POLYTECHNIQUE

POLYPUBLIE e |

A [
UNIVERSITE o

PO'YtGChnique Montréal D'INGENIERIE

Titre: Predictive and adaptive control of multiple-effect black liquor
Title: evaporators

Auteur:
Author:

Date: 1996

Type: Mémoire ou thése / Dissertation or Thesis

Michelle Jones

Référence: Jones, M. (1996). Predictive and adaptive control of multiple-effect black liquor
" 'evaporators [Master's thesis, Ecole Polytechnique de Montréal]. PolyPublie.

Citation: 'https://publications.polymtl.ca/31199/

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie: . N
PolyPublie URL: https://publications.polymtl.ca/31199/

Directeurs de
recherche: Michel Perrier
Advisors:

Programme

Program: Unspecified

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal


https://publications.polymtl.ca/
https://publications.polymtl.ca/31199/
https://publications.polymtl.ca/31199/

UNIVERSITE DE MONTREAL

PREDICTIVE AND ADAPTIVE CONTROL
OF MULTIPLE-EFFECT BLACK LIQUOR EVAPORATORS

MICHELLE JONES
DEPARTEMENT DE GENIE CHIMIQUE
ECOLE POLYTECHNIQUE DE MONTREAL

MEMOIRE PRESENTE EN VUE DE L'OBTENTION
DU DIPLOME DE MAITRISE ES SCIENCES APPLIQUEES
(GENIE CHIMIQUE)

JUILLET 1996

© Michelle Jones, 1996.



UNIVERSITE DE MONTREAL

ECOLE POLYTECHNIQUE DE MONTREAL

Ce mémoire intitulé:

PREDICTIVE AND ADAPTIVE CONTROL
OF MULTIPLE-EFFECT BLACK LIQUOR EVAPORATORS

présenté par: JONES Michelle
en vue de 1'obtention du diplome de: Maitrise &s sciences appliquées

a été diiment accepté par le jury d'examen constitué de:

M. PARIS Jean, Ph.D., président

M. PERRIER Michel, Ph.D., membre et directeur de recherche

M. VALIQUETTE Jean, M.Sc.A., membre et codirecteur de recherche
Mme DeTREMBLAY Michéle, Ph.D., membre




iv

DEDICATION
This thesis is dedicated to my grandmother Jean Winsor. Her life, including graduate studies in
Public Health at the University of Toronto (Women's College) in 1932-33, is a powerful and constant

source of inspiration, respect and love.



ACKNOWLEDGEMENTS

The individuals and organizations mentioned below are important contributors to the

execution of the work described in the following chapters.

M. Perrier, as research director, is a constructive and wise leader whose time and attention
is central to the success of the present work and completion of the masters program. J.
Valiquette (Noranda Technology Centre) as research codirector provided vital programming
assistance as well as an industrial component to the work. Dany Levesque, in her Projet de

Fin d'Etudes (PFE) developed the dynamic model of the multiple-effect evaporator.

I was fortunate to have several sources of financial support. The Natural Sciences and
Engineering Council of Canada (NSERC) awarded me a Postgraduate Scholarship (deferred
since 1991). The compay Air Liquide continues to be a flexible employer, respecting my
priorities and schedule throughout this period. As a student having completed undergraduate
studies outside Ecole Polytechnique, I was chosen for a Bourse d'excellence de I'Ecole
Polytechnique'. Finally, in addition to technical support, the Forest Process Optimization

group of the Noranda Technology Centre provided funding.



vi

RESUME

Ce mémoire présente 1’application d’un contréleur multivariable adaptatif & un modéle
nonlinéaire dynamique d'un évaporateur de liqueur noire 4 effets multiples. Les objectifs
principaux sont de réaliser un modéle représentatif du procédé, d’y ajouter ensuite un
controleur prédictif multivariable (MPC) a deux entrées et deux sorties selon les principes
de la commande prédictive et finalement de déterminer si I’ajout d’une composante
adaptative par pondération de modéles (MWAC) apporte des améliorations & la performance

du contrdleur.

Le procedé en question consiste d’un évaporateur de liqueur noire a cing effets tel qu’installé
a I’'usine kraft des Industries James Maclaren Inc. de Thurso, Québec. La liqueur noire est
concentrée en solides en progressant d*un évaporateur a I'autre & contre-courant de la vapeur
d’eau, source d’énergie d’évaporation de I’excés d’eau contenu dans la liqueur. k? modele
dynamique inclut chacun des effets étant représenté par trois équations differentielles de
bilan matiére des solides contenus dans la liqueur noire et du bilan matiére de la vapeur
d’eau. Les propriétés de la liqueur noire sont incluses dans le modéle en fonction de la

concentration et de la température ainsi que celles de la vapeur d’eau saturée.
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A partir du modéle dynamique nonlinéaire du procédé, un modeéle linéaire a été déduit afin
de faciliter les ajustements préliminaires du schéma de contrdle. Pour chaque changement
du point de consigne, les essais sont effectués sur le cas de base du MPC a paramétres fixes
ainsi que pour I’algorithme adaptatif prédictift MWAC + MPC. Deux cas différents d’erreur
dans le délai sont implantés afin de déterminer leur effets sur la performance du contrdleur.
Les essais démontrent que les deux cas d’erreur dans le délai sur le contrdleur MPC donnent
des résultats pratiquement identiques a ceux du cas de base du MPC sans erreur. En
conséquence de ces résultats, un seul cas d’erreur de délai est considéré sur le contrdleur
MPC pour les essais de changements de point de consigne et de rejets de perturbation sur le

procédé nonliéaire.

Les performances du contréleur MWAC + MPC adaptatif prédictif sont comparables avec
celles d’un controleur & parametres fixes face a des rejets de perturbation et des changements
de points de consigne. Afin d’expliquer ces résultats positifs, on doit prendre rote du fait
que le modele du procédé pour le contrdleur prédictif & paramétres fixes correspond
exactement aux réponses du procédé a boucle ouverte. Ceci est une situation pratique peu
probable et constitue un standard élevé de comparaison contre lequel les performances du
contrdleur adaptatif prédictif sont mesurées. Une application industrielle du contréleur
adaptatif prédictif démontre la souplesse de celui-ci grice a son abilité d’adapter ses

parameétres aux changements dynamiques du procédé.
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Les résultats des travaux sont prometteurs pour I'implantation en usine de la combinaison
de contrdle multivariable adaptatif prédictif. L’aspect original de cet ouvrage est d’appliquer
un contrdleur MPC 2x2 incluant des paramétres adaptés via 1’algorithme MWAC & un
mod¢le de procédé nonlinéaire dynamique avec données opératoires provenant de 1’usine ci-
haut mentionnée. Les tests et ajustements effectués dans cet ouvrage devrait faciliter
I'implantation d’un systéme de contrdle avancé en usine visant & minimiser les variations de

qualité du produit et les cofits énergétiques.
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ABSTRACT

This work presents an application of multivariable adaptive predictive control to a dynamic
nonlinear model of a multiple-effect black liquor evaporator. The goals are firstly to develop
a representative model of the process, secondly to implement a 2x2 predictive controller
according to the Model Predictive Control (MPC) principles, and finally to determine
whether adding a Model Weighting Adaptive Control (MWAC) adaptive component to the

predictive controller improves performance.

The process unit modeled is a five-effect black liquor evaporator at Industries James
Maclaren Inc. kraft pulp mill in Thurso, Quebec. Black liquor is concentrated as it passes
from one effect to the next by evaporating steam which flows countercurrent to the liquor,
supplying the energy required to drive off the excess water. In the dynamic model each
effect is described by three differential equations representing the black liquor mass balance,
the black liquor solids mass balance, and the vapour mass balance. Property values for black
liquor at various concentrations and temperatures as well as for saturated steam are also

included in the model.

From the nonlinear dynamic process model, a linear system of first order plus dead time

relationships between controlled variables (strong black liquor flow and concentration) and
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manipulated variables (weak black liquor flow and feed steam pressure) is identified. This
simplifies preliminary tuning and testing of the control scheme. For a set point change, trials
are performed on the base case of MPC with fixed parameters as well as the adaptive
predictive algorithm, MWAC + MPC. Knowing that in an industrial application the process
is never perfectly modeled by the MPC controller, two different cases of dead time mismatch
are created in order to determine their effect on controller performance. As it turns out, the
two cases of dead time mismatch in the MPC controller perform very much the same as the
base case of MPC with no mismatch. For this reason, only one case of dead time mismatch
in the MPC controller is carried forward to the set point change and disturbance rejection

trials on the nonlinear process.

Throughout this work, the MWAC + MPC adaptive predictive controller performance is
compared with the fixed parameter predictive controller performance and found to be similar
in disturbance rejection and for set point changes. In order to explain why thi&_is a good
result, it is noted that the process model in the fixed parameter predictive controller matches
exactly the open loop process responses. This is an unlikely practical situation which results
in a high standard against which the adaptive predictive controller performance is measured.
The strength of the adaptive predictive controller is that in an industrial application the

parameters would adapt to changing process dynamics.
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The results indicate that this combination of multivariable, adaptive predictive control shows
promise for implementation in the mill. The aspect of originality in this work is application
of a 2x2 MPC controller with parameters adapted by the MWAC algorithm to a dynamic
nonlinear process model with design and operating values from Industries James Maclaren
Inc. Testing and tuning done here should facilitate implementation of an advanced control

scheme at the mill which would lead to reduced product variability and energy expenditures.
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CONDENSE EN FRANCAIS

Cette section présente une description condensée du travail décrit dans ce mémoire. En
premier lieu, les objectifs visés sont énumérés afin de situer le probléme étudié.
Deuxi¢mement, la séquence des étapes de la recherche est présentée pour décrire le
déroulement du travail. Les conclusions mettent en évidence la contribution du travail

suivies des recommandations et applications futures possibles.

