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RÉSUMÉ 

Le vieillissement des infrastructures, caractérisé par la détérioration des propriétés de 

surface, est causé par l'action de l'usure, la corrosion ou la synergie des deux. C'est un problème 

commun à plusieurs secteurs industriels tels que l'hydroélectricité, l'aérospatiale, l'automobile, 

etc. Les conséquences de ce phénomène peuvent varier de la perte de l'efficacité du système, de 

l'augmentation du coût de la réparation, de la maintenance ou du remplacement des pièces. La 

dégradation des composants commence souvent par la surface. Pour cette raison, l'ingénierie de 

surface peut être utilisée pour fournir à la surface des propriétés adéquates ou des revêtements 

protecteurs pour prévenir ou retarder l'enlèvement de la matière. 

L'usure se produit dans des situations où au moins deux surfaces solides en mouvement 

relatif interagissent. De telles interactions sont à prévoir lorsqu'une surface est exposée à des 

contacts tribologiques résultant de l'altération des propriétés de surface. Dans ce contexte, 

l'enlèvement de la matière est généré par divers modes de dégradation qui comprennent 

l'abrasion, la fatigue, l'adhésion et l'oxydation. En effet, plusieurs modes de dégradation peuvent 

avoir lieu simultanément dans un processus d'usure. Lorsque la perte de la matière d'une surface 

est provoquée par des réactions chimiques ou électrochimiques avec l'environnement (liquide ou 

gazeux), le processus est appelé corrosion.  

Afin de répondre à ces préoccupations, l'objectif principal de cette thèse de doctorat vise à 

développer des matériaux résistants à l'usure à base d'aluminure de fer (Fe3Al) en utilisant le 

concept de modification structurelle par l'ajout de particules dures et en contrôlant la 

microstructure. Les principaux résultats de cette recherche sont présentés sous forme d'articles 

dans des revues à comité de lecture. 

Dans le premier article, l'influence de l'ajout du BN, du traitement thermique et du temps de 

broyage sur les propriétés mécaniques et tribologiques des revêtements composites à base de 

Fe3Al ont été étudiées. Dans ce contexte, le broyage à boulets a été appliqué sur le mélange de 

poudres de Fe3Al et de BN à différentes énergies. Ensuite, les revêtements ont été déposés à 

partir de poudres broyées en utilisant la technique HVOF (High Velocity Oxy-Fuel), et leurs 

propriétés mécaniques et tribologiques ont été évaluées. Il a été montré que les revêtements avec 

les grandes inclusions céramiques réparties aléatoirement dans la matrice Fe3Al présentent une 

performance d'usure plutôt médiocre. Cependant, l'ajout du BN dans la matrice Fe3Al a 
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considérablement amélioré la dureté et la résistance à l'usure du revêtement Fe3Al. Pour 

améliorer davantage les propriétés tribomécaniques des revêtements composites, un traitement 

thermique a été appliqué aux poudres broyées afin de précipiter in situ les phases Fe2B et AlN 

dans la matrice Fe3Al. Ainsi, le rebroyage permet de réduire la taille des précipités durs et de les 

répartir uniformément dans la matrice Fe3Al, ce qui améliore considérablement la résistance 

mécanique et à l'usure. L'étude du mécanisme de dégradation montre que la fatigue était 

dominante pour le revêtement Fe3Al, tandis que l'abrasion était le mode principal de l'enlèvement 

de la matière pour les revêtements composites. 

Dans le deuxième article, nous étudions les propriétés d'usure des revêtements HVOF à 

base de Fe3Al renforcés avec des inclusions céramiques beaucoup plus dures. Ces matériaux 

composites ont été obtenus par broyage à boulets du mélange de poudres Fe3Al, BN et Ti, suivi 

d'un traitement thermique pour précipiter in situ les particules de TiB2 et de TiN dans la matrice. 

Cette approche de fabrication est appelée dans cette thèse la voie de fabrication in situ. 

