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RÉSUMÉ 

Jusqu’à présent, la production industrielle du polylactide (PLA) en Amérique du Nord repose 

essentiellement sur la culture du maïs, qui est une ressource renouvelable. Toutefois, certaines 

problématiques, tels que la surexploitation des terres arables, la hausse du prix des céréales et 

l’usage abusif de fertilisants chimiques, ont été soulevées face à la production du maïs, surtout en 

ce qui a trait à son utilisation autre qu’alimentaire. Les déchets agroalimentaires seraient une 

alternative attrayante au maïs, de par leur riche contenu en carbohydrates, leur composition stable 

et leur disponibilité. Ainsi, ils représentent un potentiel de valorisation de déchets pour la 

synthèse du polylactide. Les eaux usées de l’industrie de transformation de la pomme de terre 

font partie de cette alternative. Durant la coupe des pommes de terre, un débit d’eau enlève 

l’excès d’amidon. Cet amidon peut être récupéré par centrifugation.  

 

NatureWorks LLC, une division de Cargill, possède la seule usine à grande échelle pour la 

production commerciale de PLA. L’acide lactique produit par Cargill est obtenu par la 

fermentation de dextrose (D-glucose) provenant de l’hydrolyse d’amidon de maïs. L’utilisation 

d’une bacteria lactique ayant des propriétés amylolytiques, c’est-à-dire pouvant hydrolyser elle-

même l’amidon, permettrait de réduire les étapes de production du polylactide. Lactobacillus 

amylophilus, qui est homofermentaire, amylolytique et non-pathogénique, a été ciblé comme 

candidate potentielle pour la production d’acide lactique par fermentation.  

 

Une analyse du cycle de vie  (ACV) comparative de type berceau à la porte de l’usine (« cradle-

to-gate ») a été réalisée afin d’évaluer les possibles bénéfices environnementaux qui pourraient 

découler de la production du polylactide via la fermentation directe d’un résidu d’amidon, 

récupéré des eaux usées d’une usine de production de croustilles, avec L. amylophilus. Cette 

étude environnementale a été menée en comparant les impacts de cette méthode de production de 

l’acide lactique à celle d’un procédé conventionnel à partir de dextrose de maïs. Préliminairement 

à cette étude, des expérimentations en laboratoire ont été réalisées et ont démontré la faisabilité 

microbiologique de produire de l’acide lactique avec ce déchet et L. amylophilus. Les 

pourcentages d’acide lactique obtenus par la fermentation d’un milieu synthétique de glucose, 
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d’amidon de patate commercial et de résidu d’amidon ont été comparés. L’analyse des résultats 

de l’ACV ont démontré que le polylactide produit à partir de ce résidu de la pomme de terre, et 

dont le procédé de production d’acide lactique a subi entre autre une optimisation adéquate de sa 

consommation énergétique pourrait avoir des impacts environnementaux au moins équivalents à 

ceux du polylactide produit via le procédé conventionnel. Cette analyse du cycle de vie a permis 

de soulever que l’utilisation de vapeur lors de la concentration de l’acide lactique est un 

processus qui contribue de façon considérable aux impacts sur les ressources et les changements 

climatiques du polylactide. Ainsi, une fermentation menant à une concentration plus faible 

d’acide lactique requière une optimisation énergétique accrue. Le peu de publications existantes 

sur L. amylophilus et l’inaccessibilité aux données industrielles furent partie des contraintes 

rencontrées pour ce projet.  
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ABSTRACT 

Up to now, the industrial synthesis of polylactic acid (PLA) in North America relies essentially 

on the production of corn, which is a renewable resource. However, problems such as over 

exploitation of fertile soils, the increase of cereal price and the abusive use of chemical fertilizers, 

have been raised for this crop production, especially for its non-food utilization. Agri-food wastes 

show a promising alternative with their rich carbohydrate content, relatively stable composition 

and availability. Therefore, they represent an appealing waste valorization target for an eventual 

PLA production. Potato wastewater is one of these. During the slicing process in potato 

transformation, water is used to remove the excess of starch. Starch can be recovered from water 

after proper centrifugations.  

 

NatureWorks LLC has the only large-scale commercial production facility of PLA and is totally 

owned by Cargill. Lactic acid is presently produced by Cargill with the fermentation of dextrose 

(D-glucose), from the hydrolysis of corn starch. The use of an amylolytic lactic acid micro-

organism could allow the direct fermentation of starch, reducing the processing steps for lactic 

acid synthesis. Lactobacillus amylophilus, which has homofermentative, amylolytic and non-

pathogenic characteristics, could be an interesting micro-organism for L-lactic acid production.  

 

A comparative cradle-to-gate life cycle assessment (LCA) was carried out to evaluate the 

potential environmental benefits of producing lactic acid for polylactide usage by directly 

fermenting potato waste starch, recuperated from the wastewater of a potato chip facility, with L. 

amylophilus. This environmental assessment was carried out by comparing its environmental 

impacts to the conventional process of lactic acid fermentation of dextrose from corn.  

Laboratory-scale experiments were performed and have proven the microbial feasibility of 

producing lactic acid with L. amylophilus and this agribusiness residue. To do so, lactic acid 

concentrations obtained from synthetic media fermentations supplied with glucose, commercial 

potato starch or potato waste starch were compared. The LCA results have demonstrated that 

polylactide produced from potato waste starch could have, with proper energy and nutrient 

concentration optimization, at least more or less the same impact in most end-point categories 

studied. This LCA has underlined that steam utilization is a major contributor process in climate 
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change and resource depletion impacts and that a fermentation which leads to a more diluted final 

lactic acid concentration require more energy utilization improvements. The lack of publications 

about L. amylophilus and the inaccessibility to industrial data proved to be challenges in this 

project. 
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CONDENSÉ EN FRANÇAIS 

NatureWorks LLC, une division de Cargill, possède la seule usine à grande échelle pour la 

production commerciale de polylactide (PLA). L’acide lactique produit par Cargill est obtenu par 

la fermentation de dextrose (D-glucose) provenant de l’hydrolyse d’amidon de maïs, une 

ressource alimentaire. La présente étude a pour but d’évaluer les possibles bénéfices 

environnementaux qui pourraient découler de la production d’acide lactique, pour la synthèse du 

poly-L-lactide (PLLA), à partir des eaux usées d’une compagnie de fabrication de croustilles. Plus 

précisément, cette étude environnementale a été réalisée à l’aide d’une analyse du cycle de vie 

(ACV) comparative de type berceau à la porte de l’usine (« cradle-to-gate »), permettant de 

comparer les impacts environnementaux de la fermentation directe d’un résidu d’amidon de 

patate avec Lactobacillus amylophilus, en remplacement du procédé de fermentation du dextrose 

provenant de l’amidon de maïs. Le résidu est de l’amidon récupéré des eaux usées d’une usine de 

fabrication de croustilles par centrifugation. L. amylophilus a été sélectionné pour réaliser les 

fermentations lactiques, de part ses caractéristiques amylolytiques, qui lui confèrent  la propriété 

de synthétiser elle-même les enzymes nécessaires pour hydrolyser l’amidon, permettant de sauver 

les étapes de saccharification. Aussi, puisqu’elle est homofermentaire, non-pathogène et produit 

de l’acide L-lactique. Aucune publication à ce jour n’a porté sur la fermentation d’un résidu de 

pomme de terre avec L. amylophilus ou sur une ACV portant sur la production du polylactide à 

partir d’un déchet. Les objectifs détaillés de cette présente étude sont présentés au chapitre 1. 

 

Préalablement à l’analyse du cycle de vie, des expériences à l’échelle labo ont été réalisées afin 

de démontrer la faisabilité microbiologique de produire de l’acide lactique avec L. amylophilus 

(NRRL-B4437) et le résidu de pomme de terre.  Des fermentations dans des bioréacteurs de 2L 

ont été menées sur une période de 3 jours avec un milieu synthétique supplémenté de 20 g/L de 

glucose, d’amidon de pomme de terre commercial ou de résidu d’amidon, préalablement stérilisé. 

L’influence de l’âge et du milieu de culture de la pré-culture ont été auparavant étudiés afin de 

déterminer si l’induction de l’activité enzymatique pouvait avoir un impact sur les taux de 

production d’acide lactique. Les résultats obtenus lors des fermentations avec les trois types de 

milieu ont démontré qu’il n’y avait pas de différence majeure au niveau de la croissance 

microbienne entre les trois substrats (voir Figure 2-5). Quant à la production d’acide lactique, 
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cette dernière est décalée dans le temps pour les milieux amidonnés, résultant du temps 

supplémentaire nécessaire pour hydrolyser l’amidon (voir Figure 2-6). Entre les deux milieux 

amidonnés, les concentrations en acide lactique produites diffèrent, étant légèrement plus élevées 

dans le cas du résidu de pomme de terre. Ceci peut s’expliquer par les différentes propriétés 

physico-chimiques (ex. : ratio amylose/amylopectin, contenu en phosphate, etc.) de ces deux 

amidons aux origines distinctes, pouvant influer, entre autres, sur le processus de gélatinisation 

lors de la stérilisation et leur digestibilité finale. Dans le cadre de ces travaux, certains facteurs 

pouvant justifier un tel écart de rendement ont été soulevés, mais aucun n’a pu être formellement 

identifié. Toutefois, le pourcentage d’acide lactique obtenu avec le résidu démontre que ce 

dernier tend à rejoindre la concentration finale obtenue avec le milieu optimal, celui de glucose. 

Ces résultats permettent de conclure à la faisabilité microbiologique de produire de l’acide 

lactique avec L. amylophilus et le résidu d’amidon et le potentiel de valorisation de déchet qui 

s’en découle après optimisation des procédés de fermentation.  

 

Suivant ces travaux en laboratoire, les diagrammes d’écoulement et les paramètres de 

fermentation (concentration en substrat, rendement, etc.) des deux procédés à l’échelle 

industrielle ont été fixés. Dans le cas du procédé de fermentation du dextrose produit à partir de 

maïs, l’accès à des données industrielles fut impossible, pour des raisons de confidentialité.  En 

ce qui a trait à la fermentation directe du résidu de pomme de terre, aucun procédé industriel 

n’existe à l’heure actuelle. Le choix des diagrammes d’écoulement et des paramètres de 

fermentation ont été fixés à l’aide de la littérature et d’avis d’experts et diffèrent donc de celles en 

laboratoire, où des concentrations faibles en substrat ont été utilisées. Il s’agit donc, dans le cas 

du procédé à partir du résidu, de paramètres présumés d’un futur procédé industriel, après un 

certain degré d’optimisation. Le choix de ces paramètres est néanmoins demeuré conservateur, 

étant donné le peu d’information qui a pu être relevé de la littérature sur la fermentation 

d’amidon de pomme de terre avec L. amylophilus. Dans le cas de la fermentation du dextrose de 

maïs, les paramètres choisis sont ceux d’une usine dite « conventionnelle ». Suivant cette 

pratique, le choix des unités pour la purification des deux procédés a été basé sur la dernier 

diagramme de procédé publié par NatureWorks (Vink, et al., 2007). Les paramètres de 

fermentation sont présentés au Tableau 2-1 et 2-2. Les unités utilisées pour la fermentation et la 



xii 

 

purification de l’acide lactique sont similaires pour les deux procédés et sont présentés à la Figure 

2-10.  

 

Le dextrose est produit dans une usine de « corn wet milling » (« mouture humide »), au cours 

duquel l’amidon de maïs est extrait des grains à l’aide d’eau sulfurée. L’amidon est par la suite 

hydrolysé à l’aide d’enzymes ou d’acides. Au cours de l’extraction de l’amidon, différents 

coproduits sont formés et utilisés entre autre pour la production de nourriture animale. Le résidu 

est quant à lui concentré des eaux usées par centrifugation et filtration sous vide. Il est finalement 

asséché jusqu’à 13% d’humidité, à l’aide d’un séchoir. Le milieu, composé d’extrait soluble de 

maïs (« corn steep liquor ») et du substrat (dextrose ou résidu) est alimenté au fermenteur. Dans 

le cas du résidu, le milieu est préalablement gélatinisé à l’intérieur du fermenteur à 90°C, puisque 

l’amidon native est non soluble et peu digestible. Suite à l’inoculation avec L. amylophilus dans 

le cas du résidu et d’une bactérie lactique non amylotytique dans le cas du dextrose, l’acide 

lactique est produit et neutralisé avec de l’hydroxyde de calcium afin de maintenir le pH constant. 

À pH 6, soit le pH de fermentation, pratiquement tout l’acide lactique est sous la forme de 

calcium lactate. Les étapes de purification du milieu de culture suivant sa fermentation sont 

présentées ci-dessous: 

- Retrait de la biomasse par microfiltration 

- Précipitation du gypse pour dissocier l’acide lactique du calcium, à l’aide d’acide 

sulfurique : ܥଷܪହܱଷ
ାܱଷܽܥି

ଷܥହܪି ൅ ଶܵܪ ସܱ ՜ ܵܽܥ ସܱ ൅   ଺ܱଷܪଷܥ2

- Retrait du gypse par filtration rotative; 

- Concentration de l’acide lactique à l’aide d’un évaporateur à triple effets, afin de mener à 

une solution d’acide lactique à 88% massique;  

- Une purification finale suit, afin de retirer le contenu résiduel en eau. Elle devrait être 

réalisée, selon la méthode traditionnelle, par l’estérification/hydrolyse de l’acide lactique. 

Les impuretés restantes peuvent être enlevées par l’ultrafiltration ou à l’aide d’un 

traitement au carbone. 
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Subséquemment aux choix des diagrammes d’écoulement et des paramètres de fermentation, une 

analyse du cycle vie comparative a été réalisée afin de comparer les impacts environnementaux 

de la production d’acide lactique pour synthétiser du poly-L-lactide par ces deux procédés. Le 

cadre de l’étude est basé sur les standards ISO 14040 et 14044. Les limites du système des deux 

scénarios étudiés sont présentées aux Figure 3-1 et 3-2. Le scénario « Corn » est le procédé par 

lequel l’acide lactique est produit par la fermentation du dextrose, provenant de l’hydrolyse de 

l’amidon de maïs; le scénario « PWS water », par la fermentation directe du résidu d’amidon de 

pomme de terre, concentré des eaux usées d’une usine de transformation de la pomme de terre. 

Les étapes du système pour ces deux scénarios sont la préparation du milieu, le préchauffage du 

milieu, la fermentation et la purification de l’acide lactique.  

 

Le transport des matières premières et de la biomasse, de même que le traitement de cette 

dernière et des eaux usées font partie des limites des systèmes. Étant donné que les impacts de la 

purification finale suivant la concentration dans l’évaporateur devraient être similaires entre les 

deux procédés, ils ont donc été exclus. La polymérisation de l’acide lactique, une fois purifié, est 

identique pour les deux scénarios. L’unité fonctionnelle est donc est 1 kg d’acide lactique à 88% 

massique, excluant les impuretés finales, pour la synthèse d’un polymère biodégradable, le 

polylactide, utilisé pour la fabrication d’emballage alimentaire. À partir des diagrammes 

d’écoulement et des paramètres choisis, des bilans de masse et d’énergie ont pu être réalisés (voir 

Annexe E). Les flux de référence, pour les deux scénarios, ont été calculés à partir de ces bilans 

(voir Tableau 3-1 et 3-2). Afin de traduire ses flux de références en termes d’émissions et 

d’énergie primaire, la base de données Ecoinvent a été choisie. Quant au dextrose, au résidu et à 

la liqueur de maïs, aucun processus Ecoinvent n’existe. Des processus ont été créés pour ces flux 

de référence, basés sur des données industrielles et la littérature (collecte de données primaire). 

Dans le cas du procédé de synthèse du dextrose, des coproduits sont générés, soit du gros gluten 

de maïs (« corn gluten feed »), de la farine gluten de maïs (« corn gluten meal »), de l’huile de 

maïs (« corn oil ») et de l’extrait soluble de maïs (« corn steep liquor »). Une extension du 

système a été utilisée afin d’éviter l’allocation. De la farine de graines de soya (« soybean 

meal »), de l’huile de soya (« soybean oil ») et de l’orge (« barley ») ont été les trois produits 

considérés comme étant évités par la production des coproduits. Dans le cas de l’extrait soluble 

de maïs, les impacts qui lui sont associés sont ceux du produit qu’il évite par l’extension du 
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système, soit la farine de graines de soya. Tous les processus Ecoinvent représente le contexte 

Européen, à l’exception du maïs et des produits déplacés par l’extension du système. 

 

La méthode d’analyse d’impact « IMPACT 2002+ » a été utilisée afin de simuler les impacts des 

deux scénarios étudiés et ce, par chaque étape du procédé. Les résultats au niveau des catégories 

de dommage (utilisation des ressources, changement climatique, écosystème et santé humaine) 

démontrent que le scénario « PWS water », à son design actuel, n’est pas avantageux par rapport 

au procédé conventionnel du scénario « Corn ». En effet, comme démontré sur les Figures 3-4 à 

3-7, les impacts totaux associés à ce scénario sont toujours plus élevés. Les étapes de 

préchauffage du milieu et de purification du scénario « PWS water » ont au moins 70% plus 

d’impacts que le scénario « Corn » pour chaque catégorie. En effet, le scénario « PWS water » 

requiert une plus grande quantité de vapeur, puisque le milieu doit être gélatinisé et l’acide 

lactique est plus dilué à la sortie du fermenteur. Cette consommation plus élevée de vapeur est 

particulièrement néfaste sur l’utilisation des ressources et les changements climatiques. La 

production de vapeur nécessite la combustion de gaz naturel et d’huiles lourdes, menant à des 

émissions de dioxyde de carbone (CO2) et de méthane (CH4). De plus, de façon surprenante, la 

préparation du milieu à partir du résidu a plus d’impact sur l’utilisation des ressources que celui 

du scénario « Corn » (16 MJ/kg d’acide lactique versus 11 MJ primaire/kg d’acide lactique), bien 

que la production du résidu, par concentration des eaux usées, soit un procédé beaucoup plus 

simple que celui du « corn wet milling ». En regardant de plus près, on constate que la 

concentration du résidu est énergivore au niveau du séchoir et même au niveau de la 

consommation électrique. Constatant ces faits, deux variantes au scénario « PWS water » ont été 

étudiées.  

 

La première, appelée « PWS water optimized », est celle où des optimisations d’énergie ont été 

réalisées au niveau de la gélatinisation et de la concentration du résidu. La gélatinisation, 

précédemment réalisée en batch dans le fermenteur, est effectuée dans une cuve séparée, de façon 

continue durant le remplissage du fermenteur. Selon le même principe d’une stérilisation en 

continue, le courant sortant de la cuve préchauffe le courant d’entrée, via un échangeur de chaleur 

externe. Du côté de la concentration du résidu, des gaz de combustion sont récupérés dans l’usine 
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de transformation et permettent d’éviter l’utilisation de gaz naturel pour le séchoir. Dans le cas de 

la deuxième variante, appelée « PWS water optimized + 6 effects », trois effets sont aussi ajoutés 

à l’évaporateur du scenario « PWS water ». En passant de la variante « PWS water optimized » à 

cette dernière, on constate une baisse des impacts pour les étapes de préparation du milieu, de son 

prétraitement et de la purification (voir Figure 3-15 à 3-18). Pour toutes les catégories d’impacts, 

les impacts totaux entre les deux scénarios se sont rapprochés de façon substantielle (~ 0-30% de 

différence), à l’exception du dommage à l’écosystème, qui est environ 60% plus élevé dans le cas 

du scénario « PWS water optimized + 6 effects ». Ceci résulte majoritairement de l’intrant de 

liqueur de maïs pour la préparation de son milieu. Puisque les deux scénarios considèrent la 

même concentration de ce nutriment dans le milieu de culture, la quantité entrante de liqueur de 

maïs par kg d’acide lactique est supérieure pour le scénario « PWS water optimized + 6 effects ». 

En effet, la concentration d’acide lactique produite y est plus diluée. Puisqu’il a été considéré que 

la liqueur de maïs a des impacts associés à la farine de graines de soya, le produit qu’il déplace 

par l’extension du système, la liqueur de maïs a les mêmes impacts sur l’occupation des terres 

que cette farine, qui est particulièrement élevée, du moins comparativement au maïs. Le résumé 

des impacts de ces deux scénarios sont présentés au Tableau 3-11. 

 

En plus de relever le peu de littérature portant sur l’espèce L. amylophilus et l’inaccessibilité aux 

données industrielles, cette étude a permis de constater le comportement complexe de l’amidon et 

la nécessité d’une étude approfondie de ses propriétés physicochimiques afin d’avoir la meilleure 

digestibilité qui puisse lui être  associée. Pour évaluer le réel potentiel des cultures de L. 

amylophilus pour des applications industrielles, les conditions de pré-culture et leurs génétiques 

devraient être améliorées afin de connaître les rendements maximaux possibles. 

 

Cette analyse du cycle de vie a permis de constater que la consommation de vapeur est un 

processus ayant une contribution majeure au niveau des impacts. Par des optimisations d’énergie 

appropriées, par l’ajout d’effets à l’évaporateur par exemple, une fermentation menant à une 

concentration plus faible d’acide lactique peut voir ses consommations d’énergie réduite à un 

niveau similaire que ceux d’un procédé conventionnel. La concentration en nutriments devrait 

être aussi optimisée de façon à minimiser son apport, tout en conservant des taux de production 
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intéressants. Il a aussi été relevé que l’apport d’énergie nécessaire pour concentrer l’amidon est 

sensible à la consommation électrique et une attention particulière devrait y être portée afin 

d’améliorer l’écobilan du résidu. La fermentation d’un milieu plus concentré en résidu pourrait 

aussi être envisagée, et devrait résulter en une concentration en acide lactique plus élevée. 

Toutefois, elle accroît la viscosité et les rendements en acide lactique associés sont rapidement 

réduits avec L. amylophilus selon la littérature actuelle. Il serait donc nécessaire d’évaluer 

l’optimum d’une concentration plus élevée d’acide lactique, associé à un rendement d’utilisation 

du résidu et des nutriments moindres. Pour y parvenir, des méthodes plus adaptées pour la 

gélatinisation, permettant un cisaillement élevé des granules, permettraient d’abaisser les coûts 

énergétiques associés à ce prétraitement et de diminuer la viscosité résultante. 
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INTRODUCTION 

During the recent years, the public’s growing awareness for a cleaner environment has raised a 

lot of expectations from biopolymers as an alternative to replace petroleum-based plastics, 

particularly for packaging applications (Madival, et al., 2009). Indeed, their property to 

biodegrade is appealing for their utilization in agriculture and packaging, or as disposables 

(Uihlein, et al., 2008) thus preventing accumulation of wastes in the environment. Since they are 

produced from renewable resources, mainly protein and carbohydrate materials, such as corn, 

they tend to be biodegradable as micro-organisms present in the environment can produce 

enzymes to attack these molecules (Kijchavengkul, et al., 2008). This biodegradation leads to 

carbon dioxide (CO2), water and biomass in aerobic conditions. If anaerobe conditions are met, 

biodegradation will lead to methane (CO4) instead of carbon dioxide. 

