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RESUME

Un modéle mathématique du processus du transport de polluants par
ruissellement et par infiltration est développé. Ce modéle couple des équations
de ruissellement, d'advection-diffusion du transport des poliuants, de mise en
solubilité et de continuité de masse. Les équations bidimensionnelles du
ruissellement, I'équation de continuité et I'équation de la quantité de mouvement
sont résolues et les résultats obtenus servent a résoudre I'équation du transport
des polluants. Les équations bidimensionnelles du transport des polluants dans
lesquelles les propriétés physiques et chimiques sont décrites, I'équation du taux
de solubilité ainsi que I'équation de continuité de masse sont modélisées. Le
modéle tient également compte des apports de la pluie et de l'infiltration, I'équation
de Horton et I'équation de Green-Ampt étant utilisée pour estimer les volumes
infiltrés. |l est ainsi possible de prévoir la quantité des polluants dissous, infiltrés
et lessivés. Pour solutionner les équations du ruissellement et du transport des
polluants le traitement numérique est appliqué. En utilisant la méthode des
différences finies dans une formulation explicite, implicite ou schéma boite, les
équations de St-Venant ou leurs approximation pour I'onde cinématique sont
résolues. La convergence est assurée par la technique itérative de Newton-
Raphson pour résoudre I'ensemble des équations non linéaires. L'équation

unidimensionnelle du transport des polluants est résolue par un schéma explicite
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de differentiation en avant ou par le schéma implicite centré temporellement
(QUICK). Ce dernier est utilisé pour résoudre I'équation bidimensionnelle du

transport des polluants.
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ABSTRACT

A physically based mathematical model is proposed for the process of
pollutant transport in overland flow with infiltration. The model is based on the
overland flow equations, the pollutant transport equation modelled with advection-
diffusion, a solubility rate equation and the solid balance equation. The two-
dimensional overland flow equations consist of the continuity equation and
momentum equations which are solved using an implicit procedure. The results
are applied to the numerical solution of the poliutant transport equation. The
solubility rate equation and the solid balance equation account for the physical
and chemical properties of the pollutant being simulated. The model also
incorporates the effects of rainfall and infiltration. For the infiltration, the Horton
equations are used during the period when the soil is unsaturated followed by the

well known Green-Ampt equations after saturation.

The aim of this work has been to model the ultimate fate of a surface applied
pollutant by evaluating the quantities of pollutant that is dissolved, infiltrated or
washed-out. The complete St.Venant equations and the kinematic wave
approximation for overland flow are solved by using an implicit finite difference
method and a box scheme respectively. The global convergence of the Newton

iteration technique is used to solve the nonlinear set of equations obtained with the
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implicit finite difference formulation. The forward explicit and the fully time centred
implicit modified QUICK finite difference schemes are used to solve the one
dimensional pollutant transport equation. The fully time centred implicit modified
QUICK scheme is used to solve the two dimensional pollutant transport equation.

The Fortran language has been corded in and executed on a PC-based platform.



CONDENSE EN FRANCAIS

Le ruissellement de surface ne cause pas seulement |'érosion du sol et des
inondations mais transporte aussi les polluants qui rejoignent un cours d'eau ou
la nappe phréatique par infiltration. La contamination de la nappe phréatique
engendre des problémes sérieux pour I'exploitation de cette ressource hydrique.
Le contrble des ressources d'eau est devenu une haute priorité et toute tentative
pour résoudre ce probléme demande une excellente compréhension du
comportement hydraulique du ruissellement, de l'infiltration et du transport des
polluants. De plus, la compréhension des phénoménes de base permet de
déterminer les profondeurs et les vitesses de I'écoulement et sa capacité a

entrainer et a transporter les polluants.

Plusieurs travaux sur la modélisation du ruissellement ont été effectués par
des pionniers. Ces recherches ont conduit a une connaissance approfondie des
mécanismes mis en jeu dans le comportement de ruissellement en une ou en deux
dimensions. Cependant, la modélisation du transport des polluants, leur captage
par l'eau et leur sort ultime une fois infiltré n'ont pas regu une aussi grande
attention. Bien que la modélisation du phénoméne du transport basée sur
I'équation advection-diffusion soit courante, parmi toutes les recherches réalisée,

peu de recherches ont considéré les effets du ruissellement, de l'infiltration et de
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taux par lequel les polluants se dissoudre dans I'écoulement.

Le but de ce travail est de modéliser le phénoméne du ruissellement sur
surface perméable, de modéliser le phénomene du transport des polluants avec
dissolution, de proposer un modeéle de mise en solubilité et de développer une
séquence de procédures numériques appropriée & simuler I'effet combiné des

phénoménes mis en jeu.

Cette étude décrit le développement d'un modéle numérique basé sur
I'ensemble des processus de ruissellement avec transport des polluants. Ce
modéle s'appuie sur les lois de la conservation de la masse et de la quantité de
mouvement pour les phénoménes physico-chimiques naturels; ces phénomeénes
comprennent la pluie, l'infiltration, le taux de solubilité, la diffusion et I'advection.
La modélisation du ruissellement est obtenue par la résolution numérique des

équations de St-Venant ou des équations cinématiques.

La modélisation du transport des polluants est basée sur trois équations
décrivant le phénoméne du ruissellement, la dissolution des polluants et le bilan
solide. Dans ces équations, le caractére transitoire du transport des polluants
dans le ruissellement a été considéré en combinaison avec linfiltration. La

modélisation des aspects vraisemblablement les plus significatifs a été faite: il
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s'agit du ruissellement avec infiltration, compte tenu du type de polluant,
l'advection, la diffusion ainsi que le taux de solubilité. L'équation fondamentale qui
decrit le phénoméne du transport est celle de I'advection-diffusion. Un terme
source est ajoutée a I'équation de I'advection-diffusion de fagon a décrire I'effet
du taux de solubilité. La solution des vitesses du ruissellement est utilisée pour
décrire l'effet de I'advection non permanent. Un terme de puits (source négative)
est ajouté pour décrire I'apport de la pluie. L'équation du transport des polluants

proposée peut s'écrire ainsi:
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La représentation mathématique du taux de solubilité d'un polluant est
basée sur le comportement physico-chimique de ce polluant dans le ruissellement.
Dans cette étude, I'ensemble des effets chimiques et physiques est pris en
considéeration. Le taux de solubilité est présumé proportionnel au contrainte de
cisaillement a la surface de ruissellement, a la différence entre la valeur de la
concentration saturante et de la concentration locale, et finalement a une
constante de proportionnalité qui exprime un taux de réaction dépendant du soluté

et du solvant considérés. Cela conduit a I'expression mathématique suivante:
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A l'aide de I'équation pour le bilan solide, la quantité de polluant dissous, infiltré

et lessivé par ruissellement peut étre estimée.

L'infiltration et la pluie sont des facteurs importants dans un modéle
hydrologique. lIs n'affectent pas seulement le temps mais aussi la distribution et
I'ampleur de la ruissellement. Ces facteurs influencent la quantité de la masse
polluante en migrantion dans le sol. Ces simulations ont supposées une intensité
constante de la pluie dans |'équation du ruissellement; cependant, le modéle peut
accepter une intensité variable. Le taux d'infiltration est calculé en utilisant
I'équation de Horton et celle de Green-Ampt. L'équation de Horton est utilisée
pour prévoir la quantité de poliuants infiltrés avant que I'accumulation a la surface
ne se manifeste et celle de Green-Ampt est utilisée pour estimer celle infiltrée une

fois I'accumulation de surface satisfaite.
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Pour modéliser le ruissellement unidimensionnel, le schéma "boite", 'une
des méthodes comportant une équation & une seule inconnue,
inconditionnellement stable bien que limité a un intervalle de temps (Wood and
Armold, 1990), a été utilisé pour résoudre I'équation de I'onde cinématique. Dans
le cas bidimensionnel, une schéma implicite est utilisé pour résoudre les équations
complétes de St-Venant. Chaque modéle inclut les effets de variations
topographiques dans une pente, incluant la rugosité de la surface, l'infiltration
dans le sol et l'intensité de la pluie. La propriété de convergence globale de la
technigue d'itération de Newton-Raphson est exploitée pour résoudre I'ensemble
des équations algébriques non linéaires obtenues par la discrétisation. Les
solutions des équations de St-Venant pour la profondeur de I'écoulement et les
deux composantes de la vitesse ont été associées a I'équation du transport des
polluants, laquelle fut résolue par l'utilisation du schéma QUICK (Quadratic
Upstream Interpolation For Convection Kinematics) modifié, développé
originalement par Leonard (1979) et tres utilisé dans la solution des problémes
reliés a I'hydraulique. Pour I'équation unidimensionnelle du transport des
polluants, le méme schéma QUICK cette fois avec formulation explicite et celui
centré dans le temps avec une formulation implicite ont été tous les deux utilisés.
Pour le cas bidimensionnel, le schéma implicite complétement centré sur le temps

est utilisé.



Pour qu'un probléme mathématique soit "bien posé", il est essentiel de
définir correctement les conditions initiales et frontiéres. Dans le cas du
ruissellement, il est possible de supposer une trés mince couche d'eau initiale sur
une surface séche au départ, au début d'une simulation. Cette artifice évite le
traitement des écoulements avec des profondeurs nulles; les simulations ont
supposé une couche initiale de 10*m. Deux cas différents de conditions initiales
ont été considérés dans la distribution de la masse polluante:

a) Une masse polluante initiale concentrée en un point,

b) Une masse polluante répandue uniformément sur le sol.

Les conditions limites devraient étre basées sur des considérations physiques.
Dans le cas du ruissellement, utilisant I'équation bidimensionnelle de St-Venant,
des profondeurs de I'écoulement et des vitesses de I'écoulement sont considérés
nulles. Pour I'approximation de I'onde cinématique, le débit unitaire est nul. En
aval, pour I'équation unidimensionnelle de St-Venant, les gradients de profondeur
de I'écoulement et les vitesses sont supposeées nulles. Pour I'approximation de
I'onde cinématique, les conditions limites en aval ne sont pas nécessaires. Dans
le cas du transport des polluants, en amont, la condition de concentration nulle est

utilisée; en aval, une gradient de concentration nulle est utilisée.

En utilisant l'intégration numérique des équations, le comportement

hydraulique du ruissellement est estimé; la quantité de polluants dissous, la
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quantité finale d'infiltration et celle lessivé sont déterminés. A l'aide de ces
résultats, la migration des polluants appliqués a la surface dans la nature peut étre

analysée.
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CHAPTER 1
INTRODUCTION

1.1 GENERALITIES

Overland flow refers to that part of the streamflow which originates from rain
which, having failed to infiltrate the soil surface at any point, flows over the land
surface to channels (Kirkby,1979). It is well-known that overland flows not only
cause surface erosion and floods but also carry pollutants, such as pesticides,
fertilizers, and the debris of plants and animals into the receiving water body.
Many of these pollutants are nonbiodegradable or are only slightly soluble in water;
when sprayed on land, they persist in the soil for long periods of time. With heavy
rainfall, these pollutants may be carried as suspended particles in the surface
water, partially dissolve and infiltrate into the groundwater or join the river system.
The long-term effects may be serious. Some consequences of pollution couldlbe:
(1) Oxygen depletion in water bodies due to the action of certain substances, (2)
Excess plant nutrients, (3) Agents of biological dysfunction, and (4) Sedimentary

and erosional processes (John, 1977').

Any attempt to define and solve this problem requires a good understanding

of the laws of overland flow. A fundamental knowledge of the hydraulics of



overland flows is very important in order to be able to determine flow depths and
velocities, and, hence describe the capacity of the flow to entrain and transport

pollutants (Moore and Foster 1989).

Since the equations governing these types of flow are intractable to

analytical solution, numerical techniques must be employed.

