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RÉSUMÉ

Le vent est une variable météorologique extrêmement difficile à prédire. Augmenter la préci-
sion des prévisions de vent à court terme (jusqu’à 12 heures à l’avance) est nécessaire pour
optimiser les opérations des parcs éoliens, maximiser leur rendement, et favoriser leur déve-
loppement. L’objectif de ce projet est donc d’améliorer les techniques existantes de prévision
des vitesses de vent et de la puissance produite par les éoliennes.

Suite à une revue de littérature approfondie des techniques de prévision du vent, le filtre de
Kalman est identifié comme l’approche la plus prometteuse. Il s’agit d’une méthode adap-
tative de correction de l’erreur associée aux modèles de prévision physiques, qui peut être
appliquée presque instantanément puisqu’elle ne nécessite pas de longue période d’entraîne-
ment sur un ensemble de données historiques.

La plupart des approches récentes reposent sur les prévisions de vitesse de vent uniquement
comme paramètre d’entrée, alors qu’il a été mentionné à plusieurs reprises dans la littérature
que l’ajout d’autres variables, notamment la direction du vent, devrait être considéré pour
améliorer la précision des modèles. Il a déjà été démontré pour certaines approches (par
exemple, les réseaux de neurones artificiels), que la direction permettait de réduire l’erreur
moyenne. En revanche, l’ajout de la direction dans les modèles de filtre de Kalman appliqués
à la vitesse du vent ou à la puissance n’a pas été étudié à ce jour.

Dans le cadre de ce projet, une nouvelle méthode est proposée, selon laquelle des filtres de
Kalman sont modélisés de façon à tenir compte de la direction du vent comme paramètre
d’entrée. Le biais entre les prévisions brutes d’un modèle de prévision numérique du temps
et les observations est modélisé de façon non linéaire, en fonction de la vitesse et la direction
du vent. Pour la prévision de la puissance, deux approches sont développées pour les cas où
des observations de vitesse de vent ne sont pas disponibles. D’une part, un filtre de Kalman
est appliqué à la puissance directement afin d’estimer son biais. D’autre part, une technique
selon laquelle les puissances observées sont converties en vitesses de vent fictives par la courbe
de puissance inverse est introduite, dans le but d’appliquer les filtres sur la vitesse du vent.

Les données historiques de prévision et d’observation de 20 sites situés en Europe et en
Amérique du Nord sont utilisées pour analyser la performance des modèles. Afin de quantifier
la précision des différents modèles, plusieurs indicateurs sont calculés, notamment le biais, le
Mean Absolute Error (MAE) et le Root-Mean-Square Error (RMSE).
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Pour les filtres de Kalman corrigeant la vitesse, le polynôme d’ordre 1 est établi comme le
plus approprié, alors que pour celui appliqué à la puissance, les ordres plus élevés réduisent
davantage les erreurs moyennes. En définitive, l’ajout de la direction dans les modèles permet
d’améliorer la précision des prévisions pour toutes les approches étudiées.

Les filtres de Kalman adaptés pour corriger directement les prévisions de puissance présentent
des erreurs nettement plus élevées. Étant donné que la forte variabilité du vent est largement
amplifiée pour les données de puissance, ces filtres démontrent moins de succès à prédire
le biais. Ainsi, lorsque les observations de vitesse ne sont pas disponibles, la conversion des
puissances en vitesses fictives (par la courbe de puissance inverse) permet d’atteindre les
meilleurs résultats.

Parallèlement, bien que certains modèles montrent en moyenne une forte tendance à surpasser
les autres en ce qui concerne la précision, il a été établi que la performance des différents
modèles peut varier en fonction du temps, de l’horizon, et de l’emplacement géographique
des sites étudiés. Une méthode de combinaison adaptative est donc également explorée, afin
d’allouer plus ou moins de poids à chacun des modèles selon leurs performances passées
et récentes. Au final, la combinaison permet de réduire les erreurs de façon significative,
comparativement au meilleur modèle de filtre de Kalman.
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ABSTRACT

Short term wind speed and wind power production have been studied thoroughly in the last
decades. Wind is a highly fluctuating meteorological parameter, and improving the accuracy
of wind speed forecasts is essential to favor the expansion of the wind energy sector, and thus
lower our dependence on fossil fuels. Essentially, enhancing the quality of short term wind
speed forecasts (up to 12 hours ahead) is necessary in order to optimize wind farm operations
and maximize their economic profitability. The purpose of this project is therefore to improve
existing wind speed and wind power output prediction techniques. Following a comprehensive
literature review, the Kalman Filter appears as the most promising approach. It is an
adaptive method that corrects the bias associated to the Numerical Weather Prediction
(NWP) models, and which can be applied almost instantly without prior training on an
extensive set of historical data.

Most of the recent techniques rely exclusively on wind speed data input, while it is mentioned
numerous times in literature that more input parameters, particularly wind direction, should
be considered in order to improve forecast accuracy. It has already been shown that for
some approaches, such as Artificial Neural Networks, the addition of wind direction leads to
reduced forecast errors. However, introducing wind direction into the Kalman Filter models
has not been studied to this date.

In this project, a novel approach is introduced, where Kalman Filter algorithms are used to
estimate the bias of NWP forecasts as non-linear functions of wind speed and wind direction.
As for wind power forecast, two techniques are introduced for wind farms where power
measurement is the sole available data. Firstly, wind power bias is estimated by a Kalman
Filter applied to power forecasts. Secondly, an Inverse Power Curve Transformation is used
to convert observed power production into estimated wind speed values to then apply the
filter directly on wind speeds. The forecast values of wind speed are then converted back
into power forecasts with the usual power curve.

Historical measurement and forecast data from 20 wind farms located throughout Europe and
North America have been made available for this study. In order to quantify the accuracy
of the models developed in this research, various performance indicators were used, such
as bias, Mean Absolute Error (MAE) and Root-Mean-Square Error (RMSE). For Kalman
Filters applied on wind speed, the first order polynomial has shown the best results, whereas
for power output, higher order polynomials have shown better performances in correcting the
bias. Furthermore, the addition of wind direction into the bias modeling allows achieving
higher accuracy for all of the studied approaches.



vii

On the other hand, Kalman Filters applied directly to power predictions clearly show lower
performances. Given that the high variability of the wind is greatly amplified at the level of
power data, these filters demonstrate less success in predicting the bias. Consequently, when
wind speed online measurements are not available, the inverse power curve transformation
based approach produces better results.

Alternatively, although specific bias models tend to show higher accuracies in average over all
studied wind farms, it was observed that performance can differ from one model to the other,
as a function of time of day, prediction horizon and geographic location. An adaptive forecast
combination procedure is therefore implemented, consisting of a time varying weighting of
all Kalman Filter versions based on their past and recent performances. It is observed that
the combination approach leads to significantly reduced forecast errors, compared to the best
Kalman Filter model.
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Ω Matrice de variance-covariance [K ×K]
W Matrice diagonale de Ω [K ×K]
Γ̂ Dispersion de φ̂ ou β̂ [K ×K]

Notations pour le calcul d’erreur

e Erreur de prévision sur la vitesse (m/s)
ε Erreur de prévision sur la puissance (% de pnom)
ImprrefI Amélioration d’une méthode par rapport à une méthode de référence

(ref), pour l’indicateur I

Autres notations

A Surface balayée par les pales d’une éolienne (m2)
pnom Puissance nominale d’une éolienne ou d’un parc éolien (kW )
R0 Constante universelle des gaz parfaits ( J

mol·K )
T Température (K)
ρ Masse volumique de l’air (kg/m3)
ρ0 Masse volumique de l’air pour des pression et température standards

de l’atmosphère (1, 225kg/m3)



xviii

vcut−in Vitesse de démarrage de l’éolienne (m/s)
vcut−out Vitesse d’arrêt de l’éolienne (m/s)
µ Représente la moyenne d’une distribution gaussienne
Σ Représente une matrice de covariance



xix

LISTE DES ANNEXES

Annexe A Analyse directionnelle des données historiques . . . . . . . . . . . . . 101

Annexe B Temps de convergence des coefficients . . . . . . . . . . . . . . . . . . 103

Annexe C Comportement des modèles : vitesse en fonction du temps . . . . . . 104

Annexe D Comportement des modèles : vitesse en fonction du temps, avec com-
binaison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



1

CHAPITRE 1 INTRODUCTION

1.1 Préambule

L’énergie éolienne est en constante croissance dans le monde. À la fin de l’année 2017, la
puissance éolienne mondiale installée atteignait 540 gigawatts (GW), avec une croissance de
52 GW en 2017 seulement [29]. Selon le New Energy Outlook 2017 (NEO), un rapport publié
par le Bloomberg New Energy Finance (BNEF), la demande mondiale en énergie devrait aug-
menter de 58% entre 2017 et 2040, ce qui correspond à une augmentation annuelle d’environ
2% [7]. Les énergies renouvelables seront nécessaires afin d’atteindre les objectifs de réduction
de gaz à effet de serre (GES) tout en comblant cette croissance de la demande énergétique.
L’éolien étant l’une des énergies les moins dispendieuses (en $/MWh), le marché favorisera
par lui-même les investissements dans cette branche énergétique. Le NEO estime donc que
3300 milliards de dollars seront investis pour l’installation de nouvelles capacités éoliennes
dans le monde d’ici 2040 [7]. D’ici 2021, on estime une puissance installée de 817 GW, ce qui
correspond à une augmentation de plus de 50% comparativement à aujourd’hui [29].

En termes de coût, chaque année les éoliennes deviennent de plus en plus abordables : par
exemple, les prix des développements éoliens en mer (ou offshore) ont drastiquement diminué
récemment. En 2016, l’industrie du offshore prévoyait atteindre une cible de 100 e/MWh
(≈160 $/MWh en avril 2018) d’ici 2020 [29], alors qu’en novembre 2016, un projet au Dane-
mark a été proposé à un prix aussi faible que 50 e/MWh (≈80 $/MWh en avril 2018), bien
en dessous des prix estimés. De plus, selon un rapport produit par l’International Renewable
Energy Agency (IRENA) en 2016, les prix des parcs éoliens terrestres (onshore) pourraient
diminuer de 26% d’ici 2025 [33]. Très récemment, en décembre 2017, un projet de parc ter-
restre en Alberta a été accepté à 31 $/MWh. Il est à noter que le marché n’est pas seulement
favorisé par la chute des prix des turbines elles-mêmes, mais aussi par les avancées récentes
dans les réseaux électriques permettant une gestion plus facile des ressources intermittentes,
comme l’énergie éolienne [29].

1.2 Éléments de la problématique

Le développement du marché éolien permet aussi de construire des réseaux électriques diver-
sifiés, alimentés en moins grande proportion à partir de combustibles fossiles, ce qui les rend
plus sécuritaires en termes d’indépendance énergétique. Le caractère intermittent des nou-
velles sources renouvelables force aussi les réseaux à évoluer de sorte à devenir plus robustes
face à ces grandes variations.



2

Les défis associés à l’énergie éolienne sont encore considérables : d’une part, il est bien connu
qu’il existe encore une grande résistance face aux questions d’acceptabilité sociale (pollu-
tion sonore, pollution visuelle, etc.) ; d’autre part, la nature relativement imprévisible des
ressources éoliennes complexifie leur pénétration en grande proportion dans les réseaux élec-
triques. Plus précisément, la forte variabilité et l’imprévisibilité du vent rendent difficile la
gestion de l’offre de puissance en fonction de la demande, ainsi que la gestion de la stabilité
du réseau [32].

Au niveau économique, bien qu’il s’agisse d’un des choix les moins coûteux parmi les sources
de production d’électricité [10], l’éolien doit néanmoins rester concurrentiel par rapport à
d’autres méthodes de production d’énergie. En effet, comme les ressources de vent varient
d’une région à l’autre dans le monde, il est possible qu’à certains endroits l’énergie éolienne
disponible ne soit pas suffisante pour que les coûts demeurent avantageux [21]. Ainsi, bien que
les coûts de construction des parcs diminuent continuellement, il est nécessaire de continuer à
améliorer le rendement des éoliennes ainsi que des procédés d’exploitation afin de maximiser
leur rentabilité.

Dans certains cas, le prix de vente de l’énergie éolienne est fixé par des tarifs de rachat (feed-
in-tariffs) qui sont implantés pour encourager le développement des énergies renouvelables.
Ces tarifs de rachat permettent d’assurer aux développeurs un prix de vente fixe, garanti pour
une durée déterminée (généralement pour la durée de vie du projet). En revanche, d’autres
producteurs ne bénéficient pas de ce genre de programmes et doivent être assujettis aux prix
fixés par le marché de l’énergie. Si tel est le cas, les producteurs doivent proposer des offres
de génération à l’avance, donc prévoir la quantité d’énergie qui sera produite à court terme.
En général, ils peuvent corriger leurs prévisions quelques heures avant la vente, et selon les
législations en vigueur, des pénalités peuvent leur être facturées pour tout écart entre la
production réelle et celle qui avait été offerte lors de la vente [58].

Pour augmenter la profitabilité des parcs, il est donc fondamental de s’attaquer à la nature
variable des ressources éoliennes. Améliorer la précision des prévisions de production éolienne
à court terme (entre 1 et 12 heures à l’avance) est essentiel afin d’atteindre cet objectif. Ce
progrès permettrait d’abord de réduire certains frais associés aux processus d’exploitation,
par exemple en planifiant les opérations d’entretien qui nécessitent des arrêts de turbines aux
moments les moins venteux, et ce, en vue de minimiser les pertes de production. Ensuite,
pour les producteurs assujettis aux prix du marché, des prévisions à court terme améliorées
permettraient de réduire les pénalités liées aux écarts entre anticipation et réalisation de
puissance. Aussi, de meilleures prévisions faciliteront la gestion de l’offre et de la demande
énergétique pour les opérateurs de réseaux. Cette amélioration favorisera l’intégration des
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éoliennes sur les réseaux électriques et par le fait même, les gouvernements seront plus en-
couragés à soutenir le développement de l’énergie éolienne.

En somme, l’objectif central de cette recherche est d’améliorer les techniques existantes de
prévision du vent et de la production éolienne à court terme, ce qui permettrait ultimement
de maximiser la rentabilité des parcs éoliens et en favoriser le développement. WPred, une
entreprise québécoise offrant des services de prévision pour les parcs éoliens, s’est intéressée au
sujet. Elle souhaite participer à l’avancement de la recherche dans ce domaine afin d’améliorer
ses services, c’est donc elle qui a été l’instigatrice du projet. Ainsi, c’est à partir d’une
collaboration entre WPred et l’École Polytechnique de Montréal que ce projet de recherche
a été lancé.

1.3 Définitions et concepts de base

De nombreuses études ont déjà été menées au sujet des prévisions de la vitesse du vent, et
ce, sur divers horizons. Le terme horizon, très souvent utilisé dans le domaine, décrit le pas
de temps sur lequel est réalisée la prévision. En d’autres termes, une prévision faite pour un
horizon de 2 h correspond à la prévision d’une variable 2 heures dans le futur. Les différentes
méthodes répertoriées dans la littérature fonctionnent plus ou moins bien selon l’horizon
étudié. De façon générale, les horizons de prévision peuvent être regroupés en trois grandes
catégories [68, 74] :

Tableau 1.1 Horizons de prévision

Très court terme Quelques minutes à quelques heures
Court terme Jusqu’à 24 h
Long terme Plusieurs jours à quelques semaines

Tel que mentionné plus haut, l’objectif de ce projet est d’améliorer les prévisions pour des
horizons de 12 heures et moins, ce qui correspond au court terme.

1.3.1 Méthodes de prévision

Les méthodes de prévision de vent peuvent être divisées en deux principales catégories : les
méthodes à base physique et les méthodes statistiques.

Méthode physique. La méthode physique, généralement appelée prévision numérique
du temps (PNT), est basée sur des équations et des paramètres physiques de l’atmosphère
comme le relief, la rugosité du terrain, la pression et la température, ainsi que l’interaction
de plusieurs phénomènes physiques entre eux. Lorsqu’on connaît l’état de l’atmosphère au
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moment présent, on peut, à l’aide de simulations informatiques, simuler l’évolution du sys-
tème actuel en se basant sur une multitude de lois physiques [22]. Le développement d’un tel
modèle est très complexe, et les ressources informatiques nécessaires à son fonctionnement
sont substantielles. La prévision météorologique étant stratégique pour un pays, les modèles
de PNT sont par conséquent généralement réalisés par des agences gouvernementales. Par
exemple, elle est produite aux États-Unis par la NOAA, en France par Météo-France et au
Canada par Environnement Canada. Bien que très répandus et largement utilisés partout
dans le monde, les modèles physiques présentent certaines faiblesses. D’abord, comme ces
modèles se basent sur les conditions initiales des paramètres de l’atmosphère, la moindre
erreur dans les variables de départ peut se propager et s’amplifier avec l’évolution dans le
temps. De plus, comme ces modèles nécessitent une quantité excessive de ressources infor-
matiques, la résolution spatiale des prévisions est limitée [22]. Par exemple, un modèle de
prévision qui couvre le monde entier ne pourra pas aller au-delà d’une résolution spatiale de
quelques kilomètres ou plus, et des méthodes de réduction d’échelle (downscaling) doivent
être utilisées pour étudier des phénomènes à plus petite échelle. En général, des méthodes
statistiques de sortie de modèle, Model Output Statistics (MOS), sont utilisées pour réduire
les erreurs reliées à la PNT [28]. Par ailleurs, comme le temps de calcul est très élevé, les
prévisions numériques sont exécutées généralement entre 2 et 4 fois par jour seulement, ce
qui contraint leur utilisation au moyen terme et au long terme [68].

Méthode statistique. L’approche statistique, quant à elle, ne tient pas compte de l’envi-
ronnement physique pour prédire la vitesse du vent. Elle permet d’atteindre des précisions
accrues pour le court terme comparativement aux modèles physiques [56], et comme son nom
l’indique, est basée sur des méthodes statistiques. Une multitude de techniques de ce genre
ont été étudiées pour la prévision du vent ; de façon générale, les modèles sont entraînés sur
un ensemble de données historiques permettant d’ajuster les paramètres des modèles à partir
des vitesses de vent prédites et observées. Habituellement, ils impliquent des techniques d’in-
telligence artificielle comme les réseaux de neurones artificiels (RNA), ou des approches par
série temporelle (ST). Des approches mixtes combinant différentes méthodes (statistiques et
physiques) sont aussi couramment utilisées. Pour le court terme, la précision des prévisions
peut également être considérablement améliorée lorsqu’on dispose de données mesurées aux
turbines en temps presque réel. On nomme techniques de prévision immédiate (nowcast) les
méthodes permettant d’ajuster les prévisions météorologiques issues des modèles de PNT en
tenant compte des observations en temps presque réel. Cela étant dit, puisque l’objectif du
projet consiste à améliorer les prévisions à court terme, ce seront les méthodes statistiques
et le nowcast qui seront considérés.
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1.3.2 Conversion en puissance

Les éoliennes servent à convertir l’énergie cinétique du vent en électricité. Cette conversion est
décrite par une courbe de puissance (CP) propre à chaque modèle d’éolienne, reliant la vitesse
du vent à la hauteur du moyeu à la puissance produite. Les modèles décrits précédemment
permettent de prévoir la vitesse du vent, alors que dans le cadre du projet, il est aussi question
de prévoir la puissance produite par les parcs éoliens. Par conséquent, les vitesses doivent
être converties en puissances générées, ce qui est réalisé à l’aide d’une CP. De façon générale,
ces courbes ont toutes une forme similaire, tel que présenté à la Figure 1.1.

Figure 1.1 Courbe de puissance typique d’une éolienne de 2.5 MW

Sous la vitesse de vent de démarrage (ou vcut−in en anglais), la puissance produite est nulle.
Cette valeur est propre à chaque turbine et dépend de sa conception : elle est se situe géné-
ralement entre 2 et 4 m/s [30]. Ensuite, la puissance produite augmente rapidement jusqu’à
la puissance nominale Pnom (généralement entre 12 et 16 m/s), qui correspond à la puissance
maximale pour laquelle la turbine a été conçue. Puis, la puissance reste constante jusqu’à ce
que la vitesse du vent atteigne la vitesse de coupure (vcut−off ), entre 20 et 30 m/s [30]. À
ce moment, la turbine est arrêtée complètement afin d’éviter les bris pouvant être associés à
des vitesses de vent trop élevées.

Dans la section de la courbe située entre vcut−in et vnom, la puissance croît rapidement.
Cette augmentation abrupte est expliquée par la relation entre la puissance contenue dans
un courant de vent et sa vitesse, qui suit en théorie une fonction cubique :

p = 1
2ρairAv

3 (1.1)
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En pratique, la partie de droite de l’équation précédente est multipliée par le facteur Cp, qui
correspond au rendement de l’éolienne. En effet, la loi de Betz stipule qu’indépendamment
du design des éoliennes, les conditions géométriques font en sorte qu’il n’est pas possible de
capturer plus de 59% de l’énergie du vent. En général, les turbines atteignent au maximum
75% à 80% de cette limite [9].

L’approche la plus simple pour convertir la vitesse du vent en puissance consiste à utiliser
la courbe de puissance fournie par le manufacturier. Toutefois, plusieurs études démontrent
qu’une CP faite sur mesure à partir des données de vent et de puissance mesurées sur place
mène à des résultats plus précis [28]. De fait, cette dernière option peut améliorer l’erreur
quadratique moyenne, ou RMSE, de 20% sur la puissance comparativement à l’utilisation de
la courbe de puissance du manufacturier [78].

En bref, le but central de ce projet est d’améliorer les prévisions de vitesse de vent et de
puissance pour le court terme, plus précisément pour des horizons de 1 à 12 heures. Afin d’y
parvenir, il est d’abord nécessaire d’effectuer une revue de littérature des méthodes statis-
tiques existantes pour bien cerner ce qui a été étudié jusqu’à ce jour et ce qui s’applique le
mieux à notre problématique. Une fois cette revue terminée, il sera possible de déterminer le
modèle mathématique le plus prometteur qui sera, dans le cadre du projet, exploré, bonifié
et amélioré.

1.4 Plan du mémoire

Ce mémoire présente les informations pertinentes à la compréhension du projet, ainsi que les
résultats obtenus. Tout d’abord, un premier chapitre sera consacré à la revue des méthodes
de prévision de vent à court terme. Les atouts et les inconvénients de chaque modèle seront
discutés, dans l’objectif de déterminer la méthodologie à explorer pour la prévision des vitesses
de vent. Une section de ce chapitre sera également consacrée à une revue des principales
méthodes de conversion de la vitesse en puissance. Par la suite, les méthodes envisagées pour
la correction de la puissance seront discutées et finalement, les méthodes d’évaluation de la
performance des prévisions seront décrites.

Ensuite, un chapitre présentera les détails et le développement de la solution choisie. En
premier lieu, la théorie derrière la technique sélectionnée sera introduite. En second lieu, la
nouvelle approche développée pour la prévision des vitesses de vent sera décrite en détail.

Une section sera ensuite dédiée aux résultats du nouveau modèle au niveau des prévisions
de vitesses de vent. D’abord, les données disponibles pour l’étude seront détaillées, puis une
étude préliminaire sera présentée afin de justifier l’intérêt de l’approche envisagée. Enfin, les
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résultats du modèle développé seront analysés de façon exhaustive.

Finalement, un dernier chapitre traitera des résultats de l’application des modèles aux don-
nées de prévision de la puissance. Trois différentes approches seront évaluées et comparées
entre elles.
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CHAPITRE 2 REVUE DE LITTÉRATURE

Les premiers travaux importants concernant les prévisions de la vitesse du vent à court terme
ont été publiés dans les années 1980 [17]. Le propos étant encore d’actualité aujourd’hui,
plusieurs méthodes continuent d’être développées jusqu’à ce jour. Ces méthodes possèdent
toutes leurs contraintes et leurs limites, chacune performant plus ou moins bien selon l’horizon
de prévision. Récemment, le développement du court terme a été prédominant en raison de
son importance pour les systèmes électriques [70]. Les différentes méthodes existantes sont
analysées dans les sections suivantes afin de déterminer la méthode la plus prometteuse, qui
sera utilisée et poussée plus loin dans le cadre du projet.

Il est important de mentionner que comparer plusieurs modèles entre eux n’est pas évident,
et ce, pour plusieurs raisons. D’abord, il n’existe pas de mesure de performance standard
permettant de comparer arbitrairement les résultats obtenus dans les études publiées à ce
jour. La complexité du terrain et la qualité des données, par exemple, peuvent influencer
grandement la performance de certains modèles. Ainsi, puisque les études existantes ont été
réalisées sur des sites différents, une comparaison quantitative est plus ardue. Pour plusieurs
cas, les méthodes étudiées sont comparées soit au modèle physique, soit au modèle dit de
persistance, qui est généralement considéré comme une approche appropriée pour comparer
les résultats entre différentes études. Le modèle de persistance correspond simplement à
estimer que les valeurs des prévisions au temps t + h (où l’horizon de prévision vaut h =
1, 2, 3, . . . ) sont égales à la valeur observée de la variable au temps t :

xt+h = xt, h = 1, 2, 3, . . . (2.1)

Il est à noter que dans les sections suivantes, la revue sera centrée sur les études fournissant
des indicateurs d’erreurs quantitatifs et permettant la comparaison avec les autres études.

2.1 Modèles physiques

Les modèles physiques ne sont pas précis pour les prévisions à court terme, étant donné leur
temps de calcul très élevé. Néanmoins, plusieurs approches statistiques hybrides ont recours
aux prévisions des PNTs comme paramètres d’entrée.

Les prévisionnistes effectuant des prévisions à partir de modèles physiques reçoivent les ré-
sultats des modèles de prévision numérique du temps par courrier électronique ou par service
FTP [42]. Ils sont couramment émis sous forme de grille grossière ayant une résolution de
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plusieurs kilomètres. Au Canada, le modèle disponible est le Système global de prévision
déterministe (SGPD) du modèle GEM (Global Environmental Multiscale) d’Environnement
Canada. Celui-ci possède une résolution effective d’environ 25 km, soit de 0,24◦ × 0,24◦ [23]
(la Figure 2.1 illustre le concept, mais ne correspond pas à la résolution réelle du modèle).