 

A lot of confusion is related to the different terms used to label these new materials, such as 

“biopolymers” and “biodegradable polymers”. Biopolymers are made from renewable resources, 

and as mentioned before, are inherently biodegradable. They can be made from the 

polymerization of carbohydrate polymers, such as starch, or from a fermentation-based process, 

as it the case for polyhydroxyalkanoates (PHAs) or polylactic acids (PLAs). A biodegradable 

polymer is a plastic that can degrade in the presence of naturally occurring microorganisms, 

which means that it can also be made from non-renewable resources (Kijchavengkul, et al., 

2008). In the case of a compostable polymer, it will achieve total mineralization at a high rate in 

composting conditions (James, et al., 2005). 

 

PLA, which is one of the most widely used biodegradable plastics, is compostable and 

recognized as having comparable mechanical and physical properties to polyethylene 

terephthalate (PET) and polystyrene (PS). This thermoplastic is used to package short shelf life 

products not exposed to high humidity and temperature conditions in packaging such as blister, 

clamshell, trays and bottles (Greer, 2006; Madival, et al., 2009). Other possible utilizations for 

PLA might be, additionally, apparels, fabrics and carpets manufacturing (Vink, et al., 2003). 

Since PLA is totally bioresorbable (i.e.: assimilated by the human body) and biocompatible, it 
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has also different applications in the medical field, such as surgical sutures, controlled drug 

delivery system and prostheses (Auras, et al., 2004; Lunt, 1998).  

 

Since biopolymers are made from renewable resources, products made from bio-based polymer 

are generally considered to be more sustainable compared to petroleum-based alternatives (L. 

Shen, et al., 2008). In the case of fermentation-based processes to produce polymer such as PLA, 

they offer intuitive benefits, such as an aqueous processing environment and nontoxic waste 

(Uihlein, et al., 2008). This is true without regards to their compostability, which makes them 

totally biodegradable in a composting facility. This property makes biopolymers also appealing 

for packaging devices, for which recycling might not be practicable once they have been soiled 

(Kale, et al., 2007). Unfortunately, those high expectations are unbalanced by some ecological 

disadvantages. For example, exploitation of renewable resources leads to intensive land use 

(Uihlein, et al., 2008). Also, in today’s waste management reality, the most common method for 

waste disposal is landfilling. It means that a lot of biopolymer devices might end up in landfills, 

where aerobic degradation is not favored and so might lead to methane formation (Lou, et al., 

2009), which has 7 times more impact on climate change than CO2 (IMPACT 2002+; Jolliet et al. 

(2003)). PLA production relies on the fermentation of sugars into lactic acid which are for the 

moment solely produced from the saccharification (hydrolysis) of corn in the United States 

(Bohlmann, 2009). It has been also often underlined in the literature and in the media, the ethical 

problem of using corn, a food source, for industrial products such as PLA, and the indirect land 

use change (ILUC) caused by those industrial productions which rely on a crop field (Dehue, et 

al., 2009). The ILUC of PLA production from corn has not been quantified yet. Its raw material 

for its production, corn crop, requires high intensive land use and fertilizers. Heavy fertilization is 

essential if continuous corn cultivation is planned. Moreover, water consumption of 15-19 cubic 

meters of water per bushel of grains is to be expected (Blanchard, 1992). 

  

Since the appellation “green” has been used frequently without any scientific examination, it is 

essential to evaluate the environmental impacts of such a product during its complete life cycle. 

Life Cycle Assessment (LCA) is the most widely accepted method to assess the potential 

environmental impacts of a product or service, through the construction of an emissions and 
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extraction inventory. In the case of a cradle-to-grave LCA study, this inventory covers all phases 

of a life cycle, from the extraction of raw materials and fuels, followed by all conversion steps, 

the use and finally the disposal phase. A cradle-to-gate LCA will only include the extraction and 

manufacturing steps (L. Shen, et al., 2008). Its principles and framework are defined through ISO 

standards (International Organization for Standardization): ISO 14040 and ISO 14044. ISO  

defines an LCA as a “compilation and evaluation of the inputs, outputs and the potential 

environmental impacts of a product system throughout its life cycle” (ISO, 2006a). From the 

inventory, an impact assessment and its interpretation can be made. 

 

Different LCAs on PLA products were published during the last few years: James, et al. (2005), 

Franklin Associates (2006), Vidal, et al. (2007), Franklin Associates (2006), Krüger, et al. 

(2009), Martino, et al. (2006), Hakala, et al. (1997), Franklin Associates (2006), Martino, et al. 

(2006), OVAM (2006), Uihlein, et al. (2008). Unfortunately, none of them present an alternative 

process for producing PLA than the actual one, which uses simple sugars made from food 

resources. By assessing a modified PLA production process, LCAs could demonstrate the 

possible environmental benefits of modifying, for example, the carbohydrate source and the 

mode of fermentation. Agribusiness residues, with their rich carbohydrate content, their quite 

stable composition and their availability, represent an appealing valorization target for polylactic 

acid production. These wastes do not make any competition to human food. It would also avoid 

ILUC and the use of pesticides and fertilizers. Also, possible energy savings could be realized by 

reducing the process steps. However, there is no LCA which has attempted to study these 

modifications and to demonstrate the environmental advantages and disadvantages of continuing 

research in these directions.  
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CHAPTER 1  

1.1 Objectives 

The present study has as a primary goal to demonstrate the possible environmental benefits or 

disadvantages of producing poly-L-lactide (PLLA) through an innovative process by which  

lactic acid for its polymerization is produced from the direct fermentation of an agribusiness 

residue substrate, potato waste starch, with an amylolytic bacterium, Lactobacillus amylophilus, 

without the help of any chemical or enzymatic substrate pre-treatment. By doing so, a 

comparative cradle-to-gate LCA will be realized to demonstrate if it would be favorable, from an 

environmental point of view, to pursue research in this direction, since there is no existing 

industrial facility. To do so, this new process should not have more environmental impacts than 

the conventional one, which ferments sugar from corn. Different objectives will need to be 

realized to complete this goal. These objectives are: 

 

- To review the existing literature on PLA; 

- To demonstrate, experimentally, the feasibility on a microbiological basis of producing 

lactic acid from the direct fermentation of potato waste starch with L. amylophilus; 

- To perform a comparative cradle-to-gate LCA of producing lactic acid for PLLA 

synthesis from corn sugar versus the direct fermentation of potato waste with L. 

amylophilus; 

- To compare the potential environmental impacts of producing lactic acid for PLLA 

through both processes; 

- To evaluate if this new process is expected to be environmentally favorable and give 

recommendations and potential optimizations; 

 

As mentioned before, two modifications will be evaluated in this process: the utilization of 

another starchy carbohydrate source and its direct fermentation compared to its complete 

hydrolyzed form, dextrose. Potato waste starch can be recuperated in wastewaters of potato 
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transformation facilities, such as potato chip or French fries facilities. During the slicing process 

in potato transformation, water is used to remove the excess of starch (see Figure 1-1), to prevent 

the sticking of potato slices or to soften the final texture of the cooked product. This starch can be 

recovered after proper centrifugations and used instead of refined starch. It presently has 

applications in the paper industry for making glossy paper. However, many industries do not 

recover potato starch. In Quebec, only one potato chip company could be listed as having the 

proper installations for recuperating starch in wastewater. 

 

 

Figure 1-1: Potato processing © Snack Brands Australia 

 

The utilization of an amylolytic bacterium, such as L. amylophilus, which can directly degrade 

starch, would suppress all the steps needed to extract and saccharified corn starch into dextrose 

(D-glucose). The utilization of bacteria with amylolytic properties might be interesting from an 

environmental and economical point of view. A few studies have reported lactic acid 

fermentations on different starch wastes with an amylolytic lactic acid micro-organism. In this 

study, Lactobacillus amylophilus, an anaerobic facultative bacterium, has been selected for the 

potato waste starch valorization based on its homofermentative, amylolytic and non-pathogenic 

characteristics. It produces L-lactic acid, which is attracting for making poly-L-lactide. 
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The methodology employed to realize these objectives are presented in the section 1.3 General 

methodology. The next chapter presents a literature review on PLA and its processing, with a 

focus on the raw material processing and their fermentation. It will also review existing LCAs on 

PLA material. 

 

1.2 State-of-art 

Polylactic acid (PLA), also called polylactide, is produced from lactic acid (2-hydroxypropanoic 

acid). Lactic acid exists in two optically active stereo- isomers: L-lactic acid and the D-lactic acid. 

Therefore, poly-L-lactic acid (PLLA) or poly-L,D-lactic acid can be produced (Lunt, 1998). 

PLLA is a semicrystalline polymer that exhibits high tensile strength and low elongation with 

high modulus (Reddy, et al., 2008). PLLA, which can be made from renewable resources, has 

comparable mechanical and physical properties to PET and PS, petroleum-based polymer. Since 

PLLA is compostable, a new market has developed for making PLLA food packaging, replacing 

PET-PS made ones (Madival, et al., 2009).   

 

NatureWorks LLC company has the only large-scale commercial production facilities of PLA 

worldwide. Its installations, situated in Blair, Nebraska, produce 140 000 tons of PLA per year. 

Cargill, which owns NatureWorks, has a lactic acid facility with an annual declared capacity of 

180 000 tons. Cargill produces lactic acid for NatureWorks, by the fermentation of dextrose, 

which is provided by a corn wet milling facility. The last published description of the 

NatureWorks’ process show that lactic acid is purified by adding sulphuric acid to the broth. It 

dissociates calcium lactate, formed by neutralizing lactic acid with calcium hydroxide during 

fermentation. The gypsum formed is removed by filtration. Lactic acid concentration and final 

purification to remove impurities follow (NatureWorks LLC; Vink, et al., 2007). NatureWorks 

has announced in 2009 that improvements in lactic acid processing were realized (NatureWorks 

LLC, 2009b). These improvements are not detailed.  
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PLA can be synthesized by two different processes: direct condensation of lactic acid or ring-

opening polymerization of the cyclic lactide dimer. The latter is the preferred route since it 

polymerizes PLA to higher molecular weights and is employed by NatureWorks (Drumright, et 

al., 2000). The two preceding major processes, the corn wet milling and the lactic acid 

production, are discussed in the following paragraphs. A description of a conventional corn wet 

milling and a literature review on lactic acid, giving a focus on lactic acid produced from 

agribusiness sources and amylolytic micro-organisms, are also presented. A review on LCAs 

treating of PLA processing will give a conclusion to this state-of-art.   

 

Corn wet milling 

Corn wet milling is the process by which starch1 is extracted from corn, to produce different 

products. Corn is a widely grown cereal in the United States. In fact, it is grown in every US 

state. In 2008, 12.1 billion (109) bushels were produced in the United States (USDA, 2010a). A 

bushel is equal to 25.4 kg of corn (Davis, 2001). The industry of corn wet milling, which can 

process corn starch into corn sweeteners, starch, oil, ethanol, and animal feed, has used from 30 

million bushels to as much as 85-90 million bushels per month during the 2007-2008 period. 

Corn can also be refined through the dry milling process. However, this way of refining is used to 

a lesser extent. In 2008, the amount of corn refined by this process was approximately half of the 

one refined by the wet milling process (O'Brien, et al., 2010).  

 

Researchers are looking at corn as a feedstock for the synthesis of non-food products, such as 

ethanol and biopolymers, since several initiatives are established for the utilization of renewable 

resources. This has lead to higher use of corn starch/sweeteners from corn refining facilities for 

industrial uses (Davis, 2001). In the case of ethanol, this trend is obvious, as shown in Figure 1-2: 

 

                                                 
1 See Appendix A - Glossary 
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Figure 1-2: US domestic corn use (USDA, 2010b) 

The corn kernel has three major parts, which are the pericarp, the endosperm and the germ. The 

pericarp is the outer skin of the grain, and has a role of protection. The endosperm is the energy 

reserve, since it contains more than 90% of starch. The germ contains mainly oil and protein 

(Corn Refiners Association, 2006). Yellow Dent Corn is the major specie grown in the US 

(Blanchard, 1992). Its typical composition is shown in Table 1-1. From this table, it can be 

deduced that corn contains about 62 % of starch on a wet basis. 
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Table 1-1: Composition of No. 2 Yellow Dent Corn (Blanchard, 1992) 

 Percent (dry basis) 

 Average weight Standard deviation 

Starch 71.8 1.5 

Protein 9.6 1.1 

Oil 4.6 0.5 

Crude fiber 2.9 0.5 

Ash 1.4 0.2 

Sugars 2.0 0.4 

Moisture (wt % wet basis) 15.0 1.0 

 

In the wet milling process, starch is extracted from the corn grain with the help of sulphurous 

water (Corn Refiners Association, 2006). This processing method uses all parts of the corn 

kernel, minimizing any corn lost. It is a mature and efficient process that has been employed in 

the United States since 1842 (Blanchard, 1992). Corn, which is normally stored in silos, is first 

cleaned to remove extraneous material and the grains are then transferred to large tanks 

containing steep water (Ramirez, et al., 2008). This warm water (120-130°F) contains small 

amounts of sulfur dioxide, forming a dilute sulfurous acid solution. For approximately 40 hours, 

the grains circulate in these tanks, in a countercurrent way, which means from the oldest to the 

newest steeps (BeMiller, et al., 2009; Corn Refiners Association, 2006; Ramirez, et al., 2008). 

This soaking softens the kernel, increases its moisture content and soluble components, mostly 

proteins, are extracted. At the end of the steeping, this protein-containing water, called “light-

steep water”, is concentrated in multi-effect evaporators (Ramirez, et al., 2008). This by-product, 

called “Corn Steep Liquor” or “Condensed Fermented Corn Extractives”, can be sold as an 

animal feed supplement or as a nutrient source for biotechnological applications, such as enzyme 

production or other fermentation products. It contains about 50 wt% of solids and 23 wt% of 
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proteins. It is however not entirely sold in this form, since the major part of it is mix with other 

by-products to make corn gluten feed (Blanchard, 1992; Corn Refiners Association, 2006).  

 

The hull of the softened kernel is ground by passing the grain through mills, with addition of 

water. This process liberates the oil-rich germ from the endosperm and produces a slurry 

containing the liberated germ. Since germ contains around 40 to 50% of oil, it is the lighter part 

of the slurry and so it can be separated by centrifugal forces (Corn Refiners Association, 2006; 

Ramirez, et al., 2008). Dry germ can be resold or the oil contained in it can be extracted by 

mechanical pressing. If so, the extracted germ can be used in the production of animal feeds, such 

as corn germ meal or corn gluten feed (Corn Refiners Association, 2006),  and oil can be further 

refined to be sold.  

 

The slurry containing now only the hull and the endosperm passes through a series of grinding 

and screening operations, where fibers are removed. The hull is held by the screen and goes 

generally into the constitution of corn gluten feed. It can also be used for food use (bran). The 

slurry of endosperms, containing starch and gluten, is directed into centrifugal separators, where 

a difference in their densities is employed to separate them. Gluten is dried and can be sold as 

corn gluten meal. Corn gluten meal and corn gluten feed, sold at 10 wt% of humidity, contain 

respectively about 60 wt% and 20 wt% of protein. The remaining starch slurry is then washed 

through hydrocyclones (Corn Refiners Association, 2006). Starch can then be dried and sold as 

unmodified corn starch. Typical starch and co-products yields on a dry basis are presented in 

Table 1-2: 
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Table 1-2: Typical yields of a corn wet milling facility (Blanchard, 1992) 

Product/co-products Yield (/100 parts of dry corn) 

Steep liquor 6.5 

Germ (with oil) 7.5 

Bran 12.0 

Gluten 5.6 

Starch 68.0 

Losses (volatiles, etc.) 0.4 

 

Starch can be chemically, mechanically or physically modified and then dried. Starch can also be 

totally or partially hydrolyzed, with the help of acids or enzymes, to give a mixture of D-glucose 

or soluble oligosaccharides and D-glucose respectively. Ethanol can also be produced by 

fermenting starch hydrolyzates (BeMiller, et al., 2009). From one bushel, approximately 14.3 kg 

of starch or 15 kg of sweeteners or 10.6 liters of ethanol can be produced (NCGA, 2009). 

 

A schematic process that resumes the corn wet milling steps and its different co-products is 

presented in Figure 1-3. It has been adapted from Davis (2001) and the Corn Refiners 

Association (2006). The percentage of germ extract and steep water in co-products is variable 

from one facility to another. More detailed process flowsheets are presented in BeMiller (2009) 

and Blanchard (1992). In the latter case, this reference book gives a complete view of the corn 

wet milling process and its products/co-products characteristics. 
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Figure 1-3: Corn wet milling block flowsheet, adapted from the Corn Refiners Association (2006) and Davis (2001)
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Lactic acid production 

Lactic acid is a water soluble, non-volatile, odorless and highly hygroscopic aliphatic acid. It can 

be produced chemically, through the production of lactonitrile as an intermediate, or by sugar 

fermentation of lactic acid producing micro-organisms. Fermentation is the most widespread 

method. The major advantages of fermentation over the chemical route are that a nearly optically 

pure lactic acid can be produced and renewable resources are used as raw materials. Indeed, the 

chemical process leads to a racemic mixture of lactic acid. Over polylactide synthesis, lactic acid 

has different applications in the sectors related to food preservatives, flavor enhancement, 

cosmetics, etc (Reddy, et al., 2008).  Galactic, Purac and Cargill are major players of the North 

American and the European lactic acid production (Gruber, et al., 2006). Holten (1971) has 

published a reference book for lactic acid properties.  

  

Lactobacillus species are well-known and widely employed lactic acid producing bacteria. 

Lactobacilli are Gram-positive, nonsporing, catalase-negative and anaerobe facultative bacteria. 

The optimum growth pH and temperature are normally respectively around 5.5-6.2 and 30°C-

40°C (Vos, et al., 1984). The addition of a base during fermentation is necessary to optimize 

growth conditions. Depending of the species, two different patterns can be used by the bacteria 

for lactic acid production. The homofermentative lactobacilli utilize the EMP pathway of glucose 

metabolism and will produce lactic acid as a by-product. One mole of glucose will lead to 2 

moles of lactic acid as shown below: 

 

ଵଶܱ଺ܪ଺ܥ  
௙௘௥௠௘௡௧௔௧௜௢௡
ሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ሮ ଺ܱଷܪଷܥ2  ൅  ݏݏܽ݉݋ܾ݅ 

 

Some major homofermentative Lactobacilli used are Lactobacillus delbrueckii, L. helveticus and 

L. casei (John, et al., 2007). In the case of heterofermentative ones, the pentose pathway 

metabolism will be used, leading to the formation of lactic acid, but also other products, like 

ethanol, carbon dioxide and acetic acid. In few particular cases, such as carbohydrate limitation, a 

homofermentative lactobacilli may act as a heterofermentative one. Another characteristic of 
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lactobacilli is their differing ability to produce L-lactic acid, D-lactic acid or D,L-lactic acid. 

Homofermentative lactic acid bacteria are commonly used for industrial production (Vaidya, et 

al., 2005). Taxonomic and properties outline of Lactobacilli can be found in Bergey's manual of 

systematic bacteriology. 

 

Other genius of lactic acid bacteria are Streptococcus, Leuconostoc and Euterococcus (John, et 

al., 2007). Another well-known micro-organism capable of producing lactic acid is Rhizopus sp. 

This yeast, as a heterofermentative bacteria, produces lactic acid and other products. Rhizopus 

produces L-lactic acid enantiomer. Oxygen has to be provided to the medium since it is an aerobic 

micro-organism. Adequate agitation is essential to optimize mass transfer, by dispersing oxygen 

and reducing the cellular aggregation and the bubble gas size. One advantage of Rhizopus over 

Lactobacilli is its lower nutrients requirement. However, lower lactic acid yields are normally 

achieved (Gruber, et al., 2006; John, et al., 2009).   

 

Different carbohydrate feedstock might be used for lactic acid fermentation. Refined sugars have 

been widely used in the past, but, due to their high price, are replaced by less expensive sources. 

It is well known that the price of raw material remains a significant manufacturing cost. Residues 

and products from the agribusiness and forestry industry are cheaper sources of carbohydrates. 

Molasses, whey, sugarcane bagasse and starch from different plants, such as potato, corn or 

wheat, are sugar-containing materials interesting for lactic acid production. Since only sugar in its 

simplest form, glucose, can be metabolized by most micro-organisms, a proper treatment may be 

needed prior to fermentation to saccharify the polysaccharides to glucose. In fact, lactic acid 

bacteria are usually deficient in cellulolytic and amylolytic characters (John, et al., 2007), which 

prevents the bacteria from producing its own enzymes for hydrolyzing starch or cellulose. 

 

In the case of starch, most species of lactobacilli cannot ferment it directly, since they do not 

produce the necessary amylases to convert this polysaccharide to dextrose. This is the case for L. 

delbrueckii and L. casei, largely employed Lactobacilli. An acid or enzymatic hydrolysis has to 

be performed on starch (John, et al., 2007). Steps to convert starch into glucose with enzymes are 
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typically gelatinization2 and liquefaction, which are both carried out at high temperatures (90 - 

130ºC) for 15 min., followed by saccharification to glucose (Reddy, et al., 2008). As mentioned 

before, Cargill is using this mode of production since it ferments glucose from corn starch. 

 

Since saccharification follows a substrate inhibition kinetic model, high concentration of glucose 

will slow down hydrolysis (Anuradha, et al., 1999). It has been widely recommended in literature 

to do a simultaneous saccharification and fermentation (SSF) to minimize inhibition by glucose. 

Indeed, if saccharification is the limiting step, glucose is metabolized as fermentation proceeds 

and it will not accumulate in the culture medium. It reduces also the production cost for biomass 

hydrolysis (John, et al., 2009). A prior study of the enzyme and bacteria kinetics has to be 

performed to ensure successful realization. Anuradha (1999) is presenting a kinetic model for 

simultaneous saccharification and fermentation of starch by L. delbrueckii. 

 

Another possibility is the utilization of an amylolytic lactic acid bacterium. Since an amylolytic 

bacterium produces its own amylases to hydrolyze starch, the liquefaction and saccharification 

steps are unnecessary. Gelatinization is however normally performed since it improves the 

efficiency of enzymatic hydrolysis (John, et al., 2007). The major advantage of using an 

amylolytic bacterium is the reduced manufacturing and operating cost related to enzymes and 

hydrolysis of starch. However, these possible benefits might be offset, among others, by lower 

production rates. Examples of amylolytic Lactobacilli are L. amylophilus, L. amylovorus, L. 

plantarum and L. manihotivorans. L. amylophilus is an appealing amylolytic homofermentative 

bacterium, because it synthesizes only L-lactic, without any gas production. It is also a none 

pathogenic micro-organism. Different strains of L. amylophilus were used in literature: L. 

amylophilus GV6 (Altaf, et al., 2005; Altaf,Naveena, et al., 2007; Altaf, et al., 2006; 

Altaf,Venkateshwar, et al., 2007; Naveena, Altaf, et al., 2005; Naveena, et al., 2004; 

Naveena,Altaf, et al., 2005; Naveena, et al., 2003; Reddy, et al., 2008; Vishnu, et al., 2006), JCM 

1125 (Yokota, et al., 1998; Yumoto, et al., 1995), NCIB11546 (Fitzsimons, et al., 1994) and 

                                                 
2 See Appendix A -Glossary 
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NRRL B-4437 (Pierre Mercier, 1990; P. Mercier, et al., 1992; Pompeyo, et al., 1993) Yokota et 

al. (1998) has produced at high substrate concentration (57 g/L of potato starch) approximately 

33 g/L of lactic acid. Improvement of nutrient sources has enabled the production of about 55 g/L 

of lactic acid from a 84 g/L medium of potato starch. Vishnu et al. (2002) have fermented 

different types of starch with L. amylophilus GV6. This bacteria, which produces amylase but also 

amylopullulanase, could produce 32 g/L and 32.6 g/L of lactic acid from, respectively, 40 g/L of 

potato starch and corn starch (Vishnu, et al., 2002).  Five publications on L. amylophilus GV6 are 

unfortunately repetitive, since they present selection of nitrogen component, mainly yeast cells 

and lentils, and their concentration optimization through a Plackett-Burman design or a response-

surface methodology.  

