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RESUME

Un modele mathematique du processus du transport de polluants par

ruissellement et par infiltration est developp6. Ce modele couple des equations

de ruissellement, d'advection-diffusion du transport des polluants, de mise en

solubilite et de continuite de masse. Les equations bidimensionnelles du

ruissellement, I'equation de continuity et I'equation de la quantite de mouvement

sont resolues et les resultats obtenus servent a resoudre I'equation du transport

des polluants. Les equations bidimensionnelles du transport des polluants dans

lesquelles les proprietes physiques et chimiques sont decrites, I'equation du taux

de solubilite ainsi que I'equation de continuite de masse sont modelisees. Le

modele tient egalement compte des apports de la pluie et de I'infiltration, I'equation

de Norton et I'equation de Green-Ampt etant utilisee pour estimer les volumes

infiltres. II est ainsi possible de prevoir la quantite des polluants dissous, infiltres

et lessives. Pour solutionner les equations du ruissellement et du transport des

polluants Ie traitement numerique est applique. En utilisant la methode des

differences finies dans une formulation explicite, implicite ou schema boite, les

equations de St-Venant ou leurs approximation pour I'onde cinematique sont

resolues. La convergence est assuree par la technique iterative de Newton-

Raphson pour resoudre I'ensembledes equations non lineaires. L'equation

unidimensionnelle du transport des polluants est resolue par un schema explicite
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de differentiation en avant ou par Ie schema implicite centre temporellement

(QUICK). Ce dernier est utilise pour resoudre I'equation bidimensionnelle du

transport des polluants.
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ABSTRACT

A physically based mathematical model is proposed for the process of

pollutant transport in overland flow with infiltration. The model is based on the

overland flow equations, the pollutant transport equation modelled with advection-

diffusion, a solubility rate equation and the solid balance equation. The two-

dimensional overland flow equations consist of the continuity equation and

momentum equations which are solved using an implicit procedure. The results

are applied to the numerical solution of the pollutant transport equation. The

solubility rate equation and the solid balance equation account for the physical

and chemical properties of the pollutant being simulated. The model also

incorporates the effects of rainfall and infiltration. For the infiltration, the Horton

equations are used during the period when the soil is unsaturated followed by the

well known Green-Ampt equations after saturation.

The aim of this work has been to model the ultimate fate of a surface applied

pollutant by evaluating the quantities of pollutant that is dissolved, infiltrated or

washed-out. The complete St.Venant equations and the kinematic wave

approximation for overland flow are solved by using an implicit finite difference

method and a box scheme respectively. The global convergence of the Newton

iteration technique is used to solve the nonlinear set of equations obtained with the
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implicit finite difference formulation. The forward explicit and the fully time centred

implicit modified QUICK finite difference schemes are used to solve the one

dimensional pollutant transport equation. The fully time centred implicit modified

QUICK scheme is used to solve the two dimensional pollutant transport equation.

The Fortran language has been corded in and executed on a PC-based platform.



CONDENSE EN FRAN AIS

Le ruissellement de surface ne cause pas seulement I'erosion du solet des

inondations mais transporte aussi les polluants qui rejoignent un cours d'eau ou

la nappe phreatique par infiltration. La contamination de la nappe phreatique

engendre des problemes serieux pour I'exploitation de cette ressource hydrique.

Le controle des ressources d'eau est devenu une haute priorite et toute tentative

pour resoudre ce probleme demands une excellente comprehension du

comportement hydraufique du ruissellement, de I'infiltration et du transport des

polluants. De plus, la comprehension des phenomenes de base permet de

determiner les profondeurs et les vitesses de I'ecoulement et sa capacite a

entraTner et a transporter les polluants.

Plusieurs travaux sur la modelisation du ruissellement ont ete effectues par

des pionniers. Ces recherches ont conduit a une connaissance approfondie des

mecanismes mis en jeu dans Ie comportement de missellement en une ou en deux

dimensions. Cependant, la modelisation du transport des polluants, leur captage

par I'eau et leur sort ultime une fois infiltre n'ont pas re?u une aussi grande

attention. Bien que la modelisation du phenomene du transport basee sur

I'equation advection-diffusion soit courante, parmi toutes les recherches realisee,

peu de recherches ont considere les effets du ruissellement, de I'infiltration et de
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taux par lequel les polluants se dissoudre dans I'ecoulement.

Le but de ce travail est de mod61iser Ie ph6nomene du ruissellement sur

surface permeable, de modeliser Ie phenomene du transport des polluants avec

dissolution, de proposer un models de mise en solubilite et de developper une

sequence de procedures numeriques appropriee a simuler I'effet combine des

phenomenes mis en jeu.

Cette etude decrit Ie developpement d'un modele numerique base sur

I'ensemble des processus de missellement avec transport des polluants. Ce

modele s'appuie sur les lois de la conservation de la masse et de la quantite de

mouvement pour les phenomenes physico-chimiques naturels; ces phenomenes

comprennent la pluie, I'infiltration, Ie taux de solubilite, la diffusion et i'advection.

La modelisation du missellement est obtenue par la resolution numerique des

equations de St-Venant ou des equations cinematiques.

La modelisation du transport des polluants est basee sur trois equations

decrivant Ie phenomene du ruissellement, la dissolution des polluants et Ie bilan

solide. Dans ces equations, Ie caractere transitoire du transport des polluants

dans Ie ruissellement a ete considere en combinaison avec I'infiltration. La

model isation des aspects vraisemblablement les plus significatifs a ete faite: 11
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s'agit du ruissellement avec infiltration, compte tenu du type de polluant,

I'advection, la diffusion ainsi que Ie taux de solubilite. L'equation fondamentale qui

decrit Ie phenomena du transport est celle de I'advection-diffusion. Un terme

source est ajoutee a I'equation de I'advection-diffusion de fagon a decrire I'effet

du taux de solubilite. La solution des vitesses du ruissellement est utilisee pour

decrire 1'effet de I'advection non permanent. Un terme de puits (source negative)

est ajoute pour decrire I'apport de la pluie. L'equation du transport des polluants

proposee peut s'ecrire ainsi:

as^uBs.v9s = 9{D. BSY 9(D. esVst SQr

9t ~9x~ 9y 9x'~x9x' 3x'~y9y' h h

La representation mathematique du taux de solubilite d'un polluant est

basee sur Ie comportement physico-chimique de ce polluant dans Ie ruissellement.

Dans cette etude, I'ensemble des effets chimiques et physiques est pris en

consideration. Le taux de solubilite est presume proportionnel au contrainte de

cisaillement a la surface de ruissellement, a la difference entre la valeur de la

concentration saturante et de la concentration locale, et finalement a une

constante de proportionnalite qui exprime un taux de reaction dependant du solute

et du solvant consideres. Cela conduit a I'expression mathematique suivante:
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S, -^- kr(c'-s}

ou

T. V.s,. v"y

A I'aide de I'equation pour Ie bilan solide, la quantite de polluant dissous, infiltre

et lessive par missellement peut etre estimee.

L'infiltration et la pluie sont des facteurs importants dans un modele

hydrologique. lls n'affectent pas seulement Ie temps mais aussi la distribution et

I'ampleur de la ruissellement. Ces facteurs influencent la quantite de la masse

polluante en migrantion dans Ie sol. Ces simulations ont supposees une intensite

constante de la pluie dans I'equation du missellement; cependant, Ie modele peut

accepter une intensite variable. Le taux d'infiltration est calcule en utilisant

I'equation de Horton et celle de Green-Ampt. L'equation de Horton est utilisee

pour prevoir la quantite de polluants infiltres avant que I'accumulation a la surface

ne se manifeste et celle de Green-Ampt est utilisee pour estimer celle infiltree une

fois I'accumulation de surface satisfaite.
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Pour modeliser Ie ruissellement unidimensionnel, Ie schema "boite", I'une

des methodes comportant une equation a une seule inconnue,

inconditionnellement stable bien que limite a un intervalle de temps (Wood and

Arnold, 1990), a ete utilise pour resoudre I'equation de I'onde cinematique. Dans

Ie cas bidimensionnel, une schema implidte est utilise pour resoudre les equations

completes de St-Venant. Chaque modele inclut les effets de variations

topographiques dans une pente, incluant la rugosite de la surface, I'infiltration

dans Ie sot et I'intensite de la pluie. La propriete de convergence globale de la

technique d'iteration de Newton-Raphson est exploitee pour resoudre I'ensemble

des equations algebriques non lineaires obtenues par la discretisation. Les

solutions des equations de St-Venant pour la profondeur de I'ecoulement et les

deux composantes de la vitesse ont ete associees a I'equation du transport des

polluants, laquelle fut resolue par I'utilisation du schema QUICK (Quadratic

Upstream Interpolation For Convection Kinematics) modifie, developpe

originalement par Leonard (1979) et tres utilise dans la solution des problemes

relies a t'hydraulique. Pour I'equation unidimensionnelle du transport des

polluants, Ie meme schema QUICK cette fois avec formulation explidte et celui

centre dans Ie temps avec une formulation implicite ont ete tous les deux utilises.

Pour Ie cas bidimensionnel, Ie schema implicite completement centre sur Ie temps

est utilise.
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Pour qu'un probleme mathematique soit "bien pose", il est essentiel de

definir correctement les conditions initiates et frontieres. Dans Ie cas du

missel lement, il est possible de supposer une tres mince couche d'eau initiate sur

une surface seche au depart, au debut d'une simulation. Cette artifice evite Ie

traitement des ecoulements avec des profondeurs nulles; les simulations ont

suppose une couche initiale de 10'4m. Deux cas differents de conditions initiales

ont ete consideres dans la distribution de la masse polluante:

a) Une masse polluante initiale concentree en un point,

b) Une masse polluante repandue uniformement sur Ie sol.

Les conditions limites devraient etre basees sur des considerations physiques.

Dans Ie cas du ruissellement, utilisant I'equation bidimensionnelle de St-Venant,

des profondeurs de I'ecoulement et des vitesses de I'ecoulement sont consideres

nulles. Pour I'approximation de I'onde cinematique, Ie debit unitaire est nul. En

aval, pour I'equation unidimensionnelle de St-Venant, les gradients de profondeur

de I'ecoulement et les vitesses sont supposees nulles. Pour I'approximation de

I'onde cinematique, les conditions limites en aval ne sont pas necessaires. Dans

Ie cas du transport des polluants, en amont, la condition de concentration nulle est

utilisee; en aval, une gradient de concentration nulle est utilisee.

En utilisant I'integration numerique des equations, Ie comportement

hydraulique du ruissellement est estime; la quantite de polluants dissous, la
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quantite finale d'infiltration et celle lessive sent determines. A I'aide de ces

resultats, la migration des polluants appliques a la surface dans la nature peut etre

analysee.
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CHAPTER 1

INTRODUCTION

1. 1 GENERALITIES

Overland flow refers to that part of the streamflow which originates from rain

which, having failed to infiltrate the soil surface at any point, flows over the land

surface to channels (Kirkby, 1979). It is well-known that overland flows not only

cause surface erosion and floods but also carry pollutants, such as pesticides,

fertilizers, and the debris of plants and animals into the receiving water body.

Many of these pollutants are nonbiodegradable or are only slightly soluble in water;

when sprayed on land, they persist in the soil for long periods of time. With heavy

rainfall, these pollutants may be carried as suspended particles in the surface

water, partially dissolve and infiltrate into the groundwater or join the river system.

The long-term effects may be serious. Some consequences of pollution could be:

(1) Oxygen depletion in water bodies due to the action of certain substances, (2)

Excess plant nutrients, (3) Agents of biological dysfunction, and (4) Sedimentary

and erosional processes (John, 1977).

Any attempt to define and solve this problem requires a good understanding

of the laws of overland flow. A fundamental knowledge of the hydraulics of



overland flows is very important in order to be able to determine flow depths and

velocities, and, hence describe the capacity of the flow to entrain and transport

pollutants (Moore and Foster 1989).

Since the equations governing these types of flow are intractable to

analytical solution, numerical techniques must be employed.

Much effort has been devoted to numerically solving the system of

governing equations. Numerical methods have proved to be powerful tools in the

simulation of diverse hydraulic and transport phenomena.