L’influence de la teneur en céramique sur les propriétés tribomécaniques des revêtements a été 

étudiée. Les résultats montrent que la résistance à l'usure du revêtement de Fe3Al pur augmente 

significativement lorsqu'une quantité optimale de particules de TiB2 et de TiN a été ajoutée. Nous 

avons également montré que le taux d'usure est lié aux propriétés mécaniques tels que la dureté, 

le module de Young et le coefficient de plasticité (c'est-à-dire le rapport entre la dureté et le 

module de Young). Dans le contexte de cet article, l'enlèvement de matière était régi par l'usure 

adhésive, abrasive et par la fatigue. 

Une étude comparative a été réalisée dans le troisième article entre deux types de voies de 

fabrication de la poudre à savoir le procédé in situ et le procédé ex situ. Dans la voie de 

fabrication in situ, la matrice Fe3Al est renforcée par des phases céramiques formées dans la 

matrice, alors que la méthode ex situ fait référence au processus dans lequel la matrice Fe3Al est 

renforcée avec des particules de céramique pure préformées. Les poudres in situ ont été obtenues 

comme décrit dans le deuxième article. Pour les poudres composites ex situ, les phases de TiB2 et 

de TiN formées dans la matrice Fe3Al par la voie in situ ont été quantifiées puis une quantité 

équivalente des poudres TiB2 et TiN pures a été ajoutée au Fe3Al et broyée dans un broyeur à 

boulets. L'influence de la voie de fabrication des poudres a été étudiée sur les propriétés 

mécaniques et d'usure des revêtements HVOF dans différentes conditions de glissement. Les 

résultats montrent que les revêtements in situ présentent des inclusions de taille nanométrique par 
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comparaison à la taille du micron dans le cas de revêtements ex situ. En outre, les revêtements in 

situ présentent la dureté la plus élevée et le taux d'usure le plus faible par rapport à ex situ. La 

distribution de la dureté et du module de Young à l'échelle micro et nanométrique indique que la 

meilleure performance tribomécanique du revêtement in situ peut être associée à l'homogénéité 

de sa microstructure et la finesse de ses renforts. 

Dans le quatrième article, deux types différents de systèmes de revêtement mince-sur-épais 

(duplex) consistant en une couche supérieure de CrN ou de DLC déposée par pulvérisation 

cathodique sur un revêtement HVOF ou sur un substrat en acier inoxydable 304 (SS304) ont été 

fabriqués. Deux types de revêtements HVOF ayant des propriétés mécaniques différentes ont été 

utilisés, à savoir les revêtements Fe3Al (dureté 4,3 GPa) et Fe3Al-TiN-TiB2 (dureté 14,2 GPa). 

Les propriétés tribomécaniques des revêtements mince-sur-épais ont été évaluées, ainsi que la 

capacité de charge des revêtements HVOF. Les résultats ont montré que l'ajout d'une couche 

mince de CrN et de DLC améliore la résistance à l'usure du substrat SS304 et des revêtements 

HVOF. Les revêtements duplex PVD/HVOF présentent de bonnes propriétés tribomécaniques 

par rapport au revêtement PVD/SS304. Il a également été montré que les couches épaisses de 

HVOF sont soumises à moins de déformation plastique et présentent une capacité de charge plus 

élevée par rapport au substrat SS304. La résistance à l'usure du système de revêtement mince-sur-

épais augmente avec la dureté de la couche inférieure dans l'ordre suivant: SS304 (1,7 GPa) 

<Fe3Al (4,3 GPa) <Fe3Al-TiN-TiB2 (14,2 GPa). Les revêtements mince-sur-épais à base de DLC 

présentent une meilleure performance tribomécanique par rapport au CrN en raison de la très 

faible friction du film DLC et de sa capacité à maintenir son intégrité pendant l'essai d'usure. 

Dans ces systèmes, la perte de matière s'est produite par déformation plastique, fracture et l'usure 

abrasive. 