Much effort has been devoted to numerically solving the system of
governing equations. Numerical methods have proved to be powerful tools in the

simulation of diverse hydraulic and transport phenomena.

This study describes the development of a numerical model that is focused
on modelling overland flow together with pollutant transport. The model is based
on the continuity equation, the momentum equation and the mass conservation
law. It attempts to account for the complicated natural physical and chemical
phenomena, which includes rainfall, infiltration, solubility rate, diffusion and
advection. Using numerical integration of the governing equations, the hydraulic
behaviour of the overland flow is estimated, the amount of pollutant that is
dissolved and the ultimate fate of the pollutant due to infiltration and washout is
determined. With the help of these results, the migration of a surface applied

pollutant in nature may be analyzed. The physical significance of this study may



be expressed by the sketch shown in figure 1.1.

It is hoped that the work presented here will have many engineering
applications and provide a scientific basis for water pollution control in

environmental engineering.

1.2 SCOPE OF PRESENT WORK

Different from many previous researches that treated the overland flow and
transport phenomena as two individual parts, this project focus on the combination
of these two parts. A numerical model for poliutant washout and transport in
overland flow with infiltration is proposed in this study. The model takes full
account of the two-dimensionality and transient character of the overland flow and

pollutant transport.

In order to describe the hydrodynamic behaviour of overland flow, numerical
solutions of the kinematic wave equations and the full two dimensional St.Venant
equations were obtained. The variation of surface roughness, rainfall intensity and
soil infiltration is considered. For the one-dimensional overland flow problem, a
box scheme has been used to solve the kinematic wave equation. This scheme is

based on an explicit time marching algorithm which is unconditionally stable (Wood
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and Amold 1990). For the two-dimensional case, an implicit space centred finite
difference scheme was used to solve the full dynamic St.Venant equations. The
global convergence property of the Newton-Raphson iteration technique was

exploited to solve the nonlinear set of algebraic equations.

A poliutant transport model, which is based on the mass conservation law
has been proposed. This model includes the advection-diffusion equation,
solubility rate equation and a solid balance equation. Pollutant transport is a
complex process, which is affected by many factors. In this study, an attempt has
been made to model those which are likely to be the most significant; the rainfall
characteristics, the overland flow with infiltration, the type of pollutant, advection,

diffusion and solubility rate.

The mathematical model for the poliutant solubility rate is proposed in this
study. In most practical situations, the concentration distribution is specified as an
initial condition on the basis of physical arguments, the present project is different
in that a specified spatial distribution of solid pollutant is provided, and so the
concept of solubility rate should be introduced. This model is constructed based
on the physico-chemical behaviour of pollutant in overland flow and drawing on the
analogy between heat, mass and momentum transfer, in which both physical

effects such as the flow depth, the bottom bed shear stress and the density of the



poliutant as well as chemical effects, i.e. solubility and reaction rate constant were

considered.

For purposes of demonstration, a constant rainfall intensity was used in the
overland flow equation, infiltration rate is calculated by u§ing Horton's equation and
the Green-Ampt equation. Horton's equation is used to predict the amount of
infiltrated pollutant before ponding begins and the Green-Ampt equation is used

to describe the subsequent infiltration behaviour after the start of ponding.

Finally, the two parts were combined to form a pollutant concentration
equation. The solutions of the St.Venant equations for the flow depth and the two
velocity components were coupled with the advection-diffusion equation which was
solved using a modified QUICK scheme. For one-dimensional and two-
dimensional pollutant transport, the forward explicit QUICK (Quadratic Upstream
Interpolation for Convection Kinematics) scheme and the fully time-centred implicit
QUICK scheme were respectively used to solve the poliutant concentration

equation.

Then, from the solid balance equation, the amount of dissolved, infiltrated

and washed-off pollutant may be estimated.



CHAPTER 2
REVIEW OF LITERATURE

2.1 MODELLING OF OVERLAND FLOW

The physically realistic modelling of overland flow is in general,
accomplished through the numerical solution of the St.Venant equation. The two-
dimensional St.Venant equations that describe the motion of water with a free
surface, are based on mass and momentum conservation laws and derived from
the Navier-Stokes equations integrated over the depth with the assumption of a
hydrostatic vertical pressure distribution.

These equations may be expressed as follows (Tayfur et al., 1993):

The continuity equation

ah  a(hu)  a(hv)

] _ Qi (2-1-1)
ot X 3y [Qrix.y.B) - Qi(x,y.Hlcos(ct)cos(d)

The momentum equation in the x direction:

Qu
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The momentum equation in the y direction:
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Where
h = flow depth
u = flow velocity in the x-direction
v = flow velocity in the y-direction
Qr = rainfall intensity
Qi = infiltration rate
Q = net lateral inflow (rainfall-infiltration)
a = angle of the slope with respect to the x-direction
¢ = angle of the slope with respect to the y-direction
g = gravitational acceleration
S, = the friction slope in the x direction
S, = the friction slope in the y direction
The system is nonlinear so that no analytical solutions are generally available,

except those with highly restrictive assumptions.

The kinematic wave approximation is a popular approximation to the
St.Venant equation, and has been commonly used because of its simplicity. It
assumes that all terms in the momentum equation are very small compared to the
friction and gravity terms (Moore and Foster 1989). This results in the uniform flow
approximation for the momentum equation together with the continuity equation to

complete the set. The diffusion wave equation is another approximation to the



St.Venant equations. It assumes that the inertial terms are small compared to the
pressure, friction and gravity terms (Moore and Foster, 1989). This results in the
transformation of the original equations into a transport-diffusion set. This form of
the equation has found application in the modelling of routing of flood waves where

the propagation and attenuation is modelled with two parameters.

Obtaining solutions to the full St.Venant equations applied to overland flow
is not trivial. The difficulties arise froh its following physical characteristics:
1) Overland flow is very shallow. It is not uncommon for the depth of overland flow
to be of the order of a few centimeters or even millimeters. Consequently, even
very small numerical oscillations will result in negative computed flow depths, thus
causing the numerical solution to fail.
2) The effect of shear stress induced by the bed roughness is larger than that for
the case of deep water. This often causes numerical difficulties leading to
complete failure during the computation.
3) Rainfall and infiltration represent a significant mathematical "source" and "sink",

respectively (Zhang and Cundy 1989) and must be carefully treated numerically.

There has been many research studies for modelling overland flows.
Liggett and Woolhiser (1967) used the one-dimensional hydrodynamic equation

for modeling overland flow. They conducted extensive numerical experimentation
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to compare the behaviour of different numerical schemes for solving the
hydrodynamic equations. Although this study provided valuable experience and
guidelines for obtaining solutions to the hydrodynamic equation for overland flow,

it was limited to homogeneous plane surfaces.

Akan and Yen (1981) developed a one-dimensional overland flow model,
in which both surface and subsurface flows were described by a set of dynamic
wave equations. However, only one- dimensional flow with homogeneous plane

surfaces was considered.

Chow and Zvi (1973) indicated the feasibility of two-dimensional
hydrodynamic modelling of watershed flow with a proposed theoretical model.
However, they used a much simplified version of the hydrodynamic equation in
which all terms related to the convective acceleration were dropped from the
hydrodynamic equation. These terms may be significant in flows with spatial

variations in hillslope characteristics.

Kawahara and Yokoyama (1980) presented a model for two-dimensional

overland flow. They assumed a depth averaged velocity of the flow at any point
!

of the watershed. The pressure was postulated to be hydrostatic neglecting the

rainfall impact. Spatial variability of infiltration rate and roughness were ignored
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in their model.

Wood and Arnold (1980) have modeled overland flow given by rainfall-

runoff on a sloping plane using a one dimensional kinematic wave equation.

Zhang and Cundy (1989) solved the two dimensional overiand flow equation
using the explicit MacCormack scheme. Their results were partially verified with
field experiments. More recently, the two dimensional kinematic wave equation
was modelled by Tayfur et al. (1993) and supplemented with field experiments.
Both studies included the effects of variations in hillslope feature, including surface

roughness, infiltration and microtopography.

The research cited above has provided considerable insight into the
mechanism, behaviour and modelling of overland flow in one and two dimensions.
However the aspect of pollutant transport and their ultimate fate through infiltration
and runoff into a receving water body has not been investigated. Table 2.1
summarizes previous work realised on overland flow. This study is devoted to the

investigation of this problem.



Table 2.1 Previous Research on Overland Flow

12

Author Year | Dimension Physical Condition
Liggett and 1967 1-D Overland flow with homogeneous plane
Woolhiser surfaces
Akan and Yen 1981 1-D Overland flow with homogeneous plane

surfaces,
both subsurface and surface flows were
described
Chow and Bon- | 1973 2-D Overland flow in which all terms related
2Zvi to the convective acceleration were
dropped
Wood and 1990 1-D Kinematic wave approximation
Arnold
Kawahara and | 1980 2-D Overland flow without spatial variability
Yokoyama of infiltration rate and roughness
Zhang and 1989 2-D Overland flow including surface
Cundy roughness, infiltration and
microtopography ,
the results were partially verified with
field experiments
Tayfur et al 1993 2-D Kinematic wave equations including

surface roughness, infiltration and
microtopography
with field experiments.
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2.2 POLLUTANT TRANSPORT MODELS

Predicting the evolution and fate of a surface appligd pollutant in overiand
flow is a complex problem, since it encompasses the surface transport, infiltration
and washout. Usually, transport in overland flow takes place as a result of two
phenomena: advection and diffusion. Advection is that transport of a contaminant
which results from fluid motion. Diffusion is one of the most basic phenomena
occurring in nature. It is a process by which a substance in solution or in
suspension, migrates in response to a concentration gradient through the solvent
in a direction that would tend to nullify the concentration gradient. A complete
model for pollutant transport should account for the advection, dispersion,
diffusion, solubility rate and the chemical and biological reactions of the pollutant
as well as the two velocity components and flow depth of the overland flow.
However, the effects of dispersion and biochemical reactions may be neglected
for all practical purposes, when the pollutants are transported in a shallow
overland flow over a short time period. (Akan 1987). The process of pollutant
infiltration and washout is affected by many factors, chief among which are the
rainfall characteristics, the type of flow, the infiltration properties of the soil and the

type of pollutant.

In recent years, considerable effort has focused on numerically solving fluid
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transport problems. The model equation describing transport phenomena is the

advection-diffusion equation, it may be written as follows:

L R R e A, Y
ot ox oy ox ox oy oy

(2-2-1)
where s = concentration (kgfm®)
u, v = the advection velocity in the x- and y-direction respectively (m/s)

with D, and D, are diffusion coefficient in the x and y direction,

respectively.

Siemons (1970) was one of the earlier researchers who attempted the
numerical solution of the advection-diffusion equation. He presented the
numerical solutions for two special cases: the one-dimensional diffusion-advection
equation, and the two-dimensional diffusion-advection equation with zero velocity.
In his research, the numerical solution of the two-dimensional diffusion-advection

equation with advection in two directions was not treated.

Li (1990) simulated the advective transport of a scalar. His results
however, were limited to the one-dimensional pure advection of a scalar with

constant velocity.
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Holly and Preissmann (1977) presented a numerical method for the
accurate calculation of advection and diffusion in one and two dimensions. Their
research considered the following problem: a neutrally buoyant marked fluid,
assumed to be uniformly distributed over the depth, is subjected to turbulent
diffusion and differential advection in a two-dimensional, time-dependent velocity
field that is assumed to be known. High accuracy was obtained by using the

derivative as the dependant variable.

Chen and Falconer (1992) modelled the transient one-dimensional source-
free transport of a scalar mass of pollutant concentration in an open channel, and
the simplified governing two-dimensional advection equation. In both cases,
constant velocities were used. All of the above work has been concerned with

transport phenomena in rivers and estuaries.

