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RESUME

Le probleme de la convection et de la stabilité dans un cylindre est d’un intérét
théorique et pratique dans les phénomenes de transport en milieux poreux et fluides,

tant en sciences fondamentales qu’en ingénierie.

La présente these expose les travaux de recherche sur le transfert de chaleur et
P’écoulement des fluides en milieux poreux ou fluide, confiné dans un cylindre hori-
zontal en rotation avec une vitesse angulaire rapide, faible et nulle. Les principales

parties développées dans cette dissertation sont:
e but et position du présent probleme physique
e modele mathématique du transfert de chaleur a travers un cylindre
‘e développement des méthodes numériques
e convection mixte dans un cylindre en rotation lente
e convection naturelle dans un cylindre en rotation rapide
e instabilité dans un cylindre non rotatif

L’écoulement dans le cylindre est supposé bidimensionnel dans le plan (r, 6) et
des conditions périodiques sont prises en considération dans la direction §. Puisque
les études originales en question dans cette these ne peuvent satisfaire la symétrie
par rapport au diametre vertical, symétrie que ’on oblient quand la gravité terrestre
seule est considérée, le cylindre entier doit étre maillé comme domaine physique. Les

trois cas suivants sont étudiés:

D’abord, nous abordons le comportement de la convection naturelle et de la

convection mixte dans un cylindre horizontal en rotation, contenant un milieu poreux
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ou fluide et soumis & la condition pariétale isotherme et & un puits thermique uni-
formément distribué. Ce genre de probleme est équivalent au cas o, aucun puit ou
source n’étant présent, la température a la frontiére est croissante dans le temps a
un taux constant. Un régime de rotation faible est envisagé. Nous nous sommes
proposés d’examiner exclusivement 'interaction entre la rotation autour d’un axe
horizontal et la force gravitationnelle. Quoique les milieux fluide et poreux sont
décrits a 'aide des équations de mouvement différentes et possedent des propriétés
thermiques et dynamiques différentes (par exemple, en milieu fluide, la résistance
au mouvement est engendrée par la paroi solide tandis qu’en milieu poreux, cette
résistance est produite en tout point par la matrice solide), ces milieux répondent
a la méme équation adimensionnelle d’énergie et posseédent la méme configuration
géométrique. Un comportement qualitativement similaire sous les mémes condi-
tions est donc prévisible. L’interaction entre les rouleaux convectifs obtenus pour
la situation standard de la convection naturelle et les effets de la vitesse de rota-
tion est étudiée numériquement et analytiquement. Pour la convection d’amplitude
finie, les résultats numériques basés sur la méthode des différences finies couvrent
une large gamme des nombres de Rayleigh et de Péclet. En outre, une méthode de
perturbations régulieres est utilisée pour étudier la rotation et valider les résultats
numériques, ces derniers s’accordant bien avec cette solution analytique. Les deux
méthodes de résolution sont appliquées tant au milieu poreux isotrope qu’au milieu

fluide.

Pour le cas, d’'un milieu poreux isotrope, les deux méthodes de résolution
révelent toutes deux qu’une grande partie du fluide saturant ne participe pas a la ro-
tation a faible vitesse. Donc, la fonction de courant au centre peut largement différer
de zéro. Cependant, avec 'augmentation de la vitesse angulaire, un régime de rota-
tion solide se développe, régime pour lequel le transfert de chaleur par convection est

éventuellement réduit a zéro. De méme, pour un milieu fluide, un écoulement net
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relatif & la paroi du cylindre est obtenu a faible vitesse de rotation (régime de cisaille-
ment) et une rotation solide appara,ft a des vitesses angulaires élevées (régime de
rotation de solide) pour lesquelles les effets rotationnels sur la convection réduisent
presque le transfert de chaleur au niveau de la conduction pure. La différence entre
les deux milieux réside dans le fait que ’écoulement net en milieu fluide enregistre
une chute soudaine drastique & des nombres élevés de Rayleigh, accompagnée d’un
comportement oscillatoire, lequel est occasionné par le terme inertiel du milieu flu-
ide, tandis que la transition au régime de rotation solide apparait graduellement en

milieu poreux sans qu’aucun comportement oscillatoire (transitoire) ne soit detecté.

Ensuite, nous avons étudié la convection de Bénard dans un cylindre en rota-
tion rapide, dans lequel est confiné un milieu poreux isotrope / anisotrope saturé
par un fluide; le cylindre est soumis a une condition pariétale isotherme et a un puits
thermique uniformément distribué. Nous considérons la situation ou la rotation est
rapide et ou seule la force centrifuge intervient, la gravité terrestre étant supposée
négligeable. Dans ces conditions, le gradient de densité en conduction est dirigé vers
le centre géométrique du cylindre et la force centrifuge agit sur le fluide saturant dans
la direction opposée. Un tel équilibre de forces est potentiellement instable et des
cellules convectives sont susceptibles d’apparaitre au-dela d’un nombre de Rayleigh
critique. Pour le cas isotrope, une étute anaytique de la stabilité linéaire a permis
de prédire le nombre de Rayleigh critique pour I'apparition de la convection et les
résultats sont comparés avec ceux obtenus numériquement. De plus, les résultats
obtenus pour la convection d’amplitude finie sont consistants avec ceux concernant
Papparition de la convection. La présente invertigation définit donc P’existence d’un
seuil Ra, = 348 au-dela duquel la convection apparait et ot il est possible d’avoir des
solutions multiples pour des nombres de Rayleigh dépassant largement cette valeur
critique. Une structure d’écoulement a quatre cellules est observée a ’apparition de

la convection. Par contre, une solution stable a des nombres élevés de Ra contient
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un plus grand nombre de cellules. L’anisotropie en perméabilité a un grand effet sur
Ra., avec la possibilité de seuils au-dessous de 348. En outre, la premiere configura-
tion de 1’écoulement relatif au milieu poreux anisotrope qui apparait au-dela du seuil
critique contient méme six cellules, plutot que quatre, si le rapport des perméabilités
est suffisamment éloigné de I'unité. Enfin, a la différence du cas isotrope oti aucune
condition physique ne peut imposer une quelconque position angulaire & la con-
figuration de 1’écoulement, ce dernier en situation anisotrope prend toujours une

position angulaire qui assure la symétrie par rapport aux axes principaux.

Finalement, nous avons étudié les instabilités de Bénard dans un cylindre non
rotatif, contenant un milieu poreux isotrope / anisotrope et soumis & une distribu-
tion sinusoidale de la température sur sa frontitre, et ce en présence de la gravité
terrestre. Une telle distribution de température est équivalente a une stratification
thermique linéaire de I’environnement dans une direction donnée. L’application de
la température maximale au bas du cylindre (g = 0, chauffage par le bas) constitue
un cas particulier. La stratification thermique imposée sur la paroi circulaire est
alors dirigée verticalement et par conséquent, la direction du gradient de densité est
opposée a celle du champ gravitationnel, donnant lieu & un équilibre de forces poten-
tiellement instable en conduction pure. Pour le cas ou le milieu poreux est isotrope
et chauffé pas le bas, la valeur critique du nombre de Rayleigh pour ’apparition
des cellules de Bénard est approximativement égale & 23.3. Les deux types suivants
de configuration de ’écoulement sont observés: une configuration de ’écoulement
constituée de deux cellules convectives, symetriques rapport au diametre vertical
et une autre configuration de I’écoulement, centro-symétrique, contenant trois cel-
lules. Aussi, les résultats numériques pour la convection d’amplitude finie a 6, = 0
démontrent que les configurations d’écoulement a deux ou trois cellules de convec-
tion sont stables. Des résultats numériques sont aussi obtenus a différents nombres

de Rayleigh pour une position arbitraire de la température maximale sur la frontiere.



L’écoulement résultant est unicellulaire, a moins que la température maximum ne se
situe au voisinage de la région instable (6 = 0). Un excellent accord est observé en-
tre les résultats donnés par I’analyse de la stabilité linéaire, les résultats obtenus par

la méthode de perturbation réguliere et ceux obtenus par les simulations numériques.

Pour le cas anisotrope, la discussion est limitée seulement a la condition de
chauffage par le bas. Le rapport des perméabilités R et 'angle de axes principaux 6y
ont tous deux une grande influence sur les valeurs critiques du nombre de Rayleigh
et les modele d’écoulement discutés précédemment. La valeur critique minimale
de Ra est atteinte lorsque la matrice poreuse est orientée de maniére que 1’axe
principal ayant la perméabitité la plus élevée corresponde a la direction verticale
(R < 1,0, = 7/2). De Panalyse de la stabilité linéaire, nous avons trouvé que
le nombre de Rayleigh critique Ra. correspondant & R = 0.125 et 6, = 90° est
d’environ 20, valeur inférieure au seuil correspondant a la situation isotrope. La
structure d’écoulement au seuil de la convection telle que prédite par ’analyse de la
stabilité linéaire comporte 3 cellules ou 2 cellules, selon la valeur 6. A la différence
du milieu poreux isotrope, le nombre de Rayleigh critique Ra. n’a pas une valeur fixe
mais est une fonction de 0; et de R. La convection d’amplitude finie est investiguée
numériquement. Les résultats de ’analyse de stabilité linéaire s’accordent bien avec

ceux donnés par ’approche numérique.
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ABSTRACT

The problem of convection and stability in a circular cylinder has a focal interest
following theoretical as well as practical relevance of transport phenomena in porous

and fluid media to fundamental science and engineering applications.

This dissertation presents the research work in the subject of heat transfer and
fluid flow in fluid / porous medium confined in a horizontal circular cylinder rotating

in a fast, low and zero angular speed. The main contents of the dissertation include:
e motivation and background of the present study
e mathematical model for heat transfer in a cylinder
e numerical simulation development
e mixed convection in a low rotation cylinder
e natural convection in a fast rotation cylinder
e instability in a non-rotating cylinder

The flow in the cylinder is assumed to be two-dimensional in a (r, 6) plane,
and periodicity conditions in f-direction are taken into consideration. Since the
particular studies involved in this work preclude any symmetry with respect to
the vertical diameter where terrestrial gravity is involved, the whole cylinder as
computational domain is fully considered in the present work. The three following

cases are investigated.

The behavior of natural and mixed convection in a low rotation horizontal
cylinder filled with an isotropic porous / fluid medium with isothermal boundary

condition and uniformly distributed heat sink is first studied. This kind of problem
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is equivalent to the case without heat sink or source and with a boundary tempera-
ture increasing at a steady rate with time. Weak rotation regime only is undertaken,
for which the force field is terrestrial gravity only. It is expected to examine closely
the interaction between rotation about a horizontal axis and the gravity force. Even

though the fluid and porous media are described by different momentum equations
and have different thermal and dynamic properties (eg., the resistance to motion
for the fluid medium originates from the solid boundary whereas that for a porous
medium takes place everywhere of whole matrix, the inertia term is involved for
fluid medium and neglected for porous medium), they still have the same dimen-
sionless energy equations and are confined within the same geometry. Therefore,
a qualitatively similar behaviour under same conditions is expected. The interac-
tion between convective rolls as obtained from standard free convection case and
the effects of rotation speed are studied numerically and analytically. For the finite
amplitude convection, the numerical results based on finite difference scheme cover
a broad range of Rayleigh and Peclet numbers. In addition, a regular perturbation
method is used to study the incipient rotation and validate the numerical approach.
Results from both approaches coincide. Those approaches are applied both to the

isotropic porous medium and to the fluid medium.

For the isotropic porous medium case, both approaches reveal that a large part
of the saturated fluid does not participate to rotation at low rotation speed. Thus
the stream function at the center may differ largely from zero. However, with in-
creasing angular velocity, the fluid is gradually entrained and a solid body rotation
regime develops for which the convective heat transfer is eventually reduced to zero.
Similarly, for the fluid medium case, a net flow relative to the cylinder boundary is
found at low rotation speed (shear flow regime) and a solid body rotation occur at
larger angular velocities (solid body rotation regime) in which the rotational effects

on convection are found to reduce the heat transfer almost to the pure conduc-




tion level. The difference between both media is that the net flow in fluid medium
encounters a drastic drop at high Rayleigh number due to the oscillating behavior
caused by the inertial term in fluid medium, whereas the transition to solid body ro-
tation regime occurs gradually for the porous medium without oscillating (unsteady)

behavior.

Then Bénard convection in a fast rotation isotropic / anisotropic fluid sat-
urated porous cylinder with isothermal condition on the boundary and uniformly
distributed heat sink is studied. In the situation of fast rotation, only the centrifugal
force is involved, the terrestrial gravity being assumed negligible. With those condi-
tions, the direction of the pure conduction density gradient is toward the geometric
center of cylinder and the centrifugal force field is acting on fluid in the opposite
direction. Such a force balance is potentially unstable and convective cells are ex-
pected to occur beyond a critical Rayleigh number. For the isotropic case, a linear
stability analysis solved analytically was used to predict the critical Rayleigh num-
ber for incipient convection and the results are compared with those from a linear
stability analysis solved numerically. Moreover, results from finite amplitude con-
vection are consistent with those concerning incipient convection. The results of the
present investigation reveal that there exists a threshold Ra, = 348 beyond which
convection takes place and multiple solutions are possible for Rayleigh numbers well
above this critical value. Only a 4-cell structure flow occurs at the incipient convec-
tion and a stable solution at high Ra numbers will contain more cells. Anisotropy of
permeability is found to have a strong effect on Ra., with the possibility of thresh-
olds below 348. Moreover the first flow configuration for anisotropic porous medium
to appear may even contain six cells instead of four cells if the permeability ratio
is far enough from unity. Also, to the difference of the isotropic case where there is
no physical requirement on angular position of the flow pattern, the non-isotropic

flow pattern takes an angular position that ensures symmetry with respect to the
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principal axes.

Final investigation is on Bénard instabilities in a non-rotating isotropic /
anisotropic porous cylinder having sinusoidally distributed temperature on the bound-
ary in the presence of terrestrial gravity. Such a distribution in temperature is
equivalent to a linear thermal stratification of the surroundings in a given direc-
tion. A particular case is that the maximum temperature is at the bottom (6, = 0,
bottom heating). The thermal stratification imposed on the circular boundary is
then in the vertical direction and consequently the direction of density gradient is
opposite to the terrestrial gravity, giving rise to a potentially unstable force balance
in pure conduction. For the isotropic porous medium with the bottom heating, the
critical value of Rayleigh number for Bénard cells to appear is found to be approx-
imately 23.3, with two types of flow configurations: a flow configuration involving
two convective cells, symmetric with respect to the vertical diameter, and a centro-
symmetric flow configuration containing three cells. Also numerical results for finite
amplitude convection at 6y = 0 show that both 2-cell and 3-cell are stable configu-
rations. Numerical solutions are also obtained at different Rayleigh numbers for an
arbitrary position of the maximum temperature on the boundary. The flow is then
unicellular unless the maximum temperature lies somewhere in the neighborhood
of the unstable location (§y = 0). Results from linear stability analysis, regular

perturbation and numerical simulation are found to be in good agreement.

For the anisotropic case, the discussion is limited to bottom heating only. Both
the ratio of permeability R and the angle of the principal axes 6 have a strong
influence on the critical values of Rayleigh number and the initial flow patterns. The
minimum critical Ra is achieved when the porous matrix is arranged such that the
principal axis with higher permeability is in the vertical direction (R < 1, 8, = 7/2).
It is found from the linear stability analysis that Ra. corresponding to R = 0.125,

0, = 90° is about 20, a value lower than the threshold for the isotropic case. No
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double eigenvalues are obtained. The initial flow pattern predicted by the linear
stability analysis has either a 3-cell structure or a 2-cell structure according to the
value of #;. To the difference of the isotropic porous medium, the critical Rayleigh
number Ra. does not have a fixed value but is function of 6; and R. Finite amplitude
convection is investigated numerically and results from linear stability analysis and

numerical approach agree well.
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CONDENSE EN FRANCAIS

1. INTRODUCTION (Chapitre 1)

L’objet principal de cette these consiste a étudier le comportement de 1’écoule-
ment et du transfert de chaleur dans le cas d’un fluide ou d’un milieu poreux de
forme cylindrique qui peut étre en rotation autour d’un axe et de déterminer les

effets relatifs de la convection naturelle et de la rotation.

La convection naturelle et mixte dans une enceinte cylindrique circulaire et le
transfert de chaleur qui s’y manifeste ont fait I’objet d’un grand nombre d’investiga-
tions jusqu’a maintenant & cause de 'importance de ce probléme, tout du point
de vue fondamental que pratique. Beaucoup de ces investigations couvrent les do-
maines des mathématiques appliquées, de la physique de base, de la géophysique de
méme que des domaines d’application technologique comme ceux de la croissance
cristalline, de l'industrie alimentaire, des systemes de refroidissement d’appareils
électroniques, des systemes de ventilation et de climatisation pour batiments sans
compter le domaine des sciences géophysiques et des prévisions metéorologiques.
En plus, ajoutons que les écoulements observés sont comparables a ceux que ’on

retrouve dans des modélisations relevent de I’astrophysique.

Dans le présent travail, nous examinons analytiquement et numériquement la
convection engendrée par un champ de force dans un milieu poreux isotrope ou
anisotrope ou dans un milieu fluide contenu dans un cylindre tournant autour de
son axe (axe horizontal, dans le cas de la gravité terrestre). Nous étudions aussi
Pinstabilité de type Bénard dans la cas d’un milieu poreux isotrope et anisotrope de
forme cylindrique en rotation rapide ou sans rotation, lorsque le gradient de masse
volumique est opposé a la force massique. Evidemment, en situation anisotrope,

Pinstabilité devient plus complexe a cause la variation de perméabilité avec la di-
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rection.

Les problémes de convection mentionnés précédemment impliquent 1’étude du
cylindre tout entier comme domaine d’écoulement. Cela, par contraste avec la plu-
part des études précédentes sur le sujet ou ’hypothese d’une symétrie par rapport au
diametre vertical pouvait étre invoquée pour réduire le domaine & un demi-cylindre.
Dans le cas du cylindre tout entier, lorsque des différences finies sont utilisées avec co-
ordonnées cylindriques, le centre du cylindre devient une singularité mathématique
qui doit étre traitée convenablement de facon & ce que la région centrale devienne
transparente a 1’écoulement, peu importe sa direction. Bien que les conditions aux
limites et les milieux considérés varient d’un cas a l'autre, les différents sujets traités
dans cette these ont une géometrie commune, le cylindre circulaire dans son entier;
les différents sujets sont 1° la convection mixte avec rotation lente impliquant un
milieu poreux isotrope ou un milieu fluide, 2° la rotation rapide d’un milieu poreux
isotrope ou anisotrope, 3° la convection sans rotation dans un milieu poreux isotrope
ou anisotrope avec une distribution sinusoidale de température comme condition

limite thermique. La bibliographie pour chacun de ces sujets est traitée séparément.

Convection mixte d’un cylindre en rotation lente

La convection naturelle dans des systémes en rotation est impliquée dans de
nombreux procédés industriels ou le transfert de chaleur est un facteur important.
En conséquence, on a accordé beaucoup d’attention a ce probleme dans les années
récentes. La rotation autour d’un axe vertical a été largement étudiée. Cependant

la rotation autour d’un axe horizontal, I’a été beaucoup moins.

Selon les résultats des édudes passées sur la rotation lente autour d’un axe
horizontal, dans le cas d’une géométrie annulaire, une masse importante de fluide
demeure attachée au vecteur gravité terrestre et ni prend pas part a la rotation

solide. La convection libre affecte le transfert de chaleur uniquement aux rotations
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tres lentes et le fait d’augmenter la vitesse angulaire du systeme décroit le transfert

de chaleur jusqu’a la conduction pure.

Convection naturelle et rotation rapide

Quelques travaux antérieurs expérimentaux et théoriques ont traité de la con-
vection naturelle dans un cylindre en rotation rapide. L’effet de la gravité terrestre
était présent. Cependant les résultats de ces travaux donnent la tendance asympto-
tique en rotation trés rapide pour laquelle la gravité radiale devient predominante.
Les solutions dépendent grandement des conditions thermiques imposées aux parois
et le transfert de chaleur est augmenté considérablement par la rotation. Un second
nombre de Rayleigh basé sur la gravité radiale est introduit en plus du nombre de
Rayleigh basé sur la gravité terrestre. Quand la gravité terrestre est négligée, des
écoulements permanents se produisent, relativement a un systéme de coordonnées en
rotation avec le cylindre. Il existe un nombre de Rayleigh critique au-dessus duquel
un écoulement constitué de deux cellules convectives s'installe. Pour des nombres
de Rayleigh beaucoup plus élevés que ce nombre de Rayleigh critique, la structure

de Pécoulement peut étre nulticellulaire.

Convection naturelle dans un cylindre sans rotation

Dans ce cas, une distribution de température a la frontiere sous la forme T3, =
cos(§—0o), ou by est 'angle de phase, est imposée. Cette distribution est équivalente
a celle imposée par un environnement stratifié thermiquement entourant le cylindre.
Il y a une valeur de 6y pour laquelle le grandient de température est vers le haut
(chauffage par le bas) et pour laquelle le systeme devient potentiellement instable.
Pour le cylindre rempli d’un fluide, ’amorce du mouvement se produit alors pour
une valeur critique de Rayleigh égale & 576. La structure de I’écoulement pour toutes

conditions consiste en une seule cellule de convection.
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Les travaux anterieurs sur le transfert de chaleur convectif d’un milieu poreux
ont porté sur le milieu poreux isotrope et relativement peu études ont été con-
sacrées au milieu anisotrope. Il en existe néanmoins impliquant ’anisotropie dans le
domaine de la géologie. Notons toutefois que la plupart des travaux précédents sur
le milieu anisotrope ont été limités aux géométries comme la cavité réctangulaire
ou les couches horizontales. On y mentionne que l'inclination des axes principaux

influence fortement la structure de 1’écoulement et le transfert de chaleur.
2. MODELE MATHEMATIQUE (Chapitre 2)

Nous rappelons que la géométrie considérée est un cylindre circulaire (avec axe
horizontal dans le cas de la gravité terrestre) ayant une longueur théoriquement
infinie. L’écoulement est supposé bidimensionnel dans le plan vertical (v, 8"). Les
équations gouvernantes du probléme considéré peuvent étre exprimées dans 1’un ou
Pautre de deux systemes de coordonnées, I’un fixe par rapport au cylindre en rotation
et Pautre fixe par rapport ala gravité terrestre g’. Les équations gouvernantes
basées sur l'un ou l'autre des deux systémes de coordonnées peuvent étre utilisées
indifféremment dans ’approche numérique. Quand la vitesse angulaire est faible,
le premier ensemble d’équations donne lieu & une solution dependante du temps
alors que ’autre ensemble produit une solution permanente. Les résultats des deux

approches sont identiques lorsque transformés adéquatement.

