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Abstract 

 

The dynamic behavior of a three-dimensional flexible structure in inviscid incompressible 

stationary fluid is studied numerically. A hybrid finite element is developed by using classical thin 

plate theory and finite element analysis, in which the finite elements are rectangular four-noded flat 

shell, having 5 degrees of freedom per node. The displacement functions are derived from Sanders’ 

thin shell equations. The velocity potential function and Bernoulli’s equation for liquid yield an 

expression for fluid pressure as a function of nodal displacement of the element and inertial force of 

the quiescent fluid. An analytical integration of the fluid pressure over the element leads to mass 

matrix of fluid. Calculations are given to illustrate the dynamic behavior of rectangular reservoir 

containing fluid, as well as a totally submerged blade. 
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1. Introduction 

It is generally known that the natural frequency of a structure in contact with a fluid or immersed 

in a fluid, decreases significantly compared to the natural frequency of the corresponding dry mode. 

This problem is referred to as the fluid-structure interaction problem. For this problem, many 

investigators have suggested some approximate solutions which have been used to predict the 

changes in the natural frequencies of the structure in the fluid. This is stimulated by new technical 

applications and also by the availability of powerful numerical tools based on the finite element 

methods that make numerical solutions of fluid-structure interaction problems possible. However, 

the use of the finite element method requires enormous amounts of time for modeling and 

computation. It has been found in subsequent studies that hydrodynamic pressure in a flexible tank 

can be significantly higher than in the corresponding rigid container due to the interaction effects 

between flexible walls and contained fluid. Even though there have been numerous studies done on 

the fluid interaction effects, most of them are concerned with plate and cylindrical tanks. A large 

number of publications exist on the subject of plate partially or totally immersed in the fluid. 

Several different approaches have been adopted to describe the fluid actions. Knowledge of the 

vibration characteristics of rectangular plates submerged in or in contact with fluid is of 

considerable interest since they are used in many applications, such as the naval, aerospace and 

construction industries. The hydroelastic behavior of a plate was first described by Lord Rayleigh. 

Lindholm et al [1] used a strip theory approach and compared the theoretical predictions of 

resonance frequencies with measured data obtained for a series of cantilevered rectangular plates 

vibrating in still water. Fu and Price [2] studied the vibration response of cantilevered plates 

partially or totally immersed in fluid. They used a combination of finite element method and 

singularity distribution panel approach to examine the effects of the free surface, length and depth 

of plate on the dynamic characteristics of the plate. Soedel [3] presents an analytical solution for a 
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simply supported plate, carrying a free surface liquid with reservoir conditions at the edges. Amabili 

[4] used the Rayleigh-Ritz approach to obtain an analytical solution for the case of fluid domain of 

fluid depth which either has a free surface or is constrained by rigid walls. Haddara and Cao [5] 

used the same philosophy to investigate analytically and experimentally dynamic response of 

submerged plates with various boundary conditions. They provided an analytical added mass factor 

depending on the height of the free surface and the depth of fluid under plate. The response of shell 

structures immersed in or conveying flowing fluid has been extensively studied, and general 

reviews of the literature have been given by Païdoussis [6].Recent books by Païdoussis provide a 

comprehensive treatment of the subject as well as a complete bibliography of all important work in 

the field [7,8]. Various elements such as longitudinal and circumferential elements have been 

developed for closed and open cylindrical [9-15], conical [16] and spherical [17]  shells in vacuum 

or containing a stationary or flowing fluid by Lakis et al. For instance, Lakis and Païdoussis [9] 

studied the free vibration of a cylindrical shell partially filled with liquid using a combination of 

finite element method and classical shell theory by employing circumferential element. Lakis and 

Selmane [18] used longitudinal element to study open cylindrical shell. Lakis and Neagu [19] 

studied the free surface effects on the dynamics of a cylindrical shell partially filled with liquid. 

Whilst several well-known finite elements software such as ABAQUS and ANSYS can solve the 

free vibration of structure in air but they could not correctly predict the natural frequencies of a 

structure in contact with fluid. Therefore the necessity of an element that could precisely predict 

natural frequencies of a thin shell subjected to fluid, arises. Very few studies on the dynamic 

response of rectangular containers exist, but in those studies the flexibility of the structure is not 

completely taken into account. This may be due to the fact that rectangular fluid containers are 

usually made of reinforced concrete or may be considered quite rigid. Most of the time, some 

simplifications have been considered, which lead us to treat a 3D structure as 2D modeling. Kim et 
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al [20] presented analytic solution to study dynamic behavior of a rectangular reservoir partially 