This study describes the development of a numerical model that is focused

on modelling overland flow together with pollutant transport. The model is based

on the continuity equation, the momentum equation and the mass conservation

law. It attempts to account for the complicated natural physical and chemical

phenomena, which includes rainfall, infiltration, solubility rate, diffusion and

advection. Using numerical integration of the governing equations, the hydraulic

behaviour of the overland flow is estimated, the amount of pollutant that is

dissolved and the ultimate fate of the pollutant due to infiltration and washout is

determined. With the help of these results, the migration of a surface applied

pollutant in nature may be analyzed. The physical significance of this study may



be expressed by the sketch shown in figure 1 1 .

It is hoped that the work presented here will have many engineering

applications and provide a scientific basis for water pollution control in

environmental engineering.

1.2 SCOPE OF PRESENT WORK

Different from many previous researches that treated the overland flow and

transport phenomena as two individual parts, this project focus on the combination

of these two parts. A numerical model for pollutant washout and transport in

overland flow with infiltration is proposed in this study. The model takes full

account of the two-dimensionality and transient character of the overland flow and

pollutant transport.

In order to describe the hydrodynamic behaviour of overland flow. numerical

solutions of the kinematic wave equations and the full two dimensional St. Venant

equations were obtained. The variation of surface roughness, rainfall intensity and

soil infiltration is considered. For the one-dimensional overland flow problem, a

box scheme has been used to solve the kinematic wave equation. This scheme is

based on an explicit time marching algorithm which is unconditionally stable (Wood
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and Arnold 1990). For the two-dimensional case, an implicit space centred finite

difference scheme was used to solve the full dynamic St.Venant equations. The

globai convergence property of the Newton-Raphson iteration technique was

exploited to solve the nonlinear set of algebraic equations.

A pollutant transport model, which is based on the mass conservation law

has been proposed. This model includes the advection-diffusion equation,

solubility rate equation and a solid balance equation. Pollutant transport is a

complex process, which is affected by many factors. In this study, an attempt has

been made to model those which are likely to be the most significant; the rainfall

characteristics, the overland flow with infiltration, the type of pollutant, advection,

diffusion and solubility rate.

The mathematical model for the pollutant solubility rate is proposed in this

study. In most practical situations, the concentration distribution is specified as an

initial condition on the basis of physical arguments, the present project is different

in that a specified spatial distribution of solid pollutant is provided, and so the

concept of solubility rate should be introduced. This model is constructed based

on the physico-chemicaf behaviour of pollutant in overland flow and drawing on the

analogy between heat, mass and momentum transfer, in which both physical

effects such as the flow depth, the bottom bed shear stress and the density of the



pollutant as well as chemical effects, i. e. solubility and reaction rate constant were

considered.

For purposes of demonstration, a constant rainfall intensity was used in the

overland flow equation, infiltration rate is calculated by using Norton's equation and

the Green-Ampt equation. Horton's equation is used to predict the amount of

infiltrated pollutant before ponding begins and the Green-Ampt equation is used

to describe the subsequent infiltration behaviour after the start of ponding.

Finally, the two parts were combined to form a pollutant concentration

equation. The solutions of the St. Venant equations for the flow depth and the two

velocity components were coupled with the advection<liffusion equation which was

solved using a modified QUICK scheme. For one-dimensional and two-

dimensional pollutant transport, the forward explicit QUICK (Quadratic Upstream

interpolation for Convection Kinematics) scheme and the fully time-centred implicit

QUICK scheme were respectively used to solve the pollutant concentration

equation.

Then, from the solid balance equation, the amount of dissolved, infiltrated

and washed-off pollutant may be estimated.



CHAPTER 2

REVIEW OF LITERATURE

2. 1 MODELLING OF OVERLAND FLOW

The physically realistic modelling of overland flow is in general,

accomplished through the numerical solution of the St.Venant eauation. The two-

dimensional St.Venant equations that describe the motion of water with a free

surface, are based on mass and momentum conservation laws and derived from

the Navier-Stokes equations integrated over the depth with the assumption of a

hydrostatic vertical pressure distribution.

These equations may be expressed as follows (Tayfur et al., 1993);

The continuity equation

^ . ^) . agl. [Q^,y,0 - Of(x,y,0]cos(a)cos«t>) <2-1-1>

The momentum equation in the x direction:

t+ut+ ̂ + cos(a)cos^l^= ̂  sin(a) - ^g - -^ (2-1-2)
The momentum equation in the y direction:

^+ ul^+ ̂ + cos(a)cos(^= ̂ sin^ -syg-^- (2-1-3)9t 9x h
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Where

h = flow depth

u = flow velocity in the x-direction

v = flow velocity in the y-direction

Qr = rainfall intensity

Qi = infiltration rate

Q = net lateral inflow (rainfall-infiltration)

a = angle of the slope with respect to the x-direction

(|) = angle of the slope with respect to the y-direction

g = gravitational acceleration

Sx = the friction slope in the x direction

Sy= the friction slope in the y direction

The system is nonlinear so that no analytical solutions are generally available,

except those with highly restrictive assumptions.

The kinematic wave approximation is a popular approximation to the

St. Venant equation, and has been commonly used because of its simplicity. It

assumes that all terms in the momentum equation are very small compared to the

friction and gravity terms (Moore and Foster 1989). This results in the uniform flow

approximation for the momentum equation together with the continuity equation to

complete the set. The diffusion wave equation is another approximation to the



St.Venant equations. It assumes that the inertial terms are small compared to the

pressure, friction and gravity terms (Moore and Foster, 1989). This results in the

transformation of the original equations into a transport-diffusion set. This form of

the equation has found application in the modelling of routing of flood waves where

the propagation and attenuation is modelled with two parameters.

Obtaining solutions to the full St. Venant equations applied to overland flow

is not trivial. The difficulties arise from its following physical characteristics:

1) Overland flow is very shallow. It is not uncommon for the depth of overland flow

to be of the order of a few centimeters or even millimeters. Consequently, even

very small numerical oscillations will result in negative computed flow depths, thus

causing the numerical solution to fail.

2) The effect of shear stress induced by the bed roughness is larger than that for

the case of deep water. This often causes numerical difficulties leading to

complete failure during the computation.

3) Rainfall and infiltration reoresent a significant mathematical "source" and "sink".

respectively (Zhang and Cundy 1989) and must be carefully treated numerically

There has been many research studies for modelling overland flows.

Liggett and Woolhiser (1967) used the one-dimensional hydrodynamic equation

for modeling overland flow. They conducted extensive numerical experimentation
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to compare the behaviour of different numerical schemes for solving the

hydrodynamic equations. Although this study provided valuable experience and

guidelines for obtaining solutions to the hydrodynamic equation for overland flow,

it was limited to homogeneous plane surfaces.

Akan and Yen (1981) developed a one-dimensional overland flow model,

in which both surface and subsurface flows were described by a set of dynamic

wave equations, owever, only one- dimensional flow with homogeneous plane

surfaces was considered.

Chow and Zvi (1973) indicated the feasibility of two-dimensional

hydrodynamic modelling of watershed flow with a proposed theoretical model.

However, they used a much simplified version of the hydrodynamic equation in

which all terms related to the convective acceleration were dropped from the

hydrodynamic equation. These terms may be significant in flows with spatial

variations in hillslope characteristics.

Kawahara and Yokoyama (1980) presented a model for two-dimensional

overland flow. They assumed a depth averaged velocity of the flow at any point
;

of the watershed. The pressure was postulated to be hydrostatic neglecting, the

rainfall impact. Spatial variability of infiltration rate and roughness were ignored
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in their model.

Wood and Arnold (1990) have modeled overland flow given by rainfall-

runoffon a sloping plane using a one dimensional kinematic wave equation.

Zhang and Cundy (1989) solved the two dimensional overland flow equation

using the explicit MacCormack scheme. Their results were partially verified with

field experiments. More recently, the two dimensional kinematic wave equation

was modelled by Tayfur et al. (1993) and supplemented with field experiments.

Both studies included the effects of variations in hillslope feature, including surface

roughness, infiltration and microtopography.

The research cited above has provided considerable insight into the

mechanism, behaviour and modelling of overland flow in one and two dimensions.

However the aspect of pollutant transport and their ultimate fate through infiltration

and runoff into a receving water body has not been investigated. Table 2.1

summarizes previous work realised on overland flow. This study is devoted to, the

investigation of this problem.
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Table 2. 1 Previous Research on Overland Flow

Author Year Dimension Physical Condition

Liggett and
Woolhiser

1967 1-D Overland flow with homogeneous plane
surfaces

AkanandYen 1981 1-D Overland flow with homogeneous plane
surfaces,
both subsurface and surface flows were
described

Chow and Bon- 1973
Zvi

2-D Overland flow in which all terms related
to the convective acceleration were
dropped

Wood and 1990
Arnold

1-D Kinematic wave approximation

Kawaharaand 1980
Yokoyama

2-D Overland flow without spatial variability
of infiltration rate and roughness

Zhangand 1989
Cundy

2-D Overland flow including surface
roughness, infiltration and
microtopography,
the resuKs were partially verified with
field experiments

Tayfuretal 1993 2-D Kinematic wave equations including
surface roughness, infiltration and
microtopography
with field experiments.
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2.2 POLLUTANT TRANSPORT MODELS

Predicting the evolution and fate of a surface applied pollutant in overland

flow is a complex problem, since it encompasses the surface transport, infiltration

and washout. Usually, transport in overland flow takes place as a result of two

phenomena: advection and diffusion. Advection is that transport of a contaminant

which results from fluid motion. Diffusion is one of the most basic phenomena

occurring in nature. It is a process by which a substance in solution or in

suspension, migrates in response to a concentration gradient through the solvent

in a direction that would tend to nullify the concentration gradient. A complete

model for pollutant transport should account for the advection, dispersion,

diffusion, solubility rate and the chemical and biological reactions of the pollutant

as well as the two velocity components and flow depth of the overland flow.

However, the effects of dispersion and biochemical reactions may be neglected

for all practical purposes, when the pollutants are transported in a shallow

overland flow over a short time period. (Akan 1987). The process of pollutant

infiltration and washout is affected by many factors, chief among which are the

rainfall characteristics, the type of flow, the infiltration properties of the soil and the

type of pollutant.

In recent years, considerable effort has focused on numerically solving fluid
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transport problems. The model equation describing transport phenomena is the

advection-diffusion equation, it may be written as follows:

^. ^ . ̂ . A (D^) . A (D^)
3t ~9x ~9y Bx '~x9xf 9y '~y9y' (2-2-1)

where s = concentration (kg/m3)

u, v = the advection velocity in the x- and y-direction respectively (m/s)

with Dx and Dy are diffusion coefficient in the x and y direction,

respectively.

Siemens (1970) was one of the earlier researchers who attempted the

numerical solution of the advection-diffusion equation. He presented the

numerical solutions for two special cases: the one-dimensional diffusion-advection

equation, and the two-dimensional diffusion-advection equation with zero velocity.

In his researcti, the numerical solution of the two-dimensional diffusion-advection

equation with advection in two directions was not treated.

Li (1990) simulated the advective transport of a scalar. His results

however, were limited to the one-dimensional pure advection of a scalar with

constant velocity.
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Holly and Preissmann (1977) presented a numerical method for the

accurate calculation of advection and diffusion in one and two dimensions. Their

research considered the following problem: a neutrally buoyant marked fluid,

assumed to be uniformly distributed over the depth, is subjected to turbulent

diffusion and differential advection in a two-dimensional, time-dependent velocity

field that is assumed to be known. High accuracy was obtained by using the

derivative as the dependant variable.

Chen and Falconer (1992) modelled the transient one-dimensional source-

free transport of a scalar mass of pollutant concentration in an open channel, and

the simplified governing two-dimensional advection equation. In both cases,

constant velocities were used. All of the above work has been concerned with

transport phenomena in rivers and estuaries.

Farthermore, the individual phenomena were modelled seperately and not

in combination as acoupled system.

Akan (1987) proposed a mathematical model to predict pollutant washout

from impervious areas by overland flow, this model was based on the one

dimensional equations for kinematic overland flow and the pollutant transport

equation. However, the infiltration rate, solubility rate and diffusion coefficient
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were not taken into consideration. This study addressed only a single element of

the complex process of stormwater pollution and therefore the proposed model

could be useful only if used as part of a more comprehensive urban-runoff model.