Figure 2.1 Exemple de grille. Image libre de droits [23].

La résolution spatiale de ces modèles a une influence majeure sur la précision des prévisions, ce
qui est encore plus significatif dans le cas de terrains complexes. La combinaison de plusieurs
méthodes (physiques et statistiques) est donc cruciale pour réduire l’erreur [37]. Pour le
Système global de prévision déterministe (SGPD), les prévisions sont générées toutes les
12 heures pour un horizon de 10 jours, avec un pas de temps de 3 h. Comme mentionné
précédemment, les modèles physiques sont conçus et performent mieux pour les prévisions à
long terme.

2.2 Modèles statistiques

Les modèles statistiques, quant à eux, sont orientés vers les prévisions à très court et court
terme [56] : ce seront donc ceux-ci qui sont étudiés dans le cadre du projet. Ils s’entraînent
généralement sur des données d’observations historiques, en se basant sur les vitesses de vent
prédites et réelles pour ajuster les paramètres du modèle (voir la Figure 2.2). Certains uti-
lisent les données brutes des modèles de PNT, d’autres non. Comparativement aux approches
physiques, l’approche statistique est beaucoup moins exigeante en termes de temps de calcul
et de ressources. En effet, comme les processus météorologiques ne sont pas explicitement
représentés par des modèles mathématiques complexes, la prévision est plutôt basée sur la
reconnaissance de motifs dans le temps [70]. Les deux approches les plus répandues actuel-
lement sont les méthodes conventionnelles basées sur des séries temporelles, ainsi que les
méthodes d’apprentissage (machine learning).
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Prévision 

(Vitesse ou puissance)

Figure 2.2 Utilisation des méthodes statistiques

2.2.1 Séries temporelles

Ce type de technique nécessite un ensemble de données historiques en ordre chronologique re-
présentant l’évolution des vitesses de vent dans le temps. Ces informations servent à entraîner
les modèles avant de les appliquer. Parmi les plus populaires, on retrouve le modèle Autore-
gressive Moving Average (ARMA) et ses dérivées. La méthode de la persistance, décrite au
début de ce chapitre, est considérée comme l’approche la plus simple par série temporelle.

Cette approche est purement statistique, c’est-à-dire que l’entraînement est effectué seulement
sur des données observées historiques, et aucune information provenant de modèles physiques
n’est considérée. La méthode Box-Jenkins propose d’appliquer les modèles Autoregressive
(AR), Moving Average (MA), Autoregressive Moving Average ou Autoregressive Integrated
Moving Average (ARIMA) afin de déterminer les paramètres correspondant le mieux aux
données historiques d’une série temporelle. Le modèle typique ARMA(p, q) d’ordre p (partie
autorégressive) et q (partie moyenne mobile) est de la forme suivante :

xt =
p∑
i=1

ϕixt−i +
q∑
j=1

θjαt−j + αt (2.2)

où xt la vitesse du vent prédite au temps t, ϕi est le paramètre autorégressif (AR), θj le para-
mètre de moyenne mobile (MA), et αt le bruit blanc normal [43]. Il est possible de retrouver
facilement les modèles AR et MA en posant respectivement les paramètres de moyenne mo-
bile (q) et autorégressif (p) égaux à zéro. Si la série temporelle n’est pas stationnaire, la
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forme ARIMA (p, d, q), quant à elle, peut être obtenue en différenciant la forme ARMA, d
fois, jusqu’à ce que la stationnarité soit atteinte [65].

Milligan et Schwartz ont testé différents modèles ARMA pour un horizon de 6 h sur deux
parcs éoliens aux États-Unis. Ils ont testé environ 175 configurations du modèle (différents p
et q) et en ont conclu que les résultats sont très dépendants des paramètres du modèle ainsi
que de la période d’entraînement. Par exemple pour une période d’entraînement d’un mois
en mars, ils n’ont pas obtenu d’amélioration significative par rapport à la persistance pour le
mois suivant, alors que pour un entraînement en avril, ils ont pu réduire le RMSE par rapport
à la persistance de 11% au mois de mai, pour 6 heures d’horizon. Ils en déduisent qu’une
période d’entraînement trop courte pourrait omettre certaines informations importantes pour
la précision du modèle : idéalement, elle devrait couvrir au moins une année entière afin de
capter les motifs et variations à différents moments de l’année [53]. Torres et coll. ont aussi
étudié le modèle ARMA pour 5 sites en Espagne, en déterminant des paramètres spécifiques
à chaque site et pour chaque mois de l’année. Ils sont parvenus à réduire le RMSE par rapport
à la persistance de 12% à 20% pour un horizon de 10 heures [71].

Les modèles ARMA ont aussi été couplés à d’autres modèles statistiques pour tenter d’amélio-
rer leur précision. Dans [44], une technique utilisant le Improved Time Series Method (ITSM)
basé sur un modèle ARIMA a été étudiée. En bref, les modèles sont entraînés sur des sé-
ries temporelles qui ont été divisées en sous-séries par décomposition en ondelettes (wavelet
decomposition) afin de considérer la non-stationnarité des séries. Une fois les prévisions effec-
tuées pour chaque sous-série, elles sont agrégées afin de calculer la prévision finale. L’étude
montre que les prévisions jusqu’à 10 h d’horizon peuvent être améliorées comparativement
aux modèles statistiques classiques sans décomposition. D’autres modèles combinant ARIMA
et Autoregressive Conditionally Heteroscedastic (ARCH) ont été étudiés, pour prévoir les vi-
tesses de vent, avec et sans décomposition par ondelettes. Dans les deux cas, l’erreur a pu
être réduite comparativement au modèle ARIMA traditionnel [49, 73].

En somme, les méthodes de prévisions statistiques classiques sont basées sur le modèle ARMA
et ses dérivées. La méthode Box-Jenkins est utilisée pour identifier les meilleurs modèles (p
et q) et estimer les paramètres de l’équation 2.2. Ce sont des outils assez faciles à utiliser,
mais qui nécessitent une grande quantité de données pour atteindre une précision raison-
nable. Une période d’au moins un an de données est nécessaire pour entraîner les modèles.
Aujourd’hui, avec l’amélioration continue de la précision de la prévision, ces types de modèles
sont fréquemment utilisés comme modèle de référence [35].



12

2.2.2 Approches par apprentissage

Les méthodes d’apprentissage explorées jusqu’à ce jour, aussi communément appelées mé-
thodes d’intelligence artificielle (IA), incluent les réseaux de neurones artificiels (RNA), la
logique floue (fuzzy logic), ainsi que plusieurs approches mixtes combinant les RNAs avec
une ou plusieurs autres techniques.

Réseaux de neurones artificiels

À la base, les réseaux de neurones artificiels ont été inspirés du raisonnement des cerveaux
humains. Ils tentent donc de reproduire le comportement des réseaux de neurones biologiques
qui composent les cerveaux. Ils sont utilisés dans une multitude d’applications, notamment
pour le traitement d’image, la reconnaissance automatique du langage, les jeux vidéo, la
finance, etc.

Les RNAs sont parmi les modèles les plus fréquemment utilisés pour la prévision des vitesses
de vent et de la puissance [35]. Ils sont entraînés en utilisant une grande quantité de données
historiques ainsi que les prévisions brutes issues des PNTs. L’objectif est d’apprendre la
relation entre les données brutes du modèle de PNT en entrée (vitesse, direction du vent,
température, etc.) et les vitesses de vent ou les puissances mesurées en sortie.

Les réseaux de neurones artificiels sont constitués de plusieurs couches de neurones : une
couche en entrée, une couche de sortie, et une ou plusieurs couches cachées (voir la Figure 2.3).

Couche d’entrée

Couche(s) cachée(s)

Couche de sortie

Vitesse du vent

ou 

Puissance

Vitesse du vent

Direction du vent

Température

…

Figure 2.3 Structure d’un réseau de neurones artificiels
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Chaque couche peut contenir plusieurs neurones qui sont connectés avec les neurones de
couches précédentes, alors que celles qui se trouvent dans la même couche sont indépendantes
entre elles. Chacun des neurones possède son propre poids et une fonction de transfert [43].
En général, les réseaux neuronaux performent mieux que les méthodes par séries temporelles
[68, 43]. Il existe plusieurs types de RNAs : lesMulti-Layer Perceptron (MLP) et les Recurrent
Neural Network (RNN) sont parmi les plus couramment étudiés [24].

Au début des années 2000, les études sur les réseaux de neurones artificiels étaient plutôt
centrées sur des modèles simples et la comparaison des RNAs aux modèles existants à ce
moment. Panteri et coll. ont évalué la performance d’un Radial Basis Function Network
(RBfN) à 9 neurones comparativement à la persistance et à un modèle Autoregressive with
Exogenous Input (ARX). Ils sont parvenus à des NRMSE (RMSE normalisé sur la puissance
nominale du parc) de 5% et 14% pour le RBfN pour des horizons entre de 1 h et 6 h
respectivement. Leurs résultats démontrent que les RNAs performent mieux que le modèle
ARX, et sont aussi plus précis que la persistance pour des horizons 4 heures et plus [57].
Également, Catalão et coll. ont proposé une approche utilisant un RNA entraîné par la
méthode de Levenberg-Marquardt pour la prévision de la puissance au Portugal. Pour un
horizon de 24 h, le Mean Absolute Percentage Error (MAPE) moyen sur la puissance est de
19,05% pour la persistance, de 10,34% pour ARIMA, alors que les RNAs surpassent les deux
autres modèles avec une moyenne de 7,26%. [12]. Dans [47], un MLP testé sur un site éolien
en Espagne a permis de déterminer que l’ajout de la direction comme paramètre d’entrée
diminuait le RMSE sur la vitesse de 30% comparativement au modèle non directionnel.
Welch et coll. ont comparé plusieurs structures différentes de RNA, soient les MLP, les RNN
et les Simultaneous Recurrent Neural Network (SRN). Les modèles récurrents ont montré les
meilleures performances, bien que leur plus grande précision implique un temps d’exécution
plus élevé que les autres méthodes (soit 55 heures), ce qui peut limiter leur application [76].

Vers la fin des années 2000, des RNAs plus complexes ou combinés à d’autres méthodes
ont été davantage étudiés. Dans [14] par exemple, un RNA est combiné à une transformée
par ondelettes, ou Wavelet Transform (WT) en anglais. Pour un horizon d’une heure, ils
sont parvenus à réduire le MAPE de 32% par rapport à la méthode ARIMA et de 3,6% par
rapport au RNA sans WT . De façon similaire, un modèle de RNA combiné à une technique de
décomposition des séries temporelles en sous-séries, le Empirical Mode Decomposition (EMD),
a permis une amélioration de 35% par rapport à ARIMA, et de 12% comparativement au
RNA traditionnel [45].

Dans [3], une combinaison de réseaux RBfN et MLP bonifiés par un Enhanced Particle Swarm
Optimization (EPSO) pour l’entraînement a été testée. Un NRMSE de 7,5% a pu être atteint
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pour un horizon d’une heure, soit une amélioration de 37% par rapport à la persistance. Une
autre technique d’optimisation originale, le Chaotic Shark Smell Optimization (CSSO) a
permis d’obtenir un RMSE sur la vitesse réduit de 13% par rapport à la méthode ARIMA
pour un horizon d’une heure [1].

RNA et logique floue

La logique floue (Fuzzy Logic en anglais) peut être décrite comme une évolution de la logique
booléenne (vrai ou faux, 1 ou 0). Le concept est similaire, cependant la logique floue (LF)
se base sur un intervalle continu de valeurs entre 0 et 1. Les modèles de logique floue ne
possèdent pas la propriété de s’adapter, ce pour quoi dans le domaine des prévisions de vent,
ils sont généralement combinés à un réseau de neurones artificiels, et on y réfère souvent par
l’acronyme ANN-Fuzzy.

Le modèle Adaptive-Network-Based Fuzzy Inference System (ANFIS) proposé en 1993 dans
[34] est un modèle ANN-Fuzzy utilisant un Feed-Forward Neural Network à six couches. Il a
été étudié à quelques reprises pour des applications de prévision du vent [60, 13]. Dans [13],
le NMAE sur la puissance a pu être réduit (en moyenne sur une année) de 68% et de 57%
par rapport à la persistance et au modèle ARIMA respectivement, pour un horizon de 3 h.
Un modèle ANN-Fuzzy a aussi été développé dans [66], permettant de réduire le NRMSE de
40% par rapport à la persistance pour un horizon de 10 h.

2.2.3 Autres modèles

Certains modèles ont été développés de façon plus indépendante. Par exemple, un Grey
Predictor (GP) étudié dans [31] utilise les 4 dernières heures de données historiques pour
générer des prévisions. Les résultats se montrent encourageants, cependant ils n’ont pas
été comparés avec aucune autre méthode existante et peu d’information numérique sur la
performance est disponible, ce qui rend difficile leur évaluation. Des approches basées sur
des processus gaussiens ont permis de réduire le MAE sur la vitesse du vent entre 12% et
27% par rapport à des modèles de RNA pour des horizons d’une heure [55, 40]. Un Support
Sector Machine (SVM) a été étudié dans [54], et a atteint des performances supérieures
comparativement au MLP. Plus de 5 ans de données étaient nécessaires pour entraîner le
modèle. Finalement, dans [41], 5 approches de data mining on été comparées : le Support
Vector Machine regression (SVMreg), le MLP, le M5P tree, le Reduced Error Pruning (REP)
et le bagging tree algorithm. Au final, il a été conclu que l’approche par RNA (MLP) surpassait
toutes les autres. Une nouvelle approche combinant des RNAs ou des SVMs à un système de
Lorenz afin de tenir compte des perturbations atmosphériques [80, 81, 82]. Cette approche
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est prometteuse et permet de réduire significativement l’erreur de prévision comparativement
aux RNAs et aux SVMs seuls, cependant les résultats obtenus à ce jour proviennent tous
d’un seul et même parc éolien : plus de résultats seraient nécessaires pour démontrer son
efficacité.

Il existe aussi certains modèles de corrélation spatiale permettant de combiner des méthodes
statistiques à des mesures prises en temps réel sur des sites avoisinants [20, 5, 2]. Ces tech-
niques ne seront cependant pas explorées dans le cadre de ce projet, puisque dans la réalité
d’un prévisionniste, les données mesurées sur des sites adjacents sont très rarement dispo-
nibles.

Filtre de Kalman

Le filtre de Kalman a été développé en 1960 par Rudolf E. Kalman, un ingénieur d’origine
hongroise naturalisé américain. Il possède plusieurs applications aujourd’hui dans le domaine
de l’aérospatiale pour le contrôle et la navigation de véhicules, ainsi qu’en traitement de
signal par exemple [79]. En 2006, un premier article fut publié par Galanis et coll. à propos
de l’application d’un filtre de Kalman aux prévisions de vent [25]. Ce dernier est conçu
pour filtrer les erreurs systématiques des modèles de prévision numérique du temps. Ce sont
des algorithmes récursifs qui permettent d’estimer les états d’un système dans le futur en
tenant compte d’observations récentes. Ce type de prévisions à court terme se basant sur
des données d’observation obtenues en temps quasi réel sont souvent appelées techniques de
prévision immédiate, ou nowcasting en anglais. L’avantage du filtre de Kalman est qu’il est
adaptatif et nécessite très peu de données historiques pour la calibration initiale.

Dans [48], le filtre de Kalman a été implémenté pour modéliser le biais des PNT comme un
polynôme d’ordre 3. Pour un horizon de 24 h, le biais moyen pour la vitesse de vent a pu être
réduit de plus de 90% par rapport aux prévisions du modèle physique utilisé. Au niveau de la
puissance, les données filtrées présentaient un biais moyen de moins de 20% de la puissance
nominale, alors qu’il dépassait 50% pour les prévisions brutes du modèle de PNT. Le filtrage
de Kalman a aussi conduit à des améliorations au niveau du RMSE. Les auteurs ont également
comparé les résultats obtenus par filtre de Kalman (FK) à des modèles numériques à plus
petite échelle. Ils ont pu constater que les données filtrées à partir des modèles numériques à
plus grande échelle (12 km) étaient de précision égale ou meilleure aux modèles numériques
à haute résolution, qui eux sont très coûteux en termes de ressources informatiques. Dans un
autre article, le FK a été testé pour le long terme, avec une actualisation du filtre à toutes
les 12 heures. L’erreur absolue a pu être considérablement réduite, alors que l’impact sur le
RMSE est plus faible [69].
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Un FK a été appliqué sur deux sites en Italie pour un horizon plus court, soit 6 h. L’erreur
systématique a pu être éliminée des données de PNT, et le MAE a pu être réduit de 37% par
rapport aux prévisions brutes de vitesse du vent du modèle physique. Les résultats montrent
à nouveau que la performance des modèles est très dépendante des sites et de la complexité
des terrains. Les auteurs suggèrent d’ajuster la procédure de filtrage de façon individualisée
pour chacun des sites étudiés [11]. Finalement, dans [83], un FK a été implémenté pour un
parc éolien en Chine. Le RMSE sur la vitesse a pu être réduit de 23% comparativement au
modèle numérique une fois le filtrage effectué pour un horizon de 24 h.

2.2.4 Sommaire des méthodes de prévision statistiques

Le tableau 2.1 regroupe les principales caractéristiques des méthodes de prévisions du vent
à court terme qui ont été passées en revue dans cette section.

Tableau 2.1 Résumé des méthodes statistiques
Catégorie Méthode PNT Particularités

Séries temporelles Persistance Non - Méthode la plus simple, généralement
surpassée par les autres méthodes
- Souvent utilisée comme référence

Type ARMA Non - 1 an ou plus de données historiques
- Moins performante que les méthodes
récentes
- Facile à implémenter

Grey Predictor Non - Nécessite seulement les dernières 4
heures de données historiques
- Moins performante que les méthodes
récentes

Filtre Kalman Oui - Nécessite des observations en temps réel
- Est adaptatif
- Temps de calcul très court
- Pas de données historiques nécessaires
- Performances similaires aux RNAs
- Seule la vitesse du vent est utilisée
comme paramètre d’entrée

Apprentissage RNA, RNA-Fuzzy Oui - 1 à 5 ans de données historiques
- Méthode la plus répandue
- Bonnes performances
- Considère plusieurs variables
météorologiques
- Temps de calcul très élevé pour
l’entraînement

SVM Non - Performance inférieure aux RNAs
Autres Corrélation spatiale Non - Ne s’applique pas si des données de sites

avoisinants ne sont pas disponibles en
temps réel
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À la lumière de cette revue de littérature, les deux approches ressortant du lot sont les
RNA ainsi que les filtres de Kalman : les deux techniques performent très bien pour le court
terme. En pratique, le filtre de Kalman possède l’avantage de ne pas nécessiter de données
historiques pour être implémenté, contrairement aux RNAs. Pour un prévisionniste, cette
approche est intéressante puisque de longues périodes de données historiques ne sont pas
toujours disponibles lorsque les prévisions doivent être réalisées pour un nouveau parc éolien.

De plus, puisque le filtre utilise des données en temps réel, il est très réactif aux changements
soudains dans la vitesse du vent et peut s’adapter rapidement, contrairement aux RNA qui
sont entraînés sur un ensemble de données une seule fois, et conservent la même configu-
ration pour toutes les prévisions futures. Le filtre de Kalman, quant à lui, se met à jour
continuellement dès qu’une nouvelle donnée d’observation est disponible.

D’un point de vue physique, il est aussi intéressant d’utiliser ce modèle d’abord parce qu’il
considère les PNTs, et aussi parce qu’il ne s’agit pas d’un «black box» comme les réseaux
de neurones artificiels : la relation entre les vitesses de vent prédites et observées est décrite
par des équations dont les paramètres varient en fonction du temps. Finalement, le coût
informatique est considérablement plus élevé pour les RNAs que les FK, soit des dizaines,
voir des centaines d’heures pour l’entraînement d’un RNA, alors que l’on parle de quelques
secondes ou moins pour chaque nouvelle itération du filtre de Kalman.

Somme toute, bien que les RNAs semblent démontrer une performance légèrement supérieure
aux filtres de Kalman, il serait intéressant de développer et bonifier les FK existants à ce
jour. Actuellement, les filtres étudiés tiennent uniquement compte la vitesse du vent en entrée,
alors que les approches par RNA incorporent souvent la direction du vent comme paramètre
d’entrée [62, 60, 38].

Plus concrètement, il a aussi été démontré que parmi les paramètres météorologiques géné-
ralement disponibles, l’ajout de la direction en entrée d’un modèle permet particulièrement
de réduire les erreurs de prévision [72, 27]. Dans le cadre de ce projet, il sera donc question
de tenter d’améliorer les techniques de filtrage Kalman avec l’ajout d’une nouvelle variable
météorologique, soit la direction du vent. Une analyse approfondie des modèles et de leurs
erreurs sera effectuée afin de qualifier la performance de l’approche avancée.
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2.3 Modélisation de la puissance

Une fois la vitesse du vent prédite, elle doit être convertie en prévision de puissance produite
par les turbines, puisque cette donnée est aussi importante pour les exploitants. La méthode
la plus simple consiste à utiliser la courbe de puissance (CP) fournie par le manufacturier de
l’éolienne pour une densité d’air fixée (voir la Figure 2.4).

Figure 2.4 CP [67]. Reproduction avec autorisation c© Siemens Gamesa.

Non seulement la courbe fournie par le manufacturier n’est pas précise, mais elle ne tient pas
compte des spécificités du site sur lequel la turbine est installée et de la variation de la densité
de l’air et de la proximité d’autres éoliennes avoisinantes (qui peuvent créer un effet de sillage).
Si un ensemble de données historiques est disponible, il existe une panoplie de méthodes
statistiques permettant de créer une courbe expérimentale, plus précise que la courbe du
manufacturier. Il est aussi possible de tenir compte de la densité de l’air pour améliorer
la conversion en puissance. Les approches fréquemment utilisées pour générer des courbes
expérimentales sont la norme IEC et les techniques de modélisation paramétrique [50]. Les
données des courbes de puissance fournies par WPred pour le projet on été déterminées à
l’aide de la méthode IEC.
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2.3.1 Norme IEC

L’International Electrotechnical Commission (IEC) a développé une méthode standard pour
l’évaluation des courbes de puissances, sous la norme 61400-12-1 [77]. La CP expérimentale
est composée de plusieurs couples de données vitesse-puissance. La méthodologie IEC consiste
à regrouper ces données en classes (bins en anglais) de 0.5 m/s selon les équations suivantes :

vi = 1
Ni

Ni∑
j=1

vn,i,j (2.3)

pi = 1
Ni

Ni∑
j=1

pn,i,j (2.4)

où vi est la vitesse du vent normalisée moyenne dans la classe i, vn,i,j est la vitesse normalisée
du couple de données j dans la classe i, et de même pour pi et pn,i,j. Ni correspond au nombre
de couples de données dans la classe i. Les variables normalisées correspondent aux variables
corrigées avec la densité de l’air. Pour calculer la vitesse normalisée, on a :

ρj = pj
R0 · Tj

(2.5)

et

vn,j = vj

(
ρj
ρ0

) 1
3

(2.6)

où ρj est la densité de l’air associée au du couple de données j, pj la pression atmosphérique, Tj
la température et R0 la constante universelle des gaz parfaits. vj est la vitesse non normalisée.
Les valeurs moyennes obtenues pour chaque classe de vitesse constituent les points de la
courbe de puissance IEC.

2.4 Méthodes de correction de la puissance

Dans certains cas, les observations de vitesse du vent ne sont pas disponibles. À ce moment,
seules les données de puissance peuvent être utilisées pour corriger les prévisions : le now-
casting sur la vitesse tel que décrit précédemment ne peut pas s’appliquer. Il s’agit d’une
situation qui survient couramment en pratique. Très peu de recherche a été effectuée à ce
jour pour le nowcasting sur la puissance directement. Cette section décrira les approches
pouvant être appliquées à la problématique.



20

2.4.1 Inversion de la courbe de puissance

Dans [52], les auteurs proposent une approche visant à contourner les problèmes de non-
linéarité pour la modélisation des courbes de puissance. Ils proposent de convertir les puis-
sances observées en vitesses de vent à l’aide de la courbe de puissance inverse. Cela leur
permet d’obtenir une courbe de vitesse fictive en fonction de la vitesse mesurée, pour laquelle
des régressions linéaires beaucoup plus simples peuvent être appliquées. Dans le cadre du
projet, il serait possible d’appliquer cette méthode pour transformer les puissances mesurées
en « mesures de vitesses virtuelles ». Le filtre de Kalman pourrait être appliqué par la suite
sur ces vitesses comme s’il s’agissait de mesures réelles afin de produire des prévisions de
vitesses corrigées, qui seront ensuite reconverties en puissance.

Il est à noter que cette conversion est appliquée seulement sur la plage de puissance située
entre 0 et la puissance nominale, ainsi qu’entre la vitesse de cut-in et la vitesse de cut-out.
Les vitesses transformées (vi) seront donc contraintes à des valeurs situées entre le cut-in et
la vitesse nominale (voir la Figure 1.1). L’équation 2.7 exprime cette contrainte.

vi = f−1 (pi) =


vcut−in, v∗i ≤ vcut−in

v∗i , vcut−in < v∗i < vnom

vnom, v∗i ≥ vnom

(2.7)

Il est à noter que la fonction de puissance inversée dans notre cas est la courbe IEC de la
turbine en question.

2.4.2 Filtre de Kalman sur la puissance

Une deuxième approche pour corriger les valeurs de puissance pourrait être d’appliquer un
filtre de Kalman sur la puissance directement, c’est-à-dire de corriger le biais entre la puis-
sance observée et la puissance prédite à partir des vitesses de vent brutes du modèle de PNT.
Jusqu’à très récemment, l’application d’un filtre de Kalman sur la puissance n’avait pas été
explorée. En 2016, dans [15], un filtre de Kalman a été testé selon plusieurs configurations
différentes dans le but de prédire la production de puissance : seulement sur la vitesse, seule-
ment sur la puissance, et finalement sur la vitesse et la puissance. Le FK sur la puissance
a permis d’améliorer de 23% de RMSE par rapport aux prévisions numériques. Il est à no-
ter que les auteurs ont aussi montré que le filtre utilisé sur la vitesse seulement avait une
meilleure performance que celui appliqué sur la puissance seulement. Le filtre appliqué aux
deux variables donnait les meilleurs résultats, soit une amélioration de 8% comparativement
à celui appliqué sur la vitesse seulement. Somme toute, cet article suggère non seulement que
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l’ajout d’un deuxième filtre sur la puissance pourrait permettre de réduire les incertitudes
introduites par les modèles de courbes de puissance, mais aussi que la correction par FK
directement sur la puissance (pour les sites où la donnée de vent n’est pas disponible) donne
de bons résultats. Le filtre appliqué dans cette étude corrige le biais comme une constante,
et non comme un polynôme, comme il est fait dans [48] pour corriger la vitesse. Il serait
donc intéressant d’étudier, pour la prévision de la puissance, les performances de biais modé-
lisés par des polynômes d’ordres plus élevés, en plus d’introduire la direction du vent comme
paramètre d’entrée.