Bien que les équations de mouvement pour le milieu fluide et le milieu poreux
saturé impliquent deux champs de force, la gravité terrestre et la gravité radiale,
nous ne voulons pas traiter les cas ol les deux forces interviennent simultanément,
mais nous voulons limiter notre investigation aux cas asymptotiques pour lesquels
I'une ou autre peut étre négligée. Il est en effet préférable de comprendre & fond
ces cas asymptopiques avant d’aborder les cas intermédiaires. Par surcroit, les cas

intermédiaires sont dépendant du temps alors que les cas asymtopiques sont perma-
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nents.

Il est avantageux d’aborder numériquement le probleme d’un cylindre en rota-
tion lente par un systeme de coordonnées fixe par rapport a la paroi. On obtient
alors un champ d’écoulement relatif V'. Cet écoulement est produit par la convec- -
tion et il correspond au champ d’écoulement tel qu’il se présente pour un observateur

solidaire de la frontiere en rotation.

Les équations gouvernantes du milieu fluide sont les équations de continuité,
de mouvement et d’énergie, alors que celles du milieu poreux anisotrope sont les

équations de continuité, la loi de Darcy généralisée et les équations d’énergie.

Pour le cas d’un milieu fluide, les conditions aux limites de non-glissement sur la
paroi avec température de paroi uniforme et puits thermique uniformément distribué,
sont considérées. Dans le cas du milieu poreux, la condition de non-glissement sur la
paroi n’existe pas et nous considérons deux types de conditions limites thermiques:
une température uniforme avec un puits thermique constant et une température

non-uniforme sans puit thermique correspondant & une stratification.
3. APPROCHE MUMERIQUE (Chapitre 3)

Une approche numérique basée sur la méthode des différences finies est utilisée
pour résoudre la convection d’amplitude finie. Toutes les dérivées spatiales sont
discrétisées en utilisant un schéma centré de second ordre. Un maillage uniforme
de 18 x 36 est utilisé pour discrétiser I’espace cylindrique. Les équations d’énergie
et de transport de vorticité sont résolues par la méthode implicite aux directions
alternées (A.D.I.). L’équation de Poisson et I’équation de fonction de courant sont

résolues par la méthode de surrelaxation (S.0.R.).

Dans le cas de la géométrie considérée dans cette étude (cylindre), une difficulté

dans la résolution numérique provient de la singularité (non-physique) au centre
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(r = 0) pour des coordonnées cylindriques. Pour contourner la difficulté, un maillage
cartésien est utilisé au centre du cylindre. L’application de cette technique dans le
code numérique permet au centre d’étre transparent au mouvement, quelle que soit

la direction.

La direction implicite § comporte une condition limite de périodicité pour
chaque variable physique f et les matrices résultantes ne sont pas tridiagonales.
Une solution directe consiste a utiliser le principe de partition, lequel a pour effet &

ramener les matrices de départ a des forme tridiagonales.

La précision des calculs numériques et la validité du code numérique ont été
vérifiées en comparant nos résultats avec certains résultats publiés dans la littérature.
Une bonne accord est observé entre les résultats numériques, ceux obtenus par la
méthode de perturbation et la méthode de stabilité linéaire pour les deux milieux,

poreux et fluide.

4. CONVECTION MIXTE DANS UN CYLINDRE EN ROTATION
LENTE (Chapitre 4)

On étudie la convection naturelle et mixte dans un cylindre en rotation rem-
pli d’un milieu poreux isotrope / milieu fluide. Des conditions limites isothermes
avec un puits thermique uniformément distribué sont appliquées. Seule la rota-
tion lente est considérée, pour laquelle le champ de gravité terrestre est le seul
présent. Les régimes d’écoulement résultant de la convection naturelle et de la rota-
tion sont obtenus par une approche numérique et par la méthode de perturbation.
Les résultats du programme numérique d’amplitude finie sont donnés en fonction des
nombres de Rayleigh et de Péclet. Une méthode de perturbation est utilisée comme
alternative pour des valeurs basses des nombres de Rayleigh et de Péclet. Ces deux
méthodes servent pour les deux milieux: poreux isotrope et fluide. Pour le cas d’un

milieu poreux isotrope, les résultats revelent qu’une masse appréciable du fluide ne
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participe pas a la rotation. Ce comportement donne lieu a un écoulement autour du
centre c’est-a-dire que la valeur de la fonction de courant au centre devient différente
de zéro. Cependant, pour des rotations relativement importantes, la masse fluide
presque toute entiére se comporte comme un solide en rotation et le transfert de:
chaleur est réduit a zéro. De la méme facon, pour la cas d’un milieu fluide, un
écoulement net, relativement a la paroi du cylindre (régime de cisaillement), suvient
a tres basse vitesse de rotation; a des vitesse angulaires plus grandes, une rotation
solide du fluide se produit (régime de rotation solide) pour lequel le transfert du
chaleur est réduit a celui de la conduction pure. La différence de comportement
entre le milieu poreux saturé et le milieu fluide est la suivante: 1’écoulement net,
dans le cas du milieu fluide, subit une chute drastique & nombre de Rayleigh elevé.
Cette chute s’accompagne d’un mouvement non permanent oscillant, vraisemblable-
ment causé par U'inertie. Pour le milieu poreux saturé, la transition vers le régime
de rotation solide avec diminution de ’écoulement net vers zéro se fait de fagon
graduelle quel que soit le nombre de Rayleigh et sans qu’il y ait de comportement
oscillatoire. Ce genre de comportement qui avait déja été décrit pour le cas d’un
espace annulaire est observé pour la premiere fois dans le cas d’un cylindre circulaire
et la relation théorique entre I’écoulement net et le nombre de Péclet rotationnel est
obtenue pour la premiere fois dans le cas du milieu poreux saturé. Le nombre de
Nusselt, le cisaillement a la paroi et la fonction de courant au centre sont maintenant
reliés quantitativement a la vitesse angulaire exprimée de facon adimensionnelle par
le nombre de Péclet. Dans le cas d’une rotation qui s’amorce, la valeur de la fonc-
tion de courant au centre a été établie en partie de fagon analytique et en partie de
fagon numeérique et exprimée en fonction du nombre de Rayleigh; cette fonction de

courant au centre définit la masse de fluide liée a la gravité terrestre.

5. CONVECTION NATURELLE DANS UN CYLINDRE EN
ROTATION RAPIDE (Chapitre 5)



On considere dans ce chapitre la convection de Bénard a des grandes vitesse
de rotation pour des parois isothermes et pour un puits de chaleur uniformément
réparti dans le domaine. La cavité contient un milieu poreux isotrope ou anisotrope.
Quand la vitesse de rotation est tres élevée, la gravité radiale devien tres grande et
Pon suppose que la gravité terrestre est régligeable. En régime de conduction pure,
la direction du gradient de masse volumique est vers 'intérieur du cylindre et celui de
la gravité radiale vers I’éxtéreur. L’équilibre est donc potentiellement instable et la
convection naturelle peut se déclencher au-dessus d’une certaine valeur de Rayleigh
(nombre de Rayleigh critique). Pour le cas d’un milieu isotrope, ’analyse de la
stabilité linéaire permet de prédire le nombre de Rayleigh critique caractérisant
le début de la convection. Les résultats obtenus avec la méthode analytique de
stabilité linéaire sont confrontés a ceux obtenus numériquement. De plus, la con-
sistance des résultats obtenus avec le programme numérique d’amplitude finie avec
les résultats prédits par I’analyse de la stabilité est vérifiée. Les resultats montrent
qu’il existe un nombre de Rayleigh critique Ra. = 384 au-dessus duquel la con-
vection naturelle peut se déclencher et des solutions multiples se produire pour des
valeurs de Rayleigh supérieures a la valeur critique. Le début de la convection est
caractérisé par quatre cellules de convection mais & des nombres de Rayleigh impor-
tants, la structure de ’écoulement est composée de plusieur cellules. L’anisotropie
de la perméabilité affecte la valeur critique du nombre de Raylrigh. Les résultats ont
montré que la valeur critique, dans le cas d’une perméabilité anisotrope, peut étre
inférieure & celle prédite pour un milieu isotrope. De plus, pour un milieu poreux
anisotrope ayant un rapport de perméabilité trés élevé, les résultats montrent que
la structure de ’écoulement juste au-dessus du seuil critique pent étre composée
de 6 cellules au lieu de 4 comme dans le cas isotrope. Pour le cas anisotrope, les
racines doubles définissant les seuils des différentes configurations d’écoulement devi-
ennent distinctes. Enfin, les résultats montrent que la configuration de I’écoulement

prend une position angulaire bien déterminée par rapport aux axes principaux. Ce
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comportement est différent du cas isotrope pour lequel la position angulaire de la

configuration peut étre quelconque.

6. CONVECTION NATURELLE DANS UN CYLINDRE SANS
ROTATION (Chapitre 6)

L’instabilité de Bénard est étudiée pour un cylindre fixe, non-poreux isotrope /
anisotrope dont la distribution de la température est sinusoidale sur la frontiere, en
présence du champ gravitationnel terrestre. Une telle distribution de température
est équivalente & une stratification thermique linéaire de ’environnement dans une
direction donnée. Un cas particulier est celui ot la température maximum se trouve
au bas (6 = 0, chauffage par le bas). La stratification thermique imposée sur la
frontiere circulaire est alors dans la direction verticale et par conséquent la direction
du gradient de masse volumique est opposée a la gravité terrestre en tout point du
domaine, donnant lieu & un équilibre des forces potentiellement instable en conduc-
tion pure. Pour le milieu poreux isotrope avec chauffage par le bas, la valeur critique
du nombre de Rayleigh pour lequel un mouvement convectif apparait est approx-
imativement 23.3. A cette valeur, deux types de configurations d’écoulement sont
possibles: une configuration contenant deux cellules convectives, symmétriques rela-
tivement a un diametre vertical, et une configuration centro-symmetrique contenant
trois cellules. De plus, les résultats numériques pour des convections d’amplitude
finie & g = 0 démontrent que les configurations a deux et a trois cellules sont stables
pour une plage donnée de Ra. Des solutions numériques ont aussi été obtenues a
divers nombres de Rayleigh pour une position arbitraire de la température maximum
sur la frontiere. L’écoulement est alors unicellulaire 2 moins que les températures
maxima se situent au voisinage de la position instable (6o = 0). Les résultats de
Panalyse de stabilité sont consistants avec la simulation numérique. Pour le cas
anisotrope, les resultats sont limités au cas du chauffage par le bas. Le rapport de

permeabilité R et angle des axes principaux 0 exercent une forte influence sur les
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valeurs critiques du nombre de Rayleigh. Le valeur du nombre de Rayleigh critique
est obtenue quand ’axe principal correspondant & la perméabilité maximum est ver-
tical (R < 1,0, = 7/2). Ainsi, selon I’analyse de stabilité, le nombre de Rayleigh
critique correspondant & R = 0.125,60;, = 90 est environ 20, une valeur inférieure
au seuil du cas isotrope. La forme de ’écoulement initial prédit par ’analyse de
stabilité comporte soit deux, soit trois cellules de convection, selon la valeur de 6.
A la différence du milieu poreux isotrope, le nombre de Rayleigh critique Ra. n’a

pas une valeur fixe mais est fonction de ) et de R.
7. CONCLUSIONS ET PERSPECTIVES (Chapitre 7)

Dans le cadre du présent travail quelques cas types de convection dans un
cylindre circulaire d’importance fondamentale et pratique ont été étudiés. Pour le
cas d’un cylindre avec rotation lente, I'interaction entre la convection naturelle et
la rotation a été déterminée analytiquement de sorte que le lien entre la rotation
et 1’écoulement net autour du centre est établie sur une base théorique solide et
I’effet de la rotation sur le transfert de chaleur est expliqué. Dans le cas d’un milieu
poreux saturé anisotrope nous avons démontré que la valeur du nombre de Rayleigh
critique est modifiée; nous avons aussi déterminé que les configurations d’écoulement
en situation de gravité radiale s’orientent par rapport aux axes principaux de fagon

a produire des configurations d’écoulement symétriques.
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Chapter 1

INTRODUCTION

1.1 BACKGROUND

Natural and mixed convective heat transfer within a cylinder boundary has
been the subject of a great deal of investigations so far because of its consider-
able importance both from fundamental and practical points of view. Numerous
researches reported cover such fields as applied mathematics, basic physics, geo-
physics [1], fluid mechanics as well as technological applications ranging from crystals
growth [2], food industries [3, 4, 5, 6], electronic cooling systems [7, 8, 9], chemical
engineering process [10, 11], rotating machinery [12], heating, ventilating and air
conditioning engineering of buildings [13, 14, 15], and shifting to the prediction of
meteorological conditions. Moreover, some of the observed flows resemble those in
model problems in astrophysical/planetary fluid dynamics [16, 17, 18]. In particu-
lar, the use of magnetic field has been proposed as a means of reducing the natural
convection in the process of crystal growth. It will be evidenced in this study that
the effect of anisotropy is analogous, under certain circumstances where the Maxwell
and momentum equations are uncoupled, to the effect of a magnetic field on the flow

behavior.

It is well known that a density gradient not parallel to a body force field will
produce motion no matter how small the gradient may be, since the pressure cannot
balance the variations in the body force so produced. The most common examples
occur in fluids placed in a gravitational field which are heated differentially in the
horizontal direction. If the system to be studied undergoes rotation, however, the

centrifugal acceleration may play a role analogous to that of gravity in producing



motion.

In this study the convection driven by gravitational force in an anisotropic
porous / isotropic porous / fluid horizontal cylinder rotating about its axis is nu-
merically and analytically examined. The investigation also covers the Bénard in- -
stability in an anisotropic / isotropic porous cylinder with fast rotation and without
rotation where the direction of density gradient is opposite to that of the body force
field. The geometry of the problem is illustrated in Fig. 1.1. It is obvious that
convection in an anisotropic porous medium cylinder becomes more complicated

because of varying permeability with respect to the orientation.

Since the particular studies involved in this work preclude any symmetry with
respect to the vertical diameter the whole cylinder is considered as flow domain.
This is in contrast to most previous studies where a symmetry with respect to the
vertical diameter was taken into account. In particular, if finite difference techniques
are used in cylindrical coordinates the center represents an artificial or mathemat-
ical singularity which must be handled properly so that the center region becomes
transparent to flow in all directions. Despite of the varying boundary conditions im-
posed and fluid media considered in this study, a common cylindrical geometry holds
the following cases together, namely, mixed convection in a low rotation isotropic
porous / fluid cylinder, natural convection in a fast rotation isotropic / anisotropic
porous cylinder and natural convection in a non-rotating isotropic / anisotropic
porous cylinder subject to a sinusoidal temperature distribution on its boundary.

The background about each part is stated separately in this chapter.
1.1.1 Mixed Convection in a Low Rotation Cylinder

Since natural convection in rotating systems is involved in numerous indus-
trial processes as a means of transporting thermal energy, it has received increased

attention in recent years. The rotation about a vertical axis has been intensively



studied [19, 20, 21, 16, 22] because this kind of configuration is frequently encoun-
tered in engineering problems. Comparatively little work has been done on rotation
about an horizontal axis in which natural convection is combined with rotation.
Some early experimental investigations of heat transfer between horizontal concen-
tric rotating cylinders were reported (23, 24, 25] in which heat transfer rates were
measured over a wide range of Reynolds (Taylor) numbers. None of them concerned
the effects of the Rayleigh number on the flow motion and heat transfer, and the
data reported are for cases where the densimetric Froude number (which expresses

the relative magnitude of buoyancy versus rotation effects) > 1.

Free convection between two horizontal isothermal cylinders, with the station-
ary outer cylinder and the inner cylinder rotating about its axis at constant angular
velocity, was considered by Lee [26] and Fusegi et al. [27]. The analysis was restricted
in both cases to the cross-sectional plane and did not allow for the three-dimensional
effects. Lee has studied the combined effects of natural convection and rotation for
a fluid contained between eccentric cylinders at different temperatures and focused
mainly on the results obtained for the low Froude numbers. Whereas Fusegi et al.
did not consider the eccentric case but treated the problem for both high and low

value of Froude number.

Yang et al. [2] investigated the natural convection of fluids inside a single hor-
izontal rotating cylinder with both ends maintained at different temperatures, that
is, with an applied axial temperature gradient. For that case the pure conduction
heat transfer is present in the horizontal direction and three-dimensional flows were
obtained numerically allowing for both axial rotation and normal gravity. Rotation
was observed to inhibit natural convection and endwall heat transfer. They formu-
lated the problem in both inertial and non-inertial frames and found a steady-state
flow regime in the inertial frame. According to their results, free convection affects

the heat transfer only at low rotational speeds and increasing the rotational speed



develops almost a rigid body motion for which the heat transfer reduces to their

pure conduction level.

Robillard and Torrance [28] recently investigated the effects of rotation on an
annular saturated porous layer. A net circulating flow around the annulus relative -
to the solid matrix was detected and the convective heat transfer was found to de-
crease monotonically to zero with increasing rotation speed. Subsequently, Ladeinde
and Torrance [29] treated the case of a rotating fluid-filled horizontal cylinder with
constant volumetric heating and fixed wall temperature for which the heat transfer
and convective motion involve radial and azimuthal directions exclusively by using
a finite element solution procedure. Their investigation covers a wide range of rota-
tion speeds. A second Rayleigh number based on radial acceleration in addition to
the usual gravity-based Rayleigh number was introduced. It was found that when
radial acceleration dominates over gravity (strong rotation), steady-state flows are
obtained in the rotating coordinate system. There is a critical Rayleigh number
needed to establish the initial two-cell state and the subsequent flow patterns are
multicellular. For weak rotation, the flow is bicellular and steady in the inertial
coordinate system. When radial acceleration and gravity are comparable, complex
time-dependent solutions result in both systems and the largest flow and heat trans-
fer rates are found. For both weak and strong rotation, there is also an optimum
Reynolds number based on the rotation speed that gives the maximum effect of
gravity. It was once again confirmed that for weak rotation, if the Reynolds number
becomes larger than the optimum value, the flow field approaches solid-body rota-
tion in the inertial frame and the temperature field approaches the pure conduction

state.

More recently, Prud’homme et al. [30] studied natural convection in an annu-
lar fluid layer confined between two horizontal cylindrical boundaries rotating at

the same angular velocity. The weak rotation regime only is considered for which



centrifugal force is neglected. The results indicate that when the angular velocity
is small a significant mass of fluid far from the boundaries remains tied up to the
gravity vector at first and thus, does not take part in the solid-body rotation. This
creates a net circulating flow around the annulus in the rotating system, the intensity
of which is shown analytically to be proportional to Ra®Re for incipient convection.
At high Rayleigh numbers, a bifurcation exists between the circulating and solid-
body rotation flow regimes, in contrast with the smooth transition observed at lower
Rayleigh numbers. Hysteresis effects are observed over a certain range of Reynolds

numbers, provided that the Rayleigh number is high enough.

In this study the behavior of natural and mixed convection in a low rotation
horizontal cylinder filled with an isotropic porous / fluid medium with isothermal
boundary condition and an uniformly distributed heat sink is investigated. As de-
scribed by Vasseur and Robillard [31], this kind of problem is equivalent to the case
without heat sink or source and with boundary temperature increasing at a steady
rate with time. Weak rotation regimes only are considered. The flow in the cylinder
is assumed to be two-dimensional in a vertical, (r, 8) plane. It is expected to exam-
ine closely the interaction between rotation about a horizontal axis and the gravity
force. Even though the fluid and porous media are described by different momen-
tum equations and have different thermal and dynamic properties (eg., for the fluid
medium, the resistance to motion originates from the solid boundary whereas that
for a porous medium takes place everywhere of whole matrix), they still have the
same dimensionless energy equations and are confined within the same geometry.
Therefore, a qualitatively similar behavior under same conditions are expected. The
interaction between convective rolls resulting from classical Bénard instability and
the effects of rotation speed are studied numerically. For the finite amplitude con-
vection, the numerical results based on finite difference scheme cover a broad range

of Rayleigh number and Peclet number. In addtion, a regular perturbation method



is adopted to study the incipient convection and validate the numerical approach.
Results from both approaches coincide. For the isotropic porous medium case, both
approaches reveal that a large part of the saturated fluid does not participate to ro-
tation at low rotation speed. Thus the stream function at the center as expressed in
a rotating coordinate system may differ largely from zero. However, with increasing
angular velocity, the fluid is gradually entrained and a solid body rotation regime
develops for which the convective heat transfer is eventually reduced to zero. Simi-
larly, for fluid medium case, a net flow relative to cylinder boundary is found at low
rotation speed (shear flow regime) and a solid body rotation occur at high angular
velocities (solid body rotation regime) in which the rotational effects on convection

are found to reduce the heat transfer towards the pure conduction level.
1.1.2 Natural Convection in a Fast Rotation Cylinder

Regarding the low rotation cylinder, most of studies concentrated on the mixed
convection confined within a low rotation cylinder in which the gravity force and

centrifugal force are comparable.

