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RESUME

Ce memoire presente 1'application d'un controleur multivariable adaptatif a un modele

nonlineaire dynamique d'un evaporateur de liqueur noire a effets multiples. Les objectifs

principaux sont de realiser un modele representatif du procede, d'y aj outer ensuite un

controleur predictifmultivariable (MFC) a deux entrees et deux sorties selon les principes

de la commande predictive et finalement de determiner si 1'ajout d'une composante

adaptative par ponderation de modeles (MWAC) apporte des ameliorations a la performance

du controleur.

Le precede en question consiste d'un evaporateur de liqueur noire a cinq effets tel qu'installe

a 1'usine kraft des Industries James Maclaren Inc. de Thurso, Quebec. La liqueur noire est

concenti-ee en solides en progressant d'un evaporateur a 1'autre a contre-courant de la vapeur

d'eau, source d'energie d'evaporation de 1'exces d'eau contenu dans la liqueur, ise modele

dynamique inclut chacun des effets etant represente par trois equations differentielles de

bilan matiere des solides contenus dans la liqueur noire et du bilan matiere de la vapeur

d'eau. Les proprietes de la liqueur noire sont incluses dans Ie modele en fonction de la

concentration et de la temperature ainsi que celles de la vapeur d'eau saturee.
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A partir du modele dynamique nonlineaire du procede, un modele lineaire a ete deduit afin

de faciliter les ajustements preliminaires du schema de controle. Pour chaque changement

du point de consigne, les essais sont effectues sur Ie cas de base du MPC a parametres fixes

ainsi que pour 1'algorithme adaptatifpredictifMWAC + MFC. Deux cas differents d'erreur

dans Ie delai sont implantes afin de determiner leur effets sur la performance du controleur.

Les essais demontrent que les deux cas d'erreur dans Ie delai sur Ie controleur MPC donnent

des resultats pratiquement identiques a ceux du cas de base du MPC sans erreur. En

consequence de ces resultats, un seul cas d'erreur de delai est considere sur Ie controleur

MFC pour les essais de changements de point de consigne et de rejets de perturbation sur Ie

procede nonlieaire.

Les perfonnances du controleur MWAC + MPC adaptatifpredictifsont comparables avec

celles d'lm controleur a parameta-es fixes face a des rejets de perturbation et des changements

de points de consigne. Afin d'expliquer ces resultats positifs, on doit prendre QBte du fait

que Ie modele du precede pour Ie controleur predictif a parametres fixes correspond

exactement aux reponses du procede a boucle ouverte. Ceci est une situation pratique peu

probable et constitue un standard eleve de comparaison contre lequel les performances du

controleur adaptatif predictif sont mesurees. Une application industrielle du controleur

adaptatif predictif demontre la souplesse de celui-ci grace a son abilite d'adapter ses

parametres aux changements dynamiques du precede.
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Les resultats des travaux sont prometteurs pour 1'implantation en usine de la combinaison

de controle multivariable adaptatifpredictif. L'aspect original de cet ouvrage est d'appliquer

un controleur MFC 2x2 incluant des parametres adaptes via 1'algorithme MWAC a un

modele de precede nonlineau'e dyiiamique avec donnees operatoires provenant de 1'usine ci-

haut mentionnee. Les tests et ajustements effectues dans cet ouvrage devrait faciliter

1'implantation d'un systeme de conti-ole avance en usine visant a minimiser les variations de

qualite du produit et les couts energetiques.
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ABSTRACT

This work presents an application ofmultivariable adaptive predictive control to a dynamic

nonlinear model ofamultiple-effect black liquor evaporator. The goals are firstly to develop

a representative model of the process, secondly to implement a 2x2 predictive controller

according to the Model Predictive Control (MFC) principles, and finally to determine

whether adding a Model Weighting Adaptive Control (MWAC) adaptive component to the

predictive conti-oller improves performance.

The process unit modeled is a five-effect black liquor evaporator at Industries James

Maclaren Inc. kraft pulp mill in Thurso, Quebec. Black liquor is concentrated as it passes

from one effect to the next by evaporating steam which flows countercurrent to the liquor,

supplying the energy required to drive off the excess water. In the dynamic model each

effect is described by three dififerential equations representing the black liquor mss balance,

the black liquor solids mass balance, and the vapour mass balance. Property values for black

liquor at various concenti-ations and temperatures as well as for saturated steam are also

included in the model.

From the nonluiear dynamic process model, a linear system of first order plus dead time

relationships between controlled variables (strong black liquor flow and concentration) and



manipulated variables (weak black liquor flow and feed steam pressure) is identified. This

simplifies preliminary tuning and testing of the control scheme. For a set point change, trials

are performed on the base case of MFC with fixed parameters as well as the adaptive

predictive algorithm, MWAC + MFC. Knowing that in an industrial application the process

is never perfectly modeled by the MFC controller, two different cases of dead time mismatch

are created in order to detennine their effect on controller perfonnance. As it turns out, the

two cases of dead time mismatch in the MPC controller perform very much the same as the

base case ofMPC with no mismatch. For this reason, only one case of dead time mismatch

in the MFC controller is carried forward to the set point change and disturbance rejection

trials on the nonlinear process.

Throughout this work, the MWAC + MFC adaptive predictive conti-oller performance is

compared with the fixed parameter predictive controller perfonnance and found to be similar

in disturbance rejection and for set point changes. In order to explain why thissis a good

result, it is noted that the process model in the fixed parameter predictive controller matches

exactly the open loop process responses. This is an unlikely practical situation which results

in a high standard against which the adaptive predictive controller performance is measured.

The strength of the adaptive predictive controller is that in an industrial application the

parameters would adapt to changing process dynamics.



Xl

The results indicate that this combination ofmultivariable, adaptive predictive control shows

promise for implementation in the mill. The aspect of originality in this work is application

of a 2x2 MFC controller with parameters adapted by the MWAC algorithm to a dynamic

nonlinear process model with design and operating values from Industries James Maclaren

Inc. Testmg and tuning done here should facilitate implementation of an advanced control

scheme at the mill which would lead to reduced product variability and energy expenditures.
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CONDENSE EN FRAN^AIS

Cette section presente une description condensee du travail decrit dans ce memoire. En

premier lieu, les objectifs vises sont enumeres afin de situer Ie probleme etudie.

Deuxiemement, la sequence des etapes de la recherche est presentee pour decrire Ie

deroulement du travail. Les conclusions mettent en evidence la contribution du travail

suivies des recommandations et applications fiitures possibles.

Le sujet du projet est Ie conb-ole d'un evaporateur multi-effets de liqueur noire a 1'usine de

pates kraft de la compagnie Industries James Maclaren Inc. a Thurso, Quebec. Cette unite

d operation se situe en aval des lessiveurs ou les copeaux de bois sont melanges avec des

produits chimiques (la liqueur blanche) a haute temperature et haute pression; et en amont

de la foumaise de recuperation ou les composants orgamques de la liqueur noire sont brules

afin de recuperer les produits chimiques inorganiques. Le probleme de control&^onsiste a

maintenir dans la liqueur noire une concentration en solides et un debit aussi constant que

possible etant donne les variations associees a la matiere premiere. Ceci est important parce

que durant les excursions de concentration de la liqueur nou-e I'efficacite du procede est

reduite et 1'encrassement des equipements devient problematique.
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Objectifs Vises: Le premier objectif est de mettre au point un modele dynamique

nonlineaire qui represente 1'equipement et Ie precede reel de 1'usine Industries James

Maclaren Inc. Le second et principal objectif consiste a comparer la performance d'un

controleur multivariable predictifa parametres fixes avec celle d'un controleur multivariable

predictif et adaptatif. Les objectifs de controle sont d'eliminer les perturbations dans Ie

systeme tout en lEdnimisant les excursions de la concentration et du debit de la liqueur noire

a la sortie de 1'evaporateur.

Etapes de la recherche: La methodologie se devise en trois etapes commenyant par la mise

au point du modele dynamique. A ce modele est ajoute un controleur multivariable a

parametres fixes pour faire une comparaison entre sa perfonnance et celle d'un controleur

adaptatif. Le but de cette etape est de detenniner si en ajoutant une composante adaptative,

la performance du controleur est amelioree. Le modele dynamique est formule avec trois

equations differentielles par effet qui decrivent les bilans de matiere et d^ergie en

incorporant Ie point d'operation de 1'usine ainsi que les proprietes chimiques de la liqueur

noire. Le niveau de liqueur noire dans la cuve de chaque effet est regle par un controleur PI.

Le controleur 2x2 predictif est selon 1'algorithme de commande predictive (MFC). Les

variables controlees sont la concentration et Ie debit de la liqueur noire sortant de

1'evaporateur (SBL). Les variables manipulees sont Ie debit de liqueur noire entrant
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1'evaporateur (WBL) ainsi que la pression de vapeur saturee (vierge) qui entre a contre-

courant de la liqueur noire et foumit 1'energie requise pour evaporer 1'eau de la liqueur.

L'algorithme pour adapter les parametres du controleur predictifest celui de la ponderation

de modeles (MWAC). Get algorifhme requiert des plages discretes des valeurs possibles de

parametres dun modele du precede . Dans Ie cas present, la relation entre chaque variable

manipulee et chaque variable controlee est une fonction de transfert de premier ordre avec

delai. Avec un systeme 2x2, il y a quati-e de ces relations. Les parametres a estimer sont Ie

gain, la constante de temps et Ie delai. Pour eviter une quantite excessive de combinaisons

possibles, la constante de temps est fixee, tandis quune plage discrete de gains et de delais

sont consideres. Par exemple, la relation entre Dll, la concentration a la sortie, et F16, 1c

debit a lentree, est estimee par une constante de temps (1. 5 minutes) une plage de gains (0. 7,

0.8, 0. 9 , 1.0); et une plage de delais (0, 0.5, 1 1,5, 2, 2.5, 3, 3. 5, 4 minutes). A chaque instant

dechantillonnage, les estimations possibles avec les combinaisons de parametres-§©nt faites.

