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RÉSUMÉ 
 
 
 
It has been shown recently that for coherence based dual microphone array speech 
enhancement systems, cross-spectral subtraction is an efficient technique aimed to 
reduce the correlated noise components. The zero-phase filtering criterion employed 
in these methods is derived from the standard coherence function that is modified to 
incorporate the noise cross power spectrum between the two channels. However, 
there has been limited success at applying coherence based filters when speech 
processing is carried out under relatively harsh acoustic conditions (SNR below -5 
dB) or when the speech and noise sources are closely spaced. We propose an 
alternative method that is effective, and that attempts to use a phase-based filtering 
criterion by substituting the cross power spectrum of the noisy signals received on 
the two channels by its real part. Then, a variant of the running minimum noise 
tracking procedure is applied on the estimated speech spectrum as an adaptive 
postfiltering to reduce the cosine shaped power spectrum of the remaining residual 
musical noise to a minimum spectral floor. Using that adaptive postfilter, a soft-
decision scheme is implemented to control the amount of noise suppression. Our 
preliminary results based on experiments conducted on real speech signals show an 
improved performance of the proposed method over the coherence based 
approaches. These results also show that it performs well on speech while producing 
less spectral distortion even in severe noisy conditions. 
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Abstract—It has been shown recently that for coherence based dual microphone 
array speech enhancement systems, cross-spectral subtraction is an efficient 
technique aimed to reduce the correlated noise components. The zero-phase filtering 
criterion employed in these methods is derived from the standard coherence 
function that is modified to incorporate the noise cross power spectrum between the 
two channels. However, there has been limited success at applying coherence based 
filters when speech processing is carried out under relatively harsh acoustic 
conditions (SNR below -5 dB) or when the speech and noise sources are closely 
spaced. We propose an alternative method that is effective, and that attempts to use 
a phase-based filtering criterion by substituting the cross power spectrum of the 
noisy signals received on the two channels by its real part. Then, a variant of the 
running minimum noise tracking procedure is applied on the estimated speech 
spectrum as an adaptive postfiltering to reduce the cosine shaped power spectrum of 
the remaining residual musical noise to a minimum spectral floor. Using that 
adaptive postfilter, a soft-decision scheme is implemented to control the amount of 
noise suppression. Our preliminary results based on experiments conducted on real 
speech signals show an improved performance of the proposed method over the 
coherence based approaches. These results also show that it performs well on speech 
while producing less spectral distortion even in severe noisy conditions.  

I. Introduction 
The effect of background noise present in many operating environments, and acoustically 
or digitally added to speech, may lead to substantial degradation of the intelligibility and 
quality perception of speech. Because of the established idea that the auditory system is 
more responsive to sound energy and tends to ignore several aspects of sound phase, 
speech enhancement (SE) and coding algorithms often focus on the accurate estimation 
of high-amplitude frequencies (the harmonic peaks) in the magnitude spectrum of the 
degraded signal, leaving aside the issue of phase spectrum estimation. The common 
assumption in these methods is that the phase is relatively unimportant perceptually, and 
retains much less features of speech signals than the magnitude of spectral components 
[1].  