Le sujet du projet est le contrdle d’un évaporateur multi-effets de liqueur noire a l'usine de
pates kraft de la compagnie Industries James Maclaren Inc. 3 Thurso, Québec. Cette unité
d'opération se situe en aval des lessiveurs ol les copeaux de bois sont mélangés avec des
produits chimiques (la liqueur blanche) a haute température et haute pression; et en amont
de la fournaise de récupération ou les composants organiques de la liqueur noire sont brulés
afin de récupérer les produits chimiques inorganiques. Le probléme de contr(“)lezf,onsiste a
maintenir dans la liqueur noire une concentration en solides et un débit aussi constant que
possible étant donné les variations associ€es a la matiére premiére. Ceci est important parce
que durant les excursions de concentration de la liqueur noire l'efficacité du procédé est

réduite et I'encrassement des équipements devient problématique.
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Objectifs Visés: Le premier objectif est de mettre au point un modéle dynamique
nonlinéaire qui représente I'équipement et le procédé réel de l'usine Industries James
Maclaren Inc. Le second et principal objectif consiste 4 comparer la performance d’un
controleur multivariable prédictif a paramétres fixes avec celle d’un contrdleur multivariable
prédictif et adaptatif. Les objectifs de contrdle sont d'éliminer les perturbations dans le
systéme tout en minimisant les excursions de la concentration et du débit de la liqueur noire

a la sortie de 1'évaporateur.

Etapes de la recherche: La méthodologie se devise en trois étapes commengant par la mise
au point du modéle dynamique. A ce modéle est ajouté un contrdleur multivariable a
parametres fixes pour faire une comparaison entre sa performance et celle d’un contrdleur
adaptatif. Le but de cette étape est de déterminer si en ajoutant une composante adaptative,
la performance du contrdleur est améliorée. Le modéle dynamique est formulé avec trois
équations différentielles par effet qui décrivent les bilans de matidre et d'éﬁergie en
incorporant le point d'opération de l'usine ainsi que les propriétés chimiques de la liqueur
noire. Le niveau de liqueur noire dans la cuve de chaque effet est réglé par un contrdleur PI
Le contréleur 2x2 prédictif est selon l'algorithme de commande prédictive (MPC). Les
variables controlées sont la concentration et le débit de la liqueur noire sortant de

I'évaporateur (SBL). Les variables manipulées sont le débit de liqueur noire entrant
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I'évaporateur (WBL) ainsi que la pression de vapeur saturée (vierge) qui entre a contre-

courant de la liqueur noire et fournit I'énergie requise pour évaporer l'eau de la liqueur.

L'algorithme pour adapter les paramétres du contréleur prédictif est celui de la pondération
de modéles (MWAC). Cet algorithme requiert des plages discrétes des valeurs possibles de
paramétres dun modele du procédé . Dans le cas présent, la relation entre chaque variable
manipulée et chaque variable contrdlée est une fonction de transfert de premier ordre avec
délai. Avec un systéme 2x2, il y a quatre de ces relations. Les paramétres & estimer sont le
gain, la constante de temps et le délai. Pour éviter une quantité excessive de combinaisons
possibles, la constante de temps est fixée, tandis quune plage discréte de gains et de délais
sont considérés. Par exemple, la relation entre D22, la concentration 4 la sortie, et Fi16, le
débit a lentrée, est estimée par une constante de temps (1.5 minutes) une plage de gains (0.7,
0.8,0.9,1.0); et une plage de délais (0, 0.5, 1 1.5, 2, 2.5, 3, 3.5, 4 minutes). A chaque instant
déchantillonnage, les estimations possibles avec les combinaisons de paramétresseyt faites.
Un poids normalisé est calculé pour chaque modéle en vue d’obtenir un modéle composé.
Le calcul du poids est une fonction de lerreur destimation et dune combinaison de paramétres
aux intervalles précédents. La procédure dadaptation favorise les combinaisons qui estiment
bien les variables de sortie du procédé. Lestimation composée sadapte aux changements de
dynamique du procédé en recalculant le poids de chaque modele. Le calcul se fait de la

fagon suivante:
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avec P I'estimation, w le poids, g le gain, i I"indice des gains, j I'indice des délais.

Résultats: Des tests sur le modele dynamique démontrent que le comportement du procédé
réel est bien représenté. Par la suite, le réglage des paramétres du contrdleur prédictif permet
un fonctionnement selon les critéres choisis et décrits plus loin. Les paramétres de
l'algorithme adaptatif sont choisis selon I'identification du procédé. Finalement, les résultats
des essais avec les contrdleurs & paramétres fixes et adaptatifs suite 4 des perturbations et a

des changements de point de consigne sont présentés.

Pour démontrer que le modele représente bien 1'usine, les valeurs de concentrationset du débit
de WBL sont celles établies lors de la conception. Celles-ci décrivent les entrées de liqueur
au train d'évaporateurs. Le débit et la concentration des variables de sortie sont comparables
aux calculs de conception avec une déviation d'environ 1%. Cependant le bilan global des
solides et de I'eau boucle avec des écarts de 0.4%. Les différences de valeurs de propriétés

physiques de la liqueur peuvent aussi expliquer I'écart.
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Le schéma de contrle comprend le débit a la sortie de 1'évaporateur qui est a la fois
manipul€ par le controleur de niveau au dernier effet. Pour alléger le travail informatique
durant le réglage préliminaire du controleur prédictif & paramétres fixes, un modéle linéaire
du systéme est identifié & partir de la réponse des variables contrdlées a un échelon sur -

chaque variable manipulée.

0.87¢ 0% -0.41e 0%
F22 Fi6
0.025s + 1 0.0042s + 1

_ -0.033s -0.033s
D22 0.18¢ 0.195¢ P1002

0.077s + 1 0.083s + 1

F22 représente le débit de SBL, D22 la concentration de SBL, F16 le débit de WBL, et
P1002 la pression de vapeur vierge. Le temps est mesuré en heures. Les délais du modéle
ci-dessus ne proviennent pas de l'identification du systéme. Leur amplitude est arbitraire et

reste a étre confirmée lors de tests a I'usine. s

Les paramétres principaux du contrleur prédictif sont les horizons du modele, de la
prédiction et de contrble. Pour éviter d'avoir plus de 200 constantes dans le modeéle de
convolution mais sans avoir un pas de temps si grand que la dynamique d'une réponse soit
perdue, I'horizon du modele est de 60 minutes, et ceux de la prédiction et de controle sont

de 30 et 10 minutes, respectivement. Pour chacune des deux variables contrdlées, il y aun
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poids relatif & déterminer sur la pénalité d'excursions du point de consigne. Puisqu'a
l'opération suivant I'évaporateur, la fournaise de récupération, il est essentiel que la quantité
d'eau dans la liqueur ne soit pas trop élevée (combustion inefficace) ni trop faible
(encrassement) la concentration de la liqueur SBL regoit un poids plus grand que le débit de

SBL, soit 20 et 1, respectivement. Les poids associés aux changement des variables

manipulées sont fixés & 15 pour le débit WBL et 10 pour la vapeur vierge.

Les paramétres de réglage de lalgorithme MWAC sont la constante de temps, la plage de
gains, et la plage de délais. Le réglage est fait a partir de quatre réponses a léchelon: soit la
réponse de D22 et F22, 1a concentration et le débit du produit (les variables controlées a un
échelon de F16, le débit de liqueur a lentrée et P1002, la pression de vapeur vierge (les

variables manipulées).

Une fois les paramétres ajustés, la performance des contrdleurs prédictifs a paraméfres fixes
et adaptatifs est comparée lors dun changement de point de consigne et de la réjection dune
perturbation. Des essais préliminaires sont faits avec le procédé linéaire et un changement
de point de consigne du débit de liqueur a la sortie, F22. La trajectoire de F22 vers le
nouveau point de consigne ainsi que celles des variables manipulées ne montre pas une
différence entre les controleurs. Quant & D22, seul le contrdleur & paramétres fixes avec une

erreur dans lestimation du délai répond légérement plus lentement que les contrbleurs a
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paramétres fixes sans erreur destimation de délai, et le contrdleur a paramétres adaptatifs.

Les derniers essais sont faits avec le modéle nonlinéaire du procédé. Pour le changement de

point de consigne ainsi que la perturbation, les performances sont quasi identiques.

Conclusions: La performance du contrdleur adaptatif est similaire a celle du contréleur a
paramétres fixes. On peut supposer qua lusine, avec des changements dans la dynamique du
procédé, le contréleur MWAC + MPC aura une performance au moins équivalente ou

supérieure au contrdleur 4 paramétres fixes.

Applications / Recommandations: Lapplication du contrdleur prédictif adaptatif a lusine
Industries James Maclaren Inc constitue la suite logique de ce travail. Quant au modéle, il
serait intéressant de mettre a jour les propriétés de la liqueur noire et les délais et de vérifier

la correspondance entre les conditions dopération réelles et celles utilisées en simulation.
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NOMENCLATURE

Numbers in parentheses after descriptions refer to the equation in which the symbol first
appears.

Letter Symbols

A cross-sectional area of the separator (2.2.1)

A constant state space matrix (3.1.1)

A dynamic matrix (3.3.10)

[ step response model coefficient for controlled variable i, manipulated

variable j, and coefficient number t (3.3.2)

& ne1 predicted value of controlled variable i at sampling instant n + 1 (3.3.1)
C conversion factor for mass to pressure from ideal gas law (2.2.3)

C, heat capacity of the liquor (2.2.6)

Cin controlled variable i at sampling instant n (3.3.4)

& output prediction for controlled variable i at sampling instant n (3.3.1)
Cin corrected prediction of controlled variable i at sampling instant n<3.3.4)
D delay (3.4.1)

d disturbance (3.2.2)

d delay (3.4.2)

D16 WBL concentration

D22 SBL concentration (4.2.1)

E, process error in controlled variable i at sampling instant n (3.3.5)



open-loop error prediction (3.3.5)
closed-loop error prediction (3.3.6)
family of candidate models (3.4.3)
feed flow rate (2.2.1)

product flow rate (2.2.1)
circulating flow rate (2.2.7)
vapour flow rate (2.2.1)
condensate flow rate (2.2.3)

WBL flow (4.2.1)

SBL flow (4.2.1)

steam flow rate (2.2.10)

cooling water flow rate (2.2.11)
flow into vessel (2.3.1)

flow out of vessel (2.3.1)
forgetting factor (3.4.8)

controller (predictive) transfer function (Figure 3.1)
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CHAPTER1

INTRODUCTION

1.1 Problem Statement .

Effective process control is seen as a means to the end of reduced product variability. The
pulp and paper industry is not untouched by the current trend toward advanced control
strategies and systems. Given that one quarter of the energy requirements in a bleach grade
kraft mill are for black liquor evaporation, allocation of resources for development of a
control strategy is justified [3]. Kraft pulping consists of several steps beginning with
combining wood chips with cooking (white) liquor at elevated temperatures in the digester.
Exiting pulp is washed and directed to storage or bleaching. Due to chemical costs and
environmental concerns, approximately 95-97% of the chemicals added to the digester are
recovered [8]. The first step in this recovery process is to remove water from-the black
liquor such that the organic wood residuals can be burned in the recovery furnace without
supplemental fuel. The unit operation under consideration is evaporator number three #3)
at Industries James Maclaren Inc. of Thurso, Québec which produces 620 tons/day of
bleached hardwood kraft pulp [15]. Installed in 1989, this train of falling film evaporators
was chosen because it is the most recent in the mill and is controlled by a distributed control

system (DCS). The problem motivating this work is variation in strong black liquor (SBL)
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entering the concentrator and eventually the recovery boiler. Variability in the SBL is
problematic for several reasons including decreased efficiency of the overall kraft process

and excessive fouling of the evaporator tubes.