 

Over the concern of using renewable resources, there is also a desire of using waste instead of 

foodstuff. A few publications have discussed the fermentation of kitchen wastes (Sakai, et al., 

2004; Wang,Sun, et al., 2005; Wang, Wang, et al., 2005). Agribusiness wastes, with their high 

production volume and their constant composition over time, are appealing substrate for lactic 

acid production over kitchen wastes. Some studies were performed with whey and cellulosic 

residue, such as corn cobs. In the first case, the major disadvantage is its diluted form and the cost 

associated to its concentration (Vaidya, et al., 2005). In the case of cellulosic waste, it has to be 

pretreated prior to fermentation, due to the compact form of cellulose and the difficulty with 

which enzymes can degrade it (Jeoh, et al., 2007). In the case of starchy waste, there are different 

publications on the lactic acid fermentation of potato waste. Most of them used the yeast 

Rhizopus, which has amylolytic properties, to ferment, among others, cull potatoes and potato 

wastewater (L. Huang, et al., 2005; L. P. Huang, et al., 2005; Jin, 2006; Jin, et al., 2003; Jin, et 

al., 2005; Li Ping Huang, 2003; Y. Liu, et al., 2005; Oda, et al., 2002; Z. Zhang, et al., 2007). 

There is no publication about the fermentation of starchy waste with L. amylophilus. 
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Life cycle assessment on PLA 

LCAs on PLA made bags (James, et al., 2005), films (Franklin Associates, 2006; Vidal, et al., 

2007), food containers  (Franklin Associates, 2006; Krüger, et al., 2009; Martino, et al., 2006), 

diapers (Hakala, et al., 1997) , and drinking containers (Franklin Associates, 2006; Martino, et 

al., 2006; OVAM, 2006; Uihlein, et al., 2008) can be found in the literature. Cradle-to-gate LCAs 

about PLA material are scarce. The most well-known and used are the ones published by 

NatureWorks. In fact, most of the LCAs previously mentioned are using NatureWorks 

inventories. Only the LCA of Hakala et al. (1997) and Uihlein et al. (2008) are using other data 

sources. However, the inventory for PLA production is not presented.  

 

NatureWorks has published two cradle-to-gate LCA studies on their PLA production during the 

last two decades: Vink et al. (2003) & (2007). Their production system can be described in five 

major steps. First, the life cycle starts with corn growing and harvesting. After, corn is sent to a 

corn wet milling facility where starch is separated and converted to dextrose. Dextrose solution is 

sent by pipeline to the fermentation process to be converted to lactic acid. The two last steps are 

the conversion of purified lactic acid solution to lactide and the polymerization of lactide into 

polylactide polymer pellets (Vink, et al., 2007).  

 

From the published LCAs, it is possible to notice that gross non-renewable energy use has been 

reduced by half from 2003 to 2006, passing from 54.1 to 27.2 MJ primary /kg PLLA. Decrease in 

primary energy consumption was expected since biopolymers are recent technologies and, 

therefore, can be more easily improved compared to mature processes. In addition to on-site 

process optimization, this progress has been achieved with the help of REC (“Renewable Energy 

Certificates”) credits purchasing (Vink, et al., 2007), which stopped in January 2009 (Vink, 

2010). This evolution leads to an improvement of LCA results of PLA products with years of 

publishing, since there are improvements in polylactide emissions and energy consumption 

inventory.  
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Unfortunately, NatureWorks LCAs presents aggregated inventories, which makes impossible the 

allocation of the energy and emissions to each process steps. In fact, only a few large-scale lactic 

acid and PLA facilities exist in the world and, therefore, the level of confidentiality on processing 

is high. Thus, detailed data and method of calculations are not presented in NatureWorks LCAs, 

which limits the use of those ecobalances, even more if processing is the point of interest. For 

example, as underlined by Dornburg et al. (2006), NatureWorks LCA do not present the 

allocation procedure for corn wet milling by-products. It has been cited that this lack of 

transparency might raise a doubt against the validity of these LCAs to respond to ISO standards 

(Jones F., 2009).  

 

The only other published cradle-to-gate LCA on PLA was published by SRI consulting in 2004 

(Bohlmann, 2004). The primary energy consumption for PLA was similar to the one of 

NatureWorks in 2003 (51 MJ primary/kg PLLA). The detailed process data and methods of 

calculation used for the realization of this LCA are presented in an SRI report. However, access 

to this report is limited due to its high purchase cost. Even for lactic acid, from which polylactide 

is polymerized, there is no published life cycle assessment. There are however few lactic acid 

economic assessments from which LCA could be performed (Akerberg, et al., 2000; Cable, et al., 

1971; González, et al., 2007; Tejayadi, et al., 1995). They are presenting lactic acid fermentation 

from whey or wheat.   

 

This portrait is in opposition to the number of published life cycle assessments on PHA 

(polyhydroxyalkanotes) materials, which are biodegradable polymers produced in micro-

organism cells. Numerous publications are available, giving sometimes the whole process design 

or a financial assessment (Akiyama, et al., 2003; Devdatt Kurdikar, et al., 2000; Gerngross, 1999; 

Gurieff, et al., 2007; Harding, et al., 2007; S. Kim, et al., 2005; Seungdo Kim, et al., 2008; 

Pietrini, et al., 2007; Zhong, et al., 2009). Some studies are even looking at waste valorization or 

crop management. This discrepancy is quite surprising, knowing that polylactide market is 

presently bigger. An effort should be put into this direction to improve literature on PLA 

processing and its ecobalance. 
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1.3  General methodology 

Following the literature review, which has demonstrated the lack of data related to the synthesis 

of PLA and the industrial utilization of foodstuffs for lactic acid production, fermentation 

experiments, with L. amylophilus, have been done with a potato waste starch medium. The lactic 

acid yields were compared with the ones obtained from glucose or commercial potato starch 

medium. The microbial feasibility is discussed and demonstrated, by comparing the obtained 

lactic acid production rate with the potato waste medium and the optimal one, the glucose 

medium. Those experiments are described in section 2.1. 

 

Once the feasibility has been demonstrated, the industrial process flowsheet for PLA synthesis 

from corn and the expected one if potato starch waste starch would be directly fermented into 

lactic acid were drawn. The choice of the different units is based on NatureWorks and Purac 

published flowsheets (Purac; Vink, et al., 2007) and accepted practices in bioengineering. The 

different process parameters, such as yield and substrate concentration, were set, also with the 

help of literature and general knowledge. Assumptions were made due to the confidentiality of 

processing data, and also because the industrial production of PLA from potato waste does not 

exist.  

 

The next step was the goal and scope definition of the cradle-to-gate LCA. Based on the 

fermentation parameters and the flowsheet previously set, mass and energy balances were 

realized and the inventory was constructed for both processes. From this inventory, a comparative 

impact assessment was performed and analyzed. The LCA section is presented in Chapter 3. A 

final discussion on the whole project is then presented. It recalls, among other topics, the 

environmental profitability and recommendations for optimizing the potato waste starch process. 

A general conclusion is also presented.  
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CHAPTER 2  

2.1 Laboratory experiments 

This section presents the results and discussion of laboratory experiments carried out to evaluate 

the microbial feasibility of producing lactic acid via the direct fermentation of potato waste starch 

with Lactobacillus amylophilus.  

 

2.1.1 Materials and methods 

Microorganism propagation and conservation 

Amylolytic homofermentative L. amylophilus (NRRL B-4437) (Nakamura, et al., 1979) was 

purchased from the ATCC Bioresource. Pure culture was initially propagated at 30°C in MRS 

broth (Difco), previously sterilized. The choice of temperature was based on ATCC growth 

conditions (ATCC, 2009). Sterilization during experiments has been always performed with a 10 

minutes/121°C cycle, in liquid mode for liquids, gravity mode for solids, in a steam sterilizer. 

Suspended cells grown in MRS broth were then concentrated by centrifugation and frozen at -

80ºC in sterile cryogenic vials containing a 15% w/w BHI-glycerol solution.  

 

Media preparation 

Reconstituted MRS media containing 20g/L of carbohydrate were prepared with peptone (10 g/L, 

Difco), meat extract (8 g/L, Oxoid), yeast extract (4 g/L, Difco), dibasic potassium phosphate (2 

g/L % w/v, EM Science), sodium acetate (5 g/L, BDH), ammonium citrate (2 g/L, Fisher 

Chemicals), magnesium sulfate, (0.2 g/L, Laboratoire Mat), manganese sulfate (0.05 g/L, 

Spectrum Quality Product), polysorbate 80 (1 g/L, Sigma Aldrich) and glucose (20 g/L Sigma 

Aldrich) or commercial potato starch (20 g/L, Sigma Aldrich, see Figure 2-1) or  potato waste 

starch (20 g/L, anonymous industrial source, see Figure 2-1), mixed with 1 liter of deionized 
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water. Once the medium has been sterilized, magnetic agitation was kept constant during the 

cooling of starchy medium to minimize retrogradation3 of starch. 

 

Humidity content of potato waste starch was evaluated by drying samples at 130°C for 90 min., 

following the International Starch Institute ISI 01-1e method (International Starch Institute, 

1999). Potato waste starch was frozen at -20°C until its use. On a dry weight basis, potato waste 

starch was considered as being pure, since impurities are expected to be very low for this kind of 

waste (less than 1%) (Cheatham, 2010).  

 

Fermentation 

Fresh inocula for fermentation (preculture) were prepared in sterile tubes containing MRS broth 

by adding a thawed cell suspension at 2% and incubating the tubes at 30ºC, for 24h. Nitrogen was 

injected in tubes prior to incubation to flush the headspace. During preculture growth, tubes were 

agitated on a rotary shaker (Large Labquake® Shaker, Double deck trays, Thermo Scientific) to 

maintain cell dispersion and minimize turbulence.  

 

Fermentations were performed in BioFermentors (New Brunswick, see Figure 2-2), with a 2.5 L 

vessel and a Bioflo3000 system control. Two liters of media were inoculated with a 24h-glucose 

preculture of Lactobacillus amylophilus at 1%. Fermentations were carried out at 30°C at an 

initial pH of 6.1 ± 0.1 under pH control at 5.5 ± 0.1 with a 3M solution KOH/NH4OH 5:1 v/v. 

Choice of pH condition is based on Mercier et al. (1992) and Pompeyo et al. (1993). Agitation 

was carried out with a double turbine stirrer running at 50 RPM for glucose and commercial 

potato starch and 100 RPM for potato waste starch due to higher viscosity. Sampling was done 

every 24h for microbial analysis. Part of samples was also frozen at -20ºC for further chemical 

analysis. Fermentations were performed following a random planning, in 3 assays in the case of 

glucose, 4 in the case of commercial starch medium and 5 assays in the case of potato waste 

                                                 
3 See Appendix A - Glossary 
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starch. The number of assays was chosen in function of the heterogeneity of the different 

medium. Potential contamination was checked with Petris and microscope observations.  

 

  

Figure 2-1: Commercial potato starch (left) and potato waste starch (right) 

 

 

Figure 2-2: Fermentation set-up  
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Effect of preculture 

The effect of preculture has been investigated on commercial potato starch fermentations 

inoculated with a 24h preculture grown on a glucose MRS broth (Difco) or grown on a 

commercial potato starch reconstituted MRS medium. These experiments were realized in 2 

assays. The initial pH was not adjusted (pH = 6.5) and controlled at 5.5. The age of the inoculum 

has also been taken in consideration (24h-48h). Microbial counts and pH measurements of 

precultures incubated during a period of up to 72 hours has been previously performed, in 3 

assays.  

 

Microbiological analysis 

Serial dilutions were done in 0.1% peptone water (Difco). Microbial counts were numerated on 

MRS agar supplemented with X-Gal (Bioshop), in duplicates. MRS agar was prepared with MRS 

broth (Difco), to which 12g/L of agar (Difco) and 0.6 mL/L of a X-Gal solution is added after 

sterilization. The X-Gal solution is prepared by diluting the X-Gal at 10% (w/v) in DMSO 

(dimethyl sulphoxide) and sterilizing the solution by filtration on a 0.45 µm filter syringe. Final 

X-Gal concentration in the MRS broth is 0.006%. Incubation was done in an anaerobic chamber 

at 30°C, and counts were performed when maximum growth was observed (approximately after 

3-4 days of incubation). 

 

Chemical analysis 

Samples were centrifuged at 4500 RPM for 10 min. at 4°C. 4 mL of supernatant was removed 

and diluted 1:2 with 4 mL of mobile phase, H2SO4 0.01N, with the help of a vortex mixer. The 

liquid was then filtrated on a 0.45 µm filter. The filtrated liquid was then subsequently separated 

on a “Sep-Pak C18 plus” column (Waters), previously conditioned with, successively, 8 mL of 

methanol and deionized water. The sample was finally filtrated with a 0.22 µm. The clarified 

liquid was transferred in HPLC vials and lactic acid and glucose were analyzed on HPLC 

(Waters), with an Aminex HPX-87H column. 

  



24 

 

 

 

2.1.2 Results and discussion 

Effect of preculture 

Growth and pH measurements have been previously carried out on precultures, every 24 hours. 

Results are presented in Appendix B. From these results, it has been decided that 24 hours 

preculture should be the optimum incubation time tested, since growth was in its exponential 

phase. Experiments to evaluate the effect of the 24h-preculture medium type (MRS glucose 

versus reconstituted MRS of commercial potato starch) have shown that independently of the 

carbohydrate sources for the preparation of preculture, no significant differences were observed 

for growth rate (see Figure 2-3) and lactic acids yields (see Figure 2-4) of commercial potato 

starch fermentations.  

 

 

Figure 2-3: Growth in commercial potato starch fermentations as a function of preculture type 
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Figure 2-4: Percentage of lactic acid produced by commercial potato starch fermentations as 

function of preculture type 
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not considered as significant. Independently of the media, the maximal growth is reached during 

the first 24 hours of fermentation.  

 

 
Figure 2-5: Growth as a function of fermentation time for different MRS reconstituted medium 
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Lactic acid production from glucose, commercial starch and starch waste fermentation 

 

Figure 2-6: Percentage of lactic acid as a function of fermentation time for different MRS 

reconstituted medium 
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acid yield. Starch coming from wastewater allows slightly lower levels of acid after 72 hours as 

compared to those obtained on glucose.  

 

For both starch substrates, the glucose concentration during fermentation was negligible, which 

suggests that the hydrolysis of starch, the enzyme production or its mass transfer can be the 

limiting step. The whole process of lactic acid production on a micro point of view can be 

summarized in 8 steps, depicted in Figure 2-7: 

 

Figure 2-7: Steps in lactic acid production 

1: Enzyme production diffusion; 2: Enzyme convective mass transfer; 3: Enzyme diffusion; 4: 

Starch hydrolysis; 5: Glucose diffusion; 6: Glucose convective mass transfer; 7: Glucose 

diffusion; 8: Glucose assimilation/enzyme production 

 

The enzyme production rate for the potato waste starch media may have been influenced by the 

presence of impurities as mentioned previously for the growth. However, the interesting 

discrepancy between commercial and waste starch lactic acid yields should be mainly related to 

the different rate of starch hydrolysis, which relies on the different starch physicochemical 

properties. Many factors, such as, for examples, type of cultivar, the cultivation method and the 

method of isolation may influence the composition (ex.: ratio of amylose/amylopectin, 

phosphorus content) and the structure (ex.: crystallinity, porosity), therefore, among others, the 

thermal behavior (Q. Liu, et al., 2002; Qiang Liu, et al., 2007) and the digestibility of a starch 
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solution (Tester, et al., 2004). Since starches used in these experiments were from different 

origins, they may have different behaviors upon sterilization/cooling and variable final 

digestibility.  

 

Microscopic observation of a small medium volume (100 mL) shows some extent of 

gelatinization following sterilization (see Figure 2-8).  

 

 

Figure 2-8: Optical microscope observation of iodine stained commercial starch medium (100 

mL); Before (left) and after sterilization (right) 

 

As reported by others, gelatinization leads to the swelling of starch granules (see Appendix A - 

Glossary). Further heating may lead to the release of starch polymers in the medium and to the 

lost of granule integrity. Gelatinization, which disrupts crystallinity of starch and dissolves 

polymers chains, is known for improving the binding capacities of amylase and therefore 

increases the hydrolysis efficiency of enzymes (Tester, et al., 2004). Higher the degree of 

gelatinization, higher should be the starch digestibility. In laboratory, gelatinization was 

performed during sterilization, in excess of water, which corresponds to a water concentration of 

more than about 70% w/w (Qiang, 2009).  
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Our results suggest that the degree of digestibility reached as a result of sterilization is higher 

with waste starch compared to the commercial one. Furthermore, greater viscosity has been 

visually observed for sterilized waste starch medium. In fact, a higher degree of solubility was 

noticed for gelatinized waste starch compared to commercial starch. A white precipitate could be 

observed in sterilized commercial starch medium when no agitation was provided. In the case of 

potato waste starch, firm pieces of gel were formed during sterilization. One explanation might 

be the different processing methods of this substrate, leading to different water binding capacity 

and therefore, differences in physicochemical properties. Since potato waste starch is collected in 

water, it can be assumed that these granules have more affinity with water. In the case of 

commercial starch, they are usually treated to reduce their hydroscopic properties. Also, 

amylopectin is more soluble in water than amylose (Bernfeld, 2006), suggesting that the residue 

might have a higher content of amylopectin.  

 

The higher solubility of potato waste starch may also be explained by the degree of gelatinization 

reached which facilitates polymers dissolution. The degree of gelatinization is dependant of the 

granules swelling capacity and the water mass transfer. Potato starch is known for its high 

swelling capacity, leading to high peak viscosity. It is expected that at heating temperature of 

100°C, in excess of water, an homogenous potato starch solution is totally disrupted (Swinkels, 

1985). The lasting white powder in sterilized commercial starch medium could be starch granules 

swollen to a lesser extent, resulting in lower viscosity, solubility and also digestibility. Mass 

transfer limitation of water due to starch precipitation during heating may have been more 

detrimental to commercial potato starch. As mentioned before, commercial starches are treated to 

reduce their hygroscopic behavior and this treatment may have reduced the water absorption 

capacity of its granules. Potato waste starch did not receive any treatment, but was frozen for 

conservation purposes. Freezing and thawing increase the granule porosity, and so improve their 

wetting ability (Szymonska, et al., 2005), and so gelatinization efficiency. The drying 

temperature has also an influence on the starch granules swelling capacity and may have been 

different between the processing of commercial and waste starch. Higher drying temperature 

increase the granules rigidity, thus reduces their swelling capacities (Malumba, et al., 2009). 
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Retrogradation during cooling might be a cause for gel and precipitate formation. The white 

precipitate of commercial starch could be polymer chains highly crystallized by this set-back 

process. Retrogradation is known for its negative impact on digestibility since it crystallizes 

polymer chains and reduces enzyme accessibility (Chung, et al., 2006; Tester, et al., 2004). It 

may have been more detrimental in the case of commercial starch, if it contains more amylose. 

Amylose chains are essentially linear and have a greater tendency to reassociate upon cooling 

(Thomas, et al., 1999). Phosphorus content has also a negative impact on digestibility (T. Noda, 

et al., 2008).  As it can be noticed, numerous reasons can be raised to explain the difference in 

digestibility of both starch medium, and the ratio of amylose/amylopectin is one of these. 

However, it is impossible within the framework of these experiments’ results to end up with any 

conclusion. Different publications are presented in the bibliography to present the complexity of 

starch. 

 

In the case of potato waste starch medium, initial starch could not be sampled adequately, since 

pieces of gel were present at the fermentor start up. These pieces of gel, which are probably more 

concentrated in starch than the surrounding medium, seemed to disappear within 24 hours. 

Therefore, it was impossible to have similar homogeneity between assays and temperature was 

also difficult to control at the fermentor start up. This has lead to a reduced reproducibility of the 

experimental data. Standard deviation for the measurements of lactic acid content was more 

elevated for these fermentations. Another demonstration of this complex behavior is the gel 

formation during freezing. Samples, frozen at -20°C for conservation, had small pieces of gel 

after thawing. This was also the case for commercial starch samples, but to a lesser extent. This 

gel formation was probably caused by retrogradation, which can happen during storage and 

freezing (Ribotta, et al., 2003). Heterogeneity of samples has prevented starch analysis and so the 

exact initial starch concentration could not be measured. A special attention must be given to 

storage conditions or, otherwise, conduct the analysis immediately after the samples collection.  

 

It was assumed that starch deposition during sterilization might lead to limited water mass 

transfer to starch granules but also easier reassociation between the dispersed polymer chains 



32 

 

 

 

during cooling. To overcome gel formation, pre-heating of the medium was performed on a 

heating plate, up to approximately 75°C, to partly gelatinized starch before sterilization. Around 

75°C, increase in viscosity was observed, a sign that most of the granules have swollen. 

Sterilization was then realized, by adjusting the temperature sensor to 75°C at the beginning. The 

final medium was approximately 35 times more viscous than water (viscometer measurements at 

30°C), without any pieces of gel. The same preparation method was used for commercial starch, 

at a pre-heating temperature of 70°C. The homogeneity of the medium seemed also to be 

improved. The viscosity was approximately 1.5 times more elevated than the one of water. Some 

fine tuning was performed on fermentor to adjust the speed of agitation to prevent temperature 

variation. Fermentation assay were realized with these homogenous media. Average final lactic 

acid concentration was approximately 50% lower for potato waste starch (data not shown), and 

lactic acid curve was out of previous experiments standard deviation. Temperature control was 

still problematic. This procedure for gelatinization was different, in term of speed of heating and 

agitation, compared to direct sterilization, and reduces standard deviation of these assays, but 

seems unfavorable to reach a better digestion rate. The medium rheology may also have reduced 

the nutrients mass transfer to the cells. A decrease in final lactic acid concentration was also 

observed for commercial potato starch fermentation. It was reduced by more or less 30% (data 

not shown).  

 

During these assays, fermentations were also performed with spent brewer’s sludge (source: 

industrial; anonymous), replacing the equivalent nitrogen amount of MRS constituents (peptone, 

meat extract and yeast extract). Nitrogen contents of MRS constituents and spent brewer’s sludge 

were realized with the LECO Nitrogen / protein Determinator. Water content of spent brewer’s 

sludge was measured by drying at 105°C until constant weight. After sterilization, the media had 

a strong smell of hops. Fermentations did not give any notable lactic acid production. Hops, 

which inhibit lactic acid growth (Green, 2009), might be the cause. 