Some of previous works treated the centrifugally driven convection in a fast ro-
tating fluid-filled cylinder in which the gravity is considered negligible. Homsy and
Hudson [32] studied natural convection in a cylinder of fluid rotating about a verti-
cal axis and heated from above. Their work contains information about the asymp-
totic tendency reached at high rotation speed where the centrifugal force becomes
predominant. Solutions were found to depend mainly upon the thermal conditions
assumed at the side walls and the heat transfer was considerably augmented by rota-
tion. Ladeinde and Torrance [29] studied the case of a rotating fluid-filled horizontal
cylinder with constant volumetric heating and fixed wall temperature. The limit-
ing case that heat transfer and convective motion induced exclusively by the radial

acceleration is of interest to their studies. As mentioned before, a second Rayleigh



number based on radial acceleration in addition to the usual gravity-based Rayleigh
number was introduced. It was found that when radial acceleration dominates over
gravity (strong rotation), steady-state flows are obtained in the rotating coordinate
system. There is a critical Rayleigh number above which a two-cell state is initiated.

At higher Rayleigh number, subsequent flow patterns may be multicellular.

In the context of fast rotation the present study is limited to the isotropic /
anisotropic porous layer. The saturated porous medium is confined in a cylinder
subject to a centrifugal force field exclusively. An isothermal condition is imposed
on the circular boundary and a heat sink is uniformly distributed within whole
region considered. With this condition, the direction of density gradient of the fluid
is toward the geometric center of cylinder and the centrifugal force is acting on the
fluid in the opposite direction. This configuration is potentially unstable and motion
occurs when the Rayleigh number based on the centrifugal force is beyond a critical
value, which is obtained analytically and numerically in this study. It is predicted
that multiple stable solutions differing by their number of cells exist at Rayleigh

numbers well above the critical value.
1.1.3 Natural Convection in a Non-Rotating Cylinder

The study of Bénard instability in enclosed spaces (under the influence of ter-
restrial gravity) can be traced back to about one century ago. In 1900, Bénard [33]
noted that a fluid contained between infinite horizontal plates would break up into
small convective cells if the lower plane were at a temperature sufficiently higher
than the upper one. Bénard reasoned that the viscous forces present at the bound-
ary planes would prevent the onset of motion unless the density gradient was steep
enough. The convective instability in enclosed spaces has been a subject of many
theoretical and experimental investigations for many years. Most of the past works

dealt with rectangular cavities.



There exists though some literature on convective heat transfer problems within
a flow domain of circular shape. Quack [34] has solved the problem of natural
convection in a horizontal cylinder filled with a fluid and cooled at a constant rate.
The same problem was also considered experimentally by Deaver and Eckert [35] and
numerically by Takeuchi and Cheng [36]. The numerical study took advantage of the
symmetry with respect to the vertical diameter that was found in the experimental
results of Deaver and Eckert [35]. The parallel problem of a fluid-saturated porous
medium bounded by an infinitely long horizontal cylinder was treated analytically
by Nguyen and Nguyen [37] and solutions obtained were found to agree closely with

finite difference results even at very high values of the Rayleigh number.

The Bénard instability in a fluid-filled cylinder was considered analytically by
Weinbaum [38]. A temperature distribution of the form T,, = cos(6 —6y), where 6 is
the heating phase angle, was imposed on the boundary. This is equivalent to place
the circular enclosure in thermally stratified surroundings. There is a particular
value of 6y for which the temperature gradient is upward (bottom heating) and the
system becomes potentially unstable. Weinbaum established the onset of motion at

a critical Rayleigh of 576. A single cell flow pattern was found for all conditions.

Moreover, early works on convective heat transfer through porous medium
mainly focused on homogeneous isotropic porous medium and relatively few studies
were devoted to anisotropic medium, although the latter are sometimes encoun-
tered in industrial and geological processes. In addition, most of previous studies
on anisotropic media were confined to such geometries as rectangular cavities or
horizontal layers, among which are the articles of Burns and Tien [39], Nilsen and
Storeslatten [40], Tyvand and Storesletten [41] and Zhang [42]. It has been found
that the anisotropy in permeability and the inclination of the principal axes influence

the flow patterns and the heat transfer rates significantly.



In this study, the behavior of a Darcy isotropic/anisotropic porous medium
within a horizontal cylinder having a sinusoidally distributed temperature on the
boundary with bottom heating is investigated analytically and numerically. The
anisotropy involved concerns exclusively the permeability. The boundary is subject
to a thermal stratification in the vertical direction. Since the pure conduction tem-
perature gradient is in the upward direction, motionless equilibrium is possible in
this circumstance. However this configuration is potentially unstable and motion
will occur when the Darcy Rayleigh number Ra is beyond a critical value. A linear
stability analysis is performed to investigate the criterion and possible flow patterns
for the onset of convection. It is found that the flow pattern at the onset of con-
vection is either a 2-cell or a 3-cell structure, depending on the inclination of the
principal axes of the porous matrix and anisotropy ratio R for the anisotropic case,
and on the initial flow configuration for isotropic case. It is shown that both the
permeability ratio and inclination of the principal axes have a strong influence on
the critical value of Ra and the flow pattern at the onset of convection. Additional
results are obtained for finite amplitude convection, from a numerical approach. A
numerical code is developed to study the finite amplitude convection beyond the
critical Ralyeigh number. Results are analyzed in terms of the ratio of permeability

and the orientation angle of the principal axes.
1.2 OUTLINE OF THE THESIS

In the present study the steady state natural and mixed convection in a hor-
izontal cylinder is examined in more detail by means of numerical and analytical
methods. There is a lot of possible combinations in boundary conditions, nature of
the fluid medium, forces exerted on it and motion state of cylinder to be investi-
gated. it is clearly not possible to analyze each one in detail within the limits of the
present study. Instead, the present study is focussed on some typical cases described

below. It is nevertheless useful to classify the various configurations according to the
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motion state of cylinder, namely, low rotation, fast rotation and non-rotating. Con-
sistently, the work corresponding to different motion states of cylinder are presented

in Chapters 4, 5 and 6 respectively.

Chapter 2 presents mathematical models based on the governing equations
with appropriate boundary conditions, which expresses mass, momentum and energy
conservation in the fluid and porous medium layer, respectively. Chapter 3 contains

the numerical scheme used to solve the governing equations given in Chapter 2.

In Chapter 4 the problem of mixed convection in a low rotation isotropic
porous/fluid cylinder with isothermal boundary condition and an uniform distributed
heat sink 1s considered. It is expected to observe the effects of rotation on natural

convection in a horizontal cylinder.

Bénard convection in a fast rotation isotropic / anisotropic porous cylinder
with an isothermal condition on the boundary and a uniformly distributed heat sink
is studied in Chapter 5. In the situation of fast rotation, only centrifugal force is
involved, the terrestrial gravity being assumed negligible. Under those conditions the
direction of the pure conduction density gradient is toward the geometric center of
cylinder while the centrifugal force field is acting on fluid in the opposite direction.
This configuration is potentially unstable and Bénard cells are expected to occur
beyond a critical Rayleigh number. The effects of anisotropy in permeability and
orientation of the principal axis on fluid motion and heat transfer are going to be

researched.

Finally the Bénard instabilities in a non-rotating isotropic / anisotropic porous
cylinder having a sinusoidally distributed temperature on the boundary is investi-
gated in Chapter 6. A particular case is studied for which the maximum temperature
was at the bottom (bottom heating). Such a boundary condition is equivalent to a

thermal stratification imposed to the circular boundary in the vertical direction in
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which case the direction of density gradient is opposite to terrestrial gravity.

The conclusions and recommendations are outlined in Chapter 7. The reference
literature, symbols used in this work are attached to the thesis. Furthermore, Ap-
pendices A, B, C and D give more details about Boussinesq approximation and the
mixed convection, governing equations in non-rotating coordinate system, matrix

partition procedure and coeflicients in perturbation solution, respectively.

In summary, the main objective of this thesis is to study the behavior of fluid
motion and heat transfer in a horizontal cylinder and to observe the effects of rel-
ative strength of natural convection and rotation on the characteristics of thermal

transport of the cylinder.
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Figure 1.1: Rotating cylinder filled with a fluid or a fluid saturated porous medium
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Chapter 2

MATHEMATICAL MODEL

The geometry considered is a circular cylinder with an horizontal axis and the-
oretically infinite length. In most practical cases the extent of the cylinder is so
large that the three-dimensional effects are assumed to takes place in a small zone
of cylinder near the ends. Concerning the potential three dimensional effects, the
reader is referred to the study of Caltagirone [43] in which the annular geometry was
considered and three dimensional effects were expected to occur at Rayleigh num-
bers somewhere between 100 and 200, these three dimensional effects originating
from the upper unstable layer between the two boundaries. In the present study,
no such layer exists and the flow is reasonably assumed to be two-dimensional in
the (r’, 0') plane of Fig. 1.1. The governing equations for the present problem may
be expressed in either a rotating or a non-rotating coordinate system. In this text
the rotating coordinate system refers to one fixed with respect to rotating bound-
ary (fluid medium) or to rotating boundary and porous matrix (saturated porous
medium), and non-rotating coordinate system refers to one fixed with respect to the
ground. In the rotating coordinate system, the force fields involved are terrestrial
gravity and radial gravity (centrifugal force field), and then natural convection takes
place. In the non-rotating coordinate system, the force field is terrestrial gravity only
and mixed convection occurs. These two coordinate systems are shown in Fig. 2.1
a and b (also in Fig. 2.2 a and b), respectively. A set of equations based on either
coordinate system may be used with equal success in the numerical approach. At
low rotation rates, one set leads to a time-dependent solution whereas the other one
provides steady state solutions. Results from both approaches are identical when

properly transformed.
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Although the momentum equations for fluid and saturated porous media are
given with the two force fields (terrestrial gravity and radial gravity) together, the
present study will not treat cases where both force fields are involved simultane-
ously, but the investigation will be limited to asymptotic cases for which one or the
other can be neglected. The reason is that those asymptotic cases need to be thor-
oughly understood before attempting to investigate intermediate cases. Also those

intermediate cases are time dependent whereas the asymptotic ones are steady.

2.1 GOVERNING EQUATIONS FOR FLUID-FILLED CYLINDER

2.1.1 Rotating Coordinate System

The problem is better approached numerically in the rotating coordinate sys-
tem rotating along with the cylinder shown in Fig. 2.1a. Consider a coordinate
system (7, €') attached to a horizontal cylinder rotating at a steady angular ve-
locity €. A positive value of ' corresponds to a counterclockwise rotation of the
cylinder. For the geometry of Fig. 2.1a, the gravity vector g'(t), when viewed from
the coordinate frame (r’, §'), moves clockwise at a same angular speed §'. The
analysis is carried out in terms of relative flow field V' induced by the sole natural
convection effects, that is, what would appear to an observer fixed with respect to

the rotating boundary.

The Navier-Stokes equation in the rotating coordinate system for a fluid of

constant thermal properties [44, 45] are

DV’

P'——*Dt, =—-Vp' +p'{g'(t) - x (¥ xr') —2Q x V'} + uyV*V' (2.1)

In this equation, the third and fourth terms on the right-hand side represent the

centrifugal force and Coriolis force, respectively, and the Laplacian operator can be
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written as
1 0

of
Vif= (TE:) +

10%f

o 22)

Defining p’ in terms of the temperature difference p’ = py — p(B(T" — T3), the

pressure gradient may be split as follows [29]
V' =V, + po{g'(t) — Q' x (2 xr') —29 x V'} (2.3)

since 2pj (€2’ x V') is conservative. The first part of right hand side in above equation
is the dynamic pressure and second one the hydrostatic pressure field based on pf,.
Replacing in Eq. (2.1) the pressure by its expression above, the momentum equation

becomes

DV’

{ro = PoB(T" = To)} 355

= V- phB(T ~ Ty){g/(t) - ' x (¥ x T

—2Q x V'} 4 uV*V' (2.4)

Now the Boussinesq approximation (Ap’ < p’) is going to be applied. The following
steps will show why the density difference can be neglected everywhere in Eq. (2.4),
except in the source term based on terrestrial and radial gravity, when free convection
is being considered. It has to be kept in mind, fghough, that this might not be
the case for mixed convection problems. Since ]{;%é(T' —T§)| < ph, there exists
|B(T" — T3)| ~ e, € being in this context a small quantity (e < 1). Dividing (2.4) by
po gives

! /
(1- 6)12’, = VP (1) - @ x (@ x 1) — 20 x V') +0VEV (2.5)
0

V' being caused exclusively by the difference in density of fluid, is also of the

order €. Equation (2.5) may be rearranged as

! /
1_6D_6:_z@._6 g(t)—Q x (' xr)—-2Q x €} + vV 2.6
Dt Po
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and therefore the order of magnitude analysis of (2.6) gives
e—mve—e{g'(t) - x (' x4+ +e (2.7)

Neglecting the terms with the order of €? in (2.7), the continuity, momentum and

energy equations in the rotating frame for a fluid of constant thermal properties are

written as
v.Vi—o | (2.8)
UAGE _Ypﬂ + UV - BT - TH{E!(1) - ' x (2 x 1)) (2.9)
%::7' = aViT - &' (2.10)

where 5’ is a sink term (negative heat source).
Introducing the following dimensionless variables
r=r'/r,
t=ta/ry
(u,) = (', v)rh/a
Q=0"/a -
p = pyre/poc’
T = (T"-T4)]AT’

AT = S'ri2 [k

The problem can be cast in dimensionless form as
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Continuity Equation

V-V=0 (2.11)

Momentum Equation

DV

B = ~Vp+ PrV*V — PrT{Rag(t) + Rag ri} (2.12)

Energy Equation

DT

T VAT —1 (2.13)
The non-dimensional groups appearing in the Eq. (2.12) are the gravitational force-
based Rayleigh number Ra = ¢'BAT'r?/va, the centrifugal force-based Rayleigh
number Rag = BAT'r#Q?%/va, and the Prandtl number Pr = v/a. §(t) =
 cos ¢(t)— B sin ¢(t) is the unit vector in terrestrial gravity direction,  and 6 are unit
vectors in radial and azimuthal directions, respectively. ¢(t) is the angle between

unit vector g(t) and , which may be expressed as
#(t) = RePrt+60 = Pet+0 (2.14)

in which Re = Q'r/v is the rotational Reynolds number and Pe = Re Pr, the

rotational Peclet number.

The pressure gradient can be eliminated by taking the curl of Eq. (2.12), which

yields the vorticity-transport equation

%‘;_’ = PrV%w — PrV x {RaT§(t) + RagT ri} - % (2.15)

with the dimensionless relative vorticity

vazwzlarv 1du

e T] (2.16)
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and with the definition of the material derivative for a scalar in a cylindrical coor-

dinate

Df _of  of wvof _of

tug, +7‘8¢9 ot

The velocity components and vorticity itself may be expressed in terms of the relative

stream function 9 as

10y o
===, v=—o- (2.17)
Vi = —w (2.18)
Here equation (2.18) is a Poisson equation. Thus the continuity equation
10ru  10v
o + v R 0 (2.19)

is automatically satisfied, and the final form of the vorticity-transport equation

(2.15) is given below together with the energy equation

Dw cos ¢ OT aT

orT
- — 2 e Q1
Dt PrViw+ PrRa{ pe sin ¢ + . } + PrRaq— 50 (2.20)
or T vdT 19 ,0T, 10T .
o e Troe ~rar e Yrae ! (220

For low rotational speeds, periodic solutions can be obtained in which the flow

and temperature fields rotate at the angular velocity of the gravity vector.

2.1.2 Non-Rotating Coordinate System

An alternative set of equations may be obtained in a coordinate system (7, 6)

attached to the ground as shown in Fig. 2.1b. Relative velocities, vorticity and
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stream function in the non-inertial frame are simply related to their inertial coun-

terparts by

the last relationship transforming the time derivative of the temperature.

w=w++ 2Pe
V2 = V) — 2Pe

z/3=z/)+P—;(1—r2)

oT oT oT

S AT By,

o — Pe—=

(2.22)

It has to be noted that in this coordinate system, the problem becomes of

the mixed convection type. Without density effects, the motion of the boundary

produces a solid body rotation of the fluid mass. The velocity corresponding to the

solid body rotation is not in general of the order € and would give rise to a term

equivalent to the centrifugal force field of equation (2.9). Appendix A provides the

demonstration.

For weak rotational speeds, steady state solutions are obtained in the non-
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rotating coordinate system.

2.2 GOVERNING EQUATIONS FOR ANISOTROPIC POROUS

CYLINDER
2.2.1 Rotating Coordinate System

The isotropic porous medium is a particular case of an anisotropic porous
medium. To apply the governing equations to both isotropic and anisotropic porous
media, a generalized form of the governing equations is given below. The momentum
equation for the flow in a rotating isotropic porous medium may be derived from the
Navier-Stokes equation for a continuum fluid [46] in a rotating coordinate system as

oV,

1
W-I—(V}-V)V} = ~'—0—,Vp'+vV2V}+g'(t)—

Q x (2 xr')—-29' x V} (2.23)

In this equation, the last two terms on the right-hand side represent the centrifugal
force and Coriolis force, respectively. V' is the fluid velocity vector. The geometry

is expressed in Fig. 2.2q.

By volumetric averaging Eq. (2.23) and by neglecting the local and convective
acceleration terms on the left-hand side [47, 48], the following momentum equation

for flow in a porous medium results:

!
%V’ BV - vy g () - Y x (2 x ) — 2R x VT (2.24)
€ €

where V' is the filtration velocity, K, the permeability and ¢, the porosity of solid
matrix. The first and second terms on the left-hand side of (2.24) are the Darcy
and Brinkman terms, respectively. The former expresses the viscous resistance of
the solid matrix and the latter accounts for the viscous effects of the boundaries.

In the rotating coordinate frame, the body force terms include the time-dependent
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external gravity field, g'(t), the centrifugal force field, and the Coriolis term, the
volumetric averaging being straightforward for the last term because ' is uniform

throughout the medium.

The ratio of the Brinkman term to the Darcy term leads to the Darcy number
Da = K/r?

where 79 is a characteristic length. The ratio of the Darcy term to the Coriolis term

produces a porous medium Ekman number
Ek=v/K

Further, the ratio of the third and second terms on the right-hand side of (2.24)

represents the centrifugal /gravity force ratio in the form of a Froude number

Fr=0Q%/g

From a practical point of view, the present investigation is limited to Darcy
numbers smaller than 10~6. Consequently, the Brinkman term is expected to have
a negligible effect on the results [49], and will not be considered. Equation (2.24)
becomes

—;%V' =-—Vp' 4+ p'g'(t) — P x (¥ xr')— 2'%19' x V' (2.25)

In some cases of the present study it will be assumed that the angular speed €'
is small enough so that rotational effects can be neglected with respect to the viscous
resistance and the gravity field (i.e., large Ek and small Fr are assumed). This is
justified for certain food processing problems. For example, for a porous medium
consisting of spheres of 2 mm diameter, saturated with water, it approximately
results K = 4 x 107%m? and v = 1 x 107®*m?2s~!. If the cylinder has a diameter

of about 6 cm or less, and the rotation rate is restricted to 4 rad s~! or less, the
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associated Kk and F'r ranges are Ek > 60 and Fr < 0.1. Neglecting rotational
effects, Eq. (2.25) becomes the well-known Darcy equation

ZV = —Vp' +0g/(1) (2.26)

However if the large rotation speeds, for which the centrifugal force field can
not be neglected or ever becomes predominant, are introduced to the present study,
then Fk may be small and F'r large. Nevertheless, as mentioned in [29], the present
study is dealing with two-dimensional cases in the (r, ) plane for which the Coriolis
term has no effect on the flow field. The Coriolis term modifies the pressure field so
that the reduced pressure can be redefined to eliminate that term, as it was done

for the fluid medium [5].

Thus, using expression (2.3) for the pressure gradient and applying the Boussi-

nesq approximation, Eq. (2.25) becomes
K /
V= —Z{VPQ +poB(T" = To)lg'(t) + Q°r']} (2.27)

For the case of an anisotropic porous medium, the scalar permeability K in Eq.
(2.27) is replaced by a second order permeability tensor K;;. The anisotropy con-
sidered has its principal axes oriented in the same direction at every part of the flow
domain. Since the geometry involved is of circular shape and cylindrical coordinates
are used, the components of the permeability tensor are function of the position in

the generalized Darcy equations. The relationship (2.27) may be transformed into

VK K ,
RV == "2V + pyB(T — TH)g () + Q%' } (2.28)

where Darcy resistivity tensor E;; is expressed as

‘/](1](2 _ Rrr Rr0

Ry ="+

Ry, Reg
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cos?(0 — ;) + Rsin*(6 — 0;) sin(f — ;) cos(0 — 6x)(R — 1)

5~

sin(f — 0x) cos(f — 6x)(R — 1) sin®*(8 — i) + Rcos?(6 — 6;)

10 sin(f — 6y) sin(6 — ;) cos(8 — %)
+(R-1)

0 1 sin(6 — ) cos(0 — ;) cos?(6 — 6)

s

It is noticed that the symmetrical second tensor R;; can be split to two parts. Thé
first part stands for the standard case of isotropic permeability, and second takes
care of modification of the equation due to the anisotropy. This second part is
equivalent to the term obtained where a magnetic flux is present and conditions are
such that the fluid motion does not affect this flux. R is the ratio of K,/K; and 6y
represents the angular position of the principal axis corresponding to K,, K, and

K being extremum permeabilities.
Other governing equations are the continuity and energy equations
V-V =0 (2.29)

ot ,0T" o' o1 10 ,,0T 1 0*1" ,
(be)o gy + bW G+ 5 gg) = H g g 4 g 1= 5 (230)

(pc)s and (pc), are the volumetric heat capacities of the fluid and saturated porous
medium respectively. k is the thermal conductivity of the saturated porous medium.
For anisotropic conductivity, the scalar k£ should be replaced by a second order
conductivity tensor. In general, anisotropy in permeability is accompanied by
anisotropy in conductivity. However, the effects of anisotropic conductivity are
small compared to these of the permeability [50], and the present investigation
will be limited to the anisotropy in permeability only. By introducing appropriate

dimensionless variables
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r=r'lrg
t=tajory

(u,v) = (v/,v")ry/c
Q=0Q7/ac
p=pyVEi K /op
T = (T'—TH/AT
AT = S'rl2 [k

where a = k/(pc)s is the thermal diffusivity and o = (pc),/(pc)y, the heat capacity

ratio.

It is worth noticing that the velocity scale defined above is not equivalent to
the length scale divided by the time scale. The dimensional approach used here is

standard and absorbs the heat capacity ratio, o, in the time scale.