Un poids normalise est calcule pour chaque modele en vue d'obtenir un modele compose.

Le calcul du poids est une fonction de lerreur destimation et dune combinaison de parametres

aux intervalles precedents. La procedure dadaptation favorise les combinaisons qui estunent

bien les variables de sortie du precede. Lestimation composee sadapte aux changements de

dynamique du precede en recalculant Ie poids de chaque modele. Le calcul se fait de la

fa9on suivante:
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avec P 1'estimation, w Ie poids, g Ie gain, ;" 1'indice des gains, y 1'indice des delais.

Resultats: Des tests sur Ie modele dynamique demontrent que Ie comportement du procede

reel est bien represente. Par la suite, Ie reglage des parametres du controleur predictifpennet

im fonctionnement selon les criteres choisis et decrits plus loin. Les parametres de

1'algorithme adaptatifsont choisis selon 1'identification du precede. Finalement, les resultats

des essais avec les conti-oleurs a parametres fixes et adaptatifs suite a des perturbations et a

des changements de point de consigne sont presentes.

Pour demontrer que Ie modele represente bien 1'usme, les valeurs de concentration^: du debit

de WBL sont celles etablies lors de la conception. Celles-ci decrivent les entrees de liqueur

au ti-am d evaporateurs. Le debit et la concenb-ation des variables de sortie sont comparables

aux calculs de conception avec une deviation d'environ 1%. Cependant Ie bilan global des

solides et de 1'eau boucle avec des ecarts de 0.4%. Les differences de valeurs de proprietes

physiques de la liqueur peuvent aussi expliquer 1'ecart.
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Le schema de controle comprend Ie debit a la sortie de 1'evaporateur qui est a la fois

manipule par Ie controleur de niveau au dernier effet. Pour alleger Ie travail informatique

durant Ie reglage preliminaire du controleur predictifa parametres fixes, un modele lineaire

du systeme est identifie a partir de la reponse des variables confrolees a un echelon sur

chaque variable manipulee.

F22

D22

0.87e-005' -0.41e-OOSJ
F 16

0.025s + 1 0.0042$ + 1

-0. 18e-oo"s 0.195e ~0 3S

0.077s + 1 0.083^ + 1
P1002

F22 represente Ie debit de SBL, Z)22 la concentration de SBL, F 16 Ie debit de WBL, et

P 1002 la pression de vapeur vierge. Le temps est mesure en heures. Les delais du modele

ci-dessus ne proviennent pas de I'identification du systeme. Leur amplitude est arbitraire et

reste a etre confirmee lors de tests a 1'usine. -±-

Les parametres principaux du controleur predictif sont les horizons du modele, de la

prediction et de controle. Pour eviter d'avoir plus de 200 constantes dans 1c modele de

convolution mais sans avoir un pas de temps si grand que la dynamique d'une reponse soit

perdue, 1'horizon du modele est de 60 minutes, et ceux de la prediction et de controle sont

de 30 et 10 minutes, respectivement. Pour chacune des deux variables controlees, il y a un
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poids relatif a determiner sur la penalite d'excursions du point de consigne. Puisqu'a

1'operation suivant 1'evaporateur, la foumaise de recuperation, il est essentiel que la quantite

d'eau dans la liqueur ne soit pas trop elevee (combustion inefficace) ni trop faible

(encrassement) la concentration de la liqueur SBL re9oit un poids plus grand que Ie debit de

SBL, soit 20 et 1, respectivement. Les poids associes aux changement des variables

manipulees sont fixes a 15 pour Ie debit WBL et 10 pour la vapeur vierge.

Les parametres de reglage de lalgorithme MWAC sont la constante de temps, la plage de

gains, et la plage de delais. Le reglage est fait a partir de quatre reponses a lechelon: soit la

reponse de D22 et F22, la concentration et Ie debit du produit (les variables controlees a un

echelon de F 16, Ie debit de liqueur a lentree et Pl 002, la pression de vapeur vierge (les

variables manipulees).

Une fois les parametres ajustes, la perfonnance des controleurs predictifs a paran%tres fixes

et adaptatifs est comparee lors dun changement de point de consigne et de la rejection dune

perturbation. Des essais preliminaires sont faits avec Ie procede lineaire et un changement

de point de consigne du debit de liqueur a la sortie, F22. La trajectoire de F22 vers Ie

nouveau point de consigne ainsi que celles des variables manipulees ne montre pas une

difference enfa-e les controleurs. Quant a D22, seul Ie cont-oleur a parametres fixes avec one

erreur dans lestimation du delai repond legerement plus lentement que les controleurs a
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parametres fixes sans erreur destimation de delai, et Ie controleur a parametres adaptatifs.

Les demiers essais sont faits avec Ie modele nonlineaire du procede. Pour Ie changement de

point de consigne ainsi que la perturbation, les performances sont quasi identiques.

Conclusions: La performance du controleur adaptatifest similaire a celle du controleur a

parametres fixes. On peut supposer qua lusine, avec des changements dans la dynamique du

procede. Ie controleur MWAC + MFC aura une performance au moins equivalente ou

superieure au controleur a parametres fixes.

Applications / Recommandations: Lapplication du controleur predictif adaptatif a lusine

Industries James Maclaren Inc constitue la suite logique de ce travail. Quant au modele, il

serait interessant de mettre a jour les proprietes de la liqueur noire et les delais et de verifier

la correspondance entre les conditions doperation reelles et celles utilisees en simulation.
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NOMENCLATURE

Numbers in parentheses after descriptions refer to the equation in which the symbol first
appears.

Letter Symbols

A

A

A

aij,t

ei,n+]

c

^

ci,n

6.,n

ci,n

D

d

d

D16

D22

E;
i,n

cross-sectional area of the separator (2. 2. 1)

constant state space matrix (3. 1. 1)

dynamic matrix (3. 3. 10)

step response model coefficient for controlled variable i, manipulated
variable j, and coefficient number t (3. 3. 2)

predicted value of controlled variable i at sampling instant n + 1 (3. 3. 1)

conversion factor for mass to pressure from ideal gas law (2. 2. 3)

heat capacity of the liquor (2. 2. 6)

controlled variable i at sampling instant n (3. 3. 4)

output prediction for controlled variable i at sampling instant n (3. 3. 1)

corrected prediction ofconti-olled variable i at sampling instant o<3. 3.4)

delay (3. 4. 1)

disturbance (3. 2.2)

delay (3. 4. 2)

WBL concentration

SBL concentration (4. 2. 1)

process error in controlled variable i at sampling instant n (3. 3. 5)
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E'

E.

^d

F,

Fz

^3

F,

F,

F16

F22

.^100

'200

F,

FO

/

Gc

<?d

G.

Gp

g

IN

OUT

cp

open-loop error prediction (3. 3. 5)

closed-loop error prediction (3. 3. 6)

family of candidate models (3. 4. 3)

feed flow rate (2. 2. 1)

product flow rate (2. 2. 1)

circulating flow rate (2. 2. 7)

vapour flow rate (2. 2. 1)

condensate flow rate (2. 2.3)

WBL flow (4. 2. 1)

SBL flow (4. 2. 1)

steam flow rate (2. 2. 10)
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CHAPTER I

INTRODUCTION

1. 1 Problem Statement

Effective process control is seen as a means to the end of reduced product variability. The

pulp and paper industry is not untouched by the current trend toward advanced control

strategies and systems. Given that one quarter of the energy requirements in a bleach grade

kraft mill are for black liquor evaporation, allocation of resources for development of a

control strategy is justified [3]. Kraft pulping consists of several steps beginning with

combining wood chips with cooking (white) liquor at elevated temperatures in the digester.

Exiting pulp is washed and directed to storage or bleaching. Due to chemical costs and

environmental concerns, approximately 95-97% of the chemicals added to the digester are

recovered [8]. The first step in this recovery process is to remove water fronaAe black

liquor such that the organic wood residuals can be burned in the recovery furnace without

supplemental fuel. The unit operation under consideration is evaporator number three (#3)

at Industries James Maclaren Inc. of Thurso, Quebec which produces 620 tons/day of

bleached hardwood kraft pulp [15]. Installed in 1989, this train of falling film evaporators

was chosen because it is the most recent in the mill and is controlled by a distributed control

system (DCS). The problem motivating this work is variation in strong black liquor (SBL)



entering the concentrator and eventually the recovery boiler. Variability in the SBL is

problematic for several reasons including decreased efficiency of the overall kraft process

and excessive fouling of the evaporator tubes.

1.2 Objectives

The goals are: firstly, to develop a nonlinear dynamic process model that is representative

of the Industries James Maclaren Inc. installation; secondly, to design a multivariable

predictive controller with fixed parameters; and finally, to determine whether adding an

adaptive component to the predictive controller improves perfonnance. The control

objectives are to eliminate disturbances in the evaporator system with minimal deviation of

the controlled variables.

1.3 Methodology .=-

The approach is three tiered: develop a dynamic model, add a multivariable controller with

fixed parameters, detennine whether controller perfonnance unproves with adaptive

parameters. Chapter 2 presents the model which is a system of nonlinear differential

equations developed from the work of Newell and Lee [14] and Levesque [10] with

operating and design values from the mill. In Chapter 3, a 2x2 model predictive conti-ol



(MPC) algorithm is added with SBL concentration and flow controlled by manipulating

weak black liquor (WBL) flow and steam feed pressure. The results of timing the controller

for smooth, stable operation during rejection of system disturbances are presented in Chapter

4. Also in Chapter 4, the model weighting adaptive control (MWAC) algorithm is used for

adaptation of the predictive controller parameters and enhanced multivariable controller

performance. Finally, conclusions as well as possible extensions of the work are in

Chapter 5.



CHAPTER II

DYNAMIC MODEL OF THE MULTIPLE-EFFECT BLACK LIQUOR

EVAPORATOR #3 AT INDUSTRIES JAMES MACLARENINC.