 

It was also observed during experiments that a medium sterilized without polysorbate 80 was less 

viscous. Surfactants are known for influencing starch thermal behavior and it was demonstrated 
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in literature that these chemicals can increase the cold viscosity of a starch paste (Azizi, et al., 

2005; Moorthy, 1985). The necessity of using this surfactant should be evaluated. These 

chemicals are added to prevent foam formation, but L. amylophilus do not need any oxygen 

feeding and do not produce any gas, so this culture should not tend to produce foam.  

 

The fermentation of sterilized media, without pre-heating, performed with an agitation of 100 

RPM for potato waste starch and 50 RPM for commercial potato starch were the optimal 

configurations for this study. The results obtained can be hardly compared with existing 

literature. In fact, there are no publications that used L. amylophilus NRRL B-4437 to ferment 

potato starch. Only four publications report the use of this strain: Pierre Mercier (1990), P. 

Mercier et al. (1992), Nakamura (1979) and Pompeyo et al. (1993). Also, lactic acid production 

rate depends on growth and enzyme affinity with the substrate, which depend on the starch type 

but also on the medium preparation method. From our experiments, it is not possible to determine 

an absolute yield, since the real initial starch concentration is not known. It is however possible to 

conclude, from the results obtained, that potato waste starch can have a greater potential for lactic 

acid fermentation than commercial potato starch. The feasibility of producing lactic acid by 

fermenting potato waste starch with L. amylophilus has been demonstrated on a microbiological 

basis, as lactic acid concentration reached are close to the one obtained on an optimal medium, 

the glucose one. The first objective has been completed. 

 

2.2 Process parameters and flowsheets 

The next section presents the fermentation parameters and flowsheets of industrial lactic acid 

production from potato wastewater and from corn, which use as a fermentation substrate potato 

waste starch and dextrose respectively. In the case of lactic acid produced by the direct 

fermentation of potato waste starch, these are expected parameters, since there is no existing 

industrial facility. In the case of lactic acid fermentation of dextrose from corn, these are the 

parameters assumed for a conventional facility. Even if industrial-scale facilities which ferment 

dextrose from corn do exist, this information cannot be obtained from lactic acid producers due to 
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confidentiality reasons. Therefore, these parameters are assumptions, based on literature and 

general knowledge in bioengineering from scientists in this field. The fermentation parameters 

detailed description and assumptions/references related to it are presented in Appendix D. 

 

2.2.1 Lactic acid from potato waste starch 

Table 2-1 presents the assumed parameters for the fermentation process: 

Table 2-1: Parameters for the fermentation of potato waste starch from wastewater 
 

Fermentation parameter  Value/set 

Mode  Batch 

Concentration of substrate 40 g dry PWS/L 

Time length 3 days 

Final lactic acid yield 0.9 g lactic acid/g dry PWS 

pH 6 

Temperature 37°C 

Nitrogen nutrient source composition 45 g CSL solids/L 

Pretreatment of media Gelatinization at 90°C 

Agitator Rushton turbine(s) 

Power of agitation Scale-up: P/V constant from 
laboratory experiments 
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The major steps in the process of lactic acid production from potato waste starch are presented 

below: 

1. Concentration of starch in potato wastewater to 13% of humidity; 

2. Fermentation of potato waste starch media with L. amylophilus; 

3. Lactic acid purification. 

 

The process flowsheet for lactic acid fermentation and its purification (step 2 and 3) is presented 

in Figure 2-10. Pumps, utilities and residence tanks are not shown. 

 

Concentration of waste starch in potato wastewater to 13% of humidity 

A detailed process flowsheet for waste starch concentration is presented in Figure 2-9. This 

process was the one employed for the recuperation of the starch residue used in the present study 

experiments.  

 

First, starch wastewater and grinded rejected potatoes pass through a vibrating screen for the 

recuperation of bigger solid residues. Those residues may be pieces of peel or potato flesh and are 

given to farmers for animal alimentation. The starch solution ends up in a residence tank (see 

“Tank 1” in Figure 2-9) after which it is centrifuged through hydrocyclones. The solid phase, the 

starch residue, is conducted to a vacuum drum, while the liquid is redirected to another residence 

tank (see “Tank 2” in Figure 2-9). To optimize starch recovery efficiency, this liquid is 

centrifuged a second time. The centrifuged liquid will end up in a drain, to be treated by the 

wastewater treatment facility. A vacuum drum will lower the water content of starch residue 

around 40%. To reach a lower moisture content, starch is transferred to an air lift dryer, from 

which the moisture content is reduced to at least 13%, the aimed set value. This level of humidity 

enables a sufficient conservation of the product. 
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Figure 2-9: Potato starch waste concentration flowsheet 
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Figure 2-10: Process flowsheet for lactic acid production and purification  

Modified from SuperPro Designer® (Intelligen Inc., 1991) 
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The fermentation of starch media 

The medium (water, starch residue and nutrients) is initially fed to the fermentor. As mentioned 

before, due to its compact form and its insolubility at ambient temperature, starch has to be 

gelatinized to improve its hydrolysis rate. This step is realized directly in the fermentor, with a 

proper agitation to maintain starch dispersion. Steam and water are respectively fed to the 

jacket/coil of the fermentor for heating to 90ºC, and then to cool the media to 37ºC, the set 

fermentation temperature. 

 

Fermentations are realized in a batch mode and are inoculated with a preculture of L. amylophilus 

(inoculum). The culture medium is maintained at 37°C with the help of water through the 

jacket/coils of the fermentor.  The pH is maintained at 6 with calcium hydroxide. Starch is 

saccharified into dextrose, and dextrose is assimilated by bacteria to produce biomass and lactic 

acid. At pH 6, lactic acid is essentially all under its dissociated form (Carlson, et al., 2002). For 

the sake of simplification, it will be considered that 100% of lactic acid was under the calcium 

lactate form. The reactions occurring are presented below: 

 

- Saccharification of starch into glucose molecules:     

ሺܥ଺ܪଵ଴ܱହሻ௡ ൅ ଶܱ ՜ܪ݊  ଵଶܱ଺ܪ଺ܥ݊ 

            

- Fermentation of glucose into lactic acid: 

ଵଶܱ଺ܪ଺ܥ  
௕௜௢௠௔௦௦
ሱۛ ۛۛ ۛሮ ଺ܱଷܪଷܥ2  ൅  ݏݏܽ݉݋ܾ݅ 

 

- Calcium lactate formation:  

଺ܱଷ ൅ܪଷܥ2 ሻଶܪሺܱܽܥ  ՜ ܥଷܪହܱଷ
ାܱଷܽܥି

ଷܥହܪି ൅   ଶܱܪ2
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Since gelatinization and fermentation are realized in the same unit, only one fermentor is shown 

on the flowsheet. 

 

The purification of lactic acid 

The purification steps are based on Vink et al. (2007). Lactic acid is purified by the dissociation 

of calcium lactate with sulfuric acid, which leads to the formation of gypsum (calcium sulphate; 

CaSO4), following the reaction shown in the equation below: 

 

ହܱଷܪଷܥ
ାܱଷܽܥି

ଷܥହܪି ൅ ଶܵܪ ସܱ ՜ ܵܽܥ ସܱ ൅  ଺ܱଷ  (Datta, 2007)ܪଷܥ2

 

Even if some new methods are being developed to reduce the production of waste like gypsum, 

this purification method is presented in NatureWorks and Purac last published flowsheet (Purac, 

2009; Vink, et al., 2007). For this reason, the basic purification process with sulfuric acid, which 

might has been improved in the industry by solvent addition (Joglekar, et al., 2006), was chosen. 

The four major steps of the purification process are: 

 

- Removal of biomass through microfiltration; 

- Precipitation of gypsum to dissociate lactic acid from calcium, with the help of sulfuric 

acid; 

- Removal of gypsum with a rotary filter; 

- Removal of water by a multi-effect evaporator, to lead to a 88 wt% lactic acid solution, 

neglecting final impurities. The final concentration of lactic acid is based on USP/FCC 

grade (United States Pharmacopeial/Food Chemical Codex) (González, et al., 2007). 

 

The purification steps follow well-known heuristics (“rules of thumb”) in bioseparation 

processes, taken from Bioseparations Science and Engineering (2003), chapter 11: 

- Remove the most plentiful impurities first; 
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- Remove the easiest-to-remove impurities first; 

- Make the most difficult and expensive separations last; 

- Select processes that make use of the greatest differences in the properties of the product 

and its impurities. 

 

In accordance with the first two heuristics presented and to limit fouling of units, it has been 

decided that biomass would be removed by microfiltration, prior to acidification. The 

microfiltration is preferred to centrifugation in the industry, due to its low operational cost 

(Arcand, 2010). Following the acidification step, gypsum is removed by rotary filtration, as 

suggested by NatureWorks (Vink, et al., 2007). Other insoluble parts may be removed by the 

filtration units. Concentration of lactic acid follows. Since high quantity of water has to be 

removed, it is expected that multi-effect evaporators are used in the industry (Bohlmann, 2004). 

The evaporator will be assumed as having 3 effects. Final purification, to remove trace of water 

and soluble contaminants, such as proteins and sugars, follows.  
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2.2.2 Lactic acid from corn 

Table 2-2 presents the assumed parameters for the fermentation step: 

Table 2-2: Parameters for fermentation of dextrose from corn 

Fermentation parameter Value/set 

Mode  Batch 

Concentration of substrate 92 g dextrose/L 

Time length 3 days 

Final lactic acid yield 0.9 g lactic acid/g dextrose 

pH 6 

Temperature 45°C 

Nitrogen nutrient source 
composition 

45 g CSL solids/L 

Pretreatment of media None 

Agitator Rushton turbine(s) 

Power of agitation Scale-up: P/V constant from 
laboratory experiments 

 

The major steps in the process of lactic acid production from corn are presented below: 

1. Production of glucose from corn; 

2. Fermentation of glucose media with L. amylophilus; 

3. Lactic acid purification. 

 

The general process flowsheet related to the lactic acid fermentation and purification (step 2 and 

3) is the same as the one presented in Figure 2-10. 

 



42 

 

 

 

Production of dextrose from corn 

Once corn has been harvested, starch can be extracted and transformed into sweeteners like 

dextrose with the help of an acid or enzymatic hydrolysis. This process, the “corn wet milling”, 

leads to different products from starch, but produces inevitably co-products, which are sold as 

animal additives, as mentioned in the state-of-art (section 1.3). A typical process flowsheet of a 

corn wet milling facility can be found in Blanchard (1992).  

 

The fermentation of glucose media 

The medium (water, residue starch and nutrients) are initially fed to the fermentor. No 

pretreatment, even a heat treatment, is given to the media. The fermentor is then inoculated with a 

lactic acid bacteria preculture, which is not amylolytic.  The medium is maintained during 

fermentation at 45°C with water through the jacket/coils and at a pH of 6 with calcium 

hydroxide. As mentioned previously, calcium lactate is formed during the neutralization of lactic 

acid. 

 

The purification of lactic acid 

The same method of purification as the one described in section 2.2.1 has been chosen. 
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CHAPTER 3 LIFE CYCLE ASSESSMENT 

3.1 Goal of the study 

This life cycle assessment (LCA) study investigates, from an environmental point of view, the 

development of a new process for poly-L-lactic acid (PLLA) production. Its goal is to compare 

the potential environmental impacts of producing PLLA via the direct valorization of an 

agribusiness waste (potato waste starch) with the utilization of transformed foodstuff (dextrose 

from corn). Particularly, this evaluation will be carried out through a comparative “cradle-to-

gate” LCA of two different processing scenarios for lactic acid production. These scenarios are 

based on the processes presented in chapter 2. This study will demonstrate, through an impact 

assessment, the potential environmental benefits/disadvantages that could be reached in the near-

future by producing lactic acid for PLLA synthesis by fermenting directly concentrated potato 

waste starch with Lactobacillus amylophilus instead of dextrose from a corn wet milling facility. 

It will also present some limitations related to this innovative process and subsequent potential 

optimizations that could be done to improve the ecobalance of PLLA produced through this 

process configuration.  

 

This LCA is addressed to industrial developers, which want to improve the ecobalance of PLLA 

processing. All emissions and energy consumption data related to potato waste starch 

concentration were provided by an industrial partner, who gave a residue sample for the previous 

laboratory experiments. Due to a confidentiality agreement, the partner’s name cannot be 

disclosed. 

 

3.2 Scope of the study 

The framework of this study is set according to the ISO 14040 and 14044 guidelines (ISO, 2006a, 

2006b). The function of the product systems is defined as producing lactic acid for synthesis of a 

polymer used in food packaging. The functional unit is to produce 1 kg of L-lactic acid 

solution, at 88% wt (USP/FCC grade concentration (González, et al., 2007)). The scenario 

boundaries are shown in Figure 3-1 and 3-2. 
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This “cradle-to-gate” LCA includes all steps, from the production and extraction of raw materials 

and fuels, followed by all conversion and processing steps to produce L-lactic acid for the 

synthesis of PLLA (lactic acid fermentation and purification), until this product is delivered out 

of the lactic acid factory gate. In this work, the scenario called “Corn” corresponds to the process 

using corn as a raw material; the scenario “PWS water”, using potato wastewater. Each scenario 

has four major steps: media preparation, media pre-heating, lactic acid fermentation and lactic 

acid purification. The media preparation consists of the substrate preparation for fermentation. In 

the “Corn” scenario, this is the production of dextrose from corn through the corn wet milling 

process, including the agricultural steps for corn growing. In the “PWS water” scenario, this 

includes the concentration of potato waste starch out of potato wastewater. All inputs related to 

the media constitution are also included in the media preparation step, such as corn steep liquor 

and water. Part of the media is used for cellular growth (preparation of the inoculum). Media pre-

heating corresponds to any heating of the media prior to fermentation: heating to fermentation 

temperature in the case of the scenario “Corn”; gelatinization and cooling to fermentation 

temperature in the case of the scenario “PWS water”. The lactic acid fermentation and its 

purification follow. The purification step includes the biomass filtration, the calcium lactate 

dissociation with sulphuric acid, the filtration of gypsum and finally the concentration of lactic 

acid to 88% wt. 
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Figure 3-1: System boundaries of the “Corn” scenario  

 



46 

 

 

 

 

Figure 3-2: System boundaries of the “PWS water” scenario  
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The transport of the raw materials and sludge to the landfill is not detailed in Figures 3-1 and 3-2, 

but is, however, included. The wastewater treatment and the final disposal of biomass are also 

included. Excluded processes are presented below: 

 

1. This study does not further compare the polymerization steps following the lactic acid 

purification because they are assumed to be exactly the same for both processes once 

lactic acid has been purified. Any modification to the actual polymerization process for 

PLLA is not part of this study;   

2. To obtain a lactic acid of high purity (water-white), it is expected that lactic acid will be 

esterified with methanol or ethanol, distillated and hydrolyzed with water, like the 

conventional process (Datta, et al., 2006). The associated environmental impacts of the 

esterification/hydrolysis step are expected to be identical for both product systems; 

3. Removal of soluble impurities can be performed by ultrafiltration or by carbon 

treatement. The contribution of these filtration units to the environmental impacts is 

expected to be very low (Bohlmann, 2010) and so is not supposed to be environmentally 

relevant; 

4. Cooling of the different vapor condensates and heat exchanger waters; 

5. Water consumption related to cleaning and washing of the different units can be hardly 

evaluated without pilot-plant experiments; 

6. The electrical consumption related to utilities and pumps in the lactic acid 

fermentation/purification process, except agitation during fermentation, for lack of a 

detailed process design;  

7. Cell bank preparation and energy consumption related to inoculum propagation, as it is 

the case in some economical assessments (Akerberg, et al., 2000); 

8. The lactic acid process infrastructure is supposed to be negligible; 

9. Minerals and other chemicals added to the media, since their concentration over the 

nitrogen source (corn steep liquor) is expected to be low (< 10% wt of total nutrients 

(Carlson, et al., 2002)) and none of them contain heavy metals.  
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The allocation methods for potato waste starch, potato peel, dextrose and corn steep liquor are 

described below: 

 Potato wastewater et potato peel (economic allocation) 

Potato waste starch is recuperated from wastewater with the help of different concentration 

steps. Since potato wastewater has no economical value, none of the emissions and primary 

energy of the potato chip process is allocated to this waste, even for the treatment of its water. 

Concentration of potato wastewater puts an economical value to potato waste starch, by 

removing water and these steps are not necessary for the chip production, the main product of 

the industrial partner. In this case, emissions and energy consumption related to potato waste 

starch concentration have to be allocated to potato waste starch. All inputs/outputs related to 

this part (natural gas, electricity and tap water for washing and its treatment) of the potato 

chips process were given by the industrial partner. Reference flows per kg of potato waste 

starch were calculated from it. 

 

Potato peel filtrated from wastewater are given to farmers in the immediate vicinity of the 

plant. Since it has no economical value, it is considered as a by-product. No emissions/energy 

of the potato waste starch concentration process will be allocated to these solid residues. 

Transport of the potato peel is provided by the farmers and so does not have to be considered 

in the product systems. 

 

 Corn gluten meal, corn gluten feed, corn oil and corn steep liquor  (system expansion) 

Since different co-products, which have all an economical value, are produced in a corn wet 

milling facility, part of the emissions and energy consumption related to dextrose production, 

including corn growing and harvesting, has to be allocated to each of these co-products. The 

allocation will be avoided by realizing a system expansion. The co-products will be 

considered as replacing the production of other products, such as animal feed and oil, i.e. 

barley, soybean meal and soybean oil. The energy and emissions saved by this product 

displacement will be attributed to dextrose production.  
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Since the corn steep liquor used for fermentation is also a co-product of the corn wet milling 

process, the associated environmental impact will be from the product it normally displaces. 

Displaced products amounts are presented in Figure 3-3 and are based on protein content (see 

Appendix G for calculations). A sensitivity analysis in section 3.5.2 will compare the system 

expansion method with the economical allocation factors for all co-products. 

 

 

Figure 3-3: Avoided burdens for dextrose production through system expansion 

 

3.3 Reference flows 

The reference flows inventory of L-lactic acid produced from corn or potato wastewater is based 

on the mass and energy flows of the process flowsheets presented in chapter 2. The mass and 

energy balances and the assumptions related are presented in Appendix E.  
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The reference flows inventory for both scenarios studied are presented in Tables 3-1 and 3-2. The 

assumptions related to these inventories are: 

 

1. Water from saturated steam condensate is considered as clean since it does not come in 

contact with the media and so it does not need any treatment; 

2. Even if it was assumed that no lactic acid ends up in the vapor phases of the multi-effect 

evaporator, it will be considered that the condensate from the concentrated solution  has to 

be treated in a wastewater facility (worst case scenario philosophy); 

3. Filtrated biomass (wet weight) and the residuals it contains end up in a sanitary landfill. 

This waste is called “sludge”; 

4. Gypsum (pure, dry weight) co-product is used for land-application, as assumed in 

NatureWorks LCA (Vink, et al., 2007). It replaces mined gypsum. Humidity and 

impurities contained are not removed; 

5. Water emission from the potato waste dryer are not considered as containing any 

pollutants; 

6. To be representative of the European geography-scale, 300 km of transport will be 

assumed for any inputs of raw materials and 100 km of transport for sludge to the sanitary 

landfill. Since the corn wet milling facilities are expected to be situated relatively close to 

crop fields, 100 km will also be assumed for corn transportation.  
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Table 3-1: Inputs and outputs for the synthesis of lactic acid via the “Corn” scenario, per kg of 

lactic acid at 88% wt produced (neglecting final impurities) 

Step Input Value Output Value 

Media preparation Tap water (15°C) 10 kg Barley 0.22 

Dextrose100%* 1.0 kg Soybean meal 0.13 

CSL 0.97 kg Soybean oil  0.027 

 Transport 0.59 tkm   

Media pre-heating Saturated steam 

(121°C, 1.1 bar) 

0.66 kg   

Fermentation Calcium hydroxide 0.37 kg   

Cooling water 1.7 kg   

 Electricity 0.0015 kWh   

 Transport 0.11 tkm   

Purification Sulphuric acid 0.49 kg Gypsum (pure, dry weight) 0.67 kg

Saturated steam 4.2 kg Sludge  0.12 kg

Cooling water  390 kg Wastewater 11 kg 

Transport 0.16 tkm Lactic acid (88% wt) 

+ impurities 

1.0 kg 

*: Inputs/outputs are available per kg of dextrose produced from corn crop at a corn wet milling 

facility. “Dextrose100%” represents the inputs and outputs per kg of dextrose produced, with 100% 

allocation to it. 

 

  



52 

 

 

 

Table 3-2: Inputs and outputs for the synthesis of lactic acid via the “PWS water” scenario, per 

kg of lactic acid at 88% wt produced (neglecting final impurities) 

Step Input Value Output Value 

Media preparation Tap water (15°C) 24 kg Potato peel Unknown 

PWS (humid)* 1.1 kg   

CSL 2.2 kg   

 Transport 1.0 tkm   

Media pre-heating Saturated steam 

(121°C, 1.1 bar) 

3.7 kg   

Cooling water  270 kg   

Fermentation Calcium hydroxide 0.37 kg   

 Cooling water  3.8 kg   

 Electricity 0.011 kWh   

 Transport 0.11 tkm   

Purification Sulphuric acid 0.48 kg Gypsum (pure, dry weight) 0.67 kg 

 Saturated steam 10 kg Sludge  1.0 kg 

 Cooling water  870 kg Wastewater  24 kg 

 Transport 0.25 tkm Lactic acid (88% wt) 

+ impurities 

1.0 kg 

*: Inputs/outputs are available per of kg potato waste starch (13% humidity) produced from the 

concentration of potato wastewater 
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3.4 Life Cycle Inventory analysis 

3.4.1 Development of new process datasets  

The Ecoinvent life cycle inventory database (Frischknecht, et al., 2004) was chosen for the 

conversion of reference flows in term of cradle-to-gate emissions and primary energy inventory. 

For the substrate and nutrients used in fermentation, which are dextrose from corn, potato waste 

starch and corn steep liquor, there are no existing processes in Ecoinvent. Specific processes were 

created per kg of substrate/corn steep liquor. These processes are based on literature and 

industrial data. Processes created for the purpose of this study are presented below. Table 3-3 

presents the inputs and outputs related to dextrose production from corn, with 100% allocation to 

dextrose, taken from Renouf et al. (2008) LCA study. 
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Table 3-3: Inputs and outputs for the processing of corn per ton of dextrose  

(100% allocation to dextrose) 

Input Unit Value Output Unit Value

Corn t 1.5 Dextrose100% t 1.0 

Electricity MJ 322 Air emissions 

Natural gas MJ 1678 Particulate (PM10) g 0.7 

Lime kg 0.3 Water emissions 

Sulphuric acid kg 0.45 BOD5 g 0.2 

Sulphur dioxide kg 3.06 Chlorides g 118.8 

Urea g 208 Sulphate g 0.2 

Sodium hydroxide (50%) g 282 Suspended matter g 0.7 

Sodium chloride g 65    

Cyclohexane g 55    

Chlorine g 12    

Water t 4.9    

Transport tkm 1.5E+02    

 

Table 3-4 presents the input and output of corn steep liquor production, taking into account the 

system expansion methodology.  

