacité, l’efficacité et la
fiabilité du système.

Etant donnée une liste des activités de maintenance à réaliser dans un horizon de planifica-
tion, le problème de planification de maintenance des générateurs (GMSP, pour Generator
Maintenance Scheduling Problem) consiste à déterminer un calendrier d’arrêts pour mainte-
nance qui maximise une métrique de performance du système. Le calendrier optimal qui en
résulte doit répondre aux exigences opérationnelles de la production d’électricité ainsi qu’aux
contraintes de maintenance, telles que les fenêtres de temps des activités de maintenance.

Dans les systèmes hydroélectriques, l’ordonnancement de la maintenance des unités de pro-
duction comporte des défis uniques en raison de la non-linéarité de la production d’hydro-
électricité, de l’incertitude des débits d’eau et de l’interdépendance des décisions opération-
nelles dans l’espace et le temps. Le GMSP est particulièrement pertinent pour les producteurs
d’hydroélectricité parce que l’avancement ou le report des activités de maintenance peut
générer des économies significatives en réduisant les déversements d’eau et en améliorant
l’efficacité de la production d’hydroélectricité.

Nous développons un programme linéaire mixte en nombres entiers (MILP, pour Mixed-
Integer Linear Program) pour le GSMP dans les systèmes hydroélectriques, avec hyperplans
pour approximer l’effet non-linéaire des rejets d’eau, les niveaux d’eau stockés et le nombre
de générateurs actifs sur la production d’hydroélectricité. Nous affinons notre formulation
en utilisant des inégalités valides, la désagrégation de variables et de contraintes, et une
technique de réduction de modèle basée sur des informations de fenêtres temporelles. Nos tests
numériques montrent que la meilleure combinaison de ces techniques peut réduire jusqu’à dix
fois le temps de calcul pour obtenir une solution.

Pour incorporer l’effet des afflux d’eau incertains, nous étendons notre modèle en un pro-
gramme linéaire stochastique en deux étapes, et nous implémentons une méthode de décom-
position de Benders parallélisée pour sa solution. Nous proposons sept techniques d’accélé-
ration, et lors de nos expériences numériques, nous observons qu’une combinaison de cinq de
ces techniques permet d’obtenir les meilleures performances, avec une accélération de l’algo-
rithme de Benders quadruplée par rapport à la méthode Benders de base. Nos tests sur une
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grille de calcul avec 200 cœurs pour résoudre le problème avec un grand nombre de scénarios,
confirment la supériorité de la méthode Benders parallélisée par rapport à la solution directe
avec un solveur général pour MILP.

Enfin, nous proposons des extensions de notre formulation, en incluant d’autres contraintes de
maintenance pertinentes, des décisions sur la durée des activités et des réserves de production
pour anticiper l’incertitude de la charge d’électricité. En outre, nous présentons d’autres stra-
tégies de décomposition pour les GMSP dans les systèmes hydroélectriques et nous discutons
des perspectives de recherche, telles que des améliorations à la méthode de décomposition et
les applications de notre formulation MILP à des problèmes d’ordonnancement similaires.
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ABSTRACT

In power generation systems, regular maintenance of generating units is essential to prevent
costly unplanned outages, to sustain the efficiency of the system, and to extend the lifespan of
the equipment. However, shutting down generators for preventive maintenance temporarily
reduces the capacity, efficiency, and reliability of the system.

Given a list of maintenance activities to be completed within a planning horizon, the Gen-
erator Maintenance Scheduling Problem (GMSP) is to determine a calendar of maintenance
outages that maximizes a system performance metric. The resulting optimal schedule must
meet operational requirements of the electricity production, as well as maintenance con-
straints, such as time windows of maintenance activities.

In hydropower systems, maintenance scheduling of generating units entails unique challenges
due to the nonlinearity of the hydroelectricity production, the uncertainty of the water inflows
and the interdependence of operational decisions in space and time. The GSMP is particularly
relevant for hydropower producers because advancing or postponing maintenance activities
can yield significant savings by reducing water spills and improving the efficiency of the
hydroelectricity production.

We develop a compact Mixed-Integer Linear Program (MILP) for the GSMP in hydropower
systems, with hyperplanes for approximating the nonlinear effect of the water discharges, the
stored water levels and the number of active generators on the hydroelectricity production.
We refine our formulation using valid inequalities, disaggregation of variables and constraints,
and a model reduction technique based on time windows information. In computational
experiments, we find that the best combination of such tightening techniques can reduce the
computational time of the solution by up to one order of magnitude.

To incorporate the effect of uncertain water inflows, we extend our model as a two-stage
stochastic linear program, and we implement a parallelized Benders decomposition method
for its solution. We implement seven acceleration techniques, and through computational ex-
periments, we find that a combination of five of such techniques achieves the best performance
with a fourfold speedup of the Benders algorithm. Our tests on a 200-core computer cluster
for solving the problem with a large number of inflow scenarios, confirm the superiority of
the parallelized Benders method over the direct solution with a general MILP solver.

Finally, we outline extensions to our formulation, by including other relevant maintenance
constraints, decisions on the duration of activities, and generation reserves to buffer the un-
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certainty of the electricity load. Furthermore, we outline alternative decomposition strategies
for the GSMP in hydropower systems and we discuss directions of future research, such as en-
hancements to the decomposition method and applications of our compact MILP formulation
to similar scheduling problems.
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CHAPTER 1 INTRODUCTION

1.1 Maintenance planning and scheduling

In a variety of systems, maintenance is an essential activity. Through effective maintenance,
a system can improve its productivity, extend its life and reduce its unwanted impact on
humans and the environment (Dekker, 1996). As a familiar example, a well-maintained car
is not only more reliable, efficient, durable and safe, but is also less polluting.

As opposed to corrective maintenance, which occurs in response to a failure, preventive main-
tenance is performed to keep the system in good condition and to reduce the risk of failures.
In the electricity industry, preventive maintenance reduces the risk of costly unplanned out-
ages and can significantly increase the operating life of the system. For example, proper
maintenance and rehabilitation can double the lifespan of a hydroelectric system (Fichtner,
2015).

Typical maintenance operations like inspection, cleaning, lubrication, and minor reparations
involve direct costs of labour, spare parts and equipment. Less frequently, maintenance
involves major investments for repairs and replacement of main components. Maintenance
also entails indirect costs due to the reduction in production capacity during maintenance
outages. Therefore, a cost-effective maintenance plan must determine the type and timing of
maintenance activities to be performed, to balance the trade-off between the expected savings
of maintenance and its overall direct and indirect costs (Dekker, 1996). However, in electric
power systems, the economic impact of maintenance outages is difficult to estimate due to
the uncertainty of several variables such as electricity demand, electricity prices and power
generation. Maintenance planning and scheduling is further complicated by the separation
of decisions in departments with conflicting objectives: whereas the maintenance department
needs to perform its activities on a regular basis, the production department wants to avoid
loss of production due to maintenance downtime (Budai et al., 2008).

Based on the condition of the equipment, the available resources, the production require-
ments and the established maintenance policies, a maintenance plan specifies in the mid-
and long-term a list of maintenance activities to be performed, with their possible durations,
required resources and time windows of execution. Given a maintenance plan, the main-
tenance scheduling problem consists in defining the execution time and sequencing of the
maintenance activities to be carried out in the short-term, while respecting maintenance and
production constraints (Dekker, 1996; Budai et al., 2008; Froger et al., 2016).
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1.2 Challenges of maintenance scheduling in hydropower systems

Hydroelectricity is the world’s main source of renewable energy, with 54.3 % of the global
renewable generation capacity in 2016 (Sawin et al., 2017). Moreover, in several countries
such as Norway, Canada, and New Zealand, hydropower is the main electricity source. Due to
the significant role of hydropower in several territories, effective operation and maintenance
of hydropower systems are essential for the reliable and efficient electricity supply. However,
maintenance scheduling of generating units in hydropower systems must deal with unique
challenges, such as uncertainty of water inflows, nonlinearity of the electricity production,
and temporal and spatial interdependencies:

— As hydroelectricity is generated by the potential and kinetic energy of the water that
drives the turbines of the system (Fig. 1.1), the total electricity production is a nonlin-
ear function of the turbine discharges, the forebay elevation and the number of active
generators (Fig. 1.2). Furthermore, generating units are also characterized by nonlin-
ear efficiencies. All such nonlinearities add complexity to the planning and operation
of hydropower systems.

Powerhouse 
Dam 

Penstock 

Reservoir 
(Forebay) 

Generator 
Turbine 

Tailrace 

Figure 1.1 Schematic of a hydroelectric powerhouse. The stored water in the forebay
flows through the penstock and propels the generating units of the system. The poten-
tial energy of the water is proportional to the net water head, which is the difference
between the forebay elevation and the tailrace elevation, minus the energy losses.

— Due to the water storage capacity in hydropower systems, operating decisions are cou-
pled in time. Immediate decisions such as water discharges determine the water levels,
which impact the future operating cost of the system. Thus, maintenance activities
can be postponed, anticipated or expedited to maximize the electricity production, ac-
cording to the current and expected stored water levels in the system. For example,



3

maintenance outages can be postponed when the water level is high, to reduce water
spills with no economic benefit for the system.

Hydraulic head levels!

Figure 1.2 Hydroelectricity production function of a generating unit in a powerhouse.
The hydraulic water head level and the water discharge have a nonlinear effect on the
hydroelectricity production.

— In cascade systems, decisions are spatially interdependent: water spills and turbine
discharges can feed downstream reservoirs (Fig. 1.3).

ug Upstream  
inf lows 

vg 

vi 

ui 

si 
Li Lateral  

inf lows 

Plant  
outf lows 

Figure 1.3 Mass balance in a reservoir. Reservoir i is fed by water discharges v and
water spills u from upstream reservoirs g. Reservoir i is also fed by lateral inflows F
from tributary rivers or snow-melt. Adapted from Oliveira et al. (2002).
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— Reservoirs are fed by tributary rivers, snow-melt and rainfall, which can exhibit large
variability and are difficult to predict (Fig. 1.4). Therefore, maintenance scheduling in
hydroelectric systems must account for the uncertainty in the hydropower operation.

In
flo

w!

Time period!

Figure 1.4 Time series of 11 forecasted water inflow scenarios

1.3 Purpose of this study

In this dissertation, we address the Stochastic Hydropower Generator Maintenance Schedul-
ing Problem (SGMSP), i.e., the maintenance scheduling of generating units in hydropower
systems, taking into account the nonlinearity of the electricity production, the uncertainty
of the water inflows and the system interdependencies in space and time (Fig. 1.5). This
problem can be stated as:

Given a list of maintenance activities to be completed within a specified planning horizon, find
a maintenance schedule that maximizes the economic benefits of the electricity production,
while considering the time windows, cost and duration of the maintenance activities, as well
as maintenance constraints and essential characteristics of the hydropower operation.

This problem is motivated by a real case in Rio Tinto Aluminium, a multinational company
that owns six powerhouses in Québec, with a total average generation of 2080 MW for
its aluminium smelting operations. Through collaboration between two departments of the
company, maintenance schedules are built manually, which can lead to delays and suboptimal
schedules.

We apply mixed-integer programming techniques to obtain optimal solutions to this problem,
using piece-wise linear approximations of the nonlinear hydroelectricity production. Due to
the complicating aspects of the hydropower operation within maintenance scheduling, the
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How to use a decomposition approach to efficently produce maintenance schedules that minimize the 
maintenance and operation costs in hydropower sytems? 

A decomposition approach for the hydropower operation  
and maintenance scheduling problem 

Jesus Rodriguez, Miguel Anjos, Charles Audet and Pascal Côté 

Hydropower provides 97% of  the renewable  
electricity in Canada and 46% in the USA. 

Maintenance outages 

•  Extends lifetime of  equipment 
•  Prevents costly breakdowns 

Maintenance of  generators 

Time 

Uncertain 
Inflows 

Nonlinear power  
functions 

Temporal and spatial 
interdependencies 

Equation

Pt = f (Qt , ht ,⌦t)

Figure 1.5 Schematic of generator maintenance scheduling in hydropower systems. Mainte-
nance schedules impact the hydropower operation, which is also affected by uncertain water
inflows, nonlinearities in the electricity production and system interdependencies.

resulting model is hard to solve for real instances of the problem. Therefore, there is a
need to tighten our model and to apply Benders decomposition with parallelization and
acceleration techniques to solve the SGMSP with a large number of inflow scenarios.

This work comprises the following objectives:
1. To develop a tightened mixed-integer programming formulation for the generator main-

tenance scheduling problem, considering the time windows of maintenance activities
and the nonlinearities of the hydropower production function.

2. To implement a Benders decomposition method for the SGMSP with uncertain water
inflows.

3. To accelerate the Benders decomposition method for the SGMSP by means of paral-
lelization and acceleration techniques.

4. To propose extensions to the mathematical program for the SGMSP and to the solution
approach.

1.4 Main contributions

We propose the first mixed-integer programming model for maintenance scheduling of gen-
erating units in hydropower systems, considering the time windows of maintenance activities
and the nonlinear effect of turbine discharges, hydraulic head and number of active generators
on the electricity production. Moreover, we extend this formulation as a two-stage stochastic
program, to represent the uncertainty of the water inflows in the hydropower operation.
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We develop a compact formulation for this problem (in the sense of Williams (2013)) by ex-
cluding unnecessary elements from the model. Because the generator maintenance schedul-
ing problem is hard to solve even in the deterministic case, we tighten our model through
valid inequalities, extended formulation and a set reduction method based on time windows
information. Using statistical methods and computational experiments, we select the best
combination of such tightening techniques based on instances adapted from a real hydropower
system.

For solving the SGMSP with a large number of inflow scenarios, we implement a parallelized
Benders decomposition method with seven acceleration techniques, and we show that a com-
bination of five of these techniques achieves a fourfold speedup of the decomposition method
applied to this problem. Due to a large number of potential configurations of the proposed
acceleration techniques, we apply a sequential experimental design methodology to select the
combination of such techniques with the best performance on the SGMSP.

We discuss extensions to our formulation for the SGMSP by including decisions on the
duration of the maintenance activities and incorporating diverse maintenance constraints,
such as available resources, energy reserves and precedence of activities. Finally, we show
that an alternative decomposition approach, with a reduced master problem, can be applied
to the SGMSP.

1.5 Plan of the dissertation

In Chapter 2, we introduce basic concepts of mixed-integer programming, Benders decompo-
sition and maintenance scheduling, and we discuss related works. In Chapter 3 we describe
the methodology of this study, and we highlight the connections between the subsequent
chapters and the research objectives. Chapter 4 develops a tightened mixed-integer program-
ming formulation for the deterministic generator maintenance scheduling problem. Chapter
5 extends this formulation as a two-stage stochastic program and develops a parallelized Ben-
ders decomposition method with acceleration techniques for its solution. In Chapter 6 we
present an alternative decomposition strategy for his problem and we enhance the proposed
mixed-integer formulation by considering additional maintenance scheduling decisions and
requirements. A synthesis of the work, along with a discussion of the limitations and future
research is presented in Chapter 7. Chapter 8 presents the main conclusions.
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CHAPTER 2 LITERATURE REVIEW

2.1 Basic concepts of mixed-integer linear programming

Many real-life decision-making problems consist in selecting, with respect to a list of quan-
tifiable criteria, the best solution among a set of alternatives. In general, these problems can
be specified as mathematical optimization problems (OP) of the form

optimize
x

f(x), x ∈ X (OP)

where x is the vector of unknowns that represents the alternatives of the problem, X is the
set of feasible solutions, and f(x) is the function that measures the objective (or objectives
when f(x) = (f1(x), . . . , fk(x))) to be maximized or minimized, depending on the specific
problem. Typical objectives in optimization problems are profit, cost, distance, travelling
time, emissions and social welfare, among many others. In single-objective problems, when
f(x) is a linear function and the variables x are continuous with a feasible set X defined
by linear inequalities, the optimization problem (OP) can be formulated as a linear program
(LP)

maximize
x

cᵀx

subject to: Ax ≤ b, (LP)

l ≤ x ≤ u,

where A ∈ Rn×m is the constraint matrix, b ∈ Rm is the vector of right-hand side terms of
the constraints, c ∈ Rn is the vector of the objective function coefficients, and u, l ∈ Rn are
the vectors of lower bounds and upper bounds, respectively, of the decision variables x ∈ Rn.
Linear programs have great applicability, not only for their suitability to represent a wide
variety of real problems but also because of the availability of methods for their efficient
solution (Dantzig, 2002).

Due to the convexity of the polyhedron P = {x ∈ Rn : Ax ≤ b; l ≤ x ≤ u} that describes
the feasible set of LP and also because of the proportionality and additivity of the objective
function cᵀx, if the feasible set P is not empty, an optimal solution to LP can always be found
in one of its extreme points (Fig. 2.1). However, when some variables in x are restricted to
integer values, i.e. in mixed-integer linear programs (MILPs), the extreme points of the linear
relaxation solution defined by P may violate the integrality constraints (Fig. 2.2). For this
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reason, when solving integer linear programs, removing fractional solutions and intelligently
exploring the set of integer solutions are typical approaches (Nemhauser and Wolsey, 1988).

Feasible region 

a 

b 

Constraint 2 

Optimal solution  
to the linear program 

0 1 2 3 
0 

1 

2 

x1 

x2 

Constraint 1 Objective function  
isolines 

Figure 2.1 Graphical solution to a linear program with two constraints and two nonnegative
variables, x1 and x2. The shadowed region represents the feasible set defined by constraints
1 and 2, and the variables’ nonnegativity constraints. The big arrow indicates the direction
of improvement of the objective function (represented by the dashed isolines). The extreme
point b is feasible but not optimal. The optimal solution to the linear program is given
by a, which is the last feasible point reached by the objective function in the direction of
improvement.

In general, strong formulations lead to LP relaxation solutions with a better approximation
of the MILP solution. For example, in Fig. 2.2 a linear program with a feasible region
whose extreme points are integer (represented by the shadowed area) has an integer optimal
solution (3, 0), which is also an optimal integer solution for the original MILP. This smallest
convex set that contains all integer feasible solutions is referred to as the convex hull.

2.1.1 General exact solution methods for mixed-integer linear programs

Because in some MILPs an exponential number of constraints would be necessary for de-
scribing the convex hull, in practice only some constraints (or cuts) are included for refining
the approximation of the integer feasible set (Nemhauser and Wolsey, 1988). Such cuts can
be included a priori into the model, or they can be iteratively generated through a cutting
plane algorithm (Wolsey, 1998).

Although a complete enumeration procedure can also find the optimal solution to general
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Convex hull 
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Optimal integer  
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Objective function  
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Figure 2.2 Graphical solution to the problem in Fig. 2.1 with integer variables. Since the
solution to the linear program is fractional (point a), the objective function must reduce its
value until reaching an optimal integer feasible solution, which occurs at the point c. Notice
that the closest integer points to the fractional solution a are either infeasible or suboptimal.

.

integer programs, in general, this approach is impractical when more than a few dozen integer
variables are involved, due to the combinatorial explosion of the search space (Wolsey, 1998).
A more efficient strategy implicitly enumerates the solutions while avoiding the exploration
of sections of the feasible region that are unlikely to contain a better solution than the
incumbent, i.e., the current best integer solution. Such a strategy is the basic idea of the LP-
based branch and bound method, which using an enumeration tree, systematically computes
bounds based on LP relaxations and splits the search space into disjoint sets that remove
fractional values of the variables, while preserving all the integer solutions of the original
problem (Land and Doig, 1960).

For example, in the linear program of Fig. 2.1, at the root node of the tree the solution a has
a fractional value for x1. A branch and bound algorithm then can branch on this variable to
create two child nodes: one with the constraint x1 ≤ 0, and one with x1 ≥ 1, which remove
fractional values of x1 and partition the feasible region as shown in Fig. 2.3. In active nodes
with fractional solutions, the branching procedure continues, except when they are infeasible
or when they are unpromising. For each parent node, the best LP relaxation value of its child
nodes defines an upper bound. Indeed, any integer solution in either of its descendant nodes
cannot be better than their LP relaxation value. Furthermore, any integer solution better
than the incumbent defines a new lower bound, which is used to cut-off sections of the tree:
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nodes with an LP relaxation dominated by the lower bound are fathomed (or excluded from
further exploration). When the upper bound and the lower bound converge, the optimality
of the incumbent solution is proven.

In practice, the execution of a branch and bound method can be time-consuming due to
the slow progress of the bounds and the exponential increase of the tree size (Klotz and
Newman, 2013). Cutting planes can be included at different steps of the branch and bound
process, to speed up the solution by tightening up the formulation gradually. This solution
approach, referred to as branch and cut, in combination with preprocessing, heuristics and
parallel computing is an essential ingredient of state-of-the-art mixed-integer programming
solvers (Ralphs et al., 2018; Bixby et al., 1999; Bixby and Rothberg, 2007).

Objective function  
isolines d b 

Constraint 1 

Constraint 2 

0 1 2 3 
0 

1 

2 

x1 

x2 

x1 � 1 x1 � 0 

New linear relaxation  
solutions 

Figure 2.3 Linear relaxation solution to an integer linear program after branching on the
variable x1.

Because in hard problems the computational time to reach an optimal solution with general
methods can be prohibitive, suboptimal solutions may be acceptable in practice, based on
their optimality gap. In absolute or relative terms, the optimality gap is defined as the
difference between the incumbent solution and the best bound of the relaxation.

2.1.2 Decomposition methods for mixed-integer programs

Large mathematical programs typically involve interacting subproblems linked by a few con-
straints or variables (Lasdon, 1970). In many cases, decomposition methods can exploit the
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mathematical structure associated with this class of problems referred to as block angular, by
splitting the original model into subsystems that are solved iteratively. Other structures such
as bordered angular, block triangular and staircase are also characteristic of large systems
(Bradley et al., 1977).

In primal block angular structures the subsystems interact only through a group of linking
constraints. Such constraints usually represent global conditions of the problem, such as mass
balance, shared resources or total demand to be satisfied. By relaxing the linking constraints,
the block angular linear program

maximize
x,y

cᵀ1x1 + cᵀ2x2 . . . + cᵀpxp

subject to:

B1x1+ B2x2 . . . + Bpxp ≤ b0 (Linking constraints)

A1x1 ≤ b1

A2x2 ≤ b2

. . . ...

Apxp ≤ bp

splits into p independent subproblems

maximize
x

cᵀkxk

subject to: Akxk ≤ bk,

for k = 1, . . . , p.

Similarly, subsystems can be coupled by variables that usually represent decisions made in
previous stages or in higher levels of the system. Such complicating variables can be subject
to integrality requirements that destroy the convexity of the problem. As an example, in
facility location problems, decisions on deliveries to customers are coupled across demand
scenarios by strategic decisions on the capacity and location of the network’s facilities.
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A linear program

maximize cᵀ1x1 + cᵀ2x2 . . . + cᵀpxp + hᵀy

subject to:
A1x1 + B1y ≤ b1

A2x2 + B2y ≤ b2
. . . ...

Apxp + Bpy ≤ bp

with subsystems linked only by complicating variables y has a dual block angular structure.
By fixing the variables y = ȳ, this linear program breaks into p independent subproblems:
for k = 1, . . . , p,

maximize
x

cᵀkxk

subject to: Akxk ≤ bk −Bkȳ.

For block angular linear programs, the two most common decomposition approaches are
Lagrangian methods and methods based on the delayed generation of columns or rows of the
model matrix.

Lagrangian methods relax the complicating constraints and include their violations as penalty
terms in the objective function. In an iterative procedure, Lagrangian methods solve the
resulting subproblems and update the penalty parameters. Such penalty parameters are ap-
proximations of the Lagrangian multipliers, which represent the prices of the shared resources
or the marginal cost of the linking constraints. In problems with integer variables, Lagrangian
methods are especially efficient when the underlying network structure of the subproblems
can be exploited to obtain integer solutions (Ahuja et al., 1988). Some methods of this class
are Lagrangian relaxation (Geoffrion, 2010), Lagrangian decomposition (Guignard and Kim,
1987) and augmented Lagrangian (Boland and Eberhard, 2015).

Another family of decomposition approaches comprises Dantzig-Wolfe decomposition (Dantzig
and Wolfe, 1961) and Benders decomposition (Benders, 1962), which partition block angular
mathematical programs based on the fact that a polyhedron can be described by the convex
combination of its extreme solutions. Dantzig-Wolfe and Benders decomposition are duals of
each other (Lasdon, 1970). Whereas Benders decomposition is suitable for dual block angular
structures, Dantzig-Wolfe decomposition can be applied to primal block angular linear pro-



13

grams. Dantzig-Wolfe (respectively, Benders) decomposition creates a master problem where
the subproblems are represented by the primal (resp. dual) contribution of their extreme
solutions to the original problem. Because the set of extreme solutions of the subproblems is
potentially large, the decomposition algorithm sequentially includes, as needed, the columns
(resp. rows) of the master problem corresponding to the contribution of the current extreme
solution (Dantzig and Wolfe, 1961; Benders, 1962). To compute the extreme solutions of the
subproblems and their marginal contribution, at each iteration the decomposition algorithm
fixes in each subproblem the dual (resp. primal) variables of the master problem. When the
master program is integer, Dantzig-Wolfe (resp. Benders) decomposition can be embedded
in a branch-and-bound method, to generate columns (resp. rows) in the nodes of the tree,
when necessary (Barnhart et al., 1998; Fortz and Poss, 2009; Desaulniers et al., 1998, 2006).