1.2 Objectives

The goals are: firstly, to develop a nonlinear dynamic process model that is representative
of the Industries James Maclaren Inc. installation; secondly, to design a multivariable
predictive controller with fixed parameters; and finally, to determine whether adding an
adaptive component to the predictive controller improves performance. The control
objectives are to eliminate disturbances in the evaporator system with minimal deviation of

the controlled variables.

1.3  Methodology ==

The approach is three tiered: develop a dynamic model, add a multivariable controller with
fixed parameters, determine whether controller performance improves with adaptive
parameters. Chapter 2 presents the model which is a system of nonlinear differential
equations developed from the work of Newell and Lee [14] and Levesque [10] with

operating and design values from the mill. In Chapter 3, a 2x2 model predictive control
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(MPC) algorithm is added with SBL concentration and flow controlled by manipulating
weak black liquor (WBL) flow and steam feed pressure. The results of tuning the controller
for smooth, stable operation during rejection of system disturbances are presented in Chapter
4. Also in Chapter 4, the model weighting adaptive control (MWAC) algorithm is used for
adaptation of the predictive controller parameters and enhanced multivariable controller
performance. Finally, conclusions as well as possible extensions of the work are in

Chapter 5.



CHAPTER II
DYNAMIC MODEL OF THE MULTIPLE-EFFECT BLACK LIQUOR

EVAPORATOR #3 AT INDUSTRIES JAMES MACLAREN INC.

The focus of this chapter is the process model used later for predictive and adaptive control
studies. In order to place the current work in the context of what others have already done,
an outline of the publications of several authors on dynamic modelling of evaporators is
given in the first section. The next three sections describe the development of the model
starting firstly with a single effect, secondly, extending to five effects and finally
customizing the model based on design and operating values for evaporator #3 at Industries
James Maclaren Inc. The single effect evaporator model published by Newell and Lee [14]
is presented in the second section as it is the basis of the dynamic model developed in this
chapter. With operating values from an example material and heat balance by=€race [7],
extension of the model to a train of five effects is discussed in section three. The final
refinements, as found in the fourth section, were made based on design calculations and
equipment specifications of evaporator #3 at Industries James Maclaren Inc. The chapter

concludes with a summary of the material presented.



2.1 Previous Work in Evaporator Modelling

A compilation by Fisher and Seborg [5] of work with various co-authors, including Newell,
concerns a pilot scale double effect evaporator. The first effect of Fisher and Seborg's double
effect evaporator has a short-tube vertical calandria design with natural circulation and the
second a long-tube vertical configuration. In one article, Newell and Fisher [13] divide the
evaporator up and model each component (steam chest, heat transfer surface, solution
holdup) separately from first principles consistent with the mass and energy balances of the
present work which are presented in subsequent sections. The strength of this approach is
the flexibility it affords when considering a variety of industrial equipment configurations.
When applied to their double-effect evaporator, a system of ten nonlinear differential
equations resulted. This was linearized about the steady state operating point and put in
state-space form. Subsequently, the system was reduced to fifth, third and second order for
control studies. According to Fisher and Seborg, the nonlinear dynamic modekwas more
effective for off-line simulations than any of the state-space versions they developed. It was
not used in their on-line control studies however, since results with the above mentioned
linear models were satisfactory. Hernindez, Montano and Silva [9] start with the same
nonlinear model as Fisher and Seborg but reduce the order by adding a PI controller and

assuming the level constant. Newell and Lee [14] simplify the Fisher and Seborg process
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by only considering the second, long tube forced circulation evaporator effect. This model

is described in detail in section 2.2.

Wang and Cameron [22] start from the Newell and Lee system of differential equations and
remove the assumptions that the liquid hold-up in the evaporator and the operating
temperature have negligible rates of change. The model is further refined by maintaining the
heating vapour pressure constant due to operation near the upper bound. Although this
would appear to make the model more realistic and flexible, these improvements do not

come without the price of special tuning techniques and relaxed performance tolerance.

The Bayer process of alumina production is an example of an industrial multiple-effect
evaporator which is modeled by To et al. [21]. Whereas the preceding authors considered
an overall solute balance, in this case the solute balance is over the flash tank, or separator.
The reason for this is that in the reported system, recycle flow is variable and &ﬂ?rincipal
disturbance to the system, which is not the case of the present work. Unlike the model
described in sections 2.2 - 2.4 below, liquor in the evaporator is heated by a steam heater
which undergoes wash cycles and thus the energy balance is subjected to disturbances.

Secondly, product flow is subject to disturbances caused by downstream processes. Since

the overall balances are unaffected by the evaporator internals design, the equations
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describing mass and energy balances are identical to those of Fisher and Seborg as well as

Newell and Lee.

A double-train five-effect evaporator for sugar concentration is modeled by Mulholland and
Love [12]. Although the configuration is different, including vapour lines that connect
condensate flash from both the evaporator trains, the first principles used in deriving the
mass and energy balances are similar to those in the present work. Unlike the present work,
in addition to process control, a further objective was to model the effects of fouling on heat
transfer coefficients. The main disturbance was thus liquor concentration which, along with

scaling, influences the effective heat transfer coefficient.

A seventeen effect desalination evaporator was modeled by Burdett and Holland [4] with
heat balance over individual tubes in the heat exchanger section. This is neither practical nor
necessary in the present work since no temperature measurements are made of tlsrew internal
and external tube temperatures and the overall heat balance will be shown in Chapter 4 to be

adequate.

The following major assumptions were made of the models in this chapter: negligible heat-

of-solution effects, saturated steam in all vapour spaces, no subcooling of the steam
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condensate streams, zero concentration of solute in the overhead vapour streams. Finally,

heat losses through the evaporator vessels and piping are considered small.

2.2 Single Effect Evaporator Model

This model follows the principle of a forced circulation evaporator as in Figure 2.1 which
concentrates a solution by boiling off solvent. Feed is mixed with recirculating liquid and
pumped upward through the evaporator tubes. The process liquid is maintained at boiling
by heating with steam which condénses on the outside of the tubes. At the outlet of the
tubes, vapour and concentrated process liquid are separated with the vapour being condensed
in a water cooled exchanger. Most of the concentrated process liquid is recirculated and

some drawn off as product.

____Cooling water
T20L =Y ==
Vapor -L IIFZOO, T200 -
- _b_lﬁlp4’ ™ S
L i) Condenser
Steam {777 N L2
F100 . Separator  Condensate
S ‘ Evaporator F5
P100 -
T100
Steam | ‘ |
Condensate Le—
Feed TF3[ ([
F1,X1, Tl Product

—5——>F2,X2, T2

Figure 2.1 Newell and Lee Evaporator System
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Three differential equations can be written to describe the evaporator mass balance.
Respectively, the overall mass balance, the solute mass balance, and the vapour mass balance

(in terms of the pressure in the system) are as follows:

pd dL/dt=F,-F, - F, 2.2.1)
MdX,dt =F, X, - F, X, (2.2.2)
C dP,/dt = F, - F, (2.2.3)

with p the liquid density, 4 the cross-sectional area of the separator, M the mass of liquid in
the evaporator, F; mass flows and X; concentrations in percent solids. The conversion factor
between vapour mass and pressure, C, is derived from the ideal gas law given that the

operating pressure is near atmospheric [14].

Energy balances are calculated assuming the liquid perfectly mixed and at boiling
temperature. Both vapour (73) and liquid (77,) temperatures are calculated by linearization
around steady state values of the saturated water curve [14]. The liquid tempe&aﬁture (T)
includes a second linear term in equation (2.2.5) accounting for the effect of boiling point
rise (BPR), which is the difference between the boiling temperature of the liquid and that of
water. The point at which water vapour is driven off of black liquor is the boiling
temperature, 7; whereas 7, is the saturated steam temperature at which the water vapour
condenses in the next effect.

T,=0.507 P, +55.0 (2.2.4)
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T,=0.5616 P, + 0.3126 X, -+ 48.43 (2.2.5)

Further, assuming no heat losses to the environment, no energy input from the pump,
constant latent heat and liquid heat capacity, and very fast dynamics of the energy balance,
we obtain,
Fy= Qo0 - Fy C(T, - TY))/A (2.2.6)
For F,, latent heat of liquor (1) is considered large compared to the sensible heat difference
between 7, and T;. The first term in the preceding equation (2.2.6), the rate of heat transfer
to the liquor (Qq), is calculated knowing the steam temperature and considering the overall
heat transfer coefficient times the heat transfer area of the heater section (U4,) a function of
the flow through the evaporator tubes. Equation (2.2.7) is a linearization in terms of flow
through the evaporator tubes (¥, + F) about the operating point of the heat transfer
coefficient times the heat transfer area (U4, = 9.6 kW/°C). Assuming steam at saturated
conditions, a linearization around steady-state values produces the functionreldfing steam
pressure Pyq, to temperature Ty, in equation 2.2.8 [14]. Lastly, in equation 2.2.10 the
saturated steam flow rate is obtained assuming constant latent heat of steam, A A
distinction is made between latent heat of steam A, and that of liquor A which is larger due
to the boiling point rise.
UA,;=0.16 (F, + F)) (2.2.7)

Tioo = 0.1538 P,y + 90.0 (2.2.8)
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100 = UA; (Ty90 - T5) 2.2.9

Fio0= Q1oo/As (2.2.10)

The final energy balances describe the water cooled heat exchanger, or condenser, with

assumed fast dynamics and constant overall heat transfer coefficient times the heat transfer

area (UA,). Cooling water warms as heat is removed from condensing process vapour.

Qa0 = Fago C, (Too1 - Thop) (2.2.11)

Onoo = UAd, (T - 0.5 (Taoo + Tog) (2.2.12)

In equation 2.2.12 above, the arithmetic average temperature difference is used to calculate

the rate of heat transfer in the condenser rather than the log mean temperature difference
(LMTD). This linearization about the operating point simplifies the following equation.