Table 3-4: Input and output for the processing of corn per ton of corn steep liquor 

Inputs Unit Value Output Unit Value 

Soybean meal t 0.5 Corn steep liquor t 1.0 
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The inputs/outputs related to the potato waste starch production from wastewater concentration 

are given in Table 3-5. These are based on annual averages of the water and energy consumption 

for potato waste concentration by the industrial partner in 2009.  

 

Table 3-5: Inputs and outputs for the concentration of potato wastewater per ton of potato waste 

starch (13% humidity) 

Inputs Unit Value Output Unit Value 

Potato wastewater (1) t Unknown Potato waste starch (humid) t 1.0 

Electricity kWh 3.4E+02 Wastewater from (1) t Unknown

Tap Water (2) t 16 Wastewater from (2) t 16 

Natural gas GJ 3.9  

 

3.4.2 Main data sources 

As previously mentioned, the Ecoinvent database (Frischknecht, et al., 2004) was chosen. It has 

been assumed that both product systems are situated in Europe. All the processes of the systems 

represent the European context, except for corn, soybean meal, soybean oil and barley, which 

used US data.  Since wastewater and solids treatment are included in the product systems, the 

processes related to these outputs are their treatments. Table 3-6 presents the Ecoinvent processes 

associated with the reference flows. 
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Table 3-6: The corresponding Ecoinvent processes for the reference flows 
 
Reference flow Unit Ecoinvent process 

Barley kg Barley grains IP, at farm/CH U 

Calcium hydroxide kg Lime, hydrated, packed, at plant/CH U 

Chlorine kg Chlorine, liquid, production mix, at plant/RER U 

Corn kg Corn, at farm/US U 

Cyclohexane kg Cyclohexane, at plant/RER U 

Electricity kWh Electricity, medium voltage, production RER, at grid/RER U 

Gypsum kg Gypsum, mineral, at mine/CH U 

Lime kg Limestone, milled, packed, at plant/CH U 

Natural gas MJ Natural gas, burned in industrial furnace >100kW/RER U 

Saturated steam kg Steam, for chemical processes, at plant/kg/RER 

Sludge (landfill) kg Process-specific burdens, sanitary landfill/CH U 

Sodium chloride kg Sodium chloride, powder, at plant/RER U 

Sodium hydroxide 
(50%) kg Sodium hydroxide, 50% in H2O, production mix, at plant/RER 

U 

Soybean meal kg Soybean meal, at oil mill/US U 

Soybean oil kg Soybean oil, at oil mill/US U 

Sulphur dioxide kg Sulphur dioxide, liquid, at plant/RER U 

Sulphuric acid kg Sulphuric acid, liquid, at plant/RER U 

Transport t·km Transport, lorry >32t, EURO3/tkm/RER 

Urea kg Urea, as N, at regional storehouse/RER U 

Tap water/cooling 
water 

kg Tap water, at user/RER U 

Wastewater (treatment) m3 Treatment, sewage, unpolluted, to wastewater treatment, class 
3/m3/CH 

 

As previously mentioned, potato wastewater, the treatment of its water and potato peel do not 

have any energy/emissions associated with them so no inventory datasets are needed for these 

inputs/output.  
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3.5 Impact assessment 

The IMPACT 2002+ (v. 2.05; Jolliet et al. (2003)) method was used to simulate the potential 

environmental impacts of both scenarios. Simulations were performed with the help of SimaPro 

7.1. The impact simulation results are based on a multi-criteria approach of damage 

characterization, with a focus on resources depletion (primary energy consumption). The other 

impact categories are human health, ecosystem quality and climate change. 

 

3.5.1 Results 

Figure 3-4 to 3-7 present the potential impacts of the “Corn” and “PWS water” scenarios for the 

resource depletion, climate change, ecosystem quality and human health impact categories, in 

each of the main processing steps. 

 

 

 Figure 3-4: Impacts on resource depletion, per kg of lactic acid 
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Figure 3-5: Impacts on climate change, per kg of lactic acid 

 

 

Figure 3-6: Impacts on ecosystem quality, per of kg lactic acid 
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Figure 3-7: Impacts on human health, per kg of lactic acid 

 

It can be observed from Figures 3-4 to 3-7 that the “PWS water” scenario has always a higher 

total impact in each damage category compared to the scenario “Corn”. The purification and the 

media pre-heating steps are highly energy consuming, since they contribute to at least 70% more 

for each damage category than the corresponding steps of the “Corn” scenario. In each category, 

the fermentation step contribution is low and similar for both scenarios. The media preparation 

impacts for each end-point category are variable. For the ecosystem quality, the “PWS water” 

scenario has approximately 80% more impact than the “Corn” scenario; in case of resource 

depletion and climate change, it is more than 100%. However, in the case of the human health 

category, the “PWS water” scenario has half of the impact of the “Corn” scenario. 
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3.5.2 Interpretation 

For the resource depletion impact category, the major differences between both scenarios are 

between the media pre-heating and the purification steps and come in a large part from the steam 

consumption. In fact, the “PWS water” scenario is characterized by a higher saturated steam 

consumption per kg of lactic acid produced for these steps. This is related to the necessity of 

gelatinizing starch and to the higher quantity of water to be vaporized during the lactic acid 

purification, which is due to the more diluted concentration of lactic acid leaving the bioreactor. 

Saturated steam, which is provided by heating water in a boiler operated with natural gas and 

heavy oil, has a direct impact on fuel consumption and, therefore, on resource depletion. In both 

steps, saturated steam is the predominant process for the resource depletion impact category. The 

higher contribution of steam over other elementary processes is even more obvious in the case of 

the purification step, as seen in Figure 3-8: 

 

 

Figure 3-8: Processes contribution on the impact on resources by scenario “PWS water” during 

purification (/kg lactic acid) 
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The superiority of the purification impact over other steps in the resource impact category was 

expected, since purification is well-known as being the costly part of lactic acid production 

(Datta, et al., 2006). Energy consumption is normally a major operating cost. Reducing steam 

consumption in purification and media pre-heating steps, by improving the process design and 

configuration, should be a priority to improve the ecobalance of lactic acid produced from the 

direct fermentation of potato waste starch. 

 

The primary energy consumption of the media preparation step for the “PWS water” scenario is 

not intuitive, since potato wastewater is considered as a waste (out of system boundaries) and its 

concentration is a simpler process than corn growing and wet milling. Nevertheless, the media 

preparation step has approximately 45% more impact on resource depletion in the case of “PWS 

water” scenario. The energy consumption associated with this system step is mainly due to 

substrate preparation (i.e. concentration of potato starch in wastewater), as observed in Figure 3-

9: 

 

 

Figure 3-9: Contribution of media preparation processes in resource depletion (/kg lactic acid) 

 

0

2

4

6

8

10

12

14

16

18

Corn PWS water

M
J 

pr
im

ar
y

Corn steep liquor
Substrate preparation
Transport
Water



62 

 

 

 

The energy consumption related to the susbtrate preparation is 8.0 MJ primary/kg of lactic acid 

and 9.8 MJ primary/kg of lactic acid for the “Corn” and “PWS water” scenarios respectively. 

Detailed results of the different elementary processes for the production of 1 kg of potato waste 

starch are presented in Figure 3-10. It can be observed that the final starch drying, which uses 

natural gas as a combustible, is the highest energy consumer (5.7 MJ primary/kg lactic acid), 

contributing to 58% of the resource depletion associated with the potato wastewater 

concentration step alone. Pumps and motors electrical energy are the next larger contributors (3.9 

MJ primary/kg lactic acid). 

 

 

  Figure 3-10: Inputs contribution to resources depletion for substrate preparation (/kg lactic acid) 

 

Optimization of the dryer and the electrical devices would increase the environmental benefits of 

using potato waste starch.  

 

In the case of corn steep liquor and transport impacts on resource depletion for media preparation 

(see figure 3-9), the higher energy consumption associated with these processes in the case of 

“PWS water” results from the direct fermentation of potato waste starch under its starchy form. 
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For the same lactic acid yield, the fermentation of potato starch is realized in a more diluted 

substrate media, due, majorly, to viscosity and lactic acid rate constraints. This results in a more 

diluted final lactic acid concentration at the end of the fermentation batch. Since both scenarios 

assumed the same initial concentration of corn steep liquor solids, the quantity of corn steep 

liquor required per kg of lactic acid is therefore higher for the “PWS water” scenario, and so is 

the required transport. From these observations, it might be interesting to hydrolyze the residue 

prior to its fermentation, to reduce the batch volume per unit of lactic acid. This would decrease, 

among others, the vapor and corn steep liquor utilization per kg of lactic acid produced.  

  

Similar conclusions can be drawn for the climate change impact assessment. Saturated steam 

production is again the most contributive elementary process in the media pre-heating and 

purification steps. The burning of natural gas and heavy oils for its production leads to the 

formation of carbon dioxide and methane. Neglecting the output of gypsum, the climate change 

impact assessment shows that more than 98% wt CO2 eq. in the purification step comes from 

carbon dioxide fossil emissions. In fact, 87% of the CO2 eq. comes from saturated steam (see 

Figure 3-11). 
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 Figure 3-11: CO2 emissions percentage for each processes of the scenario “PWS water”, for the 

purification step (/kg lactic acid; without gypsum saving) 

 

Media preparation is more detrimental to ecosystem quality in the case of the “PWS water” 

scenario (see Figure 3-12; “PWS water”: 1.8 pdf·m2·yr/kg lactic acid; “Corn”: 1.1 pdf·m2·yr/kg 

lactic acid). This result is again counter intuitive, since a media made partly from a waste would 

be expected to have less impact on the ecosystem than one made from a cultivation known for its 

intensive use of land and fertilizers. However, the majority of the impact comes from the corn 

steep liquor input and not the substrate preparation.  
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Figure 3-12: Media preparation processes contribution on ecosystem (/kg lactic acid) 

 

Ecosystem quality damage of corn steep liquor is dominated by land occupation. In fact, the 

energy and emissions of corn steep liquor are associated with soybean meal, following the system 

expansion. Due to the lower yield of soybean cultivation and its resulting higher land occupancy, 

soybean is a culture with higher impacts on the ecosystem than corn and it is even more obvious 

in case of the land occupation mid-point category: 3.7 pdf·m2·yr/ kg of soybean meal compared to 

0.84 pdf·m2·yr/kg of corn. Since dextrose does not displace a soybean product but its co-products 

do, its results in higher impacts for corn steep liquor utilization than dextrose per kg.  

 

As mentioned before, the input of corn steep liquor per kg of lactic acid produced is higher in the 

case of the “PWS water” scenario because of the lower final lactic acid concentration at the exit 

of the fermentor. Therefore, this scenario is penalized on land occupation because of the corn 

steep liquor process. In the case of the purification and pre-heating steps, the input of cooling 

water, which is more than three times higher for the “PWS water” scenario, is also partly related 

to the lower final lactic acid concentration, and has, above all, impacts on the aquatic ecosystem, 

especially with aluminum emissions in water, coming from the life cycle of water infrastructures.  
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As it has been the case for each impact category, the media pre-heating and purification steps of 

the “PWS water” scenario is detrimental to human health compared to the “Corn” scenario. In the 

case of the purification step, the elementary processes that contribute the most to this end-point 

category are the sulphuric acid and steam production, primarily by their resulting respiratory 

inorganic emissions. Steam production and sulphuric acid synthesis lead to the emissions of, 

among others, particulates, sulphur dioxide and nitrogen oxides, since they are high energy 

demanding productions. In the case of the media preparation step, the lactic acid production from 

corn is unfavorable to human health. Human health impacts are dominated by ammonia 

emissions from the fertilization of the corn culture.   

 

From these results interpretation, it can be concluded that the “PWS water” scenario, as it is 

currently designed, is not interesting for lactic acid production, from an environmental point of 

view. Sensitive points to its ecobalance, such as energy consumption (natural gas and steam), 

were underlined. Following these observations, different energy optimization options will be 

evaluated, through an “Improvement potential” analysis. Transportation distances and the method 

of allocation will be part of a sensitivity analysis.  
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Improvement potential 

The scenario variants studied for the “PWS water” system are presented in Table 3-7:   

 

Table 3-7: Variants studied for the “PWS water” scenario 

Name Method for 
gelatinization 

Residue concentration energy 
consumption 

Number of effects in the 
evaporator 

Optimized Continuous 
gelatinization 

Optimized 3 

Optimized  

+ 6 effects 

Continuous 
gelatinization 

Optimized 6 

 

The variant named “Optimized” is the one in which some partial energy optimizations have been 

performed on the gelatinization and the residue concentration processes, which are specific steps 

to the “PWS water” scenario. Gelatinization is realized with a similar configuration as the one 

used in continuous sterilizers, in which the outlet liquid (hot) preheats the inlet liquid (cold), 

through an external heat exchanger. A detailed description of this continuous gelatinization 

method is presented in the Appendix E. In the case of the residue concentration step, the energy 

consumption is reduced by operating the starch dryer with combustion gas of a frying oil boiler 

from the potato chip process. This will replace completely the natural gas input and will be 

implanted this year (2010) at the partner company. The reference flows obtained following these 

modifications are presented in Tables 3-8 to 3-10 (modified reference flows are in bold): 
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Table 3-8: Inputs and outputs for the synthesis of lactic acid via the “PWS water optimized” 

scenario variant, per kg of lactic acid at 88% wt produced (neglecting final impurities) 

Step Input Value Output Value 

Media preparation Tap water (15°C) 24 kg Potato peel Unknown

PWS (humid)* 1.1 kg   

CSL 2.2 kg   

 Transport 1.0 tkm   

Media pre-heating Saturated steam 

(121°C, 1.1 bar) 

1.7 kg   

Cooling water  65 kg   

Fermentation Calcium hydroxide 0.37 kg   

 Cooling water  3.8 kg   

 Electricity 0.011 kWh   

 Transport 0.11 tkm   

Purification Sulphuric acid 0.48 kg Gypsum (pure, dry weight) 0.67 kg 

 Saturated steam 10 kg Sludge  1.0 kg 

 Cooling water  870 kg Wastewater  24 kg 

 Transport 0.25 tkm Lactic acid (88% wt) 

+ impurities 

1.0 kg 

 
  



69 

 

 

 

Table 3-9: Inputs and outputs for the concentration of potato wastewater per ton of potato waste 

starch (13% humidity), for the “PWS water optimized” scenario variant 

Inputs Unit Value Output Unit Value 

Potato wastewater (1) t Unknown Potato waste starch (humid) t 1.0 

Electricity kWh 3.4E+02 Wastewater from (1) t Unknown

Tap Water (2) t 16 Wastewater from (2) t 16 

Natural gas GJ 0  

 

For the “PWS water optimized + 6 effects” scenario variant, an evaporator with six effects 

instead of three will be substituted in the previous variant. It assumes that this common step to 

both systems (concentration of lactic acid) would beneficiate of a higher energy saving per 

kilogram of water evaporated for the potato waste scenario. 
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Table 3-10: Inputs and outputs for the synthesis of lactic acid via the “PWS water optimized  + 6 

effects” scenario variant, per kg of lactic acid at 88% wt produced (neglecting final impurities) 

Step Input Value Output Value 

Media preparation Tap water (15°C) 24 kg Potato peel Unknown

PWS (humid)* 1.1 kg   

CSL 2.2 kg   

 Transport 1.0 tkm   

Media pre-heating Saturated steam 

(121°C, 1.1 bar) 

1.7 kg   

Cooling water  65 kg   

Fermentation Calcium hydroxide 0.37 kg   

 Cooling water  3.8 kg   

 Electricity 0.011 kWh   

 Transport 0.11 tkm   

Purification Sulphuric acid 0.48 kg Gypsum (pure, dry weight) 0.67 kg 

 Saturated steam 6.2 kg Sludge  1.0 kg 

 Cooling water  440 kg Wastewater  24 kg 

 Transport 0.25 tkm Lactic acid (88% wt) 

+ impurities 

1.0 kg 
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 Results for the “PWS water optimized” scenario variant 

For the comparison of this variant scenario to the “Corn” scenario, only the impacts on 

resources have been evaluated and are presented in Figure 3-13. 

 

Figure 3-13: Impacts on resources, per kg of lactic acid 

 

Following a reduction of energy consumption in the potato waste starch concentration and in 

gelatinization process, a reduction of resource depletion in media preparation and pre-heating can 

be observed. In the first case, it is related to the reduction of natural gas utilization and in the 

latter case, of saturated steam. The primary energy use associated with the potato waste starch 

concentration step has passed from 9.8 to 4.0 MJ primary/kg of potato waste starch. The primary 

energy use for the media preparation has passed from 16 MJ/kg of lactic acid to 10 MJ/kg, 

compared to 11 MJ/kg for the “Corn” scenario. 
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wet milling processing (extraction of corn starch and its saccharification) is detailed. The third 

column presents the energy depletion associated with the potato waste starch concentration, 

following the energy optimization at the potato chips facility.  

  

 

Figure 3-14: Impacts on resource depletion for the production of dextrose and potato waste starch 

(/kg lactic acid) 

 

Figure 3-14 shows that the co-products system expansion is beneficial to dextrose, since more 

than a third of the energy consumption related to the corn wet milling process is displaced by the 

avoided of barley, soybean oil and soybean meal. It can be observed from this figure that even 

before the corn wet milling process, the needed inputs for corn growing and harvesting (5.9 

MJ/kg lactic acid) have more impact on resource use than potato waste starch (4.0 MJ/kg lactic 

acid). In fact, corn drying requires the burning of oil and this is the major contributive process to 

resource depletion. Also, since corn contains about 60% starch and, therefore, of extractable 

sugars, its sugar yield per kg is lower than the potato residue, which is 100% starch.  
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The primary energy consumed during the corn wet milling step, with 100% allocation to 

dextrose, is 3.4 MJ/kg of lactic acid. This is in agreement with Boustead’s (2001) study, which is 

also in the European context. The total primary energy associated with the saccharification of 

starch is 3.0 MJ/kg starch in the Boustead’s study, assuming a yield of 0.986 kg dextrose/kg 

starch extracted, before any allocation method. The emissions and energy consumption related to 

starch extraction are also given per bushel transformed. Knowing that one bushel can produce 

14.3 kg of corn starch, it can be deduced that the impact related to starch extraction is only 

0.0085 MJ/kg starch. The saccharification is the heavy energy consumer step of dextrose 

production in a corn wet milling facility.  

 

The last column of Figure 3-14 presents the impacts on resource depletion for the production of 

dextrose from potato residue. The transportation distance is assumed to be the same for potato 

waste starch as for corn (100 km). According to Boustead (2001), the energy consumption related 

to starch saccharification should not be affected by its origin, once it has been extracted and 

purified. The difference between the impact of the potato waste starch saccharification compared 

to the corn wet milling process remains in the co-product system expansion. In the case of the 

residue, there is no co-product produced during potato waste starch concentration.  

 

From these interpretations, it is assumed that synthesizing dextrose from the residue has an 

associated primary energy of 7.8 MJ/kg, compared to 8.0 MJ/kg from corn. The potential impact 

of the media preparation step would be the same for both product systems, but would avoid the 

use of a food source and ILUC in the case of the starch residue. All environmental impact of the 

subsequent steps would be the same. The reasons for such similarity between a media prepared 

from a waste to one from a food source, and potential solutions will be presented in the general 

discussion section (Chapter 4). 
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 “PWS water optimized + 6 effects” scenario 

The impact in each endpoint category for this variant is compared to the “Corn” scenario in 

Figures 3-15 to 3-18: 

 

Figure 3-15: Impacts on resources, per kg of lactic acid 

 

 
 

Figure 3-16: Impacts on climate change, per kg of lactic acid 
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Figure 3-17: Impacts on ecosystem quality, per kg of lactic acid 

 

 

Figure 3-18: Impacts on human health, per kg of lactic acid  
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It can be observed from Figures 3-15 to 3-18 that the impacts of purification in each damage 

category has been lowered for the “PWS water” scenario. However, it remains up to about 35% 

higher than the “Corn” scenario for the end-point category studied.  

 

The addition of effects in an evaporator decreases its steam demand, but also its cooling water 

demand since more of the evaporated water is condensed into the unit effects. In the case of 

resource depletion, this partly compensates the high saturated steam consumption of the potato 

waste starch process, due to its more diluted form in the media for the same yield reached. By 

doubling the number of effects in the case of the “PWS water” scenario, impact of purification on 

resource depletion becomes closer to the one of the “Corn” scenario.  

 

As mentioned before, the impact on climate change is closely related to the impact on resources, 

due to the inputs of steam. As for resource depletion, the impact of purification on climate change 

is more similar to the one of the “Corn” scenario, following the addition of 3 effects for the 

“PWS water” scenario. 

 

The reduction of steam consumption in “PWS water” scenario has also an effect on ecosystem 

quality. The impacts of purification are also lowered. This is mostly induced by the cooling water 

reduction, the first contributive process in the purification step of previous scenarios. Steam 

reduction has also a beneficial impact on the human health category for the “PWS water” 

purification step. In fact, more than half of the impact on human health by steam results from the 

burning of heavy oils. If steam was produced from natural gas only, its impact on human health 

and ecosystem would be reduced by more than 50% (see Figure 3-19) 
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Figure 3-19: Relative percentage of steam impacts, with and witout the burning of heavy oils  

(/kg steam) 

This fuel scenario is probably more realistic, since a plant normally uses a single source of 

energy. Comparatively, the Ecoinvent data is average over many plants, including older ones. 

This aspect should be considered in future studies. Table 3-11 presents the final impact of both 

scenarios for the end-point damage category: 

 

Table 3-11: End-point impact values for both scenario (/kg lactic acid) 

End-point category “Corn” scenario “PWS water optimized 

+ 6 effects” scenario 

Resource depletion (MJ primary) 36 48

Climate change (kg CO2 eq.) 2.4 3.0

Ecosystem quality (pdf·m2·yr) 1.3 2.1

Human health (DALY) 1.2E-06 1.2E-06
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This variant scenario has impact which tends to reach those of the “Corn” scenario for the climate 

change and the resource depletion damage category. If the number of effects at the evaporator is 

increased again, it should be expected that both scenario could have the same impact in these 

categories, since the burning of natural gas for steam production is the major contributor. In the 

case of human health damage ctaegory, the impacts are identical. In the case of ecosystem 

quality, there is a difference of more than 60% between both scenarios. It results from the higher 

input of corn steep liquor per kg of lactic acid for the “PWS water optimized + 6 effects” 

scenario. This has repercussions of land occupation, as previously discussed. 