Farthermore, the individual phenomena were modelled seperately and not

in combination as acoupled system.

Akan (1987) proposed a mathematical model to predict pollutant washout
from impervious areas by overland flow, this model was based on the one
dimensional equations for kinematic overland flow and the pollutant transport

equation. However, the infiltration rate, solubility rate and diffusion coefficient



16

were not taken into consideration. This study addressed only a single element of
the complex process of stormwater poliution and therefore the proposed model
could be useful only if used as part of a more comprehensive urban-runoff model.
The summarization of previous researches about the portion of transport

phenomena is listed in Table 2.2.

Modelling pollutant transport phenomena with advection-diffusion is
currently the most popular approach used. Simulation of pollutant transport in
overland flow where the velocities can be highly variable and with the effects of
infiltration, rainfall and solubility incorporated into the model has not received
much attention. Such a model would facilitate the assessment of the fate of

surface applied pollutants and lead to better management of the environment.

2.3 THE EFFECTS OF RAINFALL-INFILTRATION

Infiltration refers to the passage of water through the soil surface into the
soil and is an important hydrological component which affects overland flow. The
actual process is very complex, even when it is assumed that the soil is a
homogeneous medium with a uniform initial moisture content. There are three
stages of infiltration for many rainfall events. Initially, the rainfall intensity is less

than the saturated conductivity of the soil. Consequently all the rainfall penetrates
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Table 2.2 Previous Research on Transport Phenomena

Author Year | Dimension Physical Condition
Siemons | 1970 1-D Diffusion-advection equation
2-D Diffusion-advection with zero
velocity or with advection in one
direction
Holly 1977 1-D Diffusion and advection equation in
2-D sea
Chi 1990 1-D Pure advection with constant
velocity
| Chen and | 1992 1-D Source-free transport of a scalar
Falconer mass of pollutant concentration in
an open channel
2-D Advection equation
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the soil and runoff is not generated. At the second stage, the rainfall intensity
is larger than the saturated conductivity of the soil but less than the infiltration
capacity. The capacity of the soil to absorb water decreases as more and more
infiltration takes place. Finally, the rainfall intensity exceeds the saturated
conductivity and infiltration capacity, consequently, water begins to accumulate

on the soil surface and runoff is initiated.

Many attempts have been made to model infiltration. In the early 1930's,
Horton (Viessman, 1989 ) studied the infiltration process and proposed an
empirical equation. It indicates that if the rainfall supply exceeds the infiltration

capacity, infiltration tends to decrease in an exponential manner:

fo=f o (fy - fye™! (2-3-1)

where f, = infiltration capacity, m/s
fo = initial infiltration capacity, m/s
f. = a final equilibrium capacity, m/s
ks = time rate constant, s
t=time, s
Although simple in form, difficulties in determining useful values for the initial

infiltration capacity and time constant restrict the use of this equation.
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Following Horton's work, in 1954 Philip (Viessman, 1989) developed an
infiltration equation with predictable parameters for a homogeneous soil assuming

an excess of water supply at the surface:

F(H - St'2 . Kt (2-3-2)

Yet, computing these parameters is difficult and their values are more commonly
obtained by data fitting (Mein and Laréon, 1973). The assumption of excess water
supply at the surface is another difficulty that the modeller must contend with.
Holtan (Viessman, 1989) provided an empirical equation which expresses the
infiltration capacity as a function not of time, but of the unoccupied pore space in
the soil. A model of this type is convenient for a watershed model, but determining

the control depth is uncertain (Mein and Larson, 1973).

The most popular equation in current use is that developed by Green and
Ampt in 1911 and is based on Darcy’s law. The infiltration rate may be

expressed as (Tayfur et al., 1993):
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2k, (2-3-3)

where Q; = infiltration rate (m/s)
k, = saturated conductivity (m/s)
Py = soil porosity
Y, = wetting front capillary pressure head (m)

d, = infiltration depth at the start of ponding (m)

Mein and Larson (1973) showed the applicability of the equation for the
conditions of constant rainfall intensity and homogeneous soil. They also
developed a procedure for determining the value of the capillary suction
parameter used in the model. Chu (1978) demonstrated the applicability of the
model for use under conditions of unsteady rainfall. As a result of these and other
efforts, the Green-Ampt model is now employed in such widely used continuous

simulation models as the Storm Water Management Model (Viessman,1989).

Mullem (1991) used the Green-Ampt infiltration model to predict runoff from
rangelands and cropland watersheds, he stated that the Green-Ampt model

predicted both the runoff volume and peak discharge better than other empirical
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equations since the parameters were physically based and could be obtained from

measurable properties of the soil.

Akan (1986) developed a mathematical model to calculate the time of
concentration of overland flow based on the kinematic wave equation and Green-
Ampt infiltration. He confirmed that the Green-Ampt model has a well-accepted
physical basis, and that its results agree well with those of the Richards soil
moisture equation under a variety of infiltration situations. He proposed the
mathematical model for the time of concentration of overland flow: At the early
stages of the rainfall runoff process, complete infiltration will occur due to the high
infiltration capacity of an initially unsaturated soil. The rainfall excess and
consequently the surface runoff will commence after the potential infiltration rate
of the soil drops below the rate of rainfall. The time at which the potential
infiltration rate becomes equal to the rainfall rate is referred to as the time to
ponding. The model is assumed to have uniform surface and subsurface
properties, and infiltration is the only type of rainfall loss; it is also assumed that

the rainfall is of constant intensity.

The simulation of the process of rainfall-infiltration was modeled by Tayfur
et al. (1993). In this work, constant infiltration rates were taken from the given

data with constant rainfall intensities being assumed for the simulations. After the
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start of ponding, the Green-Ampt infiltration formula was used for modeling the

infiltration rates.

Application of the Green and Ampt infiltration model requires estimates of
certain parameters such as the saturated hydraulic conductivity, porosity, and

wetting front capillary pressure head.

Pioneering work on evaluating the Green and Ampt parameters was first
reported by Bouwer (1966). Additional work, relating the parameters to soil
texture has been reported by Clapp and Hornberger (1978) and McCuen, et al
(1981). Rawls et al. (1983) summarized a procedure for determining the Green-
Ampt parameters based on soil properties utilizing the full spectrum of soil survey

information.

These studies have provided valuable insight into the mechanics of

overland flow, although they are limited to the field of infiltration.

2.4 NUMERICAL TECHNIQUES

In order to analyze overland flow and pollutant transport characteristics,

many numerical approaches have been proposed. Basically, the overland flow
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equation has been solved in one-dimension using several numerical methods or
in two-dimensions with either expicit or implicit finite difference schemes. In
explicit methods, the unknown values of the dependant variables at the new time
level occur explicitly in the difference equation and are determined sequentially.
Liggett and Woolhiser (1967) state that although explicit methods are easy to
code in the solution procedure, they suffer from (sometimes) extreme stability
restrictions. The implicit method expresses unknown values in terms of other
unknowns at the same time level. A set of simultaneous equations is thus
obtained with the required closure being provided by the boundary conditions:
such a solution is generally stable although formal stability can only be proved for
linear equations. Because of its great efficiency, the implicit method is especially
suited for application to large time-scale phenomena for which explicit methods

were found to be impractical and time-consuming.

The box scheme is one of the more popular methods because it is explicit
with only one unknown per equation and is unconditionally stable. Nevertheless

practical considerations dictate a limit on the time step. (Wood and Arnold, 1990)

The QUICK (Quadratic Upstream Interpolation for Convection Kinetics)
scheme, which is widely used in solving hydraulic problems, was originally

developed by Leonard (1979), This scheme which uses quadratic upstream
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interpolation has the benefits of mass conservation, reasonably high accuracy and
computational efficiency in comparison with many other higher-order-accurate
schemes (Chen and Falconer 1992). However a Von Neumann stability analysis
indicates that the explicit QUICK scheme has a severe stability constraint which
is dependent on the diffusion coefficient. It can be proved that this scheme is
numerically unstable for the case of pure advection. As a consequence, various
modified forms of the implicit QUICK scheme have been formulated by Chen and
Falconer (1992), which are claimed to overcome the stability problems of the
explicit form and may be applied both to pure advection and to combined
advection-diffusion. The various forms of the QUICK scheme include:

i). Forward explicit QUICK scheme

ii). Fully time-centred implicit QUICK scheme

iii). Backward implicit QUICK scheme

iv). Semi-time-centred QUICK scheme

v). Semi-backward implicit QUICK scheme.

Liggett and Woolhiser (1967) used the method of characteristics, as well
as explicit and implicit finite difference methods for modelling one-dimensional
overland flow. They stated that both the characteristic scheme and the implicit
scheme will provide stable solutions to the equations over a rather wide range of

parameters. The characteristic scheme has the advantage of greater speed
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whereas the implicit scheme offers the advantage of regular point spacing.

Akan and Yen (1981) employed a four-point implicit finite difference

scheme for the solution of the surface runoff equations.

Chow and 2vi (1973) employed a scheme based on the combination of'the
Lax-Wendroff scheme with Burstein and Lapidus modifications for modelling of
watershed flow. They obtained a solution to the two-dimensional watershed flow
model which would have been extremely difficult to solve by the method of

characteristics.

Wood and Arnold (1990) solved the one-dimensional kinematic wave

approximation by using the box scheme.

Katopodes and Strelkoff (1979) solved the two-dimensional St.Venant
equations using a characteristics method. They pointed out that the method of
characteristics precisely follows the paths along which information propagates and
provides an accurate and efficient. method of computation in shallow water
problems. However, since the characteristic surfaces in two dimensions form a
case, the formulation is quite complex while demanding significant computer

resoures.
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Kawahara and Yokoyama (1980) applied the finite element method to
spatial functions of flow depth and velocity for two-dimensional overland flow or

direct runoff flow over the watershed.

Hromadka et al (1987) developed a diffusion hydrodynamic model which

is based on an explicit, integrated finite-difference scheme.

Zhang and Cundy (1989) solved the two- dimensional overland flow
equations by using the second order accurate, MacCormack explicit finite

difference method.

Tayfur et al. (1993) solved a two-dimensional overland flow equation by
using the implicit finite difference method of Amein (1968 ) which does not suffer

from any instability problems.

Siemons (1970) made use of finite difference methods which are
developed from the one-dimensional diffusion-advection equation for the solution

of the two-dimensional advection-diffusion equation.

Li (1990) simulated the advective transport of a scalar by using the

minimax-characteristics method, which is an explicit and efficient finite difference
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scheme derived from the local "min max" approximation of the exact solution to the
pure advection equation. The method is developed within the finite element
framework. However, numerical stability requires that the Courant number must
be less than unity, moreover, the advection and diffusion processes must be
computed separately, thereby requiring additional computer resources (Chen and

Falconer 1992).

Holly and Preissmann (1977) presented the results of a tentative
exploration into a new finite difference method for the calculation of advection and
diffusion. The favorable characteristics of the two-point fourth-order scheme as
demonstrated for calculation in one dimension, extend also to calculations in two
dimensions. The idea of characteristic propagation and the Hermitian cubic
polynomial representation for the scalar distribution within the computational
domain were used and promising results were produced. However, it is
computationally more complicated and expensive for two-dimensional flows, where
additional sets of equations are required to simulate not only the scalar quantity

but also its spatial derivatives for the advection and diffusion processes.

Chen and Falconer (1992) presented the modified QUICK scheme to solve
the advection-diffusion equation. The various modified forms of the implicit

QUICK schemes were tested for the one dimensional pure advection equation.



28

A two-dimensional version of the semi-time-centred QUICK scheme had been
applied to a two-dimensional test case. They stated that the modified QUICK
scheme could overcome the stability problem of the explicit form and be applicable

both to pure advection and to combined advection and diffusion.