2.5 Évaluation de la performance des modèles

Cette section présentera les principaux outils qui seront utilisés pour mesurer et caractériser
la performance des prévisions. D’abord, il est nécessaire de calculer les erreurs pour chaque
horizon individuellement, ce qui permet d’évaluer la performance du modèle selon l’horizon
de prévision. Pour la vitesse du vent, l’erreur de prévision est définie comme la différence
entre la valeur mesurée vt+h et la valeur prédite v̂t+h|t :

et+h|t := vt+h − v̂t+h|t (2.8)

Cette équation est appropriée pour déterminer les erreurs associées à la vitesse du vent. En
revanche, pour la puissance pt, il est pertinent de normaliser l’erreur par rapport à la puissance
nominale du parc, ce qui permet de pouvoir comparer les performances des modèles entre des
parcs différents (voir l’équation 2.9). L’erreur représente donc un pourcentage de la puissance
maximale.

εt+h|t := 1
Pnom

(pt+h − p̂t+h|t) (2.9)

Tout d’abord, l’erreur moyenne (aussi nommée l’erreur systématique, ou le biais), indique si
le modèle a tendance à sur-prédire ou sous-prédire la variable météorologique (voir l’équa-
tion 2.10). Utilisé seul, cet indicateur ne permet pas de déterminer la qualité des résultats :
un biais presque nul signifie uniquement que les biais positifs et négatifs s’annulent sur la
période d’évaluation.

ME(h) = 1
N

N∑
t=1

et+h|t (2.10)
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Une meilleure façon d’estimer la performance de la méthode est de calculer l’erreur absolue
moyenne (mean absolute error, MAE) :

MAE(h) = 1
N

N∑
t=1
|et+h|t| (2.11)

L’erreur moyenne quadratique, ou Root-Mean-Square Error RMSE, est similaire au MAE,
cependant elle donne une plus grande importance aux grands écarts. Ces deux indicateurs
sont pertinents : combinés, ils permettent d’avoir une meilleure idée de la distribution des
erreurs.

RMSE(h) =
√
MSE(h) =

√√√√ 1
N

N∑
t=1

(
et+h|t

)2
(2.12)

Finalement, un dernier indicateur très pertinent est le calcul d’amélioration par rapport
à une méthode de référence (Improvement). Généralement, on compare les performances
soit aux sorties du modèle physique brut pour étudier l’amélioration globale des prévisions,
soit à la méthode de persistance qui correspond au modèle statistique le plus simple. Dans
l’équation 2.13, Iref (h) représente l’indicateur (ME, MAE, ou RMSE) de la méthode référence
pour l’horizon h, et I(h) l’indicateur de la méthode que l’on veut comparer, par exemple un
filtre de Kalman.

ImprrefI (h) = Iref (h)− I(h)
Iref (h) (2.13)
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CHAPITRE 3 DÉTAIL ET DÉVELOPPEMENT DE LA SOLUTION
CHOISIE

3.1 Description mathématique du filtre de Kalman

En 1960, R. E. Kalman publie son article notoire décrivant un algorithme récursif pour les
problèmes de filtrage de données discrètes, algorithme maintenant connu sous le nom de filtre
de Kalman [36]. À partir de ce moment, le filtre en question a été étudié de long en large, et
souvent utilisé dans le domaine de l’automatisation de l’aviation. Dans cette section, le filtre
de Kalman sera décrit de façon concise. Pour plus d’information ou pour une description
mathématique plus exhaustive, plusieurs autres documents de référence sont disponibles,
notamment [16], [8], [51] et [4].

Dans cette section, les matrices seront dénotées par des lettres majuscules en gras (ex : A, B, C)
et les vecteurs par des lettres minuscules également en gras (ex : x, y, z).

3.1.1 Équations de base

Le filtre de Kalman (FK) est basé sur des algorithmes récursifs permettant d’obtenir des
estimations des états d’un système dynamique dans le futur. Il est conçu pour minimiser
l’erreur quadratique. Le modèle est divisé en deux grandes étapes : d’abord, la prévision,
puis la correction de cette valeur prédite. Le filtre simule premièrement un processus inconnu
afin de projeter vers l’avant (au prochain pas de temps) l’estimation actuelle, et de prévoir
l’état futur du système. Puis, il raffine son estimation à l’aide d’une mesure (bruitée) de ce
même système (voir la Figure 3.1) [6].

Prévision

Correction

Mesures

Figure 3.1 Cycle du filtre de Kalman
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Le but du procédé est d’estimer un vecteur d’état au temps t, identifié xt, en se basant sur
les observations (y) jusqu’au temps t. On considère que l’état xt et sa mesure yt sont des
vecteurs de variables aléatoires, et donc qu’il s’agit d’un processus stochastique. Le processus
est décrit par la suite récurrente linéaire présentée à l’équation (3.1), qu’on désigne comme
l’équation d’état.

xt = Ftxt−1 + Btut−1 + wt−1 (3.1)

Dans cette équation, Ft est appelée la matrice de prédiction. Elle relie l’état xt à celui du
pas de temps précédent, xt−1, dans un système sans influence externe. En présence d’un
facteur exogène, on définit le paramètre de contrôle ut, avec Bt qui le relie à l’état xt.
Le facteur exogène correspond à un changement externe contrôlé, par exemple appuyer sur
l’accélérateur d’une automobile. Finalement, wt est une variable aléatoire qui représente le
bruit du processus.

La relation entre l’état et la mesure est quant à elle exprimée par l’équation d’observation :

yt = Htxt + mt (3.2)

Dans cette équation, la matrice d’observation Ht relie l’état xt à la mesure yt, dans le cas où
les deux vecteurs n’ont pas les mêmes unités ou les mêmes dimensions. Dans le cas contraire,
elle peut être remplacée par une matrice identité. Finalement, mt est aussi une variable
aléatoire représentant cette fois le bruit de la mesure. Il est à noter qu’on considère que les
bruits wt et mt sont des bruits blancs suivant une distribution normale de variance Qt et Rt

respectivement (voir l’équation (3.3)), et sont indépendants entre eux.

wt ∼ N(0,Qt) (3.3)

mt ∼ N(0,Rt) (3.4)

3.1.2 Équations spécifiques

Pour appliquer le filtre de Kalman, les équations (3.1) et (3.2) sont divisées en deux parties :
une partie représentant la transformation connue du processus, et une partie représentant la
covariance.

Étape 1 : prédiction Posons une estimation de l’état x̂t−1 initial qui possède une certaine
covariance représentée par la matrice Pt−1. D’abord, supposons un processus dynamique sans
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influence externe pour l’équation d’état. Selon l’équation (3.1), notre meilleure prédiction de
l’état au temps t est donnée par la relation (3.5) :

x̂t|t−1 = Ftx̂t−1 (3.5)

Dans l’équation ci-dessus, la notation «ˆ» désigne une variable correspondant à une estima-
tion d’un paramètre réel. La qualité de cette prédiction est évaluée grâce à une matrice de
covariance d’erreur de prédiction. Grâce à l’identité

cov(C · x) = C · cov(x) ·CT , (3.6)

il est possible d’appliquer la même transformation à la matrice de covariance :

Pt|t−1 = FtPt−1FT
t (3.7)

La matrice de covariance Pt−1 représente la qualité de l’estimateur d’état à l’étape précédente,
c’est à dire au temps t− 1, alors que Pt|t−1 représente la qualité de la prédiction au temps t
sur la base des observations passées. En ajoutant la variable exogène ut−1 au système ainsi
que la covariance du bruit du processus Qt, on obtient le système d’équations final ci-dessous.

x̂t|t−1 = Ftx̂t−1 + Btut−1

Pt|t−1 = FtPt−1FT
t + Qt

(3.8)

Étape 2 : correction Comme à l’étape 1, l’équation d’observation peut être divisée en
deux équations représentant la moyenne et sa covariance. Ici, yt doit être interprété comme
la mesure et St|t−1, sa covariance.

yt = Htx̂t|t−1 (3.9)

St|t−1 = HtPt|t−1HT
t (3.10)

On s’attend donc à ce que la valeur mesurée soit Htx̂t|t−1, avec une covariance de HtPt|t−1HT
t

à partir de l’équation d’état. La valeur mesurée réelle, quant à elle, est décrite par yt et sa
covariance, ou le bruit sur la mesure, est dénotée Rt. Les équations finales de mise à jour
permettant de corriger la valeur prédite à partir d’une valeur mesurée sont les suivantes :
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
x̂t = x̂t|t−1 + Kt

(
yt −Htx̂t|t−1

)
Pt = (I −KHt) Pt|t−1

Kt = Pt|t−1HT
t

(
HtPt|t−1HT

t + Rt

)−1

(3.11)

où la quantité yt−Htxt|t−1 représente l’écart entre la mesure au temps t et sa valeur prévue
sur la base de toutes les mesures jusqu’au temps t − 1. C’est ce qu’on appelle l’innovation,
et cela représente l’information réellement nouvelle dans la lecture yt. On doit alors trouver
la corrélation entre cette nouvelle information et x̂t afin de mettre à jour la prédiction x̂t|t−1,
d’où le coefficient de gain Kt. On remarque dans la dernière équation que plus le bruit de la
mesure (Rt) est grand, plus l’influence de l’innovation dans la première équation est petite,
et plus on fait confiance à la prédiction pure. Finalement, on peut aussi vérifier le résultat
intuitif que si Rt est nul (c’est-à-dire que les mesures ne sont pas bruitées), alors au moins
dans le cas scalaire, le prédicteur disparaît de l’équation de mise à jour.

On peut retrouver les équations finales présentées ci-dessus à partir des équations (3.9)
et (3.10), de la valeur mesurée yt et sa covariance Rt. On a alors deux distributions nor-
males : une pour la valeur mesurée prédite, N(Htx̂t|t−1,HtPt|t−1HT

t ), et une pour la valeur
réellement mesurée, N(yt,Rt). La valeur la plus probable de l’état au temps t correspond à
la multiplication de ces deux gaussiennes.

Il est possible de démontrer qu’en multipliant deux distributions gaussiennes sous forme
matricielle, on obtient une nouvelle distribution normale avec les moyennes et covariances
suivantes :

µ = µ0 + C (µ1 − µ0) (3.12)

Σ = Σ0 −CΣ0 (3.13)

avec

C = Σ0 (Σ0 + Σ1)−1 (3.14)

En remplaçant la valeur prédite (µ0,Σ0) = (Htx̂t|t−1,HtPt|t−1HT
t ) et la valeur mesurée

(µ1,Σ1) = (yt,Rt) dans les équations (3.12), (3.13) et (3.14), on trouve les équations
ci-dessous qui décrivent le meilleur estimé de l’état x̂t.


Htx̂t = Htx̂t|t−1 + Ct

(
yt −Htx̂t|t−1

)
HtPtHT

t = HtPt|t−1HT
t −KHtPt|t−1HT

t

Ct = HtPt|t−1HT
t

(
HtPt|t−1HT

t + Rt

)−1

(3.15)
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En simplifiant, et en définissant le gain Kt = CtH−1
t , on retrouve le système d’équations

finales donné en (3.11). En résumé, pour appliquer un filtre de Kalman à un processus, seuls
les systèmes d’équations (3.8) et (3.11) sont nécessaires.

3.2 Hypothèses avancées par Louka et Galanis

Le filtre de Kalman a déjà été étudié pour la prévision des températures de surface [26, 19],
mais les premières études portant sur l’application du FK pour la prévision des vitesses
de vent se retrouvent dans un article publié par Galanis et Louka en 2006 [25]. Le modèle
est quelque peu différent des équations générales présentées précédemment. D’abord, dans
l’équation (3.1), la matrice de prévision Ft est posée comme une matrice identité, ce qui
signifie qu’on assume que le vent est de nature persistante (Ft peut ainsi être retirée de
l’équation). De plus, comme il n’y a pas d’influence externe au système, le paramètre de
contrôle ut est aussi retiré de l’équation d’état. On obtient alors l’équation simplifée :

xt = xt−1 + wt (3.16)

L’équation d’observation, quant à elle, reste inchangée :

yt = Ht · xt + mt (3.17)

Les équations finales qui sont utilisées pour l’étape de prévision sont donc :

x̂t|t−1 = x̂t−1

Pt|t−1 = Pt−1 + Qt

(3.18)

(3.19)

et pour l’étape de correction :

x̂t = x̂t|t−1 + Kt

(
yt −Htx̂t|t−1

)
Pt = (I−KtHt) Pt|t−1

(3.20)

(3.21)

où :

Kt = Pt|t−1 + HT
t

(
HtPt|t−1HT

t + Rt

)−1
(3.22)
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Enfin, pour mieux saisir le fonctionnement du filtre, la Figure 3.2 résume les équations et
les interactions entre elles. À titre de rappel, x̂t dénote le vecteur d’état estimé, et Pt est sa
covariance.

 𝒙𝒕

𝑷𝒕

Prévision Correction

 𝑥𝑡 =  𝑥𝑡|𝑡−1 + 𝐾𝑡(𝑦𝑡 − 𝐻𝑡  𝑥𝑡|𝑡−1)

𝑃𝑡 = (𝐼 − 𝐾𝑡𝐻𝑡)𝑃𝑡|𝑡−1

 𝒙𝒕|𝒕−𝟏

𝑷𝒕|𝒕−𝟏

 𝒙𝒕−𝟏

𝑷𝒕−𝟏 𝑃𝑡|𝑡−1 = 𝑃𝑡−1 + 𝑄𝑡

 𝑥𝑡|𝑡−1 =  𝑥𝑡−1

𝑸𝒕

𝑹𝒕 𝒚𝒕𝑯𝒕

𝑲𝒕

Figure 3.2 Fonctionnement du filtre de Kalman

L’approche de Louka et Galanis est basée sur la correction du biais de la vitesse de vent
prédite par le modèle de PNT. Ainsi, l’objectif du filtre développé n’est pas d’estimer la
vitesse du vent à chaque pas de temps, mais plutôt d’estimer la valeur du biais sur la vitesse.
L’utilisation d’un filtre de Kalman de cette façon permet donc de minimiser le biais entre la
prévision et les observations. On modélise le biais selon l’équation suivante :

yt = x0,t + x1,t · v̂t,PNT + x2,t · v̂2
t,PNT + · · ·+ xn−1,t · v̂n−1

t,PNT +mt (3.23)

où les paramètres xi,t (avec i = 0, 1, . . . , n−1) doivent être estimés par le filtre. Le biais yt est
donc modélisé comme une fonction linéaire ou non linéaire (dépendamment de la valeur de
n) de la prévision du modèle de PNT (v̂t,PNT ). En comparant (3.23) avec l’équation (3.17), il
est possible de définir le vecteur d’état à estimer xt et le vecteur d’observation Ht tels que :

xt = [x0,t, x1,t, x2,t, . . . , xn−1,t]T (3.24)

Ht =
[
1, v̂t,PNT , v̂2

t,PNT , . . . , v̂n−1
t,PNT

]
(3.25)
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L’horizon h = 1 est utilisé pour mettre à jour le vecteur d’état. En d’autres termes, au temps
actuel t− 1, le prédicteur de la vitesse aux éoliennes est donné par v̂t|t−1,PNT . Une heure plus
tard, le biais yt peut être calculé avec vt (mesure bruitée de la vitesse à l’éolienne au temps
t) afin de corriger, ou mettre à jour, le vecteur d’état.

yt = v̂t|t−1,PNT − vt (3.26)

Les matrices de covariance de l’équation de système (Qt) et de l’équation d’observation
(Rt) sont calculées à partir des 7 dernières valeurs des erreurs wt = x̂t − x̂t−1 et mt =
yt −Htx̂t. Cette méthode de calcul de la covariance, basée sur les 7 derniers pas de temps,
a été déterminée optimale selon Louka et Galanis [25]. Elle permet une grande adaptabilité
tout en ne nécessitant pas la sauvegarde d’une trop grande quantité d’informations.

Qt = 1
6

6∑
i=0

((
(x̂t−i − x̂t−i−1)−

(∑6
i=0 (x̂t−i − x̂t−i−1)

7

)))2

(3.27)

Rt = 1
6

6∑
i=0

((
(yt−i −Ht−i · x̂t−i)−

(∑6
i=0 (yt−i −Ht−i · x̂t−i)

7

)))2

(3.28)

Enfin, lorsqu’une nouvelle mesure est disponible, le vecteur d’état est actualisé. Les coeffi-
cients estimés de cette façon sont utilisés tels quels pour ensuite prédire tous les horizons.
Ainsi, lorsqu’on a un vecteur d’état actualisé au temps t− h par exemple, il est possible de
calculer le biais prédit au temps t, soit h heures dans le futur, à l’aide de l’équation :

ŷt|t−h = x0,t−h + x1,t−h · v̂t|t−h,PNT + x2,t−h · v̂2
t|t−h,PNT + · · ·+ xn−1,t−h · v̂n−1

t|t−h,PNT (3.29)

Une fois le biais prédit pour l’horizon en question, on estime la vitesse prédite par le filtre
de Kalman à l’horizon h en soustrayant le biais estimé à la valeur prédite par le modèle de
PNT :

v̂t|t−h,kal = v̂t|t−h,PNT − ŷt|t−h (3.30)
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3.3 Modifications au filtre de Louka et Galanis

Dans [27], plusieurs modèles statistiques de type Autoregressive (AR) ont été modifiés pour
tenir compte de la direction du vent. Selon les auteurs, l’intégration du vent à ces modèles
montre des résultats prometteurs. Dans [72], un RNA tenant compte de la direction comme
paramètre d’entrée a été comparé à un RNA traditionnel. Il a été démontré que la performance
était grandement améliorée lorsque la direction était considérée.

En 2012, un filtre de Kalman directionnel a été étudié dans [75]. L’approche envisagée était
de séparer les données en classes de direction et de vitesse, puis générer des filtres indivi-
duels pour chacune de celles-ci. Au final, 300 classes, donc 300 filtres sont générés. Cette ap-
proche est intéressante afin d’intégrer la direction au filtre de Kalman. Toutefois, elle présente
quelques inconvénients : d’abord, comme 300 filtres différents sont entraînés et que chacun de
ces filtres nécessite au moins quelques dizaines d’heures de données pour y parvenir, le filtre
ne peut pas être appliqué rapidement et nécessite une plus longue période d’entraînement. De
plus, comme le vent est parfois très directionnel, il est possible que certaines classes reçoivent
très peu de données et soient donc mal entraînées. Finalement, les auteurs ont aussi remarqué
des discontinuités entre les filtres des différentes classes. En effet, des états de vitesse et de
direction très rapprochés, mais tombant dans deux classes différentes, sont traités par des
filtres distincts pouvant corriger les données de manière très différente.

Pour remédier à ces problèmes, l’approche envisagée dans ce projet est d’intégrer la direc-
tion dans un seul filtre de Kalman continu sur tout le domaine des vitesses et directions du
vent. Pour ce faire, la variable θ sera intégrée dans l’équation modélisant le biais yt décrite
précédemment. Dans l’article de Louka et Galanis paru en 2006, les auteurs ont étudié plu-
sieurs ordres pour l’équation du biais sur deux sites situés en Espagne et en Grèce. Ils en
ont conclu que le polynôme d’ordre 3 donnait de meilleurs résultats. Néanmoins, l’étude de
leurs résultats numériques permet de révéler que les filtres d’ordre 1 et 2 montrent aussi une
performance similaire, alors que les filtres d’ordres plus élevés augmentent de façon notable
l’instabilité du filtre [25]. Il a déjà été montré dans plusieurs articles que la précision des mo-
dèles diffère souvent selon le site géographique étudié. Ainsi, puisque les résultats présentés
par Louka et Galanis résultent de l’étude de seulement deux parcs éoliens, il serait intéressant
de considérer aussi les ordres 1 et 2 lors des essais sur les données disponibles pour ce projet.

3.3.1 Développement mathématique

Le présent projet portera donc sur l’étude approfondie de la performance de plusieurs équa-
tions de biais yt certains intégrant la direction, et d’autres non, afin de vérifier si l’ajout de
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cette variable est justifié. Comme mentionné précédemment, les polynômes d’ordre 1, 2 et
3 seront étudiés plus particulièrement. D’abord, les équations polynomiales développées par
Louka et Galanis n’intégrant pas la direction du vent sont aussi évaluées sur nos données
afin d’avoir une base comparative (la notation des coefficients ici est légèrement différente de
celle utilisée à l’équation (3.23) et dans [48]).

yt = α0,t + β0,t · v̂t,PNT +mt (3.31)

yt = α0,t + β0,t · v̂t,PNT + γ0,t · v̂2
t,PNT +mt (3.32)

yt = α0,t + β0,t · v̂t,PNT + γ0,t · v̂2
t,PNT + η0,t · v̂3

t,PNT +mt (3.33)

La performance de ces modèles sera aussi étudiée sur plusieurs sites afin de vérifier les résultats
obtenus par Louka et Galanis. Leur analyse est basée sur 2 sites éoliens seulement : une
étude plus exhaustive de leur approche sur un plus grand nombre de parcs pourra donner
une meilleure conclusion sur leur performance.

Pour intégrer la direction dans le calcul du biais, on introduit une dépendance de la di-
rection pour chaque coefficient des équations ci-dessus (α, β, γ et η). Ainsi, α0,t devient
α0,t + α1,t · sinθt,PNT + α2,t · cos θt,PNT par exemple. Les trois équations ci-dessous d’ordre
1, 2 et 3 seront étudiées afin d’étudier l’influence de l’ajout de la direction dans le calcul du
biais.

yt = (α0,t + α1,t · sin θ̂t,PNT + α2,t · cos θ̂t,PNT )

+(β0,t + β1,t · sin θ̂t,PNT + β2,t · cos θ̂t,PNT ) · v̂t,PNT +mt (3.34)

yt = (α0,t + α1,t · sin θ̂t,PNT + α2,t · cos θ̂t,PNT )

+(β0,t + β1,t · sin θ̂t,PNT + β2,t · cos θ̂t,PNT ) · v̂t,PNT
+(γ0,t + γ1,t · sin θ̂t,PNT + γ2,t · cos θ̂t,PNT ) · v̂2

t,PNT +mt (3.35)

yt = (α0,t + α1,t · sin θ̂t,PNT + α2,t · cos θ̂t,PNT )

+(β0,t + β1,t · sin θ̂t,PNT + β2,t · cos θ̂t,PNT ) · v̂t,PNT
+(γ0,t + γ1,t · sin θ̂t,PNT + γ2,t · cos θ̂t,PNT ) · v̂2

t,PNT

+(η0,t + η1,t · sin θ̂t,PNT + η2,t · cos θ̂t,PNT ) · v̂3
t,PNT +mt (3.36)



32

Le vecteur d’état et la matrice d’observation auront donc la forme suivante pour l’équa-
tion (3.34) par exemple :

xt = [α0,t, α1,t, α2,t, β0,t, β1,t, β2,t]T (3.37)

Ht =
[
1, sin θ̂t,PNT , cos θ̂t,PNT , v̂t,PNT , sin θ̂t,PNT · v̂t,PNT , cos θt,PNT · v̂t,PNT

]
(3.38)

3.3.2 Application du modèle à la puissance

Tel que mentionné à la section 2.4, deux méthodes sont envisagées pour corriger les données de
puissance dans l’éventualité où la vitesse du vent n’est pas disponible. D’abord, l’approche
par inversion de puissance (section 2.4.1) n’implique pas de modification dans le modèle
développé dans les sections précédentes puisqu’on recalcule les données de vitesse à partir de
la puissance.

La seconde méthode suggérée pour ce cas particulier est d’appliquer un FK directement
sur la puissance. Ainsi, les modèles utilisés sont encore une fois ceux proposés par Louka et
Galanis, sous forme directionnelle et non directionnelle. Ici, le paramètre d’entrée des modèles
correspond à la puissance prédite, plutôt que la vitesse du vent. Plus particulièrement, les
équations (3.31) à (3.36) sont utilisées, et le biais est calculé et corrigé sur la puissance
directement. Ainsi, la quantité v̂t,PNT est remplacée par p̂t,PNT , et représente la prévision de
la puissance générée calculée à partir des données de vitesses de vent brutes provenant du
modèle de PNT.

3.3.3 Résumé de l’approche

Une première partie du travail qui sera réalisé dans le cadre de ce projet consistera à im-
plémenter et tester les différents modèles sur la vitesse de vent et la puissance. Toutefois, la
partie la plus importante sera d’analyser en profondeur la performance des modèles étudiés
ainsi que de les comparer afin de pouvoir en tirer des conclusions pertinentes.

La Figure 3.3 résume les approches qui seront étudiées pour la prévision des vitesses de
vent ainsi que de la puissance générée (les variables v, p et θ dans cette figure désignent
respectivement la vitesse du vent, la puissance et la direction du vent). Le prochain chapitre
sera dédié à l’étude de la performance des modèles au niveau de la prévision des vitesses
de vent, et le suivant traitera des prévisions de puissance. Une attention particulière sera
portée à l’influence de l’ajout de la direction comme paramètre d’entrée sur la performance
des modèles.