Dans le cinquième article, l'influence des couches minces de CrN et DLC déposées par 

pulvérisation cathodique sur la résistance à la corrosion des revêtements HVOF à base de Fe3Al 

dans une solution contenant du chlore a été étudiée. Le comportement à la corrosion et les 

mécanismes de dégradation des revêtements mince-sur-épais ont été étudiés en utilisant la 

spectroscopie d'impédance électrochimique (EIS) et l'étude de l'action simultanée de l'usure et de 

la corrosion. Les résultats ont montré que les couches minces de CrN et DLC aident à augmenter 

le potentiel de corrosion du revêtement Fe3Al de -0,71 V à -0,34 V et -0,09 V, et à diminuer le 

taux de corrosion d'un et trois ordres de grandeur, respectivement. La faible résistance à la 
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corrosion à température ambiante du revêtement de Fe3Al est liée à la présence de défauts et de 

porosités favorisant l'infiltration de la solution de NaCl dans le revêtement. La spectroscopie 

d'impédance électrochimique révèle que les couches supérieures déposées par pulvérisation ont 

tendance à agir comme une barrière entre l'électrolyte et le revêtement de Fe3Al. Les résultats de 

la tribocorrosion ont montré que l'ajout des couches de CrN et DLC aide lorsque le revêtement 

est soumis à de l'usure pendant une polarisation cathodique. Par contre, l'action simultanée de 

l'usure et de la corrosion dans une solution aqueuse de NaCl à 3,5% dans des conditions de 

polarisation anodique entraîne des dommages importants lorsque les couches minces de CrN et 

DLC ont été fracturées par le contre-corps de Al2O3 conduisant à la formation de couplages 

galvaniques tels que CrN-Fe3Al et DLC-Fe3Al après l'infiltration de la solution de NaCl dans le 

revêtement Fe3Al. La contribution majeure à la perte totale de matériaux est celle due aux effets 

synergiques entre l'usure et la corrosion. 
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ABSTRACT 

Aging infrastructure characterized by the deterioration of surface properties of components 

is caused by the action of wear, corrosion or a synergy of both. It is a problem common to many 

industrial sectors such as hydroelectric power, aerospace, automotive, etc. Consequences of this 

process can vary from the loss of the system efficiency, the increase of the cost of repairs, 

maintenance or replacement of components. The degradation of components often starts from the 

surface. For that reason, surface engineering can be used to provide surfaces with adequate 

properties or protective coatings to prevent and/or to delay material removal and deterioration.  

Wear occurs in situations where at least two solid bodies in relative motion interact. Such 

interactions are expected when a surface is exposed to tribological contacts resulting in the 

alteration of surface properties. In this context, material removal is generated via various 

degradation modes that include abrasion, fatigue, adhesion and oxidation or corrosion. Indeed, 

several degradation modes can take place simultaneously in a wear process. When material loss 

from a surface is prompted by chemical or electrochemical reactions with the environment, the 

process is referred to as corrosion. Here, the environment can be liquid or gaseous containing 

corrosive species.  

In order to address these concerns, the principal objective of this Ph.D. thesis is to develop 

wear resistant materials based on iron aluminide (Fe3Al) using the concept of structural 

modification by adding hard particles and controlling the microstructure. The main results of this 

research are presented in the form of articles in refereed journals. 

In the first article, the effect of BN addition, heat-treatment, and ball-milling on the 

mechanical and tribological properties of Fe3Al-based composite coatings were investigated. In 

this context, the ball-milling was applied on a mixture of Fe3Al and BN powders at different 

energies. Then, coatings were deposited from milled powders using the high velocity oxy-fuel 

(HVOF) technique, and their mechanical and tribological properties were evaluated. It was 

shown that the microstructure of the composite powders was preserved in the HVOF coatings. 

Moreover, the addition of BN significantly enhances the hardness and wear resistance of the 

Fe3Al matrix. To further improve the tribo-mechanical properties of the composite coating, heat-

treatment was applied on milled powders in order to precipitate Fe2B and AlN phases into the 

Fe3Al matrix. It was shown that coatings with large ceramic inclusions randomly distributed in 
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the Fe3Al matrix exhibit relatively poor wear performance. Re-milling helps to decrease the size 

of hard precipitates and uniformly distribute them within the Fe3Al matrix leading to a substantial 

enhancement of the mechanical and wear resistance. The investigation of the degradation 

mechanisms shows that fatigue, delamination and abrasive wear were predominant modes of 

material loss for the pure Fe3Al and hard particles containing coatings. 