Numerous SE methods, including spectral subtraction [2]−[5], and parametric Wiener 
filtering [6], assume that significant noise reduction can be achieved by removing the 
noise from the magnitude spectrum or the estimated periodograms of the corrupted 
speech. In [2,3,5,6], the estimated spectrum is coupled to the phase spectrum of the 
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degraded speech signal and transformed back into a time waveform, whereas in [4], the 
resultant periodograms are converted back by inverse DFT into desired time 
autocorrelation coefficients. However, those methods become less reliable when the 
interfering noise statistics are time varying or when the additive noise power is equal to 
or higher than the signal power.  
While spectral subtraction techniques are the most common zero-phase filtering methods, 
there have also been extensive research that examined many different ways to enhance a 
noisy speech signal corrupted by both stationary and transient noise. That attempt gave 
rise namely to two well-known approaches. The former employs a zero-phase filtering 
based coherence function together with a cross-power subtraction technique as a 
weighting criterion to deal with both coherent and incoherent noise [7]−[9]. However, 
there has been limited success at applying this coherence based approach when the 
speech processing is carried out under relatively harsh acoustic conditions (SNR below -5 
dB) or when the cross-correlation between the noise signals received on the two channels 
is high enough, which is true for closely distributed channels. Accordingly, the 
corresponding filter is perceived to be suboptimal in these realistic noise conditions, 
which are typical in many speech enhancement applications. In addition, that approach is 
less effective to reduce “structured” background noises such as helicopter or lively 
cocktail party environments. The latter approach involves the phase information of the 
spectral components within the filter weighting function [10]−[12]. Unfortunately, such 
method gave rise to an unpleasant audible residual noise that exhibits itself in the 
spectrum as periodically spaced narrow bands added to the spectrum of the enhanced 
signal. The annoying effect of these bands is more salient when the speech signal is 
degraded by a wide-band uniformly distributed Gaussian noise. 
In this paper, we propose an alternative method that is effective, and that attempts to use 
a phase-based filtering criterion by substituting the cross power spectrum of the noisy 
signals received on the two channels by its real part, given that the power spectral density 
of speech is a real function of w (the frequency in radian per second). Then, a variant of 
the running minimum noise tracking procedure originally proposed by Martin [17] is 
applied on the estimated speech spectrum as an adaptive postfiltering to reduce the cosine 
shaped power spectrum of the remaining residual noise to a minimum spectral floor. 
Using that adaptive postfilter, a frequency dependent soft-decision scheme is 
implemented to control the amount of noise suppression. Unlike the methods mentioned 
previously, the enhanced speech spectrum is combined with a refined phase spectrum 
before being transformed back into a time waveform. That phase spectrum estimate is 
obtained by normalizing the sum of the phase spectra associated with the noisy signals 
being analyzed. In experiments conducted on real speech signals recorded in different 
background noise environments at diverse SNR levels, the proposed speech enhancement 
method yields significantly better performance in terms of segmental SNR and speech 
distortion than the coherence based approaches, and suffers less spectral distortion even 
in severe noisy environments. 
The method re-synthesizes a related time waveform from the computed phase-based 
weighting and phase functions. This makes it suitable to be used as a front end to digital 
voice-controlled systems in adverse acoustic environments, and can easily be 
implemented in portable digital aids for hearing handicapped. 
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The remainder of the paper is structured as follows. Section II presents the detailed 
formulation and implementation of the proposed speech enhancement method. Our 
experimental performance evaluation of quantitative results is given in Section III. 
Included in that section are the generation of the test data and the performance 
comparison of the proposed method with the coherence based [7] and Zelinski [12] 
approaches. Section IV incorporates some notes about suggested directions for further 
performance improvement of the proposed method. Finally, Section V summarizes our 
results. 

II. Method Formulation and Implementation 
Let s(t) denote a time history sound signal of interest arising from a remote source and 
monitored in a noisy environment in front of an array of M spatially distributed 
microphones. The various relationships illustrated herein will be performed for the case 
M=2, but a generalization has occasionally been considered. Since it is generally assumed 
that the signal characteristics of speech are locally slowly time varying in a statistical 
sense, a short-time window is used to extract the speech parameters, hypothesized to 
remain time stationary all over the section length of the window. Let N be the window 
length. Each received noisy signal is segmented and windowed such that, in the absence 
of processing and when the corresponding sequences are half-overlapped and added 
together, the resulting overall process reduces to identity. The discrete-time windowed 
version of the noisy signals received on the two channels can be mathematically modeled 
as 

(1)                                            2,1       ),()(  )()( * =+= minisihix mmm  

where  and denote the noisy and the noise signals received on the mth channel 
respectively, s(i) is the speech signal of interest coming from the direct path, is the 
mth channel impulse response, "

)(ixm )(inm

)(ihm

∗" denotes the linear convolution, and i, 10 −≤≤ Ni  is 
the sampling time index. 
Consider the case in which a magnitude average of the short-time Fourier transform 
(STFT) of two received noisy sequences is passed through an adaptive phase-based filter 
and combined with a refined phase spectrum estimate. Let the phase-based gain and 
phase spectrum estimate of the filter be denoted by ),(ˆ kjwψ  and ),(ˆ kjwϕ respectively. 
Then, the STFT spectrum of the estimated signal on the filter output is obtained 
as follows  

),(ˆ kjwX

 )2(                    
2

),(),(
),(ˆ),(ˆ ),(ˆ21 kjwje

kjwXkjwX
kjwkjwX ϕψ ⎟⎟
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⎝

⎛ +
=  

where and denote the STFT of and respectively, w is the 
frequency bin (in rad/s), and k is the frame index. 