filled with fluid using the Rayleigh-Ritz method. However in their study, only a pair of walls is 

assumed to be flexible while the other pair and bottom remain rigid, as if they studied two parallel 

plates. Kim and Lee [21] investigated hydroelastic analysis of a rectangular tank completely filled 

with liquid by using NASTRAN program and compared results with analytic solution, however 

they considered tank as two parallel plates because of rigid bottom and two parallel walls. Jeong 

and Lee [22] developed an analytic method to estimate the natural frequencies of two identical 

rectangular plates by using a finite Fourier series expansion method. It is assumed that an ideal fluid 

is surrounded by the plates and a rigid rectangular container. Their theoretical results are compared 

with finite element method by ANSYS software. Bauer and Eidel [23] investigated researches on a 

two-dimensional rectangular container of infinite width partially covered with an elastic plate 

(beam) and partially filled with fluid. The present study seems to be the first one on the dynamics 

behavior of three dimensional shell structures in vacuo and subjecting to the quiescent fluid. This 

paper introduces a general approach to the dynamic analysis of a thin, elastic, isotropic three-

dimensional shell in air as well as subjecting to fluid. The method is a hybrid of finite element 

theory and classical thin plate theory. The displacement functions are derived from Sanders' thin 

shell equations, and are expanded in power series. Expressions for mass and stiffness are 

determined by precise analytical integration. Linear potential flow theory is applied to describe the 

fluid-structure interaction; in fact, the amplitude of shell displacements remains small enough for 

linear fluid mechanics to be adequate. In the present work, we intend to develop an element, to be 

able to model any 3D thin structure, such as hydraulic turbine blade or completely flexible 

rectangular reservoir. An empty and fluid-filled rectangular reservoir under different boundary 

conditions has been studied. In order to demonstrate the applicability of the proposed method a 

submerged turbine blade is investigated, as well. The purpose of the present paper is to present a 
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more accurate and general numerical analysis using a rectangular shell element [24]. The method 

used here has been employed successfully for various structures, such as rectangular reservoir or 

blade. The obtained results have been compared by ANSYS and accuracy of the proposed 

numerical method has been verified. 

 

2. Fundamental Equation 

2.1. Equation of motion and displacement functions 

A rectangular flat shell element having four nodes, each of which has five degrees of freedom as 

shown in Fig. 1 has been used as a finite element. 

 

Fig. 1: Flat rectangular shell element 

 To establish the equilibrium equations of the plate, we use Sanders' equations for cylindrical 

shells and assume the radius of the shell to be infinite. The three equations take into account both 

membrane and bending effects. Sanders based his equations on Love's first approximation for thin 

shell, and showed that all strains vanish for any rigid-body motion. This shell’s theory satisfies the 

convergence criteria for small rigid-body motions. The equilibrium equations of an orthotropic plate 

in terms of the in-plane and normal displacements of the plate mean surface are written as: 
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Pij are the terms of elasticity matrix [25]. 

The first two equations describe the membrane behavior and the third equation specifies the 

bending of a rectangular plate. In this case, the equations of motion are decoupled. Unfortunately, 

the exact solution of the equations of motion is very complicated in the case of plate. To surmount 

this problem, we assume the solution of membrane displacements to be bilinear polynomial and the 

normal displacement will be determined from plate’s equation of motion [24]. Therefore, the 

displacement functions will be written as follows: 
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where A and B are the plate length and width in x and y directions, respectively[24]. 

We could expand the exponential solution of normal deflection, W in Taylor series as follows: 
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We can rewrite the displacements U, V and W in matrix form, 
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where [R] is a 3×20 matrix, in which the components are in terms of x and y [24]. The vector {C} is 

given by 

                                                             { } { }T
CCCC 2021 ,...,,=                                                            (7) 

In which its components are generalized coordinates. 

To determine these constants we need 20 boundary conditions, which are 5 degrees of freedom 

per node of a rectangular element. The nodal degrees of freedom consist of translations along the 

Cartesian directions x, y and z and the rotations about two in-plane axes. The nodal displacement 

vector of an element is:  

                                                            { } { }T

lkji δδδδδ ,,,=                                                                (8) 

And the nodal displacement of each node is: 
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where 
y

W

x

W
WVU ii

iii ∂
∂

∂
∂ ,,,,  are in-plane displacements, normal deflection of the mean surface and 

rotations about the plane axes, corresponding to node i, respectively. The nodal displacement vector 

of each element could be obtained as: 

                                                                  { } [ ]{ }CA=δ                                                                    (10) 

By substituting {C} from (10) into (6): 
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where [N] is the shape function of the rectangular plate element and [A]-1 is given in [24]. 
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2.2. Kinematics relationship 

Strain vector in terms of displacements is given by: 
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By substituting the displacements from Eq. (11) into Eq. (12), we obtain strain vector in terms of 

nodal displacements. 