In this study, a mathematical model of pollutant transport in overland flow
with infiltration is proposed, which is based on three groups of governing
equations: the two-dimensional St.Venant overland flow equation, the pollutant
transport equation and an equation for the solid balance. The two-dimensional
overland flow equations consist of the continuity and momentum equations in
which complicated physical conditions such as roughness, infiltration and addition
of rainfall is allowed. The equation for pollutant transport is a combination of the
advection-diffusion equation with a solubility rate equation, source and sink term,
and the effect of rainfall. The source term incorparates a solubility rate equation
based on the analogy between mass and momentum transfer. The main
advantage of the proposed model is its ability to simultaneously handle not only
overland flow but also pollutant transport while accounting for complicated

physical and chemical effects.
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CHAPTER 3
THEORETICAL FORMULATION

3.1 OVERLAND FLOW MODELS

3.1.1 The St.Venant Equations in Two Dimensions

The two-dimensional St.Venant equations consist of the continuity and

momentum conservation equations in the x- and y-directions.

For the physical configuration of the watershed shown in Fig 3.1, these
equations may be expressed as follows ( Tayfur et al., 1993):

The continuity equation:

&8, A, M) . (Qrixyh - Qixydleos(aeos(@) G
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The momentum equation in the x direction:
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The momentum equation in the y direction:
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Fluid element

Figure 3.1 Definition Sketch for Two-Dimensional Overland Flow
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Where
h = flow depth
u = flow velocity in the x-direction
v = flow velocity in the y-direction
Qr = rainfall intensity
Qi = infiltration rate
Q = net lateral inflow (rainfall-infiltration)
a = angle of the slope with respect to the x-direction
¢ = angle of the slope with respect to the y-direction
g = gravitational acceleration
S, = the friction slope in the x direction

S, = the friction slope in the y direction

For turbulent flow, bed shear stress dominates and viscous stresses may
be negligible. The friction slopes using Manning's roughness relationships may be

expressed as:

S n2uu2v?2 (3-1-4)

and
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s . nwuv? (3-1-5)

Where n = Manning's roughness coefficient.

Since a and ¢ are considered small, the following approximations may be made,
sin(ax)=tan(ax ) =S,

sin (¢) =tan (¢) =5,
cos(a)-cos(p)=1.0

Where S, and S, are the bed slopes in the x and y-directions respectively.

3.1.2 Kinematic Wave Equation

Although overland flow could ideally be represented by the St.Venant
equation, the kinematic wave approximation was shown to provide very reliable
results for most hydrologically significant cases (Akan,1986). Due to its simplicity,
it has become a popular alternative to the St.Venant equations for numerical

simulation of overland flow.

The kinematic wave equation assumes that all terms in the momentum
equations are small compared with the friction and gravity terms (Moore and

Foster,1989). This results in:
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gsin(a) - s,g (3-1-6)
and
gsin(®) - s, g (3-1-7)
since
sin (a) = s,
sin () - Soy
so
Sox = Sx (3-1-8)
Sy = S, (3-1-9)

Substituting equation (3-1-8) and (3-1-9) into (3-1-4) and (3-1-5) , the equations
may be expressed as:
n2u/u?v?
SO)(

v (3-1-10)



s . niwurv?
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4 (3-1-11)
combining equations (3-1-10) and (3-1-11), we obtain:
- u~ (3-1-12)
SOX
by substituting (3-1-12) into equation (3-1-10)
1 2
5 2
u - Sox h 3
s 21 (3-1-13)
nf1+ (2X)1*
SOX
and similarly:
1 2
2 .3
V. Soy
21 (3-1-14)
1+ ()14
S,



35

Then, substituting equations (3-1-13) and (3-1-14) into the continuity equation (3-

1-1), the kinematic wave equation is obtained as follows:

1 5 1 5
oh s2,  an® s?,  ah® ,
—_— . + = Q-1
at 21 ox < 2iay " XY @aas
n[t+]* n[t.)14
ox SD.V

An alternate representation in one dimension is (Wood and Arnold, 1990):

o, N q) - A-
Py u(q) (ax Q-0 (3-1-16)

where q = the discharge per unit width
t =time
X = the distance from the top of the slope
Q = net lateral inflow

and

uq) - —2>— (3-1-17)
n
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Here, the friction effect has been modelled using Manning's formula with n as a
roughness parameter and s,, as the bed slope. The use of Manning's formule is
probably questionable in overland flow due to the small depths involved. The flow
is "hydraulically rough" and a pressure force type equation should be used.
However, for the present, we have continued this work with the standard

formulation.

3.2 INFILTRATION MODELS

Infiltration is an important component of a hydrologic model. It can affect
not only the timing, but also the distribution and magnitude of surface runoff, and
influence the quantities of pollutant mass penetrating the soil. For this reason

reliable estimates of infiltration must be incorporated into any watershed model.

The infiltration rate is the rate at which water enters the soil at the surface.
If water accumulates on the surface, a phenomenon called ponding occurs and the
infiltration occurs at the potential infiltration rate. If the rate of supply of water at
the surface is less than the potential infiltration rate, then the actual infiltration rate
will also be less than the potential rate. Most infiltration equations describe the
potential rate. Infiltration capacity is the maximum rate at which a given soil can

absorb falling rain when it is in a specified condition (Kirkby, 1979).
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Mein and Larson (1973) described three distinct cases or stages of
infiltration when a rainfall of intensity Qr is applied to a soil having a saturated
conductivity k,, and an infiltration capacity fo.

Case A: Qr <k, all the rainfall infiltrates, runoff will not occur, but the soil moisture
level is being altered.

Case B: k, <Qr < f,, all the rainfall infiltrates into the soil, the moisture content at
the surface increases during rainfall until surface saturation is reached.

Case C: k,<f, < Qr, the infiltration rate is at its maximum capacity and decreasing,
the surface has become saturated. Runoff is being generated. Fig 3.2 shows the
different cases of infiltration behaviour under rainfall, line A shows case A line B

shows case B, curve C and D show case C.

In this study, the infiltration rate has been calculated with two equations. At
the first stage, Horton's equation is used to predict the infiltration rate before
ponding begins. At the second stage, the Green-Ampt equation is used for

describing the subsequent infiltration behaviour after the ponding time.

Because of the high infiltrability of an initially unsaturated soil, all the rain
will infiltrate at the early stage. Surface runoff will commence after the potential
infiltration rate of the soil drops below the rate of rainfall. The ponding time t, is the

elapsed time between the time rainfall begins and the time water begins to pond



Line A shows case A
Line B shows case B
Line C and D show case C
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Figure 3.2 Different Cases of Infiltration Behavior Under Rainfall
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on the soil surface. This time is critical and relates to rainfall intensity Qr and to
the soil properties. If the rainfall intensity is large, the ponding time appears earlier
and vice versa.

It may be evaluated from

f - uJ1.p0
P
ar(&. 1) (3-2-1)
ki
with
Po - (1-8,)p,

where t,= time to ponding

s. = initial effective saturation

Qr = rainfall intensity, m/s

k ; = hydraulic conductivity of the soil

p, = effective soil porosity

Po = soil porosity

W, = wetting front capillary pressure head,m

During the period leading up to ponding, large amounts of pollutant is
infiltrated. In order to predict the amount of infiltrated pollutant during this stage,

Horton's equation is used.
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Horton (Viessman,1989) showed that when the rainfall rate exceeds the
infiltration rate, water infiltrates the surface soil at a rate that generally decreases

with time. He proposed the infiltration equation,

fo=f « (fy - £)e™ (3-2-2)

where f; = infiltration capacity, m/s

f o = initial infiltration capacity, m/s

f. = afinal equilibrium capacity, m/s

ks = time rate constant, s
ks is an empirical constant representing the rate of decrease in capacity, it
indicates that if the rainfall supply exceeds the infiltration capacity, infiltration tends

to decrease in an exponential manner.

Typical values of the parameters of f,, f, and k, in the Horton model have
been cited in the book by Bedient (1988 ). Although simple in form, difficulties in
determining useful values for f, and time rate constant k, restrict the use of
Horton's equation (Viessman et al, 1989). Furthermore, the form of equation (3-2-
2) is not suitable for the case when the rainfall intensity is less than the computed
value of infiltration capacity f,, since then all the rainfall may infiltrate, i.e. f = Qr.

The infiltration capacity should be reduced as a function of the actual amount of
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water available for infiltration and not only on the basis of time. In this study, some
adjustments to the infiltration behaviour have been used. The actual infiltration

can be expressed by

i) - min [f(), Q] (3-2-3)

where f (t) is the actual infiltration into the soil and Qr(t) is the rainfall intensity. By
using equation (3-2-3), the infiltration rate at any time is set equal to the lesser of

the infiltration capacity f, (t) or the rainfall intensity Qr(t).

Besides using Horton's model, the Green-Ampt model, which is based on

a Darcy-type water flux, is applied after ponding time.

The Green-Ampt infiltration model has been found to have wide
abplicability for modelling the infiltration process. A major advantage of the Green-
Ampt model is that the necessary parameters may be determined from physical
measuremeters in the soil, rather than empirically as for the Horton parameters.

The Green-Ampt formula is:

Qi = k1’(1 +

Po®4
= ) (3-2-4)

where Qi = infiltration rate (m/s)
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F = infiltration amount (m)

k, = saturated conductivity (m/s)

Po = soil porosity

W, = wetting front capillary pressure head (m)
The following expression is obtained for the infiltration depth after ponding (Tayfur
et al., 1993):

2.k1.w1

0

12
d- [df « (t - )] (3-2-5)

here d, = infiltration depth at the start of ponding.

The infiltration rate for times after the start of ponding is obtained as (Tayfur et al.,

1993):
W
Qi - k{1 - ]
2.k, 12 _
(d°2 R 1 l‘l"1At) (3 2'6)
Po

where Qi = infiltration rate (m/s)
k, = saturated conductivity (m/s)
Py = soil porosity
W, = wetting front capillary pressure head (m)

d, = infiltration depth at hte start of ponding, m
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At = (1t ) is time increment (s).

Application of the Green-Ampt infiltration model requires estimates of the
hydraulic conductivity k,, effective porosity p,, and wetting front capillary pressure
head W,. In our case, the values of W,, p,, k, and d, used in this study were from
published soil properties (Rawls et al,1983). Since the overland flow depth is
small compared to the capillary head, a constant capillary pressure head W, =
0.15m ~ 0.17m was taken, soil porosity p, being considered equal to 0.3 ~

0.45.
3.3 POLLUTANT TRANSPORT MODEL

The mathematical mode! of pollutant transport is based on three governing
equations representing the transport of pollutant in overland flow, the pollutant
dissolution and solid balance.
3.3.1 Pollutant Transport Equation

The fundamental equation describing pollutant transport is the advection-

diffusion equation. However, the complete modelling of pollutant transport

leading up to the ultimate fate of the pollutant should consider not only the
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advection and the diffusion but also the solubility rate, i.e. the process of pollutant
dissolution, the type of pollutant, the characteristics of the rainfall intensity, the

infiltration and the overland flow.

The pollutant transport equation is established by writing a mass balance
over a stationary volume element Ax, Ay through which the fluid is flowing. The
control volume approach was used, as shown in Fig 3.3. In time At, the mass of

constituent entering the control volume is:

Suhayat + sv-haxat + spataxay

while that leaving is

[su-hay + ax-aylat + [s-v-hax +

a(sa'u'h) ay-axX]at + s Qi-atax-ay
X

o(s'v-h)
oy

where s = concentration (kg/m?)
u, v = the advection velocity in the x- and y-direction respectively (m/s)
Qi = infiltration rate (m/s)
S, = solubility rate (kg/s/m?)
h = flow depth (m)
At = time interval (m)

During time At, a control volume balance (without diffusion) results in:
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Figure 3.3 Mass Balance Over a Control Volume
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S'U-h-ayaf + i‘z-‘m—)mtay + SV-haxat + @myzst
X

+ S Qlataxay - su-hayat - sv-haxat - sgaxay-at (3-3-1)
= -(S-h-ax-ay)
Rearranging equation (3-3-1), we have:
this equation may also be written as:
hE . unS . S s (A, Wh Vhy o sqi 33

a  ox oy a  x oy

Since the shallow water equation for mass continuity may be expressed as follows:

+

ot  ox oy

o, h M _qr-qi (3-3-4)

substituting (3-3-4 ) to (3-3-3 ), we obtain
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heS . undS ., ypds

+8Qr-s -3-
ot ox oy t (3-3-5)

or.