Next, we give an overview of Benders decomposition, which is the solution approach applied
in Chapter 5.

2.1.3 Benders decomposition

For the derivation of the Benders decomposition method (Benders, 1962), consider the math-
ematical program

maximize
x,y

cᵀx+ f(y)

subject to:

Ax+ F (y) ≤ b, (P)

x ≥ 0,

y ∈ S,

where y is a vector of variables with a nonconvex feasible set S that makes the whole problem
hard to solve. F (y) and f(y) are m-component and scalar functions, respectively, and x, c,
b, A are as previously defined (see LP in Section 2.1). After fixing the complicating variables
y = ȳ, the resulting subproblem

maximize
x

cᵀx+ f(ȳ)

subject to:

Ax ≤ b− F (ȳ), (SP)

x ≥ 0,
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is convex and thus much easier to solve. For simplicity of exposition we assume that for any
y ∈ S, the subproblem is feasible. By strong duality, the subproblem and its dual problem,
with variables π, have the same optimal value, i.e.,

Q(y) = maximize
x

{cᵀx : Ax ≤ b− F (y) ; x ≥ 0},

= minimize
π

{[b− F (y)]ᵀπ : Aᵀπ ≥ c ; π ≥ 0}.

Furthermore, as the polyhedron Aᵀu ≥ c , u ≥ 0 can be described by its set P of extreme
solutions,

Q(y) = minimize
p∈P

{[b− F (y)]ᵀπp},

= maximize
zSP

{
zSP ∈ R : zSP ≤ [b− F (y)]ᵀπp, ∀ p ∈ P

}
,

where the auxiliary variable zSP indicates the minimum value of the dual problem. With
this reformulation of the subproblem SP, the original problem P can be rewritten as

maximize
zSP ,y

zSP + f(y)

subject to: zSP ≤ [b− F (y)]ᵀπp, ∀ p ∈ P ,
y ∈ S,

(MP)

which is the master problem (MP) of the Benders decomposition method. The role of con-
straints

zSP ≤ [b− F (y)]ᵀπp, ∀ p ∈ P , (2.1)

referred to as optimality cuts, is to remove suboptimal solutions on the space of y, based on
the extreme dual solutions of the subproblem. Due to the potentially large set of extreme
solutions P , the Benders decomposition method relaxes the set of optimality cuts (2.1), and
sequentially includes violated cuts corresponding to new master problem solutions. Further-
more, in problems where a master problem solution can produce infeasible subproblems,
feasibility cuts can be sequentially included, using the extreme rays of the dual subproblem.
At each iteration, the upper bound is the solution value of the relaxed master problem and
the lower bound is the subproblem optimal value. When the bounds converge, the opti-
mality of the solution is proved. The Benders decomposition method can also be applied
to mathematical programs with multiple subproblems, by including cuts from aggregated or
disaggregated subproblem solutions (Birge and Louveaux, 1988).

In summary, the Benders decomposition algorithm solves a relaxed master problem, finds a
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candidate solution ȳ, solves the subproblems with the fixed candidate solution y = ȳ, verifies
the optimality of the solution and checks the stopping criteria, such as computation time and
number of iterations. If the solution is not optimal and the stopping criteria are not met,
optimality and feasibility cuts are computed and included into the master problem, and the
process is repeated (see Fig. 2.4).

Create MP and SP 

Solve MP 

Fix MP solution into SP 

Optimal solution found 
or stopping criteria met? 

Compute cuts from SP solution 

Begin 

End 

Solve SP 

Add cuts to MP 

NO YES 

Figure 2.4 Flow diagram of the Benders decomposition method

Although Benders decomposition can, in principle, reduce the computational time by break-
ing a hard problem into easy-to-solve subproblems, in practice its straightforward imple-
mentation can yield poor convergence and time-consuming iterations (Rahmaniani et al.,
2017; Magnanti and Wong, 1981). However, the Benders algorithm can be accelerated by
adequately answering the following questions:

— What is an ideal formulation for Benders decomposition? Magnanti and Wong
(1981) showed that, among multiple equivalent formulations of a mixed-integer pro-
gram, the tightest formulation generates stronger Benders cuts and requires fewer iter-
ations to converge. Therefore, valid inequalities and Benders cuts derived from solutions
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to the LP relaxation of the master problem can speed up the solution (McDaniel and
Devine, 1977; Cordeau et al., 2006).

— Which variables and constraints should be included in the master problem
and the subproblems? In non-trivial mixed-integer programs, there can be multiple
ways of partitioning the problem and of including auxiliary variables and constraints
that help to approximate the original problem into the master problem and the sub-
problems (Crainic et al., 2016; Gendron et al., 2016). The definition of the master
problem and the subproblems is indeed a critical decision because it can determine
the solution approach. For example, some problem partitionings can render integer
subproblems or feasibility subproblems, which require special solution techniques and
affect the type of cuts that can be generated (Hooker and Ottosson, 2003; Gendron
et al., 2016).

— How to efficiently obtain solutions? Depending on the type of subproblem, special
solution methods can be applied, such as network flow algorithms for network design
problems (Magnanti and Wong, 1981), constraint programming for scheduling problems
(Hooker and Ottosson, 2003) or Dantzig-Wolfe decomposition for crew pairing (Cordeau
et al., 2001). Furthermore, when dealing with many subproblems, its parallel solution
can significantly reduce the computational times. Similarly, multiple alternatives can
be considered for the master problem solution, including heuristics and branch and cut
(Laporte and Louveaux, 1993; Botton et al., 2013; Fortz and Poss, 2009; Fischetti et al.,
2016a; Leitner et al., 2018).

— In the case of multiple subproblem solutions, which of them should be chosen
for generating cuts? In subproblems prone to multiple dual optimal solutions, such
as in network flow problems, each solution can generate a cut of different strength.
Therefore, the convergence of the Benders algorithm can be accelerated by choosing a
solution that generates the strongest cut (Magnanti and Wong, 1981). However, as the
Magnanti and Wong (1981) approach for finding the strongest cut is computationally
intensive, approximate methods have been developed for generating non-dominated
cuts (Santoso et al., 2005; Papadakos, 2008; Cordeau et al., 2018).

— What type of cuts should be generated? When the subproblems are linear pro-
grams, optimality and feasibility Benders cuts can be generated from the extreme points
and extreme rays of the dual solutions (Lasdon, 1970). In the case of integer subprob-
lems, lower bounding functionals (Laporte and Louveaux, 1993; Carøe and Tind, 1998)
or through a logic-based Benders method (Hooker and Ottosson, 2003). Recently, An-
gulo et al. (2016); Ljubić et al. (2017) and Álvarez-Miranda et al. (2017) showed that
meaningful dual solutions of the LP-relaxation can be exploited in this context as well
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for tightening the bounds of the master problem, before applying lower bounding func-
tionals. For feasibility subproblems with binary variables, combinatorial cuts can be
applied (Codato and Fischetti, 2006).

— At each iteration, how many cuts should we generate? In the case of multi-
ple subproblems, at each iteration a single cut can be generated by aggregating the
solutions of all subproblems. Alternatively, multiple cuts can be included by splitting
the subproblems into clusters and computing a cut for each cluster at each iteration
(Birge and Louveaux, 1988; Trukhanov et al., 2010). Although the multi-cut approach
can reduce the number of iterations of the Benders algorithm, the effect on the compu-
tational time is problem-dependent due to the larger size of the master problem with
multiple cuts (Birge and Louveaux, 2011).

— How to improve the convergence of the decomposition algorithm? In the
Benders master problem, large step sizes in the master problem solution tend to produce
oscillation and to slow down the convergence of the algorithm (Birge and Louveaux,
2011). Some stabilization approaches for Benders decomposition restrict the distance
from the previous master problem solution (Santoso et al., 2005), penalize in the master
problem the deviation from the previous solution (Ruszczyński and Świetanowski, 1997)
or minimize the distance to a pre-defined core-point Fischetti et al. (2016a,b).

For a recent review on Benders decomposition see Rahmaniani et al. (2017), and for a survey
on applications of Benders decomposition to network design problems see Costa (2005).

2.1.4 Stochastic programming

In many practical problems, decisions take place in multiple stages, with realizations of un-
certain problem parameters at each stage. In these problems, decisions are made in response
to the revealed information up to the current stage and to decisions made in previous stages.
Therefore, optimal decisions cannot anticipate the future realizations of the problem pa-
rameters. For example, in capacity planning of electrical transmission systems, investment
decisions occur in the first stage, and in subsequent stages the operating decisions of the
electrical network take place in response to the electricity demand.

Although linear programming models are deterministic in nature, their application to mul-
tiple stage optimization problems under uncertainty is possible through approaches such as
stochastic programming and robust optimization (Birge and Louveaux, 2011).

In stochastic linear programming, the problem uncertainty is represented by scenarios
ξ1, . . . , ξK with probabilities p1, . . . , pK , which define a finitely supported joint distribution of
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the random problem parameters ξ. In a two-stage stochastic linear program, the first-stage
problem (FSP) with decision variables y can be formulated as,

max
y ∈Y

cᵀy + Eξ[Q(y, ξ)]

subject to:

Ay ≤ b, (FSP)

y ≥ 0,

where Eξ[Q(y, ξ)] is the expected optimal value of the second-stage problem (SSP)

Q(y, ξ) = max
x∈X

q(ξ)ᵀx

subject to:

T (ξ)y +W (ξ)x ≤ h(ξ), (SSP)

x ≥ 0,

with decision variables x, and random parameters T,W, h, q which depend on the specific
realization of ξ. In this problem, x are the recourse actions made once the scenario parameters
ξ and the decisions y are observed. The matrix W is typically assumed fixed (Shapiro
et al., 2009) to characterize more conveniently the feasible region of the problem. The
deterministic equivalent of the two-stage stochastic program can be obtained by replacing in
FSP the expected value Eξ[Q(y, ξ)] by the weighted sum of the second-stage problems SSP,
and including their corresponding constraints. The resulting mathematical program

maximize p1q(ξ)ᵀ1x1 + p2q(ξ)ᵀ2x2 . . . + pKq(ξ)ᵀKxK + cᵀy

subject to:
Wx1 + T (ξ)1y ≤ h(ξ)1

Wx2 + T (ξ)2y ≤ h(ξ)2
. . . ...

Wxp + T (ξ)Ky ≤ h(ξ)K
Ay ≤ b

has a dual block angular structure that can be exploited via Benders decomposition when
the number of scenarios is large (see Secs. 2.1.3 and 2.1.2). When the second-stage problems
are integer, logic-based Benders decomposition and integer L-shaped method can be applied
(Hooker and Ottosson, 2003; Laporte and Louveaux, 1993). In problems with multi-stages,
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common solution approaches are nested decomposition (Birge and Louveaux, 2011), pro-
gressive hedging (Rockafellar and Wets, 1991) and an extension of Benders decomposition
referred to as dual dynamic programming (Pereira and Pinto, 1991).

2.2 Generator maintenance scheduling in hydropower systems

Before a revision of the previous works on maintenance scheduling of generating units in
hydropower systems, we briefly discuss the principal issues in hydropower optimization and
generator maintenance scheduling.

2.2.1 Planning and operation of hydropower systems

Planning and operation of hydropower systems involve decisions in multiple levels and plan-
ning horizons, ranging from several decades to a few minutes (Barros et al., 2003; Cordova
et al., 2014). In the higher level, generation capacity expansion decisions are assessed ac-
cording to the expected returns of the hydroelectricity production over several years, or even
decades, considering the optimal operating decisions under uncertainty of water inflows and
electricity demand (Gorenstin et al., 1993).

For hydropower operation, the long-term planning, which typically spans several months,
computes marginal values of stored water and target levels of reservoirs based on forecasted
seasonal hydrological conditions (Bezerra et al., 2017). The mid-term planning defines main-
tenance outages and target levels of the reservoirs, based on updated forecast information
over several weeks. Short-term planning concerns the weekly operational schedule, as well as
the commitment and loading of generating units. Usually, hours ahead of real-time operation,
the unit commitment and loading problem determines the schedule of units for generation
and ancillary services, as well as the water discharges, considering technical characteristics
such as ramping rates and startup/shutdown phases of generators (Borghetti et al., 2008; Siu
et al., 2001). In sub-hourly time spans, real-time control determines turbine discharges based
on detailed calculations of generation efficiencies, energy losses and stored water levels (Cor-
dova et al., 2014). Although the uncertainty of the water inflows in planning and operation
of hydropower systems can be naturally addressed through stochastic dynamic programming
(Bertsekas, 1995), its application in multi-reservoir systems is limited by the curse of di-
mensionality that results from the discretization of the stored water levels in each reservoir.
Due to this challenge, a variety of alternative approaches have been applied to hydropower
operation, such as dual dynamic programming (Pereira and Pinto, 1991), progressive hedging
(Carpentier et al., 2013), joint chance-constrained programming (van Ackooij et al., 2014)
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and affine decision rules (Gauvin et al., 2017), among others.

For modelling the nonlinear hydroelectricity production, a compromise between solution
quality and computational burden must be accepted. Some of the approaches for modelling
the nonlinearity of such function are piece-wise linear approximations (Borghetti et al., 2008;
Conejo et al., 2002; Ge et al., 2014; Marchand et al., 2018), nonlinear functions (Arce, 2001)
and splines (Séguin et al., 2016) .

2.2.2 Generator maintenance scheduling

As discussed in Chapter 1, maintenance planning and scheduling are decision-making prob-
lems that consist in finding the best compromise between the opportunity costs and the
expected benefits of maintenance activities. While maintenance planning defines the main
necessary maintenance activities, resources and recommended times of execution, based on
maintenance policies (Dekker, 1996), maintenance scheduling determines the sequence and
specific times of execution of the maintenance activities within specified time windows, con-
sidering the available maintenance resources and the impact of the maintenance outages on
the operational costs (Budai et al., 2008).

Due to the stochastic nature of the deterioration process and the failures, and also because of
the difficulties for predicting the impact of maintenance activities on the system condition and
the operation cost, the expected benefits and costs of maintenance are challenging to assess
(Dekker, 1996). However, as the time windows of maintenance activities are relatively short
with respect to the life-cycle of the equipment, in maintenance scheduling it is customary
to neglect the equipment deterioration (Froger et al., 2016). Therefore, in maintenance
scheduling the relevant costs are the opportunity cost of lost production due to maintenance
outages, and the maintenance costs of overtime and outsourcing (Yamayee, 1982). All of
these costs are determined by the time and duration of the activities in the maintenance
schedule.

In the electricity industry, maintenance scheduling of generating units involves additional
considerations:

— As a reliable electricity supply requires an instantaneous balance between consuming
loads and power injections, maintenance scheduling must consider the impact of main-
tenance outages on the generation capacity of the system (Billinton and Allan, 1996).

— Due to the variability and uncertainty of i) electricity prices, ii) electricity demand, and
iii) power generation from intermittent renewable energies, significant savings can be
achieved by postponing, advancing or expediting the required maintenance activities.
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— To accurately assess the impact of maintenance schedules, it is necessary to consider
the operating characteristics of the involved electricity-generating technologies (such as
eolic, nuclear and hydropower), which can differ significantly.

For vertically integrated utilities, previous works have addressed the maintenance scheduling
of generating units as optimization problems with objective functions related to reliability
or operational cost (Froger et al., 2016). Multi-objective approaches for resolving the con-
flicts between these two objectives have also been proposed (Moro and Ramos, 1999). To
avoid the computational burden of probabilistic reliability measurements such as the loss
of load expectation (Billinton and Allan, 1996), deterministic reliability indicators, such as
generation reserve, have been commonly used in maintenance scheduling (Froger et al., 2016;
Perez-Canto and Rubio-Romero, 2013).

In liberalized electricity markets, maintenance scheduling involves additional complications
due to the interacting decisions of multiple self-interested market participants, such as private
electricity producers, transmission companies and electricity retailers who want to maximize
their profits. In such markets, an Independent System Operator (ISO) coordinates and
controls the market activities to maximize the social welfare while guaranteeing the reliability
of the electricity supply. Maintenance schedules proposed by the market participants must be
revised and coordinated by the ISO through mechanisms such as contractual compensations
(Dahal et al., 2015) or incentives (Conejo et al., 2005), to ensure the reliability of the system.

Modelling all the aforementioned elements involved in generator maintenance scheduling leads
to a hard problem for which typical solution approaches are heuristics, metaheuristics and
mixed-integer programming with Benders decomposition (Froger et al., 2016).

2.2.3 Maintenance scheduling of generating units in hydropower systems

Despite the vast body of literature on maintenance scheduling in the electrical industry (see
Froger et al., 2016, for a recent review), few works to date have addressed this problem in
the context of hydroelectric systems. Furthermore, some works on maintenance scheduling
that claim to have considered hydroelectric systems, have entirely neglected or oversimplified
the most relevant aspects of the hydropower operation, such as the stored water effects, the
uncertainty of the water inflows and the nonlinearities of the electricity production (Feng
et al., 2011; Foong et al., 2008; Perez-Canto, 2008; Perez-Canto and Rubio-Romero, 2013;
Chattopadhyay et al., 1995; Kuzle et al., 2010).

For long-term planning of preventive maintenance in hydropower systems, Jonsson (2015)
used a dependency matrix for determining the sequence of activities in maintenance projects,
and Welte et al. (2006) developed a Markov model of the equipment deterioration. Such
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models did not represent the main operational aspects of the hydroelectricity production.

Chattopadhyay et al. (1995) formulated a mixed-integer program for the coordinated main-
tenance scheduling between interconnected utilities with different generation technologies.
Their formulation did not include the operational characteristics of hydropower systems and
assumed a fixed amount of available energy at each time period. For a deterministic genera-
tor maintenance scheduling problem, Foong et al. (2008) developed an ant colony approach
that uses simple heuristic rules for determining the turbine discharges, without regarding
the effects of the nonlinear hydroelectricity production. Feng et al. (2011) represented the
variability of the electricity generation with fuzzy variables but did not consider the relevant
characteristics of the hydropower operation. Perez-Canto (2008), Perez-Canto and Rubio-
Romero (2013) and Kuzle et al. (2010) presented mixed-integer programming formulations
for maintenance scheduling, which assume constant power output in active generators and
do not represent the operating characteristics of hydropower systems. For such formulations,
Perez-Canto (2008) and Kuzle et al. (2010) applied Benders decomposition and Perez-Canto
and Rubio-Romero (2013) proposed to search only for feasible solutions.

More realistic elements of hydroelectric systems have been considered in Régnier (2008),
Guedes et al. (2015), Côté et al. (2015), Helseth et al. (2018) and Ge et al. (2018).

Régnier (2008) developed a heuristic method that uses an auxiliary function for assessing
the effect of candidate schedules on the hydropower operation. Applying a black-box ap-
proach, Côté et al. (2015) showed that important savings can be achieved by exploring the
neighbourhood of an initial maintenance schedule, even if the new solution is not globally
optimal. Guedes et al. (2015) implemented a genetic algorithm for a deterministic version
of the generator maintenance scheduling problem, with continuous variables for represent-
ing the starting times of maintenance activities within time window constraints. Although
Guedes et al. (2015) represented the hydroelectricity production with an analytic function,
their model neglects the nonlinear effect of the number of maintenance outages on the amount
of produced electricity. More recently, Ge et al. (2018) developed a chance-constrained ap-
proach for maintenance scheduling, with a piece-wise approximation of the hydroelectricity
production, as in Ge et al. (2014), but without considering the nonlinear effect of the num-
ber of active generators. Helseth et al. (2018) introduced a different approach for modelling
the uncertainty in this problem, through a multi-stage stochastic optimization program with
maintenance decisions in the first-stage and hydropower operation in multiple stages, solved
by dual dynamic programming. Helseth et al. (2018) represented with a scenario tree the
uncertainty of water inflows and demand, and approximated with piecewise segments the
non-linearity of the hydroelectricity production with respect to turbine discharges. How-
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ever, their formulation did not consider the nonlinear effect of reservoir levels and of the set
of active generators, which substantially reduces the problem size but cannot realistically
represent the nonlinearity of the hydroelectricity production function.

Concerning mixed-integer formulations of maintenance scheduling in the literature, we found
three approaches:

1. Helseth et al. (2018) defined binary variables only for indicating the state of the gen-
erators (i.e., active or in maintenance, as in Conejo et al. (2005)). Through algebraic
constraints, this formulation explicitly controls the duration and continuity of mainte-
nance activities across consecutive periods.

2. In Perez-Canto (2008) and Perez-Canto and Rubio-Romero (2013), two types of binary
variables indicate the state of the generator and the beginning of maintenance activities.
In such formulations, explicit constraints link the binary variables and control the
duration and continuity of maintenance activities across consecutive periods.

3. Dahal et al. (2015) proposed a compact formulation, where only binary variables for
indicating the beginning of maintenance activities are necessary and with the time
windows controlled through index sets. Because in this approach the duration of main-
tenance activities is controlled by index sets and not by algebraic constraints, its corre-
sponding formulations are thinner and stronger than those corresponding to formulation
approaches 1 and 2. However, this work did not address specific issues of maintenance
scheduling in hydropower systems.

Our review of the literature on maintenance scheduling of generating units in hydropower
systems, supports the following conclusions:

— Although the nonlinearity of the hydroelectricity production has been considered in
recent works for obtaining globally optimal solutions to the problem (Helseth et al.,
2018; Ge et al., 2018), the effect of stored water levels and number of active generators
on the hydroelectricity production has not yet been appropriately addressed. Neglecting
such elements can lead to poor estimates of the hydroelectricity production and to
suboptimal solutions in practice.

— Considering the significant variability of the water inflows and their effect in the hy-
dropower operation, alternative representations of the uncertainty, in addition to re-
cently proposed chance-constrained (Ge et al., 2018) and scenario tree approaches
(Helseth et al., 2018), should be explored to achieve an acceptable compromise be-
tween solution quality and computational tractability.

— A more realistic representation of maintenance scheduling decisions is necessary, con-
sidering other relevant objectives and constraints.
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— Stronger formulations and alternative solution methods must be explored to find effi-
ciently global optimal solutions to real instances of the problem, instead of local optimal
solutions.

Considering these gaps in the literature, in the following section, we describe our approach
for developing more realistic and efficient solutions to this problem.
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CHAPTER 3 THESIS ORGANIZATION

In the following chapters, we develop a mixed-integer linear program and a decomposition-
based solution method for maintenance scheduling of generating units in hydropower systems
(SGMSP), considering the uncertainty of the water inflows and the nonlinearities of the
hydroelectricity production (Fig. 3.1).
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Figure 3.1 Input-output diagram of the hydropower maintenance scheduling problem

For this purpose, in Chapter 4, we develop a MILP formulation for a deterministic version
of this problem. Because the resulting model has a weak continuous relaxation and is hard
to solve, we improve our formulation through valid inequalities and reduction of the model
size. We also develop an alternative (extended) formulation with disaggregated variables
and constraints, which allows defining tighter bounds of the hydroelectricity production.
Moreover, in Chapter 4 we run computational experiments to select the best combination
of tightening techniques. In Chapter 5 we extend the tightened formulation to consider the
effect of uncertain water inflows on the hydropower operation. Thus, we develop a two-stage
stochastic programming model with maintenance scheduling decisions in the first stage and
operational decisions with inflow scenarios in the second stage.

To accurately represent the significant uncertainty of the water inflows, several inflow sce-
narios should be considered in the SGMSP. As the straightforward solution of the resulting
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large-scale problem is hard to achieve, in Chapter 5 we implement a Benders decomposition
method for splitting the SGMSP into scenario-wise operational subproblems and a master
problem with maintenance scheduling decisions. We explore seven acceleration techniques
for this decomposition approach and through computational experiments we determine the
combination of such techniques with the lowest computational times. Also, in Chapter 5 we
parallelize the Benders algorithm for the SGMSP, and we test its execution on a 200-core
computer cluster.

In Chapters 4 and 5, the formulation for the SGMSP was motivated by an industrial prob-
lem in Rio Tinto Aluminium. To address more general maintenance scheduling problems,
in Chapter 6 we extend the MILP formulation of Chapter 5 with additional maintenance
constraints and discrete choice of duration of activities. Furthermore, we propose chance-
constrained and max-min formulations to consider the uncertainty of the electricity load.
In Chapter 6 we also outline an alternative decomposition strategy for the SGMSP, using a
reduced master problem.

In Chapter 7 we summarize the research outcomes, and we discuss the limitations of this
study and directions for future research.

Table 3.1 summarizes the connection between the research objectives, the proposed ap-
proaches and the following chapters of this dissertation.
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Objective Approach/Technique Chapter

MILP formulations

Tightening techniques for MILP

Computational experiments

Stochastic programming

2. To implement a Benders 
decomposition method for the SGMSP 
with uncertain water inflows.

Benders decomposition

Parallel programming

Acceleration techniques for 
Benders decomposition

Computational experiments

MILP formulations: additional 
variables and constraints

Considering reserves: chance-
constrained and max-min 

formulations

Alternative decomposition 
strategy

Table 3.1 Summary of thesis organization

1. To develop a tightened mixed-integer 
programming formulation for the 
generator maintenance scheduling 
problem, considering the time windows 
of maintenance activities and the 
nonlinearities of the hydropower 
production function

3. To accelerate the Benders 
decomposition method for the SGMSP 
by means of parallelization and 
acceleration techniques.