The summarization of previous researches about the portion of transport

phenomena is listed in Table 2. 2.

Modelling pollutant transport phenomena with advection-diffusion is

currently the most popular approach used. Simulation of pollutant transport in

overland flow where the velocities can be highly variable and with the effects of

infiltration, rainfall and solubility incorporated into the model has not received

much attention. Such a model would facilitate the assessment of the fate of

surface applied pollutants and lead to better management of the environment.

2.3 THE EFFECTS OF RAINFALL-INFILTRATION

Infiltration refers to the passage of water through the soil surface into the

soil and is an important hydrological component which affects overland flow. The

actual process is very complex, even when it is assumed that the soil is a

homogeneous medium with a uniform initial moisture content. There are three

stages of infiltration for many rainfall events. Initially, the rainfall intensity is less

than the saturated conductivity of the soil. Consequently all the rainfall penetrates
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Table 2. 2 Previous Research on Trans art Phenomena

Author Year Dimension Physical Condition

Siemens 1970

Holly 1977

1-D Diffusion-advection equation

2-D Diffusion-advection with zero

velocity or with advection in one

direction

1-D Diffusion and advection equation in

2-D sea

Chi 1990

Chen and 1992

Falconer

1 -D Pure advection with constant

velocity

1 -D Source-free transport of a scalar

mass of pollutant concentration in

an open channel

2- D Advection equation
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the soil and mnoff is not generated. At the second stage, the rainfall intensity

is larger than the saturated conductivity of the soil but less than the infiltration

capacity. The capacity of the soil to absorb water decreases as more and more

infiltration takes place. Finally, the rainfall intensity exceeds the saturated

conductivity and infiltration capacity, consequently, water begins to accumulate

on the soil surface and runoff is initiated.

Many attempts have been made to model infiltration. In the early 1930's,

Horton (Viessman, 1989 ) studied the infiltration process and proposed an

empirical equation. It indicates that if the rainfall supply exceeds the infiltration

capacity, infiltration tends to decrease in an exponential manner-

fp-fo- ̂  - 0-e~kst (2-3-1)

where fp= infiltration capacity, m/s

fo = initial infiltration capacity, m/s

fe = a final equilibrium capacity, m/s

k3 = time rate constant, s'1

t = time, s

Although simple in form, difficulties in determining useful values for the initial

infiltration capacity and time constant restrict the use of this equation.
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Following Norton's work, in 1954 Philip (Viessman, 1989) developed an

infiltration equation with predictable parameters for a homogeneous soil assuming

an excess of water supply at the surface:

F(f) = Stw + Kf (2-3-2)

Yet, computing these parameters is difficult and their values are more commonly

obtained by data fitting (Mejn and Larson, 1973). The assumption of excess water

supply at the surface is another difficulty that the modeller must contend with.

Holtan (Viessman, 1989) provided an empirical equation which expresses the

infiltration capacity as a function not of time, but of the unoccupied pore space in

the soil. A model of this type is convenient for a watershed model, but determining

the control depth is uncertain (Mein and Larson, 1973).

The most popular equation in current use is that developed by Green and

Ampt in 1911 and is based on Darcy's law. The infiltration rate may be

expressed as (Tayfur et al., 1993):
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Q/' = ^-[1 +
^1

,2. 2-^^
3Q- + ; "AI

Pl

1/2J (2-3-3)

where Q, = infiltration rate (m/s)

ki = saturated conductivity (m/s)

Po = soil porosity

ip, = wetting front capillary pressure head (m)

do = infiltration depth at the start of ponding (m)

Mein and Larson (1973) showed the applicability of the equation for the

conditions of constant rainfall intensity and homogeneous soil. They also

developed a procedure for determining the value of the capillary suction

parameter used in the model. Chu (1978) demonstrated the applicability of the

model for use under conditions of unsteady rainfall. As a result of these and other

efforts, the Green-Ampt model is now employed in such widely used continuous

simulation models as the Storm Water Management Model (Viessman, 1989).

Mullem (1991) used the Green-Ampt infiltration model to predict runofffrom

rangelands and cropland watersheds, he stated that the Green-Ampt model

predicted both the runoff volume and peak discharge better than other empirical
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equations since the parameters were physically based and could be obtained from

measurable properties of the soil.

Akan (1986) developed a mathematical model to calculate the time of

concentration of overland flow based on the kinematic wave equation and Green-

Ampt infiltration. He confirmed that the Green-Ampt model has a well-accepted

physical basis, and that its results agree well with those of the Richards soil

moisture equation under a variety of infiltration situations. He proposed the

mathematical model for the time of concentration of overland flow: At the early

stages of the rainfall runoff process, complete infiltration will occur due to the high

infiltration capacity of an initially unsaturated soil. The rainfall excess and

consequently the surface runoffwill commence after the potential infiltration rate

of the soil drops below the rate of rainfall. The time at which the potential

infiltration rate becomes equal to the rainfall rate is referred to as the time to

ponding. The model is assumed to have uniform surface and subsurface

properties, and infiltration is the only tyoe of rainfall loss; it is also assumed that

the rainfall is of constant intensity.

The simulation of the process of rainfall-infiltration was modeled by Tayfur

et al. (1993). In this work, constant infiltration rates were taken from the given

data with constant rainfall intensities being assumed for the simulations. After the



22

start of ponding, the Green-Ampt infiltration formula was used for modeling the

infiltration rates.

Application of the Green and Ampt infiltration model requires estimates of

certain parameters such as the saturated hydraulic conductivity, porosity, and

wetting front capillary pressure head.

Pioneering work on evaluating the Green and Ampt parameters was first

reported by Bouwer (1966). Additional work, relating the parameters to soil

texture has been reported by Clapp and Hornberger (1978) and McCuen, et al

(1981). Rawls et al. (1983) summarized a procedure for determining the Green-

Ampt parameters based on soil properties utilizing the full spectrum of soil survey

information.

These studies have provided valuable insight into the mechanics of

overland flow, although they are limited to the field of infiltration.

2.4 NUMERICAL TECHNIQUES

In order to analyze overland flow and pollutant transport characteristics,

many numerical approaches have been proposed. Basically, the overland flow
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equation has been solved in one-dimension using several numerical methods or

in two-dimensions with either expicit or implicit finite difference schemes. In

explicit methods, the unknown values of the dependant variables at the new time

level occur explicitly in the difference equation and are determined sequentially.

Liggett and Woolhiser (1967) state that although explicit methods are easy to

code in the solution procedure, they suffer from (sometimes) extreme stability

restrictions. The implicit method expresses unknown values in terms of other

unknowns at the same time level. A set of simultaneous equations is thus

obtained with the required closure being provided by the boundary conditions:

such a solution is generally stable although formal stability can only be proved for

linear equations. Because of its great efficiency, the implicit method is especially

suited for application to large time-scale phenomena for which explicit methods

were found to be impractical and time-consuming.

The box scheme is one of the more popular methods because it is explicit

with onlv one unknown oer eauation and is unconditionally stable. Nevertheless

practical considerations dictate a limit on the time step. (Wood and Arnold, 1990)

The QUICK (Quadratic Upstream Interpolation for Convection Kinetics)

scheme, which is widely used in solving hydraulic problems, was originally

developed by Leonard (1979), This scheme which uses quadratic upstream
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interpolation has the benefits of mass conservation, reasonably high accuracy and

computational efficiency in comparison with many other higher-order-accurate

schemes (Chen and Falconer 1992). However a Von Neumann stability analysis

indicates that the explicit QUICK scheme has a severe stability constraint which

is dependent on the diffusion coefficient. It can be proved that this scheme is

numerically unstable for the case of pure advection. As a consequence, various

modified forms of the implicit QUICK scheme have been formulated by Chen and

Falconer (1992), which are claimed to overcome the stability problems of the

explicit form and may be applied both to pure advection and to combined

advection-diffusion. The various forms of the QUICK scheme include:

i). Forward explicit QUICK scheme

ii). Fully time-centred implicit QUICK scheme

iii). Backward implicit QUICK scheme

iv). Semi-time-centred QUICK scheme

v). Semi-backward implicit QUICK scheme.

Liggett and Woolhiser (1967) used the method of characteristics, as well

as explicit and implicit finite difference methods for modelling one-dimensional

overland flow. They stated that both the characteristic scheme and the implicit

scheme will provide stable solutions to the equations over a rather wide range of

parameters. The characteristic scheme has the advantage of greater speed
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whereas the implicit scheme offers the advantage of regular point spacing.

Akan and Yen (1981) employed a four-point implicit finite difference

scheme for the solution of the surface runoff equations.

Chow and Zvi (1973) employed a scheme based on the combination of the

Lax-Wendroff scheme with Burstein and Lapidus modifications for modelling of

watershed flow. They obtained a solution to the two-dimensional watershed flow

model which would have been extremely difficult to solve by the method of

characteristics.

Wood and Arnold (1990) solved the one-dimensional kinematic wave

approximation by using the box scheme.

Katopodes and Strelkoff (1979) solved the two-dimensional St. Venant

equations using a characteristics method. They pointed out that the method of

characteristics precisely follows the paths along which information propagates and

provides an accurate and efficient method of computation in shallow water

problems. However, since the characteristic surfaces in two dimensions form a

case, the formulation is quite complex while demanding significant computer

resoures.
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Kawahara and Yokoyama (1980) applied the finite element method to

spatial functions of flow depth and velocity for two-dimensional overland flow or

direct runoff flow over the watershed.

Hromadka et al (1987) developed a diffusion hydrodynamic model which

is based on an explicit, integrated finite-difference scheme.

Zhang and Cundy (1989) solved the two- dimensional overland flow

equations by using the second order accurate, MacCormack explicit finite

difference method.

Tayfur et al. (1993) solved a two-dimensional overland flow equation by

using the implicit finite difference method of Amein (1968 ) which does not suffer

from any instability problems.

Siemons (1970) made use of finite difference methods which are

developed from the one-dimensional diffusion-advection equation for the solution

of the two-dimensional advection-diffusion equation.

Li (1990) simulated the advective transport of a scalar by using the

minimax-characteristics method, which is an explicit and efficient finite difference
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scheme derived from the local "min max" approximation of the exact solution to the

pure advection equation. The method is developed within the finite element

framework. However, numerical stability requires that the Courant number must

be less than unity, moreover, the advection and diffusion processes must be

computed separately, thereby requiring additional computer resources (Chen and

Falconer 1992).

Holly and Preissmann (1977) presented the results of a tentative

exploration into a new finite difference method for the calculation of advection and

diffusion. The favorable characteristics of the two-point fourth-order scheme as

demonstrated for calculation in one dimension, extend also to calculations in two

dimensions. The idea of characteristic propagation and the Hermitian cubic

polynomial representation for the scalar distribution within the computational

domain were used and promising results were produced. However, it is

computationally more complicated and expensive for two-dimensional flows, where

additional sets of eauations are reauired to simulate not only the scalar quantity

but also its spatial derivatives for the advection and diffusion processes.

Chen and Falconer (1992) presented the modified QUICK scheme to solve

the advection-diffusion equation. The various modified forms of the implicit

QUICK schemes were tested for the one dimensional pure advection equation.
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A two-dimensional version of the semi-time-centred QUICK scheme had been

applied to a two-dimensional test case. Theystated that the modified QUICK

scheme could overcome the stability problem of the explicit form and be applicable

both to pure advection and to combined advection and diffusion.

In this study, a mathematical model of pollutant transport in overland flow

with infiltration is proposed, which is based on three groups of governing

equations: the two-dimensional St.Venant overland flow equation, the pollutant

transport equation and an equation for the solid balance. The two-dimensional

overland flow equations consist of the continuity and momentum equations in

which complicated physical conditions such as roughness, infiltration and addition

of rainfall is allowed. The equation for pollutant transport is a combination of the

advection-diffusion equation with a solubility rate equation, source and sink term,

and the effect of rainfall. The source term incorparates a solubility rate equation

based on the analogy between mass and momentum transfer. The main

advantage of the proposed model is its ability to simultaneously handle not only

overland flow but also pollutant transport while accounting for complicated

physical and chemical effects.
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CHAPTER 3

THEORETICAL FOR ULATION

3. 1 OVERLAND FLOW MODELS

3. 1. 1 The St. Venant Equations in Two Dimensions

The two-dimensional St.Venant equations consist of the continuity and

momentum conservation equations in the x- and y-directions.