33

Modèle physique (SGPD d’Environnement Canada)

+
Observations (𝒗, 𝒑, 𝜽)

Filtre de Kalman sur v

𝒗𝑡−ℎ
𝑚𝑒𝑠𝑢𝑟é𝑒, 𝒗𝑡−ℎ

𝑝𝑟é𝑑𝑖𝑡𝑒
→ 𝒗𝑡|𝑡−ℎ

𝑝𝑟é𝑑𝑖𝑡𝑒

Courbe de puissance 

𝒗𝑡−ℎ
𝑝𝑟é𝑑𝑖𝑡𝑒

→ 𝒑𝑡−ℎ
𝑝𝑟é𝑑𝑖𝑡𝑒

Courbe de puissance inverse

𝒑𝑡−ℎ
𝑚𝑒𝑠𝑢𝑟é𝑒 → 𝒗𝑡−ℎ

𝑚𝑒𝑠𝑢𝑟é𝑒∗

Filtre de Kalman sur v 

𝒗𝑡−ℎ
𝑚𝑒𝑠𝑢𝑟é𝑒∗ , 𝒗𝑡−ℎ

𝑝𝑟é𝑑𝑖𝑡𝑒
→ 𝒗𝑡|𝑡−ℎ

𝑝𝑟é𝑑𝑖𝑡𝑒

Courbe de puissance 

𝒗𝑡|𝑡−ℎ
𝑝𝑟é𝑑𝑖𝑡𝑒

→ 𝒑𝑡|𝑡−ℎ
𝑝𝑟é𝑑𝑖𝑡𝑒

Courbe de puissance 

𝒗𝑡|𝑡−ℎ
𝑝𝑟é𝑑𝑖𝑡𝑒

→ 𝒑𝑡|𝑡−ℎ
𝑝𝑟é𝑑𝑖𝑡𝑒

Cas 1 : 

v mesurée disponible

Cas 2 : 

v mesurée non disponible

𝒑𝑡|𝑡−ℎ
𝑝𝑟é𝑑𝑖𝑡𝑒

Filtre de Kalman sur p

𝒑𝑡−ℎ
𝑚𝑒𝑠𝑢𝑟é𝑒 , 𝒑𝑡−ℎ

𝑝𝑟é𝑑𝑖𝑡𝑒
→ 𝒑𝑡|𝑡−ℎ

𝑝𝑟é𝑑𝑖𝑡𝑒

𝜽 𝜽 𝜽

Figure 3.3 Schéma des modèles étudiés

3.4 Combinaison de plusieurs modèles

Des études préliminaires ont permis de remarquer que la performance des modèles varie
beaucoup en fonction du site et de sa topographie. Cette affirmation est aussi confirmée par
une panoplie d’études vérifiant des modèles sur plusieurs parcs. Par ailleurs, la performance
des modèles peut aussi varier selon la période (saison, mois, etc.) sur laquelle ils sont appliqués
et selon l’horizon de prévision [63, 53].

Pour un prévisionniste, l’objectif final est de réduire au maximum les erreurs des prévisions
de vent et de production. Définir le modèle le plus performant pour un site est donc crucial.
Il serait possible d’évaluer la performance de tous les modèles étudiés sur un site durant une
longue période de temps, pour ensuite déterminer celui produisant les meilleures prévisions.
Cependant, cette approche nécessiterait un ensemble de données historiques qui ne sont
pas toujours disponibles, et le filtre ne présenterait plus l’avantage de pouvoir être appliqué
rapidement. De plus, comme les performances des filtres peuvent varier au cours des mois ou
des saisons, le filtre choisi au départ pourrait perdre de la précision avec le temps.

Pour remédier à ce problème, une méthode de combinaison adaptative basée sur l’approche
de Sanchez [63] sera implémentée une fois les prévisions effectuées. Selon cette approche, une
combinaison de tous les modèles générés résulte en une performance égale ou supérieure au
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meilleur des modèles considérés. Cette technique peut être appliquée lorsqu’on dispose de
données d’observation en temps quasi réel, puisqu’elle se base sur les performances récentes
des modèles étudiés, afin de les pondérer sous forme de combinaison linéaire.

Il existe principalement deux techniques de combinaison : les combinaisons d’amélioration
et les combinaisons d’adaptation. La première vise à produire une combinaison linéaire des
différents modèles en assignant un certain poids à chacun d’entre eux. La deuxième approche,
quant à elle, peut être interprétée plutôt comme une méthode de sélection du meilleur modèle
de façon dynamique. Elle donnera tout, ou presque tout le poids, à un seul modèle.

En pratique, il n’est pas évident de savoir quelle approche est la plus appropriée pour une
situation spécifique. Afin de profiter des deux types d’approches, la combinaison est effectuée
en deux étapes [63]. D’abord, trois types de combinaisons différentes sont réalisées de façon
indépendante. Les deux premières sont des approches adaptatives basées sur le calcul de la
covariance pour l’estimation des coefficients. La troisième est fondée sur la méthode Adaptive
Exponential Combination (AEC) développée par l’auteur de l’article, qui permet de sélection-
ner le modèle le plus adéquat. La performance des différentes approches varie selon la nature
des données, ce pour quoi lors de la deuxième étape les trois combinaisons précédentes sont
elles-mêmes utilisées en entrée dans un modèle AEC. Celui-ci déterminera quelle méthode de
combinaison est la plus appropriée pour les données utilisées (voir la Figure 3.4).

Combinaison 

d’amélioration (C1)

 𝒗𝒕
𝑪𝟏

Combinaison 

d’amélioration (C2)

 𝒗𝒕
𝑪𝟐

Combinaison 

d’adaptation (C3)

 𝒗𝒕
𝑪𝟑

Combinaison

d’adaptation  𝒗𝒕
𝑪

 𝒗𝒕
𝟏

 𝒗𝒕
𝟐

⋮

 𝒗𝒕
𝑵 Comb. finale

Combinaisons alternativesN modèles

Figure 3.4 Étapes de la combinaison
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Le processus général de combinaison linéaire desK modèles est décrit par l’équation suivante :

v̂Ct|t−h =
K∑
k=1

φk,t(h) v̂(k)
t|t−h (3.39)

où v̂(k)
t|t−h est la vitesse prédite par le modèle k pour le temps t, φk,t(h) est le poids attribué

à ce modèle pour l’horizon h, et v̂Ct|t−h correspond à la nouvelle prévision estimée par la
combinaison. Sachant que la vitesse réelle (observée) est vt, l’erreur de prévision pour un
modèle k vaut e(k)

t|t−h = vt − v̂
(k)
t|t−h, et l’erreur de la combinaison est donnée par eCt|t−h =

vt − v̂Ct|t−h.

Le modèle (3.39) peut être reformulé sous la forme vectorielle de la façon suivante :

vt = v̂Ct|t−h + eCt|t−h = φt(h)′v̂t|t−h + eCt|t−h (3.40)

où φt(h) = [φ1,t(h), . . . , φK,t(h)]′ contient les poids attribués aux différents modèles, v̂t|t−h =
[v̂(1)
t|t−h, . . . , v̂

(K)
t|t−h]′ les prévisions de vitesse pour les K modèles et et|t−h = [e(1)

t|t−h, . . . , e
(K)
t|t−h]′

leurs erreurs respectives pour l’horizon h, sachant l’information disponible au temps t − h.
Il est intéressant de noter que la combinaison est également dépendante de h, ce qui permet
de gérer différents modèles performant plus ou moins bien selon l’horizon de prévision.

En général, les poids des différents modèles sont donnés par la solution du problème de
combinaison donné en (3.40), soit φt(h), qui est estimée de façon à minimiser la fonction
objectif suivante :

O(eCt|t−h) = E
[(
eCt|t−h

)2
]

(3.41)

3.4.1 Combinaison d’amélioration

Les paramètres contenus dans φt(h) sont estimés à partir des données de façon adaptative.
Plusieurs approches d’estimation existent : deux d’entre elles sont abordées par Sanchez
dans [63], soient le Exponentially Weighted Moving Average (EWMA) et les moindres carrés
récursifs.

C1 - Estimation par EWMA

La solution de l’équation (3.40), lorsqu’on impose la contrainte ∑K
k=1 φk,t = 1, est appelée

méthode de variance-covariance (voir l’équation (3.42)) [61].
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φvct =
Ω−1
t|t−hc

c′Ω−1
t|t−hc

(3.42)

Plusieurs auteurs ont cependant montré que de meilleurs résultats sont obtenus lorsque les
erreurs des différents modèles sont traitées de façon indépendante, soit en redéfinissant la
covariance seulement par ses termes diagonaux, Wt|t−h = diag(Ωt|t−h) [63]. L’équation (3.42)
est donc redéfinie par :

φvc−int =
W−1

t|t−hc
c′W−1

t|t−hc
(3.43)

où c est un vecteur unitaire de dimension K×1. Si wk,t|t−h est le kième élément de la diagonale
de Wt|t−h, l’équation peut être reformulée par :

φvc−ink,t =
1

wk,t|t−h∑K
i=1

1
wt|t−h

(3.44)

Cette première approche est donc basée sur le EWMA pour estimer la solution φ̂t(h) mi-
nimisant la fonction objectif associée à l’équation (3.40). La variance wk,t|t−h est obtenue à
partir d’une pondération exponentielle des informations précédentes. Ainsi, les équations de
récurrence de l’approche EWMA permettant de mettre à jour la variance sont données en
(3.45), (3.46) et (3.47).

ŵk,t|t−h = N−1
k,t S

(k)
t|t−h (3.45)

S
(k)
t|t−h = e

(k)
t|t−he

(k)′
t|t−h + λCookk,t S

(k)
t−1|t−h−1 (3.46)

Nk,t = 1 + λCookk,t Nk,t−1 (3.47)

avec Nk,0 = 0 et S(k)
0|−h = 0. Dans ces équations, Nk,t correspond à la taille équivalente de

l’échantillon, et 0 < λCookk,t < 1 est un facteur d’oubli. Celui-ci est déterminé à partir de la
distance de Cook de la nouvelle observation, qui a été développée dans un article précédent
aussi publié par Sanchez [64].

La distance de Cook permet d’obtenir un indicateur de la variation des observations : une
distance élevée indique que les paramètres de la solution pourraient fluctuer. En d’autres
termes, lorsque Dk,t est grand, les coefficients de l’estimateur β̂ risquent de changer : la
valeur de λCookk,t diminue donc afin de permettre à la combinaison de mieux s’adapter et de
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donner moins d’importance aux données plus anciennes. Dans [63], le facteur d’oubli de Cook
est déterminé selon les équations suivantes. D’abord, la distance est donnée par :

Dk,t =
gk,t

(
êCt|t−h

)2

σ̂2
t−1ηk,t

(3.48)

où la variance de l’erreur de la combinaison (eCt|t−h) est définie par

σ̂2
t−1 =

∑t−1
i=1(vi−φ̂

′
iv̂i)2

t−1 , et :

ηk,t = u′kΓ̂t|Iuk (3.49)

Γ̂t|I =
(
Γ̂
−1
t−1 + v̂t|t−hv̂′t|t−h

)−1
(3.50)

gk,t = u′kΓ̂t|I v̂t|t−hv̂
′
t|t−hΓ̂t|Iuk (3.51)

où uk est un vecteur nul de dimension [K × 1], valant 1 à son kième élément. L’estimation du
facteur de Cook est basée sur la méthode de RLS (décrite plus en détail dans la prochaine
section). La dispersion Γ̂t de l’estimation φ̂t est donc donnée par l’équation récursive :

Γ̂t =
(
AtΓ̂

−1
t−1At + v̂t|t−hv̂′t|t−h

)−1
(3.52)

Ici, At est une matrice diagonale, composée des valeurs
√
λCookk,t sur les k = 1, . . . , K éléments

de sa diagonale. Finalement, distance de Cook est convertie en facteur d’oubli selon l’équation
suivante :

λCookk,t = λmin + (λmax − λmin)Hk,t (3.53)

où Hk,t est déterminé selon une distribution χ2 avec 1 degré de liberté, Hk,t = P (χ2
1 > Dk,t).

Cette formulation permet d’abord de s’assurer que le facteur d’oubli se situe entre 0 et 1,
mais plus particulièrement entre des valeurs minimales et maximales, fixées à λmin = 0,99
et λmax = 0,9999 dans [63]. Une fois le facteur de Cook obtenu, la variance ŵk,t|t−h peut
être déterminée, afin de finalement calculer la solution φ̂k,t(h) à partir de l’équation (3.44).
Comme la contrainte ∑K

k=1 φ̂k,t = 1 est imposée, il faut en dernier lieu normaliser la solution
pour obtenir les poids finaux.
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C2 - Estimation par moindres carrés

La solution du modèle donné à l’équation (3.40) peut aussi être déterminée à partir de l’algo-
rithme des moindres carrés récursifs (recursive least squares (RLS)). Dans ce cas-ci, Sanchez
utilise une version légèrement différente de la combinaison linéaire donnée à l’équation (3.39),
soit :

vt − v̂(1)
t|t−h =

K∑
k=2

φ̂k,t(h)
(
v̂

(k)
t|t−h − v̂

(1)
t|t−h

)
+ eCt|t−h (3.54)

En posant zt = vt−v̂(1)
t|t−h, ẑ

(k)
t|t−h = v̂

(k)
t|t−h−v̂

(1)
t|t−h et βt(h) = [φ2,t(h), . . . , φk,t(h)]′, il est possible

de reformuler l’équation ci-dessus sous forme vectorielle, de la façon suivante :

zt = ẑ′t|t−hβ̂t + eCt|t−h (3.55)

La nouvelle solution à estimer est donc β̂t. Selon l’approche RLS, l’opération permettant de
mettre à jour cet estimateur est définie selon l’équation (3.56) [46].

β̂t = β̂t−1 + Γ̂
′
tẑt|t−hê

C
t|t−h (3.56)

où êCt|t−h est l’erreur de prédiction de la valeur estimée au temps t :

êCt|t−h = (vt)− v̂Ct|t−h = (zt + v̂
(1)
t|t−h)− v̂

C
t|t−h (3.57)

La matrice de gain Γ̂t est une mesure de la dispersion de l’estimé β̂t, et est donnée par :

Γ̂
−1
t = λCookt Γ̂

−1
t−1 + ẑt|t−hẑ′t|t−h (3.58)

qui peut être reformulé :

Γ̂t = 1
λCookt

Γ̂t−1 −
Γ̂t−1ẑt|t−hẑ

′
t|t−hΓ̂t−1

λCookt + ẑ′t|t−hΓ̂t−1ẑt|t−h

 (3.59)

Encore une fois, λCookt est le facteur d’oubli basé sur la distance de Cook, Dt. La distance est
donnée sous forme matricielle par l’équation (3.60), où toutes les variables sont connues.
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Dt =
ẑ′t|t−hΓ̂t−1ẑt|t−h

(
êCt|t−h

)2

Kσ̂2
t−1

(
1 + ẑ′t|t−hΓ̂t−1ẑ

′
t|t−h

) (3.60)

où σ̂2
t−1 =

∑t−1
i=1

(
zi − ẑ′iβ̂i

)2

t− 1 (3.61)

Puis, λCookt est déterminé de façon similaire à la méthode EWMA :

λCookt = λmin + (λmax − λmin)Ht (3.62)

Il est à noter qu’ici, le facteur n’est pas décomposé en éléments k pour chaque modèle.
Ht est encore une fois déterminé selon une distribution χ2 avec K degrés de liberté, soit
Ht = P (χ2

K > KDt).

3.4.2 Combinaison d’adaptation

La méthode de combinaison d’adaptation (ou de sélection) développée dans l’article de San-
chez [63] est nommée Adaptive Exponential Combination (AEC). Cette approche n’est toute-
fois pas complètement sélective, au sens où elle ne donne pas tout le poids à un seul modèle.
L’objectif est d’assigner un poids près de 1 au meilleur modèle, tout en laissant un poids
faible, mais non nul, aux autres. Cela permet des changements moins drastiques lorsque le
choix du meilleur modèle varie entre deux pas de temps.

C3 - Combinaison exponentielle adaptative (AEC)

Les coefficients de l’estimateur sont donnés par les équations ci-dessous.

φ̂k,t = Bk,t∑K
i=1 Bi,t

, (3.63)

Bk,t = Ik,t−1B
λCook

k,t

k,t−1 (3.64)

Avec

Ik,t−1 = ŵ
−1/2
k,t−1|t−h−1 · exp

−
(
vt−1 − v̂(k)

t−1|t−h−1

)2

2ŵk,t−1|t−h−1

 (3.65)

Ik,t−1 est interprété ici comme la nouvelle information au temps t. De plus, ŵk,t|t−h et λCookk,t

sont déterminés de la même manière que pour l’approche EWMA.
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Il est possible de noter que plus l’erreur de prévision
(
vt−1 − v̂(k)

t−1|t−h−1

)
est grande pour un

modèle k, plus le poids attribué au modèle k est réduit, et ce, de façon exponentielle. En
d’autres termes, une erreur élevée est interprétée comme une détérioration de la performance
du modèle en question, ce qui a pour conséquence de donner un poids très élevé à la meilleure
approche et très faible pour les autres, d’où le caractère sélectif de l’approche.

Le facteur d’oubli est introduit à l’équation (3.64), de façon à ce que les anciennes données
perdent exponentiellement de l’importance avec les itérations. Finalement, la relation (3.63)
permet de normaliser les coefficients du vecteur de poids obtenus, afin que la somme de tous
les coefficients soit égale à 1.

3.4.3 Estimation en deux étapes

Tel que mentionné au début de la section, la combinaison est effectuée en deux étapes.
D’abord, les trois méthodes définies ci-dessus sont utilisées pour combiner les modèles. À
la deuxième étape, les trois prévisions obtenues à l’étape 1 sont recombinées par AEC pour
produire une prévision finale. Cette étape permet donc de constamment choisir la meilleure
méthode de combinaison de façon adaptative. Selon Sanchez, cette approche permet d’obtenir
des prévisions similaires ou supérieures au meilleur des K modèles.
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CHAPITRE 4 PRÉVISION DE LA VITESSE DE VENT

Dans ce chapitre, les filtres de Kalman appliqués à la vitesse sont étudiés. D’abord, les
données d’observation ainsi que les données de prévision du modèle de PNT disponibles pour
l’étude sont décrites. Puis, une analyse préliminaire de l’influence de la direction sur l’erreur de
prévision est présentée. Finalement, le corps du chapitre est consacré à une analyse exhaustive
de la performance de tous les modèles développés, où les filtres de Kalman adaptés pour tenir
compte de la direction sont comparés aux filtres de Kalman conventionnels. Ces analyses,
ainsi que l’implémentation des modèles, ont été réalisées à partir du logiciel MATLAB.

4.1 Description des données disponibles

Afin d’évaluer la performance des approches étudiées, il est essentiel d’avoir accès à des
ensembles de données de prévision (soit le modèle de PNT dans notre cas), ainsi qu’à des
ensembles de mesures prises sur des sites réels.

4.1.1 Données de prévision

Les données de prévision fournies par WPred pour ce projet sont extraites du modèle SGPD
d’Environnement Canada décrit à la section 2.1. Les prévisions sont produites deux fois par
jour pour un horizon de 240 heures, soit 10 jours. Comme la résolution du modèle est de 0,24◦

(soit environ 25 km), WPred applique une méthode de downscaling linéaire afin d’interpoler
les données entre les points de la grille (voir la Figure 2.1). Les valeurs, disponibles pour
plusieurs altitudes, sont aussi interpolées à la hauteur exacte de la turbine. Les données de
vent sont sous forme de moyenne horaire, de même les autres données disponibles telles la
température, la direction du vent, la pression, etc.

Pour l’analyse des résultats, les modèles sont principalement comparés entre eux, à la persis-
tance, ainsi qu’aux PNTs. WPred utilise cependant un modèle de statistique linéaire (Model
Output Statistics (MOS)) afin d’ajuster les prévisions lorsqu’un ensemble de données histo-
riques d’un an ou plus est disponible pour un site. La performance des filtres de Kalman est
donc aussi comparée au modèle MOS afin de quantifier les améliorations, s’il y a lieu, pour
WPred. Le MOS utilisé est défini par l’équation suivante :

v̂MOS
t = v̂PNTt ·

(
α0 + α1 · cos

(
θ̂PNTt

)
+ α2 · sin

(
θ̂t
PNT

))
(4.1)
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Le modèle est entraîné sur les données historiques afin de déterminer les coefficients αi. Une
fois ces coefficients fixés, ils sont utilisés tels quels pour toutes les prévisions futures.

4.1.2 Données d’observation

Des ensembles de données d’observation sur plusieurs sites éoliens réels sont rendus dispo-
nibles pour ce projet par WPred. Ces données proviennent de systèmes SCADA (supervisory
control and data aquisition) qui permettent d’enregistrer les comportements de la turbine.
Comme les données de prévision, les observations sont moyennées autour de l’heure. La don-
née de vitesse de vent à 14h00, par exemple, correspond à la moyenne des vitesses enregistrées
entre 13h30 et 14h30 (de même pour les autres variables météorologiques disponibles). Les
données obtenues par SCADA ne sont pas toujours complètes : par exemple, un détecteur
défectueux peut enregistrer la même donnée de température à plusieurs chiffres significatifs
près pendant plusieurs heures de suite. Un contrôle de qualité a donc été fait sur ces données
afin de retirer les valeurs erronées. En général, les données suivantes sont disponibles dans
les fichiers d’observations :

1. v : Vitesse du vent moyenne de toutes les éoliennes (m/s)

2. θ : Direction du vent moyenne de toutes les éoliennes (par rapport au Nord, en radians)

3. T : Température (◦C)

4. p : Puissance (somme de toutes les éoliennes, kW)

La totalité des sites étudiés est située en Europe ou en Amérique du Nord. Par souci de
confidentialité, leur identité et leur localisation ne peuvent être divulguées dans cette étude.
Les vingt sites étudiés sont numérotés de 1 à 20 afin de pouvoir les distinguer. Généralement,
les quatre données énumérées ci-dessus sont disponibles, toutefois certains sites ne possèdent
pas de données de puissance. Pour les sites #4, #5 et #13, l’ensemble est trop incomplet
pour être utilisé (plus de 25% des données sont manquantes). Le tableau 4.1 regroupe les
sites étudiés et leurs caractéristiques : les données disponibles, la région et la complexité du
terrain (la valeur 2 correspondant au terrain le plus complexe et 0 le moins complexe, selon
une analyse qualitative des cartes topographiques). Les sites ont également été rassemblés en
9 groupes, à l’intérieur desquels les sites sont espacés de 100 km ou moins.

En application, les exploitants envoient les observations en temps réel afin que le modèle
puisse se mettre à jour à chaque pas de temps. Pour l’analyse, les observations sont donc
fournies au filtre de Kalman comme si elles étaient reçues à chaque heure, de façon à simuler
une situation réelle.
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Tableau 4.1 Description des sites éoliens

# Complexité du terrain Nombre de Données Région Groupe
0 (−) → 2 (+) données (jours) disponibles

1 0 731 v,θ,T,p Europe A
2 0 731 v,θ,T,p
3 0 731 v,θ,T,p
4 2 1035 v,θ,T Europe B
5 2 1035 v,θ,T
6 0 382 v,θ,T,p Europe C
7 0 619 v,θ,T,p
8 0 619 v,θ,T,p
9 1 382 v,θ,T,p Europe D
10 0 382 v,θ,T,p
11 0 382 v,θ,T,p
12 1 382 v,θ,T,p
13 0 382 v,θ,T Europe E
14 0 1035 v,θ,T,p
15 0 382 v,θ,T,p Europe F
16 0 382 v,θ,T,p
17 0 730 v,θ,T,p Amérique du Nord G
18 0 756 v,θ,T,p
19 0 2043 v,θ,T,p Amérique du Nord H
20 0 1949 v,θ,T,p Amérique du Nord I

4.2 Étude préliminaire

Plusieurs études mentionnées précédemment montrent que l’ajout de la direction dans les
modèles statistiques peut améliorer la précision des prévisions de la vitesse du vent [27, 72].
Pour confirmer l’hypothèse avancée dans ce projet, les données historiques disponibles ont
été analysées afin d’étudier l’influence de la direction du vent sur la précision des prévisions.

Pour certains sites, le vent est beaucoup plus directionnel. Le site #4, par exemple, présente
cette forte directionalité (la Figure 4.1(a) montre la distribution des directions de vent pour
ce site). Lorsqu’on examine l’erreur moyenne absolue (MAE) du modèle de PNT selon la
direction pour ce même endroit, on voit qu’elle est corrélée avec la direction (Figure 4.1(b)).
Cette observation confirme qu’appliquer un modèle unique pour toutes les directions du vent
n’est pas suffisant, et que notre modèle pourrait bénéficier de l’ajout de la direction comme
paramètre d’entrée. Il est à noter que tous les sites ne présentent pas une variation aussi
grande du MAE en fonction de la direction. Pour le site #20 par exemple (Figure 4.2), cette
corrélation semble plus faible. Néanmoins, l’influence de la direction du vent sur la précision
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(a) Distribution des directions de vent (b) MAE en fonction de la direction

Figure 4.1 Analyse des données historiques du site #4

Figure 4.2 MAE en fonction de la direction pour le site #3

des prévisions demeure présente. Pour plus d’exemples, d’autres distributions et analyses
directionnelles du MAE sont données à l’Annexe A.

4.3 Validation des modèles

Une fois les modèles implémentés, il est essentiel de s’assurer que le filtre fonctionne adéqua-
tement, c’est-à-dire qu’il n’y ait pas d’erreurs d’implémentation dans le code. À cet effet, de
fausses prévisions ont été créées à partir de coefficients fixes pour chacun des six modèles
étudiés. Par exemple, pour le modèle d’ordre 1, le biais est défini par :

yt = α0,t + β0,t · v̂t,PNT +mt (4.2)
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En se basant sur un ensemble de données observées, on pose des coefficients fixes pour le biais
(par exemple α0,t = 1 et β0,t = 0.1), de manière à créer l’ensemble de données de prévision
fictives (v̂t,PNT ) pour lesquelles le biais correspond à cette équation exactement. Ainsi, pour
toute prévision fictive v̂t,PNT , l’observation vt y étant associée correspond exactement à :

vt = v̂t,PNT + yt = v̂t,PNT + (α0,t + β0,t · v̂t,PNT ) (4.3)

Six ensembles de données fictives sont créés de cette façon, et chacun des modèles est testé
sur son ensemble respectif afin de vérifier qu’il converge bien vers les coefficients imposés.