),(1 kjwX ),(2 kjwX )(1 ix )(2 ix

The selection of ),(ˆ kjwψ  to optimize certain performance criteria has been studied by 
several investigators [12]−[15]. It has been shown in [12] that an effective microphone 
array filter estimator could be derived given the assumptions that the power spectral 
density of speech is a real function of w and the reverberations are insignificant 
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where  

(3b)         ),(ˆ),(ˆ),(ˆ),(ˆ),(ˆ * kjwkjwkjwkjwkjw
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and 

(3c)        ),(ˆ),(ˆ),(ˆ),(ˆ),(ˆ * kjwkjwkjwkjwkjw
mmmmmm nnsnsnssxx Φ+Φ+Φ+Φ=Φ  

denote the estimated cross and auto power spectral densities of the received signals on the 
channels m and r respectively, M is the number of microphones in the array, "*" denotes 
the complex conjugate, and where {}⋅ℜ  is the real operator. The filter estimator defined in 
(3a) yields a normalized frequency weighting function, and the normalization is such that 

),(ˆ kjwψ  always lies within the range 1),(ˆ0 ≤≤ kjwψ . 

The auto and cross power spectral densities specified in (3a)−(3c) can be estimated by 
carrying out a frequency independent moving average performed with respect to time 
(see Appendix A.1). It can be seen that for models of the form of (1), and for 
nonrecursive smoothing of the spectral densities estimation, equation (3a) reduces to 
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where ),(

1
kjwXϕ  and ),(

2
kjwXϕ denote the phase spectra of and respectively, 

and satisfying the condition

)(1 ix )(2 ix

2/),(),(
21

πϕϕ <− kjwkjw XX . Any negative values in 
equation (4) are reset to spectral floor, on the assumption that such frequencies cannot be 
recovered. 
The following assumptions can be made regarding the speech and noise signals 

(a1) The speech and noise sources are statistically independent random processes. 
(a2) The noise signals are spatially uncorrelated.  

For dual microphone array filter estimator and under assumptions (a1) and (a2), if the 
estimated power spectral density (psd) of noise in (1) becomes roughly close to that 
of , the frequency weighting in (3a) would then be equal to the frequency response 
of an optimum linear Wiener filter whose estimated lth output spectral component is 
given by 

)(1 in

)(2 in

 
(5)             1         ),,(

),(),(
),(),(ˆ =

Φ+Φ
Φ

= α
α

kjwX
kjwkjw

kjw
kjwX l
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where denotes the lth parameter of the mean power spectrum of the sound 
signal of interest, is the estimated power spectrum of the noise, is a 
vector of noisy spectral samples, and 

),( kjwslΦ
),( kjwnlΦ ),( kjwX l

α  is a control factor equal to 1 in the classical case.  
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Using a dual microphone array filter estimator, a secondary procedure is applied to 
further reduce the background noise power by comparing the frequency weighting 
function ),(ˆ kjwψ  to an upper and lower statistical threshold maxψ  and minψ  respectively. 
The procedure is implemented as follows 

(p1) If max),(ˆ ψψ ≥kjw , then 1),(ˆ =kjwψ . This presumes that dominant speech is 
present at that frequency; therefore, it should be processed without distortion. 

(p2) If min),(ˆ ψψ ≤kjw , then ( )βψψ minˆ),(ˆ =kjw , where 1≥β  is a scalar spectral floor 
control parameter. This presumes that the spectrum at that frequency is 
dominated by noise; thus, taking a minimum spectral floor mitigates that noise 
while improving the quality perception of output speech.  

(p3) If maxmin ),(ˆ ψψψ << kjw , then there are both speech and noise present at that 
frequency; consequently, the spectrum at that frequency should be biased 
according to the estimator strength. 

In addition, better results were obtained when the frequency weighting ),(ˆ kjwψ  was 
squared and smoothed recursively with respect to time.  
The dual microphone array filter estimator has shown interesting capabilities. On the one 
hand, it is able to perform complete cancellation of the incoherent noise components. On 
the other hand, its time varying nature allows dealing with transient acoustic 
environments even in severe noisy conditions [16]. Unfortunately, such estimator gives 
rise to residual musical noise that is not pleasant to listen to due to its cosine shaped 
power spectrum. 
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Fig. 1.  Dual-directional microphone array in noisy environment. 