The focus of this chapter is the process model used later for predictive and adaptive control

studies. In order to place the current work in the context of what others have already done,

an outline of the publications of several authors on dynamic modelling of evaporators is

given in the first section. The next three sections describe the development of the model

starting firstly with a single effect, secondly, extending to five effects and finally

customizing the model based on design and operating values for evaporator #3 at Industries

James Maclaren Inc. The single effect evaporator model published by Newell and Lee [14]

is presented in the second section as it is the basis of the dynamic model developed in this

chapter. With operating values from an example material and heat balance by=©race [7],

extension of the model to a train of five effects is discussed in section three. The final

refinements, as found in the fourth section, were made based on design calculations and

equipment specifications of evaporator #3 at Industries James Maclaren Inc. The chapter

concludes with a summary of the material presented.



2. 1 Previous Work in Evaporator Modelling

A compilation by Fisher and Seborg [5] of work with various co-authors, including Newell,

concerns a pilot scale double effect evaporator. The first effect of Fisher and Seborg's double

effect evaporator has a short-tube vertical calandria design with natural circulation and the

second a long-tube vertical configuration. In one article, Newell and Fisher [13] divide the

evaporator up and model each component (steam chest, heat transfer surface, solution

holdup) separately from first principles consistent with the mass and energy balances of the

present work which are presented in subsequent sections. The strength of this approach is

the flexibility it affords when considering a variety of industrial equipment configurations.

When applied to their double-effect evaporator, a system of ten nonlinear differential

equations resulted. This was linearized about the steady state operating point and put in

state-space form. Subsequently, the system was reduced to fifth, third and second order for

control studies. According to Fisher and Seborg, the nonlinear dynamic modeNvas more

effective for off-line simulations than any of the state-space versions they developed. It was

not used in their on-line control studies however, since results with the above mentioned

linear models were satisfactory. Hemandez, Montana and Silva [9] start with the same

nonlinear model as Fisher and Seborg but reduce the order by adding a PI controller and

assuming the level constant. Newell and Lee [14] simplify the Fisher and Seborg process



by only considering the second, long tube forced circulation evaporator effect. This model

is described in detail in section 2. 2.

Wang and Cameron [22] start from the Newell and Lee system of differential equations and

remove the assumptions that the liquid hold-up in the evaporator and the operating

temperature have negligible rates of change. The model is further refmed by maintaming the

heating vapour pressure constant due to operation near the upper bound. Although this

would appear to make the model more realistic and flexible, these improvements do not

come without the price of special tuning techniques and relaxed performance tolerance.

The Bayer process of alumina production is an example of an industrial multiple-effect

evaporator which is modeled by To et al. [21]. Whereas the preceding authors considered

an overall solute balance, in this case the solute balance is over the flash tank, or separator.

The reason for this is that in the reported system, recycle flow is variable and a^principal

disturbance to the system, which is not the case of the present work. Unlike the model

described in sections 2.2-2. 4 below, liquor in the evaporator is heated by a steam heater

which undergoes wash cycles and thus the energy balance is subjected to disturbances.

Secondly, product How is subject to disturbances caused by downsb-eam processes. Since

the overall balances are unaffected by the evaporator internals design, the equations



describing mass and energy balances are identical to those of Fisher and Seborg as well as

Newell and Lee.

A double-train five-effect evaporator for sugar concentration is modeled by Mulholland and

Love [12]. Although the configuration is different, including vapour lines that connect

condensate flash from both the evaporator trains, the first principles used in deriving the

mass and energy balances are similar to those in the present work. Unlike the present work,

in addition to process control, a further objective was to model the effects of fouling on heat

transfer coefficients. The main disturbance was thus liquor concentration which, along with

scaling, influences the effective heat transfer coefficient.

A seventeen effect desalination evaporator was modeled by Burdett and Holland [4] with

heat balance over individual tubes in the heat exchanger section. This is neither practical nor

necessary in the present work since no temperature measurements are made oftte internal

and external tube temperatures and the overall heat balance will be shown in Chapter 4 to be

adequate.

The following major assumptions were made of the models in this chapter: negligible heat-

of-solution effects, saturated steam in all vapour spaces, no subcooling of the steam



condensate streams, zero concentration of solute in the overhead vapour streams. Finally,

heat losses through the evaporator vessels and piping are considered small.

2.2 Single Effect Evaporator Model

This model follows the principle of a forced circulation evaporator as in Figure 2. 1 which

concentrates a solution by boiling off solvent. Feed is mixed with recirculating liquid and

pumped upward through the evaporator tubes. The process liquid is maintained at boiling

by heating with steam which condenses on the outside of the tubes. At the outlet of the

tubes, vapour and concentrated process liquid are separated with the vapour being condensed

in a water cooled exchanger. Most of the concentrated process liquid is recirculated and

some drawn off as product.

Steam
F100

Pl 00
T100

T201
Vapor

4, T3

Cooling water

F200, T200

Evaporator

Steam
Condensate

L2
Condenser

Separator Cond'ensate
F5

Feed F3
F1, X1, T1

Figure 2.1 Newell and Lee Evaporator System

Product
F2, X2, T2



Three differential equations can be written to describe the evaporator mass balance.

Respectively, the overall mass balance, the solute mass balance, and the vapour mass balance

(in terms of the pressure in the system) are as follows:

pAdL/dt=F, -F, -F^ (2. 2. 1)

MdX^ldt =F, X, - F^ X^ (2. 2. 2)

CdP^ldt=F, -F, (2. 2. 3)

with p the liquid density, A the cross-sectional area of the separator, M the mass of liquid in

the evaporator, F, mass flows and ̂  concentrations in percent solids. The conversion factor

between vapour mass and pressure, C, is derived ftom the ideal gas law given that the

operating pressure is near atmospheric [14].

Energy balances are calculated assuming the liquid perfectly mixed and at boiling

temperature. Both vapour (Tj) and liquid (T^) temperatures are calculated by linearization

around steady state values of the saturated water curve [14]. The liquid tempee&ture (T^)

includes a second linear term in equation (2. 2.5) accounting for the effect of boiling point

rise (BPR), which is the difference between the boiling temperature of the liquid and that of

water. The point at which water vapour is driven off of black liquor is the boiling

temperature, T-j, whereas T; is the saturated steam temperature at which the water vapour

condenses in the next effect.

T^ = 0. 507 P, + 55 0 (2. 2.4)
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TZ = 0. 5616 ?2 + 0.3126^ + 48.43 (2. 2. 5)

Further, assuming no heat losses to the environment, no energy input from the pump,

constant latent heat and liquid heat capacity, and very fast dynamics of the energy balance,

we obtain,

^4 = (01 00 
- ^1 q,(^ - r0)/l (2.2. 6)

For F^, latent heat of liquor (Jl) is considered large compared to the sensible heat difference

between ̂  and T^. The first temi in the preceding equation (2.2.6), the rate of heat transfer

to the liquor (0ioo), is calculated knowing the steam temperature and considering the overall

heat transfer coefficient tunes the heat transfer area of the heater section (UA^) a function of

the flow through the evaporator tubes. Equation (2. 2.7) is a linearization in terms of flow

through the evaporator tubes (F, + F^) about the operating point of the heat transfer

coefficient times the heat transfer area (C/^i = 9. 6 kW/°C). Assuming steam at saturated

conditions, a linearization around steady-state values produces the function rel^ig steam

pressure P, oo to temperature T^y in equation 2. 2. 8 [14]. Lastly, in equation 2. 2. 10 the

saturated steam flow rate is obtained assuming constant latent heat of steam, ^.,. A

distinction is made between latent heat of steam ̂  and that of liquor A. which is larger due

to the boiling point rise.

UAi=0. 16(Fi+F3)

Fioo = 0. 1538P1oo+90.0

(2. 2. 7)

(2. 2. 8)
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0ioo - UA, (Fioo - ^2) (2. 2. 9)

^ioo=0ioo/^ (2. 2. 10)

The final energy balances describe the water cooled heat exchanger, or condenser, with

assumed fast dynamics and constant overall heat ti-ansfer coefficient times the heat transfer

area (UA;). Cooling water warms as heat is removed from condensing process vapour.

0200 
= ^200 ^ (^201 - ^200) (2. 2. 11)

02oo 
= UA, (T, - 0. 5 (Fzoo + 72oi)) (2. 2. 12)

In equation 2. 2. 12 above, the arithmetic average temperature difference is used to calculate

the rate of heat transfer in the condenser rather than the log mean temperature difference

(LMTD). This linearization about the operating point simplifies the following equation.

Combining the above two equations, T^ can be eliminated then isolated and condensate

flow rate can be calculated.

U^T, - T^
1 + UA^ZC^ -(2. 2. 13)

T-iOl = ?200 + 0200/(-^200 ^,)

^5 = 020(/^

(2.2. 14)

(2. 2. 15)
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2.3 Extension to Five Effects

The tubular falling film evaporator design illustrated in Figure 2.2 represents the installation

at Industries James Maclaren Inc. Liquor is pumped upward through a central section at the

top of which is a distnbutor. Plow of liquor and evolving steam is downward through the

tubes. The vapour body has a liquor outlet as well as an entraimnent separator for exiting

vapours.

Steam

Condensate

Vapour
Body

Vapours

. ^ Separator
eed

Product

Figure 2.2 Tubular falling film evaporator

Five evaporator effects are arranged in series with countercurrent steam and liquor flow as

illustrated in Figure 2. 3. Defining flow in the direction of the steam, liquor enters the last

effect at 14% solids and travels upstream through each effect exiting at 43% solids. Liquor

discharge from one effect is fed to the preceding stage with part of the stream recycled as in
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the smgle effect model. The train of evaporators is numbered 2 through 6 with the first effect

being a crystallizer that concentrates SBL from 43% solids to around 70% solids.