The problem in dimensionless form can be stated as follows

Continuity Equation

V-V=0 (2.31)

Momentum Equation

R;V=-Vp-T [ Rag(t) + Rag Tt ] (2.32)

Energy Equation

%% = VT -1 (2.33)
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In equation (2.32), Raq = BAT'ri/KiK,Q'?/va is the Rayleigh number based on
centrifugal force, and Ra = ¢'BriAT'/KK,/va, the Rayleigh number based on
gravity force. The Rayleigh number Ra defined in this way is more appropriate to
describe the results since the two extremum permeabilities, K; and K, are of the

same importance. Consequently, it is possible to isolate in a better way the effects |
of the permeability ratio, R, from other effects normally attributed to a change in

Rayleigh number.

The component forms of Eq. (2.32) that are useful in following chapters are

given as
Op
uR,, +vR.p=—RaTl cos¢p — RagTr — —
, or (2.34a, b)
w Roy +v Rog = RaT sin ¢ — =
rod
where
¢ =0+ Pet (2.35)

This equation differs from Eq. (2.14) because the form of Peclet number used
here (Pe* = oQ'r/a) is specific to the porous medium; it arises from the fact that

the time scale used here is different from that of the fluid.

To eliminate the pressure gradient, one has to take the curl of Eq. (2.32). When
the derivative is taken with respect to 6 in the (r,8) coordinate system, it should
be taken into account that each element of R;; is a function of §. This operation

eliminates the pressure gradient and yields the following stream function equation

0% * 10,0, 1—-R. 0OY |,
e T v TR o R AL
B B oT | oT oT
+’5; COS 2(& — Ok)] = —RG(E sin ¢ + jr—ég COS ¢) —_ R(J,Q‘a—e (2.36)

where ¢ is a function of time and given by Eq. (2.35). The stream function, v, is



26

related to the velocity components u, v according to

10y 51b
T o0’ YT o (2:37)
Thus the continuity equation
19ru  10v
ror Trae =" (2.38)

is automatically satisfied, and the energy equation can be written in full, and ex-

pressed in terms of the stream function

or 104oT oyp10T 19 0OT 1 0°T

5t T T8 arrad —rar o) trage 1 (2.39)

For an isotropic porous medium, the matrix R;; becomes the unit matrix, I;;

10
Rij = Ij =
01
and Eq. (2.36) is simplified to
10, 00 %P oT oT oT
. 87'( oy )+ 21502 = Ra(a— sin ¢ + — 56 <% ¢) — Rag— 50 (2.40)

2.2.2 Non-Rotating Coordinate System

As described in section of 2.1.2, the governing equations in the rotating coor-
dinate system can be easily transformed into the non-rotating coordinate system,

shown in Fig. 2.2b.

It is seen from Eqgs. (2.35) and (2.36) that the rotation of the gravity vector

generates a time periodic recurrence of the solution equal to 27/ Pe*. The equations
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for the case where the time dependence is eliminated may be obtained by the use of

the following relationships

(2.41)

V2 = V2p — 2Pe*

or
ot

__or
ne T Ht

ar
90

e — Pe*

where the last relationship is used to transform the time derivative of the tempera-

ture.

The forms of the Egs. (2.39), (2.40) and (2.37) in this coordinate system are

10,0T 19°T 9T  1,000T 0y 9T
rorior) taaE e TFee e aron) T (242)

00 o O 90
10, 09 10%p . . 0T cos@OT oT
U= U= (2.44)
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In this system of equations, o does not appear explicitly. It has to be noted
that when one wants to recover a dimensional velocity from o, the product o(a/rg)
does not correspond to the sum of the (dimensional) filtration velocity and the
(dimensional) azimuthal velocity of the rigid matrix. Appendix B provides another

way to obtain this set of equations.
2.3 BOUNDARY CONDITIONS

The above governing equations must be completed by appropriate boundary
conditions. In other words, a problem is not defined until the boundary conditions
have been properly specified. Specific boundary conditions will be applied to each

particular problem.
2.3.1 Hydrodynamic Boundary Conditions

Hydrodynamic boundary conditions for the fluid medium are different from
those for the porous medium. In addition, those conditions have different expressions
in the rotating and non-rotating coordinate systems. Conditions in the rotating

coordinate system only are given below.

A. Fluid Medium: The no-slip condition and impermeability at the solid boundary
yields

(2.45)

r=20: u, v, P < o0

Note that the condition at r = 0 is a mathematical, not a physical boundary

condition.

B. Porous Medium: The no-slip condition does not exist for a Darcy porous medium
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but the impermeability of the boundary must be satisfied

r=1: u=¢=0, v< oo
(2.46)

r=0: u, v, P < oo

2.3.2 Thermal Boundary Conditions

Two kinds of thermal boundary conditions for both fluid and porous media are

considered, namely

A. An uniform temperature on the circular boundary, i.e., 7" [ ri=ry = Ty, can be

written in the following dimensionless form

(2.47)

This boundary condition on T is used together with a non-zero constant heat

sink S’ uniformly distributed within the whole cylinder.

B. A non-uniform temperature corresponding to a thermal stratification is imposed
on the circular boundary, namely 7" | .1, = Tg+ AT’ cos(6 — 6;). Its dimensionless

expression reads

r=1: T1=cos(0——00)
(2.48)

It should be noticed that in the boundary temperature condition B the refer-
ence temperature T does not stand for a real temperature on boundary but only
an average value of the boundary temperature distribution, and the characteristic

temperature AT" corresponds to the amplitude of the cosine temperature imposed
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on the boundary. Moreover, no sink term is involved (S’ = 0) and the energy equa-
tions corresponding to Eqs. (2.21) and (2.39) are taken without the third term at
their right hand sides.
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(a) Rotating coordinate system

X119

(b) Non-rotating coordinate system

Figure 2.1: Geometry and coordinate system for fluid medium
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(b) Non-rotating coordinate system

Figure 2.2: Geometry and coordinate system for anisotropic porous medium
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Chapter 3

NUMERICAL APPROACH

The general equations governing the conservation of mass, momentum and
energy in the present problem have been described in the previous chapter. An
important task we are facing now is to devise numerical techniques for solving these
equations subjected to appropriate boundary conditions. As stated in the previous
chapter, the treatment will be limited to two-dimensional incompressible flow, the
vorticity-stream function formulation is used instead of equations based on primitive

variables.

Aside from numerical techniques, of course, heat transfer and fluid flow pro-
cesses can also be predicted by experimental investigation or analytical approaches.
Analytical methods are largely pencil-and-paper procedures that attempt to pro-
vide solutions to problems through the use of simplified assumptions. Many of such
assumptions are necessary to make the problems tractable, but they severely limit

the applicability of the approach.

Experimental investigation can provide information regarding a particular prob-
lem of interest. However, the limitation on hardware required for the model and
the complexity in simulating adequately the prototype, make it an difficult task to
obtain reliable results. Nevertheless, the information obtained from experiments is
extremely valuable in validating the numerical and analytical solutions of the gov-
erning equations. Thus, experimental data are used along with computational and

analytical solutions of the equations.

The availability of the digital computer has stimulated the rapid growth of

the “numerical” or “computational” approach to solve complex problems in heat



34

transfer. With the advent of electronic digital computers, the introduction of newer

numerical techniques are being proposed almost on a daily basis.

There are various numerical techniques to discretize and solve the equations
that we encountered within this project, among which the finite difference approach -
is the most straightforward. This chapter will provide an overview of the role and
nature of the numerical techniques in terms of finite difference approach, followed
by a detailed description of a well-tested numerical procedure that can handle the
specific problem considered in this work as well as a wide variety of engineering

problems.

3.1 FINITE DIFFERENCE METHODS
3.1.1 PFinite Difference Formulation

In the finite-difference approach, the flow domain is “discretized” so that the de-
pendent variables are considered only at discrete points. The typical two-dimensional
grid system is shown in Fig. 3.1, where (¢,7) is the grid point in cylindrical coor-
dinate and the superscript n indicates the marching coordinate. Derivatives are
approximated by differences resulting in an algebraic representation of the partial
differential equation (PDE). The nature of the resulting system of algebraic equa-
tions depends on the character of the problem posed by the original PDE (or system
of PDEs).

Usually, the second-order central difference approximation is a frequently used
scheme for solving the governing equations described in the chapter 2. However, in
the convection dominated flow (high Péclet, Reynolds, or Rayleigh numbers), using
the second-order central difference approximation to discretize the convective terms

in the governing equations may produce wiggly solution. The upwind scheme and
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its modified schemes can eliminate these problems. Table 3.1 summarizes central
difference and different upwind schemes for a general finite difference representation

of an arbitrary scalar function having the following form

ouf

0z |

= A"fica + B fica + Cfi + D" fiyr + E" fiys (3.1)
where A*, B*, C*, D* and E* are functions of u

Table 3.1 Coeflicients of the different schemes

Scheme A" B cH D E®
) u u
Central difference 0 ~oAg 0 5AL 0
: lul +u | |y lu| —u
1st d _ ] — | -
o upwin 0 2Az Az 2Azx 0
- |ul +u lul +u | 3|yl lul—u | Ju|—u
2nd d - —
né upwin 4Azx Az 2Az Az 4Azx
3vd wowind lul+u | Jul+2u | Jul | fu[=2u | Jul—u
P 12Az 3Az | 2Az 3Az | 12Az

As shown in Table 3.1, the coefficients A* and E* of the central difference and
the first-order upwind schemes are equal to zero. The remaining coefficients B,
C* and D* of f;_1 , fi and fi41 form a tridiagonal matrix. Using the higher order
upwind schemes, the discretized equations are no longer represented by a tridiagonal

matrix. Instead, the algebraic equations become a pentadiagonal matrix.
3.1.2 Discretization of the Governing Equations

For numerical computation, the governing differential equations have to be
cast in a discretized form. To simplify the demonstration, only the procedure of
discreting the governing equations for a fluid medium in the rotating coordinate
system is discussed in this chapter. Owing to the moderate convection flow of

the present problem, all the convective and diffusive terms in the equations are
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discretized by the Taylor-based, second order central difference scheme, while the
time derivatives are approximated by forward differences. The energy equation

(2.21) can be discretized as

Ti?fl — TZ}J riHU?’*’l’jT’TilJ Mic1ti_y JT + vZJ'-i—lT;,lJﬂ:%ll v = 1TT,LJ+11
(At) 2r;(Ar) or:(A0)
_TRE 2T A TR TEE - T TR TR 4 TR
(AT) 2r;(Ar) ! (Ag)
1+ O[(AL?, (Ar)?, (A6 (5:2)

This formulation is implicit, since more than one unknown appears in the finite

difference equation, from which it follows that

. n —
[Tz+1ui+l,j 1 _ Tn+1 [1 Ti— luz 1,5 . 1 n+1

2T¢(AT‘) (AT)ZJ 41,5 27‘1‘(137") (Ar)z]Ti~1,j +
[ ! + 2 + 2 ]T.”T*‘1+[__ ’] -1 1 ]Tn+1 +
(Af) ©(Arp T rRA02TY T 2n(AG)  ri(ARRT S

ij'i'l _ 1 n+l 1 n
Gr(20) ~ FI(AGY Lt (g T (3:3)

By defining the coeflicients of the unknowns as a, b, ¢, d and e, and the term in

right-hand side as f, equation (3.3) may be written as

ai:]T’:}i-tlj + b )JTn+1 + c"’»JTn-l-l + d Tn+ -1 + 621.7 Tzn]—:-ll fi)] (3'4)

It is obvious that the coefficient matrix is pentadiagonal in Eq.(3.4). The solution
procedure for a pentadiagonal system of equations is very time-consuming. One way
to overcome the shortcomings and inefficiency of the method described above, is to
use a splitting method. This method is known as the alternating direction implicit
method (A.D.L.), which is proposed by Roache [51]. The algorithm produces two sets
of tridiagonal simultaneous equations to be solved in sequence. The finite difference

form of the energy equation in the A.D.I formulation is then

ntg "+% n n+% n n n n
T * — T3 | rinui Ty — rieauig Ty 4 Vi L — v T
At , :
(34) 2r;(Ar) 27‘,(A9)
n+2 "+2 n+2 n+g n+3 n n

(Ar) 2r;(Ar) T (AH)
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and
1 1 1
+1 nts , nts . nta nt1 n+1
T =Ty " | rimwd Ty —reauiy Ty o 13k — o T35
(%—t—) 2r;(Ar) 2r;(A6)
n+3 nt3 | gt nty ot nt1 n+l | pndl
(Ar)? 2r;(Ar) r?(Af)? '

with the truncation error of order [(At)?, (Ar)?, (r A8)?] [52]. This scheme is un-

conditionally stable. Equations (3.5) and (3.6) are written in the tridiagonal form

as
'n+% n+% n+%
AT+ BIT; P + O = DY (3.7)
and
ATTZ, + BITS + CT Tt = DY (3.8)
where
AT _ v;p:j"l _ 1
! 2r;(A0)  ri(Af)?
1 2
Bl =
v =y T mep
CT — U;'n;j+1 . 1
! 2r;(A0)  r?(A0)?
TiciUp 4 s — 1 1 ntl 1 2 n+l
DI = 2 T. .2 ——  _ _~ yTFre
v= e Tt iy T et
L= ripulyy; 1+t
1, T 2, .. 1
oAy T A
AT — I—riquy; 1
2 2r;(Ar) (Ar)?
1 2
BY = — 4 °_
2T @ Ay
CT — Ti-!—lu?.{.l,j -1 _ 1
2 2r;(Ar) (Ar)?
vy 1 " 1 2 "
Dg = [ g + g]ﬂ,j—l+[ - 2]]11:,]'_1_

2r;(AG)  r?(A0) (At)  r#(AF)
[ ’UZJ'+1 + 1 ™ 1

2ri(A6) rg(Ae)z] Al
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The solution procedure starts with the solution of the tridiagonal system (3.7). The
formulation of Eq. (3.7) is implicit in the -direction and explicit in the r-direction;
thus the solution at this stage is referred to as the § sweep. Solving the tridiagonal
system of (3.7) provides the necessary data for the right-hand side of Eq. (3.8)

to solve the tridiagonal system of (3.8). In this equation, the FDE is implicit in |
the r-direction and explicit in the #-direction, and it is referred to as the r sweep.

Graphical presentation of the method is shown in Fig. 3.2.

Similarly, the vorticity-transport equation (2.20) can be discretized in the tridi-

agonal form as

w ”+2 ) n+2 w n+i w
Al w;_ 1,5 +B1 1,7 +Clwz'+1?j = Dl (39)
and
Agwrt? + Bywit' + Cywitl = Dy (3.10)
with
AY = — U;—:j—l _ Pr
Vo 2m(AG) rP(AG):2
w 1 2Pr
BY = &gt ey
Cw . v;',:j+1 _ Pr
LT 2m(AG) 2 (A6)?
w ri— lu,,' 1]_P7' P'f' n+2 _ QPT n+%
D= PR e
Pr—riguly, ; Pr o n4l
[ 2m(Ar) (@i ¥
-Tr, . cosp T, - T
z+1,] i—=1,7 Zj+1 1,7—1
PrRa =g s+ — ong It
PT‘RG, :Z.;??J-FIQA;FT,LJ -1
A - Pr—ri_qu? 1,j Pr
2 2r;(Ar) (Ar)?
1 2P
BY = :

@y " (A
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ow ripiUipg; — Pr Pr
2 2r;(Ar) (Ar)?
bi = [2:5%:9) * 7“?(129)2]“)’7'?"‘1 + [(Alt) B rg(ie)2]w3j +
= 2::’&10) * rg(ie)z]w3i+l +
PrRa[W sin ¢ + CO:; ¢ 77,3‘+12 ;()Tfj—l] N
PrRagq Ti?jﬂzggi?j—l

For the Poisson equation (2.18), the central difference scheme produces the repre-

sentation of FDE as

1 i1y — i1y n Yir1,; — 290 + i1
T 2Ar (Ar)?

1 ijer — 205 + i

2 (A6)?

T

_.|..

—Wi,j

(3.11)

From Eq. (8.11), a general recurrence formula for the line successive over-
relaxation (L.S.0.R.) can be obtained by introducing the relaxation parameter j3

as

1 1

(AT,‘)2 + QT'iAT‘,‘)d)Hl’j t

zn;rl = (1=-8);+B[(

(s~ i)
(A'I’i)2 QTiATi

k13 1 n

i~=1,7 + r;?(AH)Z( 4,7 +1 +
" n 2 2

i,j—l) + wi,j ] /((An)Q + rf(A0)2)

(3.12)

There is no simple way to determine the optimum value of . In practice, a trial and

error approach is used to compute an optimal value (8,,;) for a particular problem.
3.1.3 Boundary Condition Discretization

The A.D.I. method requires boundary conditions in both r and 6.
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In the implicit r-direction we implicitly solve each entire diameter from bound-
ary to boundary with special coefficients at center point based on rectangular co-
ordinates. Care must be taken in dealing with the mathematical singularity that
occurs at the center of cylinder in the polar coordinate system [53]. Following the
approach used by Kee and Mckillop [54], the governing equations at the center point
is cast into a Cartesian form and a square control volume with sides of length Ar and
centered at r = 0 is the basis for re-writing the governing equations in a discretized
form. The application of this technique makes the center point transparent to the

flow in all directions.

In the implicit §-direction periodic boundary conditions are imposed to any

physical variable f, yielding
F(r,0,8) = £(r, 0+ 27,1) (3.13)

and the resulting matrices of the A.D.I. approach is handled by a matrix partition
procedure comparable to the one utilized by Phillips [44]. Details are given in

Appendix C.
(a) Velocity

Since the no-slip and impermeable boundary conditions are imposed on the
solid wall for fluid medium, the corresponding velocity components are set to zero

and the stream function is set to either zero or a constant value.
(b) Vorticity

The discretized formula of boundary conditions for the vorticity in the rotating
coordinate system can be obtained by applying Taylor development at the solid wall.

It is expressed in terms of second order forms (Woods method) as follows:

Yy = Yyrpr — P AT + ¢2M (Ar)? — 2—/)%(Ar)?’ +J(Ar)* (3.14)
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with the relations between w and 1 defined in the previous chapter

Y, = 0 (3.15)
Yrr = —WMH (3.16)
1/)1'7'7' = w];.40+1_wr (317)

and the slope of vorticity at the boundary being given by

_ WM — WM

wr = Ar

replacing derivatives of ¥ by their expressions in (3.14)

VM1 — M WM Ar Ar
1 BN 20) = g G+ ()

Its final form is

Ar 3¢M+1 YM wM

o) = (&) 5+ 9(Ar)? (3.18)

w1 (1l +

(c) Temperature

In the present study, the boundary conditions for the energy equation are either
an imposed cosine temperature distribution (2.48) or an isothermal condition (2.47)

with a constant and uniform heat sink.
3.1.4 Program Procedure

The general numerical solution procedure for the fluid medium, as described

by the computational flow chart in Fig. 3.3, consists of the following steps.

1. Generate a grid according to an uniform mesh size.
2. Set initial values of all the variables u; ;, vi;, w;;, ¥:; and T} ;.
3. Set boundary conditions for velocity, stream function, tem-

perature.
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4. Compute the temperature field by solving the energy equation
(2.21), alternatively sweeping in  and r directions. An A.D.L
scheme is employed.

5. Compute the source term consisting of gravity and centrifugal
forces in the vorticity-transportation equation (2.20).

6. Compute vorticity on interior grid points by solving the
vorticity-transport equation (2.20) and using velocity and up-
dated temperature. The A.D.I. scheme is used again.

7. Solve the Poisson equation (2.18) with S.O.R. to obtain the
; ; where updated vorticity w; ; is adopted.

8. Calculate the vorticity on the boundary by using the stream
function and vorticity at interior points (3.18).

9. Determine velocity components from updated stream func-

tion.

10.  Numerical computations are carried out until the flow and
temperature fields reach the steady-periodic (or steady) state
with time increment of 0.0005 for porous medium and 0.00001
for fluid medium. The steady-state is defined based on the

following criterion

|,‘7[)|Z‘L-I;i:—l¢|?nax < 10—3
|9 [ mts

(3.19)

In addition to this criterion, visual checks are performed of the flow and tem-
perature fields, as represented by streamlines and isotherms respectively, in order to

verify that they do not change anymore with time.

The procedure for porous medium differs from the one for fluid medium by
replacing the steps 6, 7 and 8 with a single step of computing the stream function

equation (2.36) with S.O.R method. The flow chart illustrating the computational
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procedure for porous medium is shown in Fig. 3.4.

Solutions for the temperature and flow fields are obtained in this work by the
use of an uniform mesh size 18 x36 or 36 x72. Different time increments were tested

to make sure that no effects of the time increments on the results take place.
3.2 COMPARISON TEST

To confirm the accuracy and reliability of the present numerical programs, a

series of comparison tests have been carried out and some of results are analyzed in

the following paragraphs.
3.2.1 Test for Fluid Medium

The results from the present numerical program for fluid medium was compared
with the ones of Takeuchi et al. [36] for non-rotating cylinder. They developed a
numerical method for the problem and obtained the solutions for Pr = 0.7,1.0,100
and a range of modified Grashof numbers Gr, = 10 to 10°. A comparison of results

for the Nusselt number from Ra = 10% to 107 is demonstrated in Table 3.2.

Table 3.2 Comparison with the results of Takeuchi et al. [36]

Gra Pr Ra:GraxPr Nu Nux8
10° 10 10* 9.7 9.632
10* 10 10° 13.0 12.72
10° 10 10° 18.5 18.38
108 10 107 28.0 27.4725

In this table the values from [36] are maked with a dot on top, and the values of

Nu were taken approximately from Fig. 9 of [36]. It should be noticed that the
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relationships of Ra = Gra x Pr and Nu x 8 = Nu must be taken into consideration

in this comparison.

Fig. 3.5 shows a comparison of the streamline and isotherm patterns for the
case with Ra = 107 (Pr = 10, Gr, = 10%). Fig. 3.5a¢ was taken from [36] with -
isotherms on the left and stream functions on the right. Fig. 3.56 shows the results
from the present study, in which left and right figures are isotherms and stream

functions, respectively.
3.2.2 Test for Porous Medium

The accuracy of the present numerical program for porous medium was checked
by repeating the computations of Nguyen et al. [37] for non-rotating cylinder, in
which they applied an extended perturbation series method. The comparison of

results is shown in Table 3.3.