Combining the above two equations, Ty, can be eliminated then isolated and condensate

flow rate can be calculated.

o . _UAT- T,
0 1 + UA/Q2C,F,,) ==(22.13)
Too1 = Too + Qoo (F. 200 Cp) (2-2-14)

Fs= Ohn/2 (2.2.15)
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2.3 Extension to Five Effects

The tubular falling film evaporator design illustrated in Figure 2.2 represents the installation
at Industries James Maclaren Inc. Liquor is pumped upward through a central section at the
top of which is a distributor. Flow of liquor and evolving steam is downward through the
tubes. The vapour body has a liquor outlet as well as an entrainment separator for exiting

vapours.

1

Condensate - =11l

\\\: o Sepa}'atgr
—I_ _Fee
Vapour e —\-&\
Body | ﬁ'\
H ]

Product._.-_%;:;_;%:f/ b ==

Figure 2.2 Tubular falling film evaporator

Five evaporator effects are arranged in series with countercurrent steam and liquor flow as
illustrated in Figure 2.3. Defining flow in the direction of the steam, liquor enters the last
effect at 14% solids and travels upstream through each effect exiting at 43% solids. Liquor

discharge from one effect is fed to the preceding stage with part of the stream recycled as in
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the single effect model. The train of evaporators is numbered 2 through 6 with the first effect

being a crystallizer that concentrates SBL from 43% solids to around 70% solids.

Effect #2 Effect#3 Effect #4 Effect#5 Effect #6

j.c_T Tt - J 1 *Lf __‘L Steam

Steam {
P1002

|
+——1/ Condensate
:-a—ﬁ“‘:}_”

Weak

Black
Strong Black Liquor Liquor
F22, D22 F16

Figure 2.3 Multiple Effect Evaporator

The heat balance by Grace [7] includes, for each stage, physical properties and heating values
such as density, heat capacity, and latent heat of vaporization which are assumed constant
at the steady state conditions of a given effect. The heat balance includes an overall heat
transfer coefficient times the heat transfer area (UA). Instead of a condenser at every stage,
steam removed from process liquor is passed to the next effect where it condenses on the
outside of the tubes and thus supplies the energy required for evaporation. Condensate
accumulates and flows downstream, transferring sensible heat to the liquor in a preheating
function. Only after the final effect is there a water cooled condenser. Since vapour boiled
off in all but the last effect does not pass through a condenser, the flow calculation relates

the square root of vapour pressure difference from one effect to the next, to vapour flow.



14

As done by Fisher and Seborg [5], liquor level is maintained by manipulating discharge flow
from each effect. In the present case, a proportional-integral (PI) controller is tuned for tight
level control as described by Marlin [11] and characterized by a damping coefficient and a
maximum allowable level deviation (AL,,,) corresponding to a maximum step disturbance
in discharge flow (AF,,,). Calculation of the proportional (K,) and integral (T)) tuning

parameters is derived according to Marlin as follows.

Using deviation variables, the process is described by a differential equation:

dL
AE = F n F our
(2.3.1)
The PI controller equation is:
1 £
Fow = -K@L + = (Lap
o T, { 2.3.2)

e

By substituting the second equation into the first and then taking the Laplace transform the

following expressions arise:

L) _ KD (2.3.3)
Fo () t25% + 2tEs + 1
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o= | A L l}TI(‘Kc) (2.3.4)
-K) 2\ 4

For a step in feed flow such as AF, /s, the response in the time domain is

2.3.5)
AF, (
L = mtexp-t(—x,)le

The chosen maximum level (AL,,,) and flow (AF, ) changes are, respectively, 2.5% and
10% of steady state values while the damping coefficient is 1. By differentiating the
preceding equation the time corresponding to the maximum level is toax = 2A/(-K,). This
time, when substituted into equation 2.3.5 gives an expression in terms of the level deviation

corresponding to the maximum inlet flow step

AF
AL = 0.736—==
(-K) (2.3.6)

e

The above equation along with equation 2.3.4 are used to calculate the tuning constants.
Performance of tight level control is characterized by small deviations from the level set

point with whatever flow manipulation is required.
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2.4 Model of Evaporator #3 at Industries James Maclaren Inc.

With design calculations and equipment specifications, the multieffect model of section 2.3
was modified to represent the installation at Industries James-Maclaren Inc. Mill values of
steady state liquor flows, levels and vapour pressures as well as constants such as cross-
sectional area and feed conditions were added. For a single effect (as in Figure 2.2), the
overall mass balance is:
avidt=(F,-F, - F,))lp 2.4.1)
with V the volume of liquor in the effect a product of cross-sectional area and level (V= 4
x L), F the feed mass flow, F, the product flow and F, the vapour flow. Assuming perfect
mixing, a balance on the solute is as follows:
d(VX2)ldt=(F\ X, - F, X;)/p 2.4.2)
Expanding and substituting equation (2.4.1) with L the liquid level leads to a mass balance

without assuming a constant amount of liquid in a given effect. =

X, dvidt+ VdX,Jdt = (F, X, - F, X,)/p (2.4.3)
X, (F, - F,- F)lp + VdX,Jdt = (F, X, - F, X,)/p (2.4.4)
VdX,/dt = (F, (X, - X,) + F, X)/p (2.4.5)

FX- X) + F&,

dj oAL (2.4.6)
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Newell and Lee assumed the amount of liquid in the evaporator to be constant for the
purpose of their mass balance (equation 2.2.2). Wang and Cameron [22] did not make the
above assumption and their model includes equation (2.4.6). The energy balance is a
function of steam and liquor temperatures as well as a liquor flow-dependant UA (equation
2.2.7), as in the Newell and Lee model. In this model a distinction is made between the heat
transfer surface in the energy balance and the cross-sectional area used in material balance.
The heating surface for the falling liquor film consists of the walls of the vertical tubes
whereas the volume of liquor is calculated based on the size of the evaporator sump in the

vapour body.

2.5 Summary

This chapter presented a dynamic nonlinear model of the multiple effect evaporator #3 at
Industries Maclaren Inc. Previously published work of others was examined i the first
section. A model by Newell and Lee was the starting point and therefore presented in detail
in section 2.2. Extension of the model to five effects was the focus of section 2.3. The final
version of the model was discussed in section 2.4. With the dynamic process model, a
control strategy can be developed and tested in order to ease implementation at some later
time. The next chapter discusses the controller with predictive and adaptive behaviour which

will be used to control the process model.
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CHAPTER III

MULTIVARIABLE MODEL PREDICTIVE CONTROL (MPC) AND

MODEL WEIGHTING ADAPTIVE CONTROL (MWAC)

The next two steps in this work are firstly to add a predictive controller and secondly an
adaptive function to the predictive controller. The goal is to determine whether predictive
controller performance is improved with adaptability. The predictive control algorithm,
MPC, is well developed and several previous applications and their relation to the present
work are described in section 3.1 together with various other predictive methods. A review
of some previously published adaptive control strategies is the focus of section two. This
is followed by a description in the third section of multivariable (2x2) MPC. The MWAC

algorithm for adaptive control is described in detail in section 3.4.

3.1 Literature Review of Predictive Control of Evaporators =

gt

Newell and Lee [14] developed a predictive controller for their single effect evaporator. The
design procedure is similar to that described in section 3.2 below in that it is based on a
convolution model and minimization of the predicted error across the model horizon. The
difference arises in the ‘pseudo-inverse' solution with weighting constants on both the output

variables and the control move size ({J, and R respectively).
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Au = (4704 + R A7Qe 3.1.1)

In equation (3.1.1), Au is the control move and e is the process error.

Instead of solving the above equation in this form, Newell and Lee use a numerical
technique called singular value decomposition to calculate the pseudo-inverse of the matrix
A (the dynamic matrix). They then use a design method called principal component analysis
to calculate the control moves. Despite these numerical differences, the implementation

follows the same steps as in section 3.3.

Alevisakis and Seborg [1], [2] have addressed the problem of process time delays in their
multivariable Smith predictor control strategy. Like MPC, the Smith predictor is a model
based controller. The development reported in these papers is an extension of the algorithm
to the multivariable case. The authors argue that removing the delay from the characteristic

equation of the closed-loop system, broadens the selection of controller designs available.

Ricker [18] describes the design and testing of a constrained predictive controller that shares
with the present work both a quadratic programming (QP) approach to the constraints and
a convolution model based predictive controller design which falls into the category of

internal model control IMC). The important similarities among predictive control strategies
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such as Dynamic Matrix Control (DMC), Model Algorithmic Control (MAC), and now
Internal Model Control IMC are the use of a process model to predict present and future
control actions by executing an on-line optimization. The fact that calculations are
performed in real time allows consideration of pertinent constraints. Ricker's choice of
quadratic programming over linear programming is made because in the former case an
unconstrained solution is not possible since the result of linear programming is always along
a boundary or at an intersection of constraints. A comparison between the constrained
multivariable predictive controller and a conventional PI controller confirmed the basic
assumption of the present work that the QP IMC strategy provides easier tuning for better
performance. In a subsequent publication, Ricker et al. [19] note that their QP IMC
algorithm is not only effective for controller tuning off-line but also allows the controller to
incorporate future set point changes into its prediction by pre-programming the target
progression. These features are both present in the QP MPC algorithm. The Ricker control
problem closely resembles the present work in that the manipulated variables are WBL flow
and heating steam flow (versus saturated steam pressure) and the control objectives are firstly
to maintain solids content of the SBL and secondly WBL throughput (compared with SBL
flow). Ricker et al. tested both QP IMC and PI controllers and found that SBL, concentration
was maintained to within 1% of the target value during normal operation of the plant. This
performance was acceptable to operations personnel. For programmed changes in WBL

throughput of +5% only the QP IMC algorithm delivered acceptable performance. In order
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to reduce the computational burden a technique called blocking is implemented with the QP
IMC algorithm in which, for a specified interval, certain manipulated variables are held

constant.

3.2 Previous Work in Adaptive Control

Newell and Lee [14] acknowledge the limitations of fixed parameter controller designs and
therefore consider two methods of adaptive control: gain scheduling (GS) and self-tuning.
In gain scheduling during excursions from the steady state operating point, the controller
gain (K) is adapted as a function of a proportional steady state gain (K s), a proportional
gain scheduling constant (Kj;s) and the error signal (the difference between the set point, SP,
and the controlled variable, CV).