4.3.1 Initialisation des paramètres du filtre

Avant la première itération, les coefficients du filtre sont d’abord initialisés. Posons L la
longueur du vecteur d’état, soit le nombre de coefficients à estimer. Ainsi, on initialise le
vecteur d’état x0 comme un vecteur nul de longueur L. La matrice de covariance du vecteur
d’état de départ P0 est définie comme une matrice identité de dimensions L × L, de même
que pour la matrice de covariance de l’équation de système Q0. Finalement, la covariance
initiale de l’équation d’observations R0 = 6 est posée comme une valeur assez élevée afin de
permettre une indépendance rapide des conditions initiales.

4.3.2 Convergence des coefficients du vecteur d’état

Les figures suivantes montrent la variation des coefficients du vecteur d’état par rapport
à leurs valeurs finales (en %), en fonction des itérations du filtre de Kalman pour les en-
sembles de données fictives décrits précédemment. Les données sont affichées jusqu’à ce que
la variation de tous les coefficients soit inférieure à 0,1%.

(a) Ordre 1 (b) Ordre 3 directionnel

Figure 4.3 Validation des modèles
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Comme il est possible de voir dans les figures ci-dessus, les modèles parviennent à converger
vers les bons coefficients en un maximum de 100 itérations. La Figure 4.3(a) correspond au
modèle possédant le moins de coefficients à évaluer (modèle d’ordre 1, non directionnel). Pour
ce cas, le modèle converge très rapidement, après seulement 6 itérations. Pour le modèle le
plus complexe (ordre 3 directionnel, 12 coefficients à évaluer), il faut plutôt 100 itérations,
soit 100 heures, avant que le modèle ne converge. On remarque donc que plus le nombre
de coefficients augmente, plus le nombre d’itérations nécessaires avant que les coefficients
convergent vers des valeurs fixes est élevé. À des fins de comparaison, les graphiques de
variation des coefficients pour les six modèles sont donnés en Annexe B.

Il est à noter que dans un cas réel, les coefficients ne convergeront pas nécessairement, puisque
le biais ne suit pas exactement la relation polynomiale déterminée. Néanmoins, cette analyse
permet d’avoir un indicatif de la durée de temps nécessaire pour entraîner le filtre après sa
première application. Dans l’analyse des données présentée dans ce chapitre, les dix premiers
jours (ou 240 premières itérations) d’application des filtres n’ont pas été considérés, ce qui
dépasse largement le temps de convergence du filtre le plus complexe.

4.4 Analyse des résultats

L’objectif de l’analyse qui suit est d’étudier les différents modèles développés à la section 3.3.1
pour la vitesse du vent. D’abord, l’effet de l’ajout de la direction dans les modèles est ana-
lysé, puis les performances en fonction des différents ordres polynomiaux sont également
examinées. Ultimement, nous tentons d’identifier le meilleur modèle.

Dans ce mémoire, les performances des filtres de Kalman développés sont principalement
comparées à celles des données brutes du modèle de PNT, ainsi qu’à la persistance. Tel que
mentionné précédemment, elles sont aussi comparées aux prévisions de WPred (modèle MOS)
afin de déterminer si, et à quel point, les modèles développés ici améliorent leurs prévisions.

4.4.1 Performance des modèles

Le projet est centré sur l’amélioration des prévisions à court terme. Plus particulièrement,
ce sont les six premières heures d’horizon qui nous intéressent. Les indicateurs donnés dans
cette première section sont présentés sous forme de moyenne entre h = 1 et h = 6, inclu-
sivement. Ce choix a été fait afin de permettre une comparaison plus facile avec les études
réalisées précédemment. Par ailleurs, puisque la persistance est désignée comme un bon mo-
dèle de référence pour les 6 premières heures [59], les horizons sélectionnés permettent une
comparaison adéquate avec la persistance. Le tableau 4.2 présente d’abord le biais (ME),
permettant de déterminer si le modèle a tendance à prédire des vitesses trop élevées ou trop
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faibles. En d’autres termes, un biais nul signifie que la distribution des erreurs est centrée
en 0, si on suppose une distribution normale. Le ME est donné pour tous les modèles, ainsi
que pour les données de PNT brutes. Ensuite, l’erreur absolue moyenne (MAE) et l’erreur
moyenne quadratique (RMSE) sont données aux tableaux 4.3 et 4.4 respectivement. Il est à
noter que les modèles qualifiés de classiques dans les tableaux ci-dessous correspondent aux
modèles non directionnels développés par Louka et Galanis.

Tableau 4.2 ME (m/s) sur la vitesse, moyenne de h = 1 à h = 6*

# Site PNT Ordre 1 Ordre 2 Ordre 3
Classique Avec θ Classique Avec θ Classique Avec θ

1 -0,16 -0,05 -0,07 -0,07 -0,06 -0,07 -0,08
2 0,40 0,08 0,06 0,05 0,05 0,06 0,07
3 2,22 0,07 0,06 0,06 0,07 0,05 0,06
4 -7,42 -0,22 -0,23 -0,23 -0,21 -0,25 -0,25
5 -6,82 -0,10 -0,12 -0,11 -0,18 -0,14 -0,20
6 1,67 0,02 0,04 0,02 0,04 0,02 0,04
7 1,03 0,00 0,04 0,03 0,04 -0,01 0,03
8 1,11 0,00 0,03 0.00 0,03 -0,01 0,02
9 1,39 0,00 0.00 0,01 0,03 0,03 0,02
10 2,26 0,02 0,02 0,03 0,01 0,02 0,01
11 1,30 0,01 0,00 0,02 0,00 0,03 0,00
12 1,11 0,00 0,01 0,00 0,03 0,02 0,03
13 0,98 -0,06 -0,05 -0,04 -0,03 -0,05 0,01
14 1,27 0,02 0,02 0,01 -0,02 -0,01 -0,02
15 1,35 0.00 0,02 0,03 0,01 0,01 0,01
16 1,70 0,02 0,04 0,04 0,04 0,05 0,06
17 2,70 0,18 0,19 0,22 0,17 0,13 0,15
18 0,91 -0,12 -0,20 -0,12 -0,19 -0,12 -0,16
19 0,96 0,02 -0,01 0,01 -0,06 0,01 -0,05
20 -2,09 -0,05 -0,07 -0,11 -0,06 -0,09 -0,13

Biais moyen 0,05 0,06 0,06 0,07 0,06 0,07
*Plus le biais moyen est faible, meilleures sont les prévisions. Les erreurs minimales pour chacun des sites sont en gras.

Tableau 4.3 MAE (m/s) sur la vitesse, moyenne de h = 1 à h = 6*

# Site PNT Ordre 1 Ordre 2 Ordre 3
Classique Avec θ Classique Avec θ Classique Avec θ

1 1,27 1,13 1,12 1,12 1,12 1,13 1,14
2 1,43 1,21 1,22 1,22 1,23 1,24 1,24
3 2,73 1,28 1,24 1,26 1,23 1,26 1,23
4 7,42 1,74 1,72 1,76 1,72 1,77 1,74
5 6,82 1,64 1,59 1,68 1,60 1,68 1,63
6 1,97 0,94 0,95 0,94 0,95 0,94 0,95
7 1,98 1,18 1,15 1,17 1,15 1,17 1,14
8 2,11 1,14 1,10 1,13 1,10 1,13 1,11
9 1,81 0,83 0,83 0,84 0,84 0,85 0,85
10 2,49 0,96 0,95 0,95 0,93 0,95 0,95
11 1,78 0,85 0,85 0,85 0,84 0,86 0,86
12 1,77 0,91 0,91 0,91 0,91 0,92 0,92
13 1,37 1,04 1,00 1,02 0,96 1,02 0,98
14 1,74 0,96 0,96 0,96 0,95 0,97 0,96
15 1,90 0,84 0,84 0,84 0,83 0,85 0,85
16 2,01 0,87 0,86 0,86 0,85 0,86 0,87
17 3,64 2,40 2,24 2,46 2,33 2,49 2,28
18 2,32 2,14 2,06 2,16 2,07 2,22 2,04
19 1,69 1,23 1,22 1,24 1,24 1,25 1,23
20 2,35 1,25 1,23 1,32 1,25 1,29 1,26

Amélioration
moyenne 44,2% 45,1% 43,9% 45,1% 43,6% 44,7%

*Plus l’amélioration est élevée, meilleures sont les prévisions. Les erreurs minimales pour chacun des sites sont en gras.
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Tableau 4.4 RMSE (m/s) sur la vitesse, moyenne de h = 1 à h = 6*

# Site PNT Ordre 1 Ordre 2 Ordre 3
Classique Avec θ Classique Avec θ Classique Avec θ

1 1,63 1,45 1,46 1,45 1,45 1,48 1,49
2 1,86 1,59 1,61 1,61 1,63 1,63 1,64
3 3,53 1,68 1,64 1,68 1,63 1,67 1,63
4 7,94 2,24 2,23 2,25 2,24 2,28 2,28
5 7,27 2,11 2,07 2,16 2,08 2,17 2,11
6 2,37 1,24 1,25 1,24 1,25 1,24 1,26
7 2,52 1,55 1,53 1,56 1,53 1,55 1,54
8 2,66 1,49 1,45 1,49 1,45 1,50 1,47
9 2,24 1,10 1,10 1,11 1,11 1,14 1,14
10 3,06 1,25 1,26 1,24 1,23 1,24 1,28
11 2,17 1,12 1,12 1,11 1,12 1,13 1,15
12 2,21 1,21 1,22 1,22 1,21 1,24 1,26
13 1,69 1,39 1,33 1,36 1,29 1,39 1,34
14 2,17 1,26 1,26 1,26 1,25 1,27 1,27
15 2,37 1,09 1,10 1,09 1,09 1,10 1,15
16 2,43 1,14 1,15 1,13 1,14 1,15 1,18
17 4,60 3,29 3,05 3,37 3,20 3,41 3,11
18 2,92 2,84 2,78 2,86 2,78 2,95 2,75
19 2,16 1,62 1,62 1,64 1,66 1,64 1,62
20 2,80 1,62 1,62 1,76 1,67 1,73 1,69

Amélioration
moyenne 40,9% 41,6% 40,5% 41,4% 39,9% 40,6%

*Plus l’amélioration est élevée, meilleures sont les prévisions. Les erreurs minimales pour chacun des sites sont en gras.

Dans les tableaux de MAE et RMSE, l’amélioration moyenne (ou la réduction moyenne de
l’indicateur) est donnée au bas de tableau pour chaque modèle. Une première conclusion
pouvant être tirée des informations ci-dessus est que les modèles directionnels performent en
moyenne mieux que les modèles non directionnels au niveau du MAE et du RMSE. En outre,
le biais moyen est réduit à des valeurs très près de zéro pour tous les modèles. Ceci étant
dit, le choix du modèle le plus performant parmi les six étudiés n’est pas trivial. Une analyse
des tableaux de ME, MAE et RMSE sera effectuée dans les lignes suivantes, dans le but d’en
interpréter le contenu. Il est à noter que dans les légendes des graphiques qui sont présentés
ci-dessous, les notations suivantes sont utilisées :

— PNT : Données brutes de prévision numérique du temps d’EC
— O1 : FK avec biais d’ordre 1
— O2 : FK avec biais d’ordre 2
— O3 : FK avec biais d’ordre 3
— O1 Dir : FK avec biais d’ordre 1 incluant la direction
— O2 Dir : FK avec biais d’ordre 2 incluant la direction
— O3 Dir : FK avec biais d’ordre 3 incluant la direction

Biais D’abord, on remarque que le biais de tous les modèles est considérablement réduit
comparativement au modèle de PNT. En effet, il passe de 1,94 m/s en moyenne pour les
prévisions brutes à entre 0,05 m/s et 0,07 m/s pour les modèles développés. Cette observation
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indique que les filtres de Kalman fonctionnent correctement, puisque c’est ce biais qu’ils
tentent de prédire et de corriger. Tel que mentionné à la section 2.5, le biais moyen permet de
savoir si le modèle a tendance à sur-prédire ou sous-prédire. Cependant, cet indicateur, lorsque
calculé sur l’ensemble de données au complet, ne donne qu’une information préliminaire sur
la qualité des prévisions. Il ne permet pas de mesurer la performance réelle d’une approche : il
est très improbable qu’un modèle ayant un biais nul sur un ensemble de données montre des
prévisions parfaites. Un biais nul signifie uniquement que les erreurs positives et négatives
s’annulent sur la période d’évaluation [59].

MAE Le MAE est une mesure plus commune permettant de tenir compte de la contribution
à la fois des erreurs positives et des erreurs négatives. Pour cet indicateur, tous les filtres
directionnels performent en moyenne mieux que leurs homonymes non directionnels. On
remarque aussi que plus l’ordre du polynôme diminue, plus l’amélioration est élevée.

RMSE Les résultats sont très similaires au niveau du RMSE. L’amélioration moyenne par
rapport au modèle de PNT donnée au tableau 4.4 a tendance à être plus élevée pour les
modèles directionnels. Comme pour le MAE, les ordres plus élevés présentent encore une fois
des performances inférieures.

Distribution des erreurs Une autre façon de représenter les résultats présentés aux ta-
bleaux 4.2, 4.3 et 4.4 est d’étudier la distribution des erreurs. Les Figures 4.4(a) et 4.4(b)
montrent les distributions des erreurs du site #20, pour les horizons h = 1 et h = 6. Dans les
deux cas, on remarque nettement la réduction du biais : les distributions sont beaucoup plus
centrées et symétriques pour les données filtrées que pour les prévisions brutes du modèle
de PNT. Les distributions sont également plus étroites et moins évasées pour les modèles
développés, ce qui résulte en des MAE et RMSE réduits.

(a) h = 1 (b) h = 6

Figure 4.4 Distributions des erreurs sur la vitesse pour le site #20
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L’observation du comportement des prévisions en fonction du temps permet de voir que
les filtres directionnels sont plus instables que ceux qui ne dépendent pas de la direction.
Par instabilité, on entend une sur-sensibilité de la méthode de régression, ce qui peut pro-
voquer des écarts soudains dans la prévision par rapport au pas de temps précédent. Il est
possible de constater la différence entre les comportements des deux types de modèles à la
Figure 4.5 : les filtres conventionnels n’incluant pas la direction sont plus lisses, alors que les
filtres directionnels montrent des comportements plus instables.

Figure 4.5 Exemple d’instabilité pour le site #4

À la Figure 4.6 cependant, l’ajout de la direction permet, à l’opposé, de détecter certaines
subtilités dues à la directionalité du vent que les modèles non directionnels ne parviennent
pas à identifier. D’autres exemples sont donnés à l’Annexe C.

Figure 4.6 Exemple de détection pour le site #7

Ces instabilités peuvent être expliquées par le nombre plus élevé de coefficients dans les
approches directionnelles (voir le tableau 4.5). En effet, comme décrit à la section 3.3.1,
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l’approche utilisée pour rendre l’équation du biais dépendante de la direction consiste à diviser
chaque coefficient en 3 nouveaux coefficients. Ainsi, αt devient α0,t + α1,t · sinθt,PNT + α2,t ·
cosθt,PNT . Par conséquent, chaque version directionnelle d’un modèle possède 3 fois plus de
coefficients à estimer que son homonyme non directionnel. Généralement, lorsqu’on effectue
une régression, l’ajout de paramètres dans un modèle rend la régression plus sensible, et donc
plus prompte aux instabilités.

Tableau 4.5 Nombre de coefficients à évaluer pour chaque modèle

Modèle Ordre 1 Ordre 2 Ordre 3 Ordre 1 f(θ) Ordre 2 f(θ) Ordre 3 f(θ)
Nb. de coefficients 2 3 4 6 9 12

Somme toute, l’ajout de la direction dans les filtres de Kalman améliore les prévisions. Ces
modèles parviennent à détecter l’influence de la direction du vent et améliorer les prévisions
à certains moments, mais sont toutefois plus instables que les modèles non directionnels, ce
qui limite leur performance. De plus, on observe que plus l’ordre est élevé, plus les erreurs
(MAE et RMSE) sont grandes.

4.4.2 Performance en fonction de l’horizon

Dans cette section, une analyse des erreurs en fonction de l’horizon est présentée. Afin d’étu-
dier la performance globale des différents modèles, les indicateurs sont moyennés sur tous
les sites. Par exemple, le RMSE du modèle d’ordre 1 non directionnel pour l’horizon h = 1
correspond à la moyenne du RMSE à h = 1 sur tous les sites, pour ce modèle.

Figure 4.7 Biais moyen en fonction de l’horizon

Premièrement, la Figure 4.7 donne le biais moyen en fonction de l’horizon de prévision.
Dans cette figure, l’échelle utilisée n’est pas la même que pour les MAE et RMSE aux
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Figures 4.8(a) et 4.8(b) : elle est légèrement agrandie afin de distinguer plus facilement les
différentes courbes. Il est à noter que le biais peut être négatif lorsque les modèles ont tendance
à sous-prédire. Ici, pour calculer la moyenne, la valeur absolue de ce biais est utilisée. On peut
voir que le biais est considérablement réduit pour tous les horizons. Les filtres directionnels
semblent présenter un biais légèrement plus élevé ; cependant, tel que mentionné plus tôt, il
s’agit d’un indicateur préliminaire, ne permettant pas de conclure quant à la performance
d’un modèle.

Le MAE et le RMSE en fonction de l’horizon sont donnés aux Figures 4.8(a) et 4.8(b). La
première observation pouvant en être déduite est que, tel que noté précédemment, les modèles
directionnels performent en moyenne mieux, et ce, pour tous les horizons.

(a) MAE (b) RMSE

Figure 4.8 MAE et RMSE moyens en fonction de l’horizon

Dans la Figure 4.8(a), les modèles directionnels et non directionnels sont divisés en deux
groupes nettement définis, confirmant que l’ajout de la direction est bénéfique pour les filtres
de Kalman. Il est intéressant de noter que plus l’horizon de prévision augmente, plus l’écart
entre les performances des deux types de modèles augmente.

La Figure 4.8(b) montre la même tendance pour le RMSE, toutefois de façon un peu moins
définie que pour le MAE. Comme le RMSE caractérise l’erreur sous forme quadratique,
il donne plus d’importance aux grandes erreurs. Ainsi, puisque les modèles directionnels
présentent davantage d’instabilités, caractérisées par des écarts plus élevés et soudains dans
la prévision, le RMSE est légèrement moins réduit que le MAE. En ce qui concerne l’ordre
des modèles, comme il en a été déduit des tableaux 4.3 et 4.4, les modèles d’ordres inférieurs
performent en moyenne mieux que les modèles d’ordres supérieurs pour tous les horizons.
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Finalement, les Figures 4.9(a) et 4.9(b) présentent ces mêmes résultats sous forme d’amé-
lioration moyenne par rapport au modèle de PNT. Il est intéressant de remarquer qu’en
moyenne sur tous les sites, les MAE et RMSE sont significativement réduits pour tous les
horizons étudiés, soit jusqu’à h = 12. Pour h = 1, les modèles améliorent de plus de 47% le
MAE et de 44% le RMSE.

(a) MAE (b) RMSE
Figure 4.9 Amélioration moyenne par rapport aux PNTs en fonction de l’horizon

Afin d’étudier les distributions d’erreurs de façon globale pour tous les sites, des graphiques de
marge d’erreur sont donnés. Cette représentation permet de montrer la proportion des erreurs
contenues à l’intérieur d’une certaine marge. Ici, on considère que les erreurs supérieures à
4 m/s sont anormalement élevées, et que le pourcentage d’erreurs supérieures à cette valeur
devrait être très faible. Les Figures 4.10(a) et 4.10(b) montrent les moyennes des pourcentages
(ou fréquence) d’erreurs inférieures à ± 1 m/s et à ± 4 m/s en fonction de l’horizon.

(a) |e| < 1 m/s (b) |e| < 4 m/s
Figure 4.10 Distributions des erreurs sur la vitesse
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La proportion d’erreurs contenues dans ces marges pour les six modèles développés est située
entre 50-61% pour 1 m/s, et entre 95-98% pour 4 m/s. En opposition, cette proportion pour
les PNTs ne dépasse pas les 35% et 85% pour les marges de 1 m/s et de 4 m/s respective-
ment (Figure 4.11). La distribution des erreurs est donc nettement plus étroite pour tous les
modèles de filtre de Kalman comparativement aux PNTs. Puisque les biais sont réduits à des
valeurs presque nulles, la distribution est aussi davantage centrée pour les filtres de Kalman.

Dans les Figures 4.11(a) et 4.11(b), la portion des figures précédentes contenant seulement les
modèles statistiques a été agrandie afin de mieux constater la différence entre les différents
modèles.

(a) |e| < 1 m/s (b) |e| < 4 m/s
Figure 4.11 Distributions des erreurs sur la vitesse

L’analyse de la proportion d’erreurs contenues à l’intérieur de deux marges de tailles diffé-
rentes permet de comparer la partie centrale de la distribution ainsi que son évasement. En
comparant les deux graphiques, il est possible d’en déduire que les approches directionnelles
produisent plus de faibles erreurs que les approches non directionnelles, ce qui signifie que la
partie centrale des distributions des approches directionnelles est plus haute et plus étroite.
D’un autre côté, la fréquence d’erreurs inférieures à 4 m/s est très similaire pour tous les mo-
dèles : l’évasement de la distribution n’est donc pas nettement plus prononcé pour aucun des
modèles. En d’autres termes, la proportion d’erreurs anormalement élevées, soit supérieures
à 4 m/s, se situe entre 2% et 5% pour tous les modèles et tous les horizons. Cela indique, en
somme, que malgré les instabilités des filtres directionnels, ceux-ci ne génèrent pas davantage
d’erreurs anormalement élevées. La fréquence de tels événements demeure faible, et même
légèrement inférieure à celle des modèles non directionnels.
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4.4.3 Choix du meilleur modèle

Somme toute, suite aux analyses présentées précédemment, les ordres inférieurs démontrent
une meilleure précision de façon globale, et l’introduction de la direction dans les modèles se
montre également bénéfique.

Il ne faut pas oublier que ces résultats correspondent à des valeurs moyennes de performance
pour les 20 sites étudiés : il s’agit donc uniquement d’une tendance. Comme il a été mon-
tré plus tôt, la performance de chaque modèle varie d’un site à l’autre. Bien que l’ordre 1
directionnel donne de meilleurs résultats en moyenne, il n’est pas absolument meilleur pour
tous les sites étudiés. Par exemple, pour le site #18, le modèle d’ordre 3 directionnel per-
met d’atteindre les erreurs les plus faibles de façon globale, alors que pour le site #1, c’est
plutôt le modèle d’ordre 2 non directionnel qui parvient aux meilleurs résultats (voir les
tableaux 4.3 et 4.4). Cela suggère encore une fois que les performances des modèles sont
fortement dépendantes de la position géographique et de la complexité du terrain étudié.

Par ailleurs, la précision des modèles varie aussi en fonction de l’horizon de prévision. Par
exemple, pour le site #9 présenté à la Figure 4.12 ci-dessous, on voit qu’avant h = 3, les deux
filtres d’ordre 1 ont des erreurs similaires, alors qu’après h = 3, le filtre d’ordre 1 directionnel
montre le RMSE le plus faible. Puis, à h = 6 l’ordre 2 les surpasse, et finalement, c’est l’ordre 1
non directionnel qui performe le mieux à partir de h = 10. Ainsi, il n’est pas toujours possible
d’identifier un seul modèle qui minimise l’erreur mieux les autres pour tous les horizons.

Figure 4.12 RMSE moyen en fonction de l’horizon pour le site #9

Parallèlement, la performance des modèles peut aussi varier en fonction du temps. L’instabi-
lité des modèles directionnels en est un bon exemple : ils permettent à certains moments de
détecter des variations dues à la directionalité du vent que les autres modèles ne réussissent
pas à prédire, alors qu’à d’autres moments, leur instabilité occasionne des erreurs plus élevées
que les modèles non directionnels.
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Une façon de répondre en partie aux problématiques mentionnées ci-dessus serait de tester
tous les filtres sur un ensemble de données historiques d’un site spécifique, afin de choisir
le modèle le plus précis, puis utiliser ce dernier pour réaliser les prévisions. Toutefois, cette
approche réduit l’attrait du filtre de Kalman venant du fait qu’il peut être appliqué rapi-
dement et sans besoin de données historiques. Par ailleurs, elle n’adresse pas non plus la
question de la variation de la performance en fonction de l’horizon. Une approche suggérée
pour résoudre ces problématiques est la combinaison des modèles proposée par Sanchez [63]
et décrite à la section 3.4 de ce mémoire. Elle permettrait de rendre le choix des modèles
spécifique à chaque site et chaque horizon de prévision, et ce, de façon adaptative (variable
dans le temps).

4.4.4 Combinaison des modèles

L’approche de combinaison est très intéressante par sa facilité d’application. En effet, lors-
qu’on désire implémenter un filtre de Kalman sur un nouveau site, tous les modèles peuvent
être immédiatement appliqués, et l’algorithme choisit le meilleur d’entre eux, ou la meilleure
combinaison, de façon automatique et adaptative.

Analyse des erreurs

Les modèles individuels performent en majorité très bien comparativement aux PNTs pour
tous les horizons. Pour h = 1 à h = 6, l’amélioration moyenne du RMSE entre le pire et le
meilleur modèle de filtre de Kalman peut cependant atteindre 16%, ce qui est significatif au
niveau de la qualité des prévisions. Définir le modèle le plus précis est donc essentiel.

(a) MAE (b) RMSE

Figure 4.13 Combinaison des modèles pour le site #17
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L’application de la méthode de combinaison permet donc de pondérer les modèles de façon
adaptative et en fonction de l’horizon afin d’obtenir des performances égales ou supérieures
au meilleur des six modèles développés. Les Figures 4.13(a) et 4.13(b) ci-dessus montrent
un exemple de résultats de l’approche de combinaison proposée pour le site #17.