Table 3.3 Comparison with the results of Nguyen et al. [37]

Ra Nu(1) Nu(2) Nu(3) Nu x 8 Error (%)
100 8.988 8.988 8.974 8.976 0.02
200 10.155 10.138 10.109 10.108 0.01
500 12.847 12.459 12.391 12.393 0.02
1000 | 15.949 14.803 14.727 14.730 0.02
2000 | 20.014 17.453 17.672 17.670 0.01
5000 | 27.133 21.797 22.690 22.666 0.11
10000 34.179 26.749 27.487 27.402 0.31
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in which Nu(1), Nu(2) and Nu(3) represented Nusselt numbers from three different
methods, i.e., the direct summation of series, Levin’s u-transform of series and finite-
difference solutions, respectively. Here again the values from [37] are maked with a
dot on top, and the relationship of Nu x 8 = Nu is also needed in transformation of
both results. The results are found to agree with Method (3), which was regarded
as the approach with the best results for the problem, within 0.01% to 0.31%.

Fig. 3.6 shows a comparison in streamline and isotherm patterns for the case
of Ra = 5000. Fig. 3.6a gives the results from [37], in which isotherms are placed
on the left and stream functions on the right. The results from the present study
is given in Fig. 3.6b with isotherms on the left and stream functions on the right,
respectively. It is seen that the present solutions agree quite well with those of

Nguyen et al. [37].
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At

/ Time Level "n+1"

, Time Level "n"

Figure 3.1: Computational grid system
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Figure 3.2: Illustration of the grid system for the ADI method
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Overlay the region of interest
with a finite - different mesh

Set initial and boundary conditions
of all variables

No

Calculate the temperature field
using A.D.l. scheme at the new
timet + dt

!

Calculate the vorticity field for all
interior points, using A.D.l. scheme
at new time t + dt

i

Calculate the Poisson
equation using S.0.R. method

!

Obtain new boundary values for
vorticity, using the new interior
point values of ¢

i

Calculate new velocity fields using
new streamfunction value

!

Determine whether steady state or
convergence criterion is reached

Yes

Figure 3.3: Computational flow chart for fluid medium
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Figure 3.4: Computational flow chart for porous medium
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(a) Takeuchi’s result

Ra = 107, thmay = 35.2435, Nu = 27.4725
(b) Present result

Figure 3:5: Comparison with the results of Takeuchi et al. [36]
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Pa = 5000, Nu(3) = 22.690
(a) Nguyen’s result

Ra = 5000, Nu = 22.6656
(b) Present result

Figure 3.6: Comparison with the results of Nguyen et al. [37]
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Chapter 4

MIXED CONVECTION IN A LOW ROTATION
CYLINDER

In this chapter, the effect of a weak rotation imposed to a horizontal cylinder
containing both a fluid medium and a saturated porous medium is studied. Even
though the fluid and porous media are described by different momentum equations
and have different thermal and dynamic properties (eg., for the fluid medium, the
resistance to motion originates from the solid boundary whereas that for a porous
medium takes place at every part of the flow domain since the rigid matrix is rotating
with the boundary), they still have the same dimensionless energy equations and
are confined within the same geometry. Therefore, a qualitatively similar behaviour
under same conditions may be expected. The porous and fluid cases are respectively

discussed in following two parts of this chapter.
4.1 ISOTROPIC POROUS MEDIUM

The mixed convection within a rotating porous medium enclosed in a circular
boundary at an uniform temperature and characterized by a uniformly distributed
heat sink has been studied numerically and analytically in this section. Weak ro-
tation regimes only are considered. As described by Vasseur and Robillard [31],
this kind of problem is equivalent to the case without heat sink or source and with
boundary temperature increasing at a constant rate with time. Thus, it is intended
to examine closely the interaction between rotation about a horizontal axis and the
gravity force. Here the simple case of an isotropic porous medium, for which a
steady flow may be obtained in the non-rotating coordinate system, is investigated.

No steady conditions are expected when the porous medium is non-isotropic. In
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this chapter both numerical results and perturbation solutions are presented. Re-
sults from both approaches coincide. In particular, bofh approaches reveal that a
large part of the saturated fluid does not participate to the rotation at low rotation
speed. Thus, the stream function at the center as expressed in a rotating coordinate
system may differ largely from zero. However, with increasing angular velocity, the
fluid is gradually entrained and a solid body rotation regime develops for which the

convective heat transfer is eventually reduced to zero.
4.1.1 Mathematical Formulation

A constant uniform temperature on the circular boundary and a uniform heat
sink of intensity S’ inside is considered here. The flow in the cylinder is assumed to be
two-dimensional in a vertical, (r, 8) plane. The coordinate system (r, 6) is attached
to the rotating porous matrix and the boundary as shown in Fig. 2.2a. Thus, the
gravity vector, when viewed from the coordinate system (r, 6), moves clockwise at
a constant speed {)'. The uniformly distributed heat sink is represented by S’. The
discussion is limited to low permeability, weak angular velocity and isotropic porous
medium. Consequently the governing equations are Eqgs. (2.38), (2.39) and (2.40).
In the last equation the second source term based on the centrifugal force field is

dropped.

As already mentioned in Chpater 2, an alternative set of equations in the non-
rotating coordinate system (7, #) may be obtained, in which the time dependence is
eliminated. The resulting equations are given in section 2.2.2. Once‘again, for the
present problem the source term arising from centrifugal effect is dropped in Eq.

(2.43).
4.1.2 Methods of Solution

(a) Perturbation Approach




o4

In addition to the numerical method mentioned in Chapter 3 of this thesis, a
perturbation method was developed in order to validate the numerical program at
low Ra and Pe and in particular to determine theoretically how Pe increasing from
zero affects the symmetry observed when there is no rotation. Neglecting the effect
of centrifugal force field, the steady forms (97 /8t=0) of the equations (2.42) and

(2.43) in the coordinate system (7, §) may be written as follows

10, 0¢ 10% . . 0T  cosfOT
;—a—%(rg) + =55 —2P¢* — Ra(sm0$ +— ﬁ) (4.1)
10, ,0r, 10T 1,0p0T 0y T
Forvar) TraE = Fanor aron) T (+2)
with the appropriate boundary conditions
F=1 T=¢p=u=0
(4.3)
F=0 T, 4, v < oo

Egs. (4.1) to (4.3) define a regular perturbation problem. Expanding the field

variables as

P(F,0) = iRa” Yn (4.4)
T(7,0) = iRa” T, (4.5)

n=0
and substituting them into the equations (4.1) and (4.2) yields for n > 1 the sequence
1 &K, 0; 0T, 0 0T,

2 = — — b s
Vi = 7 Zi:()( o0 or or 00 ) (4:6)
. -0Th1  cosB 0T, 1
2 _ n =
Vi, = —(sinf 5 T 7 a0 ) (4.7)

where each 1, and T, must satisfy the boundary condition (4.3).

The zeroth-order solution gives the solid-body rotation and the pure conduction

state
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The first-order solution is easily obtained for the stream function and reads
Py = a(F —7)sind
where ¢ = 1/16.

The first-order differential equation for temperature has the form

0Ty 10y,
Ty = Pe*— 4+ ~—= :
A second expansion in Pe* reads
= Z Pe*mqm (4:9)
m=0
Replacing T in (4.8) with the expression (4.9) give the relationships
1 9y
Vigo = -—=
© 200 (25a,b)
V2, = Praqggl m>1
The solution for ¢ is
S T B -
g = (— 48 +16T 24r)cos«9 Agcos 6

Higher orders ¢,,(m > 1) can be easily solved on computer from the recurrence

formula (25b) which gives

dam m+3 am
gm = ( ——(:030 me ekl — :ie—cos@)A m > 1
with
bm—l
= Pa— (k>2)

(2k—1)2 —1 =
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and

m+3

b =— 3 b
k=2
The first-order temperature solution takes the form

Ty = (Ao— AgPe*® + AgPe* — .. )cosl —
(A Pe* — AzPe*® 4+ AgPe*® — .. )sinf (4.26)

By writing out from Egs. (4.7) and (4.26) the second order differential expression

for 1, the following form is obtained

Vs = Sl AP - (A + AP
(A} + Ast™ ) Pe*® — -] +
(++)sin20 + (-+-) cos 20 (4.27)

in which the only non-zero terms at 7 = 0 are those with no angular dependence.
The value of the stream function at the center is of considerable interest since it

represents the net flow relative to the rigid matrix circulating around the origin,

z:bc = Ra2 7;[)2

1 ~
r=0 = — / vdr = const for any @
0

This net flow is related to the degree of asymmetry of the solution caused by rotation.
Thus only the first term on the right hand side of Eq. (4.27) needs to be considered

from now on.

The solution of (4.27) has the form

o0

¢2 - Z(-l)k*lek__lPe*”L’l 4+ (--)sin20 + (-++) cos 20
k=1

with

2(kt1)

2k=1_21
B2k_—1 = Z CZ- T
1=0
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and
2k—1 b2k:1
: — 21
2(k+1)
cgk_—l —

_ b2k_—1

The fact that a value of 1 at the center is sought eliminates all the 7-dependent
terms. Thus the final expression for the stream function at the center (7 = 0), up to
the second order in Ra and to an arbitrary order in Pe*, as expressed in the rotating

coordinate system, is
Yo = Ra*[cgPe* — cJPe*® + cfPe™® — - -] (4.28)

where the first three coeflicients are ¢ = —1.86496 x 1075, ¢2 = —8.65903 x 108 and
c3 = —4.03259 x 1071°, By comparison with a fluid medium presented in section 4.2,
a considerably less amount of work is involved here to obtain Eq. (4.28), the stream
function Eq. (4.1) being much simpler in the case of a saturated porous medium.
Perturbation method is also employed in section 6.1 of this thesis. Only the one
leading to the coeflicient C' for the fluid medium in section 4.2, which involves much
more algebra than the others, is given in more detail in Appendix D for reference
purpose. Readers interested in coefficients for other parts are invited to write to the

author.

Equation (4.28) holds for low Rayleigh numbers and is limited to the range
0 < Pe* <~ 13, beyond which it diverges. The heavy line of Fig. 4.1 has been
obtained from Eq. (4.28) up to the 35" order. The initial slope for Pe* — 0, is
given by

O,
OPe*

Pe*=0 = C(IJRCL2 (429)

Without convection (Ra = 0), the value of the stream function at the center is zero,

i.e., the fluid rotates as a solid body with the rigid matrix. With convection, a
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part of the fluid mass is tied to the gravity vector, generating a net flow around the

center.

(b) Numerical Approach

The perturbation approach is valid to the second order in Ra. Also, the series
in Pe has a limited radius of convergence, as seen on Fig. 4.1. Moreover, it provides
only the value of ¢ at the center. In order to obtain more details about the flow
and temperature fields and cover a larger range in Ra and Pe a numerical method

based on the finite difference techniques as exposed in Chapter 3 has to be used.
4.1.3 Results and Discussion

The flow and temperature fields for fixed Ra=1000 and Pe*=0, 110 and 1256
are shown in Fig. 4.2. The center column displays isotherms, the right column
displays steady state streamlines in the non-rotating coordinate system and the left
column displays streamlines relative to the porous matrix. In the rotating frame
(left column), the flows are steady periodic and are locked with the rotating grav-
ity vector. In the non-rotating frame (right column), the flows are steady and the
streamlines correspond to the trajectories of fluid particles (those trajectories being
based on the filtration velocity). For convenience of observation, the flows in the ro-
tating frame are shown with the gravity vector in the downward position. Without
rotation, the free convection produces a flow pattern consisting of two symmetri-
cal and counter-rotating cells, the flow pattern being identical for both coordinate
systems, as shown in Fig. 4.2a. The stream function at the center 1, is equal to

Zero.

When a rotation rate is introduced (Pe* # 0), the above mentioned symmetry
does not exist any more. The stream function at the center (¢.) takes a value
different from zero, as shown in Fig. 4.2b (left). Both Figs. 4.1 and 4.3 gives

the stream function at the center as a function of Pe*, for various Ra. In Fig.
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4.3, relatively important Ra are involved and the results cover a wide range of Pe*
whereas Fig. 4.1 shows the limiting behavior at low Ra. It is observed in Fig. 4.3
that |¢.| increases rapidly and reach a maximum before decreasing toward zero.
This behavior holds true for each curve, including Ra = 1000 (partly shown on the

graph). With Pe* increasing further, the fluid motion, when viewed from the non- |
rotating coordinate system, becomes more and more of the solid body rotation type.
This is illustrated by the flow pattern on the right in Fig. 4.2¢. The solid rotation
component being removed from the stream function leaves an almost symmetrical

flow pattern (shown on the left in the same figure) with 1, approaching zero.

Figure 4.1 reproduces numerical results for 1./ Ra? vs Pe* at relatively low Ra
(Ra=5, 10 and 30). Those results can be compared with the analytical curve ob-
tained from Eq. (4.28) which covers almost entirely the range where 1, is increasing
to a maximum. This curve is valid for low Rayleigh (second order in Ra). It is ob-
served that the numerical results at Ra=5 and 10 follow quite closely the analytical
curve. The maximum value for %, based on those numerical results is reached at
Pe* =~ 14. The curve defined by the analytical results and the numerical results at
Ra = 5 and 10 constitutes a limiting case for low Ra. Higher orders in Ra are no
longer negligible for Ra=30 and the numerical results fall below the limiting curve

with the maximum shifted to the right.

The initial slope 0v./0Pe*|per—o (incipient rotation) is shown in Fig. 4.4 as a
function of Ra. Equation (4.29) from the perturbation analysis is given as an inclined
dashed line. The numerical results also shown on this graph were obtained by solving
for two different and very low Pe*(Pe* < 1). They agree with the perturbation
analysis for the low range up to Ra = 30. Beyond this value they s;eparate from
the inclined dashed line and tend asymptotically to a limiting maximum slope at
very high Ra. The horizontal dashed line in Fig. 4.4 represents the hypothetical

slope |0t/ OPe* | per—o = 0.5 for which free convection at incipient rotation creates
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through the rigid matrix a net flow around the center equivalent to a solid body
rotation of the fluid mass with a velocity component v = —Pe* r|pa_go. It is
observed that the numerical results are approaching the limit shown by the inclined
dashed line in Fig. 4.3. The fact that the system is approaching that limit at

incipient rotation and high Ra shows how strongly the fluid mass resists to the |
entrainment into solid body rotation along with the rigid matrix. At this very limit
and for 0=1, the dimensional filtration (or seepage) velocity component in § direction
would be equal and opposite, as a whole, to 'r’, the azimuthal speed imposed to the
system. The intrinsic velocity V' = v'/e (e being the porosity) would be stronger,
which means that the fluid particles, as seen from a coordinate system tied to the
ground, would even tend to rotate as an average in the direction opposite to the
rotation of the rigid matrix. Again, this situation is approached only for Pe* — 0.

As soon as Pe* increases from zero, the slope 0v./0Pe* starts decreasing for all Ra

(see Fig. 4.3).

The Darcy resistance of the net circulating flow around the center of the cylin-
der creates a torque on the rigid matrix. This torque is balanced by the gravitational

torque originating from the asymmetric temperature field. A dimensionless torque

based on Eq. (2.34b) may be defined as

2m pl 1 p2r
T = —/ —%r2drd0=Ra// T sin 0 r® dr df (4.30)
o Jo Or 0Jo

The torque was computed numerically from the temperature and velocity fields.
Results are given in Fig. 4.5. It is observed in the figure that 7 follows the trend of
1. shown in Fig. 4.3. To some extent, 7 is related to 1. If the fluid mass was moving
through the rigid matrix in a solid body rotation, i.e., with v = —2%). r there would
be T =] 7). | Actually, however, the net circulating flow does not behave as a rigid
body, being more intense near the center, owing to the presence of a convective roll

of less importance in the flow field, as shown in Fig. 4.2b (left). As a consequence,
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7 is smaller than 71, for all the curves. For instance, 7 = 9.5 at Pe* ~ 45, for
Ra = 300. It is found from Fig. 4.3 that the corresponding . =~ —4.5, which gives
||~ 14.1.

To characterize the heat transfer rate, a Nusselt number based on T,,, the
temperature averaged over the domain, may be defined as

Tayf ducti
Nu = av|pure conduction 4.31
u T (4.31)

Fig. 4.6 gives Nu as a function of Pe* for various Ra. The pure conduction
heat transfer corresponds to unity for Nu (Nu = 1). It may be observed that
Nu decreases from a maximum at Pe* = 0 to unity with Pe* increasing. This
behavior follows from the fact that the fluid particle trajectories (corresponding to
the streamlines of Fig. 4.2 on the right) become more and more circular with Pe*
increasing, i.e., the radial amplitude of their motion is reduced and consequently the

radial convective hear transfer is lowered.
4.2 FLUID MEDIUM

Natural convection in a fluid medium confined in a horizontal circular cylinder
rotating about its axis, with isothermal boundary conditions and uniform internal
heat sink, is studied by numerical and perturbation methods. Ladeinde and Tor-
rance [29] treated a similar case where the normal gravity is combined with rotation
exclusively by a finite element solution procedure. In order to obtain a deeper un-
derstanding of the phsycal behavior in low rotation cylinder, flow patterns and heat
transfer rates at incipient convection and for finite amplitude convection are inves-
tigated in more detail by using a numerical approach and a regular perturbation
method. Here also the concentration is on the weak rotation regimes, for which the
centrifugal acceleration is negligible compared to gravity. This latter becomes the
main body force of fluid. Governing equations for the two-dimensional flow field

are solved in both rotating and non-rotating coordinate systems. Results reveal the
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existence of two steady state flow regimes, one with high shear near the boundary, a
large part of the fluid mass being tied up to the gravity, and the other being almost

equivalent to solid body rotation.
4.2.1 Mathematical Formulation

The geometry for this problem can also be represented in Fig. 2.1a. After ne-
glecting the effects of centrifugal force, according to discussion in Chapter 2 of this
thesis, the energy equation and vorticity-transport equation in non-inertial coordi-
nate frame are (2.21) and (2.20), the second source term based on the centrifugal
force field being dropped from this last equation. The governing parameters for

the present problem are the Rayleigh number Ra, the rotational Peclet number

Pe = PrRe and Prandtl number, Pr.
4.2.2 Methods of Solution

(a) Perturbation Approach

Similar to the isotropic case in this chapter, one of the features to be consid-
ered in a system rotating about a horizontal axis is the effect of incipient rotation
combined with free convection, which locks a large mass of the fluid in the cylin-
der to the gravity vector. How a weak rotation rate affects the symmetry of the
two convection cells that are found when no rotation is present can be understood

analytically, by means of a perturbation approach.

Eq. (2.20) is the expression in the local (r, 8) coordinates of the non-inertial
frame. But periodicity of the solution in the rotating frame requires that all field
variables be function of (r, ¢) only. It is possible therefore to obtain a formulation in
terms of T'(r, ¢) and ¥(r, ¢) that is better suited for perturbation methods. Using
Egs. (2.14) and (2.18), Eqs (2.20) and (2.21) are transformed into
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OV + 1 0YpoVH O IVHY

4 _ v -
Vi = Ret o5 T o o
orT cos ¢ 0T
Ra{—a—- sin ¢ 5% (4.32)
8T 1 .0y oT 81/) oT
2 _ el cres Y.
VT—-RP 36 or 98 +1 (4.33)

Those last two equations have to be solved with the boundary conditions (2.45) and
(2.47).

Equations of (4.32), (4.33), (2.45) and (2.47) define a regular perturbation
problem. Expanding the field variables as

=Y Ra" ¢, (4.34)
n=0

=Y Rd"T, (4.35)
n=0

and substituting them into the equations (4.32) and (4.33) yields for n > 1 the

sequence
aT 6¢z aTn-—z 8¢1 aTn—z
2 _ —
Vin = ReProgd+3 §< 36 or o 95 (4:36)
v2¢n 1 8'1/)2 VZ'I;[)n‘-—z a¢z avzwn—i
4 —

6Tn_ cos qﬁ BTn_l
r 06

where each 1, and T,, must satisfy the boundary conditions (2.45) and (2.47).

sin ¢ (4.37)

The zeroth-order solution gives the pure conduction state, that is,

Yo = 0
To = l( -1
0o - 1 r—- )
The first-order equations read
v2
Vi, = L2 “sing (4.38)

0¢ 2
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0Ty 10y,
2 -
VT1~RePr6¢+28¢

Since only the initial effects of rotation is of interest in this method, it is more

(4.39)

convenient (and considerably simpler) to follow the development done for the porous
medium, i.e., to proceed with a second expansion of the form ¢, = fo + Refy +... -
in (4.38) and T1 = go + Regy + ... in (4.39) rather than trying to solve the set of

equations for arbitrary Reynolds numbers. The second expansion gives

r

Vifo = -é-sinqﬁ (4.40)
Vi, = 6Z;f° (4.41)
Vi = %Z—J; (4.42)
Vi = Pr%%?——}-%% (4.43)

Solutions can be achieved by separation of variables as before, giving fo, fi,
go, g1 as linear combinations of terms of the form r* (a being an arbitrary integer)
multiplied by either sing or cos¢. Writing out (4.37) in full for n = 2, an expansion
e = hg + Rehy + ..., done along the same lines, shows that at any order in Re,
all the terms in hg will also exhibit a similar angular dependence and, again, vanish
at 7 = 0. On the other hand, h; contains terms which are independent of ¢ and

therefore do not necessarily vanish at r = 0, giving

. = CReRa®> + ... (4.44)

From this approach, the second order approximation for the stream function

at the center is found to be
. = —5.0215 x 10® Re Ra® (4.45)

for Pr = 1. The coefficient C is a function of Pr. For example, C = —5.7254 x 10~8
for Pr = 0.7 and C = —3.6137 x 1078 for Pr = 7.0. Detailed algebra leading to the

numerical value of C is given in Appendix D for reference purpose.
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(b) Numerical Approach

A numerical program has been developed to obtain detailed flow and temper-
ature fields at finite values of Pe and larger Ra exceeding the second order devel-
opment of the perturbation approach, The details of finite difference techniques on -

which the numerical program is based can be found in chapter 3.
4.2.3 Results and Discussion

In the following discussion and figures, 1. refers the value of the stream function
at the center, relative to the coordinate system (r, 8). Here also, the effect of a weak
rotation rate (low Pe) on free convection is to destroy the original symmetry with
respect to the vertical diameter and to reinforce the cell with flow circulating in
the same direction of the imposed rotation. As a consequence, 1. takes a value
different from zero. Fig. 4.7, based on numerical results, gives i, as a function of
Pe for different Ra. It is observed on Fig. 4.7 that . increases first to reach a
maximum value. It then decreases more or less drastically depending on Ra. At low
Ra (Ra = 3 x 10%), the curve is smooth; with increasing Ra, the transition from
the maximum %, to low values becomes more abrupt. For Ra = 1 x 10° and above,
the transition is characterized by an oscillating regime represented by a dashed line.
Elsewhere, the flow and temperature fields are steady. The parts of the curves for
which 1. is increasing with Pe correspond to a flow regime with high shear near the
boundary (shear flow regime). The dimensionless shear stress integrated over the

circular boundary gives the dimensionless torque:

T=P7"/027r§3

5 |r=1 do (4.46)

This dimensionless torque in Fig. 4.8 is given as a function of Pe. At high Pe,
it is observed in Fig. 4.7 and 4.8 that v, and 7 have dropped to nearly zero and
that the flow regime is again steady for curves Ra = 10° and 3 x 10°. This behavior

was also found at higher Pe for the curve Ra = 10® (not shown). Thus the shear
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regime has ceased and for reasons to be explained later in more detail, this new flow

regime corresponds to a “solid body rotation regime”.