 

The “PWS water” scenario results cannot be compared to any LCA study since this study is the 

first of its kind. In the case of “Corn” scenario, Bohlmann (2004) has performed an LCA for a 

similar lactic acid production process, based on the same purification units (gypsum formation 

and multi-effect evaporation) and with the help of a Superpro designer simulation. The primary 

energy consumption of their lactic acid simulation, with a 3 effects evaporator, was 30.4 MJ/kg 

of lactic acid (88 wt%). This value is about 20% lower than the one of this present study. This is 

partly explained by the different paramters set: the author assumed a yield of 87% and a final 

calcium lactate of 12 wt% (fermentation temperature: 50°C). In Bohlmann’s LCA, water 

consumption and transport were not evaluated. However, impurities purification and pumps 

electrical consumption was taken into account in the simulation, and so in the LCA. By 

comparing the different reference flows with the help of private discussions with Mr. Bohlmann, 

it was found that corn steep liquor and electrical input value were highly different between both 

studies. In the case of electrical consumption, this is explained by the complete process 

simulation which was realized in Bohlmann’s LCA, which take into account pumping, neglected 

in our study. Only 0.045 kg of corn steep solids/kg of lactic acid were used in Bohlmann’s study 

and this value is considered as really low and probably questionable, knowing the complex 

nutrient needs of lactic acid bacteria. Bohlmann’s study was also representing the North 

American context, and not the European one, which differs, among others, in electricity mix 

ratio, transport and technologies. 
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In the case of Natureworks LCA, even if the process description of their last published LCA was 

used as a reference for this study, only aggregated values are presented in their results and so the 

impacts of lactic acid synthesis cannot be compared. However, the Natureworks study of 2003 

presents aggregated data for the primary energy consumption for all processing steps. Since corn 

growing and harvesting and its saccharification through the corn wet milling process are mature 

processes, the associated primary energy consumption should not have varied a lot through the 

years. They represent respectively 4.9 MJ (corn growing and harvesting) primary and 9.4 MJ 

(corn wet milling) per kg of polylactide produced. Since the literature reveals that about 0.7 kg of 

polylactide is obtained from 1 kg of starch (NCGA, 2009), and nearly 1 kg of dextrose is 

produced from 1 kg if starch, the energy associated with dextrose is, including transport, 10.3 

MJ/kg dextrose. This value is similar to the energy associated with the dextrose100% of our study. 

NatureWorks’ LCA also represented the North American context. 

 

The potato starch process variant “optimized + 6 effects” will be used for further sensitivity 

analysis. 
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Sensitivity analysis 
 
 

 Method of allocation for the corn wet milling co-products 

 

In this part of the sensitivity analysis, two methods of allocation for the co-products of the 

corn wet milling process are compared. Figure 3-20 presents the primary energy 

consumption associated with the media preparation step for the “Corn” scenario and the 

“PWS water” scenario; Figure 3-21, the impact on ecosystem quality.  

 

 

Figure 3-20: Impact on resources by the media preparation as a function of allocation method 

 

Primary energy consumption is not influenced if an economic allocation, based on the selling 

prices of dextrose and its co-products (corn gluten meal, corn gluten feed, corn oil and corn steep 

liquor), is used instead of a system expansion. 
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Figure 3-21: Impact on the ecosystem by the media preparation as a function of allocation 

method 

 

For the ecosystem impact category, the choice of the allocation method is significant on results. It 

increases the impact of the dextrose, and decrease the one of the corn steep liquor. Therefore, the 

“PWS water” scenario is advantaged by the economical allocation method.  

 

 
 Transport 

In this part of the sensitivity analysis, the transportation distances were doubled for both 

scenarios. For most inputs, distances were increased to 600 km, except for the sludge and corn; 

the distance to reach the sanitary landfill and the corn wet milling facility was doubled to 200 km. 

As a result, the primary energy consumption was only increased by less than 7%, for both 

scenarios. Increases are also small in other impact categories. This demonstrates that transport is 

a not a significant process in these systems. 
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CHAPTER 4 GENERAL DISCUSSION 

Laboratory experiments have confirmed the microbial feasibility of producing lactic acid from 

the direct fermentation of potato waste starch with L. amylophilus NRRL B-4437. However, the 

important variability has demonstrated the complex behavior of starch and the variety of 

physicochemical properties that can be associated with different types of starch. The best 

example was the different final viscosity and digestibility of potato waste starch media obtained 

after sterilization, compared to commercial starch. This has proven that any similar 

behavior/digestibility cannot be guaranteed between two starches of different origins, even if they 

come from the same kind of plant (potato). It is therefore obvious to well understand wthe 

behavior of a starch during heating and in the presence of other medium constituents, but also the 

associated digestibility with the bacteria studied. Appropriate experiments to characterize the 

starch behavior are essential before its use in industrial lactic acid production.  

 

As underlined in the state-of-art section, only a few publications exist on L. amylophilus, and 

specific publications on the NRRL B-4437 strain are rare. Optimal conditions for lactic acid 

production were studied to a limited extent. Any published studies with L. amylophilus NRRL B-

4437 do not present experiments on preculture or a study on starch gelatinization methods (Pierre 

Mercier, 1990; P. Mercier, et al., 1992; Nakamura, et al., 1979; Pompeyo, et al., 1993). P. 

Mercier et al. (1992) have tested heating pretreatment methods for a corn starch medium that 

include acid or commercial enzyme addition. This type of pretreatment, which partly hydrolyzes 

starch and increase the enzyme digestion rate and so the lactic acid production, was excluded 

from our LCA study. This Lactobacilli strain (NRRL B-4437) is not well-documented and should 

be more studied before evaluating its industrial potential, as it was done for largely employed 

bacteria of this genius (ex.: L. delbrueckii). Also, other strains might be more adapted to potato 

starch fermentation. For example, L. amylophilus GV6 produces an amylase but also an 

amylopullulanase, which makes this strain more adapted to starch digestion. The use of this strain 

and further genetic modifications could improve L. amylophilus lactic acid rates and yields on 

potato starch.  
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The laboratory experiments did not only demonstrate the feasibility of producing lactic acid by 

the direct fermentation of potato waste starch with L. amylophilus, which was the decisive 

criterion to realize this LCA, but they have also helped, with the literature review, to understand 

the challenges and limitations of directly fermenting starch and the required information for 

future laboratory experiments. Based on laboratory observations, literature and bioengineer’s 

point of view, it was possible to set-up for the LCA realistic and conservative fermentation 

parameters, despite the inexistence of any industrial scale production of lactic acid from potato 

waste starch. This LCA study, comparing lactic acid produced from potato wastewater and from 

corn, had two major differences between the scenarios studied: 

- Type of substrate employed and its origin: foodstuff versus a waste; 

- The direct fermentation of starch compared to its complete hydrolyzed-form; 

 

In the case of the media preparation, potato waste starch has an environmental potential 

comparable to dextrose from corn, if same lactic acid yields are reached. It has been 

demonstrated, for the process conditions fixed in chapter 2, that the residue has less impact on 

resource depletion than dextrose from corn per kg of lactic acid produced (4,0 MJ primary/kg 

lactic acid versus 8,0 MJ primary/kg lactic acid). However, as underlined in the interpretation, a 

major difference in resource depletion and climate change impacts was expected between both 

substrate production. In fact, the benefits of using a waste were cancelled by the large amount of 

energy required to concentrate it. Two aspects do not favour the energy consumption during the 

potato waste starch concentration: the low concentration of potato waste starch in wastewater and 

the technological immaturity (13 year’s old versus more than 150 year’s old for the corn wet 

milling process). 

 

Since potato waste starch is highly diluted in wastewater (< 1 wt%), almost all the pumping 

energy is used to displace water and to drive the separation process with hydrocyclones. This 

leads to a low potato waste starch production rate and to high energy flows per kg of residue 

produced, which is not expected for pumping; pumping is generally not significant. Before 

natural gas reduction (variant “optimized”), the primary energy consumption of pumps and 
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motors was only about 30% lower than the one of the dryer. Efforts for reducing the electrical 

consumption should be performed in the coming years to improve the potato waste starch 

ecoprofile. This could be realized by pre-concentrating the wastewater in the process upstream. 

Lower electrical consumption could be also realized by privileging mechanical separations with 

lower operation energy, such as filtration (ex.: vacuum or pressure filters). Also, the introduction 

of grinded rejected potatoes should come further in the concentration process. With immaturity, 

there is also a risk that the process equipment is oversized, due to an incorrect conception or to an 

overestimated production rate. The potato waste starch concentration in wastewater is variable, 

since it fluctuates with the potato cultivar, the potato age and the quantity of potato rejected. It 

would be interesting for further ecoprofile analysis to have data average on a multi-year period.  

 

This study has raised problems related to the direct fermentation of potato waste starch, which are 

its complex properties and behavior. As previously mentionned, a medium made of starch will 

have a viscosity and a degree of digestibility associated to the preparation method and the 

substrate concentration. These complexe properties should be considered, since the enzyme 

production, which enables the assimilation of starch, relies on the growth and survival of the 

inoculated culture. The enzymes effectiveness can also be restricted by culture condition 

limitations, such as temperature, to not reduce growth rate. This may explain, in part, why the 

industry is still using simple sugars, produced from starch saccharified by concentrated and 

specialized enzymes.  

 

In this study, the savings from not saccharifying the substrate in the case of “PWS water” 

scenario were overcome by a lower lactic acid concentration at the exit of the fermentor, which 

results in a higher steam consumption in the purification step. It has been demonstrated that this 

could be partly overcomed by increasing the number of effects in the evaporator. Other effects 

could be added. More than ten effects evaporator can be find in the industry. More investment in 

capital would be needed. In the case of the gelatinization steps, according to the literature, the 

energy consumption could be decreased by increasing the shearing rates on the starch granules, 

by grinding them or by agitating the starch solution. Shear damages starch granules, which, in 
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turn, reduces the gelatinization temperatures and the viscosity. This could also increases the 

maximum temperature allowable in the heat exchanger without fouling.  

 

In the case of the media preparation step, the higher mass of corn steep liquor needed per kg of 

lactic acid produced is problematic in the ecosystem quality, the resource depletion and so in the 

climate change categories, when considering the system expansion allocation method. To avoid 

this, the concentration of corn steep solids should be reduced so far as it does not compromise the 

cell growth and the lactic acid yield. However, experiments performed with lactic acid bacteria 

uses the same protein content in literature, even for higher substrate concentration. There might 

exist a concentration limit at which proteins can be efficiently used. But also, it might be 

ovestimated for the reproductibility needs of the laboratory context. Other protein sources might 

also be more interesting in terms of performance (i.e. lactic acid production rate) and overall 

ecobalance (i.e. lactic acid LCA). Surface-response methodology could be an efficient statistical 

method used to evaluate optimal concentration of different protenious substances. Finally, 

proteins could be recycled from the mechanical filtration step, but this increase the risk of 

contamination. 

 

Of course, the fermentation of a more concentrated media for the  “PWS water” scenario could 

overcome partly or totally all these environmental discrenpencies with the “Corn” scenario, if it 

results in a higher final lactic acid concentration. However, an increase in the starch 

concentration leads to a higher viscosity, which may be detrimental to the operations. Lactic acid 

production rates generally decrease fast at high substrate concentration, based on literature with 

L. amylophilus. Increasing the starch concentration should be evaluated with care, by optimizing 

the ecobalance between the benefits of having a more concentrated lactic acid media (less energy 

at the final purification step) and the disadvantages of having more residue not consumed (more 

substrate input at the media preparation). It might be needed to pre-hydrolysed the media if the 

viscosity cannot be at an operational and fermentable state and to improve lactic acid production 

rates. Pre-hydrolysis involves new inputs that would have an impact on the LCA. In any case, 

fermenting a highly concentrated potato starch medium requires a delicate optimization of the 
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media and bacterial inoculum. Finding high-performance amylolytic Lactobacilli could take time,  

and dextrose-fermenting lactic acid bacteria are one step ahead. Also, depending on the 

purification method used, an increase of calcium lactate concentration might necessitate an higher 

fermentation temperature, to prevent precipitation. Genetically-modified L. amylophilus, tolerant 

to higher temperature, might be necessary to prevent calcium lactate precipitation, and will lower 

the risk of contamination at the same time.  

 

It was also demonstrated in this study that using dextrose from the saccharification of potato 

waste starch instead of corn could give, presently, the same impact for the substrate in the 

ressource use category, while avoiding ILUC. The residue is also economically competitive to 

corn starch, as it has a selling price comparable to corn starch: 0.075 US$/dry kg of potato waste 

starch (industrial partner selling price) versus 0.072 US/kg for corn starch (Baker, et al., 2010). 

The use of dextrose made from potato starch residue could be an easy short term modification to 

implement.  

 

In conclusion, the “PWS water optimized + 6 effects” scenario utilizes an unoptimized corn steep 

liquor concentration, and further energy improvements for the substrate preparation and the lactic 

acid purification could be realized in the future. It should be expected that this process 

configuration could reach at least the same environmental impacts than the scenario “Corn”, 

while avoiding the use of a food source and ILUC. The environmental potential of developping 

such a process has been demonstrated. 
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CONCLUSIONS AND OUTLOOK 

The aim of this study was to measure the feasibility to produce lactic acid for polylactide usage 

and to evaluate the environmental impacts (LCA) by the direct fermentation of an agribusiness 

waste, potato waste starch, with L. amylophilus. A life cycle assessment was conducted to 

compare the environmental impacts of lactic acid produced from this innovative process with a 

conventional one using dextrose from a foodstuff as a raw material, corn. This objective was 

attained by, firstly, demonstrating the feasibility of producing lactic acid from this residue with a 

L. amylophilus strain. Following these experiments, the process flowsheets and parameters were 

set, based on literature, experiments and general knowledge in bioengineering. Energy and mass 

balances were realized and the necessary references flows for the LCA were calculated. A 

comparative impact assessment from these reference flows was realized and has demonstrated 

that producing lactic acid for PLA applications could be environmentally favorable over the 

typical corn process after proper optimizations.  

 

The LCA results have demonstrated the inconvenience of working with a more diluted system for 

the “PWS water” scenario. Simulations have demonstrated that this could be partly overcome 

with energy optimizations. In the case of the potato waste starch, the impact of its initial 

concentration step is sensitive to the electrical consumption, which should also be optimized in 

the future. The most optimistic scenario for lactic acid production from potato waste in this study 

gave total impacts of 48 MJ (resource use), 3.0 kg CO2 eq. (global warming), 2.1 pdf·m2·yr 

(ecosystem quality) and 1.2E-06 DALY (human health) per kg of lactic acid produced. These 

impacts tend to reach the ones of the conventional process (∼ 0-30% of difference) by improving 

energy consumption, except for ecosystem quality (+ 60%). This latter result relies to a great 

extent on the corn steep liquor utilization, which has been fixed at the same solid concentration in 

both system media. Further investigations on starch behavior, its digestibility and also its nutrient 

optimum concentration are necessary to evaluate other possible improvements, such as increasing 

the substrate concentration or decreasing the corn steep liquor solids concentration. Following 

these improvements, there is a great perspective to improve the ecobalance of lactic acid 

produced with potato waste starch and L. amylophilus, but, moreover, to make it environmentally 

competitive to the conventional processed lactic acid. It was not underlined in the framework of 
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this environmental study, but the use of waste also saves corn. One kilogram of potato waste 

starch can save more or less 1.7 kg of corn if the same lactic acid yield is reached and avoid 

ILUC. Unfortunately, the experiments realized in this study and the available literature were not 

sufficient to establish the optimal substrate and nutrient concentrations with exactitude. 

  

This study has also raised the difficulty of accessing industrial data. Life cycle assessment on 

industrial bio-chemical processes is still in its infancy. Moreover, the competition between 

businesses is strong, since there are only a few lactic acid and PLA industries. Therefore, data 

diffusion is strictly limited. For these reasons, it has to be kept in mind that the parameters and 

processes chosen in this study for lactic acid production from corn have been improved, as 

revealed by NatureWorks website. However, the details of these optimizations, which focus on 

lactic acid fermentation and purification, have not been published yet. Parameters were set with 

the help of literature and patents, but might not represent the actual ones. The lactic acid process 

from corn in our study probably represents the technology which dates back to a couple years 

ago. Nevertheless, since this study was comparative, the necessity was to consider the same 

technology used for each process compared, allowing a fair comparison, and not to give present 

impacts. This study has raised the sensitive points (ex.: vapor use) which should be considered 

with care with further research for optimizing the polylactide ecobalance. An economic 

assessment of a this new process configuration should be realized in the future, to demonstrate its 

economic feasability. 
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APPENDIX A – Glossary 

Definition are based on these references: Thomas et al. (1999), Myllärinen (2002), Swinkels 

(1985), Olkku et al. (1978), S. S. Shamekh (2002) 

 

Starch 

Starch, the main reserve food of plants, is a polymer of glucose and exists under the form of 

granules at its native state. Starches can contain two types of glucose polymers, made of alpha 

glucosidic bonds: amylose and amylopectin. The ratio between amylose and amylopectin and the 

granule size depends on the origin of starch. Most starches contain both polymer types. Amylose 

is a linear polymer having a few branches (M ≈ 500 000 g/mol). Amylopectin is a branched 

polymer (107-109 g/mol). Crystallinity of starch is mostly due to amylopectin.  

 

Gelatinization 

Native starch is not soluble in cold water. Absorption of water is therefore limited and reversible. 

At a certain temperature, called the initial gelatinization temperature, some starch granules start 

to swell irreversibly and, simultaneously, to lose their birefringence due to semi-crystalline 

structure disruption. Since all granules do not begin to swell irreversibly at the same temperature, 

starch granules start to gelatinize in a narrow range of temperatures, called the “gelatinization 

temperatures”. In the case of potato starch, it is around 58-65°C; for dent corn, 62-80°C.  

 

At the beginning, the granules absorb water through the amorphous regions. With heating, 

granules swell many times their original size, crystalline structures are disrupted and amylose 

polymers diffuse first in the surrounding media. This disruption of molecular order can be 

followed by measuring an endothermic transition peak on a Differential Scanning Calorimetry 

(DSC) scan.  
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With granule swelling and macromolecules leaching, the viscosity of the media increases and, if 

water is not limiting, will reach a peak, where the granules are at their largest swollen volume. At 

this state, granules are highly susceptible to mechanical and thermal breaking. Further heating or 

agitation will lead to granule fragmentation and additional polymer dissolution, until the maximal 

dispersion is reached. The viscosity of the media is partly reduced during granules disruption.  

 

The point at which gelatinization ends is variable from one researcher’s definition to another, 

since it depends on the method used to monitor this phenomenon. In the case of this study, 

“gelatinization” regroups all the previously mentioned irreversible changes occurring during the 

heating of a starch solution, as define by Swinkels (1985). Figure A-1 summarizes the physical 

and viscosity changes occurring during the gelatinization of a starch solution (with an excess of 

water). 
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Figure A-1: Schematic representation of granular changes in relationship to viscosity, adapted 

from Desse (2008) 
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Retrogradation 
 
Retrogradation, also called “set-back”, is a process which occurs when starch chains reassociate. 

When a gelatinized starch solution, also called “starch paste”, is allowed to stand and cool, 

solubilized starch polymers and granules fragments tend to reassociate and form a crystalline 

structure. This increases the viscosity of the starch paste. If the starch dispersion is concentrated 

enough, an elastic gel will form. Retrogradation occurs faster with amylose chains compared to 

amylopectin chains. The viscosity changes upon gelatinization and cooling is commonly 

followed with a Brabender visco-amylograph. A typical Brabender curve for wheat starch is 

shown in Figure A-2. 

 

 

Figure A-2: A pasting cycle curve, typical of wheat starch, adapted from Abd Karim et. Al (2000) 
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APPENDIX B – Preculture tests 

 

 

FigureB-1: Growth of precultures during time for different MRS medium 
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FigureB-2: pH of precultures during time for different MRS medium 
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APPENDIX C – Corn steep liquor specifications 

Table C-1: Partial composition of corn steep liquor (pH = 4.2, total solids: 54 wt%) (Kampen, 

1997) 

 % dry basis 

Ash (oxide) 17 

Crude protein (Nitrogen x 6.25) % dry basis 47 

Fat 0.4 

Total acids as lactic acid 2.6 

Nitrogen 7.5 

Phytic acid 7.8 

Reducing sugars as glucose 2.5 

 

 

Table C-2: Characteristics of corn steep liquor at 45 g/L 

pH 5.5

Nitrogen content (g/L) 3.1
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Table C-3: MRS nitrogen content (laboratory mesurements) 

Nitrogen 
source 

Nitrogen content 
(%) 

Concentration in MRS 
(g/L) 

Nitrogen 
concentration  

in MRS (g/L) 

Peptone 15.4 10 1.54 

Meat extract 13.9 8 1.11 

Yeast 11.0 4 0.44 

Total MRS 3.09 
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APPENDIX D – Fermentation parameters 

Fermentation parameter choices are based on existing literature and on general knowledge. They 

were not based on one paper but as an average of conditions/rates from different references. They 

were also considered as reasonable assumptions by different bioengineering specialists.  

 

Direct fermentation of starch is considered as an immature process (no existing industrial-scale), 

so optimization over the next years is envisaged and was considered in the parameters setting, by 

staying conservative with literature. By conservative, it should be understood that the risk of 

overestimating impacts is favored than underestimating them. Fermentation parameters are 

therefore different from the laboratory ones. All parameters related to the bacteria were provided 

by publications on L. amylophilus from ATCC bank, and also on L. amylophilus GV6 strain, 

which is genetically more adapted to starch hydrolysis. 

 

New technologies might have been implemented for industrial scale lactic acid fermentation but 

are not yet detailed in the literature. Following the conservative philosophy, the existing given 

information available in literature will be taken. 

 

Fermentation of dextrose from corn 

Mode: batch 

- Datta et al. (2006): Mentions that industrial lactic acid facility operates as batch or fed-

batch mode; 

- Galactic (2009): “(…) at present, the industry still operates batch fermentation systems 

(…)”. 
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Fermentation pH: 6 
 

- Typical pH optima for lactic acid fermentation growth; 

- Datta et al. (2006): Mentions that industrial fermentation pH is around 5 and 6; 

- Carlon et al.(2002) & Joglekar et al.(2006): Lower pH fermentation can be realized, 

reducing the amount of gypsum formed. However, it is underlined in literature that low 

pH is still not a commercially viable preposition. 

 

Temperature: 45°C  

- Carlson et al. (2002): A high temperature (45°C-50°C) minimizes the risk of 

contamination; 

- Eyal et al. (2001): “Typically, such production (large-scale, industrial, bacterially-

conducted lactic acid fermentation process) occur at broth temperature of at least 45°C”. 

 

Yield and concentration: 90% (g lactic acid/g glucose x 100%); 92 g/L of glucose 

- Datta et al. (2006): Mentions that industrial lactic acid facility has normally 90% yield; 

- Cao et al. (2001) & Datta et al. (2006): The solubility of calcium lactate in water was 

chosen as the limiting factor for the final choice of glucose concentration since it is 

preferable to have calcium lactate in solution to prevent its retention during the filtration 

of the insoluble parts. Solubility of L-calcium lactate in water at 45°C is about 10% (g 

anhydrous L-calcium lactate/100 g of water x 100%) and was taken as an approximation 

of its solubility in the media. This corresponds to approximately 82.6 g/L of lactic acid 

and an initial glucose concentration of 92 g/L. This is in agreement with Datta et al. 

(2006) who mention that final calcium lactate in industrial lactic acid fermentation is 

around 10 wt%.  
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Fermentation time length: 72 hours 

- Datta et al. (2006):  Mentions that fermentation time in the industry is of 2-4 days.  

 

Pretreatment of the media: none 

- Bohlmann (2010): Dextrose is soluble in water and sterilization should be unnecessary, 

since bacteria are used. This type of fermentation is less sensitive to contamination, even 

more if it operates at a high fermentation temperature. 

 

Biomass production: C.F.U. = 1.5 x 10^9 (same as laboratory) 

- Arcand (2009): Laboratory biomass formation is a good approximation knowing that a 

cell density will not increase a lot with substrate concentration due to inhibition 

phenomenons. 