(3.2.1)
K = K, - (P - CV) x K _
This method of controller gain adaptation differs from MWAC in that the change is made
based on the process error rather than the prediction error. There is therefore no predictive
element to foresee control requirements. From the gain scheduling relation (3.2.1) it is
obvious that the range of possible controller gain values is limited whereas the MWAC
family of candidate models may be very diverse. Also, only the gain is adapted, whereas

MWAC adjusts both the gain and the delay. The second adaptive method evaluated by
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Newell and Lee consists of an on-line process identification by auto-regressive moving
average (ARMA) followed by PID controller parameter calculation. The main drawbacks
of this approach, relative to the present work, are that the PID has neither a multivariable nor

a predictive component.

Oliver, Seborg and Fisher [16], [17] derive adaptive control algorithms such that stability of
the closed-loop system is guaranteed by requiring the total time derivative of the Liapunov
function to be at least negative-semidefinite. Oliver, Seborg and Fisher call the design
method model reference adaptive control (MRAC) since it is based on a reference model that
has desired behaviour. The control objective is to minimize the error between the actual
process values and the state-space reference model response. The manipulated variables are
determined by a control law that includes feedback (FB), feedforward (FF) and integral (I)

action with provisions for set point changes (sp).

[

u = K.x +KFd+Kydt+qu
F‘” i '{ i (3.2.2)

The control matrices (Kg, Kgp, K, K,,) are calculated based on Liapunov's direct method
which requires process values of the state (x,), disturbance (d), output () and set point )
variables. A limiting aspect of this approach is the linear state-space format requirement of

the reference and process models. The two advantages of the MRAC approach stated by the



23

authors are, no on-line process identification and a readily tuned controller, both of which
are dealt with by the MWAC and MPC algorithms developed later in this chapter. Another
shared underlying assumption is that multivariable control is more effective than single loop
arrangements. A strength of the MRAC approach is that in the simulations and experimental
tests, the initial controller parameters were able to recover from very poor initializations.
This is not essential to the present work since the process model is representative and so,
therefore, are the initial controller parameters. Conversely, a characteristic that is relevant
to the present case is that MRAC controller performance improved with subsequent upsets
which inevitably occur in any industrial application. It follows then that the controller

adaptation is slowed in the region of steady state, which is not the case of MWAC.

Hernandez, Montano and Silva [9] do not use the name MRAC for their method but it has
the same approach of tracking a reference model using a Liapunov design approach. The
control strategy is applied to a single loop in a double effect evaporator. Using afirst order
model outlet concentration is controlled by steam flow rate. As in the present work, level
is maintained by PI control. The results do not appear overly encouraging as the authors

describe their results as "slightly better" than a PI controller.

Table 3.1 below is presented in order to summarize the bibliographical work discussed in

sections 3.1 and 3.2 above that deals with the specific problem of evaporator control.
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Table 3.1 Summary of Published Evaporator Control Studies

Authors Control Variables & Algorithm | Results
Algorithm Model
Alevisakis Predictive Linear multivariable | Smith Extension of Smith predictor
& Seborg predictor (continuous and discrete time) for
1973 multivariable systems with delays
in CV & MV
Alevisakis Predictive 5th order state space | multiloop: | Experimental & simulations:
& Seborg model SISO process with delays + multivar'l
1974 CV: product conc'n | proport'l similar to process without delays
Ist & 2nd effect control + multiloop
level
MYV: steam flow multivar'l: Simulations: robustness & gain 1
Ist & 2nd effect MIMO with Smith predictor + error in
product flow optimal gain & delay
multivar'l
FB +
Smith
predictor
Hernéndez, | Adaptive, 1. nonlinear l.adaptive | For CV set point change, 1.
Montano, PI 2. linearized models | FB slightly better than 2.
Silva CV: output conc’n 2.PI
1993 MV: steam flow
Mulholland | Kalman filter | black liquor evap.: Kalman Predict change in U from change
& Love heat transfer coef. U | filter in C, extend to predict scaling
1993 product concent’n C
Newell & PI, 5th order linear PI Off-line tuning has gain too high
Fisher Inferential model for experimental
1972 Feedforward | CV: product conc'n
Optimal Ist & 2nd effect Inferential | Better than PI for product
MIMO level concentration control
State-Driving | MV: steam flow
Ist & 2nd effect FF + Pl Better than PI only
product flow
Optimal
MIMO Best experimental performance
State-driv'g
Must have very good model
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Table 3.1 Summary of Published Evaporator Control Studies (Cont.)

Authors Control Variables & Algorithm | Results
Algorithm Model
Oliver, Adaptive 5th order state space | MIMO Add adaptive integral and set point
Seborg & model MRAC control
Fisher CV: product conc'n Simulation: for disturbance,
Part 1 1st & 2nd effect MRAC + FB is better than open
1973 level loop
MYV: steam flow gain 1 oscillations 1
Ist & 2nd effect small improvement in adding FF
product flow to FB
performance in set point changes 1
with repetition
Oliver, Adaptive Same as Part 1 MRAC Double Effect Evaporator
Seborg Experimental: gain 1 oscillation 1
&Fisher initial tuning t performance 1
Part 2 controller adapts from poor initial
1973 tuning and repetition
adaptive parameters | computation
| and performance acceptable
away from model linearization
point, can adapt
Ricker Predictive Multieffect Evap. QP +IMC [ IMC with blocking is near-perfect
1985 Simulation but on border of instability
CV: SBL solids filtering vs. | with good model IMC tuning
MV: WBL flow blocking easier

PID less accurate than IMC and
too sensitive to plant noise -

constraints have no negative effect

QP algorithms
better to start with optimum than 0
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Table 3.1 Summary of Published Evaporator Control Studies (Cont.)

Authors Control Variables & Algorithm | Results
Algorithm Model
To et al. GMC vs. PI | Evap. simulat’n Robustness tested with disturb. in
1995 CV: product density product flow
flash tank inventory modelling errors 1, performance |
(liquid discharge
temp) Input- best results, flexible, robust,
MV: CW flow output effective control
feed liquor flow lineariz’n
(heater discharge
temp) GMC subset of input-output lineariz’n
better than local linearization
Su-Hunt- add 3rd CV and MV
Meyer more sensitive to modelling error
transfim’n better than local linearization
(PD)
Local ~ 10 x longer than any above
linearizt’'n | (nonlinear) to return to steady state
2PI's
Wang & Evap. simulat’n product composition set point
Cameron CV: separator level change
1994 product
composition optimal good for minimal time and energy
operating pressure control deviations e
MV: steam pressure B
or recirculation rate | GMC performance las model RD1
product flow rate (un)constra | two-step tuning, pseudo RD1 and
ined cascade all improve performance

constrained GMC better than
unconstrained even away from
bounds
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3.3 Review of Model Predictive Control (MPC) principles

Model Predictive Control is the generic name for a centralized control strategy which
employs measurements of output (controlled) and input (manipulated) variables as well as
a dynamic model of the process for control calculations as seen in Figure 3.1. Note that G,
is the function relating a disturbance to the controlled variable (CV); Gy, is the controller
function relating the process error to the manipulated variable (MV); G, is the process
function which relates MV to CV; and G, is the modeling function relating MV to predicted
CV. Among the specific strategies are IMC, DMC, and MAC which have been extensively

described by others [11],[19], [20].

Disturbance D(s)

g

Predictive Controller

SP(s) + Gp(—s)

15

G s) |
Madel

CV(s)

_ﬁl

+
MV(s)

N

Model Error E 'gs)

Figure 3.1 Predictive Control Block Diagram

Following is an outline of the approach used for a 2x2 controller for the black liquor

evaporator studied in the present work.



28

In order for the controller to predict future values of the output variables, a relationship
between each input variable and the output variables must be established. For a given
sampling period, performing an open loop step change in a manipulated variable and
recording the response of each of the controlled variables yields a step response convolution
model. The response time, or model horizon, should be equal to or longer than the settling
time of the slowest response. The model is normalized by first subtracting the steady state
value to get a deviation variable and then dividing by the manipulated variable step. Impulse
coefficients are obtained by taking the first backward difference of the step response model.
The approach mentioned above is effective for systems which are not accurately modeled
by first or second order transfer functions as is the case of the multieffect evaporator. The
response of the SBL flow includes unavoidable overshoot due to the five PI level controllers

tuned for tight control. The predictive model for the 2x2 system under consideration is:

b3
|
M~

T
hlllfnl,nﬂ-l + ;hlﬂlnznd—l (3.3—:?1)

1,n+1

-~
0
—

O
n
M~

T
h2lt]nl,n+l—l + E h22{’n2,n+l-l
i=1

2n+l

-
H

1

with ¢ the prediction, 4 the impulse coefficients, m the manipulated variables, i the

convolution model increment, and » the sampling instant.
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In addition to the previously mentioned model horizon, two other horizons are central to the
MPC algorithm. The control horizon, U, is the number of manipulated variable changes
calculated. The controller objective is to reduce the difference between the controlled
variable predictions and set points to zero within V, the prediction horizon, sampling
intervals. It follows then that the control horizon (U) is always shorter than the prediction

horizon (7).

The model prediction for a series of manipulated variable changes is calculated as follows:

[ 1| Am
1,1 L0
a,, 0 0 a,, 0 0
é Am
2 11
. an,z all,l 0 axz,z alz,l 0
¢ Am
1.3 1,2
: : S - (3.3.2)
@y Ay Diyya Ay Ayyy A, rva
Cr Aml,U—l
éz,l A1 0 0 4y, 0 0 Amz,o =
¢, Amz.l
a a 0 a a 0
2 , 22,
62’3 21,2 L1 22,2 1 A mz,z
n a, a. - aq a [#) - Q.
217 % p-1 20,7-Us1 %, r-1 22,V-U+1
Sl " v Ly-U+ v T 1| Amz,u—lJ
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The step response model coefficients are represented by a. Incremental changes in the
manipulated variables from one sampling interval to the next are denoted by Am whereas in

preceding equations m represented the value of the manipulated variable.

With rearranging and time interval shifting, a recursive form of the model in terms of the

incremental control moves is

T T
cl,m-_] = cl,n+j-l + Z hlllAml,n+j-l i 21: hlZiAmZ,n+j-l (3.33)
i=1 I=
T T
Comg = Copga T E hZIiAml,n+j-l + - h221Am2,n+j-l
i=1 i=
j=1,2,..V

Note that the above predicts the behaviour of the system across the prediction horizon, V.