Figure 4.9 represents flow and temperature fields at various Pe for the same
value of Rayleigh (Re = 10°). The temperature field at center is given by isotherms;
the flow fields relative to (r, §) and (7,0) coordinates are given at left and right
respectively. All flow fields in the non-rotating coordinate system (right) are steady.
Figure 4.9a is given for reference purpose. Figure 4.9 corresponds to the shear
regime. It is observed that the path of the fluid particles given by the steady state
flow field at right column are non-circular within the core. Convective motion is
therefore efficient in transporting radially the heat and the temperature field shown
at center by isotherms is quite distorted by comparison to the pure conduction tem-
perature field characterized by circular isotherms. For this shear regime the Nusselt
number is much larger than unity, as observed in Fig. 4.10. Fig. 4.9¢ corresponds
to a solid body rotation regime (steady state). The flow field at right indicates that
the paths of the fluid particles are nearly circular throughout the whole domain.
The radial amplitude of the motion is weak and consequently, the convective heat
transfer is much reduced, almost to the pure conduction value (Nu=1) in Fig. 4.10,

the corresponding isotherms shown in Fig. 4.9¢ being nearly circular and concentric.

It is observed in Fig. 4.7 that the initial slope of ¥, (0v./0Pe|pe—o) increases
with Ra. For Ra — 0, a solid body rotation is obtained at steady state. Thus
t. = 0 for all Pe. On the other hand without viscosity effects (inviscid limit) the
fluid initially at rest would not be entrained by the boundary and would remain at
rest with respect to the gravity vector. Thus, 3. would take the value shown by
the dashed curve in Fig. 4.7. This curve is an asymptotic limit for the initial slope
(0%./0Pe|pe—o), which can be easily computed. The value found is 0v./0Pe|pe—o
(inviscid) = 0.5. Fig. 4.11 compares numerical and analytical results for the initial

slope 0v./0Pe|pe—o as a function of the Rayleigh numbers. The inclined dashed
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line corresponds to Eq. (4.45). The inviscid limit is represented by the horizontal
line. It is seen on this figure that the numerical results agree with the perturbation
solution for low Ra and approach asymptotically the inviscid limit with increasing
Ra. Thus, for incipient rotation, at high Ra most of the fluid mass is tied to the

gravity and does not participate to the circular motion.
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Chapter 5

NATURAL CONVECTION IN A FAST ROTATION
CYLINDER

This chapter is devoted to the case of a fast rotating cylinder for which the
terrestrial gravity is considered negligible by comparison to the centrifugal force.
A uniform temperature is imposed on the circular boundary and a heat sink is
uniformly distributed within the flow domain. Under such conditions, the direction
of the pure conduction density gradient is toward the geometric center whereas the
centrifugal force acting on the fluid is on the opposite direction. This configuration

is potentially unstable and Bénard type cells are expected to occur beyond a given

threshold.

The case of a fast rotating cylinder filled with a fluid has already been studied
by Ladeinde and Torrance [29]. Results from their stability analysis indicate that
at incipient convection, the flow field consists of two symmetric cells. Their study

included also numerical results for finite amplitude convection.

The present chapter concerns exclusively the saturated porous medium and is
divided into two parts. The first part deals with the isotropic case and the last part,

with the anisotropic case.

The investigation is done analytically and numerically and results from both

approaches are compared.

5.1 ISOTROPIC POROUS MEDIUM

5.1.1 Mathematical Formulation
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Governing equations (2.38), (2.40) and (2.39) in rotating coordinate system
are considered together with boundary conditions of Eqgs. (2.46) and (2.47). In Eq.

(2.40) the source term arising from terrestrial gravity is dropped.

Convection can be initiated only when the Rayleigh number Ra (from now -
on for this chapter the subscript “Q2” is dropped) is higher than the critical value,
i.e., when the buoyancy force is strong enough to overcome the viscous force in
the system. To determine this criterion for the onset of convection, a linear sta-
bility analysis (both analytical and numerical) and a numerical simulation will be

performed.
5.1.2 Methods of Solution

(a) Linear Stability Analysis (Analytical Approach)

The purpose of this section is to determine analytically the threshold beyond

which motion will occur. The following development is straightforward.

The energy (2.39) and stream function equation (2.40) for this problem are

18, oy, O aT
ror o) Trmge = g 5:1)
19, 9T, 18T 9T 8T vdT

) e T w TV Trag T (5:2)

The pure conduction temperature and stream function fields are described as

Yo = 0 (5.3)

2
-1
Ty = - 1 (5.4)

and the solution perturbed from the pure conduction state can be written in the

form of

p = Yot =1 (5.5)

~ rf—1 ~
T = To+T= +T (5.6)
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Substituting (5.5) and (5.6) into (5.1) and (5.2) yields

1 8 106°, - aT

19 8 18 7 184 oT

Corart el ~338 = @ (58)
with boundary conditions

r=1 1/; =T=0
(5.9)

r=20 1/;, T <

Using the variables as

P = F(r)erttin? (5.10)
T = G(r)ert+int (5.11)

in which n is an integer related to the number of cells contained in the flow field

(n=(number of cells)/2). Substituting (5.10) and (5.11) in Egs. (5.7) and (5.8)

yields
19,6 0F., n? .
For TGy Tl = minfeG (512)
10, 0G., n? mn
e Ul e A R (5:13)

Assuming that the exchange of stability satisfied: (i.e. p is real), that p = 0 for
neutral stability and defining the operator

L_ﬂla 0 n?

Egs. (5.12) and (5.13) are written as
LF +inRaG = 0 (5.15)
LG—i2F = 0 (5.16)

2



82

with boundary conditions
F)=G1)=0 (5.17)
F or G may be eliminated from equations (5.15) and (5.16) to yield
n2
L*G — S RaG =0 (5.18)
or equivalently
n2
L*F — ?RaF =0 (5.19)
Let us consider for (5.18) a solution of the form
G = GoJu(A7T) (5.20)

where J,, is the Bessel function of the first kind. Applying the operation L to (5.20)

gives the following sequence

LG = -)\@ (5.21)
LG* = NG (5.22)
LG® = )@ (5.23)

Jn()\%) may be set to zero for particular values of A so that the boundary conditions
(5.17) may be satisfied. Replacing G by its expression (5.21) in the equation (5.18)
gives

2

A2 %Ra =0 (5.24)

or
2

Ra=27; (5.25)

The lowest value of A taken from [55] for a given n is given in the following

table, which satisfies (5.17) and the corresponding Ra.



Table 5.1. Critical Rayleigh number obtained from analytical approach

88

n Az A Ra Number of Cells
1 3.8317 14.6819 431.12 2
2 5.1356 26.3746 347.81 4
3 6.3801 40.7061 368.22 6
4 7.5883 57.5826 414.47 8

The 4-cell pattern corresponds to the lowest Ra.

This should be the first

convective pattern to occur when Ra is increased from zero. Thus the saturated

porous medium differs from the fluid medium where the 2-cell pattern has the lowest

threshold (Ladeinde and Torrance [29]).

(b) Linear Stability Analysis (Numerical Approach)

The linear stability analysis may also be solved through a numerical method.

Equations (5.7), (5.8) and (5.9) in steady state (97 /0t = 0) define a eigenvalue prob-

lem. A finite-difference method is used to solve this eigenvalue problem. Arranging

the discretized stream function and temperature in two N-component vectors ¥ and

©®, respectively, the discretized eigenvalue equations can be written out under the

forms

A¥ + RaBO®
CO+ DY

where A, B,C and D are matrices N X N and with

NZ(NT—l)XNg-I-l

(5.26)
(5.27)

(5.28)
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N, and Ny are the grid numbers used in the radial and azimuthal directions, respec-
tively.

The equations (5.26) and (5.27) may be reduced to the following canonical

eigenvalue problem
(M- EY¥ =0 (5.29)

where [ is the unit N x N matrix and

E=A"'BCT'D (5.30)
R 5.31)
" Ra (5.
If
MZ2A2Z 2y (5.32)

are eigenvalues of equations (5.29), then

Raw = Ail (5.33)

Equation (5.29) may be solved easily by a standard computer software. Double
roots are obtained (A = Ay, A3 = A4, etc.) and corresponding Ra. are deduced
from Eq. (5.31). The associated eigen vector W, represents the corresponding flow
patterns. It is seen in Table 5.2 that the pljecision of the critical value in Ra depends
on the grid numbers N, and Ny and that the value with the mesh size of 14 x 100

agrees to the one from the analytical solution within 0.42% for Ra.; and within 0.5%

for Ra., with a mesh size of 25 x 105.



Table 5.2. Critical Rayleigh numbers from linear stability analysis

Mesh size Rag (4-cell) Ra(6-cell)
12 x 24 368.0 422.0

14 x 33 357.0 394.0

14 x 50 350.5 377.4

15 x 60 349.26 374.01

14 x 100 346.36

25 x 105 370.06

27 x 108

Analytical results 347.81 368.22
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The flow patterns corresponding to different pairs of cells, i.e., to different

thresholds are given in Fig. 5.1, where the mesh size used is 15 x 50. The purpose

of these figures is to illustrate the type of flow pattern corresponding to different ;.

The actual mesh size obviously does not provide a great accuracy in the determina-

tion of the threshold (critical Rayleigh). Each pair of eigenvalues generates two flow

patterns, equivalent, but out of phase by 7/2n. From those results, it appears that

multiple finite amplitude solutions are theoretically possible at a given Ra number

well above the first threshold (Raq =~ 348).

(c) Numerical Approach For Finite Amplitude Convection

For Rayleigh numbers higher than the critical value, a numerical program has

been developed to simulate the finite amplitude convection. Finite difference tech-
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niques with regular mesh sizes of 18 x 36 are used to discretize the entire cylinder.
The details of finite difference techniques used for the study can be found in chapter
3.

In order to test the stability and existence of multiple cell steady state solu-
tions, initial conditions with flow fields containing various numbers of cells were used

throughout the investigation of the finite amplitude convection.
5.1.3 Results and Discussion

Firstly it was found that for Ra < Ra. ~ 348, tests with the finite amplitude
numerical program involving various initial conditions always ended up to the pure
conduction solution. At Ra = 360, only a 4-cell structure pattern was found to
occur at steady state, in agreement with the established first two thresholds of
Table 5.1 (Ras ~ 348 and Ra.; ~ 368). However it was possible to obtain two
different steady state flow regimes at Ra > 400, consistently with the thresholds
tested in Table 5.1. Figure 5.2a,b,c, and d shows flow and temperature fields (at
left and right respectively) obtained numerically for two different Rayleigh numbers
(Ra = 600,1000). The symmetry of convective cells with respect to the vertical
diameter of the cylinder is only for convenience of demonstration, not physically
imposed. As a matter of fact there is no preferred position in the #-direction for
the isotropic case. Figure 5.2a,b and Figure 5.2¢,d illustrate the fact that multiple
solutions, containing different numbers of cells, are possible at a given Ra well above

the first threshold Ra. ~ 348.

Fluid motion and heat transfer characteristics such as 7T, (the temperature
at the center), ¥max (maximum stream function) and Nu = Tiu|pure conduction/ T av
(Nusselt number) are shown as function of Ra in Figs. 5.3, 5.4 and 5.5 respectively.
Among those figures, T,=0.25, Nu=1 and tp.x=0 represent the state associated

with the pure conduction solution. The critical Rayleigh number at the onset of



87

convection, Ra., as inferred from Figs. 5.3, 5.4 and 5.5 is within 3% of the values
obtained by the linear stability analysis approach. It is seen in those figures that
each curve (which corresponds to a given number of cells) has a limited range. A
pure conduction where no convection takes place (T, = 0.25, Nu = 1,%may = 0) is
maintained until Ra reaches the critical Rayleigh number Ra.. Consistent with the
analytical solution and linear stability analysis, a 4-cell flow (wavenumber 2) is first
observed at the onset of motion, when Ra is increased from zero. No matter what
kind of initial flow condition is imposed, as predicted in the analytical solution and
linear stability analysis, only 4-cell pattern is maintained for the range Ra, < Ra <
Ra.,. Both 4-cell and 6-cell patterns can be obtained for a part of the range Raz <
Ra < Ra., provided that the initial condition contains the appropriate numbers
of cells. As already mentioned, multiple solutions for the problem are therefore
possible for high enough Ra. It was found numerically impossible to maintain the
4-cell structure when Ra exceeded the value of 700, beyond which the flow evolves

always to a 6-cell pattern. In a comparable way, a 6-cell structure will shift to 8-cell

as Ra > 1030.

It is observed in Figs. 5.3 and 5.4 that the fluid is more vigorously mixed with
increasing Ra, leading to higher values of 1., and lower values of T,. The decrease
of T, is accompanied by stronger temperature gradients on the cylinder boundary,

which produces higher value of Nu, as observed in Fig. 5.5.

It is noticed in Figs. 5.4 and 5.5 that the value of ¥max for the 6-cell pattern
is smaller than for the 4-cell pattern at a given Ra. The behavior of Nu is more
complex. Finally it should be recalled that a stable solution at higher Ra number

requires more cells.
In short, the major findings are the following.

1) The configuration investigated is potentially unstable and Bénard cells are
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found to occur when the critical Rayleigh number is above a threshold of 348 corre-

sponding to the onset of motion.

2) Only 4-cell structure flow occurs at the incipient convection. Furthermore
it is possible to obtain multiple solutions when Ra >~ 348. Each of the patterns

can be maintained for a wide range of Rayleigh numbers.
3) Heat transfer increases with the Ra increasing.

4) A stable solution at high Ra numbers will require more cells.
5.2 ANISOTROPIC POROUS MEDIUM

The behavior of an anisotropic Darcy porous medium within a horizontal cir-
cular cylinder rotating at high angular velocity is investigated analytically and nu-
merically. Conditions are the same as those described for the isotropic case. Here
again, the configuration is potentially unstable and gives rise to Bénard cells beyond

a critical Rayleigh number.
5.2.1 Mathematical Formulation

The circular cylinder of infinite extent shown in Fig. 2.2a is filled with an
anisotropic porous medium. In this figure K; and K, are the extreme permeabilities
along to the principal axes of the anisotropic medium, and 6 is the angle between
the origin and the principal axis corresponding to K. As usual it is assumed that the
Boussinesq approximation holds and that all fluid and solid properties are constant
except for the density in the buoyancy term. By neglecting the terrestrial gravity
force, Eqgs. (2.38), (2.36) and (2.39) are the governing equations for the problem
with boundary conditions given by Eqgs. (2.46) and (2.47).

Here also the convective motion can be initiated only when the Ra is higher

than a critical value, i.e., when the buoyancy force is strong enough to overcome the
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viscous forces in the system. To determine this criterion for the onset of convection,

a linear stability analysis is performed.
5.2.2 Linear Stability Analysis

The linear stability analysis is done exclusively with the help of a numerical
method. The distribution of temperature and stream function for pure conduction
is described as

Yo = 0 (5.34)

2
~1
Ty = _ ; (5.35)

and the solution perturbed from the pure conduction state can be written in the

form of
Y = o+ =1 (5.36)
T = T0+T=’°2;1+T (5.37)
Substituting (5.36) and (5.37) into (2.36) to (2.39) yields
! "r R[—- sin2(0 — Hk)'g_o + cos 2(0 ek) a ]}¢ + RaaaeT =0 (5.38)

1 8 18 . 18

Carar T 26T ~ 359 = ° (5:39)
together with boundary conditions
r=1: 1& =T=0
(5.40)
r=0: ’IL, T < oo

From now on, the same procedure as was employed for the isotropic case is
applied, i.e., Egs. (5.26) to (5.33) are also valid for this anisotropic case with matrices
based on Egs. (5.38) and (5.39).
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Here again, Eq. (5.29) may be solved easily by a standard computer software.
5.2.3 Results and Discussion

The present section is restricted to the linear stability analysis and does not
involve results from the finite amplitude numerical program. As opposed to the
isotropic case there are no more double roots for the eigenvalues A;. Results from the
linear stability analysis are shown in Figs. 5.6, 5.7, 5.8 and 5.9. In Figs. 5.6, 5.7 and
5.8, 4-cell, 6-cell and 2-cell flow pattern have been reproduced, respectively, based
on the eigen vector W. It can be found that in those figures that the perpendicular
line segments are placed at the center of cylinder to indicate the orientations of two
extremum permeabilities and their ratio. This will apply to all flow and temperature
patterns for the anisotropic cases in this thesis. For the anisotropic case the flow
configuration occupies a specific position in the 8 direction for which a symmetry
exists with respect to the principal axes. Figure 5.9 gives Ra. as a function of
R on a semi-log graph, which produces a symmetry in results together with the
particular definition of Ra for anisotropic porous medium in this thesis. Only the
range 0.2 < R <5 is represented in this figure and the 8-cell flow configuration has
been omitted for clearity. It may be first noticed that the values of Ra, at R = 1
correspond to those of Table 5.1. Furthermore, it may be observed that with R
departing from unity each flow configuration separates in two distinct branches. For
the 2-cell configuration, one of the principal axes acts as a separating line between the
cells, the other crossing the centers of the two cells. This creates two possibilities
on each side of R = 1, according to the directions of maximum and minimum
permeabilities. Figure 5.8 illustrates those two different types of flow configurations
for various R below unity. Of course, the same counterpart exists for R larger than
unity and the use of a logarithmic scale for R produces the symmetry with respect
to the vertical line R = 1 observed for the curves. For the case of the 4-cell pattern

there exist also two possibilities for symmetric flow configurations: as observed in
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Figure 5.6, the principal axes may correspond to the separating lines between the
cells or they may cross the centers of the cells. Cosequently for R far from unity
two distinct flow configurations containing four cells do exist on each side of R = 1.
With the 6-cell configuration one of the axes serves as a separating line between
adjacent cells and the other crosses the centers of the two remaining cells. As for
the 2-cell configurations, this situation provides two possibilities, according to the

directions of maximum and minimum permeabilities.

As a conclusion, all these incipient flow configurations imply that multiple finite
amplitude solutions are likely to exist, each one having its own heat transfer charac-
teristics and value of Nusselt number. In particular, at a R departing largely from
unity (for instance, at R = 4) it is seen in Fig. 5.9 that first threshold encountered
is below the isotropic one (Ra ~ 348) and that the first flow configuration to appear
contains six cells. Moreover the modification in the relative values of the various
thresholds encountered with the increase or decrease of R from unity is expected
to modify the range of each flow configuration shown in Figs. 5.3, 5.4 and 5.5, and

would lead to entirely new graphs.



(b) Ra. = 377.4, 6-cell structure

Figure 5.1: Flow patterns (Linear stability analysis)
(Mesh size: N, = 15; Ny = 50)
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(d) Ra.=434.9, 8-cell structure

Figure 5.1 (continued)
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(a) Ra = 600, 4-cell structure

(b) Ra =600, 6-cell structure

Figure 5.2: Flow patterns (Finite amplitude convection)
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Figure 5.6: Flow patterns (4-cell structure)
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Figure 5.7: Flow patterns (6-cell structure)

I

Ra, = 358.1100

Ra, = 378.0200
R =05

001



Ra, = 430.1448

Ra, = 430.1703
R=1

Ra, = 410.1453 ‘ Ra, = 398.7838

00

%
TN

Ra. = 457.4589 Ra, = 499.9722
R=0.28 R=0.6

Figure 5.8: Flow patterns (2-cell structure)

Ior



102

550

300

0.5

0.3

0.2

Figure 5.9: Ra,, function of R



103
Chapter 6

INSTABILITY IN A NON-ROTATING CYLINDER

When a non-rotating circular cylinder filled with either a fluid or a fluid satu-
rated porous medium is subject to a non-uniform heating, natural convection takes
place in the presence of terrestrial gravity. A simple form of non-uniform heating is
the case of a cosinoidal temperature distribution imposed on the boundary, which
is equivalent to a linear thermal stratification of the surroundings in a given direc-
tion. In particular, when the temperature gradient is in the downward direction
(bottom heating) a potentially unstable situation occurs with the presence of a pure
conduction temperature field inside the cylinder and motion is expected beyond a
threshold corresponding to a critical value for the Rayleigh number. Weinbaum
[38] has considered analytically the fluid filled cylinder, for various inclinations of
the stratification, including the bottom heating. All cases were characterized by
a single cell convective flow pattern. The threshold value for bottom heating was
established analytically and corresponds to Ra. = 576. The case of a cylinder filled
with a isotropic porous medium was considered by Storesletten and Tveitereid [56].
Their work was purely analytical and dealt with side heating and bottom heating.
For the bottom heating, they found a critical Rayleigh of 23.13 with two types of
incipient flow patterns consisting of two and three cells respectively, both structures

being stable.