                                           { } [ ][ ][ ] { } [ ][ ] { } [ ]{ }δδδε BAQARD === −− 11                                            (13) 

where [Q] is 5×20 matrix [24]. 

 

2.3. Stress strain relationship 

We can define stress vector, 

                                                               { } [ ]{ }εσ P=                                                                        (14) 

By introducing Eq. (13) into (14), stress vector is obtained by: 

                                                              { } [ ][ ]{ }δσ BP=                                                                   (15) 

The rigidity and mass matrices of each rectangular element can be written: 

                                                      [ ] [ ] [ ][ ]
0 0

e ex y

T

e
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T

se
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where, xe and ye are the dimensions of the element in x and y coordinates and ρs is the density of 

shell, h its thickness and dA a surface element. By substituting [B] and [N] into Eqs. (16) and (17), 

we obtain, 

                                            [ ] [ ] [ ] [ ][ ] [ ]1 1

0 0

e ex y

T T

e
K A Q P Q dxdy A

− −⎛ ⎞⎡ ⎤= ⎜ ⎟⎜ ⎟⎣ ⎦ ⎝ ⎠
∫ ∫                                      (18) 

                                            [ ] [ ] [ ] [ ] [ ]1 1

0 0

e ex y

T T

se
M A h R R dxdy Aρ− −⎛ ⎞⎡ ⎤= ⎜ ⎟⎜ ⎟⎣ ⎦

⎝ ⎠
∫ ∫                                     (19) 

The matrices [M]e and [K]e were obtained analytically by carrying out the necessary matrix 

operations and integration over x and y. 

                                                            [ ] [ ] [ ][ ]1 1T

e
K A G A

− −⎡ ⎤= ⎣ ⎦                                                      (20) 

                                                        [ ] [ ] [ ][ ]1 1T

se
M h A S Aρ − −⎡ ⎤= ⎣ ⎦                                                   (21) 

The development of the shell elements from the classical shell theory is more complex and many 

approximations are required to simplify the solution whereas flat shell elements are easier to 

formulate using previously available theories of membrane and plate bending elements. Flat shell 

elements are developed by superimposing the stiffness of membrane and bending elements. The 

membrane and bending forces are totally independent of each other in the flat shell elements and 

hence there is no membrane-bending coupling present in the element itself. This is major advantage 

of the flat shell elements. This separation is no longer possible in folded plates or curved shells. The 

behavior of a continuously curved surface can be adequately represented by the behavior of a 

surface built up of small flat elements. The shell is subdivided into rectangular finite elements. The 

transformation between global and local coordinates is required to generate the element global 

stiffness matrix and to write the appropriate equilibrium equations. The local-global transformation 

increases the number of the degree of freedom. This is a consequence of the absence of the 

rotational stiffness about the local axis. This can cause singularity and an error in the most equation 
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solvers. Since there is no stiffness associated with 6th degree of freedom, i.e. normal rotation, 

therefore singularity arises. For surmounting singularity problem, three ways are proposed; the first 

approach is to insert a fictitious stiffness associated with the local rotation in local coordinates, the 

second approach is to eliminate the 6th degree of freedom for all co-planar nodes and the last 

approach is to define the 6th degree of freedom in terms of U and V as )(
2
1

x

V

y

U
z ∂

∂
−

∂
∂

=θ . The most 

common approach is to insert a weak fictitious rigidity associated with the local normal rotation. 

The nodal displacement defined in the local shell element contain only two rotation components, 

the third rotation about the normal axis does not appear in the strain definition and is therefore not 

required to model the structure behavior of each individual element. Classical shell equations do not 

produce equations associated with this rotational parameter. However, when several elements 

meeting at a common node lie in different planes, it is necessary to include the rotation about the 

normal, zθ for a consistent transformation of displacements from the local to global coordinate 

system. To define coordinate transformation matrix of element, two ways are suggested; either 

using two successive rotations about x and y axes or using direction cosine. Transformation matrix 

characterized by two successive rotations [Rx] and [Ry] are defined as follows: 

                                                                  { } [ ]{ }LocalGlobal T δδ =                                                        (22) 

                                                            [ ] [ ][ ])()( αβ yxnode RRT =                                                        (23) 
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Transformation matrix could be also defined by vector algebra using direction cosines between the 

two sets of axes of a rectangular element. The vector passing through nodes 1 and 2 is given by, 
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Fig. 2: Coordinate transformation for rectangular element 

 

where x, y and z represent the global coordinates of node. The direction cosine for the local x 

direction is obtained by normalizing the vector with respect to its length. 
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where 2
12

2
12

2
1221 )()()( zzyyxxl −+−+−= is the length of vector. 