A corrected prediction, c;,,", is made using measured values from the preceding tiffie instant,
Cin1, Tather than predicted values, ¢ ;,,. In the case of a plant installation, on-line
measurement of the controlled variables is available whereas in the present simulation, the
process model described in Chapter 2 generates these values for feedback to the predictor.
A second modification of equation 3.3.3 is to separate the summation terms into those

involving past and future control moves. The projection vector, P, ;> anticipates the effect
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of past moves on future outputs while the first term in the matrix representation below takes

into account future control moves.

*
c P
1Ln+1
’ [ 1 Am ¢, +P.,  +P
1 1 11,174 12,1
o ay 0 0 Gyo4 0 0 - -,
1,142 Am c, +P . +P
1n+1 1 112752
. Az 91 0 A2 A 0 " " 2
c
Lns3 |} ) . , Amyp | €1t PrstPras
Fuy Gup-1 7 Sup-ua Aoy Gupa v 9ppga
*
¢ Am CintPyy P
Lns¥ tnsU-1| [Cin™ 1yt oy
MY lay 4 0 0 @y 0 0 n+U- L
* Am c, tP, +P
CZ,n+1 2n 2n 21,1 22,1
ot Amy ., ContPy 24Py,
22 a a 0 a a 0
. 212 %1, 222 “221 Amy i | €2 ParatPos
C2,n+3
a a - a a a - a
2 = - X 22 -
. LV %2y 2,7-U+1 By 9pyp V-Usl _Amz,mU—l_ _cl,n+P21,V+P22,VJ
Cony |

[}

-
it

i
= 28,
Jj=1

r (3.3.4)
S.’I = Z hf-‘m,lA m::m,n+j-l

i=j+1
ij o= 12,V

c,m = 1,2 for 2 controlled, 2 manipulated variables
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The corrected prediction of (3.3.4) is used in the controller design described next. With set
point trajectories across the prediction horizon, Toapr J = 1,2,..,V, the purpose of the
controller is to reduce the difference between the corrected prediction and the set point. In
so doing, two vectors of predicted errors are defined. The first is an open-loop prediction (no
feedback) since it consists of the projection vectors P_..; which only consider past control

moves as well as the process error at the current sampling instant, Een=Tcn-Con

E,- P,,- Py,
E,- P~ P,
El,n_ Pll,V_ P22
E' =g, -p, - P,
E,- P,,- P,

(3.3.5)

LV

E, - P

[ 2n 2L,V

- P

2,V

The second vector of predicted errors takes into consideration not only past control moves

but also current and future inputs.
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1,n+1 —-c Ln+1

12 € 1nez

(3.3.6)

1,n+V_c Ln+V

(&5
1}

an+1 —c 2,n+1

22 € 2pe

c

*
_r2,n+V 2n+V |

It follows then that the matrix representation of (3.3 .4) can be rewritten in terms of the two
predicted error vectors defined above

E=-AAm+E (3.3.7)
Remembering the purpose which is to reduce the difference between the correctedsprediction
and the set point, the objective function to be minimized is the sum of the errors squared or,
in vector form,

Jam] =E'E (33.8)

Since U is always less than V, matrix A is not square. The solution is the well known
pseudoinverse or linear least squares solution of

8J/3Am =0 (3.3.9)
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which is
Am = (ATAY'ATE' = K B’ (3.3.10)
This implies that K is an approximate inverse of the model in the controller and is constant
in time. In later sections an enhancement of the algorithm will be presented, adapting K, at
each sampling period thus accounting for time varying plant dynamics and modelling errors.
For now though, the controller parameters are fixed and tuning constants are added. By
expanding the objective function with an additional term penalizing control moves called the
move suppression factor, a total of four tuning parameters are available.
JAm]=E"WE + Am™Q Am (3.3.11D)
This leads to the controller
K.=(ATWA + QTATW (3.3.12)
in the 2x2 case with controlled variables ¢ = 1,2 and manipulated variables m = 1,2 the
controlled variable weighting is W, = w_], and the move suppression factor is Q n=0mly

e

with w, , and q, , the four tuning constants. In matrix form: e ==

W, 0
0 W,

, 0
¢ - [0 Qz] (3.3.13)

Note that the impact of any one tuning constant depends on its value relative to the others.
For example, the difference in magnitude between the two controlled variables is

compensated for by the relationship W,/W,. Also, if one input is allowed more variability
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than the other, this will be reflected in Q,/Q,. These interactions must be taken into

consideration during the tuning process.

Control moves are calculated by Am = K_E'. The result is a vector Am twice the length of
the control horizon. The first U moves are for the first controlled variable while the last half
is for the second output. Since the calculation is repeated at each sampling instant, only the
first control move for each manipulated variable is actually implemented. In other words,

only two rows of K_, the first and the U+1* , are useful.

The final performance enhancement of the MPC algorithm is to accommodate the reality in
any process of physical constraints. In the present case, for example, both flow and pressure
must be non-negative while concentration may not exceed 100%. This situation is dealt with
by reformulating the quadratic objective function to include explicitly constraints on each
of the controlled and manipulated variables as well as control move size. - The<fesult is a

quadratic programming (QP) problem which is implemented in the controller algorithm.

3.4 Model Weighting Adaptive Control (MWAC) Principles

The strength of adaptive control strategies is compensation for time varying plant dynamics

as well as modelling inaccuracies by modifying the controller model at each sampling instant
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based on the prediction error. The structure of the model weighting adaptive controller used

in this study is illustrated in Figure 3.2.

Disturbance D(s)
Predictive
Controller Process +
SO, GG .5 VO
-JE LI?_ MV(t) p +

A J

Estimation"“MOdel 1'
of <Model2
> X

«Model N

g1

Figure 3.2 Adaptive Predictive Control Block Diagram

The basis of the control design developed by Gendron et al. [6] is a first order plus time

delay model which has three parameters: process gain (g), delay (D), and time constant (z).

_ (-Ds)
Be) = ket (3.4.1)



37

Identification of the gain and delay is in the form of a discrete range of values. This allows
controller adaptation of these parameter estimates within the specified range. A single value
of the time constant parameter is identified rather than a discrete range since error in the
time constant estimate affects closed-loop stability less than error in the gain and delay.
Also, the number of adaptive parameters is kept to a minimum since each additional
parameter increases substantially the number of possible combinations and hence the

computations.

The transfer function in (3.4.1) is rewritten in discrete form since the implementation is

digital.

Pe™ = gal:Z‘_)qq-; - (34.2)

Notice that the discretized delay (d) is an integer multiple of the sampling period.

As mentioned above, only an approximate range of values of the gain and delay are known
from both physical limitations experience with the process. A family of candidate models

is established by discretizing these ranges of the gain and delay:

F,8{PgMecigglhdelk K} (3.4.3)
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with g, k the lower and g ,% the upper limits of the discrete ranges of gains and delays,

respectively. The criteria for forming the group of models is that it is small enough to remain

manageable and large enough that an intermediate value can be stabilized between two group

members.

The MWAC approach is to design one controller which is made up of contributions from

each of the N members of the family of candidate models where N & card #;. The weight

placed on each model contribution is calculated such that the controller prediction (¥) error

is minimized. With the actual plant model, G, output, y, and input, u:

e(h)

N
G(g ™ul) - Y wP(q yu(®)

yo - 30

W) - 2_3wy,(t)

(3.4.4)

(G@™ - Plg ™u(t)

==

Note that p is the controller model made up of contributions from all member models while

P, e &,

Also, the sum of weights is normalized to unity.

(3.4.5)
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By combining weightings with gains,

3.4.6
szzi wi i ( )

it follows that the process model made up of all combinations of gain and delay parameters

1s

3 1-
gy = XY w Y
L |

l-ag™ 347
- -1
. (-a) ZY 4
l-ag™ "

Of the two steps remaining in this discussion the first is to calculate the weighting attributed
to each model in the family of candidates. Secondly, the algorithm must be expanded to

accommodate the 2x2 control problem.

The weights are calculated by considering the prediction error of each model inat%le family
of candidates and penalize those with large errors. Given the actual plant input u(t), the
output of each candidate model P; is y,(t). This leads to a predicted error of e(t) = y(t) - y(t).
With this and f'e [0,1] (which is defined below), the /, error norm is defined as follows and

the inverse is used in the calculation of model weights.

' 3.4.8
o = 1o & 55 1 oy (3.48)
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1w}
E l/v: (3.4.9)

W, =

Two cases of the /,-norm above are when /=1 and f<1. The former is the normal l,-norm
and the latter exponentially favours the most recent data. Since implementation is digital,

the recursive form of the /,-norm is

. (3.4.10)
o) = fof-1) + )

v = e (3.4.11)

Notice that one strength of MWAC is that the calculation of weights is made at each
sampling instant and can therefore vary with the process. The fin the recursive equation is

a forgetting factor that dictates how fast model weights adapt to changing conditions and is

calculated using N, = card [k, %].

1 (3.4.12)

As stated above, the MWAC algorithm must be extended to the 2x2 case for implementation.
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Since the MPC algorithm is based on four input-output relationships, the combinations of

candidate models quadruple.

5. - g, 1 - o) Sl — @)
Pc(q 1) = EZ cl, {iL__l‘ el I+EZ c2 ij 2 -1 q € 0
o 1 - ag 1 - ag (3.4.13)
(1 - a)q‘l E‘Y jq (cd, j)+(1 (!) q ZYdﬂ_(ﬂ'])
1 -ag™t 7 1 - ag™

with ¢ [1,2] the two controlled variables. And the combination leads to the model below

u} (3.4.14)

3.5 Summary

-

The above sections presented the predictive and adaptive strategies applied to the process
model developed in Chapter 2. Extension of MWAC to the 2x2 case was a recent
development. None of the prior work described an application of the combination of
predictive and Model Weighting Adaptive Control which is the novelty of the present work.
In the next chapter results of the simulations are presented and discussed which lead to

conclusions on the success and potential of this approach.
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CHAPTERIV

RESULTS AND DISCUSSION

This chapter presents and discusses performance of the fixed parameter predictive controller
along with the adaptive predictive controller in disturbance rejection and a set point change.
But first, various inspections of the model are presented in section 4.1 in order to develop
confidence in the representation of the true process. The second section, 4.2, describes the
steps involved in adjusting the predictive control algorithm parameters. It follows next that
the adaptive algorithm is customized to the system under study in section 4.3. The final
component of this chapter is a presentation of control studies with fixed parameter predictive

as well as adaptive predictive control action for a set point change and disturbance rejection.