For the physical configuration of the watershed shown in Fig 3. 1, these

equations may be expressed as follows ( Tayfur et al., 1993):

The continuity equation:

^. S^A. agl . [Q^, y, f> - Q;(x,y,0]cos(a)cos((t. ) (3--'-D

The momentum equation in the x direction:

t+ut+ yi+ .cos(a)cos^)^= 5 sin(a) - s^ - -^ (3-1-2)
The momentum equation in the y direction:

^+u^+v^+ cos(a)cos(0)g^ - g sin(0) - S^ - -^ (3-1-3)
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Figure 3. 1 Definition Sketch for Two-Dimensional Overland Flow
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Where

h = flow depth

u = flow velocity in the x-direction

v = flow velocity in the y-direction

Qr = rainfall intensity

Qi = infiltration rate

Q = net lateral inflow (rainfall-infiltration)

a = angle of the slope with respect to the x-direction

0 = angle of the slope with respect to the y-direction

g = gravitational acceleration

Sx = the friction slope in the x direction

Sy= the friction slope in the y direction

For turbulent flow, bed shear stress dominates and viscous stresses may

be negligible. The friction slopes using Manning's roughness relationships may be

expressed as:

s.- n2u u^v2 (3-1-4)
. 40

and
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sy n2v u2+v2
. 40

(3-1-5)

Where n = Manning's roughness coefficient.

Since a and <}) are considered small, the following approximations may be made,

sin (a ) " tan(a )= s^

sin (0 )« tan (0) = s.,y

cos (a )-cos ((}))= 1.0

Where Sox and Soy are the bed slopes in the x and y-directions respectively

3. 1.2 Kinematic Wave Equation

Although overland flow could ideally be represented by the St. Venant

equation, the kinematic wave approximation was shown to provide very reliable

results for most hydrologically significant cases (Akan, 1986). Due to its simplicity,

it has become a popular alternative to the St. Venant equations for numerical

simulation of overland flow.

The kinematic wave equation assumes that all terms in the momentum

equations are small compared with the friction and gravity terms (Moore and

Foster, 1989). This results in:



since

so

gsin(a) = s^g (3-1-6)

and

gsin(<D) = s^ (3-1-7)

sin (a) = s,ox

sin (0) = s.oy

sox = sx (3-1-8)

soy = sy (3-1-9)
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Substituting equation (3-1-8) and (3-1-9) into (3-1-4) and (3-1-5), the equations

may be expressed as:

^-
n2u u2^v2

hw (3-1-10)



34

n2^i/2+v2
'oy hw (3-1-11)

combining equations (3-1-10) and (3-1-11), we obtain:

v = u-
. w/_

'ox

by substituting (3-1-12) into equation (3-1-10 )

(3-1-12)

u =

-I 2
2 h3

»ox

n[1 . (^f]4
sox

(3-1-13)

and similarly:

v =

1 2

s^A3
21

n[1. (^) ]4
soy

(3-1-14)
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Then, substituting equations (3-1-13) and (3-1-14) into the continuity equation (3-

1-1), the kinematic wave equation is obtained as follows:

Bh
1

2
M

5

3h3
5

Bh3
9t .. . s^2A 5x s... 21 sy

n[1 . (^)]4 n[i . (^)]4
Qr-Qi

(3-1-15)

'ox 'oy

An alternate representation in one dimension is (Wood and Arnold, 1990):

^ . ""> ̂ -°) - ° (3-1-16)

where q = the discharge per unit width

t = time

x = the distance from the top of the slope

Q = net lateral inflow

and

u(q}-
, 26^3/10

*ox

n 315 (3-1-17)



36

Here, the friction effect has been modelled using Manning's formula with n as a

roughness parameter and s^ as the bed slope. The use of Manning's formule is

probably questionable in overland flow due to the small depths involved. The flow

is "hydraulically rough" and a pressure force type equation should be used.

However, for the present, we have continued this work with the standard

formulation.

3. 2 INFILTRATION MODELS

Infiltration is an important component of a hydrologic model. It can affect

not only the timing, but also the distribution and magnitude of surface runoff, and

influence the quantities of pollutant mass penetrating the soil. For this reason

reliable estimates of infiltration must be incorporated into any watershed model.

The infiltration rate is the rate at which water enters the soil at the surface.

If water accumulates on the surface, a phenomenon called ponding occurs and the

infiltration occurs at the potential infiltration rate. If the rate of supply of water at

the surface is less than the potential infiltration rate, then the actual infiltration rate

will also be less than the potential rate. Most infiltration equations describe the

potential rate. Infiltration capacity is the maximum rate at which a given soil can

absorb falling rain when it is in a specified condition (Kirkby, 1979).
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Mein and Larson (1973) described three distinct cases or stages of

infiltration when a rainfall of intensity Qr is applied to a soil having a saturated

conductivity k,, and an infiltration capacity fp.

Case A: Qr < k,, all the rainfall infiltrates, runoff will not occur, but the soil moisture

level is being altered.

Case B; k, < Qr < fp, all the rainfall infiltrates into the soil, the moisture content at

the surface increases during rainfall until surface saturation is reached.

Case C: ki < fp < Qr, the infiltration rate is at its maximum capacity and decreasing,

the surface has become saturated. Runoff is being generated. Fig 3.2 shows the

different cases of infiltration behaviour under rainfall, line A shows case A, line B

shows case B, curve C and D show case C.

In this study, the infiltration rate has been calculated with two equations. At

the first stage, Norton's equation is used to predict the infiltration rate before

ponding begins. At the second stage, the Green-Ampt equation is used for

describing the subsequent infiltration behaviour after the ponding time.

Because of the high infiltrability of an initially unsaturated soil, all the rain

will infiltrate at the early stage. Surface runoff will commence after the potential

infiltration rate of the soil drops below the rate of rainfall. The ponding time tp is the

elapsed time between the time rainfall begins and the time water begins to pond
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Line A shows case A
Line B shows case B
Line C and D showcase C

B

I
c

I
I

saturated conductivity k

t-time

Figure 3.2 Different Cases of Infiltration Behavior Under Rainfall
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on the soil surface. This time is critical and relates to rainfall intensity Qr and to

the soil properties. If the rainfall intensity is large, the ponding time appears earlier

and vice versa.

It may be evaluated from

^i-Po
Q.(Qr - D (3-2-1)

with

PO = (1-Se)-Pi

where tp= time to ponding

s^ = initial effective saturation

Qr = rainfall intensity, m/s

k i = hydraulic conductivity of the soil

Pi = effective soil porosity

po = soil porosity

^1 = wetting front capillary pressure head,m

During the period leading up to ponding, large amounts of pollutant is

infiltrated. In order to predict the amount of infiltrated pollutant during this stage,

Horton's equation is used.
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Norton (Viessman, 1989) showed that when the rainfall rate exceeds the

infiltration rate, water infiltrates the surface soil at a rate that generally decreases

with time. He proposed the infiltration equation,

fpa fc+ Vo - 0-^ (3-2-2)

where fp = infiltration capacity, m/s

fo= initial infiltration capacity, m/s

fc=a final equilibrium capacity, m/s

k3 = time rate constant, s"1

k3 is an empirical constant representing the rate of decrease in capacity, it

indicates that if the rainfall supply exceeds the infiltration capacity, infiltration tends

to decrease in an exponential manner.

Typical values of the parameters of fg, fc and k3 in the Horton model have

been cited in the book by Bedient (1988 ). Although simple in form, difficulties in

determining useful values for fo and time rate constant k3 restrict the use of

Norton's equation (Viessman et al, 1989). Furthermore, the form of equation (3-2-

2) is not suitable for the case when the rainfall intensity is less than the computed

value of infiltration capacity fo, since then all the rainfall may infiltrate, i. e. f = Qr.

The infiltration capacity should be reduced as a function of the actual amount of
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water available for infiltration and not only on the basis of time. In this study, some

adjustments to the infiltration behaviour have been used. The actual infiltration

can be expressed by

/(O - min [^(0, Q/(0] (3-2-3)

where f (t) is the actual infiltration into the soil and Qr(t) is the rainfall intensity. By

using equation (3-2-3), the infiltration rate at any time is set equal to the lesser of

the infiltration capacity fp(t) or the rainfall intensity Qr(t).

Besides using Horton's model, the Green-Ampt model, which is based on

a Darcy-type water flux, is applied after ponding time.

The Green-Ampt infiltration model has been found to have wide

applicability for modelling the infiltration process. A major advantage of the Green-

Ampt model is that the necessary parameters may be determined from physical

measuremeters in the soil, rather than empirically as for the Horton parameters.

The Green-Ampt formula is:

QI. W. W1) (3-2-4)

where Qi = infiltration rate (m/s)
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F = infiltration amount (m)

RI = saturated conductivity (m/s)

po = soil porosity

^i = wetting front capillary pressure head (m)

The following expression is obtained for the infiltration depth after ponding (Tayfur

etal., 1993):

d. 2. 2'wff-yi
PO

1/2

(3-2-5)

here do = infiltration depth at the start of ponding.

The infiltration rate for times after the start of ponding is obtained as (Tayfur et al.,

1993):

Q/ = ^-[1 .
(^o2+

lVi

2-K^^
Po

]
(3-2-6)

where Qi = infiltration rate (m/s)

ki = saturated conductivity (m/s)

Po = soil porosity

<+)i = wetting front capillary pressure head (m)

do = infiltration depth at hte start of ponding, m
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At = (t-to ) is time increment (s).

Application of the Green-Ampt infiltration model requires estimates of the

hydraulic conductivity k,, effective porosity p,, and wetting front capillary pressure

head <^i. In our case, the values of ̂ i,, p,, k, and do used in this study were from

published soil properties (Rawls et al, 1983). Since the overland flow depth is

small compared to the capillary head, a constant capillary pressure head 4^i =

0. 15m ~ 0. 17m was taken, soil porosity po being considered equal to 0. 3 ~

0. 45.

3. 3 POLLUTANT TRANSPORT MODEL

The mathematical model of pollutant transport is based on three governing

equations representing the transport of pollutant in overland flow, the pollutant

dissolution and solid balance.

3. 3. 1 Pollutant Transport Equation

The fundamental equation describing pollutant transport is the advection-

diffusion equation. However, the complete modelling of pollutant transport

leading up to the ultimate fate of the pollutant should consider not only the
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advection and the diffusion but also the solubility rate, i.e. the process of pollutant

dissolution, the type of pollutant, the characteristics of the rainfall intensity, the

infiltration and the overland flow.

The pollutant transport equation is established by writing a mass balance

over a stationary volume element Ax, Ay through which the fluid is flowing. The

control volume approach was used, as shown in Fig 3. 3. In time At, the mass of

constituent entering the control volume is:

s-u-h-^y'^t + s'v-h-AX-At + s^-A^AX-Ay

while that leaving is

[s'u-h^y . 9(s'^h} AX.AylA?. [s-vh-^x . 9(s'v^) 
^y^x^t. s'Qi'^^x^y

where s = concentration (kg/m3)

u, v = the advection velocity in the x- and y-direction respectively (m/s)

Qi = infiltration rate (m/s)

S, = solubility rate (kg/s/m2)

h = flow depth (m)

At = time interval (m)

During time At, a control volume balance (without diffusion) results in:
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.^
^ 9+

^
^

Sfdxdy

suhdy h suhdy +

B(suh)dydx

ex

^~
^

dy

sQidxdy

dx - ^

Figure 3.3 Mass Balance Over a Control Volume
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s'u-h^y^t. a(^AXA^y . s-v'h-^x^t . 3(whi^xA y^
3x ' By

+ s-Q/'A^-AX-Ay - s-u-h-^y-At - s-v'h-^x-^t - s^'^y'^t
= -(s-A-AX-Ay)

(3-3-1)

Rearranging equation (3-3-1), we have:

Bsh 9suh 9svh

9t 9x 8y
= s, - s-Q/ (3-3-2)

this equation may also be written as:

^fuhf. fvhfyt s^<Mf 9-s'-^ 0-3-3)

Since the shallow water equation for mass continuity may be expressed as follows:

9h 9uh 9vh ^ ^,.
+ - + -- = y -

9t 9x By (3-3-4)

substituting (3-3-4 ) to (3-3-3 ), we obtain



or:

h^ . uh9s . vh9s . s'Qr - s,
8t 9x 9y
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(3-3-5)

3s .. 9s
.
9s

^- + U-^L + y^r = _i _
3t ~Bx ~ By h

s'Qr
(3-3-6)

Pick's first law of diffusion states that mass transport occurs because of a gradient

in mass concentration. The mass diffusivity D can be regarded as the

proportionality factor between mass flux and mass concentration gradient. Based

on Fick's law, the complete pollutant transport equation may be written as follows:

^ . u^, v^. ± (0^) , A (D.^) . ^-SOi
By 5x '~x9x{ 9y '~y9y' h h3t 9x (3-3-7)

where Dx, Dy - diffusion coefficient (m2/s) in the x- and y-directions respectively.