4. To outline extensions to the 
mathematical program for the SGMSP 
and to the solution approach.

4

5

6
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CHAPTER 4 ARTICLE 1: MILP FORMULATIONS FOR GENERATOR
MAINTENANCE SCHEDULING IN HYDROPOWER SYSTEMS

Authors: Jesus A. Rodríguez, Miguel F. Anjos, Pascal Côté, Guy Desaulniers
Accepted for publication: IEEE Transactions on Power Systems, May 2018.

Abstract: Maintenance activities help prevent costly generator breakdowns but because
generators under maintenance are typically unavailable, the impact of maintenance sched-
ules is significant and their cost must be accounted for when planning maintenance. In this
paper we address the generator maintenance scheduling problem in hydropower systems. We
propose a mixed-integer programming model that considers the time windows of the mainte-
nance activities, as well as the nonlinearities and disjunctions of the hydroelectric production
functions. Because the resulting model is hard to solve, we also propose an extended formu-
lation, a set reduction approach that uses logical conditions for excluding unnecessary set
elements from the model, and valid inequalities. We performed computational experiments
using a variety of instances adapted from a real hydropower system in Canada, and the ex-
tended formulation with set reduction achieved the best results in terms of computational
time and optimality gap.

Keywords: Hydroelectric power generation, Integer linear programming, Mathematical pro-
gramming, Optimal maintenance scheduling

4.1 Notation

We denote decision variables and indices with lowercase, and parameters with uppercase.

Primary sets

I : Powerhouses

M : Maintenance tasks

T : Planning time periods, t ∈ T = {1 . . . T}.
Parameters

B−t , B
+
t : Prices of electricity purchase and sale, respectively, at time period t, where B−t ≥ B+

t

[$/MWh].

Cmt : Total cost of maintenance task m started at time period t [$].
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Dm : Duration of maintenance task m [day].

Em : Earliest start time period of maintenance task m.

Fit : Lateral inflows to powerhouse i in period t [m3/s].

Ḡit, ¯
Gi : Limits on the number of available turbines in powerhouse i at time period t [tur-

bines].

Jt : Electricity load at time t [MWh].

Lm : Latest start time period of maintenance task m.

Oit : Maximum number of turbine outages in powerhouse i at time period t [turbines].

P̄i : Generation capacity in powerhouse i [MWh/day].

P̄ik : Generation capacity in powerhouse i when k turbines are active [MWh/day].

Q : Factor for conversion from m3/s to hm3/day [0.0864·s·hm3 ·/(day·m3)].

R̄it : Number of maintenance activities that can be in execution at powerhouse i in time
period t.

¯
Rit : Number of maintenance activities that must be in execution at powerhouse i in time

period t.

S0i : Initial stored water in reservoir of powerhouse i [hm3].

¯
Si, S̄i : Limits on stored water in reservoir of powerhouse i [hm3].

Ūi : Maximum discharge rate in powerhouse i [m3/s].

V̄i : Maximum water spill in powerhouse i [m3/s].

W̄+
t : Maximum electricity sale at time t [MWh/day].

W̄−
t : Maximum electricity purchase at time t [MWh/day].

Derived sets

T (m) : Time periods when maintenance task m can be initiated in order to be completed
within T .

M(i) : Maintenance tasks m that should be executed in powerhouse i.

M(i, t) : Maintenance tasks m that can be in execution in powerhouse i at time period t.

U(i) : Powerhouses upstream of powerhouse i (U(i) ⊂ I).
K(i, t) : Numbers of generators that can be active at time period t and powerhouse i.

H(i, k) : Hyperplanes for approximating the maximum power output of powerhouse i when
k turbines are active.

Parameters with indexes in derived sets
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βuh : Coefficient of uit in hyperplane h ∈ H(i, k) for bounding the power output of
powerhouse i when k generators are active [MWh· s/(m3·day)].

βsh : Coefficient of sit in hyperplane h ∈ H(i, k) for bounding the power output of
powerhouse i when k generators are active [MWh/(hm3·day)].

β0
h : Independent term of hyperplane h ∈ H(i, k) for bounding the power output of
powerhouse i when k generators are active [MWh/day].

Decision variables

rit : Number of maintenance activities in execution at powerhouse i and time period t.

pit : Corrected estimate of the electricity production of powerhouse i during time period
t [MWh/day].

p̂it : Outer approximation of the electricity production in of powerhouse i during time
period t [MWh/day].

pitk : Estimate of the electricity production in powerhouse i during time period t when k
generators are active [MWh/day].

sit : Content of reservoir in powerhouse i at the end of period t [hm3].

vit : Water spill of reservoir in powerhouse i at time period t [m3/s].

uit : Water discharge of turbines in powerhouse i at time period t [m3/s].

w−t , w
+
t : Purchase and sale of electricity, respectively, at period t [MWh].

ymt : Binary variable with value 1 if maintenance task m initiates at time period t, 0
otherwise.

zitk : Binary variable with value 1 if k hydro-turbines are active in powerhouse i at time
t, 0 otherwise.

4.2 Introduction

In the power industry, preventive maintenance activities are carried out on a regular basis to
prevent expensive equipment failures and to ensure a continuous operation within acceptable
efficiency levels. As generators under maintenance are typically inactive, turbine discharges,
water spill and electricity production are affected by maintenance activities. Therefore, the
maintenance scheduler should anticipate the impact of the maintenance plan on the system
operation cost. However, in hydroelectric systems these costs are difficult to estimate due
to multiple interrelated physical variables. In particular, hydroelectricity production is a
function of both the potential energy (the water head) and the kinetic energy of the water
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that drives the turbine-generators of the system. The relationship between these variables is
defined by the Hydropower Production Function (HPF)

p = ρgγqhη(q, h), (4.1)

where p is the power output (MW), ρ the water density (kg/m3), g the gravitational acceler-
ation (m/s2), γ the conversion factor (10−6), q the turbine water discharge (m3/s), h the net
water head (m), and η(q, h) the turbine-generator efficiency (%). For each turbine the effi-
ciency η is a nonlinear function of the net water head and the water discharge of the turbine.
Therefore, the efficiency factor η introduces further nonlinearities in the power production of
the system.
As the set of active generators affects the generation capacity as well as the optimal quantities
of water spill and water discharge, the number of active generators has a nonlinear effect on
the total power output. Fig. 4.1 shows the power production as a function of water discharge
and stored water in a reservoir for either four or five active generators.
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Figure 4.1 The maximum power output as a function of water discharge and stored water
varies according to the number of active generators

Spatial and temporal inter-dependencies should also be considered in the hydropower opera-
tion. First, because water discharges can feed downstream turbines in the current or in sub-
sequent time periods, and second, because future operation costs are determined by present
decisions, such as generator outages and water spills from reservoirs. All the aforementioned
elements make the optimal planning of maintenance outages in hydropower systems a chal-
lenging endeavor.

In the electricity industry, the Generator Maintenance Scheduling Problem (GMSP) has
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been widely studied, see e.g. Froger et al. (2016). However, specific operating conditions
of hydroelectric systems have been scarcely addressed in GMSP. In a GMSP, Feng et al.
(2011) represented the uncertainty of the power output with fuzzy variables, but omitted
water storage levels and water head effects. Foong et al. (2008) proposed a meta-heuristic
for a GMSP with an oversimplified hydropower operation that considers constant power
output in active units. Kuzle et al. (2010) introduced transmission constraints in a simple
GMSP where the nonlinearity of the production functions is neglected. Likewise, Perez-Canto
(2008) omitted relevant characteristics of hydropower systems, such as temporal and spatial
interdependencies, and nonlinearities of the power production. Clearly, a finer representation
of the hydropower system’s characteristics is necessary to achieve valid solutions to the GMSP
for hydropower systems in practice.

Several works have considered the nonlinearity of the HPF (4.1) for short-term hydropower
operation, without incorporating maintenance scheduling decisions (Finardi and da Silva,
2006; Arce, 2001; Catalão et al., 2009; Conejo et al., 2002; Borghetti et al., 2008; Diniz and
Maceira, 2008; Séguin et al., 2016). Finardi and da Silva (2006), Arce (2001) and Catalão
et al. (2009) used nonlinear functions for estimating the power production of hydro units.
However, as the nonlinearity of the HPF makes hydrower scheduling problems hard to solve,
different linear approximation approaches have been proposed. For the day-ahead schedul-
ing of generators, Conejo et al. (2002) introduced piecewise linearization for representing
the effects of the water discharge on the power production. The water head effect on the
power output was estimated by interpolation among piecewise approximations for different
stored water levels. Following a similar approach, Borghetti et al. (2008) proposed a refined
linearization for representing the water head effects in hydro unit commitment. Due to the
size of the resulting model, results were only reported for a single-reservoir system. For the
short-term hydrothermal dispatch problem, Diniz and Maceira (2008) approximated with
linear inequalities the HPF (4.1), considering the effects of water spill and water head. More
recently, Séguin et al. (2016) approximated the power output with smoothing splines for the
short-term scheduling of hydro units. These splines were fitted to a maximum power output
surface computed by means of dynamic programming for different values of water discharge
and stored water level in a reservoir.

In this paper, we propose a mixed-integer linear programming model for the GMSP in hy-
dropower systems that accounts for the nonlinearities of hydroelectric operations via a convex
hull approximation of the hydropower production function. Given the difficulty of the result-
ing optimization problem, we explore three approaches for strengthening the formulation:
extended formulation, set reduction, and valid inequalities. The set reduction uses logi-
cal conditions for excluding superfluous set elements, in order to reduce the variables and
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constraints of the model. The possible combinations of these approaches lead to eight for-
mulations that we compared in terms of computational times and optimality gaps on test
instances adapted from a real hydropower system in Canada.

This paper is structured as follows. Section II presents our basic mixed integer programming
mathematical model. Section III describes the approaches to improve the formulation and
the resulting alternative formulations. Section IV reports our computational experiments for
evaluating the different alternatives. Section V summarizes our findings and concludes the
paper.

4.3 A basic mixed integer programming formulation

We consider the GMSP for hydropower systems in the general form

max
y ∈Y

x(y)∈X (y)

Φ(x(y))−Ψ(y), (4.2)

where the variables y denote the maintenance decisions and the variables x(y) represent
operational decisions, such as turbine discharges and water spills. The feasible set X (y) of
the operational decisions is determined by the water balance constraints and the bounds
of the hydropower operation, which are affected by the scheduled outages y. The set Y of
feasible maintenance decisions is defined by the time window constraints of the maintenance
activities, the maximum number of simultaneous maintenance outages, and other logical
constraints. In (4.2), the functions Ψ(y) and Φ(x(y)) denote the maintenance cost and the
value of the electricity production during the planning horizon, respectively. Note that the
value of the electricity production Φ(x(y)) is affected by the maintenance schedule y because
the power production function is different for each set of active generators (Fig. 4.1). The
interdependency between the maintenance plan and the hydropower operation makes this a
challenging nonlinear, nonconvex and combinatorial optimization problem.

In the next subsections we formulate in turn the hydropower operation, the linear approxi-
mation of the power production function, and the maintenance scheduling.

4.3.1 The hydropower operation

The hydropower operation problem optimizes the water discharges, water spills and stored
water levels to maximize the total expected value of the electricity production, while respect-
ing the physical constraints of the system and the target levels of the reservoirs at the end of
the planning horizon. The physical constraints enforce the mass and power balance, as well
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as the bounds of the variables, such as the water levels in reservoirs. At each time period
t ∈ T , reservoirs can be fed by lateral inflows Fit from tributary rivers or snow-melt, or by
turbine discharges ugt and water spills vgt from upstream reservoirs g ∈ U(i).

At each powerhouse and time period, the mass balance (4.3) implies that the initial water
volume si(t−1) minus the water volume sit at the end of the time period should be equal to
the water inflows minus the total outflows, multiplied by the conversion factor Q. As it is
customary, we assume that the outflows are equal to the total turbine discharge uit and the
water spill vit of the reservoir.

sit − si(t−1) = Q

(
Fit +

∑
g∈U(i)

[ugt + vgt]− uit − vit
)
,

∀ t ∈ T , i ∈ I.
(4.3)

To ensure the consistency with the initial and the final water volume of the reservoirs, we
define si(t−1) = Si0 for t = 1 in (4.3). In addition, (4.4)-(4.6) define the bounds on the water
discharge, water spill and water volume.

0 ≤ uit ≤ Ūi, ∀i ∈ I, t ∈ T , (4.4)

0 ≤ vit ≤ V̄i, ∀i ∈ I, t ∈ T , (4.5)

¯
Si ≤ sit ≤ S̄i, ∀ i ∈ I, t ∈ T . (4.6)

The energy balance (4.7) requires that at each time period t, the total energy production
plus the energy purchases equal the load Jt plus the energy sales:

∑
i∈I

pit + w−t = Jt + w+
t , ∀ t ∈ T , (4.7)

with bounded electricity trade variables,

0 ≤ w+
t ≤ W̄+, ∀ t ∈ T , (4.8)

0 ≤ w−t ≤ W̄−, ∀ t ∈ T . (4.9)

Notice that this definition of the power balance in (4.7) can describe a variety of situations for
electricity producers. For example, the parameter Jt > 0 can represent the case of a producer
that in a liberalized electricity market has committed to supply an amount of electricity Jt in
the forward market, and that in the spot or day ahead market can trade electricity (w−t , w+

t )
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to compensate for the differences between its forward commitment Jt and its actual electricity
production. Clearly, if at some time period t ∈ T the electricity purchase is not allowed, it
suffices to define w−t = 0.

4.3.2 Linearization of the power production function

As the nonlinearity of the electricity production functions (Fig. 4.1) poses a challenge to the
solution of the GMSP, we approximate these functions with linear inequalities. In this way,
we can formulate the GMSP as a mixed-integer linear program (MILP), which can be tackled
with state-of-the art solvers (Bixby and Rothberg, 2007).
For each powerhouse, the power output pit is a nonlinear function Θi of the water discharge uit
and the net water head (which in turn is a nonlinear function of the stored water volume sit
and the total water discharge uit). Since each generator may have a particular efficiency curve,
the maximum power output in a powerhouse depends on the specific set of active generators.
However, if the differences among power functions of individual generators are negligible, the
power function in a powerhouse can be characterized by the number of active generators kit,
instead of the explicit set of active generators, that is, pit = Θi(sit, uit, kit). This assumption
significantly reduces the problem complexity, since otherwise a specific power function would
be necessary for each combination of active generators.

For each number of active generators with their respective efficiency curves, a dynamic pro-
gramming algorithm can determine the commitment of units, as well as the maximum power
output corresponding to a set of water discharges and stored water levels (Fig. 4.1) (Séguin
et al., 2016). By definition, this set of points is contained in its convex hull, whose half-space
representation can be obtained with a facet enumeration algorithm. Some implementations
of this algorithm are freely available (Papazafeiropoulos, 2014; Fukuda, 2011).

The resulting polyhedron may contain a large number of hyperplanes, some of which should
be dropped since they define the lower facets of the convex hull with respect to the power
output pit. The set can be additionally reduced by iteratively removing the hyperplane for
which the remaining polyhedron has the smallest approximation error of the power output.
This sequential elimination of hyperplanes is repeated until the target number of hyperplanes
or a specified precision is reached.

For each powerhouse i and number of active generators k, the resulting set of hyperplanes
H(i, k) with parameters β0

h, βuh and βsh provides an outer approximation p̂it of the power
output corresponding to the specific amounts of water discharge uit and stored water level
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sit, when k generators are active, i.e.,

0 ≤ p̂it ≤ β0
h + βuhuit + βshsit ,

∀ i ∈ I, t ∈ T , k ∈ K(i, t), h ∈ H(i, k).

Notice that through the index h ∈ H(i, k), the hyperplane parameters β0
h, βuh and βsh are

defined for the corresponding powerhouse i and number of active generators k.
At powerhouse i and time period t, if k∗ is the number of active generators, the power function
constraints for k 6= k∗ can be relaxed by adding the bounding term (1− zitk)P̄i on the right
hand side of (4.10), i.e.,

0 ≤ p̂it ≤ β0
h + βuhuit + βshsit + (1− zitk)P̄i,

∀ i ∈ I, t ∈ T , k ∈ K(i, t), h ∈ H(i, k),
(4.10)

where P̄i is the generation capacity of powerhouse i and the binary variables zitk indicate if
k generators are active at (i, t). Since only one binary variable zitk takes value 1 for each
(i, t) ∈ I × T , ∑

k∈K(i,t)
zitk = 1, ∀ i ∈ I, t ∈ T . (4.11)

Thus, by (4.11) and the binary condition on zitk, the approximated power output p̂it in (4.10)
is bounded only by the hyper-plane set corresponding to the number of active turbines.
The quality of the approximation given by (4.10) increases with the number of hyperplanes
in H(i, k) and with the convexity of the actual power production function. Thus, there
is a compromise between model size and solution quality. In our tests with real data the
approximation errors of this approach were 0.5% and 0.25% of the electricity production for
15 and 30 hyperplanes in H(i, k), respectively. Nevertheless, the overestimate of the power
production can be reduced with

pit = α0 + α1p̂it, ∀ i ∈ I, t ∈ T , (4.12)

where pit is the corrected estimate of the electricity production and α0, α1 are the param-
eters of a linear regression model that fits the estimated electricity production p̂it to the
corresponding amounts of actual electricity production, using historical data.
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4.3.3 The maintenance scheduling problem

For each maintenance activity m ∈M, the interval between the earliest starting time period
Em and the latest starting time period Lm defines the set of time periods T (m) when the
activity m can start: T (m) = {t ∈ T |Em ≤ t ≤ Lm}. We assume that each activity can be
completed within the planning horizon T , i.e., Em ≤ Lm ≤ T −Dm + 1, where Dm denotes
the duration of the maintenance task m.

The definition of the binary variables ymt, ∀m ∈ M, t ∈ T (m), for representing the mainte-
nance decisions (see notation in Section 4.1) avoids the definition of time window constraints
since the set T (m) encodes the time window parameters of each activity. Unnecessary ymt
variables are excluded from the model because they are defined using T (m) instead of T .
For the basic maintenance problem we consider only the constraints on: completion of mainte-
nance tasks, maximum number of generator outages, and mapping the maintenance schedule
to the number of active generators.

The task completion constraints (4.13) enforce each activity to start at one of the feasible time
periods T (m). Constraints (4.14) compute for each powerhouse the number of maintenance
activities rit in execution at time period t, among the set of activities M(i) that must be
completed at station i. ∑

t∈T (m)
ymt = 1, ∀ m ∈M. (4.13)

∑
m∈M(i)

t′ ∈{T (m) | (t−Dm+1)≤t′≤ t}

ymt′ = rit, ∀ i ∈ I, t ∈ T . (4.14)

Notice that at time period t an activity m is in execution if it starts between t−Dm + 1 and
t. This is the interval of index t′ on the summation term in (4.14).

The maximum number of outages Oit bounds rit:

0 ≤ rit ≤ Oit, ∀ i ∈ I, t ∈ T . (4.15)

Oit depends on the maintenance resources. In addition, for a feasible operation, Oit cannot
exceed the difference between the number of available generators Ḡit and the minimum
number of generators in service

¯
Gi, i.e., Oit ≤ Ḡit − ¯

Gi, ∀ i ∈ I, t ∈ T . Notice that Ḡit is a
time varying parameter, since the number of available generators can be affected by existing
generator outages or by previous maintenance scheduling decisions. On the other hand, the
minimum number of generators

¯
Gi is constant in time due to operational requirements.
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Constraints (4.16) map the number of outages rit into the variables zitk. At each period and
powerhouse, the maximum number of available generators Ḡit equals the sum of the number
of outages rit plus the number of active generators k∗ corresponding to zitk∗ = 1.

rit +
∑

k∈K(i,t)
kzitk = Ḡit,∀ i ∈ I, t ∈ T . (4.16)

Constraints (4.18)-(4.17) specify the binary decision variables.

zitk ∈ {0, 1}, ∀ i ∈ I, t ∈ T , k ∈ K(i, t), (4.17)

ymt ∈ {0, 1}, ∀m ∈M, i ∈ T (m). (4.18)

4.3.4 The objective function

The GMSP maximizes the value of the electricity production plus the value of the stored
water, minus the sum of the maintenance costs:

Maximize
w+,w−,u,v,s,

p,y,z

∑
t∈T

(
B+
t w

+
t −B−t w−t

)
−

∑
m∈M,
t∈T (m)

Cmtymt. (4.19)

The value of the electricity production during the planning horizon is calculated as the net
benefit of the electricity trade, i.e., the difference between the revenue of electricity sale
(B+

t w
+
t ) and the cost of electricity purchase (B−t w−t ).

4.3.5 The complete basic model

We refer to the resulting mixed-integer linear programming (MILP) problem as PB:

Maximize (4.19) subject to constraints (4.3) - (4.18).

Notice that for any feasible maintenance schedule (ȳ, z̄), the resulting hydropower operation
subproblem PH is the linear program

PH(ȳ, z̄) = Maximize
w+,w−,u,v,s,p

∑
t∈T

(
B+
t w

+
t −B−t w−t

)
, (4.20)

subject to (4.3) -(4.10), (4.12).
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Naturally, in PH the simultaneous purchase and sale of electricity (i.e., the case of arbitrage)
can be prevented if the sale price of the electricity B+

t is lower than the purchase price B−t
as stated in Proposition 1.

Proposition 1. In any optimal solution to PH(ȳ, z̄) with electricity prices B+
t < B−t , either

w+
t = 0 or w−t = 0.

See Appendix 4.8.1 for a proof of this proposition.

Furthermore, this property also holds for any feasible solution to PB obtained with a general
MILP solver (e.g., CPLEX Gurobi, Xpress-MP), even if the maintenance schedule is not
optimal. Indeed, any feasible solution returned by such a solver is obtained at a node of the
search tree by solving a linear program to optimality.

4.4 Tightening approaches

Due to the weak continuous relaxation of (4.10) and (4.16), the formulation in Section 4.3.5
is difficult to solve for realistic instances. In this section we explore three approaches for
tightening the formulation: extended formulation, set reduction and valid inequalities.

4.4.1 Extended formulation

The bound (4.10) can be very weak because it is valid for any operating condition and for any
number of active generators k on the interval [

¯
Gi, Ḡit]. However, P̄ik and pitk can be based

on the actual number of active generators k and the specific operating conditions at each
time period and powerhouse. Constraints (4.21) specify the power bound for each number
of active generators, and (4.22) ensure the equivalence with the original variables pit and in
substitution of (4.10), constraints (4.23) define a linear approximation of the power function.

0 ≤ pitk ≤ zitkP̄ik, ∀ i ∈ I, t ∈ T , k ∈ K(i, t). (4.21)

∑
k∈K(i,t)

pitk = pit, ∀ i ∈ I, t ∈ T , (4.22)

0 ≤ pitk ≤ β0
h + βuhuit + βshsit,

∀ i ∈ I, t ∈ T , k ∈ K(i, t), h ∈ H(i, k).
(4.23)

Thus we have PE as the MILP with the extended formulation:

Maximize (4.19) subject to (4.3)-(5.15), (4.11)-(4.18), (4.21)-(4.23).
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The bounds P̄ik for (4.21) can be obtained as the optimal values q∗ik from maximizing the
power output in (4.23) when the stored water level is maximum:

Maximize
q,u

qik s.t. qik ≤ β0
h + βuhuitk + βshS̄i, ∀h ∈ H(i, k). (4.24)

4.4.2 Set reduction

Next we exploit the time window parameters of the maintenance tasks in order to exclude
unnecessary set elements. As a consequence, fewer constraints and variables are defined,
leading to a tighter continuous relaxation and fewer choices for branching. We aim at reducing
the set K(i, t) that determines both the number of binary variables zitk and the degrees of
freedom of the system (4.11) and (4.16). A maintenance activity m beginning at Em and
with duration Dm spans the interval T E(m) = { t ∈ T (m) |Em ≤ t < Em +Dm}. Likewise,
if activity m starts at Lm, it spans the interval T L(m) = { t ∈ T (m) |Lm ≤ t < Lm +Dm}.
The overlap of the two intervals

T O(m) , T E(m)∩T L(m)

= { t ∈ T (m) |Lm ≤ t < Em +Dm},

defines the set of time periods when the activity necessarily will take place. Likewise, the
span of a maintenance activity m is the interval T S(m) where the activity can be in execu-
tion. Since activity m cannot start before Em and it must finish before Lm +Dm, we define

T S(m) = { t ∈ T (m) |Em ≤ t < Lm +Dm}.

These definitions are illustrated in Fig. 4.2.

Em! Em + Dm!Lm! Lm + Dm!

Appendix 2: Reduction of variables set
Proposition:
For each period t œ T and power plant i œ I, the feasible number of active gen-
erators is contained the set K(i, t) = { k | kmaxit Æ k Æ kminit }, where kmaxit =
Gmax
it ≠ Mmin(i, t) and kminit = max{Gmax

it ≠ Mmax(i, t) , Gmax
it ≠ Oit , G

min
it },

with Mmax(i, t), Mmin(i, t) represeting respectively the maximum and mini-
mum number of maintenance activities in execution during period t at power
plant i.