Effect #2 Effect #3 Effect #4 Effect #5 Effect #6

te
Steam

Condensate

Strong Black Liquor
F22, D22

Figure 2.3 Multiple Effect Evaporator

Weak
Black
Liquor
F16

The heat balance by Grace [7] includes, for each stage, physical properties and heatmg values

such as density, heat capacity, and latent heat of vaporization which are assumed constant

at the steady state conditions of a given effect. The heat balance includes an overall heat

transfer coefFicient times the heat transfer area (UA). Instead of a condenser at every stage,

steam removed from process liquor is passed to the next effect where it condenses on the

outside of the tubes and thus supplies the energy required for evaporation. Condensate

accumulates and flows downstream, transferring sensible heat to the liquor in a preheating

function. Only after the final effect is there a water cooled condenser. Since vapour boiled

off in all but the last effect does not pass through a condenser, the flow calculation relates

the square root of vapour pressure difference from one effect to the next, to vapour flow.
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As done by Fisher and Seborg [5], liquor level is maintained by manipulating discharge flow

from each effect. In the present case, a proportional-integral (PI) controller is tuned for tight

level conti-ol as described by Marlin [11] and characterized by a damping coefficient and a

maximum allowable level deviation (AZ^J corresponding to a maximum step disturbance

in discharge flow (AFn, ax)- Calculation of the proportional (K^) and integral (Tj) tuning

parameters is derived according to Marlin as follows.

Using deviation variables, the process is described by a differential equation:

A^ = ^n, - ^
(2. 3. 1)

The PI conti-oller equation is:

F^ = -KJ,L + ^- fLdt)
T, (2. 3. 2)

By substituting the second equation into the first and then taking the Laplace transform the

following expressions arise:

T.

L(s) _ (T^S
Fns(.s) T2s2 + 2T^ + 1

(2. 3. 3)
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T =

M
AT^ , _ 1 ^(-^)

2 ~~T(-^
(2. 3. 4)

For a step in feed flow such as AF,n/s, the response in the time domain is

L = A^exp-'(-^ (2. 3. 5)

The chosen maximum level (AL^J and flow (AF^J changes are, respectively, 2. 5% and

10% of steady state values while the damping coefficient is 1. By differentiating the

preceding equation the time corresponding to the maximum level is t^ = 2A/(-K<. ). This

time, when substituted into equation 2.3. 5 gives an expression in tenns of the level deviation

corresponding to the maximum inlet flow step

.

AF_
A£_ = 0.736^-T

-". "(-^ (2. 3.6)

The above equation along with equation 2. 3.4 are used to calculate the tuning constants.

Performance of tight level control is characterized by small deviations from the level set

point with whatever flow manipulation is requu-ed.
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2.4 Model of Evaporator #3 at Industries James Maclaren Inc. 

With design calculations and equipment specifications, the multieffect model of section 2.3 

was modified to represent the installation at Industries James-Maclaren Inc. Mill values of 

steady state liquor flows, levels and vapour pressures as well as constants such as cross

sectional area and feed conditions were added. For a single effect (as in Figure 2.2), the 

overall mass balance is: 

(2.4.1) 

with V the volume of liquor in the effect a product of cross-sectional area and level (V= A 

x L), F1 the feed mass flow, F2 the product flow and F4 the vapour flow. Assuming perfect 

mixing, a balance on the solute is as follows: 

(2.4.2) 

Expanding and substituting equation (2.4.1) with L the liquid level leads to a mass balance 

without assuming a constant amount of liquid in a given effect. 

dX/dt Fl(XI - X) + F lC2 

pAL 

(2.4.3) 

(2.4.4) 

(2.4.5) 

(2.4.6) 
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Newell and Lee assumed the amount of liquid in the evaporator to be constant for the

purpose of their mass balance (equation 2. 2.2). Wang and Cameron [22] did not make the

above assumption and their model includes equation (2. 4.6). The energy balance is a

function of steam and liquor temperatures as well as a liquor flow-dependant UA (equation

2.2.7), as in the Newell and Lee model. In this model a distinction is made between the heat

ti-ansfer surface in the energy balance and the cross-sectional area used in material balance.

The heating surface for the falling liquor film consists of the walls of the vertical tubes

whereas the volume of liquor is calculated based on the size of the evaporator sump in the

vapour body.

2.5 Summary

This chapter presented a dynamic nonlinear model of the multiple effect evaporator #3 at

Industries Maclaren Inc. Previously published work of others was examined % the first

section. A model by Newell and Lee was the starting point and therefore presented in detail

in section 2.2. Extension of the model to five effects was the focus of section 2.3. The final

version of the model was discussed in section 2. 4. With the dynamic process model, a

control strategy can be developed and tested in order to ease implementation at some later

time. The next chapter discusses the conti-oller with predictive and adaptive behaviour which

will be used to control the process model.
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CHAPTER III

MULTWAMABLE MODEL PREDICTIVE CONTROL (MPC) AND

MODEL WEIGHTING ADAPTIVE CONTROL (MWAC)

The next two steps in this work are firstly to add a predictive controller and secondly an

adaptive function to the predictive conti-oller. The goal is to determine whether predictive

conti-oller performance is improved with adaptability. The predictive control algorithm,

MPC, is well developed and several previous applications and their relation to the present

work are described in section 3. 1 together with various other predictive methods. A review

of some previously published adaptive control strategies is the focus of section two. This

is followed by a description in the third section ofmultivariable (2x2) MPC. The MWAC

algorithm for adaptive control is described in detail in section 3.4.

3. 1 Literature Review of Predictive Control of Evaporators ^&

Newell and Lee [14] developed a predictive controller for their single effect evaporator. The

design procedure is similar to that described in section 3. 2 below in that it is based on a

convolution model and minimization of the predicted error across the model horizon. The

difference arises in the 'pseudo-inverse' solution with weighting constants on both the output

variables and the control move size (Q, and R respectively).
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(3. 1. 1)

In equation (3. 1. 1), AM is the control move and e is the process error.

Instead of solving the above equation in this form, Newell and Lee use a numerical

technique called singular value decomposition to calculate the pseudo-inverse of the matrix

A (the dynamic matrix). They then use a design method called principal component analysis

to calculate the control moves. Despite these numerical differences, the implementation

follows the same steps as in section 3. 3.

Alevisakis and Seborg [1], [2] have addressed the problem of process time delays in their

multivariable Smith predictor control strategy. Like MFC, the Smith predictor is a model

based controller. The development reported m these papers is an extension of the algorithm

to the multivariable case. The authors argue that removing the delay from the characteristic

equation of the closed-loop system, broadens the selection of controller designs available.

Ricker [18] describes the design and testing of a constrained predictive controller that shares

with the present work both a quadratic programming (QP) approach to the constramts and

a convolution model based predictive controller design which falls into the category of

internal model control (IMC). The important sumlarities among predictive control strategies
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such as Dynaniic Matrix Control (DMC), Model Algorithmic Control (MAC), and now

Internal Model Control IMC are the use of a process model to predict present and future

control actions by executing an on-line optimization. The fact that calculations are

performed in real time allows consideration of pertinent constraints. Ricker's choice of

quadratic programming over linear programming is made because in the fonner case an

unconstrained solution is not possible since the result of linear programming is always along

a boundary or at an intersection of constraints. A comparison between the constrained

multivariable predictive controller and a conventional PI controller confirmed the basic

assumption of the present work that the QP IMC strategy provides easier tuning for better

performance. In a subsequent publication, Ricker et al. [19] note that their QP IMC

algorithm is not only effective for controller tuning off-line but also allows the controller to

incorporate future set point changes into its prediction by pre-programming the target

progression. These features are both present in the QP MFC algorithm. The Ricker control

problem closely resembles the present work in that the manipulated variables areJ L flow

and heating steam flow (versus saturated steam pressure) and the control objectives are firstly

to maintain solids content of the SBL and secondly WBL throughput (compared with SBL

flow). Ricker et al. tested both QP IMC and PI controllers and found that SBL concentration

was maintained to within 1% of the target value during normal operation of the plant. This

perfonnance was acceptable to operations personnel. For programmed changes in WBL

throughput of ±5% only the QP IMC algorithm delivered acceptable performaiice. In order
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to reduce the computational burden a technique called blocking is implemented with the QP

IMC algorithm in which, for a specified interval, certain manipulated variables are held

constant.

3.2 Previous Work in Adaptive Control

Newell and Lee [14] acknowledge the limitations affixed parameter controller designs and

therefore consider two methods of adaptive control: gain scheduling (GS) and self-tuning.

In gain scheduling during excursions from the steady state operating point, the controller

gain (K,) is adapted as a function of a proportional steady state gain (K,ss), a proportional

gain scheduling constant (Kys) and the error signal (the difference between the set point, SP,

and the controlled variable, CV).

(3. 2. 1)
Kc = ^ - (SP - CV) ^K,os

This method of controller gain adaptation differs from MWAC in that the change is made

based on the process error rather than the prediction error. There is therefore no predictive

element to foresee control requirements. From the gain scheduling relation (3.2. 1) it is

obvious that the range of possible controller gain values is limited whereas the MWAC

family of candidate models may be very diverse. Also, only the gain is adapted, whereas

MWAC adjusts both the gain and the delay. The second adaptive method evaluated by
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Newell and Lee consists of an on-line process identification by auto-regressive moving

average (ARMA) followed by PID controller parameter calculation. The main drawbacks

of this approach, relative to the present work, are that the PID has neither a multivariable nor

a predictive component.

Oliver, Seborg and Fisher [16], [17] derive adaptive control algorithms such that stability of

the closed-loop system is guaranteed by requiring the total time derivative of the Liapunov

function to be at least negative-semidefinite. Oliver, Seborg and Fisher call the design

method model reference adaptive contool (MRAC) since it is based on a reference model that

has desired behaviour. The control objective is to minimize the error between the actual

process values and the state-space reference model response. The manipulated variables are

determined by a control law that includes feedback (FB), feedforward (FF) and integral (I)

action with provisions for set point changes (sp).

u = K^, + K^l + ^^^f + K^
(3. 2.2)

The control matrices (^pB, K^, K,, K^) are calculated based on Liapunov's direct method

which requires process values of the state (Xp), disturbance (t/), output (y) and set point (yj

variables. A limiting aspect of this approach is the linear state-space fomiat requirement of

the reference and process models. The two advantages of the MRAC approach stated by the
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authors are, no on-line process identification and a readily tuned controller, both of which

are dealt with by the MWAC and MPC algorithms developed later in this chapter. Another

shared underlying assumption is that multivariable conta-ol is more effective than single loop

arrangements. A strength of the MRAC approach is that in the simulations and experimental

tests, the initial conti-oller parameters were able to recover from very poor initializations.