The direction cosines of the y-axis are established in a similar manner, 
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where 2
14

2
14

2
1441 )()()( zzyyxxl −+−+−= is the length of vector Vy. The direction cosine 

normal to the plane that represents the element local z direction is obtained by the cross product of 

direction cosines xΛ and yΛ . 

                                                                      yxz Λ×Λ=Λ                                                              (29) 

The transformation matrix between two sets of axes is expressed by 

                                                               [ ] [ ][ ]
LocalGlobal

xyzxyz Λ=                                                     (30) 
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In general, transformation matrix of a node is defined by (22) and consequently, by using direction 

cosine we have, 

                   { } [ ]
[ ] { }0

0
T T

x y z x y zGlobal Local
U V W U V Wθ θ θ θ θ θ

⎡ ⎤Λ
= ⎢ ⎥Λ⎣ ⎦

             (32) 

Rotations about in-plane axes for a thin flat rectangular shell element are expressed: 

                                                      yWx ∂∂= /θ   ,  xWy ∂−∂= /θ                                                   (33) 

Therefore the transformation matrix for nodal displacement becomes: 

                 [ ]
T T

z z

Global Local

W W W W
U V W T U V W

x y x y
θ θ

⎧ ⎫ ⎧ ⎫∂ ∂ ∂ ∂
=⎨ ⎬ ⎨ ⎬∂ ∂ ∂ ∂⎩ ⎭ ⎩ ⎭

                (34) 

 The nodal transformation matrix made up of the direction cosines is expressed by, 



 13

                                        [ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

ΛΛΛ−
ΛΛΛ−
Λ−Λ−Λ

ΛΛΛ
ΛΛΛ
ΛΛΛ

=

zzzxzy

xzxxxy

yzyxyy

zzzyzx

yzyyyx

xzxyxx

T

000
000
000

000
000
000

                                     (35) 

The transformation matrix for rectangular shell element is, 
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Stiffness and mass matrices of an element in the global coordinates could be computed as, 

                                                           [ ] [ ][ ] [ ]TLocalGlobal TKTK =                                                       (37) 

                                                           [ ] [ ][ ] [ ]TLocalGlobal TMTM =                                                      (38) 

Once the stiffness and the mass matrices have been obtained, it is possible to construct the global 

matrices for the complete structure using the finite element assembly technique. 

In the case of free vibration, the equations of motion are 

                                                                 [ ]{ } [ ]{ } 0=+ δδ ss KM                                                       (39) 

    

3. Behavior of Fluid solid interaction 

The dynamic behavior of a shell subjected to flowing fluid can be represented by the following 

system: 

                                       [ ] [ ][ ]{ } [ ]{ } [ ] [ ][ ]{ } { }0=−+−− δδδ fsffs KKCMM                                     (40) 

where{ }δ  is displacement vector, [Ms], [Ks] are respectively the mass and stiffness matrices of the 

system in vacuo; [Mf], [Cf] and [Kf] represent the inertial, Coriolis and centrifugal forces which are 

induced by potential flow, respectively. As a structure vibrates in a fluid at rest, the fluid is set into 
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motion and couples its motion with that of the structure during vibration. As a consequence the 

fluid contributes its own stiffness and mass to that of structure. The stiffness of a quiescent fluid is 

negligible whereas the mass of fluid is added to the structure and reduces the natural frequency of 

the system. In other words, the natural frequencies of structures which are in contact with fluid, 

decrease substantially compared to natural frequencies in vacuo, due to increasing of kinetic energy 

of the total system. 

The dynamic behavior of a rectangular shell element subjected to a stationary fluid can be 

represented by the following system, 

                                                          [ ] [ ][ ]{ } [ ]{ } 0=+− δδ sfs KMM                                               (41) 

The inertial force of the stationary fluid is taken into account as mass matrix of the fluid. 