4.1 Nonlinear Model Behaviour

S

The ideal method of validating the process model is to compare operating values at the mill
with those generated by the simulations. Unfortunately, the scope of the present work does
not include identification of all the parameters required to make a comparison between mill
operating dynamics and the process model developed here. Therefore, in order to establish
the nonlinear model as a valuable representation of the multiple effect evaporator #3 at

Industries James Maclaren Inc., several checks were made such as comparing key model
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variables at steady state with plant design values; verifying overall material balances; and
introducing step disturbances to the model in order to observe the responses. The liquor
level in each effect is regulated by a PI controller and the model response is otherwise open

loop.

The model includes design values of WBL flow and concentration as feed to the evaporator
effect #6. Table 4.1 shows that the model very nearly delivers design values of SBL at the
discharge of effect #2.

Table 4.1 Comparison of Model and Design SBL

Variable Model Design % Deviation
F22 (t/h) 43831 43591 0.55
D22 (% solids) 42.9 43.4 -1.1

Similarly, overall balances on solids and water according to steady state model values close

R

to within small margins as illustrated in Table 4.2 below.

Table 4.2 Overall Solids and Water Balances

In Out % Difference
Solids (t/h) 18.637 18.584 0.3
Water (t/h) 121.391 120.908 0.4
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The difference between the present model outputs and design values (observed in the tables

above) can be attributed to variations in the physical property values of black liquor.

Table 4.3 below indicates the behaviour of process variables as a result of step disturbances
introduced to the model as new steady states were achieved. For a given disturbance; a
variable response in the same direction is indicated by the plus sign (+), an inverse response
with the minus sign (-) and no interaction with a zero (0).

Table 4.3 Model Variable Interactions

Disturbance | Levels | SBL Solids Vapour Press. | Temperature | SBL Flow
WBL Feed 0 - + + +
WBL Solids 0 + - - +
Feed Steam 0 + + + -
CW Flow 0 + - - -
CW Temp 0 - + + +

4.2 Model Predictive Control (MPC) Tuning

Several authors agree [18], [3] that the variables to control are SBL concentration (D22) and
flow (F22) at the discharge of effect #2, by manipulation of saturated heating steam pressure
fed to effect #2 (P1002) and WBL flow (F16) which enters the evaporator at effect #6. In

practice, Ricker et al. [19] choose to control WBL over SBL flow with WBL flow both a
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controlled and a manipulated variable. The reason stated, in addition to a reduction in
interaction, is the difficulty in modelling the SBL flow response. Similarly, in the present
system SBL flow (F22) is both a manipulated variable in the PI of effect #2 and a controlled

variable in the MPC algorithm.

The solid curves of Figures 4.1 and 4.2 show that the open loop responses of SBL flow (F22)
to WBL flow, F16, and steam pressure, P1002, respectively are not easily modeled first order
plus dead time (FOPDT) systems. Note that the solid curve plots in Figures 4.1 through 4.8
are normalized flows and concentrations calculated following the example in equation 4.2.1
below for Figure 4.1 with F22 the controlled variable, F22 the steady state value and AF16
the manipulated variable step size:

F22 - F22
F22 = ——
Normalsed A FI6 (4.2.1)

See

In essence, the plots are of deviation variables normalized by the manipulated variable step.
The broken lines of Figures 4.1 through 4.8 are part of the discussion of tuning the adaptive
predictive controller in the next section. Due to the existing pressure control valve at
Industries James Maclaren Inc., saturated steam pressure is manipulated whereas Ricker uses

steam flow.
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Figure 4.1 Normalized SBL flow (F22) response to step change in WBL flow (F16)
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Since computation time of the nonlinear model increases as the control scheme becomes
more and more elaborate, a linear model was identified and used for preliminary tuning of
the MPC parameters. Each of the four combinations of input and output variables as
described in Table 4.4 were plotted and are found in Figures 4.1, 4.2, 4.3, and 4.4.

Table 4.4 Linear Process Model Identification

Figure | Step in manipulated var. Response of controlled var.
4.1 WBL flow (F16) SBL flow (F22)
4.2 Feed steam press. (P1002) SBL flow (F22)

4.3 WBL flow (F16) SBL concentration (D22)

4.4 Feed steam press. (P1002) SBL concentration (D22)

From these, four first order transfer functions were identified. Similarly, a first order

relationship between product concentration and steam pressure was also developed by

Newell & Fisher [13].
0.87¢ % -0.41¢ %
F22 F
~ 0.025s + 1 0.0042s + 1 16
- - -0.0335 -0.033s 2.
23 0.18e 0.195¢ P1602 (4.2.2)

0.077s + 1 0.083s + 1

The preceding identification was based on a +10% step test.
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There was no apparent dead time in the four observed responses of the nonlinear model.
Given that there is certainly dead time in the plant installation, delays were added to the
model. In order to simulate process delay in output (or controlled) variables, each transfer
function associated with a given output must have the same size delay. Due to unavailability
of plant operating information, the size of delays (0.033 and 0.05 h for the product flow
(F22) and concentration (D22) respectively) added to the process models is arbitrarily small
in order to minimize the computational burden without overlooking their existence. The
delays are present in both the linear and nonlinear process models during the set point change

and disturbance elimination trials described in section 4.4 Controller Performance.

With the above linear process model, the Relative Gain Array [20] is calculated to evaluate
process interactions. For the linear 2x2 system above, the relative gain A has a value greater
than 1 (4, = 1.8) which indicates that the second pair of input and output variables (D22 and
P1002 respectively) reduces the gain between the first pair (F22 and F16) as well as

confirming control loop interaction.

In order to establish that the model behaves similarly further away from the steady state
operating point, responses to a second step of +10% are plotted in Figures 4.5, 4.6, 4.7, and
4.8. The purpose of a second step change is to compare the gain at different starting points.

The physical significance of this is that in a nonlinear process, a given change in manipulated



F22 (-)

52

2 : | . | |
=~ _ gain = 0.90
MWAC models as in ',-: R
151 Figure 4.1 = - _
1 I —
05F _
Ok — B |
-0.5 ! | i | :
0 0.2 0.4 0.6 0.8 1 12
time (h)

Figure 4.5 Normalized SBL flow (F22) response to two step changes in WBL flow (F16)



53

0-2 I I I I : 1

-0.2+ - -

MWAC models
as in Figure 4.2

t h-1 . kPa-1)
S
=N

F22 (
O
o

|
o
o
|

0 0.2 0.4 0.6 0.8 1 1.2

Figure 4.6 Normalized SBL flow (F22) response to two step changes in steam pressure
(P1002)



0.1

|
©
-

1
=
N

D22 (% solids . t-1 h)

I
e
w

54

0.2 0.4 0.6 0.8 1 1.2 1.4

Figure 4.7 Normalized SBL concentration (D22) response to two step changes in WBL
flow (F16)



0.5

0.4

=
w

o
(V)

D22 (% solids . kPa-1)

©
—

55

— —

MWAC models as in / gain =0.19
Figure 4.4 /

o ——

0.2 0.4 0.6 0.8 1 1.2 1.4
Time (h)

Figure 4.8 Normalized SBL concentration (D22) response to two step changes in steam
pressure (P1002)



56

variable will produce a different response in the controlled variable, depending upon the
starting point of the controlled variable. It is clear from these figures that the preliminary

identification holds for excursions of up to 20% from steady state.

The prediction and control horizons (¥ and U respectively) that gave the best controller
performance were 60 and 20 respectively. Since the control objective is supervisory, a
sampling interval of 30 seconds was selected such that the prediction horizon neither
truncates nor overlooks open loop model response dynamics but still comprises fewer than
200 impulse coefficients. Design parameters used by Ricker et al.[19] such as a prediction
horizon of 62 minutes and samplingtime of one minute are in the same order of magnitude
as 30 minutes and 30 seconds respectively in the present simulations. Design values used
by Newell and Lee [14] listed in Table 4.4 along with those used in the present work:

Table 4.5 MPC Parameters

Present Work Newell and Tee
Model horizon (min) 60 150
Prediction horizon (min) 30 50
Control horizon (min) 10 25
Sample time 30 seconds 1 minute

In the plant application, outlet SBL is fed to a concentrator and eventually the recovery

boiler, it is therefore important to maintain SBL concentration in order to avoid excessive
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fouling, due to high solids, or conversely, extreme steam requirements in the case of dilute
product liquor. For this reason, the output weights for SBL flow (F22) and concentration
(D22) are 1 and 20 respectively which means that excursions from the concentration set point
are heavily penalized relative to flow. Tuning of the move suppression factors (input
weights) was a compromise between small values that led to oscillatory responses and larger
weights that led to sluggish behaviour. Weights of 15 for WBL flow (F16) and 10 for feed

steam pressure (P1002) yielded acceptable results.

4.3 Model Weighting Adaptive Control (MWAC) Tuning

Closed-loop time constants and discrete ranges of gain and delay values are inputs to the
MWAC algorithm. A single time constant is identified and the broken lines of Figures 4.1,
4.2, 4.3 and 4.4, represent the range of gains chosen. Since the controlled variables F22 and
D22 have delays of 0.05 and 0.033 hours respectively in the simulated process, thc-:trange of
dead times input to the MWAC controller is 0 to 0.067 hours. Given the preceding ranges
of gain and dead time, as well as a time constant for each of the four relations, the MWAC
algorithm makes a FOPDT estimate for each possible combination. For the sake of
comparison, the same MPC tuning constants were used for the adaptive and predictive

controller as in the fixed-parameter predictive controller.



58

The MWAC algorithm as it stands presently assumes that the process can be adequately
modeled by a combination of FOPDT responses. The open loop step.responses of SBL flow
(F22) to steps in WBL flow (F16) is in fact more characteristic of the following transfer

function due to the initial rapid rise and subsequent overshoot

_ K(xs + 1) 43
P (1,5 + D(t,s + 1) *3.0)
T3 > TZ
T > T

Also, the rapid initial increase in SBL flow (F22) in response to a step in steam pressure

(P1002) is more characteristic of the following transfer function than a FOPDT.

~ K(zs + 1)
2 (1 + I)(t,s + 1)

1'-3>Tz
‘L'l<‘l.'3

4.4 Controller Performance

With the tuning parameters adjusted as discussed above, the linear model and subsequently

the nonlinear system are tested for set point changes. It is important that the controller
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handle set point changes as these are required for plant turndown. Lastly, the nonlinear
system is tested for disturbance elimination which is a scenario that represents a common

function of the controller.