Le tableau 4.6 présente les résultats finaux de l’approche hybride incluant les filtres de Kalman
directionnels et non directionnels combinés à l’aide de la méthode proposée par Sanchez, et
ce, sous forme de moyenne sur tous les sites. Les améliorations (Impr) par rapport au modèle
de PNT, au MOS, à la persistance ainsi que par rapport au pire et au meilleur modèle (parmi
les 6 filtres de Kalman proposés) y sont données. À titre de rappel, l’équation définie à la
section 2.5 pour le calcul d’amélioration (improvement) est la suivante :

Impr(h) = RMSEref (h)−RMSEKF−comb(h)
RMSEref (h) (4.4)

où RMSEref (h) représente le RMSE de la méthode de référence (PNT, MOS, persistance,
meilleur et pire modèle), et RMSEKF−comb(h) celui associé à la combinaison des filtres de
Kalman. Ainsi, une valeur négative de la valeur Impr(h) signifie que le modèle est moins
précis que la méthode de référence au niveau du RMSE.

Tableau 4.6 Amélioration du RMSE (m/s) sur la vitesse (avec combinaison), moyenne de
h=1 à h=6*

Amélioration par rapport à
# PNT (%) MOS (%) persistance (%) pire modèle (%) meilleur modèle (%)

1 14,05 13,03 14,81 6,16 3,66
2 17,19 8,53 11,47 6,13 3,24
3 54,75 23,89 8,77 4,91 1,90
4 73,82 66,34 -11,70 8,89 6,68
5 73,57 65,47 -9,39 11,56 6,91
6 48,98 18,30 14,84 3,86 2,48
7 41,28 27,30 10,36 5,21 3,26
8 46,74 26,36 11,15 5,37 2,07
9 52,39 23,86 16,52 6,59 3,31
10 61,12 32,32 19,42 6,84 3,11
11 50,59 24,63 17,29 6,89 3,66
12 47,54 23,97 6,74 7,94 4,19
13 26,07 7,08 21,60 10,33 2,89
14 43,35 16,59 18,36 3,68 2,00
15 55,82 29,48 19,58 8,56 3,85
16 54,85 21,87 16,26 6,79 3,32
17 35,37 8,52 -36,67 12,74 2,47
18 11,25 2,86 -20,46 12,08 5,92
19 29,34 13,81 10,11 7,98 5,48
20 47,28 36,62 6,11 16,20 8,79

Moyenne 44,3% 24,5% 7,3% 7,9% 4,0%
*Plus l’amélioration moyenne est élevée, meilleures sont les prévisions.



58

L’amélioration moyenne du RMSE par rapport au modèle de PNT passe d’entre 39,9% et
41,6% pour les modèles individuels (voir la dernière ligne du tableau 4.4) à 44,3% lorsque la
combinaison est appliquée. De plus, le RMSE est réduit pour tous les sites comparativement
au modèle MOS utilisé par WPred, en moyenne de 24,5%.

Dans l’optique où on ne connaît pas le modèle le plus précis pour un site en particulier, il est
intéressant de comparer l’approche de combinaison au pire modèle ayant pu être choisi pour
ce site. En moyenne, l’approche permet de réduire le RMSE de 7,9% en moyenne par rapport
au pire modèle, mais peut dépasser 16% pour un site individuel. Plus encore, la performance
globale de la solution combinée est toujours supérieure à celle du meilleur modèle possible,
soit de 4,0% en moyenne (et peut atteindre 8% de façon individuelle).

En étudiant les résultats du tableau 4.6, certains sites ressortent du lot : les #4, #5, #17,
et #18. Pour ceux-ci, l’approche de combinaison est moins précise que la persistance pour
h = 1 à h = 6. Ce sont des sites pour lesquels le modèle de PNT ne parvient pas à bien
prédire la vitesse du vent au départ, et leurs valeurs de RMSE avant filtrage sont parmi les
plus élevées du lot : entre 2,9 m/s et 7,9 m/s. Il est intéressant de noter que les sites #4 et
#5 constituent la région B, alors que #17 et #18 forment la région G (voir le tableau 4.1).
Cette observation suggère encore une fois que la localisation géographique a une influence
majeure sur la capacité des modèles à bien prédire les vitesses de vent.

Pour la région B, le modèle de PNT est à la base très peu performant : les biais moyens
sont de -6,8 m/s et -7,4 m/s, et le RMSE dépasse les 7 m/s pour les deux sites (voir les
tableaux 4.2, 4.3 et 4.4). Bien que les filtres de Kalman permettent de réduire le RMSE de
plus de 70% en comparaison au modèle de PNT et que les biais finaux se situent entre 0,1
m/s et 0,2 m/s pour ces sites, ce n’est pas suffisant pour surpasser la persistance pour les
premières heures d’horizon.

Pour la région G, le modèle de PNT rencontre encore une certaine difficulté à prévoir la
vitesse du vent. Ici, les filtres de Kalman parviennent tout de même à réduire le biais et le
RMSE, mais pas assez pour surpasser le modèle de persistance.

Dans les cas où le modèle physique de départ (PNT) prédit mal les vitesses de vent, une
approche purement statistique comme la persistance ou un modèle ARMA pourrait améliorer
les prévisions. Cependant, cette dernière option serait uniquement possible dans le cas où un
ensemble de données historiques serait disponible, puisque les techniques ARMA nécessitent
une calibration préalablement à leur application.
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Performance en fonction de l’horizon

Les Figures 4.14, 4.15(a) et 4.15(b) présentent les biais, MAE et RMSE moyens pour tous
les sites en fonction de l’horizon pour l’approche de combinaison, ainsi que pour les modèles
précédents.

Figure 4.14 Biais moyen en fonction de l’horizon pour la combinaison

D’abord, on remarque que les prévisions obtenues par la méthode de combinaison conservent
un biais très faible, réduit à des valeurs très près de 0 pour tous les horizons. Le RMSE et le
MAE, quant à eux, sont nettement réduits, et ce, pour tous les horizons de prévision étudiés.

(a) MAE moyen en fonction de l’horizon (b) RMSE moyen en fonction de l’horizon

Figure 4.15 MAE et RMSE en fonction de l’horizon

La Figure 4.16 montre les améliorations par rapport au modèle de PNT d’Environnement
Canada. L’approche de combinaison permet d’améliorer nettement les MAE et RMSE pour
tous les horizons, même comparativement au meilleur modèle individuel. Pour h=1, elle
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permet d’atteindre plus de 52% d’amélioration en moyenne pour le MAE, et plus de 47%
pour le RMSE, comparativement à 47% et 44% respectivement pour les modèles individuels.

(a) Amélioration du MAE (b) Amélioration du RMSE

Figure 4.16 Amélioration de la combinaison par rapport aux PNTs

La proportion d’erreurs inférieures à ± 1 m/s et ± 4 m/s (en %) sont données aux Fi-
gures 4.17(a) et 4.17(b). On remarque que la combinaison des modèles augmente nettement
la fréquence des erreurs comprises dans ces intervalles. Cela signifie qu’en moyenne, les dis-
tributions d’erreurs sont encore plus étroites et moins évasées lorsque la combinaison est
appliquée.

(a) |e| < 1 m/s (b) |e| < 4 m/s

Figure 4.17 Distributions des erreurs sur la vitesse

La réduction significative des MAE et RMSE peut être expliquée par la réduction du nombre
d’instabilités (voir la Figure 4.19). En effet, il est possible de voir à la Figure 4.19 que
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la combinaison permet d’éviter les instabilités dues aux filtres directionnels. L’ajout de la
combinaison semble aussi avoir un certain effet de lissage sur les prévisions.

Figure 4.18 Réduction des instabilités

À la Figure 4.19, la combinaison permet à l’opposé de détecter les subtilités associées à la
direction du vent. D’autres exemples sont disponibles à l’annexe D.

Figure 4.19 Réduction des instabilités

Somme toute, pour la majorité des sites étudiés, le modèle hybride FK-FK(θ)-Combinaison
améliore nettement la précision des prévisions comparativement au modèle de prévision nu-
mérique du temps. L’ajout de la direction dans les modèles s’est montré avantageux, et les
modèles d’ordre 1 performent mieux de façon globale. Néanmoins, comme la performance
des modèles est très dépendante des sites étudiés, conserver les six modèles pour l’étape de
combinaison permet d’adapter le choix des modèles en temps réel, selon leurs performances
récentes. Ainsi, la prévision finale parvient à détecter certaines subtilités dues à la direction
du vent, tout en réduisant les instabilités des filtres directionnels.
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CHAPITRE 5 PRÉVISION DE LA PUISSANCE

Dans ce chapitre, la performance des modèles développés pour la prévision de la puissance
produite par les éoliennes est étudiée. Les trois approches résumées à la section 3.3.3 sont
analysées (elles sont résumées au tableau 5.1 ci-dessous).

Tableau 5.1 Résumé des approches appliquées à la puissance

Approche A1 1. Vitesse (v) prédite corrigée par FK
2. Conversion en puissance (p) par la courbe de puissance (CP)

Approche A2 v non disponible
1. p observée transformée en v observée fictive avec la CP inverse
2. Correction de v fictive avec un FK
3. Conversion de v fictive en p à l’aide de la CP

Approche A3 v non disponible
1. p prédite corrigée par FK

Afin d’alléger le texte, les trois approches sont dénotées A1, A2 et A3 dans les prochaines
sections.

Tout d’abord, la performance du premier modèle étudié dans le chapitre précédent est ana-
lysée. Pour ce faire, les vitesses de vent corrigées par le filtre de Kalman sont converties en
prévision de puissance grâce à la courbe de puissance (approche A1). Par la suite, les deux
modèles développés pour la correction de la puissance décrits aux sections 2.4.1 et 2.4.2 sont
étudiés (A2 et A3). Ces deux approches permettent de corriger la prévision lorsqu’aucune
donnée de vent observée n’est disponible, d’une part par l’utilisation de la courbe de puis-
sance inversée, et de l’autre par l’application des filtres directement sur la puissance. Les trois
approches seront d’abord évaluées individuellement, puis comparées entre elles. Il est à noter
que les sites #4, #5 et #13 ne sont pas étudiés dans cette section, puisque les données de
puissance observées ne sont pas disponibles pour ces sites (tel que mentionné au tableau 4.1
du chapitre 4).

Comme il a été mentionné à la section 2.5, les indicateurs (ME, MAE, RMSE) associés à
la puissance sont calculés en pourcentage de la puissance nominale du parc (%Pnom), tel
que défini à l’équation (2.9). Cette manière de calculer les indicateurs permet d’obtenir des
valeurs d’erreurs normalisées, ce qui rend possible la comparaison des indicateurs entre des
parcs de puissances installées différentes.
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5.1 Approche A1 - Filtre de Kalman sur la vitesse

Dans cette première section, les vitesses de vent corrigées par les modèles étudiés au chapitre
précédent sont converties en prévision de puissance à l’aide de la courbe de puissance (CP).
Autrement dit, aucun nouveau modèle n’est implémenté pour cette première approche : il
s’agit d’étudier les performances des modèles appliqués à la vitesse lorsque celles-ci sont
transformées en puissance. Les résultats pourront servir de comparaison aux approches A2
et A3.

5.1.1 Conversion de la vitesse du vent en puissance

Les courbes de puissance fournies par WPred pour cette analyse sont sous forme de tables :
la puissance associée à chaque vitesse de vent est donnée, avec une résolution de 0,5 m/s
(voir la Figure 5.1(a)). L’interpolation linéaire est utilisée pour déterminer les valeurs entre
les points connus.

(a) Exemple de CP pour le site #3 (b) CP avec données réelles pour le site #3

Figure 5.1 Courbes de puissance (CP)

En réalité, les mesures ne suivent pas exactement la courbe de puissance : plusieurs facteurs
environnementaux, mécaniques, et géométriques (par exemple l’effet de sillage) entrent en
jeu lors de la conversion de la vitesse du vent en puissance générée. Par ailleurs, la puissance
est mesurée au niveau du parc entier et non individuellement pour chaque turbine, ce qui
implique une courbe de puissance moyenne moins précise. Une relation unique sous la forme
p = f(v) n’est donc pas exacte. Dans la Figure 5.1(b), on peut voir un exemple de données
réelles superposées à la courbe de puissance du site #3 à titre d’exemple (les données observées
sont tracées en bleu). Ainsi, une certaine erreur peut être introduite lors de la conversion des
vitesses de vent en puissance.
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5.1.2 Analyse des résultats

Pour cette approche, on s’attend à ce que les performances relatives des six modèles dévelop-
pés soient similaires à celles de la vitesse étudiée au chapitre précédent, puisque la conversion
en puissance est la seule transformation appliquée aux données. Les indicateurs de perfor-
mance (en pourcentage de puissance nominale) pour cette première approche sont fournis
aux tableaux 5.2, 5.3 et 5.4. Dans ces tableaux, l’amélioration par rapport aux PNTs est
également donnée, telle que décrite à l’équation (2.12).

Tableau 5.2 A1 - ME sur la puissance, moyenne de h=1 à h=6*

# Site PNT Ordre 1 Ordre 2 Ordre 3
Classique Avec θ Classique Avec θ Classique Avec θ

(%Pnom) (%Pnom) (%Pnom) (%Pnom) (%Pnom) (%Pnom) (%Pnom)

1 0,70 -0,73 -0,73 -0,90 -0,79 -0,97 -0,89
2 3,46 -0,34 -0,25 -0,56 -0,36 -0,37 -0,21
3 23,13 -1,05 -0,84 -0,89 -0,74 -0,87 -0,55
6 18,88 -0,39 0,01 -0,54 -0,06 -0,42 0,02
7 10,78 -0,95 -0,70 -0,39 -0,49 -0,90 -0,42
8 10,81 -2,25 -1,79 -1,99 -1,60 -2,14 -1,82
9 13,18 -0,47 -0,52 -0,52 -0,31 -0,42 -0,40
10 21,92 -0,51 -0,46 -0,49 -0,75 -0,61 -0,73
11 13,03 -0,28 -0,42 -0,34 -0,55 -0,32 -0,62
12 12,02 -0,75 -0,74 -0,91 -0,66 -0,71 -0,70
14 13,21 -0,74 -0,79 -0,87 -1,21 -1,05 -1,08
15 15,48 -0,56 -0,49 -0,51 -0,67 -0,61 -0,71
16 17,10 -0,29 0,06 -0,29 -0,08 -0,18 -0,04
17 18,34 -1,51 -1,21 -1,48 -1,88 -1,83 -1,88
18 9,47 -1,45 -1,37 -2,19 -2,08 -2,18 -2,03
19 8,08 -1,57 -1,57 -1,49 -2,14 -1,55 -1,98
20 -21,56 -1,75 -1,74 -2,23 -1,87 -2,22 -2,59

Biais moyen 0,9 0,8 1,0 1,0 1,0 1,0
*Plus le biais moyen est faible, meilleures sont les prévisions. Les erreurs minimales pour chacun des sites sont en gras.

Tableau 5.3 A1 - MAE sur la puissance, moyenne de h=1 à h=6*

# Site PNT Ordre 1 Ordre 2 Ordre 3
Classique Avec θ Classique Avec θ Classique Avec θ

(%Pnom) (%Pnom) (%Pnom) (%Pnom) (%Pnom) (%Pnom) (%Pnom)

1 9,23 8,93 8,82 8,92 8,82 8,96 8,87
2 9,53 8,87 8,82 8,96 8,91 9,05 8,97
3 26,59 10,98 10,66 10,92 10,71 11,01 10,72
6 20,50 9,29 9,33 9,27 9,35 9,30 9,38
7 19,88 12,87 12,50 12,88 12,54 12,79 12,53
8 20,20 12,44 11,94 12,39 11,93 12,49 12,17
9 15,07 6,81 6,68 6,81 6,70 6,87 6,84
10 22,97 7,90 7,79 7,84 7,65 7,88 7,79
11 15,67 7,70 7,64 7,72 7,70 7,75 7,76
12 15,60 8,03 8,08 8,01 8,04 8,14 8,11
14 16,23 8,34 8,28 8,40 8,29 8,43 8,31
15 17,80 7,56 7,44 7,68 7,40 7,72 7,58
16 18,76 7,92 7,81 7,81 7,73 7,88 7,83
17 27,33 18,77 17,55 19,07 18,11 19,31 17,82
18 20,75 17,69 16,88 17,91 17,26 18,29 17,08
19 13,23 11,97 11,96 12,10 12,09 12,21 11,91
20 23,02 14,36 13,84 14,45 13,91 14,48 14,01

Amélioration
moyenne 39,6% 40,8% 39,4% 40,5% 38,9% 40,3%

*Plus l’amélioration est élevée, meilleures sont les prévisions. Les erreurs minimales pour chacun des sites sont en gras.
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Tableau 5.4 A1 - RMSE sur la puissance, moyenne de h=1 à h=6*

# PNT Ordre 1 Ordre 2 Ordre 3
Classique Avec θ Classique Avec θ Classique Avec θ

(%Pnom) (%Pnom) (%Pnom) (%Pnom) (%Pnom) (%Pnom) (%Pnom)

1 13,44 13,04 12,89 13,01 12,89 13,16 13,03
2 14,94 13,26 13,14 13,40 13,49 13,55 13,56
3 35,54 16,00 15,58 15,96 15,65 16,07 15,64
6 27,28 13,95 13,96 13,94 13,98 14,09 14,11
7 26,84 18,78 18,27 18,83 18,32 18,62 18,42
8 26,64 17,94 17,26 17,83 17,14 18,01 17,56
9 20,05 10,25 10,05 10,25 10,13 10,42 10,36
10 30,21 11,94 11,88 11,80 11,70 11,84 12,10
11 20,41 11,28 11,24 11,27 11,36 11,36 11,50
12 20,72 11,70 11,94 11,80 11,94 11,93 12,15
14 22,95 13,16 13,14 13,23 13,27 13,27 13,30
15 24,08 10,96 10,77 11,16 10,82 11,28 11,21
16 24,12 11,49 11,40 11,36 11,31 11,51 11,53
17 35,83 26,81 25,19 27,31 26,16 27,54 25,60
18 28,04 25,08 24,25 25,58 24,79 26,05 24,64
19 18,93 17,49 17,43 17,67 17,70 17,69 17,37
20 30,11 20,17 19,54 20,16 19,66 20,12 19,75

Amélioration
moyenne 35,5% 36,6% 35,2% 36,0% 34,7% 35,6%

*Plus l’amélioration est élevée, meilleures sont les prévisions. Les erreurs minimales pour chacun des sites sont en gras.

Biais Ici aussi, le biais (ME) est significativement amélioré pour les 6 premières heures
d’horizon. Il est réduit à environ 1% de la puissance nominale et ce, pour les six modèles
de filtre de Kalman, comparativement à 13,6% en moyenne pour le modèle de prévision
numérique du temps. Pour donner une idée de l’amélioration en valeur absolue, supposons
un parc puissance nominale de 20 MW; le biais moyen des PNTs serait donc équivalent à
environ 2,7 MW, alors qu’il est réduit à 0,2 MW pour les modèles de filtre de Kalman.

MAE et RMSE Les modèles développés permettent en moyenne de réduire le MAE entre
38,9% et 40,8%, et le RMSE entre 34,7% et 36,6% comparativement au modèle de PNT.
Les filtres directionnels réduisent les erreurs des filtres non directionnels du même ordre, et
les modèles d’ordres plus élevés augmentent les erreurs de prévision, comme démontré au
chapitre précédent pour la vitesse.

Distribution des erreurs Afin de représenter ces erreurs de façon plus visuelle, les distri-
butions d’erreurs pour les horizons h = 1 et h = 6 sont données aux Figures 5.2(a) et 5.2(b)
pour le site #20 à titre d’exemple. Les distributions des données filtrées sont encore une fois
nettement plus centrées, symétriques et étroites que pour les prévisions brutes des PNTs.
Dans la prochaine section, la différence entre les distributions des différents modèles de filtres
de Kalman est étudiée plus en détail.
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(a) h = 1 (b) h = 6
Figure 5.2 A1 - Distribution des erreurs sur la puissance pour le site #20

5.1.3 Performance en fonction de l’horizon et combinaison des modèles

Les résultats des six modèles ainsi que de leur combinaison sont présentés dans cette section
de la même manière que pour les prévisions de vitesse au chapitre précédent. L’évolution des
ME, MAE et RMSE en fonction de l’horizon de prévision, sous forme de moyenne sur tous
les sites étudiés, est donnée aux Figures 5.3, 5.4(a) et 5.4(b). Il est à noter que la moyenne
du biais pour tous les sites correspond à une moyenne de leur valeur absolue, ce qui est
plus représentatif de la performance globale des modèles. Encore une fois, dans ce chapitre,
l’échelle des figures présentant le biais est légèrement augmentée par rapport à celles des
MAE et RMSE afin de mieux discerner les différentes courbes.

Figure 5.3 A1 - Biais (ME) moyen en fonction de l’horizon

Le biais est réduit de façon similaire pour tous les modèles, soit aux environs de 1% sur tous
les horizons. Puisque la méthode de combinaison est conçue pour réduire l’erreur au carré,
elle ne parvient pas à réduire le biais de façon optimale (voir la Figure 5.3), mais demeure
néanmoins à des valeurs très faibles.

Au niveau des MAE et RMSE, il est possible de constater à la Figure 5.4(a) une division nette
entre les MAE des modèles directionnels et non directionnels. Cette division est également
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(a) MAE (b) RMSE

Figure 5.4 A1 - MAE et RMSE moyens en fonction de l’horizon

présente pour le RMSE, quoique légèrement moins définie. Ces résultats permettent d’abord
d’affirmer que, de la même manière qu’au chapitre précédent, les ordres inférieurs performent
mieux en moyenne. Mais encore, l’ajout de la direction dans les modèles se montre avantageux
pour tous les horizons étudiés. Par ailleurs, lorsque la combinaison est appliquée sur ces
modèles, les MAE et RMSE moyens sont réduits de façon significative comparativement au
meilleur modèle.

À h = 1, l’amélioration comparativement au modèle de PNT vaut approximativement 45%
pour le MAE, et 40% pour le RMSE. Lorsque la combinaison est appliquée, elles augmentent
à environ 47% et 43% respectivement (voir les Figures 5.5(a) et 5.5(b)).

(a) MAE (b) RMSE

Figure 5.5 A1 - Amélioration des MAE et RMSE moyens en fonction de l’horizon

Afin d’étudier la distribution des erreurs de façon globale, des marges de 15% et de 30% de
la puissance nominale sont définies, et les proportions (ou fréquence) des erreurs contenues
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à l’intérieur de ces marges sont données aux Figures 5.6(a) et 5.6(b). Les erreurs supérieures
à 30% de Pnom sont donc considérées anormalement élevées. On remarque que pour tous les
modèles directionnels, ces fréquences sont plus élevées : en d’autres termes, la partie centrale
de leurs distributions d’erreurs est en moyenne plus haute, plus étroite et moins évasée que
pour les modèles non directionnels. En ce qui regarde la combinaison, elle permet encore une
fois d’augmenter la proportion d’erreurs contenue dans ces marges comparativement aux six
modèles étudiés.

(a) |ε| < 15% Pnom (b) |ε| < 30% Pnom

Figure 5.6 A1 - Distributions des erreurs sur la puissance

Similairement au chapitre précédent, il est difficile d’identifier un seul modèle surpassant
absolument les autres pour tous les sites étudiés, pour tous les horizons et tous les moments
de l’année. Comme le démontrent les tableaux 5.2, 5.3 et 5.4, les meilleurs résultats ne
sont pas à tous coups obtenus par le modèle d’ordre 1 directionnel, bien qu’il soit plus
précis en moyenne, ce qui confirme l’importance de la combinaison des modèles. Les résultats
numériques de cette combinaison sont présentés au tableau 5.5, sous forme d’amélioration du
RMSE.

L’amélioration du RMSE par rapport aux PNTs passe de 36,6% en moyenne pour le meilleur
modèle (voir le tableau 5.4), à 38,3% lorsque la combinaison est appliquée. Le RMSE est
réduit en moyenne de 16,1% par rapport au modèle MOS et de 7,4% comparativement à la
persistance. En général, la persistance prédit très bien le vent pour les horizons de 6 heures
et moins : il s’agit donc d’un modèle de référence approprié pour évaluer nos résultats et
éventuellement les comparer à d’autres études [59]. Il est aussi possible de remarquer que
pour les sites #1 et #2, l’approche proposée ne permet pas de réduire significativement le
RMSE comparativement au MOS. Pour ces deux sites, le modèle MOS performe à la base
très bien, il est donc difficile de le surpasser.
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Tableau 5.5 A1 - Amélioration du RMSE sur la puissance (avec combinaison), moyenne de
h=1 à h=6*

Amélioration par rapport à
# PNT (%) MOS (%) persistance (%) pire modèle (%) meilleur modèle (%)

1 7,74 0,87 14,75 5,83 3,84
2 14,42 -3,56 13,69 6,06 3,03
3 57,21 37,81 10,77 5,50 2,53
6 49,88 10,86 15,32 3,25 2,07
7 29,94 20,19 4,62 0,25 -2,76
8 32,58 15,35 6,21 0,38 -4,67
9 50,86 20,63 17,22 5,44 1,90
10 62,34 28,77 20,01 6,07 2,84
11 46,82 22,85 14,86 5,63 3,45
12 45,06 9,50 9,47 6,27 2,71
14 42,53 8,91 3,80 1,10 -0,12
15 55,80 23,40 19,57 5,64 1,14
16 54,56 7,43 14,94 4,96 3,04
17 32,21 15,89 -27,47 11,78 3,56
18 17,57 12,31 -15,34 11,25 4,64
19 11,89 12,04 5,18 5,94 4,16
20 39,03 30,67 -2,55 9,01 6,09

Moyenne 38,3% 16,1% 7,4% 5,5% 2,2%
*Plus l’amélioration est élevée, meilleures sont les prévisions.

Bien que l’approche de combinaison améliore les résultats en général (soit de 2,2% en moyenne
par rapport au meilleur modèle), il est possible de remarquer que dans certains cas individuels,
elle ne permet pas de surpasser le meilleur modèle. Supposons un couple d’observations
vitesse-puissance éloigné de la courbe de puissance, en raison de facteurs environnementaux
ou mécaniques quelconques. L’approche de combinaison peut déterminer un modèleX comme
le pire modèle pour le temps t, puisque la puissance mesurée est éloignée de la puissance
prévue. En revanche, la vitesse prédite par ce modèle X, quant à elle, pourrait être très
près de sa vraie valeur. À ce moment, comme la combinaison pondère les modèles selon leur
performance récente au niveau de la puissance produite, elle aura tendance à donner un poids
très faible au modèle X, alors que la prévision de vitesse était très précise. La combinaison
n’atteint donc pas des résultats optimaux, puisqu’il y a une étape de conversion (par la courbe
de puissance) entre les sorties du modèle et les données utilisées pour la combinaison.