Potential flow is an idealized method of modeling flow. In mathematical model, the fluid is 

assumed inviscid, incompressible and its motion is irrotational and its mean velocity distribution is 

constant across shell section. We suppose that shell displacements remain small enough for linear 

fluid mechanics to be adequate. Velocity potential function, φ must satisfy the Laplace equation 

throughout the fluid domain. This relation is expressed in Cartesian coordinate system by 

                                                            02

2

2

2

2

2
2 =

∂
∂

+
∂
∂

+
∂
∂

=∇
zyx

φφφφ                                                  (42) 

where x, y and z are in-plane and normal directions of a plate, respectively. 

A fluid velocity vector can be expressed as gradient of the velocity potential function as, 

                                                          ),,,(),,,( tzyxtzyxV φ∇=                                                      (43)  

                                                  
x

UV xx ∂
∂

+=
φ   ,  

y
Vy ∂

∂
=

φ  ,  
z

Vz ∂
∂

=
φ                                              (44) 

where Ux is the unperturbed flow velocity along shell in the x-direction. The remaining components 

of velocity, Vx, Vy and Vz are disturbance or perturbation fluid velocity in three directions.  
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The dynamic condition on fluid-shell surfaces can be determined by the Bernoulli equation: 

                                                              0
2
1 2 =++

∂
∂

f

P
V

t ρ
φ                                                            (45) 

where fρ is the density of fluid. Upon introducing velocity into above equation and taking into 

account only the linear terms (neglecting the higher order terms), the Bernoulli equation at the wall 

of shell element is expressed by, 

                                                            0=+
∂
∂

+
∂
∂

f

x

P

x
U

t ρ
φφ                                                           (46) 

Therefore hydrodynamic pressure on the fluid-shell surface for a stationary fluid (Ux=0) is obtained 

by, 

                                                              
t

P fwalltheat ∂
∂

−=
φρ                                                             (47) 

A full definition of the flow requires that a condition be applied to the structure-fluid interface. At 

the interface, the impermeability condition can be written as follows: 

                                                         
t

W

x

W
UV xwalltheatz ∂

∂
+

∂
∂

=                                                        (48) 

 Since Ux=0 and 
z

Vz ∂
∂

=
φ , therefore the impermeability condition could be written as, 

                                                                   
t

W

z
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∂
=

∂
∂φ                                                           (49) 

                                                                     
t

W

z
z ∂

∂
=

∂
∂

=0
φ                                                               (50) 

                                                                     
t

W

z
hz ∂

∂
=

∂
∂

−=
φ                                                             (51) 

where W is the lateral displacement of the shell element. 

The velocity potential function could be expressed into two separate functions: 
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                                                           ),,()(),,,( tyxSzFtzyx =φ                                                    (52)  

By introducing (52) into (49) and then by substituting S(x,y,t) into (52) the velocity potential 

function can be expressed: 

                                                             
t

W

F

zF
tzyx

∂
∂

′
=

)0(
)(),,,(φ                                                       (53) 

                                                           
t
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By substituting φ into Bernoulli equation we obtain pressure at both sides of shell element:  

                                                            2
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                                                          2
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−=−= ρ                                                      (56) 

Therefore total pressure imposing on shell element from fluid can be expressed by: 

                                       WZ
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Substituting W from Eq. (4) into Eqs. (53) and (54) and then introducing φ into Laplace equation 

yields the following equation: 

                                                      0)()11()(
22

2
2

2

=+−
∂

∂
zF

BAz

zF π                                                 (58) 

The general solution of 02 =−′′ FF μ   is     

                                                               zz eAeAzF μμ −+= 21)(                                                        (59)  

                                                                 )11( 22
22

BA
+= πμ                                                           (60) 

 By introducing F(z) into Eqs. (53) and (54) the velocity potential function is obtained: 
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Velocity potential function, φ, must satisfy the boundary conditions at the fluid-solid interaction 

and boundary conditions of fluid. One should take note that boundary conditions could vary from 

one case to another, therefore one should prescribe boundary conditions precisely. In general, three 

boundary conditions exist; fluid free surface, rigid wall, i.e., 0
1
=

∂
∂

=hz
z

φ  and impermeability. To 

obtain an overall understanding of the problem, we have studied a completely flexible rectangular 

reservoir containing fluid. The following conditions should be considered: 

 

 

 

3.1. Fluid over a plate with free surface condition 
 
 

 
 

Fig. 3: Fluid solid element having free surface at z=h1 

 

Consider fluid over a plate. At the interface, the impermeability condition is: 

                                                                     
t

W

z
z ∂

∂
=

∂
∂

=0
φ                                                               (63) 

The free surface behavior is expressed by [26]: 