Consider the situation where two directional microphones are spatially distributed in a 
noisy environment and monitoring the sound signal of interest coming from the direct 
path, as shown in Fig. 1. Let θ be the angle from which arises a broadband disturbance, 
and d be the path length difference of travel of the interfered signals. The multiplication 
of the filter gain estimator by the average of the STFT magnitudes of the received noisy 
sequences yields a periodic convolution sum in the time domain of the estimated signal 
by a sequence of impulses uniformly spaced at intervals proportional to the path length 
difference d. That convolution sum process will exhibit itself in the spectrum as 
periodically spaced narrow bands added to the spectrum of the signal estimate. The 
frequency bins within these narrow bands are equally weighted with gain close to unity, 
while those between them are scaled according to the estimator strength. Transformed 
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back to the time domain, these bands produce an annoying effect that sounds like a loud 
hissing noise.  
As we will show in the paper, the performance of that estimator would be significantly 
improved if those frequency bins were properly tracked in each frequency band and 
subtracted from the spectrum of the estimated signal. In the following, a variant of the 
running minimum noise tracking procedure [17] is used as an adaptive postfiltering for 
keeping track of those frequency bins. 
Following the proposal in [17], an optimal time and frequency dependent smoothing 
parameter is used to smooth recursively the psd of the estimated signal (see Appendix 
A.2). When performing the running minimum search, the D subsequent psd estimates 
were divided into 2 sliding data subwindows of samples, and the minimum estimate 
is updated every time instant. Using that running update rate, the highest delay that could 
occur in response to a rising noise power is approximately

2/D

1)(log2 −D .  

To discard the inappropriate frequency bins in each band, a frequency dependent soft-
decision scheme is implemented. For each frequency w and frame index k, it compares 
the normalized deviation of the actual short-term psd estimate to a given statistical 
threshold. Based on that comparison, the running decision is taken by preserving the 
sound frequency bins of interest and reducing the noise ones to a minimum spectral floor. 
The scheme is summarized below  
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where  and  denote the psd of the estimated signal and the latest 
noise psd estimate respectively, and  is such that 

),(ˆˆ kjwxxΦ )1,(ˆ 2 −kjwnσ

minX ( ) dBX 80log20 min10 −≅ .  When the 
normalized deviation is lower than the given statistical threshold, the term 

 allows the estimated output spectrum to be smoothed during noise 
suppression. Note that the normalized deviation should take high values during speech 
activity within a given analysis frame, and small values during speech pause periods.  

( 2ldND/thresho )

Before being transformed back into a time waveform, the estimated magnitude spectrum 
is combined with a refined phase spectrum estimate, obtained by normalizing a sum of 
the phase spectra associated with the noisy signals being analyzed. Consider a 
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mathematical transformation that takes a set of phase spectra into an estimated circular 
mean phase spectrum ),(ˆ kjwϕ , and satisfies the equation 

 (6)                                                      ),(),(
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When that phase transformation is applied on the estimated spectrum and transformed 
back to the time domain, the corresponding time waveform would match better the sound 
signal of interest coming from the direct path. The transformation defined in (6) gives 
rise to a normalized phase spectrum estimate, and the normalization is such that 

),(ˆ kjwϕ lies always within the range πϕπ ≤≤− ),(ˆ kjw . 

After an inverse DFT of the estimated spectrum, the resultant time waveform is half-
overlapped and added to adjacent processed segments to produce the enhanced output 
speech sequence. A block diagram of the proposed speech enhancement method is 
depicted in Fig. 2. 

III. Performance Evaluation and Results 
The performance of the proposed method has been assessed in experiments involving 
four different types of background noise at diverse SNR levels: (W) wide-band uniformly 
distributed Gaussian noise, (H) helicopter rotor noise, (I) impulsive noise, and (B) 
uncorrelated multitalker babble noise. The experimental setup and the generation of the 
test data for objective performance evaluation are presented in the next section. 
Quantitative results based on objective quality distance measures and spectrograms are 
given in Section IV-B. That section also includes the performance comparison of the 
proposed method with the coherence based [7] and Zelinski [12] approaches. 