In this chapter the saturated porous medium is considered exclusively. We
apply the linear stability analysis used in Chapter 5 to reconfirm the results of
Storesletten and Tveitereid [56] at incipient convection for isotropic case and to

establish thresholds for the anisotropic case. Furthermore the finite amplitude nu-
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merical code is used to study in more detail the behavior of natural convection for

Rayleigh numbers well above the established thresholds.

The whole chapter is divided in two parts, devoted respectively to the isotropic

and anisotropic cases.
6.1 ISOTROPIC POROUS MEDIUM

The behavior of a saturated porous medium within a non-rotating horizontal
cylinder with non-uniform heating is investigated in this section. The boundary is
subject to a thermal stratification of arbitrary inclination with respect to the gravity.
For bottom heating, the pure conduction temperature gradient is in the downward
direction. This is a potentially unstable configuration, and motion occurs only
when the Darcy-Rayleigh number is beyond a critical value. For bottom heating,
a linear stability analysis is performed in order to establish the threshold value
and the convective pattern at incipient convection. This multi-cell pattern may
be predicted from considerations involving the hydrodynamic circulation on the
boundary. Additional results are sought to obtain the flow and temperature fields
and heat transfer characteristics at finite amplitude convection, for Darcy-Rayleigh
numbers covering the range from 0 to 200 and for various inclinations of the thermal

stratification imposed on the boundary.
6.1.1 Mathematical Formulation

The boundary of the horizontal cylinder shown in Fig. 6.1 is subject to an

imposed non-uniform temperature of the form

T/

r=rt = Tg + AT cos(8 — o) (6.1)

As mentioned in section 2.3.2 of the thesis, in this kind of boundary temperature
condition the reference temperature T} is an average value of the boundary temper-

ature distribution and the characteristic temperature AT’ stands for the amplitude
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of the cosine temperature imposed on the boundary. The extremum temperatures
on the boundary occur at the opposite ends of a diameter at angle 8, with the grav-
ity. It is again assumed that the Boussinesq approximation holds and that all fluid
and solid properties are constant except for the density in the buoyancy term. The
governing eqations are Eqgs. (2.38), (2.39) and (2.40) with the exception that the
Rayleigh numbers based on the centrifugal force in (2.40) and that the heat sink

term S’ in (2.39) are set to zero. Boundary conditions are

_ o0y _ -
=55 =0 T= cos(f — bq) (6.2)

One useful relationship is obtained by introducing the hydrodynamic circula-

tion I' and by evaluating its value from Eq. (2.34b)

T 2 27
- /Ouecw:Ra T sin 0d9 (6.3)

r 0
The value of ' on the boundary is found to be 7 Ra sin 6.

A motionless equilibrium is possible at 8y = 0, 7. For 8y = 0 (bottom heating),
the configuration is unstable since the density gradient is positive upward. In other
words, there exists a threshold in Ra beyond which disturbances are amplified.
A particularity of a Darcy porous medium, as opposed to a fluid medium, lies in
the fact that a non-zero tangential velocity exists at the boundary. Thus for the
unstable configuration (8o = 0), I' = 0 means that a flow reversal must occur near
the boundary, i.e., with a non-zero azimuthal velocity on the boundary, a single cell

pattern does not exist, even at incipient convection.

6.1.2 Methods of Solution

(a) Regular Perturbation Method for 8, # 0, 7

For all cases where 6y # 0,7, a fluid motion always occurs when Ra > 0. A

regular perturbation approach, valid at low Ra, may be used to solve analytically
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the steady state form of Eqs. (2.40) and (2.39). Expanding T and % in powers of

Ra, according to

T=%%,Ra"T,
Y = Yo Ra"n
and replacing in (2.40) and (2.39), the following expressions are easily obtained

To = rcos(fd —bp)

sin g

T] == 16 (7‘ - 7'3) sin(@ - 00) (64)
. 2r —3r® +1%) .
T, = sin 00[( T 7(:8 +) sin(6 — 26) +
(r*—=r%) | (r—2r3+r%) .
T 60— 26 AL
J07g (30 = 200) + ——par——sind]
Yo = 0
sin 6
b= — (1= (6:5)
__ sin 20, 9 4 sinfy , , 4
Py = 556 (1—=2r"+7r%)+ 9 (r* —r%) cos(20 — 6,)

(b) Linear stability analysis for 6y = 0

For bottom heating (6o = 0), a linear stability analysis was performed numer-
ically by X. Zhang et al. [57] in order to determine the critical Rayleigh number
(Ra.). Assuming that =1 and' T = T — r cos § are the perturbed stream function
and temperature fields from the pure conduction state, the linearized equations of

(2.40) and (2.39) can be written as

~ . .0 00 ..
V*) + Ra (sin 05 + CO: %)T = 0 (6.6)

~ . .0 0 0.~
VAT — (sinf 5 + CO: )b = 0 (6.7)
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together with boundary conditions

r=1: T=0,9%=0 (6.8)

The linear stability analysis amounts to the determination of the minimum -
eigenvalue Ra of the homogeneous Eqs. (6.6) and (6.7) under the homogeneous
boundary conditions (6.8). The approach follows quite closely the one described in
section 5.1 through Eqgs. (5.26) to (5.33) and will be omitted here.

Here again,
Ra, = — (6.9)

is the critical Rayleigh number and the eigenvector ¥, corresponding to A; represents
the flow pattern at the onset of convection. As already mentioned, the precision of
the critical Rayleigh number depends on the grid numbers N, and Ny, A grid
of 14 x 33 was used. This grid size was adopted after mesh refinement tests had

indicated that the result was affected less than 1%.

From the linearized equations (6.6) and (6.7), it can be proved that if ¥y, g is
a solution at a given Ra, there g = —Ra®g, @ = ¥, is also a solution at the same
Ra. This has been directly observed from the numerical analysis which shows that
all eigenvalues of Equation (5.29) are double eigenvalues with two independent flow
patterns at the onset of convection. The numerical results show that the critical
Rayleigh number is Ra =~ 23.3 and the flow patterns at incipient convection are
either a 2-cell or a 3-cell flow stfucture, as shown in Fig. 6.2a and b. Those results
are in agreement with those of Storesletten and Tveitereid [56]. The multi-cell flow
pattern contrasts with the single-cell configuration obtained by Weinbaum [38] for
the fluid medium. As mentioned earlier, the multi-cell flow was expected from the

constraint I' = 0 on the boundary in the case of a Darcy porous medium.
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It should be noted that Equations (6.6) and (6.7) are invariant under the trans-
formations

(T', 67 {ija T) - (T’ 0 + T, {Da "T)
(6.10)

(r,@,\il,T) - (r,—0,-9,T)
so that four distinct solutions exist theoretically, i.e., the increment between stream-

lines in Fig. 6.2a,b may be positive or negative. The temperature averaged over the

domain is zero for this configuration.

(c) Numerical approach

At low Rayleigh numbers, Equations (6.4) and (6.5) may be used to obtain
approximations of the flow and temperature fields for cases where 6y # 0. Otherwise

a numerical solution is required.
6.1.3 Results and discussion

A comparison is done in Fig. 6.3 between the values of the stream function
at the center (1.) obtained numerically for different heating phase angles 6, and
the analytical curve from equations (6.5). A low value of the Rayleigh number was

chosen (Ra=5) for which the second order analytical solution is valid.

The numerical results cover the range 0 < Ra < 200 and 0° < 6, < 180°.
Fig. 6.4 and 6.5 show the steady state flow and temperature fields corresponding to
bottom heating (6o = 0) at three different Rayleigh numbers, Ra = 25,40 and Ra =
50. Streamlines (left) and isotherms (cneter) represent the flow and temperature
fields respectively. The right column represents the perturbed temperature fields
(actual temperature field minus pure conduction temperature field). These results
have been obtained from zero flow and pure conduction temperature fields as initial
conditions. In Fig. 6.4, the flow consists of three cells, as in Fig. 6.2b. However,

with finite amplitude convection, the symmetry with respect to the vertical diameter
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found in Fig. 6.2b is lost and the position of the two side cells is tilted.

The solutions shown in Fig. 6.4a,b and ¢ are symmetric with respect to the

center of the cylinder, or centro-symmetric, according to

P(r,0) = (r,0 + )
(6.11)

T(r,0)=—-T(r,0+7)

Thus, the heat entering the cavity and the heat going out have identical distributions
in 6 with two extrema in opposite locations. Also, the temperature averaged over

the domain remains equal to zero.

It is also possible to obtain numerically a stable steady-state flow pattern con-
sisting of two cells such as the one predicted by the linear stability analysis (Fig.
6.2a). The results are shown in Fig. 6.5. Starting the computation from initial
conditions that already contain a 2-cell configuration such as the one shown in Fig.
6.2a. With the increasing of Ra, the two original cells start to move vertically,
downward if the velocity is downward on the vertical diameter as shown in Fig.
6.5. 2-cell flow patterns with an upward velocity on the vertical diameter are also
possible (not shown). In the case of a 2-cell flow pattern, the temperature averaged
over the domain differs from zero. For a downward velocity on the vertical diameter,
the averaged temperature is below the mean temperature of the boundary. Fig. 6.6
shows how the extreme value of the stream function (tex;) varies with Ra in the
case of 2-cell and 3-cell flow patterns, at 6y = 0. For the 3-cell flow pattern, text
is at the center (texr = ¥.). For the range 0 < Ra < 23.3, there is no flow and
Yext = 0. Above the threshold Ra = 23.3, two distinct curves exist for the two types
of flow patterns. A qualitative representation of the bifurcation shown in Fig. 6.6

had already been provided by Storesletten and Tveitereid [56].

In Fig. 6.7 the extrema of the stream function obtained numerically for the



110

3-cell flow pattern are given as functions of Ra, for heating phase angles 8y =
0°,5%,10° and 15°. Such a perturbation on the heating phase angle is comparable
to the asymmetric perturbation about the vertical diameter done by Storesletten
and Tveitereid [56], which yields a 3-cell flow pattern. In this figure, v, is the

value of the stream function at the center and 1);, the other extrema characterizing |
the side cells. Steady states only are presented in this figure. When 6,=0 (bottom
heating), no fluid motion can exist unless Ra > Ra. ~ 23. Beyond that threshold,
a steady-state non-trivial solution exists. The steady-state convection covers the
range Ra. < Ra < 93. A Hopf bifurcation occurs at Ra ~ 93 beyond which the
solution is characterized by strong periodic oscillations. When 6, # 0, a 3-cell fluid
motion always occurs for Ra > 0 and the steady-state cover a wider range with 6,

increasing.

Numerical results for the 3-cell flow pattern are shown differently in Fig. 6.8
where 1. is given as a function of 6y for different values of Ra. With increasing
0o, it is observed that the Hopf bifurcation occurs at larger Ra. For instance,
steady state results corresponding to Ra = 200 are obtained at 6, ~ 32°. With
increasing 6o, the side cells are gradually reduced in size (see Fig. 6.7) until they
disappear and a single-cell flow pattern, such as the one shown in Fig. 6.9 (Ra =
80;8p = 90°) occurs at large heating phase angles. The dashed line in Fig. 6.8
separates the two types of flow patterns. The curves corresponding to Ra=40,
60 and 80 are above the threshold and cover the whole range 0° < 6y < 180°.
The extrapolating these curves in the negative 6y direction would correspond to
“antinatural” solutions, according to Sen et al. [58], i.e., to the “isolated” branches
of an unfolded supercritical bifurcation [59]. It was found impossible to obtain
numerical results that would extend those curves to the left. Various attempts were
made at different Ra, using the available flow and temperature fields at 6, =0 and

choosing decrements in 8 as small as —0.5°. In all cases, the flow and temperature
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fields evolved toward a final steady state that was the symmetric counterpart of the
initial conditions, in agreement with the invariance property (6.10). This behavior
came as no surprise since Storesletten and Tveitereid [56] have predicted that

“antinatural” solutions were unstable.

The finite-amplitude convection enhances the heat transfer across the cylinder.
Figure 6.10 shows the local heat transfer along the boundary at Ra=25, 40 and 80
for the 3-cell flow pattern. Since the part of the boundary through which heat is
entering is not fixed but varies with Ra, a measure of the heat exchange with the
surroundings consists in integrating the absolute value of the local heat transfer over

the whole boundary. Thus an overall Nusselt number may be defined as

1 /2" oT
_ % o] 57?7' 1 2m BT
A= 1 /27r dTo 4/ or 'r...l (6.12)
27 Jo | Or T=1

with Nu = 1 for pure conduction. This Nusselt number is given in Fig. 6.11 as a
function of 6, for different Ra. Here again, the dashed line separates the single-cell
(right) from the 3-cell flow pattern (left). For a given Ra, the maximum Nusselt
number is obtained at a value of 6, slightly below 90°. At 6,=0 (bottom heating) the
pure conduction heat transfer (Nu = 1) is maintained until Ra reaches the critical

value. Then the Nusselt number starts to increase.
6.1.4 Summary

When the heat is entering from below, i.e., when the maximum temperature is
at the lowest point on the boundary (bottom heating), a motionless and potentially
unstable equilibrium exists. A linear stability analysis predicts that the critical
Rayleigh number (Ra.) for the onset of convection is ~23.3, in agreement with
Storesletten and Tveitereid [56]. Also according to the linear stability analysis, two
flow configurations consisting of two and three cells are likely to occur beyond the

threshold. The results for finite amplitude convection, as obtained from a numerical
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code specially developed to this end, indicate that both the 3-cell and 2-cell patterns

are stable configurations.

Numerical solutions were also obtained at different Rayleigh numbers for an
arbitrary location of the maximum temperature on the boundary. The flow is then
unicellular unless the maximum temperature lies somewhere in the neighborhood of

the unstable location (6p = 0).

6.2 ANISOTROPIC POROUS MEDIUM

The behavior of an anisotropic porous medium is studied theoretically for con-
ditions equivalent to those of section 6.1. The anisotropy involved concerns as usual
in this work the permeability. Unlike the isotropic case, only the bottom heating
8o = 0 is considered for the anisotropic case. A linear stability analysis is performed
to investigate the criterion for the onset of convection and associated flow patterns.
It is found that the flow patterns at the onset of convection are either a 2-cell or
a 3-cell structure, depending on the inclination of the principal axes of the porous
matrix. [t is shown that both the permeability ratio and inclination of the principal
axes have a strong influence on the critical value of Ra and the flow pattern at the
onset of convection. A numerical code is developed to study the finite amplitude
convection beyond the critical Ralyeigh number. Results are analysed in terms of

the ratio of permeability and the orientation angle of the principal axes.
6.2.1 Mathematical Formulation

The problem considered is described in Fig. 6.12. In this figure K; and K, are
the extreme permeabilities along to the principal axes of the anisotropic medium,
with R = K,/K; and 6y is the angle between the gravity direction and the principal

axis corresponding to K.

Dropping the centrifugal force term in (2.36) and the heat sink term in (2.39),
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the problem can be stated as follows in dimensionless form

0% 0% 10,09, 1—R, 0Oy .
oY _ v b _ov 0
Ber r200? 2Hee rorof + Fao r Or (r or )+ T | 90 20 = i)
o oT oT
+—8—; cos 2(0 — b;)] = —Ra(-é-; sin§ + 5 °°8 6) (6.13)
or or vol 10, 0T 1 0°T
oo tras ~rar e Yo (619
with boundary condition
r=1: u=0, T=cosl (6.15)

Here also, the Rayleigh number is based on gravity, Ra = ¢'6AT'r{/ K1 K, /va. Un-
der the conditions imposed to the problem, three governing parameters are involved,

namely Ra, R and 6.
6.2.2 Methods of Solution

(a) Linear Stability Analysis

A linear stability analysis was performed numerically in a way comparable to
parts 5.1, 5.2 and 6.1 in order to determine the critical Rayleigh number (Ra,). Here

the pure conduction flow and temperature fields are 1o = 0,7y = r cos 6.

For the isotropic porous medium (R = 1), which was studied by Storesletten
and Tveitereid [56] and by Robillard et al. [57], the critical Rayleigh number was
about 23.3, and the flow pattern consisted theoretically of a 2-cell or a 3-cell structure
at the onset of convection in relation with the existence of double eigenvalues at R =
1. However, some dramatic changes appear for an anisotropic porous medium, i.e.,
no double eigenvalues are obtained and the flow pattern at the onset of convection
is either a 2-cell or a 3-cell structure, depending on the inclination angle 8;. Besides
the stability criterion and the corresponding flow pattern at the onset of convection

which is refered to as the primary mode, the second eigenvalue and its corresponding
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eigenfunction representing a priority flow is the secondary mode at supercritical

Rayleigh numbers (Ra > Ra,).

Noticing that R is always positive, it is observed that

Y(Ra, R, 0)) = (Ra, R, 7 + 0)
(6.16)

Y¥(Ra, R,0;) = —(Ra, R, —0y)

and the discussion can be limited to the range of 0 < 6;, < 90° while choosing R
either larger or smaller than unity. Moreover, if R is allowed to vary from 0 to oo,

there exists
Y(Ra, R,0) = —¢(Ra,1/R,7[2 — ) (6.17)
and consequently the investigation may be limited to the range 0 < 6, < 45°.

The critical Rayleigh numbers Ra. for 0 < 6, < 90°, R = 0.125 and R = 0.5
are graphically presented in Fig. 6.13. It is found that for a fixed permeability
ratio R < 1, the critical Rayleigh number is a decreasing function of 8 in the range
of 0 < 6 < 90° (the maximum permeability being in the horizontal direction for
0 = 0 and R < 1). For R = 0.125, it is also found that the primary and secondary
modes consist of 3-cell and 2-cell vortices respectively as 0 < 8, ~ 30°, and of 2-cell
and 3-cell vortices respectively in the range of 30° < 6, < 90°. For R = 0.5 the
primary mode is 3-cell for the range 0 < 6 < 40°. Beyond 6, = 40°, the primary
mode is 2-cell. Furthermore, it is seen by comparing Fig. 6.13¢ and 6.13b that
Ra, may be a decreasing or increasing function of R according to the value of the
angle 0. Physically, the anisotropy in permeability destroys the homogeneity of the
resistance to the flow and favors the flow in the direction of higher permeability,

resulting in a preference between the 2-cell and 3-cell flow patterns.

The primary and secondary modes (left and right) for R = 0.125 at §; =
0°,30°,60° and 90° are shown in Fig. 6.14. It can be observed that the symmetry




115

axis for the flow and temperature fields deviates from the vertical central symmetric

line of the cylinder for 6, between 0° to 90°.

(b) Finite Amplitude Convection

The numerical results cover the range 0 < Ra < 100 and were obtained for
various permeability ratios R and angles ;. According to the results from the
linear stability analysis shown in Fig. 6.13a (R = 0.125), a 2-cell flow pattern is the
primary mode for the range of 30° < 6, < 90°. That means a 2-cell flow pattern
must exist at least for values of Ra in the small gap between the two curves in
Fig. 6.13a. The results from the numerical code for finite amplitude convection
confirmed this fact as seen in Fig. 6.15 which shows flow and temperature fields
obtained numerically for 8, = 75° R = 0.125 and Ra = 20.79. For 8; # nw/2, (n
being an arbitrary integer) and for Ra larger than the values within that gap, it
was found impossible to obtain numerically a steady state flow pattern consisting
of an even number of cells. Various attempts were tried at different Ra and 6,
starting the computation from initial conditions that already contain a 2-cell flow
field. With time, even at small angles such as 6, = 0.5°, one of the cells grows to the
detriment of the other and slowly moves toward the center. The other cell gradually
shrinks and moves toward the boundary. A cell appears near the opposite side of
the cylinder and the asymptotic result is the configuration with three cell or cells of

odd number.

When 6, = 0, or 90°, pairs of solutions consisting of 2-cell and 3-cell flow pat-
terns may exist for given Rayleigh numbers and permeability ratios. Fig. 6.16a,b,c
shows three typical pairs of flow patterns obtained for Ra = 70. The intermedi-
ate pair of flow pattern (R = 1) is given for comparison purpose. The upper pair
corresponds to 0 = 0 and R = 0.125, i.e., the maximum permeability is in the

horizontal direction. The lower pair corresponds to ; = 90° and R = 0.125 or
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equivalently to 6y = 0 and R = 8. As expected, the 2-cell flow configuration is
symmetric with respect to the vertical diameter and the 3-cell flow configuration is
centro-symmetric. As for the isotropic case, in the case of a centro-symmetric flow,
the heat entering the cavity and the heat going out have identical distributions in
6 with extrema in opposite locations. Consequently, the temperature averaged over

the domain remains equal to zero for that type of flow pattern.

In Fig. 6.17, ey, the extreme value of the stream function obtained nu-
merically, is given as a function of Ra at R = 0.125 for 6, = 0 and 4, = 90°
respectively. text corresponds to the value of stream function at the center for the
centro-symmetric patterns, and to the value characterizing the side cells closest to

the center for the flows having the symmetry with respect to the vertical diameter.
6.2.3 Summary

Both the permeability ratio and inclination angle of the principal axes have a
strong influence on the critical value of Ra and on the initial flow pattern at the
onset of convection. A minimum critical Ra can be achieved if the porous matrix
is arranged such that the principal axis with higher permeability is in the vertical
direction (R < 1, 0 = 7/2). The initial flow pattern predicted by the linear stability

analysis has a 3-cell structure or a 2-cell structure according to the value of 8.