                                                                2

21
1 tgz

hz ∂
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−=
∂
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=
φφ                                                             (64) 

where g is gravitational acceleration. 
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By substituting boundary conditions (63) and (64) into Eq. (61): 
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1
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1
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                                                          (65) 

 where C1 is defined as following, in which μ is obtained by Eq. (60). C1 approximately tends to -1,   

                                                                2

2

1 ωμ
ωμ

+
−

=
g

g
C                                                                    (66) 

By introducing
)0(
)0(

F

F

′
from (65) into Eq. (57), the fluid pressure applying on the bottom plate of a 

reservoir is obtained by: 
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3. 2. Fluid bounded between two parallel plates 

 

 
 

Fig. 4: Two identical plates coupled with bounded fluid 
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Boundary conditions for both plates at z=0 and z=h1 are defined by impermeability condition: 
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By introducing these boundary conditions into Eq. (61): 
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By introducing
)0(
)0(

F

F

′
into Eq. (57) the fluid pressure applying on each wall is obtained by: 
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Fluid mass matrix could be obtained by performing the following integration,                                    

                                    { } [ ] [ ] { }
0 0
0 0

TT

f
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∫ ∫                       (73) 

This leads us to added mass, 

                                                         [ ] [ ]1 1T

f f f fM Z A S Aρ − −⎡ ⎤⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦⎣ ⎦                                           (74) 

                                                              [ ]
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e ex y
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f fS R R dx dy⎡ ⎤= ⎣ ⎦∫ ∫                                                     (75) 

Where [Rf] is given in [24]. 
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4. Calculations and discussions 

4.1. Fluid-filled reservoir 

 On the basis of the preceding analysis, natural frequencies of a rectangular reservoir in vacuo, 

completely and partially filled with fluid are calculated by using in-house program. Consider a 

lidless rectangular tank consisting of side walls and bottom, whose geometry is depicted in Fig. 5, 

where the properties are; the Young’s modulus 11102×=E  Pa, the Poisson’s ratio 3.0=ν , the 

thickness 005.0=h m and the density 7970=sρ kg/m3. Water is used as the containing fluid having 

a density of 1000=fρ kg/m3. Two cases of boundary conditions have been studied: a) the bottom 

and facing walls of the reservoir are considered to be simply supported at edges and b) the bottom is 

clamped.  

 

Fig. 5: A rectangular reservoir 

 
In order to check the validity of the calculations, a finite element analysis was carried out using 

ANSYS. As mentioned before, in our theory, we have total compatibility between the solid and the 

fluid elements, whereas in ANSYS two separate elements are used as fluid and solid elements. The 

three dimensional model consists of 3D contained fluid elements (FLUID80) and elastic shell 

elements (SHELL63). The reservoir is discretized with four-noded quadrilateral shell elements, 

which have both bending and membrane capabilities. It has six degrees of freedom at each node; 

translations in three directions and rotations about three axes. FLUID80 element is used to model 
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fluid contained within vessels having no flow rate. The fluid element is defined by eight nodes 

having three translations in each direction and the isotropic material properties. Fluid has to be 

considered as compressible. Fluid elastic modulus should be the bulk modulus of fluid, 

approximately 5103× psi for water. In ANSYS the impermeability condition is not respected. Fluid 

element at a boundary should not be attached directly to structural elements but should have 

separate, coincident nodes that are coupled only in the direction normal to the interface. The 

reservoir is meshed and divided into 131 elastic shell elements and the fluid region consists of 140 

fluid elements with connectivity to the plate elements.  

The first few natural frequencies of the empty and fluid-filled simply supported rectangular 

reservoir are listed and compared with the ANSYS results in Tables 1 and 2 (case a). Tables 3 and 4 

present the natural frequencies of the empty and fluid-filled bottom-clamped rectangular reservoir, 

respectively (case b).  

 

 
Table.1: Comparison of present element and ANSYS for the empty reservoir, simply supported at 

all edges (case a) 
 

Natural Frequency (Hz)
ANSYS Present Discrepancy
91.618 91 0.006745399
119.11 118.3 0.006800437
128.01 127.5 0.003984064
143.97 142.4 0.01090505
157.61 156 0.010215088
174.21 172.4 0.010389759
193.92 190.9 0.015573432
213.18 210.4 0.013040623
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Table.2: Comparison of present element and ANSYS for the fluid-filled reservoir, simply supported 
at all edges (case a) 

 
Coupled Natural Frequency (Hz)

ANSYS Present element Discrepancy
38.994 44.92 0.131923419
53.237 61.24 0.13068256
57.511 65.8 0.125972644
70.988 74.63 0.04880075
72.496 82.46 0.120834344
85.515 86.13 0.007140369
100.96 99.08 0.018974566
101.66 108.5 0.063041475