 

Nutrient source and concentration: corn steep liquor (CSL), 45 g/L CSL solids 

- Carlson et al. (2002): 45 g/L of corn steep liquor solids is the highest recommended 

concentration. The nitrogen content of this CSL concentration is practically identical to 

the one of MRS medium, which was evaluated during laboratory experiments (see 

Appendix C). 

 

Power of agitation: P/V constant for scale-up  

- Hemrajni (2007): For scale-up, the power per unit of volume will be maintained constant. 

This is a well employed method for scale-up of agitation. At lab scale, a speed of 50 RPM 

for a 2 liters fermentor was chosen, to minimize oxygen transfer in the media.  
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Fermentation of potato waste starch from wastewater 

Mode: batch 

- Same references. 

 

Fermentation pH: 6 

- Typical pH optima for lactic acid fermentation growth; 

- The pH should favor the hydrolysis step, which is the limiting one, without compromising 

growth; 

- Vishnu et al. (2000) & Vishnu et al. (2006): Optimal pH for enzymatic activity and 

growth (L. amylophilus GV6) is 6.5 

- Pompeyo et al. (1993): Optimal pH for enzymatic activity (L. amylophilus NRRL B-

4437) is between 5 and 6 

 

Temperature: 37°C  

- Typical temperature optima for lactic acid fermentation growth; 

- The temperature should favor the hydrolysis step, which is the limiting one, without 

compromising growth; 

- ATTC (2009): ATCC mentions that their cultures (L. amylophilus NRRL B-4437) are 

grown at 30ºC, but it does not mean it is the optimal one. A temperature of 37ºC should 

improve the hydrolysis of starch, which is the limiting step; 

- Vishnu et al. (2000) & Vishnu et al. (2006): Optimal temperature for enzymatic activity 

and growth  (Lactobacillus amylophilus) GV6 is 37ºC; 

- Pompeyo et al. (1993): Results show a decrease of amylase activity (L. amylophilus 

NRRL-4437) at a temperature higher than 40 ºC.  
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Fermentation time: 72 hours 

- There was no publication found with L. amylophilus fermentation that shows a production 

of lactic acid at 90% yield below 72 hours. A fermentation time of 2-2.5 days could be 

expected following some further optimizations in the future. This parameter could have 

been evaluated as a variant. However, it will only influence the electricity consumption 

during fermentation, which has a low impact on total energy consumption. It will also 

have an influence on the infrastructure size, which is not part of this study. Therefore this 

variant was not evaluated.  

- Savard (2009): Over 72 hours, it is assumed as not economically viable. 

 

Yield and concentration: 90% (g lactic acid/g glucose); 40g/L of potato waste starch 

- Datta et al. (2006): Since literature mentions that industrial lactic acid facility has 

normally 90% yield, this parameter will be set at this value ; 

- To predict the maximal concentration of starch at which a Lactobacillus amylophilus 

strain can reach a 90% yield within 72 hours and at which viscosity is not critical for 

operations is impossible without advanced experiments of optimization. The viscosity and 

digestibility of a gelatinized starch solution is function of the starch characteristics and are 

influenced by numerous factors, such as the date of extraction, the type of cultivars, the 

method of preparation, the presence of other components, etc (see section Bibliography). 

The lactic acid production rate obtained is also function of the inoculum metabolic 

properties. From these statements, it is hard to predict the final viscosity of a specific 

potato starch media after heating/cooling in an optimized industrial process. It is also 

difficult to predict the lactic acid yield that would be obtained with an optimized 

inoculum of L. amylophilus. As underlined in the state-of-art, only a few publications 

exist with L. amylophilus. Also, literature demonstrates that, presently, the studied strains 

of this Lactobacilli specie cannot reach a high lactic acid rate at high concentration.  To 

stay conservative, it has been chosen a 40 g/L potato waste starch medium would reach a 
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90% yield within 3 days taking into account processing, pre-culture and genetic 

optimization and the following references; 

- Vishnu et al. (2002): Presents results showing a fermentation yield of 80% at 40 g/L of 

potato starch concentration with L. amilophilus GV6 within 3 days; 

- Tester et al. (2004): A general statement about starch solution mentions that a thin paste is 

formed when starch is heated at concentration of ∼< 4%; 

 

Pretreatment of the media: heating at 90°C 

- Qiang (2009): In excess water (> 70 wt% water), the degree of gelatinization (based on 

birefringence measurements) of different potato starch cultivars studied was practically 

the same between 90ºC and 130ºC. Granules heated at 90°C in excess of water are also 

highly sensitive to shear; 

- Swinkels (1985): Tuber can be gelatinized to a completely dissolved state at about 100°C; 

- Tester (2004) & (T. Zhang, et al., 1999): Crystallinity is a predominant regulator in 

controlling susceptibility of starch to enzyme hydrolysis; therefore, a higher temperature 

than 90°C for heating a solution of starch in excess of water should not improve a lot the 

hydrolysis rate. 

 

Biomass production: C.F.U. = 5.4 x 10^9 (same as laboratory) 

- Same references. 

 

Nutrient source and concentration: corn steep liquor (CSL), 45 g/L of CSL solids 
 

- Same reference.  
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Power of agitation: P/V constant for scale-up  

- Hemrajani (2007): The power per unit of volume will be maintained constant for scale-up. 

At lab scale, a speed of 100 RPM was chosen, due to higher viscosity of potato starch 

media. For scale-up, it will be supposed that it has been lowered to 50 RPM after 24h 

since the viscosity was similar to the one of water at that time.  
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APPENDIX E – Mass and energy balances 

Basis of calculation 

The basis of calculation is 21 590 kg of humid potato waste starch (13% humidity) fermented per 

week, which corresponds to 18 784 kg of dry potato waste (“PWS water” scenario). In the case of 

the glucose fermentation, the basis of calculation is 18 784 kg of glucose fermented per week 

(“Corn” scenario). Both bases of calculation lead to the same theoretical lactic acid production 

rate. Mass and energy flows are rounded to five significant digits. 

 

Assumptions and statements  

A list of assumptions and statements have been fixed, to realize and simplify calculations: 

 

1. Effect on volume by carbohydrate, nutrients and biomass (dry weight) are considered as 

negligible. Only the total water content (including cell water content) is used for 

calculating the liquid volume, with ρwater = 1000 kg/m3; 

 

2. Inoculum propagation is not presented in the calculations. In general, inoculum is grown 

by decupling the culture volume at each transfer, up to the desired inoculation volume. If 

we consider that the inoculum is prepared with part of the medium needed to reached the 

set final lactic acid concentration, only the electrical energy and cooling water 

consumption during decupling are not calculated; 

 

3. Evaporation is negligible during the fermentations; 

 

4. Even though substrates have a low percentage of impurities, they will be considered as 

100% pure for simplication of yield calculations; 
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5. Due to the sensitivity of lactic acid to condensate during heating, the temperature in the 

multi-effect evaporator has to be chosen with care. The chosen conditions are: T1 = 89°C ; 

T2 = 76°C ; T3 = 56°C, as designed by Akerberg et al. (2000); 

 

6. Due to its low volatility compared to water (Holten, 1971), the lost of lactic acid in the 

multi-effect evaporator was not considered in this study, since it should be negligible; 

 

7. At pH 6, 100% of lactic acid is under its dissociated form (calcium lactate); 

 

8. Any buffer effect by the medium (corn steep liquor solids majorly due to its protein 

content) on pH is neglected (worst case philosophy); 

 

9. Tap water is considered as neutral. Corn steep liquor has a pH of about 5.5 at 45g/L (see 

Appendix C), so the addition of calcium lactate for setting the initial pH is negligible. 

Substrates effect on initial medium pH is considered as negligible; 

 

10. Potato waste starch hydrolysis should be expected to be the limiting step, so the 

concentration of glucose during potato waste starch fermentation is considered as zero; 

 

11. During hydrolysis of potato starch, 1 kg of starch leads to 1.1 kg of glucose (Anuradha, et 

al., 1999); 

 

12. The residual potato waste starch and the corn steep solids left at the end of the 

fermentation are considered as 100% solubilized in this study since it is difficult to predict 

the final solubility of these components without laboratory testing. It will be considered 

that these components are not filtrated by the microfiltration and the rotary filtration. It 

should be kept in mind that if insoluble parts are left or formed during acidification, they 

could be filtrated in the microfilter and the gypsum removal filter units before the 

evaporator;  
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13. Gelatinization of potato starch is an irreversible phenomenon, which happens 

approximatly between 58°C and 65°C for patato starch (Q. Liu, et al., 2002); 

 

14. The heat capacity of potato waste starch is assumed to be 1.22 J/g·K (International Starch 

Institute, 2009) and was assumed to be constant before and after gelatinization; 

 

15. When potato starch gelatinized, its heat capacity varies with temperature. The variation of 

enthalpy associated with gelatinization was considered to be 16.3 kJ/kg (Q. Liu, et al., 

2002); 

 

16. Biomass and gypsum in the retentate each have a content of 20 wt % of water, excluding 

cell water content: 

݉௪௔௧௘௥

݉௪௔௧௘௥ ൅ ݉௕௜௢௠௔௦௦/௚௬௣௦௨௠
ൈ 100% ൌ 20% 

 

Solubilized components (substrate, corn steep liquor solids and lactic acid) will be lost 

with the water staying in retentate. A water content of 20 wt% is typical of filtration 

retentate (Arcand, 2009); 

 

17. The efficiency of removing biomass and gypsum by the filtration units is assumed to be 

100%; 

 

18. No excess of sulfuric acid for acidification was considered in this study; 

 

19. The final biomass will be approximated following these equations and assumption 1: 

 

.ܥ .ܨ ܷ. ൌ ܣ ൈ 10ଽ 
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ܣ ൈ 1.04ሾൌሿ ݇݃ௗ௥௬ ௕௜௢௠௔௦௦ ݉ଷ⁄  (Timbuntam, et al., 2006) 

ܣ ൈ 1.04 ൈ 5.71 ൬௞௚ೢ೐೟ ್೔೚೘ೌೞೞ
௞௚೏ೝ೤ ್೔೚೘ೌೞೞ

൰ ሾൌሿ ݇݃௪௘௧ ௕௜௢௠௔௦௦
݉ଷൗ (Santivarangkna, et al., 2006) 

ܣ ൈ 1.04 ൈ 5.71 ቆ
݇݃௪௘௧ ௕௜௢௠௔௦௦

݇݃ௗ௥௬ ௕௜௢௠௔௦௦
ቇ ൈ

݉௪௔௧௘௥, ௧బሺ݇݃ሻ

௪௔௧௘௥ሺ݇݃ߩ
݉ଷሻ

 ሾൌሿ݇݃௪௘௧ ௕௜௢௠௔௦௦ 

The water taken for biomass formation will be considered; 

 

20. The agitation motor energy efficiency is 0.92 (Kampen, 1997); 

 

21. The temperature delta of cooling water in the heat exchanger is -5°C (worts case 

philosophy); 

 

22. Tap water taken for the fermentor medium is at 15°C; 

 

23. Saturated steam at 121°C, 1.1 bar is the heating agent; 

 

24. There is no condensate recuperation for heat transfer; 

 

25. The specific molar heat capacity of calcium lactate can be approximated with: 

௖௔௟௖௜௨௠ ௟௔௖௧௔௧௘݌ܥ ൌ
௟௔௖௧௔௧௘ܯ

௖௔௟௖௜௨௠ ௟௔௖௧௔௧௘ܯ
ൈ ௟௔௖௧௜௖ ௔௖௜ௗሺ௟ሻ݌ܥ ൅

஼௔ܯ

௖௔௟௖௜௨௠ ௟௔௖௧௔௧௘ܯ
 ஼௔ሺ௦ሻ݌ܥ

ሾൌሿ ܬ ݃ · ⁄ܭ  

 

26. The specific heat capacity of a solution can be approximated using the weighted average 

of the constituent specific heat capacities, based on the approximation method proposed 

by Dimoplon (1972): 
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௦௟௡݌ܥ ൌ ෍ ݅ݔ ൈ ܬ ௜ሾൌሿ݌ܥ ݈݋݉ · ⁄ܭ  

27. The reactions heats are approximated with the enthalpy of reaction. The standard heat of 

reaction is evaluated with the enthalpy of formation (std cond.: 298K, 1 atm): 

௥௘௔௖௧௜௢௡ܪ∆ ൌ ෍ ௜೛ೝ೚೏ೠ೎೟ೞݒ ൈ ௙௜ܪ∆
௢

௣௥௢ௗ௨௖௧௦
 

െ ෍ ௜ೝ೐ೌ೎೟ೌ೙೟ೞݒ ൈ ௙௜ܪ∆
௢

௥௘௔௖௧௔௡௧௦
ሾൌሿ ܬ ⁄݈݋݉  

 

28. The standard heat of formation (∆Hf°) of biomass is negligible in the heat reaction of 

lactic acid synthesis from glucose since the dry mass concentration of biomass is 

negligible compared to other components (from reading Von Stockar (1993)). This 

method of approximation was also taken by Cable et al. (1971); 

 

29. When data are not available: 

௙ܪ∆
௢ሺݏሻ ൎ ௙ܪ∆

௢ሺܽݍሻ 

  

ሻ݈ ݎ݋ ݏሺ݌ܥ ൎ  ሻݍሺܽ݌ܥ

 

30. Heat of reaction associated with starch hydrolysis was not considered in the heat balance, 

due to a lack of valuable data in the literature;  

 

31. Corn steep liquor solids and biomass were not considered in heat balances, due to a lack 

of thermodynamic properties in the literature; 

 

32. The residual corn steep liquor solids at the end of the fermentation was approximated 

through a global mass balance. To do so, the quantity of water produced during 

fermentation reactions was considered to respect the mass balance equilibrium; 
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33. Corn steep liquor may contain traces of sugars and lactic acid, which vary from one 

producer to another. Sugar and lactic acid content of corn steep liquor was considered as 

zero in this study. It is be assumed as having 50 wt% solids and 25 wt% of protein (Davis, 

2001); 

 

34. The initial viscosity of the potato waste starch medium will be set at the approximated 

viscosity of the homogenous one produced in laboratory, which is more or less 35E-03 

Pa.S. This is considered as the worst case scenario; 

 

35. Agitations during gelatinization/acification were not considered, since they are performed 

during a short time period. Energy consumption per kg of lactic acid is supposed to be 

low compared to other energy consumptions; 

 

36. The process is insulated with the environment; 

 

37. In the multi-effect evaporator, the boiling-point elevation ∆ܶ of lactic acid concentrate 

solution is small, 

∆ܶ ൌ 5.32 · ௟௔௖௧௜௖ ௔௖௜ௗݔ ൌ 5.32 · 0.88 ൌ 4.7 (Akerberg, et al., 2000) 

and the solution is fed at the boiling point of the effect, so 

ଵݍ ൌ ଶݍ ൌ ଷݍ ൌ  ௜ሾൌሿ ܹ (Geankopolis, 1993)ݍ

Assuming that the product of the global heat transfert coefficient (U) with the aire of 

transfert (A) is constant in each effect, therefore (see Appendix F): 

௜ݍ ൌ  ܹ ଵ ௘௙௙௘௧/3ሾൌሿݍ

Steam requirement for the evaporator will be approximated following this equation: 

൫݉௧௢௧௔௟ ௪௔௧௘௥ ௧௢ ௘௩௔௣௢௥௔௧௘ ൈ ௩,ଵ ௘௙௙௘௖௧൯ܪ∆
3 ൌ ݉௦௔௧௨௥௔௧௘ௗ ௩௔௣௢௥ ൈ  ௩ ,௦௔௧௨௥௔௧௘ௗ ௦௧௘௔௠ܪ∆
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௩,ଵ ௘௙௙௘௖௧ܪ∆ ൌ ;௩,଼ଽ°஼ܪ∆൫݁݃ܽݎ݁ݒܽ ;௩,଻଺°஼ܪ∆  ௩,ହ଺°஼൯ܪ∆

 

The quantity of cooling water needed to condensate the vapor at the last effect will be 

approximated as shown below: 

 

൫݉௧௢௧௔௟ ௪௔௧௘௥ ௧௢ ௘௩௔௣௢௥௔௧௘ ൈ ௩,௘௙௙௘௖௧ ଷ൯ܪ∆
3 ൌ ݉௖௢௢௟௜௡௚ ௪௔௧௘௥ ൈ ௪௔௧௘௥݌ܥ ൈ ∆ ௖ܶ௢௢௟௜௡௚ ௪௔௧௘௥ 

௩,௘௙௙௘௖௧ ଷܪ∆ ൌ  ௩,ହ଺°஼ܪ∆
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Fermentations planning 

Assumptions: 

- 1 week end off /2 weeks 

- Emptying/filling should take 3h maximum each (Arcand, 2009) 

- Gelatinization should not take no more than 1h 

- 1 fermentor available (a second might be available but only as a back up) 

 

 

Figure E-1: Planning of glucose and potato waste starch fermentations (1.5 batches/week) 

1: filling; 2: gelatinization; 3: fermentation; 4: emptying; 5: cleaning/off 
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Thermodynamic properties 

Table E-1:  Molecular weight and standard heat of formation 

Component Molecular formula Molecular weight 
(g/mol) 

Heat of formation, ∆Hf° std (25°C, 1 atm) 
(kJ/mol) 

Reference

Potato Starch (s) ሺܥ଺ܪଵ଴ܱହሻ௡ N/A N/A  

Glucose (aq) ܥ଺ܪଵଶܱ଺ 180 -1262.4 [1] 

L-Lactic acid (aq) ܥଷܪ଺ܱଷ 90.1 -686.30 [1] 

Calcium hydroxide 
(s) 

 ሻଶ 74.1 -986.09 [2]ܪሺܱܽܥ

Calcium (s) 0 40.1 ܽܥ  

Calcium lactate (aq) ܥଷܪହܱଷ
ାܱଷܽܥି

ଷܥହܪି 218 -1686.1 [3] 

Sulfuric acid (aq) ܪଶܵ ସܱ 98.1 -907.51 [4] 

Gypsum  (s) ܵܽܥ ସܱ 136 -1434.5 [2] 

Water (l) ܪଶܱ 18.0 -285.84 [4] 

Biomass (s) ܪܥଵ.଺ଶܱ଴.ଷ଼ ଴ܰ.ଶଷ 22.9 N/A [1] 

References: [1]: Von Stockar et al. (1993) ; [2]: Yaws (2009) ; [3]: Cable et al. (1971); [4]: Felder et al. (2000) 
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Table E-2: Molar heat capacities 

Component 

Heat capacities (J/mol·K) ۱ܘ ൌ ۯ ൅ ۰ ൈ ܂ ൅ ۱ ൈ ૛܂ ൅ ۲ ൈ ૜܂ ൅ ۳ ൈ ૝܂ ൅ ۴ ൈ ૞܂ ൅ ۵ ൈ  .૟ Ref܂

A B C D E F G  

Potato Starch (s) N/A N/A N/A N/A N/A N/A N/A  

Glucose (aq) 305.400 0 0 0 0 0 0 [1]  

Lactic acid (l) 99.362 0.75655 -0.0019960 2.3739E-06 0 0 0 [2]  

Calcium hydroxide (s) 
-29.092 0.78856 -0.0019676 2.6339E-06 1.8948E-09 6.8177E-13 -9.4767E-17 

 

[2]  

Calcium (s) 14.162 0.084078 -0.00028173 6.4853E-07 -8.7917E-10 6.1049E-13 -1.6383E-16 [2]  

Calcium lactate (aq) 210.99 1.5833 -0.0042359 5.3444E-06 -8.6031E-10 5.9740E-13 -1.6032E-16  

Sulfuric acid (l) 26.004 0.70337 -0.0013856 1.0342E-06 0 0 0 [2]  

Gypsum (s) 70.207 0.098743 0 0 0 0 0 [2]  

Water (l) 75.400 0 0 0 0 0 0 [3]  

Biomass (s) N/A N/A N/A N/A N/A N/A N/A  

References: [1]: Von Stockar (1993); [2]: Yaws (2009); [3]: Felder et al. (2000) 
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Table E-3: Specific heat capacities 

Component 

Heat capacities (J/g·K) C୮ ൌ A ൅ B ൈ T ൅ C ൈ Tଶ ൅ D ൈ Tଷ ൅ E ൈ Tସ ൅ F ൈ Tହ ൅ G ൈ T଺ Ref.