Proof:
T E(m) = { t œ T (m) |ESm Æ t < ESm +Dm}
T L(m) = { t œ T (m) |LSm Æ t < LSm +Dm}
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3.2 Valid inequalities
From the analysis of the problem structure and its parameters, we derive logical
implications for improving the continuous relaxation of the model. Initially, we
exploit the time windows information with this purpose.
A maintenance task m beginning at the earliest starting time Em and with
duration Dm spans the interval T E(m) = { t œ T (m) |Em Æ t < Em + Dm}.
Likewise, if the activity m starts at the latest starting time Lm, it spans the
interval T L(m) = { t œ T (m) |Lm Æ t < Lm +Dm}.

Let us define the span operator S, which maps two intervalsA = {minA,maxA},
B = {minB ,maxB} into an interval C = {min(minA,minB), max(maxA,maxB)},
i.e., the span between the minimum point and the maximum point of the two
intervals A, B. For this operator we use the notation S(A,B).
The span of T E(m) and T L(m) defines the set of time periods T S(m) when the
activity m can be in execution (Fig. 3). That is,

T S(m) = S(T E(m), T L(m))
= { t œ T (m) |Em Æ Lm +Dm}.

Similarly, the overlap of the intervals

T O(m) = T E(m) flT L(m)
= { t œ T (m) |Lm Æ Em +Dm}

defines the set of time periods when the activity necessarily will take place (Fig.
3).
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Figure 4.2 Timeline for a maintenance activity m.

The maximum number of maintenance activities in execution at powerhouse i during time
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period t is the cardinality of the set of tasks whose spans T S(m) intersect at time period t,
that is,

R̄it = |{m ∈M(i) | t ∈ T S(m) }|.

Similarly, the minimum number of activities in execution at powerhouse i during time period
t is,

¯
Rit = |{m ∈M(i) | t ∈ T O(m) }|.

Naturally, R̄it and ¯
Rit bound the number of outages rit:

¯
Rit ≤ rit ≤ R̄it, ∀ i ∈ I, t ∈ T . (4.25)

Proposition 2. In formulations PB and PE, the feasible number of active generators k at
period t ∈ T and powerhouse i ∈ I is in the set

K(i, t) =
{
k ∈ Z |

¯
Kit ≤ k ≤ K̄it

}
, (4.26)

where

¯
Kit = max{Ḡit −Oit, Ḡit − R̄it}, (4.27)

K̄it = Ḡit − ¯
Rit. (4.28)

See Appendix 4.8.2 for a proof of this proposition.

From (4.26-4.28) we see that the greater the difference between Ḡit and K̄it, as well as between

¯
Gi and ¯

Kit, the greater the reduction in the number of variables and constraints with index
k ∈ K(i, t).

4.4.3 Valid inequalities

Finally, we analyze the linear system formed by constraints (4.11) and (4.16), which in general
is undetermined and has multiple non-integer solutions. We consider the case when

¯
Rit = 0.

If rit = 0, then from constraints (4.16), ∑k∈K(i,t) zitkk = Ḡit, which implies zitk = 1 for
k = Ḡit, since by constraint (4.11) only one binary variable zitk should be active for each
(i, t) ∈ I ×T . On the other hand, if rit ≥ 1, then zitk = 0 for k = Ḡit with (i, t) ∈ I ×T . By
disaggregating rit into the corresponding ymt variables (see (4.14)), these logical implications
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are equivalent to
∑

t′ ∈{T (m) | (t−Dm+1)≤t′≤ t}
ymt′ + zitk ≤ 1, for k = Ḡit,

∀ i ∈ I, m ∈M(i), t ∈ T ,
(4.29)

which by the binary condition on zitk and ymt are facet defining inequalities.

Also, since rit = 0 implies zitk = 0 ∀ k ∈ {K(i, t) \ Ḡit},
∑

k∈K(i,t) \ Ḡit

zitk ≤ rit, ∀ i ∈ I, t ∈ T . (4.30)

Next we show that constraints (4.29)-(4.30) allow relaxing the integrality of a subset of binary
variables zitk when K̄it = Ḡit and the number of degrees of freedom of the system (4.11),(4.16)
is sufficiently small.

Proposition 3. In models PB and PE with constraints (4.29)-(4.30) if for some (i′, t′) ∈
I × T :

i)
¯
Ri′t′ = 0,

ii) K̄i′t′ − ¯
Ki′t′ ≤ 2,

iii) there exists an integer feasible solution,

then the integrality condition (4.17) for zi′t′k ∀ k ∈ K(i′, t′) can be relaxed as the variables
zi′t′k will be integer in any feasible solution.

See Appendix 4.8.3 for a proof of this proposition.

4.5 Computational experiments

In this section we report on our computational experiments to evaluate the eight formulations
obtained starting from the basic model and including/excluding each of the three approaches
in Section 4.4. The eight combinations are given in Table 4.2, where 1 indicates that a given
approach is used in the corresponding formulation, and 0 indicates that the approach was
not used.

We conducted two experiments to determine the best combination. First, we solved smaller
instances of the GMSP and we analyzed the computation times in order to select a subset of
formulations. Second, we evaluated this subset via experiments with larger instances.
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Our test instances were adapted from a cascade 4-powerhouse system. For each powerhouse
and number of generators, we approximated the hydropower production function with 30 lin-
ear inequality constraints (4.10) and (4.23). For each instance, maintenance requirements are
specified with the following parameters for each activity: index, powerhouse, duration, earli-
est start time period, and latest start time period. We maximize the value of the electricity
production, with a sale price of 8 $/kWh, and Jt = 0 and w−t = 0, ∀ t ∈ T .

4.5.1 Computational results for all formulations

For the first experiment, we defined two levels for each of the five factors of the instance
size (Table 4.1). For each of the 25 = 32 combinations of these factors, we created two

Table 4.1 Levels of factors used to create the test intances to compare all formulations in
Section 4.5.1.

Factor Low Level High Level
Number of maintenance tasks 8 10
Number of time periods 20 25
Time window length 5 8
Maximum outages in each powerhouse 2 3
Avg. duration of maintenance tasks 4 5

maintenance datasets, for a total of 64 test instances. The size of the MILP formulations
ranged from 94 binary variables, 390 continuous variables and 4263 constraints, to 456 binary
variables, 775 continuous variables and 12485 constraints. Because randomly generating
instances for the GMSP is prone to infeasibilities, we created new instances with random
changes in a subset of parameters of initial feasible instances. When an infeasible instance
was obtained by this procedure, we restored its feasibility by arbitrarily changing the instance
parameters.

We ran the tests in a 24-processor Intel® Xeon® server at 2.7 GHz with 32.9 GB RAM, with
4 cores dedicated for running the Xpress-MP solver. The models were coded in C++ with
the Xpress BCL 8.1.0 callable library (FICO, 2014).

We chose CPU clock time as the basic performance metric, which allows to measure the
actual computation time for solving the problem, without the effect of background processes.
Given that the computation times increase significantly with the size of the instance and also
differ between instances of similar size, we normalized for each instance the logarithmic CPU
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time according to the standard score

zjb = (tjb − µtj)/σtj, (4.31)

where tjb is the logarithmic CPU time for solving instance j ∈ J with formulation b ∈ B, and
µtj, σtj are respectively the mean and the standard deviation of the logarithmic CPU times
of the 8 models for solving instance j.

We report in Table 4.2 the mean z̄b and standard deviation σzb of zjb over the 64 test instances,
for each formulation. The results show that the choice of formulation affects the computation
times, as corroborated with a p-value of 0.005 for a one-way ANOVA, which for a significance
level of α = 0.01 indicates a significant effect of the selected formulation on the logarithmic
CPU time.

Table 4.2 Normalized log CPU times per instance, computed from 64 test instances.

Formu- Tightening approaches Norm. log CPU time
lation Set Valid Extended Average St. dev.

reduc. ineq. formul. z̄b σzb

1 0 0 0 1.469 0.35
2 0 0 1 -0.849 0.40
3 0 1 0 0.790 0.38
4 0 1 1 -0.685 0.33
5 1 0 0 0.421 0.50
6 1 0 1 -0.880 0.34
7 1 1 0 0.511 0.39
8 1 1 1 -0.776 0.42

In these instances, the wall-clock time to reach optimality ranged from 1 s to 1743 s, with
an average of 84.27 s over all formulations. The computational wall-clock time was highly
correlated with the CPU time (R2 = 0.99).

While formulation 1 had the largest average normalized log CPU time, the smallest time
was achieved by formulation 6 (extended formulation with set reduction). The latter also
had the second smallest standard deviation. The maximum standard deviation corresponded
to the formulation with only set reduction. Overall, the formulations 2, 4, 6, and 8 gave
the best results in Table 4.2. In several instances, we registered more than one order of
magnitude of difference in wall-clock time between the basic model (formulation 1) and the
best formulation. However, in Table 4.2 these differences are attenuated by the logarithmic
transformation that we applied.
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The effect of the choice of formulation also shows in the performance profiles of Fig. 4.3.
A performance profile (Dolan and Moré, 2002) gives the cumulative relative frequency ρb(τ)
with which a formulation solves instances of the problem within a factor τ of the best possible
value of log2(rjb), where rjb = tjb/min

b∈B
tjb, and

ρb(τ) = 1
nj

size{j ∈ J : log2(rjb) ≤ τ}. (4.32)

In summary, the curves closest to the top left corner correspond to the formulation with the
best performance.

Fig. 4.3 shows that the formulations with at least one tightening component perform better
than the basic model (formulation 1). In Fig. 4.3, the performance profiles of the best 4
formulations indicate that formulation 6 is a clear winner for τ ≤ 0.8. In less than 10% of
the instances, models 2 and 8 are a competitive choice.

The extended formulation is common to the 4 best-performing formulations in Fig. 4.3. The
ANOVA results in Table 4.3 show that this approach, either alone or in combination with
others, has a significant effect for arbitrarily small significance α levels (p-value = 2.36e-
12). On the other hand, although the formulation with only valid inequalities outperformed
the basic model (formulation 3 vs. formulation 1 in Table 4.2 and Fig. 4.3), the effect of
the valid inequalities was not statistically significant when combined with other formulation
approaches (p-value = 0.758). Finally, the effect of set reduction is only significant for α ≥ 0.2
(p-value = 0.181).

Table 4.3 p-values based on normalized log CPU time

Approach p-value
Set reduction 0.181
Valid inequalities 0.758
Extended formulation 2.36e-12

4.5.2 Optimality gaps of the best formulations

In the second experiment, we worked only with formulations 2, 6 and 8. These have the
smallest average CPU times in Table 4.2, and clearly outperform formulation 4 in Fig. 4.3.
Our focus is on the optimality gaps that these formulations can achieve for large instances of
the GMSP. We tested these formulations on 16 instances with more maintenance tasks than
the earlier instances. These 16 instances were generated with two maintenance datasets for
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Figure 4.3 Performance profiles of the tested formulations

each of the 23 = 8 combinations of the levels of the three factors in Table 4.4. For these

Table 4.4 Levels of factors for the test instances to compare the best formulations 4.5.2.

Factor Low Level High Level
Number of maintenance tasks 15 20
Time window length 5 8
Avg. duration of maintenance tasks 4 5

instances we specified a planning horizon with 25 time periods in a cascade 4-powerhouse
system, with a maximum of 2 outages in each powerhouse.

Table 4.5 reports the optimality gap statistics for the three formulations after 1,000 and
20,000 seconds of CPU time on each instance.

All three formulations reached average optimality gaps below 3 % within 1,000 CPU s.
Progress is substantially slower after that, and at the time limit of 20,000 CPU s the average
optimality gap in all three formulations is close to 1.5%. Formulation 6 had the best overall
performance after 1,000 CPU s, and formulations 2 and 6 had similar average performance
after 20,000 CPU s. The average wall-clock time corresponding to the CPU time limit of
20,000 CPU s was 2,955.5 s, with a standard deviation of 51 s. Due to the specified time limit
in this experiment, the optimal solution was not reached in any of the runs. However, the
small optimality gaps in Table V indicate that with computational times beyond the specified
time limit, the optimal solutions for the instance sizes that we considered are achievable in
practice.
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Table 4.5 Optimality gap statistics

Formulation CPU time
20,000 s

CPU time
1,000 s

Mean St. dev. Mean St. Dev
2 0.0144 0.0069 0.0295 0.0235
6 0.0144 0.0071 0.0229 0.0076
8 0.0151 0.0073 0.0273 0.0222

Based on the overall results, we conclude that the most promising approach is the extended
formulation with set reduction (formulation 6), and possibly in combination with the valid
inequalities.

4.6 Industrial application

We tested this approach with data adapted from a 4-powerhouse system of Rio Tinto in the
Saguenay-Lac-St-Jean region in Québec, Canada (see Table 4.6). At the company, turbine-
generator systems must undertake periodic preventive maintenance tasks of short duration.
Less frequently, activities of longer duration, such as overhauling of generators, are also nec-
essary. We considered 18 maintenance tasks to be completed in a planning horizon of 30 days.
For each task, the time window, as well as the starting time of the activity according of an
initial maintenance schedule are given. As in the previous section, the electricity production
for each number of generators and powerhouse was approximated with 30 hyperplanes, and
we set Jt = 0 and w−t = 0, ∀ t ∈ T . For this application, the relevant price is 5 ¢/kWh.

Table 4.6 Basic attributes of the hydropower system. Powerhouses are ordered from upstream
to downstream.

System type Number of Installed capacity Maintenance
generators (MW) tasks

Reservoir 5 205 4
Run of the river 5 210 5
Reservoir 12 402 4
Run of the river 17 1587 5
Total 39 2404 18

We used formulation 6 (with set reduction and extended formulation) to solve this instance
of the problem with the Xpress-MP solver in deterministic mode with 20 threads in a 24-
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processor Intel® Xeon® server at 2.7 GHz with 32.9 GB RAM. As previous works on the GMSP
(Feng et al., 2011; Foong et al., 2008; Kuzle et al., 2010; Perez-Canto, 2008) did not consider
the maintenance time windows and other relevant aspects of the problem, these approaches
can lead to infeasible solutions in practice. For this reason, in this industrial application
example, we compare the value of the solution obtained with our model against the optimal
maintenance schedule obtained with a simplified model PS that neglects the nonlinearity of
the electricity production, while still respecting the time windows of the maintenance tasks.
Thus, we relax (4.23) to define PS as

Maximize (4.19) subject to (4.3)-(5.15), (4.11)-(4.18), (4.21)-(4.22).

For the application example in this Section, the proposed model (formulation 6) has 7103
continuous variables, 299 binary variables and 7402 constraints. After 1207 s an optimal so-
lution was found with an objective value of $ 57.802 M. In contrast, the best solution found
with the simplified model (PS) has an objective value of $ 67.444 M. The higher objective
value of this solution is merely a consequence of the overestimated electricity production in
PS by ignoring the nonlinearity of the HPF. When the actual nonlinearity of the hydroelec-
tricity production is considered, the maximum revenue of the maintenance schedule obtained
with PS is $ 57.735 M. With respect to this solution, the optimal schedule of formulation 6
yields an increase of 1340 MWh of electricity production in the one-month planning horizon
and an approximate annualized gain of $ 804,000. The increment of the electricity produc-
tion in the optimal solution is mainly a consequence of the reduction of accumulated water
spills during the planning horizon, which translates into higher average stored water level
and more efficient operation of the generators.

4.7 Conclusions

We proposed a mixed-integer optimization model for the GMSP in hydropower systems, and
three possible approaches to tighten its continuous relaxation: set reduction, valid inequali-
ties, and extended formulation. Using a set of 64 test instances, we found that the extended
formulation had the most significant effect in decreasing the computational time, and that
the combination of extended formulation and set reduction achieved the best average per-
formance and small variability in computation time. This formulation was tested in a real
4-powerhouse hydropower system with 39 generators and 2404 MW of generation capacity,
and an optimal maintenance schedule for a one-month planning horizon was found in less
than 30 minutes.



49

We proved that under some conditions, the valid inequalities allow relaxing the integrality
condition on a subset of binary variables of the problem. Although this insight did not
exhibit a statistically significant effect in our tests, we consider that the mathematical result
can be useful for developing heuristic solution methods for this problem as well as for other
problems with similar integer-mapping constraints.

Because the GMSP typically spans a planning horizon of several weeks, in practice it may
be possible to run the solver for several hours or even days, in order to obtain either optimal
or near optimal solutions. However, more efficient solution methods are necessary to solve
larger real instances. Furthermore, incorporating other relevant aspects of the problem, such
as transmission system effects and uncertainty of water inflows will increase the computational
complexity of the problem. Solution approaches considering these elements will be the subject
of future work.

4.8 Appendices

4.8.1 Appendix A: Proof of proposition 1

Proof. By contradiction, suppose that w+
t > 0 and w−t > 0 for some t. Consider 3 cases: i)

w+
t > w−t , ii) w−t > w+

t , and iii) w−t = w+
t . In case i), B−t > B+

t implies −B−t w−t < −B+
t w
−
t .

Adding B+
t w

+
t gives B+

t w
+
t − B−t w

−
t < B+

t w
+
t − B+

t w
−
t = B+

t (w+
t − w−t ) = B+

t q
+
t , which

shows that w+
t > w−t > 0 is not optimal, since selling q+

t = w+
t − w−t reaches higher profit

than buying w−t and selling w+
t . In case ii), B−t > B+

t implies B+
t w

+
t < B−t w

+
t . Subtracting

B−t w
−
t gives B+

t w
+
t −B−t w−t < B−t w

+
t −B−t w−t = B−t (w+

t −w−t ) = −B−t q−t , which shows that
w−t > w+

t > 0 is not optimal, since the net cost of buying w−t and selling w+
t is higher than

the cost of selling q−t = w+
t − w−t . In case iii), w−t = w+

t = wt implies wt(B+
t − B−t ). As

B−t > B+
t , wt = 0 minimizes the loss. Since w−t and w+

t cannot be both positive in any case,
either w−t = 0 or w+

t = 0, ∀ t ∈ T in any optimal solution.

4.8.2 Appendix B: Proof of proposition 2

Proof. From (4.15) and (4.25),

rit ≤ min{Oit, R̄it} , ∀ i ∈ I, t ∈ T . (4.33)
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From (4.16),

∑
k∈K(i,t)

kzitk = Ḡit − rit, ∀ i ∈ I, t ∈ T ,

≥ Ḡit −max{rit}, ∀ i ∈ I, t ∈ T ,
= Ḡit −min{Oit, R̄it}, ∀ i ∈ I, t ∈ T , (by Eq. 4.33)

= max{Ḡit −Oit, Ḡit − R̄it}, ∀ i ∈ I, t ∈ T ,
,

¯
Kit.

Then, by (4.11) and (4.16), k ≥
¯
Kit, ∀ k ∈ K(i, t). Similarly, from constraints (4.16),

∑
k∈K(i,t)

kzitk = Ḡit − rit, ∀ i ∈ I, t ∈ T ,

≤ Ḡit −min{rit}, ∀ i ∈ I, t ∈ T ,
= Ḡit − ¯

Rit, ∀ i ∈ I, t ∈ T ,
, K̄it,

which by (4.11) and (4.16) implies k ≤ K̄it, ∀ k ∈ K(i, t).

4.8.3 Appendix C: Proof of proposition 3

Proof. To simplify the notation, we drop the indices (i′, t′) ∈ I × T from K̄i′t′ , R̄i′t′ , ¯
Ri′t′ ,

ri′t′ , K(i′, t′) and zi′t′k. In any feasible solution to PB, PE, variables ymt are binary by (4.18)
and r is integer by (4.14). By condition i), all available Ḡ generators can be active, which
implies K̄ = Ḡ according to (5.57). Condition i) also implies r ≥ 0 by (4.25). On the other
hand, by (4.16) and Condition ii), r ≤ 2 = R̄. Therefore, for the analysis of the linear system
with (4.11) and (4.16), we consider three cases:

1. r = 0: By conditions i) and ii),

K = {Ḡ, Ḡ− 1, Ḡ− 2}. (4.34)

Then, the linear system (4.11) and (4.16) can be written in extensive form as

zḠ + zḠ−1 + zḠ−2 = 1, (4.35)

ḠzḠ + (Ḡ− 1)zḠ−1 + (Ḡ− 2)zḠ−2 = Ḡ− r. (4.36)

By (4.30), r = 0 implies zk = 0 ∀ k < Ḡ. Then, by (4.11) zḠ = 1. Therefore, the
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system (4.35)-(4.36) has a unique integer solution.

2. r = 1: By (4.14) and (4.29), r = 1 implies zḠ = 0. Then, the system (4.35)-(4.36)
reduces to

zḠ−1 + zḠ−2 = 1, (4.37)

(Ḡ− 1)zḠ−1 + (Ḡ− 2)zḠ−2 = Ḡ− 1, (4.38)

with a unique integer solution zḠ−1 = 1, zḠ−2 = 0.

3. r = 2: By (4.14) and (4.29), r = 2 implies zḠ = 0, and the resulting system of equations

zḠ−1 + zḠ−2 = 1, (4.39)

(Ḡ− 1)zḠ−1 + (Ḡ− 2)zḠ−2 = Ḡ− 2. (4.40)

has a unique integer solution zḠ−1 = 0 and zḠ−2 = 1.

Therefore, in models PB, PE with equations (4.29) and (4.30) and conditions i)−iii) satisfied
for some (i′, t′) ∈ I × T , the system (4.11) and (4.16) for (i′, t′) has a unique solution and
this solution is integer even if the integrality condition on the zi′t′k variables is relaxed for
(i′, t′) and ∀ k ∈ K(i′, t′).
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Abstract: Maintenance of power generators is essential for reliable and efficient electricity
production. Because generators under maintenance are typically inactive, optimal planning
of maintenance activities must consider the impact of maintenance outages on the system
operation. However, finding a minimum cost maintenance schedule in hydropower systems
is a challenging optimization problem due to the nonlinearity of the electricity production,
the uncertainty of the water inflows and the intrinsic complexity of scheduling problems. We
propose the first two-stage stochastic programming formulation for the hydropower generator
maintenance scheduling problem, and we implement a parallelized Benders decomposition
method with several acceleration techniques for its solution, considering a large number of
scenarios. We apply statistical methods for selecting the best combination of acceleration
techniques for the decomposition algorithm, and we compare the computational time of the
parallelized decomposition against a mixed-integer linear programming solution approach
using a testbed adapted from a real hydropower system in Canada.

Keywords: Stochastic programming, Benders decomposition, Parallel computing, Accel-
eration techniques, Hydropower maintenance scheduling.

5.1 Introduction

To guarantee the efficiency and reliability of electricity production, power producers carry
out maintenance activities on a regular basis. As generators are usually inactive during
maintenance, the economic impact of maintenance activities on the system operation must
be considered. However, in hydropower systems this impact is difficult to estimate due to
the nonlinearity of the hydroelectric generation, the uncertainty of the water inflows and the
interdependence between multiple physical variables of the system.

A hydropower system is composed of powerhouses with turbine-generator units driven by the
potential and kinetic energy of water. In each powerhouse, the hydroelectric generation is
a function of the water level of the feeding reservoir or river, the discharged water through
the turbines, the efficiency of the turbine-generator units and the energy loss due to the
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friction of the discharged water. If the turbine-generator units of a powerhouse have similar
characteristics, the maximum power output p of the powerhouse with k active units can be
represented by a function p = f(s, u, k), where u is the water discharge and s is the stored
water. We refer to this function as the Hydropower Production Function (HPF), whose
nonlinearity is apparent in Fig 4.1. For short-term hydropower operation, the HPF has been
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Figure 5.1 Maximum power generation p in a powerhouse, for different values of u, s and k.
Séguin et al. (2016) proposed a method for computing these surfaces.

represented with nonlinear functions (Arce, 2001), linear approximations (Conejo et al., 2002;
Borghetti et al., 2008) and smoothing splines (Séguin et al., 2016), among others.

The hydropower operation must also take into consideration spatial and temporal interde-
pendencies, since water discharges can feed downstream reservoirs, and current decisions
determine future costs of the system, due to the effect of the water discharges on the stored
water level. Furthermore, hydroelectric generation relies on water inflows from tributary
rivers, snow-melt or rainfall which tend to be difficult to predict and can exhibit large vari-
ability. Scenario trees and scenario fans (Fig. 5.2) are some of the approaches used for
representing the stochasticity of the water inflows (Séguin et al., 2017).

The generator maintenance scheduling problem (GMSP) consists in determining a calendar
of maintenance outages with the best performance metric (such as reliability of the system,
economic benefit or cost). In the GMSP, feasible schedules must satisfy constraints related to
maintenance policies and resources as well as operational requirements, such as the minimum
number of units available for operation. We address this problem in the context of hydropower
systems, considering the aforementioned aspects, as well as the unique operating conditions
of the hydroelectric generation, such as the uncertain water inflows and the nonlinearity of
electricity production. We refer to this problem as the Stochastic Generator Maintenance
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Figure 5.2 Scenario fan of water inflows. Each time series represents a scenario of forecasted
water inflows.

Scheduling Problem (SGMSP) in hydropower systems. As the optimal scheduling of generator
outages can increase the electricity production (Rodríguez et al., 2017), the impact of this
problem is significant for hydropower producers.