 
 
 
 

Table.3: Comparison of present element and ANSYS for the empty bottom-clamped rectangular 
reservoir (case b) 

 
Natural Frequency (Hz)

ANSYS Present element Discrepancy
53.44 52.98 0.008607784
59.676 59.12 0.009316978
85.982 85.08 0.010490568
100.34 99.48 0.008570859
136.19 134.9 0.009472061
153.56 152.6 0.006251628
195.64 194.9 0.003782458
197.25 196.2 0.005323194

 
 
 
 

Table.4: Comparison of present element and ANSYS for fluid-filled bottom-clamped rectangular 
reservoir (case b) 

 
Coupled Natural Frequency (Hz)

ANSYS Present element Discrepancy
26.519 27.61 0.039514669
29.917 30.69 0.025187357
45.05 45.3 0.005518764
45.32 52.98 0.144582861
73.309 70.15 0.045032074
74.676 79.61 0.061977139
90.995 101.2 0.100839921
95.278 101.8 0.064066798
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4.2. Partially-filled reservoir 

Variation of natural frequencies as a function of fluid level variations under different boundary 

conditions for an open reservoir has been investigated and depicted in Figs. 6-12, in which the 

frequencies have been denoted as;  1st,  2nd and  3rd frequencies. In these figures 

natural frequencies of the system as a function of fluid level have been shown. As we mentioned 

earlier, the stiffness of a quiescent fluid is negligible in fluid-solid analysis whereas the mass of 

fluid is added to the structure and reduces the natural frequency, due to increasing of kinetic energy 

of total system. 

 

 

Fig. 6: Variation of frequencies of bottom-clamped reservoir versus fluid level variations 
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Fig. 7: Variation of frequencies of reservoir with two parallel clamped walls versus fluid level 
variations 

 
 

 
 

Fig. 8: Variation of frequencies of reservoir with two facing walls and bottom clamped versus fluid 
level variations 
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Fig. 9: Variation of frequencies of a perimetrically bottom clamped rectangular reservoir versus 
fluid level variations 

 
 
 

 
 

Fig. 10: Variation of frequencies of a reservoir with two facing walls and bottom clamped and two 
other walls simply supported at edges versus fluid level variations 
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Fig. 11: Variation of frequencies of a perimetrically simply supported bottom reservoir versus fluid 
level variation

 
 
 

 
 

Fig. 12: Variation of frequencies of a simply supported reservoir at all edges versus fluid level 
variations 
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As we expected, the natural frequency of structure in vicinity of fluid decreases. It has been 

observed from Figs. 6-12 that the frequencies of fluid-filled reservoir have substantially decreased 

in comparison with reservoir in vacuo. For the first frequency about 50 % reduction has been 

obtained. We observe different behaviors of natural frequencies depending on boundary conditions. 

It is observed in Figs. 10 and 12 that the natural frequencies decrease as fractional filling increases 

and in the range of 3/4 to 1, frequencies are almost constant. For the 2nd and 3rd frequencies, 

substantial reduction has been observed over the range of 0 to 3/4, whereas in Fig. 10 for the 1st 

frequency the rate of change over fluid level variation is not appreciable. In Fig.12, 1st frequency 

decreases rapidly in the range of 0 to 1/4 and afterward it is almost unchangeable. 

 
 
 

4.3. Submerged blade 
 

In order to demonstrate the applicability of the proposed method a clamped-free blade in vacuo 

as well as a submerged blade in fluid is investigated. The blade has the same material properties as 

the reservoir and its length, width and thickness are 20, 10 and 1 cm, respectively. The blade has 

been discretized to 40×20 elements and water has been used as fluid. The heights of fluid over and 

under an arbitrary element and origin of blade are h1, h2, ho1 and ho2, respectively as shown in 

Fig.13.  

 

Fig. 13: Submerged blade 
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Natural frequencies of the blade in vacuo have been demonstrated in table. 5. The level of fluid 

over and under the blade as well as the boundary conditions of fluid (free surface, rigid wall or 

elastic object) affect the behavior of blade until a certain height of fluid. In order to clarify this 

phenomenon, variations of fluid height over and under blade are investigated individually. We 

observed when the blade is completely submerged in the fluid with a sufficiently large height under 

and over the blade; fluid level does not influence the frequency. 