A B C D E F G  

Potato Starch (s) 1.22 0 0 0 0 0 0 [1]  

Glucose (aq) 1.6967 0 0 0 0 0 0 [2]  

Lactic acid (l) 1.1028 0.0083968 -2.2154E-05 2.6347E-08 0 0 0 [3] 

Calcium hydroxide (s) -29.092 0.78856 -0.0019676 2.6339E-06 1.8948E-09 6.8177E-13 -9.4767E-17 [3] 

Calcium (s) 14.162 0.084078 -0.00028173 6.4853E-07 -8.7917E-10 6.1049E-13 -1.6383E-16 [3] 

Calcium lactate (aq) 210.99 1.5833 -0.0042359 5.3444E-06 -8.6031E-10 5.9740E-13 -1.6032E-16  

Sulfuric acid (aq) 26.004 0.70337 -0.0013856 1.0342E-06 0 0 0 [3] 

Gypsum (s) 0.51623 0.00072605 0 0 0 0 0 [3] 

Water (l) 4.18889 0 0 0 0 0 0 [4] 

Biomass (s) N/A N/A N/A N/A N/A N/A N/A  

References: [1]: International Starch Institute (2009)  [2]: Von Stockar et al. (1993); [3]: Yaws (2009); [4]: Felder et al. (2000) 
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Table E-4: Enthalpies of vaporization and gelatinization 

Type Component Temperature(s) (°C) Enthalpy (kJ/kg) Reference 

Vaporization 

 

 

 

Water 

 

 

 

121 2139.1 [1] 

89 2222.5  

76 2254.6  

56 2302.1  

Gelatinization Potato starch 58-65 16.3 [2] 

  References: [1]: Felder et al. (2000); [2]: Liu et al. (2002) 
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Needed data for mass and energy balance calculations 
 

Table E-5: Data related to the fermentation of dextrose 

Data  Value Ref.
Medium composition (kg) 
  
   

Glucose (dry weight) 92 
CSL solids (dry weight) 45 
Water 1000 

Substrate concentration (kg glucose /m3)  92 
Fermentation time (hrs)  72  
Fermentation temperature (°C)  45  
Final yield (g lactic acid/g glucose)   0.9 
Biomass production (CFU)  1.5E+09 
Dry cell concentration (dry g/L)   1.56 
Water cell content (g H2O/dry g)   4.71  [1]
Wet cell weight/dry cell weight (wet g/dry g) 5.71 [2]
Wet cell concentration (wet g/L)  8.91 
Delta T for cooling (°C)   5 
Water in filtrate retentate (% w/w)   20 
Viscosity 
  
  

Water (25oC) Pa.s 0.001 
Laboratory medium t= t0 Pa.s 0.001 
Laboratory medium t = tf Pa.s 0.001 

Speed of agitation 
  

Laboratory medium t= t0 RPM 50 
Laboratory medium t = tf RPM 50 

Final lactic acid concentration (% w/w)   88 
Tap water temperature (°C)   15 
Laboratory impeller diameter (m)   0.065 
Laboratory fermentor volume (m3)   0.002 
Motor efficiency (%)   92 [3]

References: [1]: Timbuntam et al. (2006); [2]: Santivarangkna et al. (2006); [3]: Kampen (1997) 
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Table E-6: Data related to the fermentation of potato waste starch 

Data  Value Ref.
Medium composition (kg) 
  
   

Waste (dry weight) 40.0 
CSL solids (dry weight) 45.0 
Water 1000 

Substrate concentration (kg humid PWS/m3)  46.0 
Fermentation time (hrs)  72 
Fermentation temperature (°C)  37 
Yield (g lactic acid/g dry PWS)  0.9 
Biomass production (CFU)  5.4E+09 
Dry cell concentration (dry g/L)   5.62 
Water cell content (g H2O/dry g)   4.71 [1]
Wet cell weight/dry cell weight (wet g/dry g) 5.71 [2]
Wet cell concentration (wet g/L)   32.1 
Delta T for cooling (°C)   5 
Water in filtrate retentate (% w/w)   20 
Viscosity 
  
  

Water (25oC)  Pa.s 0.001 
Laboratory medium t = t0 Pa.s 0.035 
Laboratory medium t = tf Pa.s 0.001 

Speed of agitation 
  

Laboratory medium t = t0 RPM 100 
Laboratory medium  t = tf RPM 50 

Final lactic acid concentration (% w/w)   88 
Tap water temperature (°C)   15 
Laboratory impeller diameter (m)   0.065 
Laboratory fermentor volume (m3)   0.002 
Motor efficiency (%)   92 [3]

References.: [1]: Timbuntam et al. (2006); [2]: Santivarangkna et al. (2006); [3]: Kampen (1997) 
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Reactions occurring 

- During fermentation 

 

1) Saccharification of starch into glucose molecules:     

(potato waste starch process only) 

ሺܥ଺ܪଵ଴ܱହሻ௡ ൅ ଶܱ ՜ܪ݊  ଵଶܱ଺ܪ଺ܥ݊ 

            

2) Fermentation of glucose into lactic acid: 

ଵଶܱ଺ܪ଺ܥ  
௙௘௥௠௘௡௧௔௧௜௢௡
ሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ሮ ଺ܱଷܪଷܥ2  ൅   ݏݏܽ݉݋ܾ݅ 

       

3) Calcium lactate formation:  

଺ܱଷ ൅ܪଷܥ2 ሻଶܪሺܱܽܥ  ՜ ܥଷܪହܱଷ
ାܱଷܽܥି

ଷܥହܪି ൅   ଶܱܪ2

   

4) Global reaction 2) + 3): 

ଵଶܱ଺ܪ଺ܥ ൅ ሻଶܪሺܱܽܥ ՜ ܥଷܪହܱଷ
ାܱଷܽܥି

ଷܥହܪି ൅ ଶܱܪ2 ൅ biomass   

∆H୰୶୲
୭ ൌ  െ9.29 kJ/mol 

 

- During acidification 

ହܱଷܪଷܥ
ାܱଷܽܥି

ଷܥହܪି ൅ ଶܵܪ ସܱ ՜ ܵܽܥ ସܱ ൅   ଺ܱଷܪଷܥ2

∆H୰୶୲
୭ ൌ  െ213 kJ/mol 
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Glucose process mass and energy balances (/batch; scenario “Corn”) 

Raw materials and products inputs/outputs: 

 

Table E-7: Input/output of the fermentor of scenario “Corn” 

In kg Out kg 

Glucose  12 522 Glucose  1 252.2 

Water  129 990 Water  137 370 

Ca(OH)2 4 634.4 Calcium lactate  13 634 

CSL (50 wt% solids) 12 250 Biomass (wet weight) 1 212.4 

 CSL solids (dry weight) 5 929.1 

 

Table E-8: Input/output of the microfiltration unit of scenario “Corn” 

In kg Out  kg 

Glucose  1 252.2 Retentate Glucose  2.763 2 

Water  137 370  Water  303.11 

Calcium lactate  13 634  Calcium lactate  30.085 

Biomass  1 212.4  Biomass  1 212.4 

CSL solids 5 929.1  CSL solids 13.083 

 Permeate Glucose  1 249.5 

   Water  137 060 

     Calcium lactate 13 604 

   CSL solids  5 916.0 
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Table E-9: Input/output of the acificiation unit of scenario “Corn” 

In kg Out kg

Glucose  1 249.5 Glucose 1 249.5

Water   137 060 Water 137 060

Calcium lactate 13 604 Lactic acid  11 245

Sulfuric acid  6 121.9 Gypsum  8 487.1

CSL solids 5 916.0 CSL solids 5 916.0

 

 

Table E-10: Input/output of the rotary filtration unit of scenario “Corn” 

In kg Out  kg 

Glucose  1 249.5 Retentate Glucose  19.342 

Water  137 060  Water  2 121.8 

Lactic acid  11 245  Lactic acid 174.079 

Gypsum  8 487.1  Gypsum  8 487.1 

CSL solids 5 916.0  CSL solids 91.579 

 Permeate Glucose  1 230.1 

     Water  134 940 

     Lactic acid 11 071 

   CSL solids 5 824.4 
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Table E-11: Input/output of the multi-effect evaporator of scenario “Corn” 

 

In kg Out  kg 

Glucose  1 230.1 Condensate Water  1 509.7 

Water  134 940  Lactic acid  11 071 

Lactic acid  11 071  + impurities  

CSL solids 5 824.4 Vapor Water  133 430 

 

Other inputs (saturated steam, cooling water and electricty): 

Table E-12: Steam, cooling water and electricity input for the fermentor of scenario “Corn” 

Step Input Value 

Pre-heating Saturated steam (kg) 8 294.3 

Agitation Electricity (kWh) 18.820 

Heat exchanger (coil/jacket) Cooling water (kg) 20 894 

 

Notes to Table E-12: 

- ∆Hrxt global 45oC = -5.91 kJ/mol (+ heat by agitation) so cooling is needed during 

fermentation; 

- By “pre-heating”, it is understood the heating of the medium to reach the fermentation 

temperature set point, which is 45°C; 
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Table E-13: Steam and cooling water for the multi-effect evaporator of scenario “Corn” 

Step Input Value 

Pre-heating (45°C → 89°C) Saturated steam (kg) 5 959.3 

Vaporization Saturated steam (kg) 46 986 

Cooling Cooling water (kg) 4.888 8E+06 

 

Notes to Table E-13: 

- By “pre-heating”, it is understood the additional steam required to heat the medium to the 

first effect temperature (89°C) before vaporization; 

- For the calculation of steam requirement for the “pre-heating step”, the heat released by 

the acidification reaction, which is exothermic, (∆Hrxt,45°C = -215 kJ/mol), was taken into 

account; 

- The cooling step is the one necessary to condensate the steam produced by the third effect 

of the evaporator, through a heat exchanger;  
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Potato waste starch process mass and energy balances (/batch; scenario “PWS water”) 

Raw materials and product inputs/outputs: 

Table E-14: Input/output of the fermentor of scenario “PWS water” 

In kg Out kg 

PWS (13% humidity) 14 394 PWS (dry weight) 1 252.2 

Water 297 103 Water 306 230 

Ca(OH)2 4 634.4 Calcium lactate 13 634 

CSL  (50 wt% solids) 28 176 Biomass (wet weight) 10 039 

 CSL solids (dry weight) 13 154 

 

Table E-15: Input/output of the microfiltration unit of scenario “PWS water” 

In kg Out  kg 

PWS 1 252.2 Retentate PWS 10.263 

Water  306 230  Water  2 509.8 

Calcium lactate 13 634  Calcium lactate 111.74 

Biomass 10 039  Biomass  10 039 

CSL solids 13 154  CSL solids 107.81 

 Permeate PWS 1 242.0 

   Water  303 720 

     Calcium lactate 13 522 

   CSL solids 13 047 
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Table E-16: Input/output of the acificiation unit of scenario “PWS water” 

In kg Out kg 

PWS 1 242.0 PWS 1 242.0 

Water  303 720 Water  303 720 

Calcium lactate 13 522 Lactic acid 11 178 

Sulfuric acid  6 085.2 Gypsum  8 436.1 

CSL solids 13 047 CSL solids 13 047 

 

Table E-17: Input/output of the rotary filtration unit of scenario “PWS water” 

In kg Out  kg 

PWS 1 242.0 Retentate PWS 8.624 4 

Water  303 720  Water 2 109.0 

Lactic acid  11 178  Lactic acid 77.620 

Gypsum  8 436.1  Gypsum  8 436.1 

CSL solids 13 047  CSL solids 90.596 

  Permeate PWS 1 233.4 

     Water 301 610 

     Lactic acid 11 100 

   CSL solids 12 956 
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Table E-18: Input/output of the multi-effect evaporator of scenario “PWS water” 

In Kg Out  kg 

PWS  1 233.4 Condensate Water  1 513.7 

Water 301 610  Lactic acid  11 100 

Lactic acid  11 100  + impurities  

CSL solids 12 956 Vapor Water 300 090 

 

Other inputs (saturated steam, cooling water and electricity): 

 

Table E-19: Steam, cooling water and electricity input for the fermentor of scenario “PWS water” 

Step Input Value 

Gelatinization Saturated steam (kg) 46 610 

Cooling water (kg) 3.357 1E+06 

Gelatinization (optimized) Saturated steam (kg) 21 802 

Cooling water (kg) 823 440 

Agitation Electricity (kWh) 137.34 

Heat exchanger (coil/jacket) Cooling water (kg) 47 454 

 

Notes to Table E-19: 

- ∆Hrxt global 37oC = -7.25 kJ/mol (+ heat by agitation) so cooling is needed during 

fermentation; 
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- There is a variant for gelatinization that will be studied for this scenario, called 

“optimized gelatinization”. During fermentor feeding, the medium is gelatinized in an 

intermediate vessel furnished with an heat exhanger, continuously. Before entering the 

vessel, the medium is preheated to 55°C with the help of the outlet gelatinized medium 

through an external heat exhanger. The outlet is then cooled with cooling water to 37°C 

with another heat exchanger. This configuration lowers the required quantity of steam and 

cooling water and resembles to continous sterilizers; 

- The preheating temperature, 55°C, which is just below the gelatinization temperature 

range of potato starch, has been chosen to prevent a high viscosity in the heat exchanger, 

since potato is known for its high viscosity peak during gelatinization. It is also known for 

its low-medium resistance to shear rate (Swinkels, 1985), so gelatinization in a vessel 

with mixing was decided as a conservative configuration, for lack of experimental data. 

 

 

Figure 4-3: Configuration of the continuous gelatinization step 

 

Table E-20: Steam and cooling water for the multi-effect evaporator of scenario “PWS water” 

Step Intrant Value 

Pre-heating (37° → 89°C) Saturated steam (kg) 25 190 

Vaporization 3 effects  Saturated steam (kg) 105 670 

Vaporization 6 effects  Saturated steam (kg) 52 836 

Cooling 3 effects  Cooling water (kg) 1.0995E+07 

Cooling 6 effects  Cooling water (kg) 5.497 5E+06 
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Notes to Table E-20: 
 

- By “pre-heating”, it is understood the additional steam required to heat the medium to the 

first effect temperature; 

- For the calculation of the steam requirement for the “pre-heating step”, the heat furnished 

by the acidification reaction, which is exothermic (∆Hrxt,37°C = -214  KJ/mol), was taken 

into account; 

- The cooling step is the one necessary to condensate the steam produced by the third effect 

of the evaporator, through a heat exchanger; 

 

Exemple of calculations 

 

 Energy balances for gelatinization (not optimized; unknown variable in bold): 

 

Heating: 

݉௪௔௧௘௥ ൈ න ݐ௪௔௧௘௥݀݌ܥ ൅
ଽ଴°஼

ଵହ°஼
݉௣௢௧௔௧௢ ௪௔௦௧௘ ௦௧௔௥௖௛ ሺௗ௥௬ሻ ൈ න ݐ௣௢௧௔௧௢ ௦௧௔௥௖௛݀݌ܥ

ଽ଴°஼

ଵହ°஼

൅ ݉௣௢௧௔௧௢ ௪௔௦௧௘ ௦௧௔௥௖௛ ሺௗ௥௬ሻ ൈ  ௚௘௟௔௧௜௡௜௭௔௧௜௢௡ܪ∆

ൌ ࢓ࢇࢋ࢚࢙ ࢊࢋ࢚ࢇ࢛࢚࢘ࢇ࢙࢓ ൈ  ௩௔௣௢௥௜௭௔௧௜௢௡,௦௔௧௨௥௔௧௘ௗ ௦௧௘௔௠ܪ∆

 

Cooling: 

݉௪௔௧௘௥ ൈ න ݐ௪௔௧௘௥ሺ௟ሻ݀݌ܥ ൅
ଽ଴°஼

ଵହ°஼
݉௣௢௧௔௧௢ ௪௔௦௧௘ ௦௧௔௛௖ ሺௗ௥௬ሻ ൈ න ݐ௣௢௧௔௧௢ ௦௧௔௥௖௛ሺ௦ሻ݀݌ܥ

ଽ଴°஼

ଵହ°஼
 

ൌ ࢘ࢋ࢚ࢇ࢝ ࢍ࢔࢏࢒࢕࢕ࢉ࢓ ൈ න ݐ௪௔௧௘௥ሺ௟ሻ݀݌ܥ
ଷ଴°஼

ଶହ°஼
 

 

  



  154 

 

 

 

 Agitation during fermentation: 

ܴ݁ ൌ
ߩ ൈ ܰ ൈ ଶܦ

ߤ  

At laboratory scale: 

 ܴ݁௧ୀ௧బ ൌ
ଵ଴ହଶ.ଷ ೖ೒

೘యൈభబబೃುಾ
లబೞ ൈሺ଴.଴଺ହ௠ሻమ

଴.଴ଶ ௉௔.௦
ൌ 370 ՜  ݓ݋݈݂ ݈ܽ݊݋݅ݏ݊ܽݎݐ

 

ܴ݁௧ୀ௧೑ ൌ
1052.3 ݇݃

݉ଷ ൈ ܯ50ܴܲ
ݏ60 ൈ ሺ0.065݉ሻଶ

0.001 ܲܽ. ݏ ൌ 3705 ՜  ݓ݋݈݂ ݈ܽ݊݋݅ݏ݊ܽݎݐ

 

With the diagram of Np versus Re (Hemrajani, 2007): 

௣ܰ,௧ୀ௧బ ൌ 4.7 

 

௣ܰ,௧ୀ௧೑ ൌ 5 

The power, P: 

ܲ ൌ ௣ܰܰߩଷܦହ [=] W 

The rule of scale-up: 

௟ܲ௔௕௢௥௔௧௢௥௬

௟ܸ௔௕௢௥௔௧௢௥௬
ൌ ௜ܲ௡ௗ௨௦௧௥௜௔௟

௜ܸ௡ௗ௨௦௧௥௜௔௟
 

 

4.7 ൈ 1052.3 ݇݃/݉ଷ ൈ ܯ50ܴܲ
ൗݏ60 ൈ 0.065ହ

0.002 ݉ଷ ൌ ௜ܲ௡ௗ௨௦௧௥௜௔௟

௜ܸ௡ௗ௨௦௧௥௜௔௟
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 Heat of reactions 

 

Enthalpy of reaction of calcium lactate precipitation to gypsum at 37°C: 

 

௥௫௧,ଷ଻௢஼ܪ∆ ൌ  2 ൈ ௙,௟௔௖௧௜௖ ௔௖௜ௗሺ௟ሻܪ∆
௢ ൅ 2 ൈ න ݐ௟௔௖௧௜௖ ௔௖௜ௗሺ௟ሻ݀݌ܥ

ଷ଻°஼

ଶହ°஼
 

൅∆ܪ௙,௚௬௣௦௨௠ሺ௦ሻ
௢ ൅ ׬ ଷ଻°஼ݐ௚௬௣௦௨௠ሺ௦ሻ݀݌ܥ

ଶହ°஼     

െ∆ܪ௙,ுଶௌைସሺ௟ሻ
௢ െ න ݐுଶௌைସሺ௟ሻ݀݌ܥ

ଷ଻°஼

ଶହ°஼
 

െ∆ܪ௙,௖௔௟௖௜௨௠ ௟௔௖௧௔௧௘ሺ௦ሻ
௢ െ ׬ ଷ଻°஼ݐ௖௔௟௖௜௨௠ ௟௔௖௧௔௧௘݀݌ܥ

ଶହ°஼   

 

ൌ െ214 ݈݇݋݉/ܬ 
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APPENDIX F – Multi-effect evaporator theory 

Detailed representation of a triple effect evaporator: 

 

 

Figure F-1: Triple effect evaporator, modified from Wilf (2007) 

 

In a multi-effect evaporator, the vapor produced in an effect is used as the heating medium for the 

following effect. Since the boiling temperature of the next effect has to be lower to enable heat 

transfer between steam and the solution, the pressure is lowered. Pressure will be reduce 

gradually from one effect to the other. At each effect of a three-effect evaporator: 

ଵݍ ൌ ଵܷܣଵ∆ ଵܶ 

ଶݍ ൌ ܷଶܣଶ∆ ଶܶ 

ଷݍ ൌ ܷଷܣଷ∆ ଷܶ 
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If the heat of solution and the increase of the solution boiling point at its most concentrated state 

are negligible, so 

ଵݍ ൌ ଶݍ ൌ  ଷݍ

 

If the product of the global heat transfer coefficient (U) with the trasfer area (A) is constant in 

each effect,  

ଵܷܣଵ ൌ ܷଶܣଶ ൌ ܷଷܣଷሾൌሿ ܹ ⁄ܥ°  

ݍ ൌ ∆ሺܣܷ ଵܶ ൅ ∆ ଶܶ ൅ ∆ ଷܶሻ ൌ ܹ ሾൌሿܶ∆ܣܷ ⁄ܥ°  (Geankopolis, 1993) 

 

So the heat transfert in each effect can be calculated from the heat transfert of a one-effect 

evaporator with the same UA product, divided by 3. 
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APPENDIX G – Allocation methods 

The corn wet milling facility assumed co-product production rates per ton of dry corn 

transformed is presented in Table G-1:  

 

Table G-1: Corn wet milling production yields 

Substance P: product/ 

C: co-product
kg (dry) per ton of dry corn transformed

Dextrose P 720 

Corn gluten feed C 200 

Corn gluten meal C 60 

Corn oil C 20 

 

These assumed substances production rates come from Renouf et al. (2008), from which the 

input/output for the production of dextrose was taken. In this study, the authors assumed a yield 

of 1 kg of dextrose/kg starch content (dry basis). A final purity of 96.5 wt% of dextrose (= 

dextrose96.5), leading to 746 kg dextrose96.5 /ton dry corn was considered in the study. The 

production rates of the different co-products per ton of dextrose96.5 (dry basis) are shown in Table 

G-2: 

 

Table G-2: Co-product yields (dry mass) per ton of dextrose produced (Renouf, et al., 2008) 

Co-product kg (dry) per ton of dry dextrose96.5 produced Protein content (wt %)

Corn gluten feed 268 20 

Corn gluten meal 80 60 

Corn oil 27 0 
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This dextrose yield is probably slightly overestimated, since it does not consider any starch lost in 

co-products. Also, this study does not consider any humidity content in co-products. However, 

these yields and protein content will be conserved to be coherent with the LCA inventory of 

Renouf et al. study. Also, corn composition is variable between cultivars and might generate 

differences in yields. Only one modification will be done to co-product yields to take into 

account a limited amount of corn steep liquor sold. As mentioned before, only some facilities sell 

part of their corn steep liquor production as a sole product. The processing system  of Renouf et 

al. (2008) does not consider the selling of corn steep liquor. According to the Corn Refiners 

Association (2009), the US corn refining industry has sold an average ratio of 0.04kg of corn 

steep liquor per kg of product sold (starch, sweeteners, etc.) in 2008. Since this average is low, it 

should have little impact on total energy needs and on final corn gluten feed protein content. 

These variations will be neglected. 

 

This ratio of 0.04 kg of corn steep liquor/kg of product produced will be used to approximate the 

corn steep liquor production rate per kg of dextrose96.5. Corn steep liquor will be assumed as 

having a ~50 wt% solids content and ~25 wt% protein content. These values are averages from 

literature. The new production yields are given in Table G-3: 

 

Table G-3: Co-products yield, taking into account the selling of corn steep liquor 

Co-product kg (dry) per ton of dry dextrose96.5 produced 

Corn gluten feed 268 – 20 (CSL solids) = 248 

Corn steep liquor 40 

Corn gluten meal 80 

Corn oil 27 
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System expansion 

The same displaced animal feed product of Renouf et al. LCA will be used. A mix of 80 kg of 

corn gluten meal (60% wt protein) with 27 kg of corn gluten feed (20% wt protein), which 

produces a 107 kg of a feed mix (~50% wt protein), was considered to be equivalent to 107 kg of 

soybean meal (50% wt protein).  

 

The remaining 221 kg of corn gluten feed was considered as approximately equivalent to 221 kg 

of barley (10% wt protein). It is recognized as having the same Total Digestible Nutrients level as 

barley (Ingredients101.com). One kg of corn gluten feed will be considered as 1 kg of barley, 

even if protein contents are different. In the case of corn oil, it was assumed to replace the same 

amount of soybean oil. 

 

It will be considered that the input of corn steep liquor used as a nutrient additive in fermentation 

would have to be compensated by a higher production of soybean meal. In fact, corn steep liquor 

is recognized as being a substitute to soybean meal, due to its high dry weight protein content 

(Corn Refiners Association, 2006). Since corn steep liquor has a protein content of about 25 wt%, 

the energy and emissions associated to 0.5 kg of soybean meal will be attributed to 1 kg of corn 

steep liquor, based on protein content. 
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A summary of the displaced products per ton of dextrose96.5 from the co-products production 

rates of Table G-3 is shown in Table G-4: 

 

Table G-4: Displaced products by the production of dextrose96.5 

Displaced product Quantity displaced (kg) per ton of dextrose96.5 

Barley 221 

Soybean meal 127 

Soybean oil 27 

 

Economic allocation 

The different selling costs taken for calculating economic allocation percentages are presented in 

Table G-5: 

 

Table G-5: Selling price of dextrose and co-products 

Substance selling price x 103 (US$/kg) Reference 

Dextrose 758.0 Baker et al. (2010) 

Corn gluten feed 77.42 Baker et al. (2010) 

Corn steep liquor 176.4 Aden et al. (2001) 

Corn gluten meal 488.8 Baker et al. (2010) 

Corn oil (“crude”) 722.0 Ash et al. (2010) 

 

The price of dextrose was considered to be at 96.5% purity. The weight percentages of emissions 

and energy consumption (Wi%) related to dextrose production that are allocated to dextrose and 

corn steep liquor were calculated following this equation: 
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%௜ݓ ൌ ௜ܻ ൈ ௜ܥ

∑ ௜ܻ ൈ ௜ܥ
ହ
௜ୀଵ

ൈ 100% 

 

Where Ci is the selling cost per kg of substance and Yi is the production rate of the substance (kg) 

per ton of dextrose96.5 produced. The production rates, Yi, are shown in Table G-13. 

 

The allocation weight percentage is 90% for dextrose and 0.84% for corn steep liquor. 
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