Although the GMSP has been widely studied (Froger et al., 2016), the stochastic nature of
the hydropower operation in combination with a realistic representation of the nonlinear hy-
droelectric generation has not yet been properly addressed. Feng et al. (2011) represented the
power generation with fuzzy variables but omitted essential aspects of hydropower systems,
such as the water storage levels and the uncertain water inflows. Foong et al. (2008) proposed
an ant colony metaheuristic for maintenance scheduling with an oversimplified model of the
hydropower operation. Kuzle et al. (2010) and Perez-Canto (2008) implemented a basic
Benders decomposition method for the problem, without considering the nonlinearity of the
electricity production and the stochastic water inflows. Recently, Rodríguez et al. (2017) pro-
posed a mixed-integer linear programming (MILP) formulation for the deterministic GMSP
in hydropower systems, with a convex approximation of the HPF. Rodríguez et al. (2017)
showed that neglecting the nonlinearity of the HPF leads to significant overestimates of the
electricity production and to suboptimal solutions in practice. As the resulting mathemati-
cal program is hard to solve in large instances of the problem, special solution methods that
exploit its mathematical structure are necessary. Naturally, incorporating the water inflows
uncertainty into the GMSP makes the problem even more challenging.

In this paper, we propose a two-stage stochastic optimization program for SGMSP in hy-
dropower systems. This model is an extension of the deterministic MILP formulated by
Rodríguez et al. (2017) with a linear approximation of the HPF. Using the Benders de-
composition method, we partition the problem into a maintenance-only scheduling problem
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and scenario-wise operation subproblems. As the straightforward implementation of Ben-
ders decomposition is not a guarantee of efficient solution, we propose several enhancements
to this method and we parallelize its execution. Using statistical methods, we select the
best combination of the proposed acceleration techniques for the decomposition method, and
we compare its performance against a MILP-based approach. For the tests, we consider a
4-powerhouse system with up to 200 inflow scenarios.

5.2 Mathematical programming models

In this section, we describe the optimization approach to the SGMSP, and we present its
two-stage stochastic programming formulation.

5.2.1 Two-stage stochastic programming approach

In maintenance scheduling, the set of feasible maintenance decisions Y is defined by the
maximum number of simultaneous outages, the time windows of maintenance activities and
other relevant constraints. As the maintenance decisions y ∈ Y determine the set of available
generators for electricity production in the planning horizon T , we can compactly represent
the GMSP as

max
y ∈Y

Q(y)− cᵀy, (5.1)

where c is the cost vector of the maintenance activities, and Q(y) is the operating profit
during T , corresponding to a maintenance schedule vector y. In hydropower systems, the
water inflows uncertainty can be represented with a set of forecasted inflows (Fig. 5.2),
which can be used to reformulate (5.1) as a two-stage stochastic program with maintenance
scheduling decisions in the first stage and hydropower operation decisions for each water
inflow scenario in the second stage (Fig. 5.3). As the actual scenario realization cannot be
anticipated at the moment of determining the maintenance schedule y, we compute Q(y) as
the expected value of the profit over the set of scenarios Ω, with probability of occurrence
ϕω for scenario ω ∈ Ω, i.e.,

Q(y) =
∑
ω∈Ω

ϕωQω(y),

where Qω(y) denotes the maximum cumulative operating profit corresponding to the main-
tenance schedule y, during T , in scenario ω ∈ Ω, i.e.,

Qω(y) = max
xω∈X (y,ξω)

Θ(xω). (5.2)

The hydropower operation subproblem (5.2) determines the values of the operational vari-
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Figure 5.3 Generator maintenance scheduling as a two-stage stochastic problem. The main-
tenance schedule is defined in the first stage. Operating decisions take place in the second
stage, once the inflows information is revealed

.

ables xω, such as water discharges and electricity production, that maximize the profit Θ(xω)
during T . The feasible set X (y, ξω) of the decision variables is defined by the operational
constraints of the problem, such as the water balance and the generation capacity, which de-
pend on the maintenance schedule y and the water inflow parameters ξω of the corresponding
scenario. Naturally, problems (5.1) and (5.2) can be merged into a single deterministic equiv-
alent mathematical program

max
y ∈Y

xω∈X (y,ξω)

∑
ω∈Ω

ϕωΘ(xω) − cᵀy. (5.3)

For a background on stochastic programming, we refer the reader to Birge and Louveaux
(2011).

The next subsection presents the deterministic equivalent (5.3) of the two-stage stochastic
program for the SGMSP in hydropower systems. This formulation is an extension of the
model proposed by Rodríguez et al. (2017). Later we reformulate this problem for its solution
via Benders decomposition.
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5.2.2 Mathematical program

Consider a hydroelectric system with a set of powerhouses I, and with a number of available
generators Ḡit at each time period t ∈ T and powerhouse i ∈ I. We assume that in
each powerhouse the generators have similar characteristics. Let M be a list of generator
maintenance activities to be completed within the planning horizon T , with each activity
requiring one generator outage. We define each maintenance activity m by i) the powerhouse
where the activity must be executed, ii) the duration of the activity Dm, and iii) the time
window T (m) ⊆ T when the activity can initiate. Let K(i, t) be the set of numbers of
generators that can be active at each time period and powerhouse. For determining the
maintenance schedule, we define the binary variables ymt = 1 if maintenance task m ∈ M
starts at time period t ∈ T (m), 0 otherwise (5.4). We also define the binary variables zitk = 1
if k ∈ K(i, t) generators are active in powerhouse i ∈ I at time period t ∈ T , 0 otherwise
(5.5).

ymt ∈ {0, 1}, ∀ (m, t) ∈M× T (m), (5.4)

zitk ∈ {0, 1}, ∀ (i, t, k) ∈ I × T × K(i, t). (5.5)

For the SGMSP, we also define the following constraints that involve only first-stage main-
tenance decision variables:

∑
t∈T (m)

ymt = 1, ∀ m ∈M, (5.6)

∑
m∈M(i)

t′ ∈T (m)∩ [ t−Dm+1, t ]

ymt′ = rit, ∀ (i, t) ∈ I × T , (5.7)

rit +
∑

k∈K(i,t)
kzitk = Ḡit, ∀ (i, t) ∈ I × T , (5.8)

∑
k∈K(i,t)

zitk = 1, ∀ (i, t) ∈ I × T , (5.9)

0 ≤ rit ≤ Oit, ∀ (i, t) ∈ I × T . (5.10)

Constraints (5.6) enforce the completion of the set of maintenance activitiesM in the plan-
ning horizon T . Constraints (5.7) compute the number of maintenance outages rit at each
time period and powerhouse. In (5.7) the value of rit is determined by summing the variables
ymt′ corresponding to the set of activities M(i) in powerhouse i that could have started at
time t′ ∈ T (m) and still be in execution at time t ∈ T for having started in the interval
[ t−Dm + 1, t ].
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Constraints (5.8) map the number of maintenance outages rit into the binary variables zitk
that represent the number of active generators k at time period t and powerhouse i. By
(5.9) and (5.5), only one zitk variable is equal to one for each powerhouse and time period.
Constraints (5.10) define the non-negativity of rit and limit it to the maximum number of
outages Oit at each time period and each powerhouse.

In addition, for the hydropower operation problem the following constraints are defined for
each water inflow scenario ω ∈ Ω and time period t ∈ T .

0 ≤ vitω, ∀ (i, t, ω) ∈ I × T × Ω, (5.11)

0 ≤ uitω ≤ Ūit, ∀ (i, t, ω) ∈ I × T × Ω, (5.12)

¯
Sit ≤ sitω ≤ S̄it, ∀ (i, t, ω) ∈ I × T × Ω, (5.13)

0 ≤ q+
tω ≤ W̄+

t , ∀ (t, ω) ∈ T × Ω, (5.14)

0 ≤ q−tω ≤ W̄−
t , ∀ (t, ω) ∈ T × Ω, (5.15)

sitω − si(t−1)ω =
(
ξitω+

∑
g∈U(i)

(ugtω + vgtω)− uitω − vitω
)
F,

∀ (i, t, ω) ∈ I × T × Ω, (5.16)

pitkω ≤ β0
h + βuhuitω + βshsitω, ∀ (i, t, k, h, ω) ∈ I × T × K(i, t)×H(i, k)× Ω, (5.17)

0 ≤ pitkω ≤ zitkP̄ik, ∀ (i, t, k, ω) ∈ I × T × K(i, t)× Ω, (5.18)∑
k∈K(i,t)

pitkω = pitω, ∀ (i, t, ω) ∈ I × T × Ω, (5.19)

∑
i∈I

pitω + q−tω = At + q+
tω, ∀ (t, ω) ∈ T × Ω. (5.20)

Constraints (5.11)-(5.15) specify the bounds of the hydropower operation decision variables:
water spill vitω, water discharge uitω, stored water in reservoirs sitω, electricity purchase q−tω
and electricity sale q+

tω, respectively. Constraints (5.16) ensure the mass balance at each time
period t ∈ T and reservoir i ∈ I, considering the inflows from upstream reservoirs g ∈ U(i),
as well as the uncertain water inflows ξitω of the respective scenario ω ∈ Ω. In (5.16), F is a
scalar that converts the flow units (typically m3/s) to the suitable units for its left hand side
term, sitω − si(t−1)ω, i.e., the difference in stored water between consecutive periods (such as
hm3/day). Also in (5.16), the consistency with the initial stored water is ensured by defining
si(t−1) = Si0 for t = 1.

In (5.17), for given values of water discharge uitω and stored water level sitω, the set of
hyperplanes H(i, k) with parameters β0

h, βuh and βsh, approximates the power production pitkω
corresponding to k ∈ K(i, t) active generators in powerhouse i ∈ I. Constraints (5.18) restrict
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the generation capacity according to the number k of active generators, which is indicated
by the binary variable zitk. Thus, when the number of active generators is not equal to k̄
(zitk̄ = 0), the power production for this number of generators is set to zero (pitk̄ω = 0).
Constraints (5.19) compute the power generation pitω in each powerhouse, time period and
scenario by summing the power production pitkω over the set of numbers of active generators
K(i, t).

At each time period and scenario, the power balance is enforced by (5.20). In this balance,
the total power injections into the system equal the power withdrawals. The injections
correspond to the sum of the hydroelectric generation pitω and the electricity purchase q−tω.
The power withdrawals are the electricity load At and the electricity sales q+

tω.
Finally, the objective function of the complete problem is the sum of the expected profit of
the electricity trade minus the costs of maintenance activities,

maximize
q+,q−,u,v,s,
r,p,y,z

∑
t∈T
ω∈Ω

ϕω
(
B+
t q

+
tω −B−t q−tω

)
−

∑
m∈M
t∈T (m)

Cmtymt, (5.21)

where Cmt is the cost of maintenance activity m starting at time t, and B−t , B+
t are the

electricity prices of purchase and sale, respectively, at period t. Therefore, the two-stage
stochastic program for the SGMSP is

maximize (5.21) subject to (5.4)− (5.20). (SGMSP)

To reduce the number of variables in (5.5) and the number of constraints in (5.17), (5.18)
we define the set K(i, t) using the time windows of the maintenance activities, as proposed
in Rodríguez et al. (2017) (see Appendix A.1 in Section 5.8.1).

5.3 Solution strategy

Because hydrological predictions are typically subject to uncertainty, the forecasted inflows
can exhibit large differences (Fig. 5.2), so solving the SGMSP with a small number of
scenarios can significantly reduce the quality of the information, which results in suboptimal
decisions in practice. Therefore, a sufficiently large number of representative scenarios should
be included into the model, in order to find solutions with the best average performance on
the wide spectrum of inflows. However, as this number of scenarios can lead to a very large
problem, we use Benders decomposition for its solution.
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5.3.1 The Benders decomposition method

Benders decomposition (Benders, 1962) is a solution procedure based on the idea of partition-
ing a mathematical program into a relaxed master problem and a convex subproblem. The
decomposition algorithm solves the master problem, fixes its solution into the subproblem,
solves the subproblem and uses its dual information to generate cuts that approximate the
cost function or the feasible space of the subproblem into the master problem. For a formal
presentation of this method, consider the mathematical program

maximize
x,y

cᵀx+ f(y)

s.t. Ax+ F (y) ≤ b,

x ≥ 0,

y ∈ S,

(P)

where S is a posssibly nonconvex feasible set. In this problem, y and x are vectors of decision
variables, c ∈ Rn and b ∈ Rm are constant vectors, A ∈ Rn×m is a constant matrix, and
F (y), f(y) are, respectively, m-component and scalar functions on y. By fixing the so-called
complicating variables ȳ ∈ S, the resulting subproblem

Q(y) = maximize
x

cᵀx

s.t. Ax ≤ b− F (y)

x ≥ 0,

(SP)

is convex, and thus much easier to solve. Benders (1962) showed that with the extreme dual
solutions of SP, the original problem P can be rewritten as

maximize
zSP ,y

zSP + f(y)

s.t. zSP ≤ [b− F (y)]ᵀπp, ∀ p ∈ P ,
y ∈ S,

(MP)

which is the Benders Master Problem (MP). In this problem, P is the set of extreme solutions,
πp is the dual solution of SP corresponding to the extreme point p ∈ P and zSP is the
minimum value of the dual problem. In MP the constraints

zSP ≤ [b− F (y)]ᵀπp, ∀ p ∈ P , (5.22)
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are referred to as optimality cuts as they remove non-optimal solutions from the master
problem. In cases where the master problem solution can result in an infeasible subproblem,
feasibility cuts can also be included to remove master problem solutions that are infeasible
for the complete problem. These cuts can be computed from the extreme rays of the dual
subproblem.
Given that the set of extreme dual solutions P is potentially large, the Benders decomposition
method relaxes the master problem by including only a subset PR ⊂ P of extreme solutions,
which is empty in the initialization of the algorithm. We refer to this problem as the Relaxed
Master Problem (RMP). At each iteration, the algorithm solves the RMP, fixes its solution
into the subproblem, and solves the subproblem to obtain a new dual extreme point πp that
corresponds to a violated optimality cut. This cut is then included into the RMP for the next
iteration. The procedure continues until reaching a specified gap between the upper bound
UBP and the lower bound LBP on the optimal value ZP∗ of the complete problem P. The
upper bound UBP is the optimal value of the RMP at the current iteration, and the lower
bound LBP is the objective value of the incumbent solution. At each iteration j, the Benders
algorithm computes the objective value ZP (ȳj) of the complete problem, corresponding to
the master problem solution ȳj, using the optimal value Q(ȳj) of the subproblem, i.e.,

ZP (ȳj) = Q(ȳj) + f(ȳj). (5.23)

Then, the lower bound on ZP∗ at the Jth iteration is

LBP = max
0≤j≤ J

{
ZP (ȳj)

}
. (5.24)

5.3.2 Benders reformulation of the SGMSP

To implement the decomposition algorithm, we derive the subproblem SP and the relaxed
master problem RMP for the SGMSP. In this reformulation, SP is the hydropower production
problem, and RMP is the maintenance scheduling problem with the binary variables defined
in (5.4), (5.5), which we compactly denote y, z. According to this partitioning of the problem,
(5.18) are the linking constraints, i.e., the subproblem constraints where the decision variables
of the master problem are fixed.

Subproblem

Given a master problem solution (ȳ, z̄), we set z = z̄ in (5.18) to obtain the per scenario
ω ∈ Ω subproblems, which consist in maximizing the profit of the electricity production,
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subject to the operational constraints (5.11)-(5.20), i.e.,

Qω(z̄) = maximize
q+,q−,u,v,s

∑
t∈T

(B+
t q

+
tω −B−t q−tω) (5.25)

subject to

sitω − si(t−1)ω + F

(
uitω + vitω −

∑
g∈U(i)

(ugtω + vgtω)
)

= Fξitω ⊥ πitω, ∀ (i, t) ∈ I × T , (5.26)

pitkω − βuhuitω − βshsitω ≤ β0
h ⊥ γitkhω,

∀ (i, t, k, h) ∈ I × T × K(i, t)×H(i, k), (5.27)

0 ≤ pitkω ≤ z̄itkP̄ik ⊥ λitkω,

∀ (i, t, k) ∈ I × T × K(i, t), (5.28)∑
i∈I

pitω + q−tω − q+
tω = At ⊥ ψtω, ∀ t ∈ T , (5.29)

∑
k∈K(i,t)

pitkω − pitω = 0 ⊥ θitω, ∀ (i, t) ∈ I × T , (5.30)

0 ≤ vit, ∀ (i, t) ∈ I × T , (5.31)

0 ≤ uitω ≤ Ūit (αuitω), ∀ (i, t) ∈ I × T , (5.32)

¯
Sit ≤ sitω ≤ S̄it (αsitω), ∀ (i, t) ∈ I × T , (5.33)

0 ≤ q+
tω ≤ W̄+

t (α+
tω), ∀ t ∈ T , (5.34)

0 ≤ q−tω ≤ W̄−
t (α−tω), ∀ t ∈ T , (5.35)

where πitω, γitkhω, λitkω, ψtω and θitω denote the dual variables of constraints (5.26)-(5.30),
respectively, and the symbol ⊥ indicates the complementarity of the constraint with the
corresponding dual variable.
In order to reduce the subproblem size we specify (5.32)-(5.35) as variable bounds, so that
they can be treated implicitly by the linear programming (LP) solver through the bounded
variable simplex method. Because (5.32)-(5.35) are not specified as general constraints,
their dual variables are not explicitly defined. For each bound constraint, we denote by α
(in parentheses) its dual variable which is equal to the reduced cost of the corresponding
variable.
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Master problem

The Benders Master Problem (BMP) for the SGMSP maximizes the expected profit of the
electricity production zSP minus the maintenance cost, subject to the optimality cuts and
the constraints of the original problem that involve only the maintenance decisions. Thus,
the BMP is

maximize
y,z,zSP

zSP −
∑

m∈M,
t∈T (m)

Cmtymt (5.36)

subject to

Eqs. (5.4)− (5.10),

zSP ≤
∑
ω∈Ω

ϕωbωp, ∀ p ∈ PR, (5.37)

zSP ≤ UBSP , (5.38)

where (5.37) are the optimality cuts corresponding to a subset PR ⊂ P of extreme solutions,
and bωp is the cut term corresponding to solution p ∈ PR, in scenario ω ∈ Ω. At each
iteration, a new solution is explored and hence the number of optimality cuts increases, unless
the decomposition algorithm includes a cut removal procedure. As the Benders algorithm
starts without optimality cuts, (5.38) prevents the unboundedness of the master problem at
the first iteration. This constraint defines an initial upper bound UBSP of the subproblem
optimal value zSP . Section 5.4.1 presents a method for computing tight values of UBSP . In
this master problem no feasibility cuts are necessary, due to the assumptions in Appendix
A.2 (see Section 5.8.1). The computation of (5.37) is described next.

Optimality cuts

As shown in Section 5.3.1, the optimality cuts are calculated from the subproblem’s dual so-
lutions. Due to the definition of (5.32)-(5.35) as variable bounds, their dual variables are not
explicitly available. Instead, for these bounds we use the reduced costs of the corresponding
BSP primal variables to calculate their dual contribution. Thus, we compute the cut term
bωp in (5.37) as

bωp = b1
ωp + b2

ωp, ∀ (ω, p) ∈ Ω× P , (5.39)
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where b1
ωp is the dual contribution of (5.26)-(5.29), and b2

ωp is the dual contribution of (5.32)-
(5.35). For a given extreme solution p ∈ P , we calculate b1

ωp as the sum of the products
between the right-hand side terms of (5.26)-(5.29), and the corresponding dual variables
πpitω, γ

p
itkhω, λ

p
itkω, ψ

p
tω, i.e.,

b1
ωp =

∑
t∈T

(
Atψ

p
tω +

∑
i∈I

(
Fξitωπ

p
itω

+
∑

k∈K(i,t)

(
zitkP̄ikλ

p
itkω +

∑
h∈H(i,k)

β0
hγ

p
itkhω

)))
, ∀ (ω, p) ∈ Ω× P .

(5.40)

Notice that in (5.40), we discarded the terms corresponding to constraints (5.30) because
their right-hand side is 0.
For b2

ωp, we multiply each bound by the value of the corresponding dual variable αpuitω, α
ps
itω,

αp+tω , αp−tω in the solution p ∈ P . That is,

b2
ωp =

∑
t∈T

(
W̄−
t α

p−
tω + W̄+

t α
p+
tω +

∑
i∈I

(
Ūitα

pu
itω

+ S̄itα
ps
itω[αpsitω > 0] +

¯
Sitα

ps
itω[αpsitω < 0]

))
, ∀ (ω, p) ∈ Ω× P .

(5.41)

Since the water discharge sitω has a lower bound
¯
Sit, for the computation of b2

ωp we sum either
S̄itα

ps
itω or

¯
Sitα

ps
itω, depending on the sign of the corresponding dual value αpsitω, as indicated by

the Iverson brackets in (5.41). A positive dual value means that the upper bound is active,
whereas a negative one indicates that the lower bound is binding.

5.4 Acceleration techniques for Benders decomposition

Although the divide and conquer principle of decomposition methods is a promising idea to
reduce the computational effort, a straightforward implementation of the Benders algorithm
can perform poorly due to the number of iterations required to converge, the time per itera-
tion, and the growing size of the master problem as a result of the cuts that are included at
each iteration. In response to these challenges, several ideas have been proposed to accelerate
the Benders decomposition method, such as:
— Use a formulation with a tight continuous relaxation. The stronger the formulation,

the faster the convergence (Magnanti and Wong, 1981).
— When the dual subproblem has multiple solutions, select the extreme point that pro-

duces the strongest cut (Magnanti and Wong, 1981; Papadakos, 2008).
— Solve a relaxed or partially relaxed master problem in the initial iterations. The cuts
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obtained from these solutions are also valid for the integer master problem (Cordeau
et al., 2001).

— In the master problem, include constraints and variables that help to approximate the
original problem (Santoso et al., 2005; Crainic et al., 2016; Gendron et al., 2016).

— Solve the master problem in a branch and cut approach, with Benders cuts generated
each time that a feasible integer node is found in the branching tree of the master
problem (Fortz and Poss, 2009; Gendron et al., 2016; Fischetti et al., 2016a,b).

— To reduce the oscillation of the subproblem solution, use a trust region approach or a
stabilization method (Santoso et al., 2005; Fischetti et al., 2016a).

— Besides the Benders cuts, generate additional cuts (combinatorial cuts, knapsack cuts,
among others) from the explored master problem solutions (Santoso et al., 2005; Fis-
chetti et al., 2016a; Gendron et al., 2016; Ljubić et al., 2017).

For a recent review on Benders decomposition, we refer the reader to Rahmaniani et al.
(2017).

Furthermore, as the subproblems can be solved independently once the master problem so-
lution is fixed, parallelization of the scenario-wise subproblems is a natural alternative for
speeding up the Benders algorithm. Nevertheless, an efficient parallel computing implementa-
tion must consider particular aspects, such as the parallelization protocol and the fine-grained
design of the parallel algorithm, in order to reduce the communication overhead, to improve
the load balance and to exploit the intrinsic parallelism of the solution method. Previous
works have addressed some of these aspects in the context of stochastic programming (e.g.
Nielsen and Zenios, 1997; Linderoth and Wright, 2003).

5.4.1 Implemented techniques

For speeding up the Benders decomposition method, we tested the following strategies, as
discussed afterwards: 1) valid inequalities (Rodríguez et al., 2017), 2) warm start, 3) multi-
phase relaxation (Cordeau et al., 2001), 4) special ordered sets (Beale and Tomlin, 1970),
5) combinatorial cuts (Codato and Fischetti, 2006), 6) presolve, 7) integer rounding cuts
(Santoso et al., 2005), 8) parallelization.

Valid inequalities (VI)

As tight formulations can be favorable for Benders decomposition (Magnanti and Wong,
1981), we test the effect of the valid inequalities (5.42)-(5.43) (Rodríguez et al., 2017) and
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(5.44) on the performance of the decomposition method for the SGMSP.

∑
m∈M(i)

t′ ∈T (m)∩ [ t−Dm+1, t ]

ymt′ + zitk ≤ 1 (5.42)

for k = Ḡit,∀ (i,m, t) ∈ I ×M(i)× T ,∑
k∈K(i,t) \{Ḡit}

zitk ≤ rit, ∀ (i, t) ∈ I × T , (5.43)

rit +
∑

k∈K(i,t) \{
¯
Kit}

(k −
¯
Kit)zitk ≤ R̄it, ∀ (i, t) ∈ I,×T , (5.44)

where
¯
Kit and R̄it are respectively the minimum number of active generators and the max-

imum number of activities simultaneously in execution at (i, t). For a derivation of (5.42)-
(5.44), see Appendix A.3 in Section 5.8.1.