In this study, a constant diffusion coefficient D has been used. In equation (3-3-7),

the solubility rate is a source term and the rainfall is a sink term.

For the one-dimensional case, the equation becomes:

a£. u8s= A rDas). sf 
- 

s^f
9t ~9x 9x 

'~ 9xf h h
(3-3-8)
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3. 3.2 Solubility Rate Model (Source Term)

The process of pollutant dissolution in overland flow is neither a pure

physical process nor a pure chemical one, it is a complicated physico-chemical

process in which solubility rate plays an important part. The amount of solute

dissolved in a saturated solution at a certain temperature is known as the solubility

of the substance. Solubility is usually expressed as the number of grams of solute

dissolved per 100g of solvent at a particular temperature. Solubility rate may be

defined as the mass of solute that will dissolve per unit time per unit area at a fixed

temperature. Factors affecting solubility are temperature, pressure and the

chemical nature of the solute and solvent. The chemical natures of the possible

solutes are so varied that it is impossible to develop detailed rules of solubility

(William, 1967). The solubility of solids is only slightly affected by pressure

change. So, in this study, any effects of pressure are neglected and it is assumed

that during the process of dissolution no new substance is created and

temperature keeps constant. The value of the saturated concentration of a solute

in a particular solvent has been assigned the symbol c*

The mathematical behaviour for pollutant solubility rate has been

constructed based on the physico-chemical behaviour of the pollutant in overland

flow. The solubility rate is assumed to be proportional to the bottom bed shear
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stress of the overland flow, the reaction rate constant and the difference between

the saturated and local concentration.

This leads to the expression:

S^ » ^.T-((?' - S) (3-3-9)

where the shear stress may be evaluated (using the Manning equation) as:

7-yhs, -yn^uy
"f- . ,, 1/3 (3-3-10)

here S(= solubility rate (kg/m2 /s)

T = shear stress (N/m2 )

Y = specific weight of water (kg/m2 /s2)

S, = friction slope

h = flow depth (m)

u, v = flow velocities in both x- and y- direction (m/s)

n = Manning's roughness coefficient

k2= reaction rate constant ( m2 -s/kg)

c*= solubility (kg/m3)

s = local concentration ( kg/m3)
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The concentration of a solution is a measure of how much solute is

dissolved in a unit amount of solvent. If in unit time there are more particles of

solute entering the solvent than leaving it to return to the lattice, the solute is

dissolving. At any specific temperature, enough solid may be present so that the

same number of particles is leaving the lattice as returning. The solid phase and

the liquid phase are then said to be in dynamic equilibrium. Once solids are

dissolved in water, a point is finally reached at which no more solute dissolves and

the undissolved solute remains in equilibrium with the solution, in this state of

equilibrium the solution is said to be saturated , c* = s. In the present study, the

reaction rate constant k is presumed to depend only on the pollutant

characteristics.

3. 3. 3 Solid Balance Equation

Pollutant infiltration into the ground during a rainfall event can be treated in

two distinct stages: a stage before surface ponding and a stage after surface

ponding. Let the initial distribution of pollutant be WQ kg/m2, assume a

concentration of c* to prevail before ponding. Before ponding time, in the time

interval At, the mass that goes into the ground is:

A = c'-^-^-Af-Ax-Ay (3-3-11)
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After ponding time, in the time interval At, the mass infiltrating into the ground:

where the solution is now considered unsaturated is:

B = Es-Q/-2\x-AyAf (3-3-12)

and where the solution is saturated:

C = Ec'-Q/'Ax-AyAf (3-3-13)

the amount of pollutant washout is:

D = J;s'h^v^x'^t + ^s-h^'u^y-At (3-3-14)

while the amount of dissolved pollutant is:

£ = S^-T'(C' - s)-Ax-Ay-A^ (3-3-15)

the mass balance equation for the solid pollutant is:

w = WQ-'LA- E

in which

(3-3-16)
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c* = solubility (kg/m3),

s = concentration (kg/m3 ),

k4 = delay time coefficient,

fp = infiltration capacity (m/s),

T = bed shear stress (kg/m/s2 ),

kz = reaction rate constant (m2-s/kg),

Qi = infiltration rate ( m/s),

S( = solubility rate ( kg/m2 /s),

At = time interval (s),

Ax, Ay = space interval in the x- and y- direction respectively,

Wo = initial pollutant mass (kg/m2 ),

w = residue of pollutant mass (kg/m2 ),

term A represents pollutant mass infiltrated before ponding time,

term B represents pollutant mass infiltrated with local concentration after

ponding time,

term C represents pollutant mass infiltrated at saturated concentration after

ponding time,

term D represents pollutant mass washed-out by overland flow,

term E represents pollutant mass dissolved.

At the end of time step At, the solid remaining will be w kg/m2. When w becomes

zero, no more solid pollutant is dissolved.
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3.4 INITIAL CONDITION

3.4. 1 Overland Flow Equation

In the case of overland flow, it is possible to assume a very thin layer of

water to be ponded on an initially dry surface at the beginning of the rainfall. The

results are not affected by the assumption of this very thin film of water (Akan and

Yen. 1981). The same assumption was applied by Liggett and Woolhiser (1967),

Brutsaert (1971), Chow and Zri (1973), Zhang and Cundy (1989) and Tayfer et al.

(1993). In this study, a layer of depth 0. 0001m is assumed to cover the flow

surface, and the following initial conditions have been adopted:

for the two-dimensional St. Venant equation:

u (x, y, 0) = 0

v (x, y, 0) = 0

h(x, y, 0)= 0. 0001m

for the kinematic wave approximation:

q(x, 0)=0

3. 4. 2 The Pollutant Transport Equation

Two different cases of initial conditions were considered for the pollutant

mass distribution:
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a). Non-zero initial pollutant mass applied at a discrete location:

Wo(L, L, 0)=w^

b). Non-zero initial pollutant mass uniformly applied:

Wo (x, y, 0) = w^

in which w^, is the mass of pollutant.

3.5 BOUNDARY CONDITIONS

3. 5. 1 Overland Flow Equation

Specified boundary conditions should be based on the physics of the

situation, especially when the finite difference method is used. With the wrong

boundary conditions, it is likely that numerical difficulties will be encountered or

physically unrealistic results obtained.

For two-dimensional overland flows, the continuity equation (3-1-1), the

momentum equation (3-1-2) and (3-1-3) are solved by using a finite difference

scheme that provides the solutions for the interior nodes simultaneously. There

are 3*M*N unknown results, these unknowns are the flow depth and flow velocities

at each node in both the x- and y-directions. By writing the continuity and

momentum equations at the centre of the cells, 3*(M-1)*(N-1) equations are

obtained. The remaining 3*(M+N-1) equations are obtained from the boundary
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conditions. However, the solutions at the boundary nodes require special

treatment. Fig 3.4 is an illustrattve sketch for the number of unknowns.

The numerical approximation of the boundary conditions for overland flow

has been widely discussed in the literature. The upstream boundary condition has

been frequently taken to be of the "zero flux" type. Brutsaert (1971) used zero

velocities at the upstream end. Woolhiser (1975) handled the upstream boundary

conditions with h=0, u=0. Zhang and Cundy (1989) took zero flux as the

appropriate upstream boundary condition. The upstream boundary condition

h(0, t)=0, 0 has been shown to be physically valid for steep slopes (Govindaraju et

al, 1990).

For the downstream end, several boundary conditions have been

implemented, the most popular being a zero depth gradient. Morris (1979) showed

that the zero depth gradient condition is applicable to a large class of problems.

Recently, Tayfur et al. (1993) used the zero depth gradient condition at the

downstream end with satisfactory results..

In this study, the following boundary conditions have been adopted:

for the two-dimensional St.Venant equation, the flow depth and the flow velocities

in both x- and y-directions are taken as zero at the upstream end,
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1 2 3 M-1 M

Figure 3.4 Sketch of Representation of The Number of Unknowns
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u (0, y, t) = 0

v (0, y, t) = 0

h (0, y. t) = 0

u (x, 0, t) = 0

v(x. 0, t)=0

h (x, 0,t) = 0

For the kinematic wave approximation:

q (0, t) = 0

At the downstream, the boundary conditions are as follows:

^.0
3x

9".0
ay

au=o
9x

9u.o
9y

r-o

9v

ay
= 0

(3-5-1)

(3-5-2)

(3-5-3)

(3-5-4)

(3-5-5)

(3-5-6)
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Solutions at the downstream end have also been initiated using the

quasiuniform approximation:

3h
ax

-s,'& (3-5-7)

9h
^y"s" (3-5-8)

This approach was also found to work well.

When the kinematic wave approximation is used, it is not necessary to

specify the downstream boundary conditions because the backwater effects were

not taken into consideration.

3. 5. 2 The Pollutant Transport Equation

In previous research, a zero concentration condition has commonly been

used upstream. This has been the boundary condition of choice of Chen and

Falconer (1992), and Akan (1987) who used it for the one-dimensional case. At

the downstream boundary, Chen and Falconer (1992) assumed zero derivatives.
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In this work, the concentration has been set to zero upstream:

s (x, 0, t) = 0

s (0, y, t) = 0

At the downstream boundary, zero concentration gradient is used:

9s
9x

= 0 (3-5-9)

as=o
ay (3-5-10)
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CHAPTER 4

NU ERICALSCHE E

4. 1 BOX SCHEME

The box scheme is used for the numerical solution of the kinematic wave

approximation which is obtained from the St.Venant equations after simplifying

assumptions are made. The stability and convergence properties of this scheme

have been discussed by Wood and Arnold (1990). They indicate that although the

box scheme is unconditionally stable a limit on the time step is necessary due to

considerations of accuracy. The numerical solution of the kinematic wave equation

is obtained over a discrete net of points in the (x, t) plane. The net is constructed

by lines drawn parallel to the x- and t-axes. The first line represents the upstream

boundary and is located at x = 0, whereas the last line represents the downstream

boundary. A four-point grid is used in the development of the numerical procedure.

Each point on the net is identified by a subscript and a superscript, the x-position

of the point is given by the subscript and its t-value by the superscript. Fig 4.1

shows the sketch of grid representation for the scheme.

We rewrite the one-dimensional kinematic wave approximation to overland

flow resulting from rainfall-mnoff on a sloping plane as:
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k+1

k

dx

v

i i+1

dt

Figure 4. 1 Sketch of Grid Representation for the Box Scheme
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^ - u(q}(^ -Q)-0
9x (3-1-17)

with

u(q)
2®,, 3/10g^s,

n

'ox

3S
(3-1-18)

where q is the discharge per unit width of slope,

t is time,

x is the distance measured from the top of the slope,

Q is net inflow,

n is Manning coefficient, and

Sgx is bed slope,

The box scheme of equation (3-1-17) can be written as (Wood and Arnold, 1990):

,
(f*1

,
k<1

d-e)g'"\-(7'" . 9^';^
Af " Af

k - nk\
. (1 -^u(qk )[^^i{ -Q]

(r*1 ^. k^

. (oy(^1)[w1 ;(7'"') -Q]=0
Ax

(4-1-1)
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u(qk)

k ^, <r 25
+ W<.li ^3/10
^ i °<w

HaK
(4-1-2)

and

u(^1) =

, ^1 . ^k^ 25
1i + l/fr1 i ^3/10

^ i .ilcy'CK

n 3®
(4-1-3)

Equation (4-1-1) may also be written as:

(±- i- - u ^l(f\ a^ . /± - ± - u£5 . " u(q^ ^
'Af ~ Af ~ Ax /w' + ^~ A?" "ST + Ax^ f) q'"

^ 
fU(qk) 

_ 

Q_ 
_ 

w u(qk)^ ^k , /_6_ , u u(qkf\ ^
+ (^£r ~^~w^')q^+^+wu^ l) q^

. (co u(qk) - (D u(gM) - u(^"k))Q = 0

(4-1-4)

where Ax and At are the space and time step, respectively.
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co is weighting parameter for the time, o)=1 implies a fully implicit scheme, while

co=0 results in an explicit scheme, here (0=1/2 has been used as in the Crank-

Nicholson scheme. 9 weights the forward time difference between the i and i+1

grid points, again 9 =1/2 provides the optimum weighting.