A. Experimental setup 

Experiments were conducted on real speech filtered at 20 kHz and digitized to 16 bits at a 
44.1 kHz sampling rate. On a frame-by-frame basis, the digitized speech wave was 
subjected to spectral analysis with nearly 23.2 msec sine analysis frame length and about 
11.6 msec frame rate. A smoothed sine synthesis window was applied on the enhanced 
speech frame prior to reconstruction. In all the experiments, the channels were set to 
nearly 20cm apart, and the recordings were made using Presonus FIREPOD 24-bit/96k 
firewire recording interface along with two Panasonic WM-61 B type directional 
microphones. For these experiments, the upper and lower statistical thresholds maxψ  and 

minψ  were set to 0.9 and 0.05 respectively. The spectral floor control parameter β was 
fixed to 2. The length of D subsequent psd estimates was set to 100 samples. A global 
SNR estimation of the input data was used in the experiments. It is computed by 
averaging over the received two channel signals 
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where L is the number of samples of the signal received on the mth channel. Throughout 
the experiments, background noise was acoustically added to clean speech with varying a 
posteriori SNR from -8 dB to 8 dB in 4 dB steps. 
One speech sentence selected from the HINT database, lasting 6 sec, was recorded and 
used within the experiments, and four different background noise types at diverse SNR 
levels were generated or recorded and acoustically added to that speech sentence (see 
Table III in Appendix B). Time series of zero-mean, i.i.d. Gaussian noise were generated 
by computer. Various controlled levels of spectral distortion were obtained by adjusting 
the Gaussian noise variance .  A recorded UH-60A Black Hawk helicopter rotor noise 
was chosen and its level was adjusted to provide a posteriori SNR ranging from -8 dB to 
8 dB. The multitalker babble noise was recorded in a lively cocktail party environment. 
Sequences of impulsive noise were generated by amplitude-modulating diverse binary-
state random sequences with a heavy tableware noise.  

2σ

B. Objective quality measure 

The Itakura-Saito (IS) spectral distance and the log spectral distortion (LSD) were chosen 
to perform the quantitative measures (see Appendix C). To get a reasonable overall 
measure as was suggested in [19], the highest 5 % of the distance values were discarded, 
which allows for the removal of a fixed number of unrealistically high spectral distortion 
levels. To prevent log(0) in the computation of those two measures, a zero-mean 
Gaussian noise sequence with approximately -40 dB energy was added both to clean and 
enhanced speech segments. In addition to the IS and LSD distance measures, a frame-
based segmental SNR was used as a reasonable measure of speech quality that takes into 
consideration both speech distortion and noise reduction. It is computed by averaging 
frame level SNR estimates over M frames of length N  
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where s(i) and ŝ(i) are the clean and enhanced speech signals respectively.  
To perform the above measures, an average of the two channel clean signals was used as 
the clean signal. 
The original speech sentence L_1 was corrupted with different background noise types, 
such that the input SNR is about 0 dB. Figs. 3-6 show the spectrograms of the signals 
corresponding to the clean, degraded, Zelinski filter output, coherence based output, and 
output of the proposed method. For noise (W) (Fig. 3), note the periodically spaced dark 
bands added to the spectrum of the Zelinski output. That residual noise is not pleasant to 
listen to. Whereas our method and the method in [7] provide sufficient amount of noise 
suppression, the spectrum of the former preserves better the desired speech components. 
In particular, note the elimination of the fourth speech formant in the spectrogram 
corresponding to the method in [7] as seen in the vicinity of 4.5 sec. Omitting energy 
above 3 kHz can slightly impair the perception of some consonants. In the case of noise 
(H) (Fig. 4), large residual noise components are observed in the Zelinski and method [7] 
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results. Unlike these two methods, our method result shows that the noise between the 
speech periods is noticeably reduced, while the shape of the speech periods is nearly 
unchanged. For noise (I) (Fig. 5), it can be observed that the Zelinski and method [7] 
results are less effective in that case. On the contrary, result of our method shows that the 
impulsive noise is moderately reduced on both the speech and noise periods. In the case 
of noise (B) (Fig. 6), it can be seen that Zelinski and [7] methods achieve insufficient 
noise reduction, particularly in the noise only periods. On the contrary, the noise 
reduction given by our method is more important on the entire spectrum. From these 
figures, it can be concluded that, while the noise (W) degradation is the most serious for 
Zelinski approach, the method in [7] achieves insufficient noise reduction for 
“structured” background noises such as helicopter or babble noise environments. On the 
other hand, our method can deal efficiently with both stationary and transient noises with 
less spectral distortion even in severe noisy environments.    
Figs. 7-10 illustrate the frame by frame IS distance comparison of the proposed method 
with the Zelinski and [7] approaches for several input SNR in the presence of different 
background noise types. These figures were obtained by averaging the IS distance values 
corresponding to each estimated output over a sliding window size of ten (10) elements. 
These figures indicate that Zelinski and [7] methods yield more speech distortion than 
that produced with the proposed method, particularly in helicopter and babble noise 
environments. 
Figs. 11 and 12 demonstrates the comparative results in terms of LSD measures and 
segmental SNR respectively, of the proposed method with the Zelinski and [7] 
approaches under various input SNR levels in the presence of different background noise 
types. From these figures, it can be seen that, whereas the three methods are almost 
comparable in terms of LSD for noise (I), the LSD values of the proposed one are lowest 
in all noise types. In terms of segmental SNR, the proposed method can get about 4 dB 
and 2 dB improvements on average over Zelinski and [7] approaches respectively. 