Warm start (WS)

In a branch and bound process, the objective value of the current best feasible solution
cuts off sections of the branching tree with no potential of harboring an optimal solution.
The tighter the cutoff value, the fewer the number of nodes to be explored in the tree. In
MILP solvers, cutoff values can be user-defined or can be computed from user-supplied initial
solutions. Even if the initial solution is infeasible, MILP solvers can apply re-optimization or
heuristics to obtain a new feasible solution and a corresponding cutoff value (FICO, 2017).
At any iteration of the Benders algorithm, the lower bound LBP in (5.24) is naturally a
cutoff value for the master problem. Therefore, at each iteration we specify to the solver a
cutoff value LBP − ε, where ε = TOL · |LBP |, and TOL is the default relative optimality
tolerance of the MILP solver. In addition, we provide the master problem solution of the
previous iteration as an initial solution to the MILP solver for the new iteration.
As tightening bounds of variables can also make the search more efficient, at the first step
of the algorithm we obtain an initial upper bound UBSP of zSP in (5.38), computed as the
optimal value of the linear relaxation of the complete problem plus the maximummaintenance
cost of the LP solution of the initial master problem (i.e., with no optimality cuts and with
fixed zSP = 0). Moreover, at each iteration we define the current solution value of zSP in the
master problem as the upper bound UBSP for the next iteration.
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Multi-phase relaxation (MR)

Considering that the solutions to a RMP can generate valid cuts (Cordeau et al., 2001),
we evaluate the effect of several relaxation schemes. For the master problem (5.4)-(5.10),
(5.36)-(5.38), we define four relaxation levels of the binary variables y, z (Table 5.1). Among
the possible sequences for applying these relaxations, we consider those that start with a
complete linear relaxation (relaxation level 3) and in the subsequent phases solve an integer
or partially integer RMP (relaxation levels 0, 1 or 2). To ensure a feasible solution, the last
phase solves the integer master problem. We compare these relaxation sequences against a
standard single-phase algorithm (without a relaxation phase, defined as sequence 0 in Table
5.2).

Table 5.1 Configuration of relaxation levels

Relaxation level Binary variables Linear relaxation type
0 y, z No relaxation
1 y Partial
2 z Partial
3 - Complete

Table 5.2 Sequences of relaxation levels for multi-phase relaxation

Index sequence Relaxation sequence
0 0
1 3, 0
2 3, 2, 0
3 3, 1, 0
4 3, 1, 2, 0
5 3, 2, 1, 0

The relaxation of the master problem at the initial stages helps to quickly generate opti-
mality cuts. Nevertheless, to prevent an excessive number of cuts that can slow down the
decomposition algorithm, each relaxation stage can be finished when certain conditions are
met, such as the maximum number of cuts at the stage or the minimum optimality gap of
the stage.
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Special ordered sets (SOS)

In a branch and bound algorithm, branching on sets of variables, instead of individual vari-
ables, can reduce the computational time. Special Ordered Sets (SOS) allow specifying sets
of variables for branching decisions (Beale and Tomlin, 1970). A set of variables ordered by a
reference value, and with at most n consecutive non-zero variables in the set, can be specified
as a SOS of type n (SOS-n), where n ≤ 2. When branching on a SOS-1, a position in the
ordered set is chosen, and all variables above and below the chosen position are forced to a
zero value (Beale and Tomlin, 1970).
In the master problem (5.4)-(5.10), (5.36)-(5.38), the variables zitk form a set ordered by k,
for each time period t and powerhouse i. Thus, we replace the binary condition on zitk (5.5)
with the following SOS-1 definition

SOS-1it = {zitk → k : k ∈ K(i, t)} ∀ (i, t) ∈ {I × T : | K(i, t) | > 2},

where the arrow symbol → indicates that k is the ordering value of the set. Since SOS work
better when the cardinality of the set is not very small (FICO, 2017), we define a SOS-1it
only when the size of the set is greater than 2.
Moreover, when B−t ≥ B+

t and At ≤ P̄ik ≤ Wt, the order of the variables zitk in the master
problem can be enforced by the constraint,

zSP ≤
∑
t∈T

B+
t

( ∑
i∈I,

k∈K(i,t)

P̄ikzitk − At
)
, (5.45)

which defines an upper bound of the subproblem objective value (5.25). In (5.45), the order
of the variables zitk for each set (i, t) is determined by the generation capacity P̄ik, which
increases with the number of generators k. Since B−t ≥ B+

t , buying electricity for selling it
(i.e., electricity arbitrage) is suboptimal, so in an optimal solution, only the surplus electricity
production can be sold. For a given number k of active generators, the maximum surplus
electricity is the capacity P̄ik minus the load At (5.29). When the assumption At ≤ P̄ik ≤ Wt

does not hold, (5.45) must be replaced by the inequality in Appendix A.4 (see Section 5.8.1).

Combinatorial cuts (CC)

Combinatorial Benders cuts (CBC) (Codato and Fischetti, 2006) have been proposed to
remove infeasible solutions in mathematical programs with binary variables. In contrast
with the traditional Benders feasibility cuts, which are computed from the subproblem dual
extreme rays, CBC exclude the current binary solution x̄ by forcing a change of value in at
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least one variable of x̄. Given the variables xj with index set J , CBC are defined as

∑
j ∈S

(1− xj) +
∑
j /∈S

xj ≥ 1, (5.46)

where S is the set of variables in x̄ with value 1, i.e., S = {j ∈ J : x̄j = 1}, and its
complement is S ′ = {j ∈ J : x̄j = 0}. We obtain a stronger inequality than (5.46), by
forcing at least one variable in each set, S and S ′, to have a different value, i.e,

∑
j ∈S

xj ≤ |S| − 1, (5.47)

∑
j /∈S

xj ≥ 1 (5.48)

Then, from (5.47) and (5.48), we obtain

∑
j ∈S

xj −
∑
j /∈S

xj ≤ |S| − 2. (5.49)

Proposition 4. The combinatorial cut (5.49) dominates the standard CBC (5.46).

Proof. Inequality (5.46) can be rewritten as

∑
j ∈S

xj −
∑
j /∈S

xj ≤ |S| − 1. (5.50)

As (5.50) and (5.49) have equal left-hand side, and the right-hand side of (5.50) is greater
than the right-hand side of (5.49), then (5.49) dominates (5.46).

Applying (5.49) to cut a suboptimal solution ȳ in (5.4)-(5.10), (5.36)-(5.38), gives

∑
(m,t)∈Sy

ymt −
∑

(m,t) /∈Sy
ymt ≤ |M| − 2, (5.51)

where Sy = {(m, t) ∈ M× T (m) : ȳmt = 1}. Notice that |Sy| = |M|, since for each activity
m there is a variable ȳmt = 1 (5.6).
Furthermore, when the costs of the tasks are independent of the starting time, i.e., when
Cmt = Cm, ∀ (m, t) ∈M× T (m), different solutions ȳ that correspond to the same solution
z̄, would have the same objective value. In this case, a valid cut is

∑
(i,t,k)∈Sz

zitk −
∑

(i,t,k)/∈Sz
zitk ≤ |I||T | − 2. (5.52)
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In (5.52), Sz = {(i, t, k) ∈ I × T × K(i, t) : z̄itk = 1}, with cardinality Sz = |I||T |, since
by (5.9), for each time period t and powerhouse i, exactly one variable z̄itk is equal to 1.
To prevent removing optimal solutions, we only apply the cuts (5.52) and (5.51) when the
objective value of the solution (ȳ, z̄) is lower than the cutoff value, that is, when ZP (ȳ, z̄) <
LBP − ε, where ε is as defined in Section 5.4.1.

Presolve (PS)

As presolve is a key element for efficiently solving MILP problems (Bixby et al., 1999),
several MILP solvers presolve the problem before the branch and cut procedure (Bixby
et al., 1999). A presolve routine reduces the problem through several operations such as
tightening bounds, coefficient reduction, removal of redundant columns and rows, and fixing
variables based on logical implications or dual information (FICO, 2017; Bixby et al., 1999).
By reducing the domain of the variables and removing fractional solutions, presolve can
improve the upper and the lower bound of MILP problems (Bixby et al., 1999). However,
as in Benders decomposition only part of the original problem information is included into
the RMP, the potential of presolving the RMP is reduced. Furthermore, as new rows are
included at each iteration of the Benders algorithm, presolve operations such as reduced cost
fixing can produce inconsistent solutions if applied to the RMP and fixed for subsequent
iterations. In contrast, presolving the complete problem gives problem reductions that are
valid for the RMP through all iterations. Therefore, we can accelerate the Benders algorithm
with an initialization step that 1) applies to the complete problem (5.4)-(5.21) a presolve
routine with all presolve operations activated, and 2) in the RMP fixes for all iterations of
the Benders algorithm the binary variables that after presolving the complete problem are
set to one of their bounds. Notice that the values of the variables fixed during presolve must
be explicitly retrieved from the MILP solver because their values can be different from the
linear relaxation solution.

Integer rounding cuts (IRC)

Let cᵀ be the coefficient vector of y in the master problem. Since the lower bound LBP of
the complete problem is also valid for the master problem, combining the bound LBP ≤
cᵀy+QSP , with the optimality cut QSP ≤ aᵀy+ b, gives the inequality LBP ≤ (c+ a)ᵀy+ b,
which can be tightened with integer rounding and division by the Greatest Common Divisor
(GCD) of dc+ ae (Santoso et al., 2005; Chen et al., 2011). Thus,

dLBP − be
GCD

≤
(
dc+ ae
GCD

)ᵀ

y, (5.53)
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is a valid cut for the master problem. As the bound LBP increases as the algorithm progresses,
an IRC (5.53) can become weak in subsequent iterations. In the tested instances of the
SGMSP, we observed that keeping only the most recent IRC had a better impact on the
computational time than keeping all the generated IRC (5.53) and updating their constant
term when the bound LBP improves.

Parallelization

For the parallelization of the Benders algorithm, we implemented a master-slave approach,
where the slave processors solve the subproblem and compute the cut terms, and the mas-
ter process includes the cuts, solves the master problem and controls the execution of the
algorithm (Fig. 5.4). The master process runs on a computer server with a MILP solver,
and the slave processes run independently on a computer cluster with an open source linear
programming solver.

We used the Message Passing Interface (MPI) standard as a parallel programming protocol.
Although MPI requires explicit instructions for communications among processes, some MPI
implementations are portable, free and can use both shared and distributed memory. Fur-
thermore, MPI incorporates routines for high-performance collective communication that are
suitable for our master-slave implementation of the decomposition algorithm.

5.4.2 Implementation details

The code was written in C++ with the modeling libraries Xpress BCL. The master problem
was solved with the MILP solver Xpress-MP, and the subproblems were solved with the
open-source linear programming solver Clp. For the parallelization we used MPICH and the
Intel MPI Library. In BCL, we specified the Benders optimality cuts as delayed rows. This
cut definition is appropriate when most of the cuts are unlikely to be active, since only the
violated cuts are reintroduced by the solver when a new solution is found. Other cuts that
we proposed (valid inequalities, combinatorial cuts and integer rounding cuts) were defined
in BCL as model cuts, since they can be included by the solver to remove fractional solutions,
but are not necessary to obtain feasible solutions. Furthermore, to avoid a large number of
combinatorial cuts and integer rounding cuts, we kept only the cuts generated in the previous
iteration.
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Figure 5.4 Simplified representation of the parallel Benders decomposition algorithm, imple-
mented with MPI

5.5 Computational experiments

In this section we select the combination of acceleration techniques with the best performance
on a set of test instances and we evaluate the impact of the parallelization on the computa-
tional times of the decomposition algorithm. In these experiments, a treatment corresponds
to a combination of acceleration techniques or to a specific configuration of one of them.

5.5.1 Selection of acceleration techniques

For this section, we used a testbed of 24 instances adapted from a real hydropower system
in Canada, with the attributes in Table 5.3. Each instance corresponds to a SGMSP with
30 inflow scenarios, 4 powerhouses, 15 time periods and 6 to 8 maintenance tasks. For each
powerhouse and number of generators, the hydropower function was approximated with 30
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hyperplanes in (5.17).

Table 5.3 Basic attributes of the hydropower system. Powerhouses are ordered from upstream
to downstream.

System type Number of Installed capacity
generators (MW)

Reservoir 5 205
Run of the river 5 210
Reservoir 12 402
Run of the river 17 1587
Total 39 2404

The decomposition algorithm was executed in parallel on a 200-core computer cluster, with
one thread dedicated to each subproblem and with up to 10 threads for solving the master
problem on an Intel® Xeon® computer at 2.7 GHz.

Since the computational times can differ significantly between instances, we defined as a
performance metric the normalized time t̄jb per instance

t̄jb = tjb − µj
σj

, (5.54)

where tjb is the computational time of the instance j ∈ J on treatment b ∈ B, and µj, σj are
respectively, the mean and standard deviation of the computational times of instance j ∈ J
in all treatments.

Best combination of acceleration methods

Since the first 7 techniques of Section 5.4.1 can be combined in 27 = 128 different ways, we
are interested in identifying which combination has the lowest average computational time.
For this purpose, we ran two experiments in sequence. In the first experiment, we applied
each of the 7 techniques individually: Valid Inequalities (VI), Warm Start (WS), Multi-
phase Relaxation (MR), Special Ordered Sets (SOS), Combinatorial Cuts (CC), Pre-solve
(PS) and Integer Rounding Cuts (IRC). In this experiment, MR is the relaxation sequence 4,
and VI is the combination of valid inequalities (5.43) and (5.44), which reached the smallest
computational time in preliminary tests (see Appendix B in Section 5.8.2).
As shown in Fig. 5.5 and Table 5.4, WS achieved the lowest computational times, followed by
PS and SOS. Through one-sided t-tests against the basic method, we confirmed that the effect
of these three acceleration techniques was highly significant on the computational time (p-
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value < 0.001 in Table 5.4). From these results, we fixed, as part of the basic configuration,
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Figure 5.5 Boxplots of normalized computational times of 7 acceleration techniques and the
basic method

Table 5.4 Summary statistics of the acceleration methods applied independently. The column
Diff. shows the difference between the mean time of each technique and the mean time of
the basic method (first row).

Treatment Mean Std.Dev. Diff. p-value
- 0.62 0.27 0.00 -
CC 0.69 0.31 0.07 0.81
IRC 0.59 0.23 −0.03 0.37
MR 0.62 0.43 0.00 0.53
PS −0.32 0.09 −0.94 6.7e-16
SOS 0.22 0.37 −0.40 5.5e-05
VI 0.56 0.25 −0.06 0.24
WS −1.68 0.14 −2.30 2.2e-16

the techniques with the lowest computational time (PS, SOS and WS). For selecting the final
configuration, we ran a full factorial experiment with the remaining 4 techniques: CC, IRC,
MR and VI, which corresponds to 24 = 16 treatments. As shown in Table 5.5, an analysis
of variance (ANOVA) applied to the results of this experiment indicates that CC and IRC
had a significant effect (p-value < 0.05) on decreasing the computational time (β < 0), while
MR had the opposite effect and VI was not statistically significant. Therefore, in a second
ANOVA, we considered only the factors CC and IRC and their interaction term CC·IRC
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(Table 5.6). This ANOVA showed that the effects of CC and IRC were statistically significant
(p-value < 0.01) on reducing the computational time (β < 0). Notice that the main effects
of CC and IRC (with estimates -0.996 and -0.339, respectively) dominate interaction term
CC·IRC (with estimate 0.242), which was not statistically significant (p-value 0.169).

Table 5.5 Summary of linear regression model with techniques VI, MP, CC and IRC as main
factors, with normalized computational time as response variable.

β estimate p-value
(Intercept) 0.288 0.003
VI 0.089 0.295
MP 0.428 7.6e-07
CC −0.875 < 2e-16
IRC −0.218 0.011

Table 5.6 Summary of linear regression model with factors CC and IRC and interaction term.
Normalized computational time as response variable

β estimate p-value
(Intercept) 0.607 1.9e-11
CC −0.996 1.2e-14
IRC −0.339 0.006
CC·IRC 0.242 0.169

From these results, and the previously selected acceleration techniques (Table 5.4), we deter-
mined that the recommended combination of the acceleration techniques for the considered
problem is: PS, SOS, WS, CC and IRC. In additional tests, this configuration achieved
speedups of up to 4 times, with respect to the basic Benders decomposition approach.

5.5.2 Effect of parallelization

For the operation of hydropower systems, as many as 3000 scenarios can be generated to
represent the uncertainty of the water inflows (Séguin et al., 2017). In the SGMSP, a large
number of scenarios should also be considered to achieve high-quality solutions. Nevertheless,
due to the increase in the problem size, a compromise on the number of scenarios must be
accepted in practice, depending on the available computational resources and the time limit
for obtaining solutions. As a practical example, we consider a case with data adapted from a
real 4-powerhouse system, with 8 maintenance tasks to be completed in a planning horizon



76

of 15 days. As in the previous section, for each powerhouse and number of generators, the
power production function was approximated with 30 hyperplanes.

We used the same computer cluster and computing server as in Section 5.5.1 for solving
the subproblems, and the master problem. To avoid overlapping of subproblems on the 200
available threads, we considered a maximum of 200 scenarios, with 1 subproblem for each
thread. With a time limit of 1000 seconds, the decomposition method was benchmarked
against the straightforward MILP solution approach, i.e., solving model (5.4)-(5.21) with the
MILP solver Xpress-MP. To observe the effect of the number of scenarios on the computa-
tional times, we kept constant all the problem parameters, except the size and composition
of the set of inflow scenarios. From an initial set of 3028 scenarios, we randomly sampled 12
sets of 200 scenarios each, and we ran tests with 1, 50, 100, 150 and 200 scenarios of each
set.

The results indicate that above some point between 50 to 100 scenarios, the parallel Benders
decomposition with acceleration techniques outperformed the computational time of the so-
lution with a MILP solver (Fig. 5.6). Furthermore, in instances with 150 and 200 scenarios,
the MILP solver reached the 1000-second time limit, with average optimality gaps of 4.6 %
and 6.3 %, respectively, while the Benders decomposition approach reached optimal solu-
tions in less than 800 seconds (Fig. 5.6). The results also confirm that, in contrast with the
MILP-based solution, the parallel Benders decomposition method is highly scalable. For ex-
ample, between 50 to 100 scenarios the computational time of the MILP approach increased
by 231.7 %, while the computational time via parallel Benders decomposition increased only
by 11.5 % (Table 5.7).

The need for considering a sufficiently large number of scenarios is apparent in Table 5.8,
where the objective values of the optimization model tend to converge as the number of
scenarios increases. For example, in Table 5.8, the variability of the objective values in
instances with 150 scenarios (St. dev. 121.6) is less than a half of the variability corresponding
to 50 scenarios (St. dev. 267.8). Naturally, this reduction of the variability leads to a better
estimate of the actual objective function value.

5.6 Conclusions and future work

We developed a two-stage stochastic program for the hydropower generator maintenance
scheduling problem, with binary scheduling decisions in the first stage, and hydropower
operation decisions in the second stage. This formulation incorporates relevant aspects of
hydropower systems, such as the nonlinearity of hydroelectric production and the uncertainty
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Table 5.7 Statistics on the computational times with parallel Benders decomposition and
MILP-based solution, with different numbers of inflow scenarios

Number of scenarios Benders Time MILP Time
Mean St. dev. Mean St. dev.

1 338.9 14.0 0.9 0.3
50 421.2 15.4 213.0 14.0
100 469.8 11.3 706.5 86.0
150 616.5 24.0 - -
200 780.7 11.8 - -
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Figure 5.6 Computational time of solving the SGMSP with a MILP solver and with Benders
decomposition

of the water inflows. Furthermore, we derived necessary conditions on the problem parameters
for a feasible solution.

To solve instances with a large number of inflow scenarios, we implemented a Benders decom-
position method, and we tested 7 techniques for accelerating its execution: valid inequalities
(VI), warm start (WS), multi-phase relaxation (MR), special ordered sets (SOS), combinato-
rial cuts (CC), presolve (PS) and integer rounding cuts (IRC). Using statistical methods such
as experimental design and analysis of variance, we found that the decomposition algorithm
with the combination of PS, SOS, WS, CC and IRC reached the lowest computational time,
among the explored combinations. This combination of acceleration techniques achieved
speedups of up to 4 times with respect to the basic Benders decomposition approach. Using
the MPI protocol, we parallelized the decomposition algorithm for its execution on a comput-
ing server and a 200-core computer cluster. In tests with up to 200 scenarios, we confirmed
the high scalability of the parallelization on the number of scenarios.
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Table 5.8 Mean, standard deviation and 95 % confidence interval of the objective function
values, with 12 replicates for each number of scenarios.

Number of scenarios Objective function value
Mean St. dev. 95% CI

1 13702.6 1799.8 [12559.1, 14846.2]
50 13418.9 267.8 [13248.7, 13589.0]
100 13511.1 211.5 [13376.8, 13645.5]
150 13496.9 121.6 [13419.6, 13574.1]
200 13516.6 100.9 [13452.5, 13580.7]

Future work should address further refinements to the decomposition approach for this prob-
lem, such as cut stabilization methods (Fischetti et al., 2016a), and branch-and-Benders-cut
(Fortz and Poss, 2009). Alternative decomposition approaches, in combination with con-
straint programming, are also potential directions for future research.
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5.8 Appendices

5.8.1 Appendix A: Model supplement

A.1 Set reduction

In Rodríguez et al. (2017), the set of numbers of generators is defined as

K(i, t) =
{
k ∈ Z :

¯
Kit ≤ k ≤ K̄it

}
, ∀ (i, t) ∈ I × T (5.55)

where

¯
Kit = max{Ḡit −Oit, Ḡit − R̄it}, (5.56)

K̄it = Ḡit − ¯
Rit. (5.57)

In (5.56)-(5.57), Ḡit denotes the maximum number of available generators at (i, t) ∈ I × T ,
Oit is the maximum number of maintenance outages, and R̄it, ¯

Rit denote, respectively, the
maximum and minimum number of activities simultaneously in execution at (i, t), according
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to their time windows, i.e.,

¯
Rit = |{ (m, t) ∈M(i)× T (m) : Lm ≤ t ≤ Em +Dm − 1 }|, (5.58)

R̄it = |{ (m, t) ∈M(i)× T (m) : Em ≤ t ≤ Lm +Dm − 1 }|, (5.59)

where for each activity m ∈M, we denote by Dm, Em and Lm its duration, earliest starting
time and latest starting time, respectively.

A.2 Conditions for feasible subproblems

From the viewpoint of computational efficiency, complete recourse and relatively complete
recourse are desirable properties of stochastic programming problems (Birge and Louveaux,
2011). In problems with these properties, the Benders decomposition method will only gen-
erate feasible solutions at each iteration. A stochastic program is said to have complete
recourse if the second-stage problem (i.e., the subproblem) is always feasible. If the stochas-
tic program has relatively complete recourse, the second-stage problem is feasible for any
feasible first-stage solution and scenario realization. Following these definitions, we notice
that the subproblem (5.25)-(5.35) has partially complete recourse (i.e., is feasible for any
inflow scenario and master problem feasible solution), if the following conditions are met:

1. The system (5.26), (5.31)-(5.33) is feasible for any inflow realization ξitω, where (i, t, ω) ∈
I × T × Ω.

2. In all time periods, the electricity load At is not greater than the upper bound of the
electricity purchase, i.e., 0 ≤ At ≤ W̄−

t , ∀ t ∈ T .
Without loss of generality, we assume that the instances of the SGMSP satisfy conditions
1 and 2. Notice that these conditions can be guaranteed with proper values of the variable
bounds (5.32)-(5.35). If either of these conditions are not met, it would be necessary to
include feasibility cuts at some iterations of the Benders algorithm. Alternatively, the partial
complete recourse property can be reestablished with the introduction of artificial variables
in (5.26), (5.29), and with a penalization of these variables in the objective function (5.25).

A.3 Valid inequalities

1. The first family of valid inequalities comes from the observation in Rodríguez et al.
(2017) that in a powerhouse i, if at least one maintenance taskm ∈M(i) is in execution
at time t, then the binary variable corresponding to Ḡit active generators must be equal
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to zero, i.e., zitk = 0, for k = Ḡit. Thus,
∑

m∈M(i)
t′ ∈T (m)∩ [ t−Dm+1, t ]

ymt′ + zitk ≤ 1,

for k = Ḡit,∀ (i,m, t) ∈ I ×M(i)× T ,
(5.60)

are valid inequalities. Naturally, such inequalities are unnecessary when K̄it < Ḡit

(5.55) or when the set t′ ∈ T (m) ∩ [ t−Dm + 1, t ] is empty.

2. The second family of valid inequalities comes from the fact that for any (i, t), when the
number of maintenance outages is zero, i.e., rit = 0, then all Ḡit generators are active
(zitk = 1, for k = Ḡit) (Rodríguez et al., 2017). By (5.9), it follows that zitk = 0 for
k < Ḡit, which is equivalent to

∑
k∈K(i,t) \{Ḡit}

zitk ≤ rit, ∀ (i, t) ∈ I × T . (5.61)

Such inequalities are also unnecessary when K̄it < Ḡit.