This is not essential to the present work since the process model is representative and so,

therefore, are the initial controller parameters. Conversely, a characteristic that is relevant

to the present case is that MRAC controller performance improved with subsequent upsets

which inevitably occur in any industrial application. It follows then that the controller

adaptation is slowed in the region of steady state, which is not the case ofMWAC.

Hemandez, Montana and Silva [9] do not use the name MRAC for their method but it has

the same approach of tracking a reference model using a Liapunov design approach. The

control strategy is applied to a single loop in a double effect evaporator. Using a^irst order

model outlet concentration is controlled by steam flow rate. As in the present work, level

is maintained by PI control. The results do not appear overly encouraging as the authors

describe their results as "slightly better" than a PI controller.

Table 3. 1 below is presented in order to summarize the bibliographical work discussed i

sections 3. 1 and 3. 2 above that deals with the specific problem of evaporator control.

m
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Table 3.1 Summary of Published Evaporator Control Studies

Authors

Alevisakis

& Seborg
1973

Alevisakis

& Seborg
1974

Hemdndez,
Montana,
Silva
1993

Mulholland

& Love

1993

Newell &
Fisher

1972

Control

Algorithm

Predictive

Predictive

Adaptive,
PI

Kahnan filter

PI,
Inferential
Feedforward

Optimal
MIMO
State-Driving

Variables &
Model

Linear multivariable

Algorithm Results

Smith

predictor

5th order state space
model

CV: product conc'n
1 st & 2nd effect

level
MV: steam flow
1 st & 2nd effect
product flow

multiloop:
SISO
proport'l
control

multivar'l:

MIMO
optimal
multivar'l
FB+
Smith

predictor

1. nonlinear 1. adaptive
2. linearized models FB
CV: output conc'n 2.PI
MV: steam flow

black liquor evap. : Kaknan
heat transfer coef. U filter
product concent'n C

5th order Imear
model

CV: product conc'n
1 st & 2nd effect

level
MV: steam flow
1 st & 2nd effect
product flow

PI

Inferential

FF+PI

Optimal
MIMO

State-driv'g

Extension of Smith predictor
(continuous and discrete tune) for
multivariable systems with delays
inCV&MV

Experimental & simulations:
process with delays + multivar'l
sunilar to process without delays
+ multiloop

Simulations: robustness & gain l
with Smith predictor + error in
gam & delay

For CV set point change, 1
slightly better than 2.

Predict change in U from change
in C, extend to predict scaling

Off-line tuning has gain too high
for experimental

Better than PI for product
concentration control

Better than PI only

Best experimental performance

Must have very good model
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Table 3. 1 Summary of Published Evaporator Control Studies (Cont.)
Authors Control Variables & Algorithm Results

Algorithm Model

Oliver,
Seborg &
Fisher
Parti
1973

Adaptive

Oliver,
Seborg
&Fisher

Part 2
1973

Adaptive

5th order state space
model

CV: product conc'n
1 st & 2nd effect

level
MV: steam flow
I st & 2nd effect

product flow

Same as Part 1

Ricker

1985
Predictive Multieffect Evap.

Simulation
CV: SBL solids
MV: WBL How

MIMO Add adaptive integral and set point
MRAC control

Simulation: for disturbance,
MRAC + FB is better than open
loop
gain r oscillations t
small improvement in addmg FF
toFB

performance in set point changes 1
with repetition

MRAC Double Effect Evaporator
Experimental: gam T oscillation t
initial hinmg t performance t
controller adapts from poor initial
tuning and repetition
adaptive parameters i computation
1 and performance acceptable
away from model linearization
point, can adapt

QP + IMC IMC with blocking is near-perfect
but on border of instability

filtermg vs. with good model IMC tunmg
blocking easier

PID less accurate than IMC and
too sensitive to plant nois&

constraints have no negative effect

QP algorithms
better to start with optimum than 0
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Table 3. 1 Summary of Published Evaporator Control Shidies (Cont.)

Authors Control Variables &
Algorithm Model

Algorithm Results

To et al.

1995
GMC vs. PI

Wang&
Cameron

1994

Evap. simulat'n
CV: product density
flash tank inventory
(liquid discharge
temp)
MV: CW flow

feed liquor flow
(heater discharge
temp)

Evap. simulat'n
CV: separator level
product
composition

operatmg pressure

MV: steam pressure
or recirculation rate
product flow rate

Input-
output
lineariz'n

CMC

Su-Hunt-

Meyer
transfin'n

(PI)

Robustness tested with disturb, in
product flow
modelling errors T, perfonnance l

best results, flexible, robust,
effective control

subset of input-output lineariz'n
better than local linearization

add 3rd CV and MV

more sensitive to modelling error
better than local linearization

Local ~ 10 x longer than any above
linearizt'n (nonlinear) to return to steady state
2 Pl's

product composition set point
change

optimal good for minimal time and energy
control deviations ^=

GMC perfonnance i as model RD t
(un)constra two-step tuning, pseudo RD 1 and
ined cascade all improve perfonnance

constrained GMC better than

unconstrained even away from
bounds
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3.3 Review of Model Predictive Control (MFC) principles

Model Predictive Control is the generic name for a centralized conti-ol strategy which

employs measurements of output (controlled) and input (manipulated) variables as well as

a dynamic model of the process for control calculations as seen in Figure 3. 1. Note that G<i

is the function relating a disturbance to the controlled variable (CV); Gcp is the controller

fbnction relating the process error to the manipulated variable (MV); G is the process

function which relates MV to CV; and G^ is the modeling function relatmg MV to predicted

CV. Among the specific strategies are IMC, DMC, and MAC which have been extensively

described by others [11], [19], [20].

Disturbance D(s)

Predictive Controller

sp(s}+ G^
MV(s)

^

Gs)

Model

CV(s)

(s)

Figure 3. 1 Predictive Control Block Diagram

Following is an outline of the approach used for a 2x2 controller for the black liquor

evaporator studied in the present work.
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In order for the controller to predict future values of the output variables, a relationship

between each input variable and the output variables must be established. For a given

sampling period, performing an open loop step change in a manipulated variable and

recording the response of each of the controlled variables yields a step response convolution

model. The response time, or model horizon, should be equal to or longer than the settling

time of the slowest response. The model is normalized by first subtracting the steady state

value to get a deviation variable and then dividing by the manipulated variable step. Impulse

coefficients are obtained by taking the first backward difference of the step response model.

The approach mentioned above is effective for systems which are not accurately modeled

by first or second order transfer functions as is the case of the multieffect evaporator. The

response of the SBL flow includes unavoidable overshoot due to the five PI level controllers

tuned for tight control. The predictive model for the 2x2 system under consideration is:

cl,». l = E/'II,WI^. I-, + E^l^"^. !-/
J_ ^

^.1 = E^l/",^, -, + E^^/,. 1-,

(3.3^)

(=1

with e the prediction, h the impulse coefficients, m the manipulated variables, / the

convolution model increment, and n the sampling instant.
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In addition to the previously mentioned model horizon, two other horizons are central to the

MFC algorithm. The control horizon, U, is the number of manipulated variable changes
calculated. The controller objective is to reduce the difference between the controlled

variable predictions and set points to zero within V, the prediction horizon, sampling

intervals. It follows then that the control horizon (U) is always shorter than the prediction
horizon (F).

The model prediction for a series of manipulated variable changes is calculated as follows:

'1,2

ai,. i 0

all,2 all.I

0 a^ 0 ... 0
0 al2, 2 "12,1 0

Am

Am

A/72,

1.0

1.1

1,2 (3. 3.2)

\r

o,,,/ <ar,n.v un,r-i ... an,r-u^ an,v ai2, r-i ". ai2. r-c/+i

0

Am

62, 1 "21, 1 0 ... 0 a^, 0 ... 0 Am
^

S,, a21. 2 "21. 1 
0 a,^ a^

62.2 Am
0 a..

l.U-l

2,0

'2,1
Am'2,2

C2.r a2l-r a2 1-^1 
"" a".y-u-i aK.v a-a,r-\ ... a-a.r-u^ Am,2, C/-1
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The step response model coefficients are represented by a. Incremental changes in the

manipulated variables from one sampling interval to the next are denoted by Am whereas in

preceding equations m represented the value of the manipulated variable.

With rearranging and time interval shifting, a recursive form of the model in terms of the

incremental control moves is

cl,-V = cl,»^-l + I^All<A/"l,»y-( + Y. h^m^^
J_ ^-

CW = C2.,y-i + E^2i,A'"^^ + E^Aff!^,^

y=i,2,...,F

1=1

(3. 3. 3)

Note that the above predicts the behaviour of the system across the prediction horizon, V.

A corrected prediction, c; ", is made using measured values from the preceding ti^ instant,

c;,n. i, rather than predicted values, c ;n.i. In the case of a plant installation, on-line

measurement of the controlled variables is available whereas in the present simulation, the

process model described in Chapter 2 generates these values for feedback to the predictor.

A second modification of equation 3. 3. 3 is to separate the suimnation terms into those

involving past and future control moves. The projection vector, P,^,, anticipates the effect
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of past moves on future outputs while the first term in the matrix representation below takes

into account fiiture control moves.

.. 1,^1

-. l.n+2

.. 1,^3

aii,i 0

all. 2 all,l

al2,I 0

"12,2 fll2,l

Am

Am

Am

!/.

l,n+l

1/1+2

C1/,+P11,1+P12,1

cl/, +JP!I.2+-Pl2^

CI^+P11,3+P12,3

au.r "n.v-i ."