L TRA R VAL e SR (3-3-6)

Fick's first law of diffusion states that mass transport occurs because of a gradient
in mass concentration. The mass diffusivity D can be regarded as the
proportionality factor between mass flux and mass concentration gradient. Based

on Fick's law, the complete pollutant transport equation may be written as follows:

S s
o ., ,98 8 0,55y 3 (Dyas S sQr (3-3-7)

ot ox oy ) ax ax a—y a_y h h
where D,, D, - diffusion coefficient (m?%s) in the x- and y-directions respectively.
In this study, a constant diffusion coefficient D has been used. In equation (3-3-7),
the solubility rate is a source term and the rainfall is a sink term.

For the one-dimensional case, the equation becomes:

sQ,
h

S
iS_ + uas = ( _) b —_
ot ox ax ox h

(3-3-8)
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3.3.2 Solubility Rate Model (Source Term)

The process of pollutant dissolution in overland flow is neither a pure
physical process nor a pure chemical one, it is a complicated physico-chemical
process in which solubility rate plays an important part. The amount of solute
dissolved in a saturated solution at a certain temperature is known as the solubility
of the substance. Solubility is usually expressed as the number of grams of solute
dissolved per 100g of solvent at a particular temperature. Solubility rate may be
defined as the mass of solute that will dissolve per unit time per unit area at a fixed
temperature. Factors affecting solubility are temperature, pressure and the
chemical nature of the solute and solvent. The chemical natures of the possible
solutes are so varied that it is impossible to develop detailed rules of solubility
(William, 1967). The solubility of solids is only slightly affected by pressure
change. So, in this study, any effects of pressure are neglected and it is assumed
that during the process of dissolution no new substance is created and
temperature keeps constant. The value of the saturated concentration of a solute

in a particular solvent has been assigned the symbol ¢c*.

The mathematical behaviour for pollutant solubility rate has been
constructed based on the physico-chemical behaviour of the pollutant in overland

flow. The solubility rate is assumed to be proportional to the bottom bed shear
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stress of the overland flow, the reaction rate constant and the difference between
the saturated and local concentration.

This leads to the expression:

S - k;T(c - 8) (3-3-9)

where the shear stress may be evaluated (using the Manning equation) as:

2+
T - Yhs, - Y—-"z‘;’,,a"z’ (3-3-10)

here  S,= solubility rate (kg/m?s)
T = shear stress (N/m? )
Y = specific weight of water (kg/m?/s?)
S; = friction slope
h = flow depth (m)
u, v = flow velocities in both x- and y- direction (m/s)
n = Manning's roughness coefficient
k, = reaction rate constant ( m?s/kg )
c* = solubility ( kg/m®)

s = local concentration ( kg/m®)
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The concentration of a solution is a measure of how much solute is
dissolved in a unit amount of solvent. If in unit time there are more particles of
solute entering the solvent than leaving it to return to the lattice, the solute is
dissolving. At any specific temperature, enough solid may be present so that the
same number of particles is leaving the lattice as returning. The solid phase and
the liquid phase are then said to be in dynamic equilibrium. Once solids are
dissolved in water, a point is finally reached at which no more solute dissolves and
the undissolved solute remains in equilibrium with the solution, in this state of
equilibrium the solution is said to be saturated , c* = s. In the present study, the
reaction rate constant k is presumed to depend only on the pollutant

characteristics.

3.3.3 Solid Balance Equation

Pollutant infiltration into the ground during a rainfall event can be treated in
two distinct stages: a stage before surface ponding and a stage after surface
ponding. Let the initial distribution of pollutant be w, kg/m? assume a
concentration of c* to prevail before ponding. Before ponding time, in the time

interval At, the mass that goes into the ground is:

A - crkef;AtAx-Ay (3-3-11)
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After ponding time, in the time interval At, the mass infiltrating into the ground:

where the solution is now considered unsaturated is:

B - Ys-QiAx-Ay-At

and where the solution is saturated:

C - Yc-QrAx-Ay-At

the amount of pollutant washout is:

D - Xs-h,;v AxAt + Es-h -u, Ay-At

while the amount of dissolved pollutant is:

E - SkyT(c* - s)Ax-Ay-At

the mass balance equation for the solid pollutant is:

W=WO—ZA—E

in which

(3-3-12)

(3-3-13)

(3-3-14)

(3-3-15)

(3-3-16)
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c* = solubility (kg/m>),

s = concentration (kg/m®),

k, = delay time coefficient,

f, = infiltration capacity (m/s),

T = bed shear stress (kg/m/s?),

k, = reaction rate constant (m? s/kg),

Qi = infiltration rate ( m/s),

S, = solubility rate ( kg/m? /s),

At = time interval (s),

Ax, Ay = space interval in the x- and y- direction respectively,

W, = initial pollutant mass (kg/m?),

w = residue of pollutant mass (kg/m?),

term A represents pollutant mass infiltrated before ponding time,

term B represents pollutant mass infiltrated with local concentration after
ponding time,

term C represents pollutant mass infiltrated at saturated concentration after
ponding time,

term D represents pollutant mass washed-out by overland flow,

term E represents pollutant mass dissolved.

At the end of time step At, the solid remaining will be w kg/m?. When w becomes

zero, no more solid pollutant is dissolved.
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3.4 INITIAL CONDITION

3.4.1 Overland Flow Equation

In the case of overland flow, it is possible to assume a very thin layer of
water to be ponded on an initially dry surface at the beginning of the rainfall. The
results are not affected by the assumption of this very thin film of water (Akan and
Yen.1881). The same assumption was applied by Liggett and Woolhiser (1967),
Brutsaert (1971), Chow and Zri (1973), Zhang and Cundy (1989) and Tayfer et al.
(1993). In this study, a layer of depth 0.0001m is assumed to cover the flow
surface, and the following initial conditions have been adopted:
for the two-dimensional St.Venant equation:
u(x,y,0)=0
v(x,y,0)=0
h (x, y, 0) = 0.0001m

for the kinematic wave approximation:

q(x,0)=0

3.4.2 The Pollutant Transport Equation

Two different cases of initial conditions were considered for the pollutant

mass distribution:
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a). Non-zero initial pollutant mass applied at a discrete location:
Wo(L,L,0) =w,,

b).Non-zero initial pollutant mass uniformly applied:
Wo (X,y,0) = w,,

in which w,, is the mass of pollutant.

3.5 BOUNDARY CONDITIONS

3.5.1 Overland Flow Equation

Specified boundary conditions should be based on the physics of the
situation, especially when the finite difference method is used. With the wrong
boundary conditions, it is likely that numerical difficulties will be encountered or

physically unrealistic results obtained.

For two-dimensional overland flows, the continuity equation (3-1-1), the
momentum equation (3-1-2) and (3-1-3) are solved by using a finite difference
scheme that provides the solutions for the interior nodes simultaneously. There
are 3*M+N unknown resuits, these unknowns are the flow depth and flow velocities
at each node in both the x- and y-directions. By writing the continuity and
momentum equations at the centre of the cells, 3+«(M-1)+(N-1) equations are

obtained. The remaining 3+(M+N-1) equations are obtained from the boundary



conditions. However, the solutions at the boundary nodes require special

treatment. Fig 3.4 is an illustrative sketch for the number of unknowns.

The numerical approximation of the boundary conditions for overland flow
has been widely discussed in the literature. The upstream boundary condition has
been frequently taken to be of the "zero flux" type. Brutsaert (1971) used zero
velocities at the upstream end. Woolhiser (1975) handled the upstream boundary
conditions with h=0, u=0. Zhang and Cundy (1989) took zero flux as the
appropriate upstream boundary condition. The upstream boundary condition
h(0,1)=0,0 has been shown to be physically valid for steep slopes (Govindaraju et

al, 1990).

For the downstream end, several boundary conditions have been
implemented, the most popular being a zero depth gradient. Morris (1979) showed
that the zero depth gradient condition is applicable to a large class of problems.
Recently, Tayfur et al. (1993) used the zero depth gradient condition at the

downstream end with satisfactory results..

In this study, the following boundary conditions have been adopted:
for the two-dimensional St.Venant equation, the flow depth and the flow velocities

in both x- and y-directions are taken as zero at the upstream end,
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Figure 3.4 Sketch of Representation of The Number of Unknowns
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uOyt)=0
v({Oyt)=0
h(0yt)=0
ux0t)=0
v (x0,)=0
h(x,0,) =0
For the kinematic wave approximation:
q(0)=0

At the downstream, the boundary conditions are as follows:

sh (3-5-1)
ox
dh o (3-5-2)
oy
% o (3-5-3)
ox
u o (3-5-4)
oy
Y _»o (3-5-5)
ox
% .o (3-5-6)

oy
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Solutions at the downstream end have also been initiated using the

quasiuniform approximation:

— = -§
ox B
oh

— = -§
oy L4

This approach was also found to work well.

(3-5-7)

(3-5-8)

When the kinematic wave approximation is used, it is not necessary to

specify the downstream boundary conditions because the backwater effects were

not taken into consideration.

3.5.2 The Pollutant Transport Equation

In previous research, a zero concentration condition has commonly been

used upstream. This has been the boundary condition of choice of Chen and

Falconer (1992), and Akan (1987) who used it for the one-dimensional case. At

the downstream boundary, Chen and Falconer (1992) assumed zero derivatives.
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In this work, the concentration has been set to zero upstream:
s(x,0)=0
s(Oyt)=0

At the downstream boundary, zero concentration gradient is used:

os

— = 0 - -
ox (3-5-9)
‘_9§ =0 (3_5_10)
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CHAPTER 4
NUMERICAL SCHEME

4.1 BOX SCHEME

The box scheme is used for the numerical solution of the kinematic wave
approximation which is obtained from the St.Venant equations after simplifying
assumptions are made. The stability and convergence properties of this scheme
have been discussed by Wood and Amold (1990). They indicate that although the
box scheme is unconditionally stable a limit on the time step is necessary due to
considerations of accuracy. The numerical solution of the kinematic wave equation
is obtained over a discrete net of points in the ( x, t ) plane. The net is constructed
by lines drawn parallel to the x- and t-axes. The first line represents the upstream
boundary and is located at x = 0, whereas the last line represents the downstream
boundary. A four-point grid is used in the development of the numerical procedure.
Each point on the net is identified by a subscript and a superscript, the x-position
of the point is given by the subscript and its t-value by the superscript. Fig 4.1

shows the sketch of grid representation for the scheme.