In this study, two weighting parameters Q and co were used to improve the

stability of the equation. Both 6 and u were set to 0. 5. For each time step, there

is only one unknown occurring explicitly in the difference equation, it may be

solved by using three known values from the previous step. Equation (4-1 -4) is

nonlinear and is solved by the method of successive substitution by rearranging

(4-1-4) to read:

Q^ - ^(Aq^ . Bqk . Gq^ . C) (4-1-5)

where

A . - <1 -, 6> . u"£M>
dt ~ dx (4-1-6)

B-(1.<e)'T'1-(0' (4-1-7)
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G-i-T<1-m> (4-1-8)

E. 6,. »US^
dt ~ dx (4-1-9)

C = [(D-U(^+1) . U^ - u'u(qk)} Q (4-1-10)

,
fc1 :.

a trial g/f is substituted on the right side of equation (4-1-4), and a new value

of q^ calculated on the left-hand, which is substituted as a trial value on the right

side, and so on, until the calculated value of q^ converges. In this scheme, the

stability condition is:

c^^
Ax

(4-1-11)

4.2 NUMERICAL SCHEME FOR TWO-DIMENSIONAL OVERLAND FLOW

In this section, the implicit centred finite difference scheme has been used

to solve the full St.Venant equations. The stability and convergence properties of

this scheme have been discussed by Amein (1968). A representation of the
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computational "molecule" is shown in Fig 4. 2.

i refers to the node number in the x direction,

j refers to the node number in the y direction, and

k is the time step number

9 is a weighting coefficient, whose value varies from 0. 5 to 1. 0 (Joliffe, 1984).

Numerical experimentation has indicated that a value of 9 =0. 75 gives the most

stable solutions (Tayfur, 1993). This implies that the scheme has a more implicit

character since the solution is weighted more towards future values than towards

present ones.

The implicit finite difference method assumes that at each node, the initial

values at the present time are known, to find the unknown values at a future time

step. To initiate the calculations, initial values at the present time step are

provided from the mathematically or physically specified initial conditions. For the

unknown values at the future time step, trial values are given, and iterations are

performed until the desired accuracy is achieved. Once new values within the

limits of prescribed accuracy are found for the unknowns, these values are taken

as trial values for the unknowns at the next time step. Once again iterations are

perfomned until the desired accuracy is reached, to find the new unknown values.

This procedure is repeated at each time step. The finite difference form of the

continuity equation (3-1-1) is written as follows:
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k+1
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(U+1)

i-1J) (ij)

(i+1,D

(i,J+1)

(i+1J)

(i.J-1)

Figure 4. 2 Computational Molecule for the Implicit Finite Difference Scheme
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h^-h^ 6u^(hK} - h^) ^ (1-6)^, - h^)
Af 2AX 2AX

^ ^B(uK] - t^) ^1 - 6)(^, - u^)
2AX

, M/i. fe1
.
Mt

ZAX
,*

(4-2-1)

e^1(/^ - /^) v;d-e)(/»/fi - h.k,)
2Ay 2Ay

, e^-'f^ - v^) ̂  ^ - B)(^ - v;,) ^ "» ^ ^
+ ' 2Ay ' +' 2A/ . + <^- <^,=

there are M »N unknowns, which are the flow depths at each node. (M-1) . (n-1)

equations may be solved at each internal node, the remaining equations are

obtained from the boundary conditions. Equation (4-2-1) may also be written as:

M D. hk^
\-n^j + o-n,j + C-h^-D (4-2-2)

where

uk;'Q
2AX (4-2-3)

,M M,g _ _L . e^-; - u5;.)
A^ 2AX

e(^? - vfi)
2Ay

(4-2-4)
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c=-^
u.^Q
2AX

(4-2-5)

p_/^ ̂ u^1 - 6)(h^ - h^)
A? 2AX

h,^ - 6)(U^ - u^,) ^ v^6(^ - /^)
2AX 2Ay

^ ^(1 - B)(/7,^ - <i) ̂  ^(1 - 6)(^ - v,^)
2^y 2Ay

(4-2-6)

o^+ Qi'a

equation (4-2-6 ) can be written as a tridiagonal matrix equation:

[^ tCj
[A^ [Sj [Cj

[^
[h^

[D^-A^]

Pa]

[^j [B^ [C^
[^1] [B^]

[^ [D^]
[^i] [D^-C^h^

(4-2-7)
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This tridiagonal matrix equation may be solved by combining the values

specified as boundary conditions at each end of the computational domain. This

results in a set of flow depths h, at each internal node. Then, the flow depths h are

substituted in the momentum equations. The discretized form of the momentum

equation in the x-direction is:

,
^1 /.. 2 ,, 2v1C /»;/ , _ ^frl. i- /?,».»

^7 ^uu + vi~^
».40
v/_
n-

[Sox- ^. j ~ ">-i.y
2^x

u/, y^l, --UM, /) _ ^/. (^. l-u^i)
2gAX 2g&y

("<M - ",k/>. QU ",. ;,
9^t gh,^

(4-2-8)

or

<-^ IS. -<^". />. ^ <.,,",
v^

2g^ŷ(u--u-><S-X/]/t(u^^t£1
(4-2-9)

The discretized form of the momentum equation in the y-direction is:



^ ^. ̂ 'c - 5 [^ - hi\^ . ' -ui'(^ vt1. .>

or

2Ay

_ vv^-i-vi, -i) . (^-^) _ 0, -^y,
2g^y g^t gh,j
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(4-2-10)

^! "i4?
n

I [s.. - (hi'^_~h''^} u'-f (v., . y,.
2-poy~ '2Ay" -2^^1-/~^^

<r r> i/ t, 4/3

^(^. -^). -^-0;,. 1/U1/K^. ^. ^]'J,_

2g^y g^t g\ g^tn-
(4-2-11)

The downstream boundary condition of depth gradients are specified in finite

difference form as:

9h _ h^. - h^j
9x AX (4-2-12)

or hmj = hm. ij

if zero gradient is assumed.
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3/» hi.n - /?<AI
By Ay

(4-2-13)

or hi,n 
= hj. n.i

similarly,

um, j = Um-1,j

Ui, n=U,^

and
rm, j "m-1,j

V, n=V,,i

the following boundary condition may also be used:

hmj = /7m-1j
2.. /2Axn2u u2^v

h413 (4-2-14)

or

hi.n ° hi^ Ayn2v u2+v2
hw (4-2-15)
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This equates the gradient of flow depth to the friction slope. By solving equations

(4-2-9) and (4-2-11) together with the boundary equations, velocities in both the

x- and y-directions may be obtained. By repeating this procedure, all unknown

values, flow depths and flow velocities are found over all nodes of the overland

flow domain for each time step.

4.3 QUICK Scheme

The QUICK finite difference scheme has been widely used in solving the

advection-diffusion equation. This scheme has the benefits of mass conservation,

reasonably high accuracy and computational efficiency in comparison with other

higher order-accurate schemes.

In this study, the forward explicit QUICK scheme and the fully time-centred

implicit QUICK scheme are used to solve the one-dimensional pollutant transport

equation. The full time-centred implicit QUICK scheme is used to solve the two-

dimensional pollutant transport equation. The transient one-dimensional pollutant

transport equation may be written as:

3s 9(us) ^ _9_ ^ 9s_^ ^ sQr
9t 9x 9x'~ 9x ' h h (4-3-1)
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The finite difference representation of equation (4-3-1) over a time step is

written as:

?fe1 + a fefeL sfel - R<r;L .<tfe1-\ - rr rv^l rcM - o.fc1\ _ v/f*1 /efe1 -fe^?f + a ^Ek1/2 5M/2 - e<L1/2 s»;1^ - a 1^1/2 (sfc1' - sr') - Yf:l/2 (SF' - S,")'

* _ c <rM . sl . ^Or
^.1/2 <s/ - sf.1^J + T1 + s^-

/?.. ~ /»,

when a = 0, it expresses a forward explicit scheme,

a = 0. 5, expresses a fully time-centred implicit scheme,

a = 1, expresses a backward implicit scheme.

2fr1/2 = u^f2
k ^t

Ax

(4-3-2)

and

^i.A1/2 ^1/2
Af

Ax2

are the Courant and diffusion numbers respectively, s^ and u^ are the

concentration and velocity values respectively at grid point i+1/2 as illustrated in

Fig 4. 3.
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i-1 i+2

i-1 i+1 i+2

u
i-1/2

u . ... u
i+1/2 1+3/2

Figure 4.3 Sketch of Grid Representation for the QUICK Scheme
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In the case of the one-dimensional fully time-centred implicit QUICK

scheme, the unknowns occur implicitly, and they are solved simultaneously. The

fully time-centred implicit QUICK scheme for one-dimensional pollutant transport

can be written as:

;fc1 + lrefeL /.<?.*:1 . sk^\ - efc1_ /ofe1 . <. fe1\1 1 /^^ r^2<. fe1
>/ + 7lt:'f.1Q ^sfr1 + 5f ) - ^12 {SJ + SM^J - -^-(^1/2 VASf"

- e^ V2sA1 ) - -^ (s^ - s") . ^c (s" - s^')

= sk - ^[e^ (^ . s, k) - e^ (s, 'r . sA] . -^(e^ v2s,
'r

^S ̂  -s,")-^ (s, * - sA
(4-3-3)

^. _ \7^k\ . Y'>1C
..'i-112 v~s>i.-{) +

In the one-dimensional forward explicit scheme, the unknown occurs explicitly and

is obtained from the known values at the previous time step. The forward explicit

scheme for one-dimensional advection-diffusion is written as:

-fe1
s/" - ^[^ (s^s, K) - e^ (s,^)]

< ^(<1C V2S.'' -  ;'," VsA . Yi'ic (s.!;-s,t)
8

^-c ̂  ^slsflr
^1/2 (S, "-S^) + -^- -

(4-3-4)
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Equation (4-3-2) may be extended to two dimensions. When a=0. 5, the

representation of the two dimensional pollutant transport equation in a fully time

centred implicit scheme is:

;fe1 . J- ff>k± <!kf\ pfc1 0^1
>v + "o ^6<*i/2j ^fri/iy - e*:i/2j 6Yi/2j) +

where

1 IM ^K>1 ^ff,1

^ ^1^1/2 0(^1/2 -
J^ r\/K*1 /ofe1 ofcl\ t^i /o^i ofei'

- -g IYM/2^- ^Mj - ^ij ) - Yf-l/y ^V -
J_ rpM /oM o(r*l^ c^i / o^1 oM^

- -^ 1^1/2 ^°fJ<1 - ^ij ) - ^1/2 ^v - ^ij--

l-{Qj ̂ /2j ~ zi-M2j ̂ 1/2y). * - 1 i^k
5V - ^ ^M^-

+ ^ [^- (S,;, - S, ';) - ^ (S.; - S^)}
- -^ (n^i/2 ̂ i/2 - H^1/2 %/2)
+ ^i/2(S^ - S^ - ^ (S,! - S,^)}

^1/2. j

(4-3-5)

, k_ . _^
u'-"a'^ (4-3-6)

^1/2, / = ^1/2. y
At

AX2

^.. _ - t/(r J^
. M/2 ° "/, /.1C -,

(4-3-7)

(4-3-8)
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cfr.. _ _ nk _^_
f. ̂ 1/2 = ^i. ̂ 12 -; (4-3-9)

e, n are the Courant numbers in the x- and y-direction and y, ^ are diffusion

numbers in the x- and y- directions respectively, At the time step and Ax, Ay the

grid size, k is the time step number, D is diffusion coefficient. The values at the

cell faces may be obtained by quadratic upstream interpolation as following:

S»l!a;4(si ^'s^-?72sl1'' (4-3-10)

.

fc_ . - J- /Q * . e fr\ 1 ^ 0 <f
^1/2. / = -^ (^l, / + S, '^) - -g ̂  S^-, ^ (4-3-11)

S<^ - ^ . s^) - ^ S,? (4-3-12)

lk.
yi. J-tl2 ^ (S^i < ^/) 72 s>. M8 (4-3-13)

in which
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^S^. S^, -2S^. S^, (4-3-14)

^S^,. S^-2S^,. S^i (4-3-15)

the terms e^. , ̂  , H^c . $1i/2 . <1 > V2s^1 correspond to those
given in equations (4-3-6) to equation (4-3-15). Rearranging equation ( 4-3-5), we

have

-fe1 . R ofe1 . ^ efc1
+DO,, + i^ a'ti ; =^1./ ''./ 3A1.; (4-3-16)

where

A---1-J_ 0^1 3 o^i Yf;i/2.y
16 GiAt2'i~ i ef:1y2-y~ -T (4-3-17)

S = 1 ^ o'f*i 3 ^*1 3 ^M
-^g c».1/2, /. + -g 6M/2, / + -g H,, J.1/2

?<1_ . v/<1_ Ffe1 CM
1M 

_ . 