IV. Discussion 
In the previous sections, the sound signal of interest is assumed to be monitored by a dual 
microphone array whose characteristics are uniformly linear and unconstrained. This 
implies that the array characteristics are invariable over the entire frequency band of the 
signals, i.e., gain and phase matching. In practice, however, the performance of many 
speech communication systems based microphone array (e.g., voice terminals, hearing 
aids) depends to a large extent on how sensitive the array characteristics to random errors 
such as amplitude and phase dissimilarities [21]. The robustness against frequency-
invariant random errors can be improved by performing a calibration procedure on the 
microphone array being used [22]. Unfortunately, such calibration procedure fails to 
improve the microphone array robustness when the errors are random and vary across 
frequency. A special emphasis should be focused on the array characteristics when using 
a phase-based microphone array filter estimator, since such frequency-variant random 
errors lead to a decrease of the effectiveness of the noise suppressor. Fig. 13 plots the 
case of a phase error occurrence over the frequency range of interest obtained from two 
closely spaced microphones.  
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Most of the methods developed in order to accomplish the speech enhancement process 
assume that the speech signal is corrupted only by an additive background noise. 
Nonetheless, in an auditorium (e.g., amphitheatre, concert hall) where multiple sound 
echoes may emerge, these methods seem to be suboptimal since they do not consider the 
spatial characteristics of both the sound source of interest and the noise. The accuracy of 
the method discussed herein could further be improved if an appropriate HRTF model 
representing the spectral cues of spatial sound positions is carefully chosen and 
synthesized, and the processed HRTF data is incorporated into the filter estimator transfer 
function. This would imply the use of a multi-microphone array as an input to the 
expected filter estimator, and would allow finer deal with a more realistic speech 
enhancement situation.  

V. Conclusions 

Given two received signals corrupted by both stationary and transient noise, the use of 
the minimum noise tracking procedure by the proposed method as an adaptive 
postfiltering can substantially reduce the cosine shaped power spectrum of the residual 
musical noise that would otherwise be present at the output of a phase-based filter 
estimator and would be unpleasant to listen to. When performing that variant of the 
running minimum search, the highest delay that could occur in response to a rising noise 
power is approximately 1)(log2 −D . The explicit formulation of our method has shown to 
be computationally efficient and its time updating properties make it suitable for real time 
applications.  

In situations where the speech processing is carried out under relatively harsh acoustic 
conditions (SNR below -5 dB) or when the speech and noise sources are closely spaced, 
objective evaluations carried out herein made evident that the proposed method can 
improve the performance of a speech communication system by at least 2 dB on average 
in terms of segmental SNR relative to that achieved when using Zelinski or the coherence 
based approaches. It was also observed that our method suffers less spectral distortion 
even in severe noisy conditions. 

Appendix A 
A.1 Power and cross spectral densities estimation 

Let  and  be the short-term spectra defined over frequency bin w and 
frame index k of the signals  and being analyzed. The auto and cross power 
spectral densities can be estimated by using a time average performed through a standard 
first order recursive update formula on a frame by frame basis [14] 
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In the previous equations,λ , 10 << λ  is a time and frequency dependent smoothing 
parameter. It has been shown in [17] thatλ  should take small values during speech 
activity within a given analysis frame, and high values during speech pause periods. This 
however allows a small estimator variance. 
A.2 Optimum smoothing parameter 

Let  and  denote the latest short term estimate of the signal 
and the noise power spectral densities respectively. The optimal time varying smoothing 
parameter required to smooth recursively the psd of the noisy signal is defined as follows 
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where maxλ  refers to a higher limit used to improve the noise estimator performance in 
high transient noise levels, and where corrλ denotes a correction factor used to decrease 
the smoothing parameter in case of large deviations in the estimated noise psd [17]. Note 
that corrλ  is a time dependent parameter. 