La Figure 5.7 présente un exemple de comportement des six modèles développés et de leur
combinaison, comparativement aux modèles MOS et de PNT, pour h = 1. En somme, les
résultats obtenus par cette première approche sont très similaires à ceux obtenus pour les
vitesses de vent au chapitre précédent puisque, comme mentionné plus tôt, ce sont les données
de vitesse du vent issues des modèles présentés au chapitre 4 qui sont utilisées pour calculer
la puissance prédite.
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Figure 5.7 A1 - Puissance en fonction du temps pour le site #15 (h = 1)

5.2 Approche A2 - Inversion de la courbe de puissance

Comme certains sites ne fournissent pas les données de vent en temps réel, il est possible que
seules les données de puissance soient disponibles pour corriger les prévisions. Ainsi, cette
section explore une nouvelle méthode de correction de la puissance sans données de vent, et
l’approche A1 présentée à la section précédente pourra servir de méthode de référence.

Dans un article publié en 2014, Messner introduit une méthode permettant de convertir les
données de puissance en vitesses de vent fictives afin de modéliser les courbes de puissance
de façon linéaire [52]. Dans cette section, il est question d’étudier une nouvelle approche,
selon laquelle la méthode de Messner est appliquée dans l’objectif de corriger les prévisions
de puissance.

5.2.1 Conversion de puissances en vitesses de vent

Pour l’approche A2, des observations de vitesses de vent fictives sont générées à partir des
observations de puissance. Cela permet de simuler des mesures de vitesse, afin d’appliquer un
filtre de Kalman sur la vitesse de la même façon qu’au chapitre 4. Puis, une fois la prévision
de vent calibrée, cette dernière est retransformée en prévision de puissance à l’aide de la
courbe de puissance. Ainsi, le biais mesuré est redéfini comme la différence entre la vitesse de
vent prédite par le modèle de prévision numérique du temps et la vitesse fictive, de la façon
suivante :

yt = v̂t|t−1,PNT − v∗t (5.1)

où v∗t est la vitesse de vent fictive. Cette méthode est intéressante, puisqu’elle permet d’ap-
pliquer le filtre sur un phénomène météorologique directement, soit la vitesse, plutôt que sur
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la puissance. Tel que mentionné à la section 2.4.1, l’inversion peut être interprétée selon le
système d’équations suivant :

vt = f−1 (pt) =


vcut−in, v∗t ≤ vcut−in
v∗t , vcut−in < v∗t < vnom
vnom, v∗t ≥ vnom

(5.2)

où les vitesses faibles et élevées sont limitées aux vitesses de cut-in et de cut-out respective-
ment.

Les courbes de puissance IEC fournies par WPred sont utilisées pour effectuer la trans-
formation inverse (voir la section 2.3.1), et les données entre les points de la courbe sont
déterminées par interpolation linéaire. Pour cette transformation inverse, la densité de l’air
n’est pas considérée puisqu’elle n’améliore pas significativement les résultats [52]. Une fois les
observations fictives de vitesses de vent calculées, les filtres directionnels et non directionnels
d’ordre 1 à 3 sont appliqués de la même manière qu’au chapitre 4.

Il est aussi important de noter que lorsque les vitesses de vent sont très élevées ou très faibles,
elles sont limitées aux vitesses de cut-out et de cut-in, ce qui peut affecter les résultats des
filtres de Kalman. Par ailleurs, lorsqu’elles dépassent la vitesse de cut-out et que l’éolienne
est arrêtée afin d’éviter les dommages potentiels, la puissance enregistrée est égale à zéro.
Cela signifie qu’à ce moment, le modèle calcule la vitesse fictive comme v∗t = vcut−in, bien
que la vitesse réelle soit au-delà de la vitesse de cut-out.

Ces événements sont toutefois ponctuels et généralement peu fréquents, mais lorsqu’ils se
manifestent, peuvent influencer légèrement la performance des modèles. Dans cette étude,
comme ces cas sont rares, la précision des modèles n’en est pas significativement affectée. Dans
des travaux futurs, il serait intéressant de développer une démarche cherchant à identifier
(lorsque la puissance mesurée est nulle) si la vitesse du vent est très élevée ou très faible,
sachant la vitesse prédite par le modèle de PNT.

5.2.2 Analyse des résultats

Les biais, MAE et RMSE des différents modèles sont rassemblés dans les tableaux 5.6, 5.7
et 5.8 ci-dessous.

Biais Le biais est, encore une fois, significativement réduit (aux environs de 1% de la
puissance nominale) pour tous les modèles, similairement à l’approche A1. Il est possible
de remarquer que les biais sont en général négatifs. Cette tendance peut être expliquée par



72

l’utilisation de courbes de puissance : les CP utilisées ne permettent pas de prédire des valeurs
supérieures à la puissance nominale des éoliennes, alors qu’il arrive parfois que les puissances
enregistrées par les systèmes SCADA soient légèrement supérieures aux puissances nominales.
Cela a donc comme effet de faire tendre le biais vers des valeurs négatives.

Tableau 5.6 A2 - ME sur la puissance, moyenne de h=1 à h=6*

# Site PNT Ordre 1 Ordre 2 Ordre 3
Classique Avec θ Classique Avec θ Classique Avec θ

(%Pnom) (%Pnom) (%Pnom) (%Pnom) (%Pnom) (%Pnom) (%Pnom)

1 0,70 -1,15 -0,89 -1,28 -0,85 -1,24 -1,24
2 3,46 -0,36 -0,21 -0,07 -0,10 0,07 0,22
3 22,82 -1,23 -0,96 -0,68 -0,57 -0,48 -0,52
6 18,88 -0,83 -0,46 -0,64 -0,21 -0,72 -0,26
7 10,78 -2,08 -1,96 -1,66 -1,74 -1,94 -1,75
8 10,81 -2,05 -1,48 -1,65 -1,31 -1,86 -1,59
9 13,18 -0,77 -0,63 -0,68 -0,43 -0,76 -0,59
10 21,92 0,00 -0,25 -0,15 -0,44 -0,21 -0,38
11 13,03 -0,49 -0,53 -0,43 -0,39 -0,46 -0,51
12 12,02 -0,62 -0,57 -0,70 -0,43 -0,53 -0,76
14 13,21 -0,92 -1,17 -1,12 -1,18 -1,17 -1,2
15 15,48 -0,8 -0,61 -0,67 -0,61 -0,77 -0,81
16 17,10 -0,36 -0,05 -0,25 0,01 -0,25 0,00
17 18,34 -0,25 -0,42 -1,04 -0,78 -1,00 -1,20
18 9,70 -0,94 0,25 0,59 -0,52 3,04 -1,19
19 8,08 -0,54 -0,61 -0,48 -0,79 -0,62 -0,82
20 -21,56 -1,22 -1,12 -1,05 -1,33 -0,86 -1,61

Biais moyen 0,9 0,7 0,8 0,7 0,9 0,9
*Plus le biais moyen est faible, meilleures sont les prévisions. Les erreurs minimales pour chacun des sites sont en gras.

Tableau 5.7 A2 - MAE sur la puissance, moyenne de h=1 à h=6*

# Site PNT Ordre 1 Ordre 2 Ordre 3
Classique Avec θ Classique Avec θ Classique Avec θ

(%Pnom) (%Pnom) (%Pnom) (%Pnom) (%Pnom) (%Pnom) (%Pnom)

1 9,23 8,78 8,77 8,87 8,82 8,90 8,70
2 9,53 8,88 8,85 8,93 8,97 9,00 8,89
3 26,24 10,58 10,40 10,53 10,37 10,74 10,44
6 20,50 9,12 9,25 9,15 9,25 9,17 9,26
7 19,88 12,63 12,29 12,52 12,39 12,45 12,25
8 20,20 12,31 11,82 12,28 11,74 12,16 11,80
9 15,07 6,69 6,71 6,73 6,80 6,73 6,78
10 22,97 7,99 7,75 7,91 7,70 8,05 7,70
11 15,67 7,55 7,48 7,57 7,59 7,55 7,64
12 15,60 8,02 7,96 7,95 7,99 8,08 7,97
14 16,23 8,17 8,11 8,22 8,21 8,23 8,29
15 17,80 7,57 7,38 7,66 7,45 7,66 7,51
16 18,76 7,82 7,75 7,76 7,79 7,86 7,80
17 27,33 18,81 17,73 19,22 17,89 19,32 18,16
18 20,76 17,54 17,25 18,33 17,49 18,84 17,05
19 13,23 11,29 11,11 11,39 11,26 11,59 11,19
20 23,02 13,30 13,85 13,10 13,13 13,18 13,08

Amélioration
moyenne 40,7% 41,4% 40,3% 41,2% 39,9% 41,4%

*Plus l’amélioration est élevée, meilleures sont les prévisions. Les erreurs minimales pour chacun des sites sont en gras.
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Tableau 5.8 A2 - RMSE sur la puissance, moyenne de h=1 à h=6*

# PNT Ordre 1 Ordre 2 Ordre 3
Classique Avec θ Classique Avec θ Classique Avec θ

(%Pnom) (%Pnom) (%Pnom) (%Pnom) (%Pnom) (%Pnom) (%Pnom)

1 13,44 12,84 12,90 12,95 12,92 13,12 12,82
2 14,94 13,41 13,36 13,48 13,67 13,55 13,51
3 35,22 15,57 15,39 15,50 15,38 16,01 15,51
6 27,28 13,79 13,99 13,75 13,91 13,85 13,94
7 26,84 18,37 17,93 18,25 18,20 18,32 18,11
8 26,64 17,72 16,96 17,73 16,97 17,70 17,13
9 20,05 10,11 10,15 10,17 10,31 10,30 10,33
10 30,21 11,97 11,75 11,82 11,55 12,08 11,83
11 20,41 11,13 11,07 11,14 11,16 11,11 11,33
12 20,72 11,65 11,69 11,69 11,79 11,86 11,92
14 22,95 12,70 12,83 12,86 13,02 12,97 13,19
15 24,08 11,03 10,79 11,13 10,91 11,13 11,16
16 24,12 11,42 11,29 11,30 11,44 11,48 11,41
17 35,83 26,87 25,21 27,63 25,72 27,80 26,00
18 28,02 24,72 24,60 26,14 25,06 27,10 24,50
19 18,93 16,75 16,46 16,90 16,70 17,05 16,45
20 30,11 18,71 19,49 18,39 18,76 18,59 18,60

Amélioration
moyenne 36,5% 37,1% 36,1% 36,6% 35,3% 36,6%

*Plus l’amélioration est élevée, meilleures sont les prévisions. Les erreurs minimales pour chacun des sites sont en gras.

MAE et RMSE Les autres indicateurs sont réduits comparativement aux PNTs entre
39, 9% et 41, 4% pour le MAE, et entre 35, 3% et 37, 1% pour le RMSE. De la même façon
que pour l’approche A1, on remarque que les modèles directionnels permettent en moyenne
de réduire les MAE et RMSE en comparaison aux modèles non directionnels. Encore une fois,
les modèles d’ordre 1 ont tendance à présenter des précisions accrues, comparativement aux
modèles d’ordres plus élevés. De façon individuelle, il est possible de voir que la majorité des
erreurs minimales sont associées aux modèles non directionnels (65% des sites pour le MAE
et 76% pour le RMSE). Au niveau de l’ordre des modèles, les MAE et RMSE minimaux sont
associés à l’ordre 1 pour plus de 50% des sites.

Distribution des erreurs Les distributions d’erreurs présentées aux Figures 5.8(a) et 5.8(b)
permettent aussi de conclure que les modèles entraînent une distribution d’erreur plus centrée
et étroite.

(a) h = 1 (b) h = 6
Figure 5.8 A2 - Distributions des erreurs sur la puissance pour le site #20



74

5.2.3 Performance en fonction de l’horizon et combinaison des modèles

Comme il a été démontré dans les tableaux ci-dessus, la performance des modèles varie
en fonction des sites étudiés. L’étape de combinaison est donc aussi appliquée pour cette
approche. Dans la Figure 5.9, on remarque que le biais est toujours considérablement réduit,
pour tous les modèles.

Figure 5.9 A2 - Biais (ME) moyen en fonction de l’horizon

Comme les modèles appliqués pour cette approche sont les mêmes que ceux appliqués à
l’approche A1, il n’est pas surprenant de remarquer que les performances relatives des six
modèles soient très similaires dans ce cas-ci (voir les Figures 5.10(a) et 5.10(b)). Par ailleurs,
il est possible de noter encore une fois que plus l’horizon augmente, plus la différence de
performance entre les modèles directionnels et non directionnels augmente.

(a) MAE (b) RMSE
Figure 5.10 A2 - MAE et RMSE moyens en fonction de l’horizon

L’ajout de la combinaison permet de trouver une solution pour laquelle les MAE et RMSE
sont réduits significativement. Son biais moyen est similaire à celui de toutes les approches
individuelles, soit environ 1% de la puissance nominale pour les 12 premières heures d’horizon.
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Les MAE et RMSE, sous forme d’amélioration par rapport aux PNTs, sont fournis à la
Figure 5.11. On remarque que tous les indicateurs sont significativement réduits compara-
tivement au modèle physique. À h = 1 par exemple, le MAE est réduit de plus de 45%, et
le RMSE de plus de 40%. La combinaison, quant à elle, permet d’augmenter ces valeurs à
environ 49% et 44% respectivement.

(a) MAE (b) RMSE

Figure 5.11 A2 - Amélioration des MAE et RMSE moyens en fonction de l’horizon

Aux Figures 5.12(a) et 5.12(b), l’étude des marges d’erreur permet de constater que les mo-
dèles directionnels mènent encore une fois à des distributions d’erreurs plus étroites, centrées
et moins évasées que les modèles non directionnels. La même tendance peut être observée
pour les ordres inférieurs par rapport aux ordres plus élevés, cependant de façon moins si-
gnificative.

(a) |ε| < 15% Pnom (b) |ε| < 30% Pnom

Figure 5.12 A2 - Distributions des erreurs sur la puissance
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La combinaison, quant à elle, améliore également la distribution des erreurs comparativement
à tous les modèles individuels. Essentiellement, cela indique qu’elle permet de réduire le
nombre d’erreurs élevées de façon notable.

Dans le tableau 5.9, les résultats numériques de la combinaison des 6 modèles étudiés dans
cette section sont résumés. Le RMSE est réduit de plus de 39% par rapport au modèle de PNT,
comparativement à une moyenne d’environ 36% pour le meilleur modèle (voir le tableau 5.8).
Par ailleurs, l’étape de combinaison réduit en moyenne le RMSE de 6,9% par rapport au
pire modèle ayant pu être choisi pour un site en particulier. De plus, la combinaison permet,
pour tous les sites, de réduire le RMSE comparativement au meilleur modèle, soit de 3,3%
en moyenne (et jusqu’à 7,1% individuellement). Ces résultats démontrent encore une fois
l’avantage d’ajouter l’étape de combinaison.

Tableau 5.9 A2 - Amélioration du RMSE sur la puissance (avec combinaison), moyenne de
h=1 à h=6*

Amélioration par rapport à
# PNT (%) MOS (%) persistance (%) pire modèle (%) meilleur modèle (%)

1 8,27 1,44 15,21 6,09 3,92
2 13,85 -4,26 13,24 6,18 3,98
3 57,62 38,26 11,55 6,93 3,11
6 50,35 11,69 16,16 3,35 1,65
7 34,64 25,55 10,75 4,63 2,30
8 36,65 20,45 11,60 4,89 0,59
9 50,81 20,57 17,27 4,51 2,44
10 62,63 29,31 20,59 6,62 2,35
11 47,71 24,15 16,46 5,74 3,55
12 45,80 10,71 10,82 5,77 3,60
14 45,35 13,37 8,62 5,14 1,47
15 56,08 23,88 20,10 5,24 1,98
16 55,08 8,48 16,06 5,59 4,03
17 32,67 16,46 -26,45 13,19 4,27
18 17,78 12,03 -15,68 14,93 5,91
19 15,93 16,06 9,85 6,88 3,44
20 43,28 35,51 5,10 12,32 7,08

Moyenne 39,7% 17,9% 9,5% 6,9% 3,3%
*Plus l’amélioration est élevée, meilleures sont les prévisions.

Figure 5.13 A2 - Puissance en fonction du temps pour le site #15 (h = 1)
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Finalement, la Figure 5.13 présente un exemple d’application des modèles ainsi que de la
combinaison, sous forme de puissance en fonction du temps. Il est intéressant de noter que
le comportement des différents modèles est très similaire à ceux de l’approche A1 (voir la
Figure 5.7).

En résumé, l’approche développée dans cette section permet d’atteindre des performances
comparables à celles de l’approche A1, bien qu’aucune mesure de vitesse de vent ne soit
disponible. En outre, l’introduction de la direction du vent dans les modèles s’est également
montrée avantageuse.

5.3 Approche A3 - Filtre de Kalman sur la puissance

Le filtre de Kalman appliqué à la puissance directement n’est étudié que depuis très ré-
cemment : à ce jour, un seul article a été publié à ce sujet [15]. Conséquemment, très peu
de résultats quantitatifs (ME, MAE, RMSE ou amélioration) sont disponibles. L’objectif
de cette étude est donc de présenter des résultats quantitatifs de l’implémentation de ces
modèles, ainsi que comparer les différents ordres polynomiaux. Par ailleurs, l’ajout de la di-
rection comme paramètre d’entrée sera également considéré, afin de déterminer s’il permet
d’améliorer les modèles appliqués à la puissance.

5.3.1 Méthodologie

Dans le cadre de ce projet, le filtre de Kalman est alors appliqué aux prévisions de puis-
sance. Pour ce faire, le biais sur la puissance est modélisé comme un polynôme d’ordre 1,
2 et 3, sous forme directionnelle ou non directionnelle, de la même manière que pour la
vitesse au chapitre précédent (voir les équations 3.31− 3.36). Ainsi, il est redéfini par l’équa-
tion yt = p̂t|t−1,PNT − pt, où p̂t|t−1,PNT est la prévision de puissance calculée à partir
des prévisions de vent du modèle de PNT, et pt est la puissance mesurée. Les équations
polynomiales utilisées pour modéliser le biais non directionnel sont donc données par les
équations (5.3), (5.4), (5.5) :

yt = α0,t + β0,t · p̂t,PNT +mt (5.3)

yt = α0,t + β0,t · p̂t,PNT + γ0,t · p̂2
t,PNT +mt (5.4)

yt = α0,t + β0,t · p̂t,PNT + γ0,t · p̂2
t,PNT + η0,t · p̂3

t,PNT +mt (5.5)
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et pour les équations directionnelles :

yt = (α0,t + α1,t · sin θ̂t,PNT + α2,t · cos θ̂t,PNT )

+(β0,t + β1,t · sin θ̂t,PNT + β2,t · cos θ̂t,PNT ) · p̂t,PNT +mt (5.6)

yt = (α0,t + α1,t · sin θ̂t,PNT + α2,t · cos θ̂t,PNT )

+(β0,t + β1,t · sin θ̂t,PNT + β2,t · cos θ̂t,PNT ) · p̂t,PNT
+(γ0,t + γ1,t · sin θ̂t,PNT + γ2,t · cos θ̂t,PNT ) · p̂2

t,PNT +mt (5.7)

yt = (α0,t + α1,t · sin θ̂t,PNT + α2,t · cos θ̂t,PNT )

+(β0,t + β1,t · sin θ̂t,PNT + β2,t · cos θ̂t,PNT ) · p̂t,PNT
+(γ0,t + γ1,t · sin θ̂t,PNT + γ2,t · cos θ̂t,PNT ) · p̂2

t,PNT

+(η0,t + η1,t · sin θ̂t,PNT + η2,t · cos θ̂t,PNT ) · p̂3
t,PNT +mt (5.8)

Le filtre a donc été implémenté de façon très similaire à celui utilisé pour la vitesse du vent
(décrit à la section 3.3), en utilisant toutefois les prévisions et observations de puissance en
entrée, plutôt que la vitesse du vent. De prime abord, cette approche est intéressante puis-
qu’elle pourrait permettre de corriger également les incertitudes introduites par la conversion
de la vitesse de vent en puissance par l’entremise de la courbe de puissance.

5.3.2 Analyse des résultats

Les tableaux 5.10, 5.11 et 5.12 résument les résultats de cette approche.
Tableau 5.10 A3 - ME sur la puissance, moyenne de h=1 à h=6*

# Site PNT Ordre 1 Ordre 2 Ordre 3
Classique Avec θ Classique Avec θ Classique Avec θ

(%Pnom) (%Pnom) (%Pnom) (%Pnom) (%Pnom) (%Pnom) (%Pnom)

1 0,70 -1,14 -1,34 -1,14 -1,12 -1,29 -1,37
2 3,46 0,01 -0,60 -0,37 -1,04 -0,80 -1,12
3 22,82 -2,22 -2,43 -1,89 -1,2 -1,45 -2,00
6 18,88 1,91 0,35 2,90 1,84 1,73 0,92
7 10,78 -0,04 -0,04 -0,52 -0,61 -1,45 -1,34
8 10,81 -1,04 -0,80 -1,21 -0,79 -1,75 -1,16
9 13,18 -0,99 -1,05 -0,29 -1,06 -0,80 -0,98
10 21,92 -0,37 -0,25 1,69 0,86 0,82 -0,01
11 13,03 0,79 0,04 0,07 -0,16 -0,90 -1,08
12 12,02 -1,00 -0,70 -0,43 -0,40 -1,19 -0,97
14 13,21 2,70 1,41 1,29 -0,51 -0,06 -0,86
15 15,48 -0,40 -0,58 1,30 -0,66 0,01 -0,50
16 17,10 3,30 1,17 1,47 0,39 -0,11 -0,03
17 18,34 10,41 2,19 4,91 -0,72 2,34 -1,37
18 9,70 -0,14 -2,02 -0,52 -0,48 -2,12 0,53
19 8,08 2,17 2,79 0,92 0,53 -0,84 -0,98
20 -21,56 -5,20 -5,24 -3,67 -3,81 -3,42 -3,44

Biais moyen 2,0 1,4 1,4 1,0 1,2 1,1
*Plus le biais moyen est faible, meilleures sont les prévisions. Les erreurs minimales pour chacun des sites sont en gras.
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Tableau 5.11 A3 - MAE sur la puissance, moyenne de h=1 à h=6*

# Site PNT Ordre 1 Ordre 2 Ordre 3
Classique Avec θ Classique Avec θ Classique Avec θ

(%Pnom) (%Pnom) (%Pnom) (%Pnom) (%Pnom) (%Pnom) (%Pnom)

1 9,23 9,05 8,99 9,22 9,18 8,89 8,81
2 9,53 9,52 9,24 9,34 9,23 9,31 9,37
3 26,24 12,29 12,53 12,52 12,48 12,87 12,41
6 20,50 11,35 11,20 11,86 11,33 10,79 10,44
7 19,88 13,44 13,57 13,44 13,29 13,03 12,93
8 20,20 13,59 13,72 13,47 13,59 13,01 12,93
9 15,07 7,26 7,21 7,05 7,07 7,00 6,94
10 22,97 9,66 9,82 9,77 9,09 9,41 8,58
11 15,67 8,80 8,57 8,68 8,21 8,34 7,85
12 15,60 8,51 8,75 8,57 8,74 8,30 8,25
14 16,23 10,28 9,63 9,58 8,85 8,81 8,55
15 17,80 8,62 8,48 9,46 8,29 8,64 7,87
16 18,76 10,75 9,64 9,77 8,83 8,56 8,30
17 27,33 23,20 20,01 21,80 19,24 20,96 19,36
18 20,76 17,95 17,49 18,31 17,65 17,90 18,11
19 13,23 12,00 12,70 12,34 11,89 11,93 11,83
20 23,02 13,91 13,58 13,44 13,15 13,31 13,24

Amélioration
moyenne 33,6% 34,9% 34,0% 36,5% 36,5% 38,0%

*Plus l’amélioration est élevée, meilleures sont les prévisions. Les erreurs minimales pour chacun des sites sont en gras.

Tableau 5.12 A3 - RMSE sur la puissance, moyenne de h=1 à h=6*

# PNT Ordre 1 Ordre 2 Ordre 3
Classique Avec θ Classique Avec θ Classique Avec θ

(%Pnom) (%Pnom) (%Pnom) (%Pnom) (%Pnom) (%Pnom) (%Pnom)

1 13,44 13,48 13,38 13,62 13,59 13,10 13,07
2 14,94 14,84 14,22 14,25 14,08 14,29 14,58
3 35,22 18,42 19,04 18,78 18,86 19,29 18,80
6 27,28 16,79 16,70 17,72 17,03 16,59 16,02
7 26,84 19,31 19,42 19,18 19,09 18,90 18,74
8 26,64 19,32 19,50 19,01 19,14 18,65 18,55
9 20,05 10,99 11,00 10,58 10,75 10,70 10,60
10 30,21 15,33 15,28 15,27 14,27 14,92 13,47
11 20,41 13,06 12,69 12,84 12,12 12,42 11,63
12 20,72 12,72 12,84 12,63 12,90 12,42 12,31
14 22,95 15,67 14,76 15,11 13,91 14,07 13,69
15 24,08 12,74 12,57 13,85 12,18 12,92 11,57
16 24,12 15,37 14,21 14,52 13,22 12,98 12,58
17 35,83 32,06 28,30 31,17 27,66 30,33 28,06
18 28,02 25,03 24,62 25,81 25,18 25,35 26,05
19 18,93 17,62 18,91 18,52 17,80 17,96 17,83
20 30,11 19,71 19,560 19,38 18,92 19,01 18,85

Amélioration
moyenne 28,7% 29,8% 28,8% 31,3% 30,8% 32,4%

*Plus l’amélioration est élevée, meilleures sont les prévisions. Les erreurs minimales pour chacun des sites sont en gras.