Y<t1/2. / . ^1C, J . ct', MC ^/. 1/2
+ -- + -- + -'- - +

16 ^'i. J-112
(4-3-18)

_3_pM , /f*1
= ~icc'^12J - Yl, l/2j-16 (4-3-19)



D-^-^ [e^. (S^,. S^ - e^. (S^ . ̂ )] - ^ [n^^ (S^ . S.;)
- ^ ̂  . S,^)} . -^ (c^^ . e^S^ . ̂ ^S, ';
- n^s;,). ̂  (S,?, - s,;> - ^ (s; - s^
. ^f- ̂ , - Sy*) - &° (S,* - Sj'.) . 5 - -^

1-.M 1^1 1^,1
",
1 ^fc1

'V
>fe1M Q»r»i ^ . n'ftl 0^1 . nft1 0^1 I x'M 0^1

- -4'1^1/2^1 + 4-'1,^1/2^1 - -gH^IC^I - -^H, jLl
--1- e^.5..*:1 + 1 n'f:1_<?.fe1 * J_nM-.<;M . %1C.Qfe1 . %iff<?^i
"16 c"/2^^' + 

'16 nvt1/2^i + ~^^i^i^ + -y^^i + -y^s<7i'
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equation (4-3-16) is in tridiagonal matrix form:

(4-3-20)

W [Cj
W W [^3]

[sj
[sj

[D^-A^]

pj

[^j [B^ [C^
[^1] l^ll

[s^ [D^]
[s^} ID^-C^S^

(4-3-21)

As before, specification of the boundary conditions completely determines the
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solution domain.

The finite difference form of the downstream boundary conditions for the

concentration gradient are as follows:

3s _ s^. - s^j
9x Ax

(4-3-22)

9s _ s,^- s,^
9y Ay

(4-3-23)

or

and

smj = sm-1j

si, n = s<.n-1
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4.4 Solution Technique

Globally convergent methods are well-known numerical methods for solving

nonlinear equations. These methods generally converge to a solution from almost

any starting point. They combine the rapid local convergence of Newton's

method with a global convergence strategy that will guarantee some progress

towards the solution at each iteration.

In this project, the globally convergent Ne^vton routine was used; the

routine computes the necessary partial derivatives of the equation by finite

differences and computes the Jacobian. The method is started with an initial

guess x(1 :n) for a root in 3 dimensions. The values of the initial guess are taken

from the output data by solving equation (4-2-1), (4-2-9) and (4-2-11) together with

the boundary conditions. The steps for the global method are:

F(x) - 0

we rewrite equation (4-2-1), (4-2-9) and (4-2-11), and get

F(1) = AA-x(1) . SS.x(1). x(3)4/3 - CC-x(3)40 . DD.X(3)1/3 (4-4-1)



where

83

AA^u^v^)2\1/2 (4-4-2)

BB
ffA fr)2 (4-4-3)

ec ^ [s« - ^ (A.,, - A«; - ^ ("", - ^,,)n2 "" 2AX

-A'u--u.. '^
(4-4-4)

DD -_^v
gn'

(4-4-5)

F(2) = AA.x(2) . SS-x(2). x(3)40 - SS-x(3)4/3 . RR. x(3)1/3 (4-4-6)

ss= ^-^ ("<.. - "<.1) - ^ ̂  - *'«/)
-v- (u... _ i/... ^ . _IS_

" i^y >^< - ^<) . g5
(4-4-7)
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RR. q!&
gn'

(4-4-8)

F(3) = PP.x(1) . 00.^(2) . EE-x(3) . GG (4-4-9)

in which

pp 9

2AX (^U - hi.^ (4-4-10)

e

00 - ^  ,, 1 - W (4-4-11)

EE-1, ^(u^ - u"')' ̂ (^ - ^> (4-4-12)
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GG»- ̂  . ur (1-e) (h^ . - /7.r) ^ (1-9) (^1 - "M >
A? 2AX 2AX

^ v, (1-6) (^ . /».., ) ^ /,. (1-6)^,., - ^,., ) ^
2^y

(4^-13)

after solving equation (4-4-1), (4^-6) and (4-4-9), the set of h,, u,, v,, are obtained,

these values are taken as the next approximation, this procedure is continued until

the successive values are sufficiently close to each other.
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CHAPTER 5

RESULTS AND DISCUSSION

The set of equations arising from the mathematical model of pollutant

transport in overland flow with infiltration is solved using numerical methods. The

usefulness of the proposed model lies in its capability of producing general results

that can be used to predict the fate of a pollutant that is infiltrated, dissolved and

washed-out by overland flow.

The overland flow was modelled with the St. Venant equation and with the

kinematic wave approximation. The pollutant transport was modelled with the

advection-diffusion equation, a solubility rate equation and a solid balance

equation. The solution procedure is illustrated in Fig 5. 1.

The following cases were simulated:

1. The hydraulic behaviour of overland flow,

2. The migration process of pollutant in overland flow,

3. Effect of diffusion coefficient,

4. Effect of solubility,

5. Effect of rainfall,

6. Effect of infiltration.
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OVERLAND FLOW
WITHINFILTRA TION

2-DST.VENANT
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1-D KINEMATIC
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APPROXIMATION

IMPLICIT CENTRED AND
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POLLUTANT TRANSPORT
& SOLUBILITY RATE

CENTRED QUICK
SCHEME
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QUICK SCHEME

aw ept , ve ocities u, v,
ollutant concentration s

SOLID BALANCE EQUA TION

the amount of pollutant that is
infiltrated, dissolved and washed-out

Figure 5. 1 The Sketch of Solution Procedure
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5. 1 HYDRAULIC BEHAVIOUR OF OVERLAND FLOW

Previous research has treated overland flow and transport phenomena on

a separate basis. In this work, both phenomena have been integrated into the

study. Solution to the equations for overland flow is first obtained, these results

are then combined with the pollutant transport equation to obtain solutions for the

pollutant concentration field as influenced by rainfall, runoff, infiltration and

dissolution. The hydraulic behaviour of overland flow is illustrated by Fig 5. 1.2 and

Fig 5. 1. 3, which are three dimensional representations of flow depth and isolines

of flow depth, respectively. These results were obtained assuming a constant

rainfall intensity and the Green-Ampt infiltration equation on a x-y plane with bed

slope of 0. 0068 in both the x- and y-directions. The dimensions of the plane were

500 m square, the time interval At used was 5s, the computational grid number

MxN was 50x50, while the Manning roughness coefficient had a constant value of

0.04. A zero velocity gradient and a zero depth gradient boundary condition were

imposed at the downstream end. Fig 5. 1. 2 is a three dimensional representation

of the spatial variation of depth due to mnoff. As expected, the flow depth

increases with increase of distance and time.

The results obtained with the one dimensional kinematic wave equation with

constant rainfall rate and the Green-Ampt infiltration equation using the box
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scheme are shown in Fig 5. 1. 4. The length of land surface is 500m, the bed slope

is 0. 0068, and the Manning roughness coefficient is 0. 025. A time step At of 3s,

with a computational grid number M of 50 was used. A constant rainfall intensity

of0. 000028m/s, that stopped after 2000s was assumed. As seen in figure 5. 1. 4,

when time equals 600s, a mostly uniform water layer covers the land surface

except at the upstream end. Since the surface is tilted, the flow depth gradually

increases in the slope direction with increase of time and "accumulates"

downstream. After 2000s, the rainfall stops, so the upstream flow depth gradually

decreases and tends to dry out, while downstream, the accumulated water

decreases. This family of curves may be used to predict runoff at different time

steps, similar charts may be developed for other types of rainfall intensity

distributions. The hydraulic part of the model has been validated against the

published data of Tayfur et al. in 1993. This is illustrated in figure 5. 1. 5.

5. 2 RESULTS OF POLLUTANT TRANSPORT

5. 2. 1 The Migration Process of Pollutant in Overland Flow

Transport phenomena is commonly modelled using the advection-diffusion

equation which provides the variation of concentration as a function of space and

time. In most practical situations, the concentration distribution is specified as an

initial condition on the basis of physical arguments. The present project is different
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in that a specified spatial distribution of solid pollutant (for example a pesticide or

fertilizer) is provided. This requires the introduction of the concept of a solubility

rate St which is added to the advection-diffusion equation as a source term and

describes the process of pollutant dissolution. This process is expected to depend

on the degree of turbulence characterized by the turbulent skin friction, solubility

and local concentration. Fig 5. 2. 1 to Fig 5. 2. 10 show that the mass of dissolved

pollutant is affected by the solubility rate St and that the magnitude and position

of the peak concentration varies with increasing time. Two different initial

conditions have been modelled:

i) initial pollutant mass applied at one grid cell,

ii) initial pollutant mass uniformly applied over the land surface. The test domain

consists of a 50x50 grid (with Ax = Ay), solubility C* is 357 kg/m3, diffusion

coefficient D is 0.5 m2/s, reaction rate constant k2=0. 00001m2-s/kg, and an initial

density of coverage Wo of 0. 05kg per grid cell area is used, which is Ax multiplied

by Ay

In the first case the solid pollutant is supposed to be applied on one grid

cell. Fig 5. 2. 1 shows the results for the one-dimensional situation. These results

have been obtained from the advection-diffusion equation using the box scheme

and a fully time centred implicit QUICK scheme. As the rainfall excess is converted

to surface runoff, the pollutant dissolves and an aqueous concentration of pollutant
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begins to spread around its initial position. For example, Fig 5. 2. 1 indicates that

at time of 600s, the peak concentration is about 0.5 kg/m3 and is situated near the

upstream. As the rainfall continues and fresh water continues to replenish the

runoff, the combined effect of advection and diffusion results in the position and

magnitude of the peak concentration changing, the peak concentration moving

downstream with the magnitude being reduced. When time equals 2100s, the

peak concentration becomes less than 0. 1 kg/m3 and is situated close to the

downstream end. The process of pollutant dilution is faster at the initial stage than

at a later stage. Figs 5. 2. 2 to Fig 5. 2. 5 show the variation of pollutant

concentration for the two dimensional simulations. These figures indicate the

same generally expected behaviour, namely that with increasing time, the peak

concentration decreases and migrates downstream.

In the second case, initial pollutant mass is uniformly applied over the

computational domain. Fig 5. 2. 6 shows the variation of concentration in the one-

dimensional situation. With runoff, the pollutant is supposed to be uniformly

dissolved at the beginning. With increase of time, the pollutant concentration

migrates and accumulates downstream where it finally leaves the domain. Figs

5. 2. 7 to 5. 2. 10 show the two-dimensional case. The peak concentration always

occurs (as expected) at the downstream end. The results of the two-dimensional

case agree well with that of the one-dimensional situation.
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5.2.2 The Effect of Diffusion Coefficient

After the process of pollutant dissolution, diffusion becomes a sensitive

factor. Generally speaking, diffusion is caused by local concentration gradients

which are in turn caused by mixing on a molecular and a turbulent scale. In

shallow overland flow, the bed shear stress is large which leads to strong turbulent

mixing vertically and then horizontally. In this study, given the shallow depth of

flow, the pollutant concentration is assumed to be uniformly distributed vertically.