We rewrite the one-dimensional kinematic wave approximation to overland

flow resulting from rainfall-runoff on a sloping plane as:
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Figure 4.1 Sketch of Grid Representation for the Box Scheme
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oq aq
— ., y(g)(= - =0 -1-
Py (g) x Q) (3-1-17)
with
25, Y10
ug) - 2 n:;* (3-1-18)

where q is the discharge per unit width of slope,

tis time,

x is the distance measured from the top of the slope,
Q is net inflow,

n is Manning coefficient, and

S« IS bed slope,

The box scheme of equation (3-1-17) can be written as (Wood and Arnold, 1990):

i . 6 qik.1 - g " qizn - gt

At At

k ki
S - ©) u(E‘*)[—‘i'“A'x—"") _q (4-1-1)

(‘7;'.‘:1 - q,'M)

Ax

- 0 u@enl -Ql-0
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where
Q- + QM 3o
" F——1 s« (4-1-2)
ug” - %
and
25
[q- +q,f§1] s 310
. 2 ox (4-1-3)
u(@) - e

Equation (4-1-1) may also be written as:

______) 1R u@y | o u@h,
At At At At Ax Ax !
LI _9_ W u(q“)) k. (8.0 u(q“)) q
Ax At Ax Y Ax 3

+ (0 uW(@" - 0 u@*) - u@9Q -0

(4-1-4)

where Ax and At are the space and time step, respectively.
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W is weighting parameter for the time, w=1 implies a fully implicit scheme, while
w=0 results in an explicit scheme, here w=1/2 has been used as in the Crank-
Nicholson scheme. 8 weights the forward time difference between the i and i+1

grid points, again 8 =1/2 provides the optimum weighting.

In this study, two weighting parameters 6 and w were used to improve the
stability of the equation. Both 6 and w were set to 0.5. For each time step, there
is only one unknown occurring explicitly in the difference equation, it may be
solved by using three known values from the previous step. Equation (4-1-4) is
nonlinear and is solved by the method of successive substitution by rearranging

(4-1-4) to read:

Gy’ - —;E—(/‘\q,-"‘1 + Bg/* + Gy + C) (4-1-5)
where
1 - e u ~ k1
A='(dt)+‘°(gx) (4-1-6)

_(1-6)  u@) .
B - P ™ (1 - w) (4-1-7)
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_ 8 u@ 4. -
G - i (1 - w) (4-1-8)
_ 8, udh 1.
Fra T (4-1-9)
C - [wu@) + u@) - wu@I] Q (4-1-10)

a trial q,-ff,‘1 is substituted on the right side of equation (4-1-4), and a new value
of q,if‘{1 calculated on the left-hand, which is substituted as a trial value on the right
side, and so on, until the calculated value of q,-ﬁ” converges. In this scheme, the
stability condition is:

c Bt 4 (4-1-11)
Ax

4.2 NUMERICAL SCHEME FOR TWO-DIMENSIONAL OVERLAND FLOW

In this section, the implicit centred finite difference scheme has been used
to solve the full St.Venant equations. The stability and convergence properties of

this scheme have been discussed by Amein (1968). A representation of the
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computational "molecule" is shown in Fig 4.2.

i refers to the node number in the x direction,

j refers to the node number in the y direction, and

k is the time step number

0 is a weighting coefficient, whose value varies from 0.5 to 1.0 (Joliffe, 1984).
Numerical experimentation has indicated that a value of 6 =0.75 gives the most
stable solutions (Tayfur, 1993). This implies that the scheme has a more implicit
character since the solution is weighted more towards future values than towards

present ones.

The implicit finite difference method assumes that at each node, the initial
values at the present time are known, to find the unknown values at a future time
step. To initiate the calculations, initial values at the present time step are
provided from the mathematically or physically specified initial conditions. For the
unknown values at the future time step, trial values are given, and iterations are
performed until the desired accuracy is achieved. Once new values within the
limits of prescribed accuracy are found for the unknowns, these values are taken
as trial values for the unknowns at the next time step. Once again iterations are
performed until the desired accuracy is reached, to find the new unknown values.
This procedure is repeated at each time step. The finite difference form of the

continuity equation (3-1-1) is written as follows:
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TA (ij+1)

Figure 4.2 Computational Molecule for the Implicit Finite Difference Scheme
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hi' - by | BuF'(hi] - KD (B, - hY)

at 2aX 24X (4-2-1)
hy"Oug; - ufi) b - O)u, - uf)
2aX 2AX
R evi.‘;1(h1:11 hig::) IJ(1 e)( i1~ hi§-1)
sz 25y
k«1 ko1 k1 k, k k
i Vgt - Vigy) . hii(1 - B)(Vigq - Vi) . Qii,’; i Q"i.‘; 0

2Ay 22y

there are M <N unknowns, which are the flow depths at each node. (M-1) *(n-1)
equations may be solved at each internal node, the remaining equations are

obtained from the boundary conditions. Equation (4-2-1) may also be written as:

Ahfsi + Bh ChL - (4-2-2)

where

A- X (4-2-3)

B.. 1 B(Ui.‘;’} _ ”J) 9( ,M = 'H)
at 24X 2Ay

(4-2-4)



k1
c.. %% (4-2-5)
25X

hi i1 - B)h, - by

D---2. -
at 25
L hie - ONUS, - k) vitet - hlD (4-2.6)
22X 22y
Vg1 - B)hg - hiy) g0 - B - i) ot . QX
2.y 2ay ij ij
equation ( 4-2-6 ) can be written as a tridiagonal matrix equation:
18] IC] [[thd] | OrAzh |
[Ad [B3 [Cd [hs] (D]
[Ana [Bnad [Cpdl ||[fna [Pl
[Ansl [Bnil | _[hnm]q .[Dm'Cm*hm]_

(4-2-7)
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This tridiagonal matrix equation may be solved by combining the values
specified as boundary conditions at each end of the computational domain. This
results in a set of flow depths h; at each intemal node. Then, the flow depths h are
substituted in the momentum equations. The discretized form of the momentum

equation in the x-direction is:

h43 h, .- h..
DUy W g - Ui ) Ve (U - U ) (4-2-8)
2gax 2gay
k1 k
O luy - u) Quj Yy
gat gh; ;
or
h43 h,.-h.. .
Uik}1 - —L s, - Oy Ba) 4y (U4, ; -Ugs,
' n? 25X 2gax " ' 4.2:9)
- 2
VR U Qi.lui.I] I w? - vy, Py
2gay VY gut gy M gam?

The discretized form of the momentum equation in the y-direction is:
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ko2 2 N Pija - Bp U (Vg - Vi)
Vig Wi v - ry [Soy - 'ﬁsz' o 205%
ke
OV - i) WG - Qi j
2gsy gat gh,.j
(4-2-10)
or
hR (h, .« - h, ) u .
kA , L 1 i, F1 ,
Vii = "";_;' [Soy - ’ﬁsz’ - ZQ‘AIX (Vi.1,j - Vi-1,j)
k 4/3
V. . v, Q..v, . h;:
i J (Vi, ” Vi, }'.1) . i i J J.J] / [(ui,zj . v£2j)1I2 . _1.1_2]
2gay gat  gh, gatn (42-11)

The downstream boundary condition of depth gradients are specified in finite

difference form as:

oh P = Py (4-2-12)
ox ax
or Py = Pt

if zero gradient is assumed.
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and
h. - h
oh _ fin = Mins (4-2-13)
oy ay
or hin = Nipg
similarly,
Un,j = Un,j
ui,n = ui, n-1
and Vinj = Vi, i
Vin=Vini
the following boundary condition may also be used:
axn?u/u?v?
hmj = hm-1J - 43 (4-2-14)
or
n2vyu2v?
B = By - 22 (4-2-15)

h413
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This equates the gradient of flow depth to the friction slope. By solving equations
(4-2-9) and (4-2-11) together with the boundary equations, velocities in both the
x- and y-directions may be obtained. By repeating this procedure, all unknown
values, flow depths and flow velocities are found over all nodes of the overland

flow domain for each time step.
4.3 QUICK Scheme

The QUICK finite difference scheme has been widely used in solving the
advection-diffusion equation. This scheme has the benefits of mass conservation,
reasonably high accuracy and computational efficiency in comparison with other

higher order-accurate schemes.

In this study, the forward ekplicit QUICK scheme and the fully time-centred
implicit QUICK scheme are used to solve the one-dimensional pollutant transport
equation. The full time-centred implicit QUICK scheme is used to solve the two-
dimensional pollutant transport equation. The transient one-dimensional pollutant

transport equation may be written as:

s  us) 8 s S sQr
2,828 (pLy, 2t sS4 4-3-1
ot ox ox ( ox ) h h ( )
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The finite difference representation of equation (4-3-1) over a time step is

written as:

K1 Kk k) k1 ke A,k kel
S +Q (3..1/2 Sip - ;1/2 sn V:.(uz (si5' - s - ViR (s - sEN)
kK
- §* - (1-q) (hr S - efin Sip) + (1-Q) Viir (s - s

S Qr
W1/2 (Si - S,_1)] + F + 8§ — h

i [

(4-3-2)

when a = 0, it expresses a forward explicit scheme,
a = 0.5, expresses a fully time-centred implicit scheme,

a =1, expresses a backward implicit scheme.

k k At
€ = Uip Ax

and

At
Vire - Die == Ax?

are the Courant and diffusion numbers respectively, s ,,1,2 and u,.12 are the
concentration and velocity values respectively at grid point i+1/2 as illustrated in

Fig 4.3.
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S S j+1

i+2

U
U i-1/2 u i+1/2 1+3/2

Figure 4.3 Sketch of Grid Representation for the QUICK Scheme
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In the case of the one-dimensional fully time-centred implicit QUICK

scheme, the unknowns occur implicitly, and they are solved simultaneously. The

fully time-centred implicit QUICK scheme for one-dimensional pollutant transport

can be written as:

K1 k1, ki K kA ke K K kA
S; [emn (Si1 + S ) - €4n (S + 83 - (e..uz Vas;
01 01
k1 K R k.1 K1 k.1 k.1
- € V3s;, -8§ )+ 1)

k k k K k k Kk 1,k
- —[35.1/2 (Si1 + Si) - €4 (S + 8] + E(emn V3s;

Vit k k VI':1/2
2

K k
- €11 V385;9) + kT (Si1 - S

kK _k
S - Si)

(4-3-3)

In the one-dimensional forward explicit scheme, the unknown occurs explicitly and
is obtained from the known values at the previous time step. The forward explicit

scheme for one-dimensional advection-diffusion is written as:

2 1
S,-k1 = S,-k - E[ei‘fvz (S +§; ) - e;-112 (S * :-1)]

1, k k _k k k ok
+ —(91.12 V3Si - €l V2S51) + Vi (Si1-5;") (4-3-4)
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Equation (4-3-2) may be extended to two dimensions. When a=0.5, the

representation of the two dimensional pollutant transport equation in a fully time

centred implicit scheme is:

K k1 K ok k1
S+ — (8»12,, - &anj Sir) + = (nu.mz J.uz nu-1I2 m/z)

1 V!m . (S,-ﬁ'} ~ S,-f,f‘ B V:uzj Sir k.1)]
[&m (St - S - Efhn (S - SEN

= S"'( - (emer sz., ner Sl-1/2J)

. = lv“m (Sitj - S - Vi (Sf - S4))

1
"3 (niJ;uz Su.m nmrz Si;fuz)
1
+ 5 Btz (Sga - S) - Eyn (S - Sy
(4-3-5)
where
k k af
Ciar, j = Yin, j x (4-3-6)
vk Dk At
e g = P —3 (4-3-7)
g (4-3-8)

k
N e = Vi e
Il Lp Ay
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t
E:".‘j.uz - Di,kj.m = (4-3-9)
ay?