^v a,^ o ...
-2^tl

-2, nt2

-2,n+3

°21,2 fl21,l

. 11, 7-U+l "12.F "12, »'-1

0 ff22,l 0

a22,2 a22,l

'" al2.V-Utl

0 Aml,n^-l cl,n+Jpll.^l2, f.
Am2,n

Am2,n+I

C2/, +^21. 1+-P22,1

C2^+JP2I,2+-P22.2

Am2, n.2 C2.n+-p2 1,3+p22^

^i,r "2i,F'-i - a2i,y-u.i fl22,^ a22,v-t - a22,r-u^ Am»t ' " --" ~ ' ~" ~" ' "" "" u'"2,n+I/-l C2,n+/'21,»'+/':
'2/i+r

22, 1-'

cfa.f

^

i,J

c, m

p'
y°i
r

E h^m^^_, (3. 3. 4)
i=/+l

1,2,...,F

1,2 for 2 controlled, 2 manipulated variables
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The corrected prediction of (3. 3.4) is used in the controller design described next. With set

point trajectories across the prediction horizon, r,^, j = 1,2,...,V, the purpose of the

controller is to reduce the difference between the corrected prediction and the set point. In

so doing, two vectors of predicted errors are defmed. The first is an open-loop prediction (no

feedback) since it consists of the projection vectors P , which only consider past control

moves as well as the process error at the current sampling instant, E<;,n = r^ - c

&' =

E.. - pn, r P^
E.,n- P^- P^

- p....- p.
l,n ^ n.V .' 12.V

E^-p^- ^,1

'2,n * 21,2 .. 22,2

(3. 3. 5)

p.. ..-
2,n .. 21. F .' 22,r

The second vector of predicted errors takes into consideration not only past control moves

but also current and future inputs.
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.E =

?'l,n+l-c l,n+l

l,n^2-c l,n+2

rl,n^~c l,n+F

2,n+l ^ 2,n+l

'

2,n+2 " 2/1+2

(3. 3. 6)

2,n^V " 2,n+f

It follows then that the matrix representation of (3. 3.4) can be rewritten in tenns of the two

predicted error vectors defined above

E=-AAm+E' (3. 3. 7)

Remembering the purpose which is to reduce the difference between the corrected^rediction

and the set pomt, the objective function to be mimmized is the sum of the errors squared or,

in vector form,

J[Am]=ETE (3. 3. 8)

Since U is always less than V, matrix A is not square. The solution is the well known

pseudoinverse or linear least squares solution of

9Jr /3Am=0 (3. 3.9)
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which is

Am = (ATA)-1ATE- = K,E' (3. 3. 10)

This implies that K^ is an approximate inverse of the model in the controller and is constant

in time. In later sections an enhancement of the algorithm will be presented, adapting K<; at

each sampling period thus accounting for time varying plant dynainics and modelling errors.

For now though, the controller parameters are fixed and tuning constants are added. By

expanding the objective function with an additional term penalizing control moves called the

move suppression factor, a total of four tuning parameters are available.

J[Am] =ETW E + AmTQ Am (3. 3. 11)

This leads to the controller

K, = (AT WA + Q)-' AT W (3. 3. 12)

in the 2x2 case with controlled variables c = 1,2 and manipulated variables m = 1,2 the

controlled variable weighting is ^ = wjy and the move suppression factor is0m=qm lu

with Wi 2 and q, 2 the four tuning constants. In matrix form: ^^

w =
^ 0

0 W,
Q =

0, 0
0 & (3. 3. 13)

Note that the impact of any one tuning constant depends on its value relative to the others.

For example, the difference in magnitude between the two controlled variables is

compensated for by the relationship Wi/W;. Also, if one input is allowed more variability
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than the other, this will be reflected in Qi/Qz. These interactions must be taken into

consideration during the tuning process.

Control moves are calculated by Am = K<;E'. The result is a vector Am twice the length of

the control horizon. The first U moves are for the first controlled variable while the last half

is for the second output. Since the calculation is repeated at each sampling instant, only the

first control move for each manipulated variable is actually implemented. In other words,

only two rows ofK<;, the first and the U+lst, are useful.

The final performance enhancement of the MPC algorithm is to accommodate the reality in

any process of physical constraints. In the present case, for example, both flow and pressure

must be non-negative while concentration may not exceed 100%. This situation is dealt with

by reformulating the quadratic objective function to include explicitly constraints on each

of the controlled and manipulated variables as well as control move size. The=^sult is a

quadratic programming (QP) problem which is implemented in the controller algorithm.

3.4 Model Weighting Adaptive Control (MWAC) Principles

The strength of adaptive control strategies is compensation for time varying plant dynamics

as well as modelling inaccuracies by modifying the controller model at each sampling instant
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based on the prediction error. The structure of the model weighting adaptive controller used

in this study is illustrated in Figure 3.2.

SP(t)+

Disturbance D(s)
G, (s)

Predictive
Controller

^s)
MV(t)

Process +

+Gp(s) CV(t)

stimatio

of
p

Model 1

odel2

.

Model

Figure 3.2 Adaptive Predictive Control Block Diagram

The basis of the control design developed by Gendron et al. [6] is a first order plus time

delay model which has three parameters: process gain (g), delay (Z)), and time constant <T).

P(,) , g exp(-Ds)
1 + TS (3. 4. 1)
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Identification of the gain and delay is in the form of a discrete range of values. This allows

controller adaptation of these parameter estimates within the specified range. A single value

of the time constant parameter is identified rather than a discrete range since error in the

time constant estimate affects closed-loop stability less than error in the gain and delay.

Also, the number of adaptive parameters is kept to a minimum since each additional

parameter increases substantially the number of possible combinations and hence the

computations.

The transfer fimction in (3 4. 1) is rewritten in discrete form since the implementation is

digital.

P(y-') = g(l-Ct)9-
l-aq~l

-d-l

(3. 4. 2)

Notice that the discretized delay (d) is an integer multiple of the sampling period.

As mentioned above, only an approximate range of values of the gain and delay are known

from both physical limitations experience with the process. A family of candidate models

is established by discretizing these ranges of the gain and delay:

.^ ^ ^(?"')lg e fc i], rf e fe ^] } (3. 4.3)
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with g, k the lower and g" , fc the upper limits of the discrete ranges of gains and delays,

respectively. The criteria for forming the group of models is that it is small enough to remain

manageable and large enough that an intennediate value can be stabilized between two group

members.

The MWAC approach is to design one controller which is made up of contributions from

each of the N members of the family of candidate models where N A card y^. The weight

placed on each model contribution is calculated such that the controller prediction (j?) error

is minimized. With the actual plant model, G, output, y, and input, u:

e(0 = XO - XO

= xo - E^(O

= G(g-lMO - E^(?-l)<o

= (G(?-') -P(q-^u(t)

(3. 4. 4)

Note that p is the controller model made up of contributions from all member models while

Pi e ^d.

Also, the sum of weights is normalized to unity.

N

E
(-1
E^i

(3.4. 5)



By combining weightings with gains,

Yy=E, W^,
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(3. 4. 6)

it follows that the process model made up of all combinations of gain and delay parameters

IS

P(a") = ^-e-'-
v^-'

(3. 4. 7)

Of the two steps remaining in this discussion the first is to calculate the weightmg attributed

to each model in the family of candidates. Secondly, the algorithm must be expanded to

accommodate the 2x2 control problem.

The weights are calculated by considering the prediction error of each model in=fee family

of candidates and penalize those with large errors. Given the actual plant input u(t), the

output of each candidate model P, is y,(t). This leads to a predicted error of e,(t) = y(t) - y, (t).

With this and/6 [0, 1] (which is defined below), the /; error norm is defmed as follows and

the inverse is used in the calculation of model weights.

v,(0 = |e,(0( ^ (E f" <w{A
(3. 4. 8)

n=0
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w, =
1/v,2

E i/v: (3. 4. 9)

Two cases of the /z-nonn above are when/= 1 and/<l. The former is the nonnal /z-norm

and the latter exponentially favours the most recent data. Since implementation is digital,

the recursive form of the /2-norm is

o,(0 = / o,(r-l) + e^)

v<(0 = ^)

(3. 4. 10)

(3. 4. 11)

Notice that one strength of MWAC is that the calculation of weights is made at each

sampling instant and can therefore vary with the process. The/in the recursive equation is

a forgetting factor that dictates how fast model weights adapt to changing conditions and is

calculated using N), = card \^, k]-

/. N^
^

(3. 4. 12)

As stated above, the MWAC algorithm must be extended to the 2x2 case for implementation.
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Since the MPC algorithm is based on four input-output relationships, the combinations of

candidate models quadruple.

,(1 - a)

v.q-
^?-1) - EE^/,, ^'0^ _a) ̂ (c^-^EE^, /ri-'(l

(;::;?-:S^--<-, -_y£^-<. -.

- ('.2, y>-i

(3. 4. 13)

with c [1,2] the two controlled variables. And the combination leads to the model below

\p.. p.
11 .. 12

\p.. p.
21 .' 22

(3. 4. 14)

3.5 Summary

The above sections presented the predictive and adaptive strategies applied to the process

model developed in Chapter 2. Extension of MWAC to the 2x2 case was a recent

development. None of the prior work described an application of the combination of

predictive and Model Weighting Adaptive Control which is the novelty of the present work.

In the next chapter results of the simulations are presented and discussed which lead to

conclusions on the success and potential of this approach.
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CHAPTER IV

RESULTS AND DISCUSSION

This chapter presents and discusses perfonnance of the fixed parameter predictive controller

along with the adaptive predictive controller in disturbance rejection and a set point change.

But first, various inspections of the model are presented in section 4. 1 in order to develop

confidence in the representation of the tme process. The second section, 4.2, describes the

steps involved in adjusting the predictive control algorithm parameters. It follows next that

the adaptive algorithm is customized to the system under study in section 4. 3. The final

component of this chapter is a presentation of control studies with fixed parameter predictive

as well as adaptive predictive control action for a set point change and disturbance rejection.