3. From (5.56) we notice that

Ḡit ≤ ¯
Kit + R̄it, (i, t) ∈ I × T . (5.62)

Then, applying (5.62) on the left-hand side of (5.8) gives

rit +
∑

k∈K(i,t)
kzitk ≤ ¯

Kit + R̄it, ∀ (i, t) ∈ I × T ,

which by (5.9) and (5.55) leads to

rit +
∑

k∈K(i,t) \{
¯
Kit}

(k −
¯
Kit)zitk ≤ R̄it, ∀ (i, t) ∈ I,×T . (5.63)
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A.4 Upper bound of subproblem objective value

If the assumption At ≤ P̄ik ≤ Wt does not hold, (5.45) can be replaced with

zSP ≤
∑
t∈T

B+
t

( ∑
i∈I,

k∈{K(i,t) :
P̄ik>At ;W+

t > P̄ik−At}

(P̄ik − At)zitk

+
∑
i∈I,

k∈{K(i,t) :
P̄ik>At ;W+

t < P̄ik−At}

W+
t zitk

)
(5.64)

−
∑
t∈T

B−t

( ∑
i∈I,

k∈{K(i,t) :
P̄ik<At }

(At − P̄ik)zitk
)
,

where the first term is the maximum sold electricity when the electricity surplus is less than
the bound of the electricity sale. The second term is the maximum sold electricity when the
bound on the electricity sale is less than the electricity surplus, and the third term is the cost
of the electricity purchase when the load exceeds the generation capacity.

5.8.2 Appendix B: Selecting multiple-phase relaxation sequence and valid in-
equalities

B.1 Valid Inequalities

On the set of 24 instances, we ran a factorial experiment with the 23 = 8 combinations of
the three families of valid inequalities of Section 5.4.1. To select the best combination of
these inequalities, we sequentially applied analysis of variance (ANOVA) with normalized
computational time as the response variable. From the results of the first ANOVA, with
each family of valid inequalities defined as a categorical factor (Table 5.9), we dropped the
valid inequality family 1 (factor VI1) for increasing the computational times (β = 0.188) at
a significance level of 0.1 (p-value = 0.055). With the same experimental data, an ANOVA
with the factors VI2 and VI3 and the interaction term VI2·VI3 (see Table 5.10) shows that
the combination of the valid inequalities 2 and 3 (i.e., the interaction term VI2·V3) has the
lowest average computational time (β = −0.363), at a significance level of 0.1 (p-value =
0.064).
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Table 5.9 Summary of ANOVA with valid inequalities 1, 2 and 3 as main factors, and nor-
malized computational time as response variable.

β estimate p-value
(Intercept) 0.078 0.427

VI1 0.188 0.055
VI2 −0.095 0.333
VI3 −0.249 0.011

Table 5.10 Summary of ANOVA with valid inequalities 1 and 2 and interaction term, and
normalized computational time as response variable.

β estimate p-value
(Intercept) 0.081 0.408
VI2 0.087 0.531
VI3 −0.067 0.627
VI2·VI3 −0.363 0.064

B.2 Multiple-phase relaxation

We defined the relaxation sequences of Table 5.2 as treatments. In these sequences, each phase
is completed when either a specified maximum number of cuts or a maximum optimality gap
is reached (Table 5.11). According to the results, the sequence without relaxation (i.e.,

Table 5.11 Parameters of stages in multi-phase relaxation.

Relax. level Binary var. Max. cuts Max. gap
0 y, z 1000 1.0e-5
1 y 4 0.005
2 z 4 0.005
3 - 20 0.010

relaxation sequence 0), exhibited the largest variability and the highest computational time
(Fig. 5.7). An analysis of variance on the 24 instances indicated that the multi-phase
relaxation had a significant effect on the computational times (p-value = 0.00924). Although
the computational times of the relaxation sequences 3, 4 and 5 were similar, the relaxation
sequence 4 showed the most significant effect (p-value = 0.007) in a one-tailed t-test against
the method without relaxation (see Table 5.12). Therefore, the best configuration applies
the relaxation sequence (y, z) → (z) → (y), before solving the master problem without
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Figure 5.7 Boxplot of the computational times of the multi-phase relaxation sequences on 24
instances.

Table 5.12 Summary statistics of normalized computational times of multi-phase relaxations.
The column Diff. shows the difference between the mean time of each sequence and the mean
of sequence 0.

Relax. Seq. Mean St. Dev. Diff. p-value
0 0.54 1.51 0.00 -
1 0.21 0.91 −0.33 0.181
2 −0.04 0.71 −0.58 0.048
3 −0.19 0.57 −0.73 0.017
4 −0.34 0.63 −0.88 0.007
5 −0.18 0.60 −0.72 0.019
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5.8.3 Appendix C: Nomenclature

Primary sets

I Powerhouses
M Maintenance tasks
T Planning time periods, t ∈ T = {1 . . . T}
Ω Scenarios

Parameters

ξitω Lateral inflows to powerhouse i in period t and scenario ω, [m3/s].
At Electricity load at time period t.
B+
t Electricity sale price in time period t, [$/MWh].

B−
t Electricity purchase price in time period t, [$/MWh].

Cmt Total cost of maintenance task m started at time period t, [$].
Dm Duration of maintenance task m [day].
Em Earliest start time period of maintenance task m.
F Factor for conversion from flow per second in m3 to flow per day in hm3 [0.0864·s·hm3

·/(day’·m3)].
Ḡit Maximum number of available turbines in powerhouse i at time period t, [turbines].

¯
Gi Minimum number of available turbines in powerhouse i [turbines].
Lm Latest start time period of maintenance task m.
Oit Maximum number of turbine outages in powerhouse i at time period t, [turbines].
P̄i Generation capacity in powerhouse i, [MWh/day].
P̄ik Generation capacity in powerhouse i when k turbines are active, [MWh/day].

Q(ȳ) Expected operating cost of solution ȳ [$].
Qω(ȳ) Expected operating cost of solution ȳ in scenario ω [$].
R̄it Number of maintenance activities that can be in execution at powerhouse i in time

period t.

¯
Rit Number of maintenance activities that must be in execution at powerhouse i in time

period t.
S0i Initial volume in reservoir of powerhouse i, [hm3].

¯
Si, S̄i Limits on stored water in reservoir of powerhouse i at period t [hm3].
Ūit Maximum discharge rate in powerhouse i, [m3/s].
V̄it Maximum water spill in powerhouse i, [m3/s].
W̄+
t Maximum electricity sale at time t [MWh/day].

W̄−
t Maximum electricity purchase at time t [MWh/day].
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Derived sets

T (m) Time periods when maintenance task m can be initiated in order to be completed
within T .

M(i) Maintenance tasks m that should be executed in powerhouse i.
M(i, t) Maintenance tasks m that can be in execution in powerhouse i at time period t.
U(i) Powerhouses upstream of powerhouse i (U(i) ⊂ I).
K(i, t) Numbers of generators that can be active at time period t and powerhouse i.
H(i, k) Hyperplanes for approximating the maximum power of powerhouse i when k turbines

are active.
A set of indices (m, t) of variables ymt with value 1 in solution ȳ, i.e, A =
{(m, t) ∈M× T | ȳmt = 1}.

Parameters with indexes in derived sets

βuh Coefficient of uit in hyperplane h ∈ H(i, k) for bounding the power output of power-
house i when k generators are active [MWh· s/(m3·day)].

βsh Coefficient of sit in hyperplane h ∈ H(i, k) for bounding the power output of power-
house i when k generators are active [MWh/(hm3·day)].

β0
h Independent term of hyperplane h ∈ H(i, k) for bounding the power output of pow-

erhouse i when k generators are active [MWh/day].

Decision variables

pitω Generation of powerhouse i during time period t in scenario ω [MWh/day].
pitkω Generation of powerhouse i during time period t in scenario ω when k generators are

active [MWh/day].
q+
tω Sale of electricity at period t in scenario ω [MWh].
q−
tω Purchase of electricity at period t in scenario ω [MWh].
rit Number of maintenance activities in execution at powerhouse i and time period t.
sitω Content of reservoir in powerhouse i at the end of period t in scenario ω [hm3].
uitω Water discharge of turbines in powerhouse i at time period t in scenario ω [m3/s].
vitω Water spill of reservoir in powerhouse i at time period t in scenario ω [m3/s].
ymt Binary variable with value 1 if maintenance task m initiates at time period t, 0

otherwise.
zitk Binary variable with value 1 if k hydro-turbines are active in powerhouse i at time t,

0 otherwise.
zSP Approximated expected profit of the hydroelectric production [$].
zSPω Profit of the hydroelectric production in scenario ω [$].
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Dual variables

π
p
itω

of mass balance constraint (5.26) in solution p.
γ

p
itkhω

of power function (5.27) in solution p.
λ

p
itkω

of power bound constraint (5.28) in solution p.
ψ

p
tω

of power balance constraint (5.29) in solution p.
θ

p
itω

of sum of power constraint (5.30) in solution p.
α

pu
itω

of water discharge bound (5.32) in solution p
α

ps
itω

of stored water bounds (5.33) in solution p
α

p+
tω

of electricity sale bounds (5.34) in solution p
α

p−
tω

of electricity purchase bounds (5.35) in solution p
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CHAPTER 6 EXTENSIONS

In this chapter, we propose an alternative decomposition strategy for the SGMSP, and we
enhance our mixed-integer programming formulation for this problem with several types of
maintenance constraints and with additional decision variables.

6.1 Model extensions

Among the multiple possibilities for enhancing the mixed-integer formulation for the SGMSP,
we discuss three types of extensions:

— Considering additional maintenance scheduling constraints, such as precedence of main-
tenance activities and available maintenance resources.

— Selecting the duration of maintenance tasks, given a discrete set of duration alternatives.

— Including reserves of energy and capacity to buffer the forecast errors of the electricity
load.

6.1.1 Additional maintenance constraints

Our formulation for the SGMSP in Chapter 5, included only basic maintenance constraints,
namely, completion of maintenance tasks, maximum number of maintenance outages, main-
tenance time-windows and mapping of number of active generators. We used index sets for
a compact definition of such constraints. In the general case, other maintenance constraints
may also be necessary, such as:

— Available maintenance resources
— Mutually exclusive tasks
— Overlapping of maintenance activities
— Precedence of starting times
— Precedence of maintenance execution

Next we show that index sets can also compactly define such constraints.

Available maintenance resources

Because maintenance resources such as workforce and equipment have a finite availability,
their use must be controlled at each time period t ∈ T . Let N be the set of maintenance
resources with index n and time-variant availability Γnt (in units of resource n). Let Amn be
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the use of maintenance resource n (also in units of resource n) per time period of execution
of maintenance task m ∈M, and let wnt denote the additional units of resource n consumed
at time t, at a cost Υnt per unit. Then the following constraints control the consumption of
the maintenance resources

∑
m∈M

t′ ∈T (m)∩ [ t−Dm+1, t ]

Amnymt′ − wnt ≤ Γnt, ∀ (t, n) ∈ T ×N , (6.1)

wnt ≥ 0, ∀ (t, n) ∈ T ×N , (6.2)

where the index set of the summation on the left hand-side of (6.1) includes into the constraint
only the decision variables of the maintenance activities that started at time period t′ ≤ t and
that are still in execution at t. The consumption of extra maintenance resources computed
by means of (6.1) and (6.2) must be penalized by including into the objective function (5.21)
the cost term

∑
(t,n)∈T ×N

Υntwnt. (6.3)

Mutually exclusive tasks

For technical or administrative reasons, some maintenance tasks may not be allowed to be
in execution at the same time. Let E be the set of pairs of mutually exclusive activities. To
prevent (m1,m2) ∈ E from occurring at the same time, we define the constraints

∑
t′ ∈T (m1)∩ [ t−Dm1+1, t ]

ym1t′ +
∑

t′ ∈T (m2)∩ [ t−Dm2+1, t ]
ym2t′ ≤ 1,

∀ (m1,m2) ∈ E , t ∈ T S(m1) ∩ T S(m2), (6.4)

where, for an activity m, Dm is its duration, T (m) is its feasible interval of starting times,
and T S(m) is its span, i.e., the time interval when the activity m can be in execution (see
Section 4.3.3).

In (6.4), each of the summations on the left-hand side is equal to 1 if the corresponding
activity is in execution at time period t. Thus, as the activities (m1,m2) ∈ E cannot be
simultaneously in execution, the sum on the left-hand side of (6.4) must be less than or
equal to 1. Naturally, for two mutually exclusive tasks (m1,m2), constraints (6.4) are only
necessary if the spans of the activities overlap, i.e., if T S(m1) ∩ T S(m2) 6= ∅.
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Overlapping of maintenance activities

If a maintenance task m2 can only start while the maintenance task m1 is still in execution,
we say that the pair of activities (m1,m2) must overlap with precedence of m1 over m2. The
following constraints control this condition

ym2t ≤
∑

t′ ∈T (m1)∩ [ t−Dm1+1, t ]
ym1t′ , ∀ (m1,m2) ∈ O, t ∈ T (m2), (6.5)

where O is the set of pairs of overlapping activities. Constraints (6.5) allow maintenance
task m2 to be started at t only when the summation on the right-hand side is equal to 1,
indicating that m1 is in execution. Notice that overlapping of (m1,m2) is only feasible if
T S(m1) ∩ T (m2) 6= ∅. Furthermore, for the precedence of m1 over m2 in (6.5), we assume
that m1 can start before m2, i.e., Em1 ≤ Em2 .

Precedence of starting times

Let P1 be the set of pairs of activities (m1,m2) ∈M×M, such that the starting time of m1

precedes the starting time of m2, with Em1 ≤ Em2 . The precedences of P1 can be enforced
through the constraints

ym2t ≤
∑

t′ ∈T (m1)∩ [Em1 , t−1 ]
ym1t′ , ∀ (m1,m2) ∈ P1, t ∈ T (m1) ∩ T (m2). (6.6)

Notice that m2 can start at time period t only when the sum on the right hand-side of (6.6) is
equal to 1, which indicates that the activity m1 has started before t. Due to the assumption
on the earliest starting times of the activities (i.e., Em1 ≤ Em2), ym2t is not defined for
t ≤ Em1 , and for t ∈ T (m2) \ T (m1), ym2t satisfies the precedence. Thus, constraints (6.6)
only need to be defined for the time interval T (m1) ∩ T (m2).

Precedence of maintenance execution

Let P2 denote the set of pairs of activities (m1,m2) ∈M×M, such that activity m1 must be
completed before the starting time of m2, with Em1 ≤ Em2 . The precedences P2 are implied
by the constraints

ym2t ≤
∑

t′ ∈T (m1)∩ [Em1 , t−Dm1 ]
ym1t′ , ∀ (m1,m2) ∈ P2, t ∈ T S(m1) ∩ T (m2), (6.7)
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where at each time period t the summation term on the right hand-side is equal to 1 if the
activity m1 has started in the interval T (m1) ∩ [Em1 , t−Dm1 ], and thus has completed its
execution before t. Due to the assumption Em1 ≤ Em2 , constraints (6.7) are only defined for
the interval T S(m1) ∩ T (m2).

6.1.2 Selecting the duration of maintenance activities

In several planning and scheduling problems, durations of activities are not fixed parameters
but choices among sets of discrete alternatives. Trade-offs of such alternatives arise, as
expedited activities, usually with high execution costs, can reduce downtime and speed-up
the achievement of the objectives. Let D(m) be the index set of possible durations of an
activity m ∈M. To consider such alternative durations, we define the binary variables

ymdt ∈ {0, 1}, ∀ (m, d, t) ∈M×D(m)× T (m), (6.8)

where ymdt is equal to 1 if maintenance task m with duration index d starts at time period t,
and 0 otherwise. Given the duration parameter Dmd of each activity m with duration index
d, we define the constraints

∑
d∈D(m)
t∈T (m)

ymdt = 1, ∀ m ∈M, (6.9)

∑
m∈M(i)
d∈D(m)

t′ ∈T (m)∩ [ t−Dmd+1, t ]

ymdt′ = rit, ∀ (i, t) ∈ I × T , (6.10)

and the objective function

maximize
q+,q−,u,v,s,
r,p,y,z

∑
t∈T
ω∈Ω

ϕω
(
B+
t q

+
tω −B−t q−tω

)
−

∑
m∈M
d∈D(m)
t∈T (m)

Cmdtymdt, (6.11)

where (6.9) ensures the completion of the maintenance activities, with exactly one duration
and time period chosen for each activity; (6.10) computes the number of activities simulta-
neously in execution at each time period t and powerhouse i, i.e., the number of activities
m ∈M(i), with duration Dmd, that started on the interval T (m) ∩ [ t−Dmd+1, t ]. The ob-
jective function (6.11) maximizes the difference between the economic gains of the hydropower
operation and the sum of the maintenance costs, with parameters Cmdt for each activity and
duration index d ∈ D(m). Therefore, the SGMSP with discrete choice of activities’ duration
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is
maximize (6.11) subject to (5.5), (5.8)− (5.20), (6.8)− (6.10). (6.12)

6.1.3 Load uncertainty and generation reserves

In Chapter 5 we considered the uncertainty of the water inflows through a two-stage stochastic
programming formulation with a scenario fan of forecasted inflows. Although this approach
can be extended to consider the uncertainty of the electricity load (due to forecast errors),
the resulting maintenance schedules can work well on the average but insufficient electricity
generation can occur in several scenarios. We discuss chance-constrained and max-min for-
mulations for ensuring generation reserves in maintenance scheduling, to buffer the forecast
errors of the electricity load.

Chance-constrained approach

Chance-constrained optimization is an approach for problems in which some constraint vi-
olations can be accepted with specified probabilities (Henrion, 2004; Birge and Louveaux,
2011). We apply this approach for considering the uncertainty of the electricity demand.

When the availability and reliability of purchased electricity cannot be guaranteed, electricity
producers must ensure sufficient internal capacity and energy reserves to supply its electricity
load. Let p̂itω denote the electricity generation at powerhouse i ∈ I, time period t ∈ T , and
inflow scenario ω ∈ Ω, for supplying a random realization δAt of the electricity load. Assuming
that at each time period the load δAt is normally distributed with an unbiased forecasted value
At and a forecast error σAt , the constraint

∑
i∈I

p̂itω ≥ δAt , ∀ (t, ω) ∈ T × Ω, (6.13)

can only be satisfied with some probability θ due to the forecast error of the load and the
finite energy and generation capacity. That is,

Pr
(∑
i∈I

p̂itω ≥ δAt
)
≥ θ, ∀ (t, ω) ∈ T × Ω. (6.14)

In order to linearize (6.14) with individual chance constraints (Henrion, 2004), we apply a
standard normalization (Montgomery and Runger, 2010) on their constraint terms inside the
probability function. Thus, on each term of the left-hand side, we normalize by subtracting
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the forecasted electricity load At and dividing by the standard error σAt of the forecast, i.e.,

Pr
(∑

i∈I p̂itω − At
σAt

≥ δAt − At
σAt

)
≥ θ, ∀ (t, ω) ∈ T × Ω. (6.15)

Then, by substituting in (6.15) the term (δAt −At)/σAt with a standard normal variable Z, the
equivalent constraint

Pr
(∑

i∈I p̂itω − At
σAt

≥ Z

)
≥ θ, ∀ (t, ω) ∈ T × Ω,

is implied by the constraints∑
i∈I p̂itω − At

σAt
≥ Zθ, ∀ (t, ω) ∈ T × Ω,

where Zθ is the standard normal value corresponding to the cumulative probability θ. There-
fore, the probabilistic constraints (6.14) are equivalent to

∑
i∈I

p̂itω ≥ At + σAt Zθ, ∀ (t, ω) ∈ T × Ω. (6.16)

Notice that due to (6.16) the variables p̂itω of the chance-constrained formulation can differ
from the original electricity production variables pitω, which are computed based on the
expected electricity load, purchases and sales, as defined in the power balance constraints
(5.20). Therefore, we define auxiliary variables and constraints to ensure that the solution
values of p̂itω for meeting the load requirements in (6.16) are consistent with the stored water
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levels, the water inflows and the generation capacity:

0 ≤ v̂itω, ∀ (i, t, ω) ∈ I × T × Ω, (6.17)

0 ≤ ûitω ≤ Ūit, ∀ (i, t, ω) ∈ I × T × Ω, (6.18)

¯
Sit ≤ ŝitω ≤ S̄it, ∀ (i, t, ω) ∈ I × T × Ω, (6.19)

ŝitω − ŝi(t−1)ω =
(
ξit+

∑
g∈U(i)

(ûgtω + v̂gtω)− ûitω − v̂itω
)
F,

∀ (i, t, ω) ∈ I × T × Ω, (6.20)

(6.21)

p̂itkω ≤ β0
h + βuh ûitω + βshŝitω, ∀ (i, t, k, h, ω) ∈ I × T × K(i, t)×H(i, k)× Ω, (6.22)

0 ≤ p̂itkω ≤ zitkP̄ik, ∀ (i, t, k, ω) ∈ I × T × K(i, t)× Ω, (6.23)∑
k∈K(i,t,ω)

p̂itkω = p̂itω, ∀ (i, t) ∈ I × T × Ω, (6.24)

where v̂itω, ûitω, ŝitω and p̂itkω are auxiliary decision variables for the electricity production
p̂itω under reserve requirements (6.16), and (6.17)-(6.24) are auxiliary operational constraints
that correspond one-to-one with the constraints (5.11)-(5.19) of the hydropower operation
under expected load conditions (5.20). Therefore the chance-constrained formulation for the
SGMSP is

maximize (5.21) subject to (5.4)− (5.20), (6.16)− (6.24).

Notice that to compute the expected economic benefit of the operation under predicted load
conditions, the original variables and constraints of the hydropower operation model are also
included in the chance-constrained formulation. To prevent a very large number of variables
and constraints in this formulation, only a worst-case water inflow scenario ξ̂it needs to be
considered in (6.16)-(6.24). With this simplification, the scenario indices ω can be dropped
from the auxiliary variables v̂itω, ûitω, ŝitω, p̂itkω, p̂itω as well as from the auxiliary constraints
(6.16)-(6.24).

Max-min formulation approach

Some previous works on maintenance scheduling in regulated power systems have defined as
an optimization criterion levelizing the net reserves, i.e., the difference between the predicted
load and the generation capacity (Froger et al., 2016). However, such an approach does not
guarantee a robust solution with sufficient reserves in the worst-case scenario and time period.
We apply a max-min formulation to maximize the minimum reserve in the SGMSP. Denoting
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by x the minimum surplus reserve over the planning horizon, we define the objective function

maximize
x

x, (6.25)

and the constraints

∑
i∈I

p̂itω ≥At +Rt + x, ∀ (t, ω) ∈ T × Ω (6.26)

x ≥ 0, (6.27)

where Rt is the specified minimum reserve at time period t ∈ T . Therefore, the max-min
formulation for the SGMSP is

maximize (6.25) subject to (5.4)− (5.19), (6.26)− (6.27).

Notice that defining Rt = σAt Zθ, the max-min approach ensures that at each time period and
scenario the reserve requirements of the chance constrained-approach are met, as in (6.16).

6.2 Alternative Decomposition Strategy (ADS)

As discussed in Section 2.1.3, Benders decomposition is a row generation procedure that
splits mathematical programs with complicating variables into a master problem with the
complicating variables, and convex subproblems. In problems with diverse types of variables,
the master problem and the subproblems can be defined in multiple ways, each of them
leading to a different design and execution of the decomposition algorithm.

In Chapter 5 we applied Benders decomposition to the SGMSP with a straightforward par-
titioning of the problem (i.e., with all the complicating variables in the master problem).
In this section, we present an alternative decomposition strategy for this problem, with the
master problem involving only a subset of the complicating variables.

To derive such an alternative approach, first we analyze the mathematical structure of the
SGMSP using a compact matrix representation. Let xω, y, z be vectors with dimensions nx,
ny and nz respectively. By xω, y and z we denote the decision variables of the hydropower
operation, the starting times of maintenance activities and the indicators of the number of
active generators, respectively. According to such definitions, the compact representation of
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the deterministic equivalent of the SGMSP is

max
y,z,xω

∑
ω∈Ω

ϕωc
ᵀxω − fᵀy (6.28)

subject to

A1xω + C1z ≥ b1ω, ∀ω ∈ Ω (6.29)

A2xω ≥ b2ω, ∀ω ∈ Ω (6.30)

B3y + C3z = b3 (6.31)

B4y ≥ b4 (6.32)

C5z ≥ b5 (6.33)

xω ≥ 0, ∀ω ∈ Ω (6.34)

y ∈ {0, 1}ny (6.35)

z ∈ {0, 1}nz (6.36)

where the vectors c, b and matrices A, B, C for each group of constraints (as denoted by
their indices) have consistent dimensions. Eq. (6.28) represents the objective function of the
SGMSP; (6.29) are the linking constraints; (6.30) are other operational constraints; (6.31)
are the constraints that map the maintenance variables y into z; (6.32), (6.33) are constraints
that involve only decision variables y, z, respectively, and (6.34), (6.35), (6.36) define the
domain of the decision variables. As shown in Chapter 5, fixing the coupling variables z = z̄

in the linking constraints (6.29) splits the SGMSP into scenario-wise subproblems

Qω(z̄) = max
xω

cᵀxω (6.37)

subject to

A1xω ≥ b1ω − C1z̄, (6.38)

A2xω ≥ b2ω, (6.39)

xω ≥ 0, (6.40)
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and a master problem

max
y,z,w

w − fᵀy (6.41)

subject to

B3y + C3z = b3 (6.42)

B4y ≥ b4 (6.43)

C5z ≥ b5 (6.44)

w + C6z ≥ b6 (6.45)

y ∈ {0, 1}ny (6.46)

z ∈ {0, 1}nz (6.47)

where w is the expected value of the subproblems corresponding to the solution z∗, as approx-
imated by the optimality cuts iteratively generated by the Benders algorithm and included
into the cut set (6.45). Due to constraints (6.42) which link the variables y and z, the master
problem (6.41)-(6.47) is hard to solve for large instances. However, this problem can be
greatly simplified by excluding from it the variables z and computing their values outside the
model. With this simplification, the reduced master problem is

max
y,w

w − fᵀy (6.48)

subject to

B4y ≥ b4 (6.49)

w +B7y ≥ b7 (6.50)

w ≥ 0 (6.51)

y ∈ {0, 1}ny (6.52)

where (6.50) represents the set of cuts for approximating the expected solution value w
of the subproblems (6.28)-(6.40) corresponding to the solution y∗. Unfortunately, as the
decision variables of the master problem y are not directly fixed into the subproblems, the
subproblem dual solutions cannot straightforwardly generate Benders optimality cuts for the
reduced master problem. Instead we resort to Upper Bounding Functionals (UBF), as in
Laporte and Louveaux (1993), for generating the cuts that approximate the values of w
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based on trial solutions ȳ:

w ≤ Q(ȳ)− (UBSP −Q(ȳ))
( ∑

(m,t)∈A
ymt −

∑
(m,t)/∈A

(ymt)− |A|
)
, (6.53)

where Q(ȳ) denotes the expected objective value of the subproblems corresponding to the
trial solution ȳ; UBSP is the upper bound of the subproblems, and A is the set of variables
in ȳ with value equal to 1, i.e.,

A = {(m, t) ∈M× T | ȳmt = 1}. (6.54)

We refer to (6.53) as UBF cuts.