Biais Le biais associé à cette approche est encore une fois nettement réduit comparati-
vement aux PNTs : il vaut en moyenne entre 1% et 2% pour tous les modèles (voir le
tableau 5.10). Il est cependant légèrement supérieur au biais moyen des approches A1 et
A2, qui ne dépasse pas 1%.
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MAE et RMSE Une conclusion majeure pouvant être tirée des tableaux 5.11 et 5.12
est que, contrairement aux approches A1 et A2, le modèle d’ordre 3 permet d’obtenir les
meilleures performances. Les erreurs minimales pour les MAE et RMSE sont associées, pour
environ 70% des sites, au modèle d’ordre 3 directionnel. Il est possible de constater une
corrélation entre l’ordre des modèles et la performance : plus l’ordre est élevé, plus le mo-
dèle permet de réduire l’erreur (en moyenne). De plus, l’ajout de la direction permet aussi
d’augmenter la précision des modèles pour tous les ordres polynomiaux.

Distribution des erreurs Un exemple de distribution des erreurs pour le site #20 est
présenté aux Figures 5.14(a) et 5.14(b). On remarque que la distribution est légèrement plus
asymétrique que pour les approches A1 et A2 (voir les Figures 5.2 et 5.8).

(a) h = 1 (b) h = 6
Figure 5.14 A3 - Distributions des erreurs sur la vitesse pour le site #20

5.3.3 Performance en fonction de l’horizon et combinaison des modèles

Les figures suivantes présentent les résultats présentés à la section précédente en fonction de
l’horizon de prévision.

Figure 5.15 A3 - Biais (ME) moyen en fonction de l’horizon
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D’abord, le biais est réduit significativement pour tous les modèles. On remarque toutefois
que l’ordre 1 ne parvient pas à modéliser le biais aussi adéquatement que les ordres plus
élevés. Au niveau de MAE et RMSE, plus l’ordre augmente, plus ils sont réduits, et ce, pour
tous les horizons de prévision étudiés (voir la Figure 5.16). Il en est de même pour l’ajout de
la direction dans les modèles : pour tous les ordres, les versions directionnelles des modèles
réduisent davantage les erreurs moyennes que les filtres non directionnels du même ordre.

(a) MAE (b) RMSE

Figure 5.16 A3 - MAE et RMSE moyens en fonction de l’horizon

Ces résultats sont aussi présentés sous forme d’amélioration par rapport aux PNTs à la
Figure 5.17. Pour h = 1, les modèles individuels réduisent les MAE et le RMSE de plus de
33%, alors que la combinaison permet de les réduire d’environ 46% et 42% respectivement.

(a) MAE (b) RMSE

Figure 5.17 A3 - Amélioration des MAE et RMSE moyens en fonction de l’horizon

Les résultats présentés aux Figures 5.18(a) et 5.18(b) ci-dessous démontrent que les distri-
butions d’erreurs sont plus étroites et centrées pour les versions directionnelles des modèles.
Cependant, contrairement aux approches précédentes, on n’observe pas de regroupement net
entre les différentes approches.
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(a) |ε| < 15% Pnom (b) |ε| < 30% Pnom

Figure 5.18 A3 - Distributions des erreurs sur la puissance

L’ajout de l’étape de combinaison dans ce cas-ci se montre tout aussi important (voir le ta-
bleau 5.13). L’amélioration comparativement aux PNTs atteint 37,3% pour la combinaison,
comparativement à 32,4% en moyenne pour le meilleur modèle. Les performances entre les
différents modèles varient nettement plus que pour les approches précédentes. En moyenne,
l’amélioration comparativement au pire modèle vaut plus de 14%. Encore une fois, la combi-
naison permet, pour tous les sites étudiés, d’obtenir un RMSE inférieur au meilleur modèle,
soit de 6,4% en moyenne.

Tableau 5.13 A3 - Amélioration du RMSE sur la puissance (avec combinaison), moyenne de
h=1 à h=6*

Amélioration par rapport à
# PNT (%) MOS (%) persistance (%) pire modèle (%) meilleur modèle (%)

1 7,62 0,74 14,62 8,90 5,04
2 11,24 -7,40 10,41 10,94 6,13
3 50,50 27,91 -2,61 9,83 5,58
6 46,54 4,92 9,84 17,82 9,07
7 33,59 24,35 9,07 8,32 5,00
8 34,23 17,41 8,30 10,26 5,67
9 51,50 21,65 18,23 11,55 8,08
10 58,58 21,66 12,03 18,46 7,24
11 46,57 22,50 14,74 16,46 6,19
12 45,47 10,16 10,18 12,42 8,18
14 44,13 11,46 5,63 18,33 6,53
15 54,65 21,40 17,52 21,16 5,63
16 51,11 0,39 8,50 23,24 6,25
17 26,21 8,45 -39,15 17,55 4,42
18 17,08 11,29 -17,38 10,76 5,57
19 13,15 13,29 6,34 13,21 6,85
20 41,80 33,82 2,03 11,15 7,09

Moyenne 37,3% 14,4% 5,2% 14,1% 6,4%
*Plus l’amélioration est élevée, meilleures sont les prévisions.
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Bien que le modèle d’ordre 3 directionnel surpasse en moyenne les autres modèles pour tous
les horizons et presque tous les sites, la combinaison améliore les résultats, ce qui suggère que
la performance des différents modèles varie en fonction du temps.

Comme il est démontré à la Figure 5.19, les filtres de Kalman appliqués à la puissance sont
moins précis que ceux appliqués aux vitesses de vent. Puisque la puissance est proportionnelle
à la vitesse au cube (voir l’équation 1.1), la forte variabilité du vent est amplifiée au niveau
de la puissance, ce qui rend le biais plus difficile à prédire.

Figure 5.19 A3 - Puissance en fonction du temps pour le site #15 (h = 1)

La Figure 5.20 permet de comparer le comportement des filtres implémentés pour cette
approche avec ceux associés à A1 et A2 pour le même site et la même plage horaire (voir les
Figures 5.7 et 5.13). La différence entre les comportements des filtres appliqués à la vitesse
et celui appliqué à la puissance est notable.

Figure 5.20 A3 - Puissance en fonction du temps pour le site #15 (h = 1)

En conclusion, l’ajout de la direction est bénéfique pour les modèles de filtre de Kalman
corrigeant la puissance, et les ordres plus élevés permettent de réduire les erreurs de prévision
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comparativement aux ordres inférieurs. Les résultats présentés dans cette section indiquent
toutefois qu’il est difficile de prédire le biais sur la puissance, ce qui résulte en des précisions
globales nettement inférieures aux approches précédentes.

5.4 Comparaison des approches de prévision de la puissance

Dans cette dernière section, les trois approches proposées pour prédire la puissance générée
par les éoliennes sont comparées. L’objectif est d’évaluer les meilleurs modèles et les combinai-
sons des nouvelles méthodes développées, afin de déterminer s’il est possible d’atteindre des
performances similaires à l’approche A1 lorsque les vitesses de vent ne sont pas disponibles.

5.4.1 Meilleurs modèles

Il a été démontré dans les sections précédentes que, pour les modèles utilisant les filtres de
Kalman appliqués à la vitesse (A1 etA2), l’ordre 1 directionnel donne de meilleures perfor-
mances en général, alors que lorsqu’il est appliqué à la puissance (A3), l’ordre 3 directionnel
permet d’atteindre les meilleures précisions. Les figures suivantes présentent les différents
indicateurs de performance en fonction de l’horizon pour les meilleurs modèles des trois
approches étudiées. Ici, l’approche A1 est représentée à des fins de comparaison, afin de
déterminer la performance relative des approches pour lesquelles les observations de vitesse
de vent ne sont pas disponibles.

Figure 5.21 Biais (ME) moyen des meilleurs modèles pour A1, A2 et A3

Aux Figures 5.21, 5.22(a), et 5.22(b), on remarque que l’approche A2, selon laquelle le filtre
de Kalman est appliqué sur des vitesses fictives, permet d’atteindre des performances très
similaires à l’approche A1, bien que la vitesse du vent observée ne soit pas disponible. Le
meilleur modèle de l’approche A3, quant à lui, donne des MAE et RMSE nettement plus
élevés que les deux autres approches.
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(a) MAE (b) RMSE

Figure 5.22 MAE et RMSE moyens des meilleurs modèles pour A1, A2 et A3

Cette tendance est également visible aux Figures 5.23(a) et 5.23(b), qui démontrent que la
proportion d’erreurs comprises dans les marges de 15% Pnom et 30% Pnom est toujours plus
élevée pour les deux premières approches. Cela signifie que la partie centrale de la distribution
d’erreurs pour l’approche A3 est moins étroite, et que le bas de la distribution est plus évasé.

(a) |ε| < 15% Pnom (b) |ε| < 30% Pnom

Figure 5.23 Distributions des erreurs des meilleurs modèles pour A1, A2 et A3

En d’autres termes, le nombre d’erreurs anormalement élevées est plus important lorsque le
filtre de Kalman est directement appliqué à la correction du biais de la puissance. Ceci résulte
du fait que pour A3, les erreurs de prévision de vitesse des modèles de PNT sont amplifiées
de façon fortement non linéaire lorsqu’elles sont converties en puissance, puisque la puissance
contenue dans le vent est proportionnelle à sa vitesse au cube (voir l’équation (1.1)). Les
grandes erreurs sont donc amplifiées (d’où la distribution plus évasée) et les filtres de Kalman
réussissent moins bien à prédire et corriger ces fortes variations. Par ailleurs, il est possible
de démontrer que la distribution des erreurs du modèle de PNT pour la puissance n’est pas
gaussienne, comparativement aux erreurs sur la vitesse (ce qui est intuitif, étant donné la
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transformation non linéaire appliquée pour convertir les vitesses en puissance). Puisque le
filtre de Kalman est optimal pour des bruits blancs, donc gaussiens, il n’est pas surprenant
de constater qu’il soit moins précis pour la prévision du biais sur la puissance.

5.4.2 Combinaison des modèles

Les Figures 5.24, 5.25 et 5.26 montrent les performances de la combinaison des filtres de
Kalman pour chacune des approches A1, A2 et A3 en fonction de l’horizon. Le biais est
encore une fois réduit de façon similaire pour toutes les approches. On note cependant, autant
au niveau du MAE, RMSE et de la distribution des erreurs, que l’approche A2 surpasse les
deux autres lorsque la combinaison est appliquée.

Figure 5.24 Biais (ME) moyen des combinaisons pour A1, A2 et A3

(a) MAE (b) RMSE
Figure 5.25 MAE et RMSE moyens des combinaisons pour A1, A2 et A3

Tel qu’expliqué à la sous-section 5.1.3, l’approche A1 applique les modèles sur les données
de vitesse, alors que la combinaison pondère les modèles en fonction de leur performance sur
la puissance. La combinaison est par conséquent moins performante que pour l’approche A2
(où les données sont les observations de puissance).
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(a) |ε| < 15% Pnom (b) |ε| < 30% Pnom

Figure 5.26 Distributions des erreurs des combinaisons pour A1, A2 et A3

Au tableau 5.14, les améliorations moyennes du RMSE comparativement aux PNTs des
meilleurs modèles ainsi que des combinaisons de tous les modèles sont données pour chaque
approche. Cela permet de constater à nouveau que la combinaison des modèles est bénéfique
dans tous les cas.

Tableau 5.14 Amélioration du RMSE avec et sans combinaison pour A1, A2, et A3, moyenne de
h=1 à h=6*

A1 A2 A3
Meilleur modèle 36,6% 37,1% 32,4%
Combinaison 38,3% 39,7% 37,3%

*Plus l’amélioration est élevée, meilleures sont les prévisions.

Finalement, le tableau 5.15 résume les performances globales de la combinaison pour les trois
modèles, sous forme de moyenne pour les horizons h = 1 à h = 6.

Tableau 5.15 Amélioration du RMSE de la combinaison pour A1, A2, et A3, moyenne de h=1 à
h=6*

A1 A2 A3
PNT : 38,3% 39,7% 37,3%
MOS : 16,1% 17,9% 14,4%
Persistance : 7,4% 9,5% 5,2%
Pire modèle : 5,5% 6,9% 14,1%
Meilleur modèle : 2,2% 3,27% 6,4%

*Plus l’amélioration est élevée, meilleures sont les prévisions.

Les principales conclusions de ce chapitre sont, d’abord, que le filtre de Kalman appliqué
aux données de puissance ne permet pas d’atteindre des résultats similaires aux deux autres
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approches. L’approche selon laquelle la puissance observée est convertie en vitesse de vent
fictive montre des performances très similaires à l’approche de référence, selon laquelle le filtre
de Kalman est appliqué sur les observations réelles de vitesse de vent. Lorsque la combinaison
des modèles est appliquée, l’inversion de la courbe de puissance permet même de surpasser
l’approche de référence.
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CHAPITRE 6 CONCLUSION

6.1 Synthèse des travaux

Pour conclure, le projet a permis de développer de nouvelles approches améliorant une tech-
nique existante de prévision du vent et de la puissance à court terme. Des filtres de Kalman
modélisant les biais entre les observations et les prévisions du modèle de prévision numérique
du temps (PNT) sous forme polynomiale sont étudiés. Plus encore, la direction est introduite
comme paramètre d’entrée dans les modèles de filtre de Kalman, ce qui n’a encore jamais
été exploré à ce jour. Enfin, de nouvelles approches pour la correction de la puissance sont
introduites et examinées.

Une conclusion majeure du projet est que l’ajout de la direction permet d’améliorer nettement
la précision des prévisions de vitesses de vent. Par ailleurs, il est démontré qu’une modélisation
du biais selon un polynôme d’ordre 1 permet d’atteindre de meilleures précisions pour la
prévision du vent. Le meilleur modèle, celui d’ordre 1 directionnel, permet de réduire le
RMSE par rapport au modèle physique de 41,6% en moyenne pour les six premières heures
d’horizon. Cette réduction atteint environ 46% pour h = 1. En revanche, lorsque les filtres
sont utilisés pour corriger directement le biais sur la prévision de puissance, le biais modélisé
selon l’ordre 3 permet d’obtenir de meilleures prévisions que les ordres inférieurs. En outre,
l’ajout de la direction dans le modèle appliqué à la puissance permet également d’augmenter
ses performances.

Deux nouvelles approches ont été développées pour prédire la puissance lorsque les données
de vitesses de vent observées ne sont pas disponibles. Leur comparaison permet de déterminer
qu’il est plus avantageux de transformer les observations de puissances en vitesses de vent
par l’approche d’inversion de la courbe de puissance, pour ensuite appliquer le filtre sur
la vitesse, que de modéliser la puissance directement. La grande variabilité des données de
puissance ne permet pas au filtre de s’adapter adéquatement et de demeurer stable. Pour
les six premières heures d’horizon, la première approche réduit le RMSE sur la puissance de
37,1% de la puissance nominale en moyenne, alors qu’il est réduit seulement de 32,4% de
Pnom pour la deuxième.

L’étude d’un grand nombre de sites mène à la conclusion que la performance des modèles
(différents ordres et intégration de la direction) varie en fonction du temps, de l’horizon ainsi
que de la localisation géographique. L’utilisation d’une approche combinant les modèles de
façon adaptative et en fonction de l’horizon permet de répondre à ces problématiques. Les
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prévisions obtenues à partir de la combinaison réduisent en moyenne le RMSE sur la vitesse
et la puissance de plus de 7% par rapport au pire modèle, et surpassent toujours le meilleur
modèle de plus de 3% en moyenne.

Au final, l’approche KF-KF(θ)-Combinaison permet de réduire significativement le RMSE
par rapport au modèle de prévision numérique du temps, soit de 44,3% en moyenne pour la
vitesse, et de 39,7% pour la puissance. Comparativement au modèle MOS, les RMSE sont
réduits de 24,5% et de 17,9% pour la vitesse et la puissance respectivement. De plus, le RMSE
est réduit significativement comparativement à la persistance, une approche généralement
difficile à surpasser pour les horizons de 6 heures et moins. Relativement à la persistance, le
RMSE est réduit en moyenne sur les six premières heures d’horizon de 7,3% pour la vitesse,
et 9,5% pour la puissance.

6.2 Limitations de la solution proposée

La solution proposée possède néanmoins certaines limitations. En réalité, les données d’ob-
servation reçues en temps réel ne sont pas parfaites : il arrive fréquemment que certaines
données soient absentes de façon ponctuelle. Plusieurs facteurs peuvent occasionner une telle
situation, notamment un détecteur défectueux ou une erreur lors de l’envoi des données.
Essentiellement, cela peut susciter davantage d’instabilités dans les filtres et en réduire la
performance. Il arrive aussi parfois que les données observées soient absentes pendant une
période de temps plus prolongée (plusieurs heures ou quelques jours). Le dernier état du filtre
peut être utilisé sans mise à jour pour quelques heures seulement ; lorsque la période sans
observation est trop longue, il ne peut plus être appliqué.

De plus, puisque la correction des prévisions par filtre de Kalman est basée sur la prévision
du biais entre les PNTs et les mesures réelles, la performance des modèles est fortement
influencée par la précision du modèle physique. Lorsque ce dernier présente initialement une
erreur très élevée, les filtres parviennent à réduire cette erreur significativement, mais pas de
façon optimale.

6.3 Principales contributions du mémoire

Ce projet a donc permis de développer une nouvelle méthodologie pour la prévision de la
vitesse du vent et de la production éolienne. Il s’agit d’une poursuite du travail de Louka
et Galanis sur l’application du filtre de Kalman à la prévision de la vitesse du vent. Cette
section résume les principales contributions de ce mémoire.
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1. Il a été possible de vérifier les modèles de filtre de Kalman proposés par Louka et Galanis
sur un plus grand ensemble de données. Dans le cadre de leur étude, les données de vitesse
de vent historiques pour deux parcs éoliens seulement étaient disponibles. Leurs résultats
suggèrent que des prévisions plus précises sont atteintes lorsque le biais est modélisé selon un
polynôme d’ordre 3. Toutefois, les performances des modèles de prévision étant en général
très dépendantes de l’emplacement géographique, l’étude de deux sites seulement ne permet
pas de tirer des conclusions suffisamment générales. Ainsi, pour ce projet, les modèles ont pu
être évalués sur les données de 20 parcs éoliens en Europe et en Amérique du Nord, situés sur
des terrains plus ou moins complexes. Cette grande quantité de données a permis d’obtenir
des résultats significatifs et il a été possible de déterminer qu’en général, un biais modélisé
selon un polynôme d’ordre 1 permet d’atteindre les meilleures précisions.

2. Une analyse préliminaire a démontré que l’erreur du modèle de PNT est fortement corrélée
à la direction du vent. Afin de bonifier le modèle de Louka et Galanis, il est proposé d’ajouter
la direction vent au modèle de filtre de Kalman pour augmenter la précision de la prévision.
L’analyse des erreurs des modèles directionnels permet de confirmer cette hypothèse : tous
les ordres polynomiaux (1, 2 et 3) atteignent de meilleures précisions lorsqu’ils incluent la
direction.

3. Les filtres de Kalman directionnels ont aussi été évalués pour la prévision de la puissance.
Dans une première approche, les vitesses prédites par le filtre de Kalman sont directement
converties en puissance. Deux nouvelles approches sont développées pour les cas où les ob-
servations de vitesses de vent ne sont pas disponibles : (i) la création de vitesses fictives
par inversion de la courbe de puissance, et (ii) l’application directe d’un filtre de Kalman à
la correction du biais sur la puissance. Le biais sur la puissance est cependant très difficile
à prédire, notamment puisque le filtre de Kalman n’est optimal que pour une distribution
d’erreurs normale, ce qui n’est pas le cas pour la puissance. Au final, l’approche indirecte
par la création de vitesses fictives permet quant à elle d’atteindre des précisions très simi-
laires au scénario où les vitesses de vent sont disponibles. Cette méthode est donc priorisée
si les vitesses observées ne sont pas disponibles. Enfin, pour toutes les approches considérées,
l’analyse des erreurs démontre que la direction permet encore une fois d’améliorer la précision
pour tous les modèles.

4. Une combinaison linéaire de tous les modèles développés a été étudiée pour la prévi-
sion de la vitesse du vent et de la puissance. Cette combinaison est spécifique à chaque site,
chaque horizon de prévision, et adaptative dans le temps selon les performances récentes des
modèles combinés. Les précisions atteintes par la combinaison dépassent largement les pré-
cisions atteintes par les meilleurs modèles individuellement et ce, pour tous les sites étudiés.
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Cela confirme d’abord que la performance des modèles est fortement dépendante du moment,
de l’horizon et de l’emplacement géographique, mais plus encore, permet de contourner ces
problématiques.

6.4 Améliorations futures

Il a été démontré que pour les filtres de Kalman appliqués à la puissance, une augmentation
de l’ordre améliore la performance. Pour des études futures, il serait intéressant de vérifier si
des biais d’ordres supérieurs permettraient d’atteindre des précisions accrues.

Par ailleurs, dans la littérature, plusieurs articles étudient la stabilité des filtres de Kalman,
ainsi que les méthodes visant à l’améliorer [18], [39]. L’utilisation de certaines de ces approches
pourrait se montrer efficace quant à la réduction des erreurs associées aux instabilités dans
les modèles développés.

Finalement, les filtres de Kalman ne parviennent pas à surpasser la persistance dans les
six premières heures d’horizon pour certains sites spécifiques. Lors de travaux futurs, une
reformulation du modèle de combinaison incluant les filtres de Kalman, mais aussi le MOS et
la persistance pourrait être bénéfique. Un poids maximum devrait être alloué à la persistance
afin d’éviter que les prévisions soient basées à 100% sur cette valeur. Par ailleurs, sachant
que les approches statistiques sont moins adaptées au long terme, mais que l’horizon où l’on
devrait passer de Kalman au modèle de PNT est très dépendant du site, l’ajout du MOS
ou du modèle de PNT dans la combinaison serait profitable. Cette démarche permettrait
de choisir automatiquement et de façon adaptative sur quels horizons le filtre de Kalman
est appliqué, ainsi qu’à partir de quel moment l’on devrait faire plus confiance aux modèles
physiques.
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ANNEXE A Analyse directionnelle des données historiques

Figure A.1 MAE en fonction de la direction pour le site #10

Figure A.2 MAE en fonction de la direction pour le site #11
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Figure A.3 MAE en fonction de la direction pour le site #13

Figure A.4 MAE en fonction de la direction pour le site #14
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ANNEXE B Temps de convergence des coefficients

(a) O1 (b) O1 Dir

(c) O2 (d) O2 Dir

(e) O3 (f) O3 Dir
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ANNEXE C Comportement des modèles : vitesse en fonction du temps

Il est important de noter que dans cette annexe, l’axe du temps est uniformisé pour toutes
les figures, alors que l’échelle de l’axe représentant les vitesses de vent peut varier, afin de
permettre une meilleure visibilité pour les cas différents.

Figure C.1 Exemple d’instabilité

Figure C.2 Exemple de détection
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ANNEXE D Comportement des modèles : vitesse en fonction du temps, avec
combinaison

Figure D.1 Combinaison, exemple 1

Figure D.2 Combinaison, exemple 2


	REMERCIEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE DES MATIÈRES
	LISTE DES TABLEAUX
	LISTE DES FIGURES
	LISTE DES SIGLES ET ABRÉVIATIONS
	LISTE DES SYMBOLES
	LISTE DES ANNEXES
	1 INTRODUCTION
	1.1 Préambule
	1.2 Éléments de la problématique
	1.3 Définitions et concepts de base
	1.3.1 Méthodes de prévision
	1.3.2 Conversion en puissance

	1.4 Plan du mémoire

	2 REVUE DE LITTÉRATURE
	2.1 Modèles physiques
	2.2 Modèles statistiques
	2.2.1 Séries temporelles
	2.2.2 Approches par apprentissage
	2.2.3 Autres modèles
	2.2.4 Sommaire des méthodes de prévision statistiques

	2.3 Modélisation de la puissance
	2.3.1 Norme IEC

	2.4 Méthodes de correction de la puissance
	2.4.1 Inversion de la courbe de puissance
	2.4.2 Filtre de Kalman sur la puissance

	2.5 Évaluation de la performance des modèles

	3 DÉTAIL ET DÉVELOPPEMENT DE LA SOLUTION CHOISIE
	3.1 Description mathématique du filtre de Kalman
	3.1.1 Équations de base
	3.1.2 Équations spécifiques

	3.2 Hypothèses avancées par Louka et Galanis
	3.3 Modifications au filtre de Louka et Galanis
	3.3.1 Développement mathématique
	3.3.2 Application du modèle à la puissance
	3.3.3 Résumé de l'approche

	3.4 Combinaison de plusieurs modèles
	3.4.1 Combinaison d'amélioration
	3.4.2 Combinaison d'adaptation
	3.4.3 Estimation en deux étapes


	4 PRÉVISION DE LA VITESSE DE VENT
	4.1 Description des données disponibles
	4.1.1 Données de prévision
	4.1.2 Données d'observation

	4.2 Étude préliminaire
	4.3 Validation des modèles
	4.3.1 Initialisation des paramètres du filtre
	4.3.2 Convergence des coefficients du vecteur d'état

	4.4 Analyse des résultats
	4.4.1 Performance des modèles
	4.4.2 Performance en fonction de l'horizon
	4.4.3 Choix du meilleur modèle
	4.4.4 Combinaison des modèles


	5 PRÉVISION DE LA PUISSANCE
	5.1 Approche A1 - Filtre de Kalman sur la vitesse
	5.1.1 Conversion de la vitesse du vent en puissance
	5.1.2 Analyse des résultats
	5.1.3 Performance en fonction de l'horizon et combinaison des modèles

	5.2 Approche A2 - Inversion de la courbe de puissance
	5.2.1 Conversion de puissances en vitesses de vent
	5.2.2 Analyse des résultats
	5.2.3 Performance en fonction de l'horizon et combinaison des modèles

	5.3 Approche A3 - Filtre de Kalman sur la puissance
	5.3.1 Méthodologie
	5.3.2 Analyse des résultats
	5.3.3 Performance en fonction de l'horizon et combinaison des modèles

	5.4 Comparaison des approches de prévision de la puissance
	5.4.1 Meilleurs modèles
	5.4.2 Combinaison des modèles


	6 CONCLUSION
	6.1 Synthèse des travaux
	6.2 Limitations de la solution proposée
	6.3 Principales contributions du mémoire
	6.4 Améliorations futures

	RÉFÉRENCES
	ANNEXES