 
 
 

Table.5: Comparison of natural frequencies of a clamped-free blade (10×20×1cm) in vacuo 
 

Natural Frequency (Hz)
ANSYS Present element Discrepancy
212.47 236.2 0.100465707
1045.8 1087 0.037902484
1050.5 1123 0.064559216
2166.5 2148 0.008612663
3207.9 3251 0.013257459
3533.6 3581 0.013236526
5570.4 5642 0.012690535
5834.9 5883 0.008176101

 

Structures with different boundary conditions behave differently in vicinity of fluid. The level of 

fluid at which the frequency stops changing, varies from one structure to another. Consider a blade 

completely submerged in fluid as shown in Fig.13. Free surface and rigid wall are considered as 

boundary conditions. The free surface behavior is obtained by Eq. (64) and the rigid wall behavior 

is expressed by: 

                                                                  0
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−−= hhz
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φ                                                                 (76) 

The total pressure applying on each element is obtained by introducing these boundary conditions 

into Eqs. (61) and (62): 
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Variations of the first few frequencies in function of fluid height variations over and under blade 

have been demonstrated in Figs.14 a-b and Figs.15 a-b, respectively. When the height of fluid over 

the blade increases, the frequency decreases. However, this reduction ceases when the height-length 

ratio reaches 50%. On the other hand, when the height of fluid under the blade increases, the 

frequency increases as well, but this increase stops when fluid level reaches 50% of length of blade. 

Because of geometry restrictions, height over and under the mentioned blade could not be reduced 

less than 16% in order to be completely submerged in fluid. Variation of frequencies as a function 

of simultaneous changes in ho1 and ho2 has been shown in Fig. 16. We observe that the frequency 

decreases rapidly during an increase of a height to length ratio from zero to 0.16 and then it 

increases slightly and afterward at / 0.3oh L ≥ , the augmentation ceases. 
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Fig 14-a: Variation of 1st frequency as a function of ho1 variations at sufficiently large ho2 
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Fig 14-b: Variation of 2nd and 3rd frequencies as a function of ho1 variations at sufficiently large ho2 
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Fig 15-a: Variation of 1st frequency as a function of ho2 variations at sufficiently large ho1 
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Fig 15-b: Variation of 2nd and 3rd frequencies as a function of ho2 variations at sufficiently large ho1 
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Fig 16: Variation of frequency as a function of simultaneous changes in ho, where ho=ho1=ho2 
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5. Conclusion  

A method of analysis is presented for the dynamic behavior of elastic structures partially or 

completely filled with or submerged in stationary fluid. The method has demonstrated the 

versatility of the method developed through a rectangular flat shell element. This method is enable 

to predict the natural frequencies of three-dimensional thin structure containing or/and submerged 

in fluid. The shape functions developed in this method are calculated directly on the basis of the 

equations of motion and consequently the stiffness and mass matrices are determined by exact 

analytical integration of the equilibrium equations instead of the usually used and more arbitrarily 

interpolation polynomials as ANSYS or ABAQUS does. This work covers a variety of fluid-

structure interaction issues, i.e. fluid random turbulence; flowing fluid and etc. All these aspects are 

not taken into account in one computer code, such as ABAQUS or any other FEM, therefore the 

necessity of this hybrid element, which is obtained by combination of finite element method and 

thin shell theory, arises to precisely calculate dynamic response of fluid-structure system. This work 

will be performed to investigate the natural frequencies of “n” blades in vacuo, submerged and/or 

subjected to a turbulent flow. 
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Nomenclature 

 

xe, ye  Dimensions of element in x and y directions, respectively 

A, B   Plate’s length and width in x and y directions, respectively 

Pij  Terms of elasticity matrix  

P                     Pressure imposing from fluid on the shell 

U, V   Displacements of the shell reference surface in the x and y directions, respectively 

W   Normal displacement of the shell reference surface 

g   Gravitational acceleration 

h   Shell thickness 

h1  Height of fluid over the shell 

h2  Height of fluid under the shell 

sρ    Density of the shell material 

fρ    Fluid density 

ν    Poisson’s coefficient 

E   Modulus of elasticity 

φ(x, y, z, t) Velocity potential function 

{ }iδ   Nodal displacement vector  

{ }ε    Strain vector 

{ }σ    Stress vector 

[ ]
e

K   Stiffness matrix of an element  

[ ]
Global

K  Global stiffness matrix  

[ ]
e

M    Mass matrix of an element  
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[ ]
Global

M   Global mass matrix 

[ ]fM    Fluid mass matrix 

[ ]N   Shape function matrix  

[ ]P     Elasticity matrix 

[ ]T                  Transformation matrix 
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