4. 1 Nonlinear Model Behaviour

The ideal method of validating the process model is to compare operating values at the mill

with those generated by the simulations. Unfortunately, the scope of the present work does

not include identification of all the parameters required to make a comparison between mill

operating dynamics and the process model developed here. Therefore, in order to establish

the nonlinear model as a valuable representation of the multiple effect evaporator #3 at

Industries James Maclaren Inc., several checks were made such as comparing key model



43

variables at steady state with plant design values; verifying overall material balances; and

introducing step disturbances to the model in order to observe the responses. The liquor

level in each effect is regulated by a PI controller and the model response is otherwise open
loop.

The model includes design values ofWBL flow and concentration as feed to the evaporator

effect #6. Table 4. 1 shows that the model very nearly delivers design values of SBL at the

discharge of effect #2.

Table 4. 1 Comparison of Model and Design SBL

Variable

F22 (W)

D22 (% solids)

Model

43831

42.9

Design

43591

43.4

% Deviation

0.55

-1.1

Similarly, overall balances on solids and water according to steady state model values close

to within small margins as illustrated in Table 4.2 below.

Table 4.2 Overall Solids and Water Balances

Solids (t/h)

Water (t/h)

In

18.637

121. 391

Out

18.584

120. 908

% Difference

0.3

0.4
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The difference between the present model outputs and design values (observed in the tables

above) can be attributed to variations in the physical property values of black liquor.

Table 4.3 below indicates the behaviour of process variables as a result of step dishirbances

introduced to the model as new steady states were achieved. For a given disturbance: a

variable response in the same direction is indicated by the plus sign (+), an inverse response
with the minus sign (-) and no interaction with a zero (0).

Table 4.3 Model Variable Interactions

Disturbance Levels SBL Solids Vapour Press.
WBL Feed 0 - +

WBL Solids 0 +

Feed Steam 0 + +

CW Flow 0 +

CW Temp 0 - +

4.2 Model Predictive Control (MFC) Tuning

Temperahire SBL Flow

+ +

+

+

+ +

Several authors agree [18], [3] that the variables to control are SBL concentration (D22) and

flow (F22) at the discharge of effect #2, by manipulation of saturated heating steam pressure
fed to effect #2 (P1002) and WBL flow (F16) which enters the evaporator at effect #6. In

practice, Ricker et al. [19] choose to control WBL over SBL flow with WBL flow both a
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incontrolled and a manipulated variable. The reason stated, in addition to a reduction in

interaction, is the difficulty in modelling the SBL flow response. Similarly, in the present
system SBL flow (F22) is both a manipulated variable in the PI of effect #2 and a controlled
variable in the MPC algorithm.

The solid curves of Figures 4. 1 and 4.2 show that the open loop responses of SBL flow (F22)
to WBL flow, F16, and steam pressure, P1002, respectively are not easily modeled first order

plus dead time (FOPDT) systems. Note that the solid curve plots in Figures 4. 1 through4.8
are nonnalized flows and concentrations calculated following the example in equation 4.2.1
below for Figure 4. 1 with F22 the controlled variable, F22, the steady state value and ̂FJ6
the manipulated variable step size:

F22..
F22 - F22_

'ss
Nannatlzed A F16

(4. 2. 1)

In essence, the plots are of deviation variables nonnalized by the manipulated variable step.
The broken lines of Figures 4. 1 through 4. 8 are part of the discussion of tuning the adaptive
predictive controller in the next section. Due to the existing pressure control valve at
Industries James Maclaren Inc., saturated steam pressure is manipulated whereas Ricker uses
steam flow.
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Figure 4. 1 Normalized SBL flow (F22) response to step change in WBL flow (F16)
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Figure 4.2 Normalized SBL Uow (F22) response to step change in steam pressure
(P1002)
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Since computation time of the nonlinear model increases as the control scheme becomes

more and more elaborate, a linear model was identified and used for preliminary tuning of

the MFC parameters. Each of the four combinations of input and output variables as

described in Table 4.4 were plotted and are found in Figures 4. 1, 4.2, 4. 3, and 4.4

Table 4.4 Linear Process Model Identification

Figure Step in manipulated var.

4. 1 WBL flow (Pl 6)

4.2 Feed steam press. (P 1002)

4. 3 WBLflow(F16)

4. 4 Feed steam press. (P 1002)

Response of controlled var.

SBL flow (F22)

SBL flow (F22)

SBL concenta-ation (D22)

SBL concentration (D22)

From these, four first order transfer functions were identified. Similarly, a first order

relationship between product concentration and steam pressure was also developed by

Newell & Fisher [13].

F22

D22

0.87e-0051 -0.41e-0051
0.025s + 1 0. 0042s + 1 F16
-0. 18e-00331 0. 195e-00331
0.0775 + 1 0.083s + 1

(4. 2. 2)

The preceding identification was based on a +10% step test.
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There was no apparent dead time in the four observed responses of the nonlinear model.

Given that there is certainly dead time in the plant installation, delays were added to the

model. In order to simulate process delay in output (or controlled) variables, each transfer

function associated with a given output must have the same size delay. Due to unavailability

of plant operating information, the size of delays (0. 033 and 0. 05 h for the product flow

(F22) and concentration (D22) respectively) added to the process models is arbitrarily small

in order to minimize the computational burden without overlooking their existence. The

delays are present m both the linear and nonlinear process models during the set point change

and disturbance elimination trials described in section 4 4 Controller Performance.

With the above linear process model, the Relative Gain Array [20] is calculated to evaluate

process interactions. For the linear 2x2 system above, the relative gain \ has a value greater

than 1 (^. 11 == 1. 8) which indicates that the second pair of input and output variables (D22 and

Pl 002 respectively) reduces the gain between the fast pair (F22 and Fl 6) as- well as

confirming control loop interaction.

In order to establish that the model behaves similarly further away from the steady state

operatmg point, responses to a second step of+10% are plotted in Figures 4.5, 4.6, 4.7, and

4. 8. The purpose of a second step change is to compare the gain at different starting points.

The physical significance of this is that in a nonlinear process, a given change in manipulated
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variable will produce a different response in the controlled variable, depending upon the

starting point of the controlled variable. It is clear from these figures that the preliminary

identification holds for excursions of up to 20% from steady state.

The prediction and control horizons (V and [/respectively) that gave the best controller

performance were 60 and 20 respectively. Since the control objective is supervisory, a

sampling interval of 30 seconds was selected such that the prediction horizon neither

truncates nor overlooks open loop model response dynamics but still comprises fewer than

200 impulse coefficients. Design parameters used by Ricker et al. [19] such as a prediction

horizon of 62 minutes and samplingtime of one minute are in the same order of magnitude

as 30 minutes and 30 seconds respectively in the present simulations. Design values used

by Newell and Lee [14] listed in Table 4. 4 along with those used in the present work:

Table 4.5 MFC Parameters

Model horizon (min)

Prediction horizon (min)

Control horizon (min)

Sample time

Present Work

60

30

10

30 seconds

Newell and £|e

150

50

25

1 minute

In the plant application, outlet SBL is fed to a concentrator and eventually the recovery

boiler, it is therefore important to maintain SBL concentration in order to avoid excessive
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fouling, due to high solids, or conversely, extreme steam requirements in the case of dilute

product liquor. For this reason, the output weights for SBL flow (F22) and concentration

(D22) are 1 and 20 respectively which means that excursions fi-om the concentration set point

are heavily penalized relative to flow. Tuning of the move suppression factors (input

weights) was a compromise between small values that led to oscillatory responses and larger

weights that led to sluggish behaviour. Weights of 15 for WBL flow (Fl 6) and 10 for feed

steam pressure (Pl 002) yielded acceptable results.

4.3 Model Weighting Adaptive Control (MWAC) Tuning

Closed-loop time constants and discrete ranges of gain and delay values are inputs to the

MWAC algorithm. A single time constant is identified and the broken lines of Figures 4. 1,

4.2, 4.3 and 4.4, represent the range of gains chosen. Since the controlled variables F22 and

D22 have delays of 0.05 and 0.033 hours respectively in the simulated process, the-range of

dead tunes input to the MWAC controller is 0 to 0.067 hours. Given the preceding ranges

of gain and dead time, as well as a time constant for each of the four relations, the MWAC

algorithm makes a FOPDT estimate for each possible combination. For the sake of

comparison, the same MPC tuning constants were used for the adaptive and predictive

controller as in the fixed-parameter predictive controller.
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The MWAC algorithm as it stands presently assumes that the process can be adequately

modeled by a combination ofFOPDT responses. The open loop step responses ofSBL flow

(F22) to steps in WBL flow (Pl 6) is in fact more characteristic of the following transfer

function due to the imtial rapid rise and subsequent overshoot

G_ = K(x, s + 1)
(T,5 + l)(t, S + 1) (4. 3. 1)

T3>^2
T, > T,

Also, the rapid initial increase in SBL flow (F22) in response to a step in steam pressure

(Pl 002) is more characteristic of the following transfer function than a FOPDT.

G_ = K(^s + 1)
(T^ + 1)(T^ + 1)

T3> ^
T, <T,

4.4 Controller Performance

With the tuning parameters adjusted as discussed above, the linear model and subsequently

the nonlinear system are tested for set point changes. It is important that the controller



59

handle set point changes as these are required for plant turndown. Lastly, the nonlinear

system is tested for disturbance elimination which is a scenario that represents a common

function of the controller.

In practice, process delays are not known precisely and therefore trials (plotted with broken

lines in Figures 4. 9, 4. 10, 4. 11, and 4. 12) are made with mismatch between the process

model and the MPC convolution model delays. The 2x2 matrices of delays shown in Table

4. 5 correspond to the different combinations of dead time mismatches used in the

simulations. These are compared to the solid line plots with no mismatch in Figures 4. 9 -

4. 12.