Appendix B 
TABLE III 

SPEECH SENTENCE FROM HINT DATABASE 

AND BACKGROUND NOISE DATA 

L_1 "Flowers grow in the garden" Adult male talker 
Noise (W) Gaussian  Uniformly distributed 

Noise (H) UH-60A Black Hawk 
helicopter Rotor blade in motion 

Noise (I) Impulsive  

Binary-state random 
sequence modulated 
by heavy tableware 
noise 

Noise (B) Multitalker babble Cocktail party 

Appendix C 
C.1 Itakura-Saito (IS) distance 

Let ra
r  and be the augmented LPC coefficient vectors for the reference and test speech 

segments respectively. The IS distance originally proposed by Itakura [23] for the 
autocorrelation method of linear prediction is given by 
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In the previous equation,  is the autocorrelation matrix of the test speech segment, 
and

tV

rσ  and tσ  are the LPC gain parameters for the reference and test speech segments 
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respectively. Note that the quadratic form T
iti aVa
rr represents the energy per sample, or 

power in the prediction residual. Lower values of IS distance corresponds to lesser 
dissimilarity between two sets of linear prediction coefficients, and accordingly better 
speech quality.  
C.2 Log spectral distortion (LSD) 

Let u and  be two M-dimensional vectors that are divided into P frames of length N. Let v

)(~
lU p  and )(~

lVp be the lth spectral components of the pth frame of the normalized 
versions u~ and v~ of those vectors respectively. Assuming K-point DFT, the log spectral 
distortion, in decibels, between and  is given by [19] u v

 
)2.(                         )(~log)(~log20

.
),(

1 0
ClVlU

KM

N
vud

P

p

K

l
ppLSD ∑∑

= =

−⎥⎦
⎤

⎢⎣
⎡=

 
The normalized vectors u~ and v~ are such that their corresponding energies are set equal 
to unity (0 dB). Note that the lower LSD level indicates better speech quality. 
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Fig. 2. Block diagram of the proposed speech enhancement 
method, where "|   |" denotes the magnitude spectrum. 

 

 

 

Fig. 3. Spectrograms of clean signal, degraded signal, Zelinski 
filter output, [7] output, and output of the proposed method; 
obtained in the presence of white Gaussian noise (W) (Input 
SNR = 0 dB). 
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Fig. 4. Spectrograms of clean signal, degraded signal, Zelinski 
filter output, [7] output, and output of the proposed method; 
obtained in the presence of helicopter rotor noise (H) (Input SNR 
= 0 dB). 

 

 

 

Fig. 5. Spectrograms of clean signal, degraded signal, Zelinski 
filter output, [7] output, and output of the proposed method; 
obtained in the presence of impulsive noise (I) (Input SNR = 0 
dB). 
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Fig. 6. Spectrograms of clean signal, degraded signal, Zelinski 
filter output, [7] output, and output of the proposed method; 
obtained in the presence of babble noise (B) (Input SNR = 0 dB). 

 

 

 

Fig. 7. Comparative performance in terms of filtered IS distance 
for several input SNRs in the presence of white Gaussian noise 
(W). 

 

 

 20



 

Fig. 8. Comparative performance in terms of filtered IS distance 
for several input SNRs in the presence of helicopter rotor noise 
(H). 

 

 

 

Fig. 9. Comparative performance in terms of filtered IS distance 
for several input SNRs in the presence of impulsive noise (I). 
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Fig. 10. Comparative performance in terms of filtered IS distance 
for several input SNRs in the presence of babble noise (B). 

 

 

 

Fig. 11. Comparative performance in terms of log spectral 
distortion (LSD) for several input SNR in the presence of 
different background noise types. 
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Fig. 12. Comparative performance in terms of segmental SNR 
for several input SNR in the presence of different background 
noise types. 

 

 

 

Fig. 13. Phase error occurrence over the frequency range of 
interest (20 Hz - 20 kHz) acquired from two closely spaced 
microphones.  
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