€, n are the Courant numbers in the x- and y-direction and vy, £ are diffusion
numbers in the x- and y- directions respectively, At the time step and Ax, Ay the
grid size, K is the time step number, D is diffusion coefficient. The values at the

cell faces may be obtained by quadratic upstream interpolation as following:

1 1
Siieg = 5 (Sidj+ 8 - 5 7 8 (4-3-10)
Sk 1 Sk k 1 v2 Sk
MRty (Si,j+ 8 ) - B i1, j (4-3-11)
Sy jan = %(S.-,k,u .8 - % v S (4-3-12)
gk 1 Sk k 1 2 Sk
L Y (Sip1+ 8 - B i i1 (4-3-13)

in which
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v2sh-85,-285+8%, (4-3-14)
VS§i-85-28%,. 8%, (4-3-15)

the terms € , Viiny » Nian - Biar + S, V35" correspond to those

given in equations (4-3-6) to equation (4-3-15). Rearranging equation ( 4-3-5), we

have
Asil«Bsl.cskl-D (4-3-16)
where
A
1 k1 3 ki V‘;uz i
A = - E 8".12." - E‘ 8"_121' - - (4-3-17)
3 k1 3 ki 3 Kk
ST A B g e Tl (4-3-18)
X X k1 ket -3-
_ing.g +Yi,:1}2,j+ L1I2,j+Ei.j»112+EqJ-1Q
16 *H2° ) 2 2 2

3 :
C - gins - Vit (4-3-19)



1
D-S§;- [3:.112,, (S} g * if) - e:‘1/2,,' (Si}( + L‘1{j)] "% [nz'.m (S )

- n"ru.vz (Si,;( + i.i-1)] + E (3:112,,’72 Sif - 3‘5‘112,,"2 SL‘;J + n{mrz"’zsif

Yiiny v,
- "15:1/2‘728:;;.{1) + k;m (Si.l;J - Sif) L (Si,/!f -

1))
k
S, S.Qr
. Elﬁ‘llz (s“:1 _ Sif) _ El,!-1f2 (SIJ _ Sijlf1) . h_t _ ;;t
i ]
1nk1 S . 1nk1 Sk1 ) 1nk1 gkt _ 1 S
4 ife 120 4 iE12%iE1 8 iF112%0 -1 16 u-1f2 i
1 1 1 k1 ki E' /) E:,H/z k1
-— S MaanSEt « —n . ARGkt | iR g
1-1IZJ @12 ijs i 12%if1 ij+1 i1
16 16 16 2 (4-3-20)

equation (4-3-16) is in tridiagonal matrix form:

) IC]
[A] 18] [CJ

~ RS

1] [ 1D Aps] |
[s4] [Dy]

hY

~ Ay

[Anzd [Bn2d [Chad | [[Smal [ 1]
[Ansl [Bpsl | [[Spmal Con1*Sml |

(4-3-21)

As before, specification of the boundary conditions completely determines the

80
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solution domain.

The finite difference form of the downstream boundary conditions for the

concentration gradient are as follows:

os sm.i B sm-1j
K 2ml omi 4-3-22
ox Ax ( )

os Sin = Sin1
—_— 4-3-23
3y Ay ( )

or

mj = °mAj

and

in-1
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4.4 Solution Technique

Globally convergent methods are well-known numerical methods for solving
nonlinear equations. These methods generally converge to a solution from almost
any starting point. They combine the rapid local convergence of Newton's
method with a global convergence strategy that will guarantee some progress

towards the solution at each iteration.

In this project, the globally convergent Newton routine was used; the
routine computes the necessary partial derivatives of the equation by finite
differences and computes the Jacobian. The method is started with an initial
guess x(1:n) for aroot in 3 dimensions. The values of the initial guess are taken
from the output data by solving equation (4-2-1), (4-2-9) and (4-2-1 1) together with

the boundary conditions. The steps for the global method are:

F(x) - 0

we rewrite equation (4-2-1),(4-2-9) and (4-2-11), and get

F(1) - AAxX(1) + BBx(1)X(3)*® - CCx(3)*® . DD-X(3)'® (4-4-1)



where
AA - (uf « v
BB - 1
gatn?
CC - Py [Sox - 2ax (hiaj - D) - Zg_:,x (Upgj - Ugq)

k

Vii Ui

- u.. - — +
2 gay ( i1 uu-1) gAt

9t
gn*

DD -

F(2) = AA-x(2) + BBx(2)x(3)% - SS:x(3)*® . RR-x(3)"®

A
n2

SS - 1 4
25y

k
- —_— (V.., - V.. +
2gAy ( ij1 u-1) gAt

[Soy - 5= (hyq - o) - 2g_:,x (Viaj - Via)
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(4-4-2)

(4-4-3)

(4-4-4)

(4-4-5)

(4-4-6)

(4-4-7)



where

RR - 2l
gn?

F(3) - PPx(1) + QQx(2) + EEx(3) « GG

in which

6
PP - Zx (higj - hiy))

QQ - 52 (hyy - iy

1 6 8
EE - t oax Uiy - Upgp) + 2y (Vig1 - Viga)
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(4-4-8)

(4-4-9)

(4-4-10)

(4-4-11)

(4-4-12)



85

at 2ax 2ax
4-4-13
2ny 22y W

after solving equation (4-4-1),(4-4-6) and (4-4-9), the set of h, u, v, are obtained,
these values are taken as the next approximation, this procedure is continued until

the successive values are sufficiently close to each other.
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CHAPTER 5
RESULTS AND DISCUSSION

The set of equations arising from the mathematical model of pollutant
transport in overland flow with infiltration is solved using numerical methods. The
usefulness of the proposed model lies in its capability of producing general results
that can be used to predict the fate of a pollutant that is infiltrated, dissolved and

washed-out by overland flow.

The overland flow was modelled with the St.Venant equation and with the
kinematic wave approximation. The pollutant transport was modelled with the
advection-diffusion equation, a solubility rate equation and a solid balance

equation. The solution procedure is illustrated in Fig 5.1.

The following cases were simulated:

1. The hydraulic behaviour of overland flow,

2. The migration process of pollutant in overiand flow,
3. Effect of diffusion coefficient, -
4. Effect of solubility,

5. Effect of rainfall,

6. Effect of infiltration.



OVERLAND FLOW
PVITHINFILTRA TION
2-D ST.VENANT 1-D KINEMATIC
EQUATION WAVE
APPROXIMATION
IMPLICIT CENTRED AND ( )
EXPLICIT SCHEME | BOX SCHEME |

POLLUTANT TRANSPORT
& SOLUBILITYRATE

CENTRED QUICK

[EXPLICIT FOR WARD}
SCHEME

QUICK SCHEME

Slow depth h, velocities u, v,
pollutant concentration s

SOLID BALANCE EQUATION

the amount of pollutant that is
infiltrated, dissolved and washed-out

Figure 5.1 The Sketch of Solution Procedure
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5.1 HYDRAULIC BEHAVIOUR OF OVERLAND FLOW

Previous research has treated overland flow and transport phenomena on
a separate basis. In this work, both. phenomena have been integrated into the
study. Solution to the equations for overland flow is first obtained, these results
are then combined with the pollutant transport equation to obtain solutions for the
pollutant concentration field as influenced by rainfall, runoff, infiltration and
dissolution. The hydraulic behaviour of overland flow is illustrated by Fig 5.1.2 and
Fig 5.1.3, which are three dimensional representations of flow depth and isolines
of flow depth, respectively. These results were obtained assuming a constant
rainfall intensity and the Green-Ampt infiltration equation on a x-y plane with bed
slope of 0.0068 in both the x- and y-directions. The dimensions of the plane were
500 m square, the time interval At used was 5s, the computational grid number
MxN was 50x50, while the Manning roughness coefficient had a constant value of
0.04. A zero velocity gradient and a zero depth gradient boundary condition were
imposed at the downstream end. Fig 5.1.2 is a three dimensional representation
of the spatial variation of depth due to runoff. As expected, the flow depth

increases with increase of distance and time.

The results obtained with the one dimensional kinematic wave equation with

constant rainfall rate and the Green-Ampt infiltration equation using the box
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scheme are shown in Fig 5.1.4. The length of land surface is 500m, the bed slope
is 0.0068, and the Manning roughness coefficient is 0.025. A time step At of 3s,
with a computational grid number M of 50 was used. A constant rainfall intensity
of 0.000028m/s, that stopped after 2000s was assumed. As seen in figure 5.1.4,
when time equals 600s, a mostly uniform water layer covers the land surface
except at the upstream end. Since the surface is tilted, the flow depth gradually
increases in the slope direction with increase of time and "accumulates"
downstream. After 2000s, the rainfall stops, so the upstream flow depth gradually
decreases and tends to dry out, while downstream, the accumulated water

decreases. This family of curves may be used to predict runoff at different time
steps, similar charts may be developed for other types of rainfall intensity
distributions. The hydraulic part of the model has been validated against the

published data of Tayfur et al. in 1993. This is illustrated in figure 5.1.5.

5.2 RESULTS OF POLLUTANT TRANSPORT

5.2.1 The Migration Process of Pollutant in Overland Flow

Transport phenomena is commonly modelled using the advection-diffusion
equation which provides the variation of concentration as a function of space and
time. In most practical situations, the concentration distribution is specified as an

initial condition on the basis of physical arguments. The present project is different
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in that a specified spatial distribution 6f solid pollutant (for example a pesticide or
fertilizer) is provided. This requires the introduction of the concept of a solubility
rate St which is added to the advection-diffusion equation as a source term and
describes the process of pollutant dissolution. This process is expected to depend
on the degree of turbulence characterized by the turbulent skin friction, solubility
and local concentration. Fig 5.2.1 to Fig 5.2.10 show that the mass of dissolved
pollutant is affected by the solubility rate St and that the magnitude and position
of the peak concentration varies with increasing time. Two different initial
conditions have been modelled:

i) initial pollutant mass applied at one grid cell,

ii) initial pollutant mass uniformly applied over the land surface. The test domain
consists of a 50x50 grid (with Ax = Ay), solubility C* is 357 kg/m®, diffusion
coefficient D is 0.5 m¥s, reaction rate constant k,=0.00001m?s/kg, and an initial
density of coverage W, of 0.05kg per grid cell area is used, which is Ax multiplied

by Ay.

In the first case the solid pollutant is supposed to be applied on one grid
cell. Fig 5.2.1 shows the results for the one-dimensional situation. These results
have been obtained from the advection-diffusion equation using the box scheme
and a fully time centred implicit QUICK scheme. As the rainfall excess is converted

to surface runoff, the pollutant dissolves and an aqueous concentration of pollutant
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begins to spread arcund its initial position. For example, Fig 5.2.1 indicates fhat
at time of 600s, the peak concentration is about 0.5 kg/m® and is situated near the
upstream. As the rainfall continues.and fresh water continues to replenish the
runoff, the combined effect of advection and diffusion results in the position and
magnitude of the peak concentration changing, the peak concentration moving
downstream with the magnitude being reduced. When time equals 2100s, the
peak concentration becomes less than 0.1 kg/m® and is situated close to the
downstream end. The process of pollutant dilution is faster at the initial stage than
at a later stage. Figs 5.2.2 to Fig 5.2.5 show the variation of pollutant
concentration for the two dimensional simulations. These figures indicate ‘the
same generally expected behaviour, namely that with increasing time, the peak

concentration decreases and migrates downstream.

In the second case, initial pollutant mass is uniformly applied over the
computational domain. Fig 5.2.6 shows the variation of concentration in the one-
dimensional situation. With runoff, the pollutant is supposed to be uniformly
dissolved at the beginning. With increase of time, the pollutant concentration
migrates and accumulates downstream where it finally leaves the domain. Figs
5.2.7 to 5.2.10 show the two-dimensional case. The peak concentration always
occurs (as expected) at the downstream end. The results of the two-dimensional

case agree well with that of the one-dimensional situation.
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5.2.2 The Effect of Diffusion Coefficient

After the process of pollutant dissolution, diffusion becomes a sensitive
factor. Generally speaking, diffusion is caused by local concentration gradients
which are in turn caused by mixing on a molecular and a turbulent scale. In
shallow overland flow, the bed shear stress is large which leads to strong turbulent
mixing vertically and then horizontally. In this study, given the shallow depth of
flow, the pollutant concentration is assumed to be uniformly distributed vertically.
The effect of varying diffusion coefficient is illustrated in Fig 5.3.1, 5.3.2 and 5.3.3.
These results were obtained by using the box scheme and a fully time centred
implicit QUICK scheme with a solubility C* of 1.85kg/m® and a reaction rate

constant k, of 0.01m? s/kg.