No fluid motion exists unless Ra > Ka.. To the difference of the isotropic
porous medium [57], the critical Rayleigh number Ra. is a function of ; and R.
It is found from the linear stability analysis that Ra. corresponding to R = 0.125,

0, = 90° is about 20, a value lower than the threshold for the isotropic case.
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Figure 6.1: Definition sketch
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(a) 2-cell structure (b) 3-cell structure

Figure 6.2: Flow patterns at the onset of convection
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Figure 6.3: Comparison between analytical and numerical results (Ra=5)
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(a) Ra = 25, 1. = —1.1879, b, = 0.1162
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(b) Ra = 40, 1, = —3.6482, 1, = 0.6350
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(¢c) Ra = 50, 1. = —4.3942, 1, = 1.0524

Figure 6.4: Flow and temperature fields (3-cell structure, 6 = 0)
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Figure 6.5: Flow and temperature fields (2-cell structure, o = 0)
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Streamlines (b, = —10.2391) Isotherms

Figure 6.9: Single cell flow pattern (Ra = 80, 6, = 90°)
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Figure 6.10: Local heat transfer at 6y = 0 (3-cell flow pattern)
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Figure 6.11: Nu, function of 0o, for different values of Ra
(3-cell/1-cell flow pattern)
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Figure 6.12: Definition sketch for anisotropic porous cylinder
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Figure 6.13: Critical Rayleigh number (primary and secondary modes),
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Chapter 7

CONCLUSIONS AND RECOMMENDATIONS

In this study, the theoretical, i.e., numerical and analytical approaches have
been developed to model fluid flow and heat transfer in fluid / isotropic / anisotropic
porous media which confined in a horizontal circular cylinder. The study has been
carried out by the means of numerical simulation, perturbation method and linear

stability analysis. Results from different approaches have been found to coincide.

Within the present framework, some cases with fundamental and practical
interests have been studied: A) mixed convection in a low rotation isotropic porous
/ fluid cylinder, B) natural convection in a fast rotation isotropic / anisotropic porous
cylinder and C) thermal stability analysis in a non-rotating isotropic / anisotropic

porous cylinder subject to a sinusoidal temperature distribution on its boundary.

By contrast with many previous works on the same geometry, the whole circular
cylinder was considered as a flow domain for each of these three cases. This was of
necessity for the first and last case since no symmetry with respect to the vertical
diameter could be involved. The numerical finite difference approach, based on
cylindrical coordinates had to handle the artificial (or mathematical) singularity
at the center in a way to avoid any bias to the flow. The special features of the
numerical approach aimed at solving that difficult are described in Chapter 2. They
were successful in reproducing results from previous studies and some predicted

values from the numerical approach were confirmed by analytical approaches for

case A) and C).

Detailed conclusions for each one of the aforementioned cases are
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A) The behavior of natural and mixed convection in a low rotation horizontal
cylinder filled with an isotropic porous / fluid medium with isothermal boundary
condition and uniformly distributed heat sink is first investigated. This kind of
problem is equivalent to the case without heat sink or source and with boundary
temperature increasing at a steady rate with time. Weak rotation regime only were
undertaken, for which the force field is terrestrial gravity exclusively. A qualita-
tively similar behavior for both isotropic porous medium and fluid medium under
same conditions were found. The interaction between convective rolls resulting from
standard free convection case and the effects of rotation were studied numerically
and by perturbation method. For the finite amplitude convection, the numerical
results based on finite difference scheme cover a broad range of Rayleigh and Peclet
numbers. In addition, a regular perturbation method was used to study the incip-
ient rotation and validate the numerical approach. Results from both approaches
coincide. Those approaches were applied both to the isotropic porous medium and

to the fluid medium.

For the isotropic porous medium case, both approaches revealed that a large
part of the saturated fluid does not participate to rotation at low rotation speed.
Thus the stream function at the center may differ largely from zero. However, with
increasing angular velocity, the fluid is gradually entrained and a solid body rotation
regime develops for which the convective heat transfer is eventually reduced to zero.
Similarly, for the fluid medium case, a net flow relative to cylinder boundary is
found at low rotation speed (shear flow regime) and a solid body rotation occur at
high angular velocities (solid body rotation regime) in which the rotational effects
on convection are found to reduce the heat transfer towards the pure conduction
level. The difference between both media is that the net flow in fluid medium has a
drastic drop at high Rayleigh number due to the oscillating behavior caused by the

inertial term in fluid medium, whereas the transition to solid body rotation regime
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occurs gradually for the porous medium without oscillating (unsteady) behavior.
By comparison to the study of Ladeinde and Torrance [29], one has gained better
understanding in the physical behavior of fluid in the same case: Nusselt number,
dimensionless shear stress and stream function at center have been quantitatively
related to the rotating speed expressed by the Peclet number; and the relationship
between incipient rotation and the value of the stream function at center has been

established, characterizing the part of flow mass tied to the terrestrial gravity.

B) Then Bénard convection in a fast rotation isotropic / anisotropic porous
cylinder with isothermal condition on the boundary and uniformly distributed heat
sink is studied. In the situation of fast rotation, only the centrifugal force is in-
volved, the terrestrial gravity being assumed negligible. Under those conditions,
the direction of the pure conduction density gradient is toward the geometric center
of cylinder and the centrifugal force field is acting on fluid in the opposite direc-
tion. Such a force balance is potentially unstable and Bénard cells are expected to
occur beyond a critical Rayleigh number. For the isotropic case, a linear stability
analysis solved analytically was used to predict the critical Rayleigh number for in-
cipient convection and the results were compared with those from a linear stability
analysis solved numerically. Moreover, results from finite amplitude convection are
consistent with those concerning incipient convection. The results of the present
investigation revealed that there exists a threshold Ra. = 348 beyond which convec-
tion takes place and multiple solutions are possible for Rayleigh numbers well above
this critical value. Only a 4-cell structure flow occurs at the incipient convection
and a stable solution at high Ra numbers will contain more cells. This is in contrast
with the case of fluid medium, where a 2-cell pattern appears first. Anisotropy of
permeability was found to have a strong effect on Ra., which can be lower than
the threshold aforementioned. Moreover the first flow configuration for anisotropic

porous medium to appear may even contain six cells instead of four cells if the per-
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meability ratio is far enough from unity. Also unlike the isotropic case, no more
double roots exist at incipient convection. Furthermore it has been observed that
the flow pattern takes an angular position such that it possesses symmetry with
respect to the principal axes, which is different from the isotropic case where there

is no physical requirement on angular position of the flow pattern.

C) Final investigation of the present study is about the Bénard instabilities
in a non-rotating isotropic / anisotropic porous cylinder having sinusoidally dis-
tributed temperature on the boundary in the presence of terrestrial gravity. Such
a distribution in temperature is equivalent to a linear thermal stratification of the
surroundings in a given direction. A particular case is that the maximum tempera-
ture is at the bottom (8 = 0, bottom heating). The thermal stratification imposed
on the circular boundary is then in the vertical direction and consequently the di-
rection of the density gradient is opposite to the terrestrial gravity, giving rise to
a potentially unstable force balance in pure conduction. For the isotropic porous
medium with bottom heating, the critical value of the Rayleigh number for convec-
tive motion to appear has been found to be approximately 23.3, with two types of
flow configurations: a flow configuration involving two convective cells, symmetric
with respect to the vertical diameter, and a centro-symmetric flow configuration
containing three cells. Also numerical results for finite amplitude convection at
6o = 0 show that both 2-cell and 3-cell are stable configurations for a given range
of Ra. Numerical solutions were also obtained at different Rayleigh numbers for an
arbitrary location of the maximum temperature on the boundary. The flow is then
unicellular unless the maximum temperature lies somewhere in the neighborhood
of the unstable position (g = 0). Results from linear stability analysis, regular
perturbation and numerical simulation were found to be in good agreement. For the
anisotropic case, our discussion was limited to bottom heating only. Both the ratio

of permeability K and the angle of the principal axes ; have a strong influence
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on the critical values of the Rayleigh number and the initial flow patterns. The
minimum critical Ra is obtained when the principal axis with higher permeability
is in the vertical direction (R < 1, 8y = /2). It is found from the linear stability
analysis that Ra, corresponding to R = 0.125 and 6, = 90° is about 20, a value
lower than the threshold for the isotropic case. The initial flow pattern predicted
by the linear stability analysis has a 3-cell structure or a 2-cell structure according
to the value of 8. To the difference of the isotropic porous medium [57], the critical
Rayleigh number Ra. does not have a fixed value but is function of ; and R. Finite
amplitude convection was investigated numerically and results from linear stability

analysis and numerical simulation agree well.

For the case where combined terrestrial gravity and centrifugal forces are in-
volved simultaneously, further investigations are needed. As mentioned at the be-
ginning of Chapter 2, a better understanding of the asymptotic cases discussed in

this study was a prerequisite to the undertaking of the intermediate cases.

Finally, it can be stated on a general basis that the effect of anisotropy is equiv-
alent, under certain circumstances where the Maxwell and momentum equations are
uncoupled, to the effect of a magnetic field on the flow behavior, as evidenced by
the relevant equations of Chapter 2. It should be recalled that the use of magnetic
field has been proposed as a means of reducing the natural convection in the process

of crystal growth.
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Appendix A

THE BOUSSINESQ APPROXIMATION AND THE
MIXED CONVECTION

In the momentum equation (2.1) for the fluid medium in the rotating coordinate
system, the body force acting on the fluid medium consists of three parts, i.e., the
terrestrial gravity, centrifugal force and Coriolis force. The fluid velocity V' is of
order of e since V' is exclusively caused by the density difference. When splitting
the density term as p = po + Ap and apply the Boussinesq approximation (Ap < p)
to the Eq. (2.1), the product of ApDV'/Dt is of the order of € and was dropped

in the magnitude analysis as shown in Chapter 2.

It has been simply specified that the relationships (2.22) could be used in
transforming the momentum equation in the rotating coordinate system to the non-
rotating coordinate system. If the momentum equation is deduced directly in the
non-rotating coordinate system, the terrestrial gravity is the only body force on
fluid.

DV’

P =~V + g + VIV (A1)

A question arises: how can one obtain from Eq. (A.l) a term equivalent to
that based on the centrifugal force in Eq. (2.1)7 To handle this problem, it has to
be considered that Eq. (A.1) involves a mixed convection type problem. This means

that the velocity V' involved in the acceleration term may be expressed as follows
V=V 4+Q x¥ (A.2)

in which V' is the velocity relative to the boundary, i.e., caused exclusively by the

density difference of fluid and €' x ¥ (¥ = r’), the azimuthal velocity corresponding
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to solid body rotation entrained by the rotating boundary of the cylinder. Among
these two terms, only V' can be set to the order of ¢, according to the approach

given in section 2.1.

In order to obtain the equivalent term mentioned above, one needs to explicit -
the term D(V'+£ x¥')/dt’ in the present coordinate system. Let us start by looking
at an arbitrary vector A being fixed in a moving frame (z, y) which is rotating at
an angular velocity €2’ with respect to the non-rotating coordinate system (z, 7).
(z,y) and (Z, §) have a same origin O. i and j are unit vectors along with two
coordinate axes r and y, respectively. Thus A can be expressed in the system (z, y)

as
A = A+ A, (A.3)

The material derivative of A in the coordinate system (z, §) is

dA dA,. dA,. . di  d]
@ @ Tt gt Ay (A-4)

When being viewed from the coordinate system (z, y), 1 and j are rotating at a same

angular velocity €2'. We therefore have

%1 = xi
df (A.5)
J .
“_-Q
a =~
Substituting Eq. (A.5) into (A.4) yields
dA—dA+Q><A (A.6)

- dt
where the first term in the right-hand side stands for the material derivative of A

in the system (z, y)

A dA,.  dA,.
@ a T a? (A7)
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Now let us keep (A.6) in mind and come back to the present problem. Applying
Eq. (A.6) to vector ¥ yields

_ df/ d* )

Vl:ﬁ:—d.;l‘__{_QIXf, (A8)
where

d* -I—,I
dt’

~V (A.9)

V' being the velocity vector in the rotating coordinate system. It should be noticed

that Eq. (A.8) is identical to Eq. (A.2).

Applying Eq. (A.6) to vector V' reads

av' &V .
= e T XV (A.10)

Replacing V in (A.10) with the expression (A.8) leads to

dv’ d»*¢v 4 _, ., dF , L d7 L
T T a T T g T g+ )
d2*—/ d*QI d*—/
_ WE-FWXF’—FQ’X(Q’XF’)—HZQ'X d; (A.11)

Considering a constant angular velocity and multiplying (A.11) by density p, one

obtains
7/ !

o TP

+ o x (2 xF) +2p2 x V' (A.12)

Equation (A.12) evidences that the acceleration term of the momentum equa-
tion in the non-rotating coordinate system can be split into three parts and that the
last two parts are equivalent to the centrifugal and Coriolis force terms of Eq. (2.1)

in the rotating coordinate system.

Moreover, when one splits the density term as p = po + Ap and applies the
Boussinesq approximation (Ap < p) to the Eq. (A.1), the term
A A

Bp=m = Dl + 4 x (@ X F) +20 x V'] (A.13)
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is not of the order of €? and can not be dropped in the magnitude analysis as shown in
Chapter 2. Consequently the term Ap€' x (' X ¥') is turned into a correspondence
of the centrifugal force-based source term that appears on the right-hand side of Eq.

(2.9) based on the rotating coordinate system.
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Appendix B

GOVERNING EQUATIONS IN THE NON-ROTATING
COORDINATE SYSTEM

Aside from the transformation described in section 2.2.2, the governing equa-
tions (2.42) and (2.43) for isotropic porous medium can be directly expressed in the

non-rotating coordinate system shown in Fig. 2.2b.
B.1 Darcy Equation

Similar to Eq.(2.27), the Darcy equation in the non-rotating coordinate system

without the centrifugal force reads
_ K
V=V 4+ xF = _Z{[pﬂ(T’—Té) g + Vp] (B.1)

in which V' is the filtration velocity and €' x ¥/, the azimuthal velocity of the rigid

matrix. With the expression of § = fcos § — f sin 0, its component form is

s Ot
U = ——{ggﬂ(T' — Ty)cos§ — £g'%
v poor 5 (B.2)
_ , K - N. 7 XK Op
o= Q7 = 7gﬂ(T’ —T,)sinf — a0

Taking the curl of (B.2) yields

10 00, 104 ., KgB . 0T —T) cosfd(T —T
7 ) t gy = T - — 0 —

] (B3)

B.2 Energy Equation

In order to deduce properly the energy equation for the non-rotating coordinate

system in which the solid (or rigid) matrix moves, a fixed control volume in a polar
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coordinate system that is tied to the ground is considered, as illustrated in Fig.
B.1. The heat flux crossing the border of the control volume will now be discussed

separately. AQ)' is used to represent the net heat flux.

—~

Dt

Figure: B.1 Sketch of the control volume

f-direction:

a) Heat transport due to solid body rotation of saturated porous medium (fluid

and solid matrix) in a steady angular speed Q' (in counterclockwise direction)

/ T
aa:g dO)dr' — (pc),QVFT'dF" = (pc)pﬂ’%%f’df’dé’ (B.4)

AQ; = (Pc)pQ/FI[T, +

b) Heat transport due to fluid velocity relative to the solid matrix v, (v] is

filtration velocity and v = o' — Q'F)
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_ a T/ 1Xs 8l
AQ; = (pe)slviT" + Ua dO)dr’ — (pe) ol T'd7 = (pe); a/;{; Fdi'dd  (B.5)
c¢) Heat conduction
o1’ T - orT’ k 0°T' -
——— — k——=df)dr" — (— = —— 2 #7474l .
AQL = [-k =50 kf’802 |dF — (—k ’80’d ) F’ZF’(?H?rdrda (B.6)

r-direction:

d) Heat convection in fluid

oF'a' T § oFa'T!

[ ! — 1! -/ .._ —/ (pc) = j=
AQy = (pe)s[Fa'T" + e di')d — (pc) ;7 w'T'df = o 7'di'df (B.7)
e) Heat conduction
(9T’ 5 BT’ 8T’ _,
ko ,or. , .-
= —;%( 5 Y dr' df (B.8)

At last, the rate of heat increase inside the control volume #dr'df is expressed as
or' , ., -
(pC)p-"a-%:,-’l’,dTIde (Bg)

Considering an uniformly distributed heat sink S’ and applying energy conservation

in the control volume, one obtains

pc or FdFdd +Y AQ '+ 5 =0 B.10
P ot

Substituting all the terms into (B.10) and dividing by #d#'dd produce
oT' oFw T  Ov T 01" OT’

0 M,aT’)_l_ 02T’ ]

o o) T Pagp

= k| e (B.11)
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Since vl =o' — Q7

o1’ oFw'T oo ,O0T" o o
(pC)pgﬁ + (Pc)f[ 7 + F'@g’] + [(Pc)p - (Pc)f]Q EY R EVET— S (B-12)

Making use of the continuity equation (2.38)

T T v oT T
(pely o + (POl S + ST+ [(p)s = (PO G = KV = S (B.13)

Dividing by (pc); and using the definitions o = (pc),/(pc)s and « = k/(pc);y yields

oT' o7 o T e
ey +a 5 +%7867 —I-(a—l)()ﬁ—onT — 5"/ (pc)y (B.14)

B.3 Dimensionless Form
With the following dimensionless variables
F=7[rg

t="tajorl

gl

(a,7) = (@,)rp/a
Pe* = o7 /e
p=psK/ap

T = (T = T}) /AT
AT = S'r2 [k

Y =9a

Equations (B.2), (B.3) and (B.14) become in dimensionless form

%i=—RaTcos — ?—Z—?
) or (B.15)
D - Perr = RaTsinf — 8p_

o 700



154

10, 0y 1821/;__ Pe* . 0T  cos@OT
ForU o) Trgg = iy elinimt =g (B16)
oT  oT soT . 10T _,.

o appears in f-component of Darcy equation, energy equation and stream function

equation. In order to eliminate o % and 1 are redefined

5=+ Pei(1— 1)
ot g (B.18)
= - e*r 1
F=g-—(1-2)
Finally Egs. (B.15), (B.16) and (B.17) change to
i=—RaT cosf — g_]:z
" . (B.19)
- r_ po g 0P
v— Pe*r = RaTsind 57
= _9T  cosf 0T
27 _ o P ingot bl
V) = -2 Pe Ra(sm@af—l— . 30> (B.20)

L (B.21)
Thus the o is incorporated in the definition of 5 and ¥. Equations (B.20) and (B.21)
correspond to Eqgs. (2.42) and (2.43) where v instead of v is used. It is obvious that
when one wants to recover a dimensional velocity from v in Eqgs. (2.42) and (2.43),

the product v(a/ry) does not cofrespond to the sum of the (dimensional) filtration

velocity and the (dimensional) azimuthal velocity of the rigid matrix.

As a conclusion, an appropriate definition of the dimensionless velocity com-
ponent in §-direction and of the stream function provides a form of the governing

equations where o does not appear explicitly.
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Appendix C

MATRIX PARTITION PROCEDURE
Let us consider the equation

AX =B (C.1)

where X and B are vectors and A is a (m x m) tridiagonal matrix, except for the

non-zero terms ay, and .y, which arise from periodicity condition (3.13)

Eq. (C.1) may be written as

E F Xm 0 Gm

- B / / 7

where C is a tridiagonal ((m — 1) X (m — 1)) matrix; D and G are column vectors
and E is a row vector, all of dimension (m — 1). Except for its last term X,,, the
unknown vector X is expressed as the sum of two vectors Xt and X~ of dimension
(m —1). The vector G corresponds to the first (m — 1) terms of B. X, F and Gy,

are scalars.

The (m — 1) vector XX is defined as
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X = - XY/ X, (C.3)
The following equations
CXt =G (C.4)
and
CX* =D (C.5)

may be solved easily for Xt and X* by recurrence formulas applicable to tridiagonal
matrices such as the Thomas algorithm. The solution of the last row of (C.2)

provides the value X,

(G, — EXT)
X, = o2 ,
Finally the solution vector X is given by
y At \
X X+ X*
3 = - Xm (C.1)
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Appendix D

COEFFICIENTS IN PERTURBATION SOLUTION

The coefficients generated in the perturbation method for a low rotation cylin-

der of fluid medium in section 4.2 are given in this appendix.

For practical purposes, the series (4.34) and (4.35) are approximated by the

first three terms and first two terms, respectively, such that

¥ = o+ Rapr + Ra*th,
= Yo+ Ra(fo+ Re fi) + Ra®(ho + Re hy) (D.1)
T = To + RCI,Tl

= To+ Ra(go + Regy) (D.2)
According to section 4.2,
o =0
(D.3)
To = (7’2 - 1)/4

fo =sin ¢(alr + adr® + adr®)
fi = cos ¢(atr + air® + air® + air”)
\

go = cos ¢(b8r + B3r® + B3r® + bQrT)
(D.5)

g1 = sin ¢(btr + blr® + birS + bir” + bir®)
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The term ho vanishes due to its angular dependence at r = 0. Only Ay contains

terms which are independent of ¢ and therefore is given

2 .22 2.4, 2.6 28 210 | 212
hy = ag+ ajr” + azr® + a5r® + ayr® + agr'” + agr (D.6)

At the center of cylinder (r = 0), Eq. (D.1) becomes

¥|,—¢ = ¥e = al Re Ra® = C Re Ra* (D.7)

The coefficients leading to a2 or C are listed

a? = a + 242 + 3a? + 4a? + 5ad

a? = —(2a3 + 3a + 4a% + 5a? + 6a2)

a% = ap/64

a2 = a, /576 (D.8)
a? = ay/2304

a? = a3/6400

a2 = a4/14400

ao = [8(a? x a — a3 + ai) + bi]/Pr
ay = [48(a? x a} — a3 + a}) + 2b3]/ Pr
as = (1444 x al + 4848 x al — 4843 x al + 3bL)/ Pr (D.9)

as = (160a3 x aj + 4b})/Pr

L as = (120a3 x aj + 5b3)/ Pr
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by = —(by + b5 + +b5 + by)

bl = —(Pri® +al/2)/8

bl = —(Pr b2 + al/2)/24 (D.10)
b = —(Prbd + al/2)/48

by = —(Prbd+al/2)/80

b9 = —(a2/16 + a2/48 + a2/96)

=af/16
(D.11)

b3 = aJ/48

B2 = a2/96

aj = a3/24 + a3/24

ay = —(a3/12 + a3/16) (D12)

ay = a9/24

al = a3/48

a® = 1/384
=—1/192 (D.13)

ad = 1/384