Table 4.6 Process and Controller Dead Time (in Hours)

Transfer

Function

F22/F16 F22/P1002

D22/F16 D22/P1002

Process Mismatch # 1 Mismatch #2

Model Figures 4.9 - 4.12 Figures 4.9 -

Delays 4. 12

0.05 0.05 0.025 0.058 0033 0.05

0. 033 0. 033 0. 042 0. 042 0. 017 0.067

Mismatch

Figures 4. 13 -

4.20

0.025 0.058

0.042 0.042

From the Figures (4. 9 - 4. 12), it is clear that in all but the D22 case (Figure 4. 10), this

mismatch does not lead to appreciable controller performance degradation. Although there

is a larger discrepancy between D22 responses, the difference is never larger than one tenth

of a percent solids (0. 1 %).
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The combination of an MFC controller with adaptation by MWAC yields promising results

plotted in Figures 4. 9 -4. 12 with dotted lines. In Figure 4.9, the new SBL flow (F22) set

point is attained faster with the MFC + MWAC algorithm than any of the MFC trials, with

small overshoot. During the F22 set point change, D22 (SBL concentration) is best

maintained at target by the MFC + MWAC algorithm wiA maximal excursion from set point

of 0.02% solids. The two manipulated variables, WBL flow (F16) and feed steam pressure

(Pl 002) behave consistently, regardless of the controller tested. The following tables

summarize the results plotted in Figures 4. 9 -4. 12.

Table 4. 7 Control Studies of MFC, MFC with Dead Time Mismatches, and MWAC
+ MPC Controllers with Linear Process Model

Figure Yvs.X

4. 9 F22 vs. t

4. 10 D22vs.t

4. 11 F16vs.t

4. 12 P1002vs.t

Model

Imear

linear

linear

Imear

Set Point /
Disturbance

F22 set pt.

F22 set pt.

F22setpt.

F22 set pt.

Observations

all responses similar to first order

MWAC + MFC perfonns better than MFC
with dead time mismatches

all responses similar to first order

all responses similar to first order

In the preceding series of trials, two different dead time mismatches proved not to have

significantly differing performance. With this in mind, only one such case will be exammed

in the following tests of the MPC and MFC + MWAC algorithms for control of the

nonlinear process model.
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Figures 4. 13, 4. 14, 4. 15 and 4. 16 illustrate the results of a set point change in SBL flow

(F22). The first obvious difference between this series of plots and the preceding one

(Figures 4. 9 -4. 12) is the time scale. Whereas the linear model is in transition between old

and new set points for less than an hour, the nonlinear model requires at least three hours.

In Figure 4. 13 the SBL flow (F22) behaviour is consistent for the MPC without mismatch,

MFC with mismatch, and MFC + MWAC algorithms. SBL concentration (D22) remains

within ±0. 1 % solids of the target value while the manipulated variables have essentially

identical responses, regardless of the control algorithm.

The ti^als which best portray MFC and MFC + MWAC algorithm performance in practical

application are plotted in Figures 4. 17, 4. 18, 4. 19 and 4.20. This is the case of disturbance

elimination. A +10% step in WBL concentration (D 16) is introduced to the system and each

of the controllers under examination returns the outputs (F22 and D22) to target values by

manipulating the inputs (F16 and P1002). In Figure 4. 17, MFC with dead time^aismatch

allows the smallest and shortest excursion, followed very closely by MPC without delay

mismatch and finally MFC + MWAC which behaves similarly with a larger and slightly

longer deviation. Conversely, in the case of the SBL concentration D22), MPC + MWAC

returns the output to target faster than MFC either with or without delay mismatch. Again,

the behaviour is similar with no appreciable differences. Both inputs (F 16 and Pl 002) show
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slightly slower responses to the disturbance but certainly well within the range of

acceptability, relative to the MPC perfomiance.

The following tables summarize the results plotted in Figures 4. 13 - 4. 20.

Table 4.8 Control Studies ofMPC, MFC with Dead Time Mismatch, and MWAC +
MFC Controllers with Nonlinear Process Model

4. 13 F22vs. t nonlmear F22setpt.

4. 14 D22vs. t nonlinear F22setpt.

4. 15 F16vs. t nonlinear F22setpt.

4. 16 P1002vs. t nonlinear F22setpt.

4. 17 F22vs. t nonlinear D 16 disturb.

4. 18 D22vs. t nonlinear D 16 disturb.

4. 19 F16vs. t nonlinear D 16 disturb.

4.20 Pl 002 vs. t nonlinear D 16 disturb.

all responses similar to first order

mitially, MWAC + MFC is slightly slower
than MPC controllers

all responses similar to first order

all responses sunilar to first order

MWAC + MFC is slightly slower than
MFC controllers

MWAC + MFC is slightly slower than
MFC confa-ollers

MWAC + MFC is slightly slower than
MFC controllers

all controllers behave similarly

The trials presented and discussed in this chapter show that for a simulated process, the

adaptive predictive controller perfonns as well as the fixed-parameter predictive controller.

When implemented in an actual plant, the parameters of an MWAC + MPC controller will

adapt to changes in the process dynamics caused by, for example, mmieasured disturbances

and evaporator fouling. In this case, it is expected to outperform the fixed-parameter
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predictive controller. A second reality of plant implementation is that the process model

used by the fixed-parameter controller will not match the process response as is possible in

simulation.

4.5 Summary

This chapter presented the results of implementing multivariable (2x2) predictive controllers

with both fixed and adaptive parameters. The process was simulated first by a linear system

of four FOPDT transfer functions with which the controller parameters were adjusted.

Finally the control algonthms were implemented on the nonlinear process model in order to

observe a set point change and disturbance elimination. Since the convolution model in the

fixed-parameter predictive controller was taken directly from process responses, it was a

better model than would be possible in practice. Thus the results were promising in that the

predictive plus adaptive controller performed similarly to the fixed-parameter^redictive

controller. The next and fmal chapter contains conclusions and extensions of the present

work.
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CHAPTER V

CONCLUSIONS AND EXTENSIONS OF WORK

5.1 Conclusions

The main conclusion of the present work is that the adaptive algorithm MWAC performs

well when combined with a multivariable MPC controller in simulations with a nonlinear

dynamic process model. This result is based on trials for set point changes and disturbance

rejection in which the adaptive plus predictive controller behaves similarly to the fixed-

parameter predictive controller. It may not be obvious that this justifies the promise of

adding an adaptive component to the scheme. The fixed-parameter predictive controller

contains convolution models that are the exact responses of the simulated process. In

practice, the process model in a predictive controller can never be a perfect description of the

real system due to the difficulty in identifymg pure open-loop step responses without

unmeasured disturbances, changing plant dynamics, and other factors. It is then clear that

the standard against which the adaptve plus predictive controller is compared is

unrealistically tough. This is the justification for concluding that an adaptive plus predictive

scheme that has comparable performance to the fixed-parameter predictive system is

promising.
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In arriving at this conclusion, several intermediate stages are necessary. The simulated

process is a five-effect black liquor evaporator in the Industries James Maclaren Inc. kraft

pulp mill at Thurso, Quebec. Each effect is dynamically modeled by three differential

equations describing the mass and energy balances as well as black liquor properties that

vary with concentration. Black liquor is concentrated by removing water in each stage with

heating energy supplied by countercurrent flow of steam.

With the process model, the open-loop responses required by the fixed-parameter predictive

controller can be recorded. For the adaptive controller, discrete ranges of gain and delay as

well as an estimated time constant are required as input. With this infonnation, a simplified

linear version of the process model makes tuning faster and easier. It becomes apparent that

dead time mismatch in the fixed-parameter predictive controller does not substantially alter

perfonnance.

The final trials are with the nonlinear process model. In the specific case of disturbance

rejection or regulatory control, the MWAC + MFC algorithm respects the controlled variable

weights by returning the SBL concentraiton (D22) to set point faster than any of the fixed-

parameter predictive controllers. Consequently, the SBL flow (F22) excursion is slightly

greater than the case of the fixed-parameter predictive controllers with the same weights.

The set point change was handled virtually identically by all the controllers.
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A major strength of the MWAC algorighm is that the parameter estimation procedure is

independent of system excitation, unlike other adaptive methods. This implies that MWAC

performance does not degrade or drift during periods of operation near steady state but rather

settles within the initial parameter ranges.

5.2 Extensions of Work

The ultimate extension of this work is to implement the controller in the plant control

system. For the purpose of justifying implementation of an advanced conb-ol strategy, it

would be essential to do a feasibility study in order to make an estimate of the potential gains

against which the costs could be measured.

In order to further prove that the nonlinear dynamic process model is representative of the

evaporator #3 at Industries James Maclaren Inc. plant step tests should be perfonngd in order

to compare the actual responses with those predicted by the model. This could lead to new

identification of the convolution models utilized by the predictive controller. The MWAC

algorithm presently assumes that the process can be adequately modeled by a combination

of FOPDT responses. The open loop step responses of SBL flow (F22) to steps in WBL

flow (F 16) as well as steam pressure (Pl 002) may be more accurately modeled by alternative

transfer function stmctures. Although time delays are present in the current process model,
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these should be validated with plant data. The range of dead times in the MWAC algorithm

is 0 to 0.067 hour but the minimum process delay is greater than zero so it woiild be logical

to reduce the range of dead times, eliminating those less than the minimum process delay.

Another approach to the existing PI level control would be to remove the controllers and

insert hard constraints on the levels. Conversely, the individual level controllers could

include feed forward rather than, or in addition to, the feedback PI action. Alternatively, the

2x2 controller could be enlarged to include the levels and discharge flows as, respectively,

controlled and manipulated variables. This larger stmcture would multiply the

computational burden but the advantages of increased decoupling may offset the higher

computer time.

The process model could be improved by updating the physical and heat properties of black

liquor based on operating and bibliographical data. Since many model parameters-are taken

from the design calculations of the evaporator, it should be confirmed that the plant, in

operation near steady state, does indeed reflect the design conditions. The model could also

be extended to include the crystallizer, which concentrates SBL from approximately 40% to

70%, as well as the steam jet injection system and the liquor recycle loop. Simulations using

the nonlinear model were lengthy in computation time such that it would be advisable to
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improve the code for faster execution. This may be realized using the recently released

Matlab compiler.
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