For the one-dimensional case, at the same time step of T=480s, in Fig 5.3.1,
with a diffusion coefficient D of 0.5 m%s, the maximum concentration is about
0.35 kg/m® while in Fig 5.3.2, a diffusion coefficient D of 0.1m?s, results in a
maximum concentration of about 0.7kg/m>. Fig 5.3.3 displays the relationship
between diffusion coefficient D and maximum concentration S,._.. It is evident that
as expected, the larger the diffusion coefficient D, the lower the maximum
concentration of pollutant. Numerical tests confirm that the diffusion coefficient

improves the stability properties of all the finite difference schemes tested and also
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reduces the amplitude of grid-scale oscillations.

For the two dimensional case, the results are presented at 1727.85s, using
a solubility c* = 357kg/m> and a reaction rate constant k = 0.0001. F ig 5.3.4 was
obtained using a diffusion coefficient D of 1m%s, Fig 5.3.5 used a D = 10 m%¥s.
From comparing the two figures it may be seen that the concentration in Fig 5.3.5

is more diffused than that in Fig 5.3.4.
5.2.3 The Effect of Solubility

The maximum amount of a solute that may be dissolved in a solvent so that
a saturated solution is obtained is expressed as the solubility. The solubility
depends on the solute (pollutant) and the temperature. For example, Calcium
Chloride CaCl, has a solubility of 745 kg/m® at a temperature of 20°C. That is, at
most 745g solute can be dissolved in 1litre water. In this study, values of solubility
of typical chemical compounds were used to test the behaviour of different types
of pollutant. Figs 5.4.1 and 5.4.2 is a comparison of the results obtained for two
different solutes Barium Oxide (BaO, C* solubility = 34.8kg/m*®) and Calcium
Chloride (CaCl2, C* = 745kg/m* ). - The results were obtained for the same
hydraulic conditions, time=1727.85s and constants k and D with respective values

of 0.00001m* s/kg and 1.0 m¥s. A larger solubility results in faster dissolution of
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the pollutant and higher concentration.
5.2.4 The Effect of Rainfall

Fig 5.5.1 shows the effect of rainfall on pollutant concentration. The
following conditions were used: time interval At 5s, solubility 357 kg/m®, reaction
rate constant k, 0.00001 m?s/kg, Qr 0.000028m/s. The asterisk lines are for the
case when the rainfall is stopped at a time greater than 1000s, while the solid circle
lines represent the behaviour with a constant rainfall rate. Higher rainfall intensity
will result in larger dilution of the concentration. When the rainfall stops, there is
no freshwater inflow, so the rate of dilution will be slowed down. Comparison of
the two curves at a point in time after tﬁe rainfall ceases indicates that the pollutant

concentration remains higher if rainfall ceases than if it had continued.
5.2.5 The Effect of Infiltration

Fig 5.5.2 indicates the influence of infiltration on pollutant concentration.
The conditions are the same as in Fig 5.5.1. The solid circles are with the
presence of infiltration, the asterisks are for an impervious surface. These results
indicate that pollutant concentration in the presence of infiltration is higher than in

its absence, since for the same amount of solute, as the amount of available
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solvent decreases, the concentration increases.

5.3 THE APPLICATION OF INFILTRATION MODELS

At the present time a complete model to estimate the amount of infiltrated
pollutant is unavailable. The model proposed in this study may be regarded as a
first step in a quantitative analysis of the infiltration behaviour of different
pollutants. In the process of infiltration, the ponding time tp is a critical parameter
which may be determined from equation (3-2-1). It is related to the rainfall intensity
Qr, rainfall duration and to the soil property. The rainfall intensity Qr may be
evaluated from

the formula:;

86
R N s

where

Qr = rainfall intensity

T, = rainfall duration

If the rainfall duration is longer, the ponding time appears later and vice versa.
The Green-Ampt infiltration model describes the infiltration process and can be

used to estimate the amount of infiltrated pollutant. Normally, the application of the
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Green-Ampt equation is limited to times greater than the ponding time, because in
its original form, it was intended for use where infiltration resulted from an excess
of water at the ground surface at all times (Viessman, 1977). It indicates that the
rate of infiltration decreases with increasing time, therefore, the total amount of
infiltrated pollutant increases at a slower rate with an increase of time since we

assume it to be proportional to the infiltration rate of water.

With this model therefore, it is expected that the pollutant infiltration will
occur during the time period leading up to ponding. In order to predict the amount
of infiltrated pollutant during this stage, Horton's equation is used. This equation
indicates that when the rainfall rate exceeds the infiltration rate, water infiltrates
into subsurface at a rate that generally decreases with time (Bedient, 1988), which

is physically reasonable.

In this work therefore, a two stage computation of the infiltration process is
proposed. Before the start of ponding, Horton's equation (3-2-2) is used to
estimate the total pollutant mass infiltrated. Once ponding has occurred, the
Green-Ampt equation (3-2-8) is used to evaluate the pollutant mass "lost" due to

infiltration.

At the first stage, before ponding, the infiltration capacity is reduced in
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proportion to the cumulative infiltration volume F, which may be obtained by

integrating Horton's equation (3-2-2),

F(t) - £t + (FF)k(1-e (5-2)

Equation (5-2) may be solved iteratively for a time t as a function of F. The
potential cumulative AF is determined from the difference between the value of F
at time t+At and time t. The initial value of t is the starting time zero. The actual
infiltration volume increment over the time interval AF,, is determined as the

minimum of

AF,; = min (potential AF, rainfall volume)

Rainfall volume is equal to rainfall rate multiplied by the time interval. This permits
determination of the actual amount of available water for infiltration. By solving
equation (5-2) iteratively, the equivalent time T, can be obtained which is required
to infiltrate the actual cumulative infiltration volume of the Horton parameter. The
Newton-Raphson method has been used to obtain the root of equation (6-2). The
intial guess is Te+At/2. lterations converge rapidly to within four decimal places.
During the next time interval, the value of F corresponds to the equivalent time and
not to the real time. By solving equation (5-2) for each value of t, the infiltration

capacity at any time may be found.



98

During the period before ponding, especially at the start of rainfall, it is
assumed that pollutant infiltrates into the soil as an aqueous solution with
saturated concentration. In an attempt to realistically model the process of
dissolution of the pollutant to a final saturated state, a delay time coefficient k, has
been introduced. k, decribes the time taken for a solute after initial contact with a
solvent, to develop into a saturated solution. It is also assumed that no pollutant
mass is lost due to runoff at times less than the ponding time. In other words, the

only mechanism for pollutant to be consumed is by infiltration.

Before ponding, the amount of pollutant that has infiltrated into the soil may

be calculated from equation (3-3-11):

A - ckefAtAX-Dy

the amount of remaining pollutant decreases with an increase in the amount of
infiltrated pollutant; once the pollutant mass decreases to zero, further infiltration

is only of pure water.

After the start of the rainfall excess period, the Green-Ampt equation (3-2-6)
is used, in which At is the interval between the local time and ponding time.
During this stage, infiltration capacity is a function of time. After ponding, the

amount of pollutant infiltrating into the soil may be calculated in the following
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manner:

For an unsaturated solution:
B - s:Qi-Ax-Ay-At

For a saturated solution:

C - ¢ Qi-Ax-Ay-At

The total infiltrated pollutant mass can be evaluated from:

QDL - YA - ¥B + XC

A test case with the following data has been investigated: the length of land
surface is 500m with a bed slope of 0.0068 and a Manning roughness coefficient
of 0.04. The initial pollutant mass is applied at a local spot with a density of 0.05
kg per grid cell area, which is Ax multiplied by Ay. The treated area is located
100m from the upstream end. The solubility of the pollutant C* is 745kg/m?, the
diffusion coefficient D is 0.4m? /s and the reaction rate constant k, is
0.000001m?-s/kg. The rainfall intensity is 0.000013m/s with a duration of 2000s.
The Horton parameters are such that the initial infiltration capacity f, of a

watershed is given as 0.0000245m/s, final capacity f, is 0.00001856m/s, the time
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constant k; is 0.000389s and the delay time coefficient k, is 0.0005. Before runoff
reaches equilibrium, i,e. before ponding time, the amount of infiltrated pollutant
may be estimated from the infiltration capacity, according to the Horton equation.
Fig 5.5.3 shows that curve A represents the amount of infiltrated pollutant before
ponding time, i,e. time from zero to 438s. Curve B represents the amount of
infiltrated pollutant after ponding time. Before ponding, the residual pollutant mass
decreases with infiltration. Once ponding occurs, the pollutant dissolves and then
washout by the overland flow occurs as well as infiltration. This is computed to
establish the residual mass of pollutant. As seen from Fig 5.5.3, before pond'ing,
the amount of infiltrated pollutant is 0.38kg, while after ponding occurs, the
amount of infiltrated pollutant is about 3.18kg. Fig 5.5.4 represents the time
evolution of residual pollutant, the total applied pollutant mass 5kg being
consumed within 851s. Fig 5.5.5 represents the time evolution of the dissolved
solute, the total mass of dissolved solute is 4.62kg. Fig 5.5.6 represents the time
evolution of washed out pollutant, the total amount of pollutant washed out is
1.55kg. Our results indicate that during the time period leading up to ponding, the
amount of pollutant infiltrating into the soil depends on the solubility, the infiltration
capacity of the soil as well as on the time delay coefficient. For example, when k,
equals 1, the total pollutant mass is lost by infiltration into the soil. The period
before ponding is therefore important and cannot be ignored in a practical

situation.
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At every time step, in the computational domain, there is a value of
maximum concentration. The trace of maximum concentrations are shown in-Fig
5.5.7, they describe the evolution of maximum concentration with time. Fig 5.5.8
shows the results using different numerical schemes, the asterisk lines represent
the results obtained by using the forward explicit QUICK scheme and the solid
lines represent the results obtained by using the fully time centred implicit QUICK
scheme. Comparison of the results with different schemes indicates good
agreement. The results in this study are physically realistic, while the numerical

algorithms used are stable and robust .
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CHAPTER 6
CONCLUSIONS AND RECOMMENDATIONS

A mathematical model based on physical reasoning for pollutant washout
and transport in overland flow with infiltration, has been proposed in this study.
The hydraulic behaviour of overland flow with infiltration and pollutant transport
have been modelled individually using the results from the overland flow and
infiltration to calculate the pollutant transport. The set of equations governing the
complete system have been integrated numerically using various finite difference
algorithms. A new formulation for the pollutant washout based on bed shear
stress, reaction constant and ambient concentration of pollutant in the overtand
flow has been proposed. Several test computations indicated that the model
provides reasonable results. The hydraulic portion of the model has been tested
against pnblished field data with satisfactory agreement. Unfortunately, no field
measurements of pollutant infiltration and washout are available for purposes of

comparison.

In this study, a reaction rate constant k, appears in the solubility rate
equation. For a given pollutant, k, is constant and has a physical basis. Its use
lies in the fact that it may be treated as the only calibration parameter in the

solubility rate equation which expresses the rate of mass transfer of a solid
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pollutant to an aqueous solution. Actual values may be obtained by experiment.

Ancther parameter introduced in this study is the delay time coefficient k,
introduced into the infiltration process before ponding time. It describes the time
required for the solution containing the pollutant to become saturated. It directly
affects the amount of infiltrated pollutant, especially during the initial period of
rainfall. It is thus necessary to investigate the values of delay time coefficient by
experiment, especially at the initial period during which saturated concentration is

reached.

In this study, the effects of adsorption and any chemical reactions have not
been considered, which may also be important factors in the poliutant transport.

Further refinement of the model should incorporate these two important effects.
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