Proposition 5. The UBF cuts (6.53) are valid, for any w ∈ R, y ∈ {0, 1}ny , A.

Proof. Notice that for any y and A, the expression

ψ(y,A) =
∑

(m,t)∈A
ymt −

∑
(m,t)/∈A

(ymt)− |A|, (6.55)

is non-positive, and its value is zero only if ymt = 1, ∀ (m, t) ∈ A, and ymt = 0, ∀ (m, t) /∈ A.
If ψ(y,A) = 0, the right-hand side of (6.53) is equal to Q(ȳ), and the inequality w ≤ Q(ȳ) is
valid. If ψ(y,A) is negative with absolute value K, (6.53) becomes

w ≤ Q(ȳ) +K(UBSP −Q(ȳ)),

which can be rewritten as

w ≤ UBSP + (K − 1)(UBSP −Q(ȳ)). (6.56)

Since UBSP ≥ Q(ȳ) and K ≥ 0, inequality (6.56) holds because its right-hand side is greater
than UBSP , and thus (6.53) is a valid cut.

For a given master solution ȳ, the solution values of the variables z can be computed from
the mapping constraints (5.8), i.e., from

rit +
∑

k∈K(i,t)
kzitk = Ḡit, ∀ (i, t) ∈ I × T , (6.57)
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by defining,

z̄itk =

1 if k = Ḡit − r̄it
0 otherwise

(6.58)

where, by (5.7),
r̄it =

∑
m∈M(i)

t′ ∈T (m)∩ [ t−Dm+1, t ]

ȳmt′ , ∀ (i, t) ∈ I × T . (6.59)

In summary, whereas in the decomposition method of Chapter 5, the Benders optimality cuts
are computed from the dual solutions of the subproblems, and the master problem includes
all the complicating variables (y and z) (Fig. 6.1), in the Alternative Decomposition Strategy
(ADS) presented in this section, the master problem contains only the variables y, and the
values of the variables z are computed outside the model (Fig. 6.2). Because in the ADS
the dual solutions of the subproblems cannot directly generate Benders optimality cuts for
the reduced master problem, we use UBF cuts (similar to Laporte and Louveaux, 1993) for
approximating the expected optimal value of the subproblems, as defined in (6.53).

MP 
y,z 

SP 
x (z*) 

z* 

Benders  
optimality cuts 

Dual solution 

MP 
y 

SP 
x (z*) 

Mapping  
y (z*) 

UBF 
cuts 

Objective value 

Figure 6.1 Schematic of the Benders decomposition method for the SGMSP with the master
problem containing all the integer variables (y and z).

Although the reduced master problem (6.48)-(6.52) of the ADS can be solved faster than the
Benders master problem of Chapter 5, the algorithm of the ADS may require a large number
of iterations to converge for two reasons:

1. The reduced master problem contains less information about the complete problem,
which can require more cuts for approximating the optimal solution.

2. The dual solutions of the subproblem are not exploited since the UBF cuts are computed
using only the upper bounds and the objective values of the subproblems. Therefore,
the UBF cuts are weaker than the Benders Optimality cuts of Chapter 5.

Therefore, computational experiments are necessary to compare the performance of the de-
composition approaches discussed in this section. To test the ADS, we implemented the
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MP 
y,z 
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Benders  
optimality cuts 

Dual solution 
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SP 
x (z*) 

Mapping  
z (y*) 

UBF 
cuts 

Objective value 

Figure 6.2 Schematic of the ADS’ algorithm: the variables z are computed from the master
problem solution y, and UBF cuts are generated from the subproblems’ optimal values.

parallel algorithm shown in Fig. 6.3.

Read parameters 

Create MP 

Subproblem 
parameters 

Create  
subproblems 

Solve MP MP solution 
Solve  

subproblems Subproblem  
optimal values 

Check optimality and  
stopping criteria 

Compute and  
add UBF cuts 

Loop control Check loop  
control 

Begin Begin 

End End 

Master Slaves 

Figure 6.3 Sketch of the parallel algorithm based on the ADS (with a reduced master problem)
implemented with MPI.

Because no other acceleration techniques were implemented for the parallel ADS algorithm,
we compared this approach against the basic parallel Benders method of Chapter 5, i.e., with
no acceleration techniques.

We ran tests on an 8-core desktop computer, with Xpress-MP for solving the master problem,
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Clp for solving the subproblems, and MPI for executing the parallelization. We used 20
instances with 20 time periods, and with up to 4 powerhouses, 12 maintenance tasks and 8
inflow scenarios. For each instance we defined a 1000 s time limit.

Our results indicate that the parallel ADS algorithm is faster than the Benders decompo-
sition method only when the number of maintenance tasks is small (6 or less). When the
number of tasks increases, the 1000 s time limit was reached in most of the instances, and
the basic parallel Benders method achieved a smaller optimality gap than the optimality gap
of the ADS algorithm. Naturally, the performance of the ADS and the Benders decomposi-
tion algorithms can improve significantly with acceleration techniques as those proposed in
Chapter 5. In the next chapter we discuss further refinements to these methods.

Table 6.1 Computational time and relative optimality gap of parallel Benders and ADS meth-
ods on 20 instances, with 1000 s time limit. For each instance, the number of powerhouses,
maintenance tasks and scenarios is indicated by the three digits of the column Size, in the
corresponding order. The number of time periods in all instances is 20.

Instance Time (s) Rel. opt. gap
Number Size ADS Benders ADS Benders

1 2 - 4 - 8 8 20 - -
2 4 - 6 - 4 186 442 - -
3 4 - 8 - 4 - - 0.084 0.060
4 4 - 10 - 4 . - 0.116 0.040
5 4 - 12 - 4 - - 0.158 0.078
6 2 - 4 - 8 8 12 - -
7 4 - 6 - 4 117 190 - -
8 4 - 8 - 4 - - 0.016 0.012
9 4 - 10 - 4 - - 0.154 0.052
10 4 - 12 - 4 - - 0.203 0.100
11 2 - 4 - 8 11 17 - -
12 4 - 6 - 4 154 297 - -
13 4 - 8 - 4 - - 0.017 0.015
14 4 - 10 - 4 245 554 - -
15 4 - 12 - 4 - - 0.056 0.022
16 2 - 4 - 8 7 10 - -
17 4 - 6 - 4 180 515 - -
18 4 - 8 - 4 - - 0.022 0.016
19 4 - 10 - 4 - - 0.152 0.051
20 4 - 12 - 4 - - 0.250 0.117
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CHAPTER 7 GENERAL DISCUSSION

As shown in the previous chapters, modelling the techno-economic characteristics of the hy-
droelectricity production within the GMSP leads to a challenging nonlinear stochastic com-
binatorial optimization problem, namely, the SGMSP. This section summarizes our MILP-
based solution approaches to this problem, discusses their limitations and outlines future
research.

7.1 Synthesis of work

Tables 7.1-7.3 summarize the research outcomes of this project, according to the objectives
defined in Section 1.3. Next, we discuss our contributions to the SGMSP in hydropower
systems, according to the two main topics of this study:

1. MILP formulations for SGMSP (Objectives 1 and 4).

2. Decomposition methods for SGMSP (Objectives 2, 3 and 4).
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Objectives Approach Outcomes Sections

4.3.2
• Using hyperplanes for approximating the nonlinarities of 

hydroelectricity production.

4.3.3
• Compact formulation: using index sets to avoid explicit definition 

of time window constraints and to exclude other unncessary 
variables and constraints.

4.3.5, 4.8.1
• We prove that under some conditions, in any feasible solution 

obtained with a general MILP solver, there is no simultaneous 
purchase and sale of electricity.

Set reduction technique 4.4.2 • We exploit time windows information to reduce the model size.

Extended formulation 4.4.1
• Including additional variables and constraints for tighening the 

formulation.

Four families of valid 
inequalities

4.4.3, 5.8.1
• We prove that under some conditions, the proposed valid 

inequalities allow relaxing the integrality conditions.
• We propose a normalization method for comparing computational 

times of different instances.
• The extended formulation had the most significant effect on 

reducing computational times.
• Set reduction in combination with extended formulation had the 

best average performance.
• Best formulation was about 10 times faster than the basic 

formulation.

Industrial application 
example

4.6
• We show that neglecting nonlinearities of hydroelectricity 

production significantly overestimates the electricity production 
and leads to suboptimal decisions.

Stochastic 
programming

Two-stage stochastic 
linear program for GMSP

5.2
•  Maintenance decisions in the first stage and second stage with 

scenario fan of water inflows.

Table 7.1 Summary of contributions I

4.5

Highlights

Computational 
experiments

Selection of best 
combination of tighening 
techniques for GMSP in 

hydropower systems

Tightening 
techniques for 

MILP

1. To develop a tightened 
mixed-integer programming 
formulation for the GMSP, 

considering the time 
windows of maintenance 

activities and the 
nonlinearities of the 

hydropower production 
function.

Basic formulation for 
GMSP in hydropower 

systems

Mixed-integer 
linear 

programming
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Objectives Approach Outcomes Sections

• Decomposition with all binary variables in master problem. 
• Using reduced costs for computing contributions of variable 

bounds.

5.8.1
• We derive necessary conditions for relatively complete recourse 

(feasibility cuts are unnecessary).

Parallel 
programming

Parallelization of Benders 
decomposition

5.4.2
• Using C++ with the MPI protocol, and Xpress BCL. Solving the 

master problem with Xpress-MP and the subproblems with open-
source solver CLP.

• New acceleration techniques: warm start, special ordered sets, 
presolve.

• We derive new combinatorial cuts, and we show how to apply 
them for removing non-optimal solutions.

5.4.2
• Exploiting funcionalities of Xpress, such as delayed rows for 

optimality cuts and model cuts for valid inequalities.
• A combination of five techniques had the lowest computational 

time: presolve, special ordered sets, warm start, combinatorial 
cuts and integer rounding cuts.

• Fourfold speedup using the best combination of acceleration 
techniques.

Methodology for 
efficiently selecting 

combination of techniques
5.5.1 • Applying statistical methods for sequential experiments.

• Parallelized Benders ouperforms direct MILP solution above 50-
100 inflow scenarios.

• Solution to optimality in instances with 4 powerhouses, 15 time 
periods, 8 tasks and 200 scenarios.

Table 7.2 Summary of contributions II

Highlights

5.5.1

2. To implement a Benders 
decomposition method for 
the SGMSP with uncertain 

water inflows.

Benders 
decomposition

Implementation of 
Benders decomposition for 

SGMSP in hydropower 
systems

5.3.2

Computational 
experiments

Selecting the best 
combination of 

acceleration techniques

5.4.1Acceleration 
techniques for 

Benders 
decomposition

Valid inequalities, warm 
start, multi-phase 
relaxation, SOS, 

combinatorial cuts, 
presolve and integer 

rounding cuts

Testing effect of 
parallelization

5.5.2

3. To accelerate the 
Benders decomposition 

method for the SGMSP by 
means of parallelization and 

acceleration techniques.
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Objectives Approach Outcomes Sections

Additional constraints: 
resourse utilization, 

mutually exclusive tasks, 
overlapping of tasks, 
precedence of starting 
times and execution

6.1.1 • Compact formulation using index sets.

Formulation with discrete 
choice of durations of 

tasks
6.1.2 • Compact formulation using index sets.

Chance-constrained 
formulation

6.1.3
•        Including auxiliary variables and constraints for operation under 

extreme load.

Max-min formulation 6.1.3 •    Maximizing the minimum net reserve.

• Including only a subset of complicating variables in master 
problem.

• Smaller master problem but dual solution of subproblems not 
exploited.

• Parallelized implementation of ADS with MPI

• Low scalability of ADS on number of maintenance tasks, in 
comparison with basic parallel Benders

Model 
extensions: 

mixed-integer 
linear 

programming

Optimization 
under 

uncertainty of 
load

Alternative 
decomposition 
strategy (ADS)

Using a reduced master 
problem and UBF cuts

6.2

Table 7.3 Summary of contributions III

Highlights

4. To outline extensions 
to the mathematical 
program for the SGMSP 
and to the solution 
approach.
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7.1.1 MILP formulations for SGMSP

This project was motivated by the need for developing a solution method for maintenance
scheduling of generating units in the hydropower system of Rio Tinto Aluminium. The
company demanded a scheduling method with an accurate representation of the uncertain
water inflows and the nonlinearity of the hydroelectricity production. In the literature, this
problem was virtually unexplored.

Our MILP formulation for the GMSP is the first one to approximate the hydroelectricity
production as a nonlinear function of water discharges, stored water levels and number of
active generators. As discussed in Section 2.2.3, Helseth et al. (2018) represented only the
nonlinearity of turbine discharges, and Ge et al. (2018) and Guedes et al. (2015) considered
the water discharges and stored water levels, but neglected the nonlinear effect of the number
of active generators.

To represent the nonlinearity of the electricity production on the number of active generators,
our MILP formulation includes:

1. Approximating hyperplanes of the hydroelectricity production function for each number
of active generators in each powerhouse (Section 4.3.2).

2. Constraints for mapping the maintenance schedule variables y into the indicator vari-
ables of the number of active generators z (Section 4.3.3).

As these elements lead to a mathematical program with a difficult structure and a poor
continuous relaxation, first, we thinned out our formulation using three simple ideas:

1. We exclude from the model superfluous elements by defining conditions on the combi-
nations of the index sets of variables and constraints. For example, we avoid defining
non-binding constraints and variables with a fixed value.

2. The time windows of activities are implicitly defined by the decision variables and not
by general constraints (see Dahal et al., 2015, for a similar modelling approach),

3. Whenever possible, we restrict the domain of the variables using variable bounds instead
of general constraints.

Second, we explored three tightening techniques: valid inequalities (Sections 4.4.3, 5.8.1),
disaggregation of variables and constraints (referred to as extended formulation in Section
4.4.1), and reduction of the model elements based on the time window parameters (referred
to as set reduction in Section 4.4.2). In computational experiments with a MILP solver, the
extended formulation in combination with set reduction was solved up to 10 times faster than
the basic formulation (Section 4.5).
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To represent the uncertain water inflows, we extended the formulation of Chapter 4 as a
two-stage stochastic program, with maintenance scheduling decisions in the first stage, and
scenario-wise operational decisions in the second stage (Section 5.2.2). In hydropower main-
tenance scheduling, the uncertainty of water inflows was only addressed recently. Ge et al.
(2018) proposed a chance-constrained approach, and Helseth et al. (2018), considering a sim-
pler scheduling problem, used a multi-stage model of the hydropower operation (see Section
2.2.3 for a discussion).

Numerical experiments showed that both the number of inflow scenarios and the nonlinear-
ity of the hydroelectricity production function have a significant impact on the estimated
objective value of the solutions (see Sections 4.6, 5.5.2). In our computational experience
with the proposed formulation, a commercial MILP solver achieved optimal and near-optimal
solutions in a reasonable times (Section 4.5), when applied to small and mid-size instances
of the deterministic problem.

Furthermore, we showed that the compact formulation of Chapters 4 and 5 can be straightfor-
wardly extended to select the duration of activities (Section 6.1.2) and to define constraints of
precedence, overlapping, non-simultaneous activities and available maintenance, using index
set conditions (Section 6.1.1). Similar constraints have been considered in previous works, but
with a modelling approach that adds significant complexity to the problem (see for example
Perez-Canto and Rubio-Romero, 2013).

Finally, we outlined chance-constrained and min-max formulations for ensuring generation
reserves to buffer the forecast errors of the electricity load (Section 6.1.3).

7.1.2 Decomposition methods for SGMSP

Benders decomposition with acceleration techniques

We implemented seven techniques for speeding up our Benders decomposition method for
the SGMSP (Section 5.4.1):

— Valid inequalities
— Warm start
— Multi-phase relaxation
— Special ordered sets
— Combinatorial cuts
— Presolve
— Integer rounding cuts

To the best of our knowledge, we present an original approach for applying presolve, warm
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start and special ordered sets to Benders decomposition. In presolve, we reduce the Benders
master problem using presolve information from the complete problem. In special ordered
sets, we define branching directives and ordering of variables in the master problem, based
on subproblem parameters. In warm start, we speed up the master problem solution using
bounds, cutoff values and initial solutions extracted from the previous Benders iteration.
Furthermore, we developed cuts that dominate the combinatorial cuts of Codato and Fischetti
(2006), and we show how to apply such cuts for accelerating the Benders algorithm (Section
5.4.1).

For efficiently selecting the combination of acceleration techniques with the best impact
on the computational time of the Benders algorithm, we applied statistical methods for
defining experimental conditions, normalizing computational times, assessing the statistical
significance of experimental factors, and running sequential experiments (see Sections 5.5 and
5.8.2).

Our computational experiments showed that, among the seven acceleration techniques, pre-
solve had the single largest impact, and the combination presolve, special ordered sets, warm
start, combinatorial cuts and integer rounding cuts yielded the largest speed up in our im-
plementation of the Benders algorithm.

Furthermore, since warm start and presolve are problem-independent, such techniques can be
included in standard implementations of Benders decomposition with a sequential solution
of the master problem.

Due to the definition of variable bounds in our compact MILP formulation, we used values
of the reduced costs to compute the marginal contribution of the binding variable bounds.

Parallelization and implementation of the Benders decomposition method

The available computational resources at the company significantly determined our approach
for implementing the Benders decomposition method. For example, we used the open-source
solver Clp for solving a large number of parallel subproblems on the cluster of the company,
without license restrictions. For solving the master problem, we exploited the capabilities of
the commercial solver Xpress-MP and the modelling libraries Xpress BCL. We observed that
appropriately applying functionalities such as multi-threading, SOS, presolve, delayed rows
(for Benders optimality cuts), and model cuts (for defining valid inequalities), significantly
reduced the computational time of the decomposition algorithm. However, the interaction
of Clp and Xpress-MP in our implementation of the Benders algorithm posed a challenge to
its parallelization, due to different model representations in each solver.
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Our computational tests on the computer cluster confirmed the high scalability of the paral-
lelized Benders algorithm on the number of scenarios, and showed a significant reduction of
the variance in the optimal values as the number of scenarios increases (Section 5.5.2).

Alternative decomposition strategy

Because the Benders master problem of Chapter 5 has a complicated mathematical structure,
in Section 6.2 we explored an alternative decomposition strategy with a simplified master
problem. However, in our computational experiments the scalability of this strategy on
number of maintenance tasks was not competitive with the performance of the Benders
algorithm (Section 6.2).

7.2 Study limitations and future research

7.2.1 Model extensions

Although Section 6.1.3 introduced approaches for improving the reliability of the solutions
to the SGMSP, the trade-offs between cost and reliability of maintenance schedules can be
more adequately assessed through multi-objective approaches, which can be subject of future
research.

Future works can also incorporate other relevant aspects of the problem, such as transmission
system constraints, uncertain duration of maintenance activities, and marginal values of
water. For example, the marginal value of water can be considered by including into the
objective function a term ∑

i∈I AisiT , where Ai is the marginal value of stored water in the
reservoir of powerhouse i at the end of the planning horizon, in [$/hm3], and siT is the final
stored water level at i, in [hm3]. The parameter Ai can be estimated using mid-term models
of the hydropower operation (Philpott, 2017).

For representing the non-anticipative decisions of the hydropower operation, future ap-
proaches can explore the impact of multi-stage (as in Helseth et al., 2018), with a better
approximation of the nonlinear hydroelectricity production function (as in Section 4.3.2),
and with a more realistic representation of the maintenance scheduling problem (Sections
4.3.3, 6.1).

Furthermore, we recommend exploring extensions and applications of the compact formu-
lation to scheduling problems with similar characteristics, such as discrete-time scheduling
of chemical processes (Floudas and Lin, 2004) and resource-constrained project scheduling
(Kreter et al., 2016).



109

7.2.2 Refinements to the implemented solution methods

Due to the nontrivial structure of the SGMSP, the computational times of the explored
solution approaches tend to rapidly increase with the number of maintenance tasks.

To speed up the solution of the SGMSP, a promising work consists in implementing a branch-
and-Benders-cut method (Fortz and Poss, 2009), based on the Benders partitioning approach
of Section 5. Also, the alternative decomposition strategy of Chapter 6.2 can be implemented
in a branch and cut framework, using an integer L-shaped method (Laporte and Louveaux,
1993; Angulo et al., 2016). Naturally, acceleration techniques for such decomposition ap-
proaches would also be necessary.

Furthermore, the problem size can be reduced by aggregating water inflow scenarios through
time series clustering (Liao, 2005).

7.2.3 Sub-decomposition approach

In the alternative decomposition strategy of Section 6.2 the gains of solving a reduced master
problem (with only the scheduling variables y) were counteracted by the lack of dual solution
information in the generated UBF cuts. For solving a reduced master problem with Benders
optimality cuts, we recommend the decomposition strategy outlined in Fig. 7.1.

MP 
z 

SP 
x (z* ) 

z* 

Benders  
optimality cut 

Dual solution 

FP 
y (z* ) 

Feasible z*  

Infeasible z* 
Combinatorial cut 

Figure 7.1 Outline of sub-decomposition approach

In this decomposition strategy, the original problem is split into a set of subproblems SP
with the operational decisions x, a feasibility problem FP with the scheduling variables y,
and a master problem MP with the binary variables z that indicate the number of active
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generators. Because the decision variables of MP are fixed into the subproblems SP, their
dual solutions can be used to compute Benders optimality cuts. For any given MP solution
z∗, the FP checks if there is a feasible schedule y∗(z∗). If the MP solution z∗ is feasible for
FP, the subproblems SP are solved with the fixed variables z = z∗, and a Benders optimality
cut is generated using the dual solution of the subproblems. If the MP solution z∗ is not
feasible, a combinatorial Benders cut is included into MP to remove this solution.

Notice that in the decomposition approach of Fig. 7.1, we assume costs of activities inde-
pendent of the starting period. If such costs are indexed in time, FP must be replaced by an
optimization problem that finds the minimum-cost maintenance schedule y∗, for a given MP
solution z∗.



111

CHAPTER 8 CONCLUSION AND RECOMMENDATIONS

Motivated by a real problem in industry, we developed the first realistic MILP formulation for
hydropower generator maintenance scheduling in hydropower systems. Our model represents
relevant elements of the problem, such as the uncertainty of the water inflows, the time
windows of maintenance activities and the nonlinearity of the hydroelectricity production.
This formulation can accurately approximate the nonlinear effect of the maintenance outages
on the hydropower operation.

Because the resulting MILP is hard to solve, we thinned out and tightened our model using
a combination of techniques, which significantly reduced the computational time for solving
the problem with a MILP solver. This formulation can be extended to represent more general
constraints and decisions in maintenance scheduling.

Considering the significant uncertainty and variability of the water inflows, we implemented a
parallel Benders decomposition method for solving the problem with a large number of inflow
scenarios. A combination of acceleration techniques significantly reduced the computational
times of our Benders implementation. Two of the novel acceleration techniques that we
proposed are problem-independent and thus can be included in standard implementations of
the Benders algorithm.

Due to the complicated structure of the master problem in the Benders decomposition ap-
proach, we implemented an alternative decomposition strategy with a reduced master prob-
lem. However, in computational experiments, the Benders decomposition method was more
competitive than the alternative strategy.

The decomposition methods developed in this dissertation can be refined in future works
through additional acceleration techniques and branch-and-cut implementations. Solution
methods with a sub-decomposition of the master problem, can also be subject of future
research. We outline this approach in Section 7.2.3. Future works can also explore applica-
tions of our compact modelling approach to similar scheduling problems, such as resource-
constrained project scheduling and discrete-time scheduling of chemical processes.

Although the specific needs of the company drove this research, and the approach in this
project was subject to the available information and computational resources, our experi-
ence confirms that collaboration with industry conveys opportunities to connect theory and
practice, and to bring new challenges for research in academia.
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