The effect of varying diffusion coefficient is illustrated in Fig 5. 3. 1, 5. 3. 2 and 5. 3. 3.

These results were obtained by using the box scheme and a fully time centred

implicit QUICK scheme with a solubility C* of 1. 85kg/m3 and a reaction rate

constant kz of 0.01 m2 's/kg.

For the one-dimensional case, at the same time step of T=480s, in Fig 5. 3. 1,

with a diffusion coefficient D of 0. 5 m2/s, the maximum concentration is about

0. 35 kg/m3 ; while in Fig 5. 3. 2, a diffusion coefficient D of 0. 1m2/s, results in a

maximum concentration of about 0. 7kg/m3. Fig 5. 3. 3 displays the relationship

between diffusion coefficient D and maximum concentration S^ax. It is evident that

as expected, the larger the diffusion coefficient D, the lower the maximum

concentration of pollutant. Numerical tests confirm that the diffusion coefficient

improves the stability properties of all the finite difference schemes tested and also
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reduces the amplitude ofgrid-scale oscillations.

For the two dimensional case, the results are presented at 1727. 85s, using

a solubility c* = 357kg/m3 and a reaction rate constant k = 0. 0001. Fig 5. 3.4 was

obtained using a diffusion coefficient D of 1m2/s, Fig 5. 3. 5 used a D = 10 m2/s.

From comparing the two figures it may be seen that the concentration in Fig 5. 3.5

is more diffused than that in Fig 5. 3. 4.

5. 2. 3 The Effect of Solubility

The maximum amount of a solute that may be dissolved in a solvent so that

a saturated solution is obtained is expressed as the solubility. The solubility

depends on the solute (pollutant) and the temperature. For example, Calcium

Chloride CaClz has a solubility of 745 kg/m3 at a temperature of 20°C. That is, at

most 745g solute can be dissolved in 1 litre water. In this study, values of solubility

of typical chemical compounds were used to test the behaviour of different types

of pollutant. Figs 5. 4. 1 and 5. 4. 2 is a comparison of the results obtained for two

different solutes Barium Oxide (BaO, C* solubility = 34. 8kg/m3 ) and Calcium

Chloride (CaC12, C* = 745kg/m3 ). The results were obtained for the same

hydraulic conditions, time=1727. 85s and constants k and D with respective values

of 0. 00001m2- s/kg and 1 . 0 m2/s. A larger solubility results in faster dissolution of
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the pollutant and higher concentration.

5.2.4 The Effect of Rainfall

Fig 5. 5. 1 shows the effect of rainfall on pollutant concentration. The

following conditions were used: time interval At 5s, solubility 357 kg/m3, reaction

rate constant ks 0. 00001 m2-s/kg, Qr 0. 000028m/s. The asterisk lines are for the

case when the rainfall is stopped at a time greater than 1000s, while the solid circle

lines represent the behaviour with a constant rainfall rate. Higher rainfall intensity

will result in larger dilution of the concentration. When the rainfall stops, there is

no freshwater inflow, so the rate of dilution will be slowed down. Comparison of

the two curves at a point in time after the rainfall ceases indicates that the pollutant

concentration remains higher if rainfall ceases than if it had continued.

5.2.5 The Effect of Infiltration

Fig 5. 5. 2 indicates the influence of infiltration on pollutant concentration.

The conditions are the same as in Fig 5. 5. 1. The solid circles are with the

presence of infiltration, the asterisks are for an impervious surface. These results

indicate that pollutant concentration in the presence of infiltration is higher than in

its absence, since for the same amount of solute, as the amount of available
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solvent decreases, the concentration increases.

5.3 THE APPLICATION OF INFILTRATION MODELS

At the present time a complete model to estimate the amount of infiltrated

pollutant is unavailable. The model proposed in this study may be regarded as a

first step in a quantitative analysis of the infiltration behaviour of different

pollutants. In the process of infiltration, the ponding time tp is a critical parameter

which may be determined from equation (3-2-1). It is related to the rainfall intensity

Qr, rainfall duration and to the soil property. The rainfall intensity Qr may be

evaluated from

the formula:

Qr= 86
Ts. 12 (5-1)

where

Qr = rainfall intensity

Ts = rainfall duration

If the rainfall duration is longer, the ponding time appears later and vice versa.

The Green-Ampt infiltration model describes the infiltration process and can be

used to estimate the amount of infiltrated pollutant. Normally, the application of the
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Green-Ampt equation is limited to times greater than the ponding time, because in

its original form, it was intended for use where infiltration resulted from an excess

of water at the ground surface at all times (Viessman, 1977). It indicates that the

rate of infiltration decreases with increasing time, therefore, the total amount of

infiltrated pollutant increases at a slower rate with an increase of time since we

assume it to be proportional to the infiltration rate of water

With this model therefore, it is expected that the pollutant infiltration will

occur during the time period leading up to ponding. In order to predict the amount

of infiltrated pollutant during this stage, Horton's equation is used. This equation

indicates that when the rainfall rate exceeds the infiltration rate, water infiltrates

into subsurface at a rate that generally decreases with time (Bedient, 1988), which

is physically reasonable.

In this work therefore, a two stage computation of the infiltration process is

proposed. Before the start of ponding, Norton's equation (3-2-2) is used to

estimate the total pollutant mass infiltrated. Once ponding has occurred, the

Green-Ampt equation (3-2-6) is used to evaluate the pollutant mass "lost" due to

infiltration.

At the first stage, before ponding, the infiltration capacity is reduced in
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proportion to the cumulative infiltration volume F, which may be obtained by

integrating Norton's equation (3-2-2),

FW - f.t. (fo-/, )//c(1-e-'rf) (5-2)

Equation (5-2) may be solved iteratively for a time t as a function of F. The

potential cumulative AF is determined from the difference between the value of F

at time t+At and time t. The initial value of t is the starting time zero. The actual

infiltration volume increment over the time interval AF^ is determined as the

minimum of

AFgct = min (potential AF, rainfall volume)

Rainfall volume is equal to rainfall rate multiplied by the time interval. This permits

determination of the actual amount of available water for infiltration. By solving

equation (5-2) iteratively, the equivalent time T^ can be obtained which is required

to infiltrate the actual cumulative infiltration volume of the Horton parameter. The

Newton-Raphson method has been used to obtain the root of equation (5-2). The

intial guess is Te+At/2. Iterations converge rapidly to within four decimal places.

During the next time interval, the value of F corresponds to the equivalent time and

not to the real time. By solving equation (5-2) for each value of t, the infiltration

capacity at any time may be found.
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During the period before ponding, especially at the start of rainfall, it is

assumed that pollutant infiltrates into the soil as an aqueous solution with

saturated concentration. In an attempt to realistically model the process of

dissolution of the pollutant to a final saturated state, a delay time coefficient k4 has

been introduced. k4 decribes the time taken for a solute after initial contact with a

solvent, to develop into a saturated solution. It is also assumed that no pollutant

mass is lost due to runoff at times less than the ponding time. In other words, the

only mechanism for pollutant to be consumed is by infiltration.

Before ponding, the amount of pollutant that has infiltrated into the soil may

be calculated from equation (3-3-1 1):

A = c*-/C4-fpA?-Ax-Ay

the amount of remaining pollutant decreases with an increase in the amount of

infiltrated pollutant; once the pollutant mass decreases to zero, further infiltration

is only of pure water

After the start of the rainfall excess period, the Green-Ampt equation (3-2-6)

is used, in which At is the interval between the local time and ponding time.

During this stage, infiltration capacity is a function of time. After ponding, the

amount of pollutant infiltrating into the soil may be calculated in the following
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manner:

For an unsaturated solution:

B = s-Q/'-Ax-Ay-A?

For a saturated solution:

C = c'-Q/'-Ax-Ay-Af

The total infiltrated pollutant mass can be evaluated from;

QDL = EA . ES . EC

A test case with the following data has been investigated: the length of land

surface is 500m with a bed slope of 0. 0068 and a Manning roughness coefficient

of 0.04. The initial pollutant mass is applied at a local spot with a density of 0. 05

kg per grid cell area, which is Ax multiplied by Ay. The treated area is located

100m from the upstream end. The solubility of the pollutant C* is 745kg/m3, the

diffusion coefficient D is 0. 4m2 /s and the reaction rate constant ^ is
0.000001 m2-s/kg. The rainfall intensity is 0. 000013m/s with a duration of 2000s.

The Horton parameters are such that the initial infiltration capacity fo of a

watershed is given as 0. 0000245m/s, final capacity ̂  is 0. 00001856m/s, the time
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constant ks is 0. 000389s and the delay time coefficient k4 is 0. 0005. Before runoff

reaches equilibrium, i,e. before ponding time, the amount of infiltrated pollutant

may be estimated from the infiltration capacity, according to the Horton equation.

Fig 5. 5. 3 shows that curve A represents the amount of infiltrated pollutant before

ponding time, 1, 9. time from zero to 438s. Curve B represents the amount of

infiltrated pollutant after ponding time. Before ponding, the residual pollutant mass

decreases with infiltration. Once ponding occurs, the pollutant dissolves and then

washout by the overland flow occurs as well as infiltration. This is computed to

establish the residual mass of pollutant. As seen from Fig 5. 5. 3, before ponding,

the amount of infiltrated pollutant is 0. 38kg, while after ponding occurs, the

amount of infiltrated pollutant is about 3. 18kg. Fig 5. 5. 4 represents the time

evolution of residual pollutant, the total applied pollutant mass 5kg being

consumed within 851s. Fig 5. 5. 5 represents the time evolution of the dissolved

solute, the total mass of dissolved solute is 4. 62kg. Fig 5. 5. 6 represents the time

evolution of washed out pollutant, the total amount of pollutant washed out is

1. 55kg. Our results indicate that during the time period leading up to ponding, the

amount of pollutant infiltrating into the soil depends on the solubility, the infiltration

capacity of the soil as well as on the time delay coefficient. For example, when k4

equals 1, the total pollutant mass is lost by infiltration into the soil. The period

before ponding is therefore important and cannot be ignored in a practical

situation.
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At every time step, in the computational domain, there is a value of

maximum concentration. The trace of maximum concentrations are shown in Fig

5. 5. 7, they describe the evolution of maximum concentration with time. Fig 5. 5.8

shows the results using different numerical schemes, the asterisk lines represent

the results obtained by using the forward explicit QUICK scheme and the solid

lines represent the results obtained by using the fully time centred implicit QUICK

scheme. Comparison of the results with different schemes indicates good

agreement. The results in this study are physically realistic, while the numerical

algorithms used are stable and robust.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

A mathematical model based on physical reasoning for pollutant washout

and transport in overland flow with infiltration, has been proposed in this study.

The hydraulic behaviour of overland flow with infiltration and pollutant transport

have been modelled individually using the results from the overland flow and

infiltration to calculate the pollutant transport. The set of equations governing the

complete system have been integrated numerically using various finite difference

algorithms. A new formulation for the pollutant washout based on bed shear

stress, reaction constant and ambient concentration of pollutant in the overland

flow has been proposed. Several test computations indicated that the model

provides reasonable results. The hydraulic portion of the model has been tested

against pnblished field data with satisfactory agreement. Unfortunately, no field

measurements of pollutant infiltration and washout are available for purposes of

comparison.

In this study, a reaction rate constant kz appears in the solubility rate

equation. For a given pollutant, kg is constant and has a physical basis. Its use

lies in the fact that it may be treated as the only calibration parameter in the

solubility rate equation which expresses the rate of mass transfer of a solid
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pollutant to an aqueous solution. Actual values may be obtained by experiment.

Another parameter introduced in this study is the delay time coefficient k4

introduced into the infiltration process before ponding time. It describes the time

required for the solution containing the pollutant to become saturated. It directly

affects the amount of infiltrated pollutant, especially during the initial period of

rainfall. It is thus necessary to investigate the values of delay time coefficient by

experiment, especially at the initial period during which saturated concentration is

reached.

In this study, the effects of adsorption and any chemical reactions have not

been considered, which may also be important factors in the pollutant transport.

Further refinement of the model should incorporate these two important effects.
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