In practice, process delays are not known precisely and therefore trials (plotted with broken
lines in Figures 4.9, 4.10, 4.11, and 4.12) are made with mismatch between the process
model and the MPC convolution model delays. The 2x2 matrices of delays shown in Table
4.5 correspond to the different combinations of dead time mismatches used in the
simulations. These are compared to the solid line plots with no mismatch in Figures 4.9 -
4.12.

Table 4.6 Process and Controller Dead Time (in Hours)

Process Mismatch # 1 Mismatch #2 Mismatch
Model Figures 4.9 - 4.12 Figures 4.9 - Figures 4.13 -
Transfer Delays 4.12 igo
Function )
F22/F16 F22/P1002 0.05 0.05 0.025 0.058 0033  0.05 0.025 0.058
D22/F16 D22/P1002 0.033 0.033 0.042 0.042 0.017 0.067 0.042  0.042

From the Figures (4.9 - 4.12), it is clear that in all but the D22 case (Figure 4.10), this
mismatch does not lead to appreciable controller performance degradation. Although there
is a larger discrepancy between D22 responses, the difference is never larger than one tenth

of a percent solids (0.1 %).
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The combination of an MPC controller with adaptation by MWAC yields promising results
plotted in Figures 4.9 -4.12 with dotted lines. In Figure 4.9, the new SBL flow (F22) set
point is attained faster with the MPC + MWAC algorithm than any of the MPC trials, with
small overshoot. During the F22 set point change, D22 (SBL concentration) is best
maintained at target by the MPC + MWAC algorithm with maximal excursion from set point
0f 0.02% solids. The two manipulated variables, WBL flow (F16) and feed steam pressure
(P1002) behave consistently, regardless of the controller tested. The following tables

summarize the results plotted in Figures 4.9 - 4.12.

Table 4.7 Control Studies of MPC, MPC with Dead Time Mismatches, and MWAC
+ MPC Controllers with Linear Process Model

Figure Yvs. X Model Set Point / Observations
Disturbance
4.9 F22 vs. t linear F22 set pt. all responses similar to first order
4.10 D22 vs. t linear F22 set pt. MWAC + MPC performs better than MPC
with dead time mismatches
4.11 Fl6 vs. t linear F22 set pt. all responses similar to first o;der
4.12 P1002 vs. t linear F22 set pt. all responses similar to first order

In the preceding series of trials, two different dead time mismatches proved not to have
significantly differing performance. With this in mind, only one such case will be examined
in the following tests of the MPC and MPC + MWAC algorithms for control of the

nonlinear process model.
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Figures 4.13, 4.14, 4.15 and 4.16 illustrate the results of a set point change in SBL flow
(F22). The first obvious difference between this series of plots and the preceding one
(Figures 4.9 - 4.12) is the time scale. Whereas the linear model is in transition between old
and new set points for less than an hour, the nonlinear model requires at least three hours.
In Figure 4.13 the SBL flow (F22) behaviour is consistent for the MPC without mismatch,
MPC with mismatch, and MPC + MWAC algorithms. SBL concentration (D22) remains
within £0.1 % solids of the target value while the manipulated variables have essentially

identical responses, regardless of the control algorithm.

The trials which best portray MPC and MPC + MWAC algorithm performance in practical
application are plotted in Figures 4.17, 4.18, 4.19 and 4.20. This is the case of disturbance
elimination. A +10% step in WBL concentration (D16) is introduced to the system and each
of the controllers under examination returns the outputs (F22 and D22) to target values by
manipulating the inputs (F16 and P1002). In Figure 4.17, MPC with dead timezn_aismatch
allows the smallest and shortest excursion, followed very closely by MPC without delay
mismatch and finally MPC + MWAC which behaves similarly with a larger and slightly
longer deviation. Conversely, in the case of the SBL concentration D22), MPC + MWAC
returns the output to target faster than MPC either with or without delay mismatch. Again,

the behaviour is similar with no appreciable differences. Both inputs (F16 and P1002) show
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slightly slower responses to the disturbance but certainly well within the range of

acceptability, relative to the MPC performance.

The following tables summarize the results plotted in Figures 4.13 - 4.20.

Table 4.8 Control Studies of MPC, MPC with Dead Time Mismatch, and MWAC +
MPC Controllers with Nonlinear Process Model

4.13 F22 vs. t nonlinear F22 set pt. all responses similar to first order
4.14 D22 vs. t nonlinear F22 set pt. initially, MWAC + MPC is slightly slower
than MPC controllers

4.15 Fl6vs.t nonlinear F22 set pt. all responses similar to first order

4.16 P1002 vs. t nonlinear F22 set pt. all responses similar to first order

4.17 F22 vs. t nonlinear D16 disturb. MWAC + MPC is slightly slower than
MPC controllers

4.18 D22 vs. t nonlinear D16 disturb. MWAC + MPC is slightly slower than
MPC controllers

4.19 Fl6 vs. t nonlinear D16 disturb. MWAC + MPC is slightly slower than
MPC controllers

4.20 P1002 vs. t nonlinear D16 disturb. all controllers behave suml‘a;ly

The trials presented and discussed in this chapter show that for a simulated process, the

adaptive predictive controller performs as well as the fixed-parameter predictive controller.

When implemented in an actual plant, the parameters of an MWAC + MPC controller will

adapt to changes in the process dynamics caused by, for example, unmeasured disturbances

and evaporator fouling. In this case, it is expected to outperform the fixed-parameter
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predictive controller. A second reality of plant implementation is that the process model
used by the fixed-parameter controller will not match the process response as is possible in

simulation.

4.5 Summary

This chapter presented the results of implementing multivariable (2x2) predictive controllers
with both fixed and adaptive parameters. The process was simulated first by a linear system
of four FOPDT transfer functions with which the controller parameters were adjusted.
Finally the control algorithms were implemented on the nonlinear process model in order to
observe a set point change and disturbance elimination. Since the convolution model in the
fixed-parameter predictive controller was taken directly from process responses, it was a
better model than would be possible in practice. Thus the results were promising in that the
predictive plus adaptive controller performed similarly to the ﬁxed-parameter_—:p_redictive
controller. The next and final chapter contains conclusions and extensions of the present

work.
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CHAPTER V

CONCLUSIONS AND EXTENSIONS OF WORK

5.1 Conclusions

The main conclusion of the present work is that the adaptive algorithm MWAC performs
well when combined with a multivariable MPC controller in simulations with a nonlinear
dynamic process model. This result is based on trials for set point changes and disturbance
rejection in which the adaptive plus predictive controller behaves similarly to the fixed-
parameter predictive controller. It may not be obvious that this justifies the promise of
adding an adaptive component to the scheme. The fixed-parameter predictive controller
contains convolution models that are the exact responses of the simulated process. In
practice, the process model in a predictive controller can never be a perfect description of the
real system due to the difficulty in identifying pure open-loop step responses without
unmeasured disturbances, changing plant dynamics, and other factors. It is then clear that
the standard against which the adaptve plus predictive controller is compared is
unrealistically tough. This is the justification for concluding that an adaptive plus predictive
scheme that has comparable performance to the fixed-parameter predictive system is

promising.
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In arriving at this conclusion, several intermediate stages are necessary. The simulated
process is a five-effect black liquor evaporator in the Industries James Maclaren Inc. kraft
pulp mill at Thurso, Quebec. Each effect is dynamically modeled by three differential
equations describing the mass and energy balances as well as black liquor properties that
vary with concentration. Black liquor is concentrated by removing water in each stage with

heating energy supplied by countercurrent flow of steam.

With the process model, the open-loop responses required by the fixed-parameter predictive
controller can be recorded. For the adaptive controller, discrete ranges of gain and delay as
well as an estimated time constant are required as input. With this information, a simplified
linear version of the process model makes tuning faster and easier. It becomes apparent that
dead time mismatch in the fixed-parameter predictive controller does not substantially alter

performance.

e

The final trials are with the nonlinear process model. In the specific case of disturbance
rejection or regulatory control, the MWAC + MPC algorithm respects the controlled variable
weights by returning the SBL concentraiton (D22) to set point faster than any of the fixed-
parameter predictive controllers. Consequently, the SBL flow (F22) excursion is slightly
greater than the case of the fixed-parameter predictive controllers with the same weights.

The set point change was handled virtually identically by all the controllers.
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A major strength of the MWAC algorighm is that the parameter estimation procedure is
independent of system excitation, unlike other adaptive methods. This implies that MWAC
performance does not degrade or drift during periods of operation near steady state but rather

settles within the initial parameter ranges.

5.2 Extensions of Work

The ultimate extension of this work is to implement the controller in the plant control
system. For the purpose of justifying implementation of an advanced control strategy, it
would be essential to do a feasibility study in order to make an estimate of the potential gains

against which the costs could be measured.

In order to further prove that the nonlinear dynamic process model is representative of the
evaporator #3 at Industries James Maclaren Inc. plant step tests should be performed in order
to compare the actual responses with those predicted by the model. This could lead to new
identification of the convolution models utilized by the predictive controller. The MWAC
algorithm presently assumes that the process can be adequately modeled by a combination
of FOPDT responses. The open loop step responses of SBL flow (F22) to steps in WBL
flow (F16) as well as steam pressure (P1002) may be more accurately modeled by alternative

transfer function structures. Although time delays are present in the current process model,
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these should be validated with plant data. The range of dead times in the MWAC algorithm
is 0 to 0.067 hour but the minimum process delay is greater than zero so it would be logical

to reduce the range of dead times, eliminating those less than the minimum process delay.

Another approach to the existing PI level control would be to remove the controllers and
insert hard constraints on the levels. Conversely, the individual level controllers could
include feed forward rather than, or in addition to, the feedback PI action. Alternatively, the
2x2 controller could be enlarged to include the levels and discharge flows as, respectively,
controlled and manipulated variables. This larger structure would multiply the
computational burden but the advantages of increased decoupling may offset the higher

computer time.

The process model could be improved by updating the physical and heat properties of black
liquor based on operating and bibliographical data. Since many model parametersare taken
from the design calculations of the evaporator, it should be confirmed that the plant, in
operation near steady state, does indeed reflect the design conditions. The model could also
be extended to include the crystallizer, which concentrates SBL from approximately 40% to
70%, as well as the steam jet injection system and the liquor recycle loop. Simulations using

the nonlinear model were lengthy in computation time such that it would be advisable to
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improve the code for faster execution. This may be realized using the recently released

Matlab compiler.
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