In the second article, we study the wear properties of Fe3Al-based HVOF coatings 

reinforced with much harder phases. The composite materials were obtained by ball-milling the 

mixture of Fe3Al, BN and Ti powders then follows by heat-treatment in order to precipitate in 

situ TiB2 and TiN particles in the matrix. This fabrication approach is referred in this thesis as the 

in situ fabrication route. The influence of the ceramic contents was investigated on the tribo-

mechanical properties of Fe3Al-based coatings. The results show that the wear resistance of the 

pure Fe3Al coating significantly increases when an optimum amount of TiB2 and TiN particles 

were added. We have also shown that the wear rate is strongly related to the mechanical 

properties such as hardness, Young's modulus and plasticity coefficient (i.e. the ratio of the 

hardness and the Young's modulus). In the context of this article, the material removal was 

governed by the adhesive, abrasive and fatigue wear. 

A comparative study was carried out in the third article between two types of powder 

fabrication routes namely the in situ and the ex situ process. In the in situ fabrication route, the 

ceramic phases are formed within the Fe3Al matrix whereas the ex situ refers to the process in 

which the Fe3Al matrix is reinforced with pre-formed pure ceramic particles. The in situ powders 

were obtained as described in the second article. For the ex situ composite powders, the in situ 

TiB2 and TiN phases formed in the Fe3Al matrix were quantified then an equivalent amount of 

the pure TiB2 and TiN powders was added to the Fe3Al, and ball-milled. The influence of the 

powder fabrication route was investigated on the mechanical and wear properties of the HVOF 

coatings under different sliding conditions. The results show that the in situ coatings exhibit nano 

size inclusions compared to micron size in the case of ex situ coatings. In addition, the in situ 

coatings exhibit the highest hardness and the lowest wear rate compared to ex situ. The 

distribution of the hardness and Young's modulus at the micro and nano scale indicated that the 

better tribo-mechanical performance of the in situ coating can be associated with the 

homogeneity of its microstructure and the small size of the reinforcing components. 
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In the fourth article, two different types of thin-on-thick (duplex) coating systems 

consisting of a sputter-deposited CrN or DLC top layer on a HVOF coating or a stainless-steel 

type 304 substrate (SS304) were fabricated. Two types of HVOF coatings with different 

mechanical properties were used namely the Fe3Al (hardness 4.3 GPa) and the Fe3Al-TiN-TiB2 

(hardness 14.2 GPa) coatings. The tribo-mechanical properties of the thin-on-thick coatings were 

evaluated, and the load-carrying capacity of HVOF coatings as well. The results have shown that 

the addition of a thin film of CrN and DLC enhances the wear resistance of the SS304 substrate 

and the HVOF coatings. The PVD/HVOF duplex coatings show good tribo-mechanical 

properties compared to the PVD/SS304 coating. It was also shown that the thick HVOF layers 

are subjected to less plastic deformation and exhibit higher load-carrying capacity compared to 

the SS304 substrate. The wear resistance of the thin-on-thick coating system increased with the 

hardness of the underneath layer in the following order: SS304 (1.7 GPa) < Fe3Al (4.3 GPa) < 

Fe3Al-TiN-TiB2 (14.2 GPa). The DLC-based thin-on-thick coatings exhibit better tribo-

mechanical performance compared to CrN-based due to the ultra-low friction of the DLC film 

and its ability to maintain its integrity during the wear test. In these systems, material loss 

occurred via plastic deformation, fracture and abrasive wear. 

In the fifth article, the influence of the sputter-deposited CrN and DLC top coats on the corrosion 

resistance of the Fe3Al-based HVOF coatings in chlorine containing solution was studied. The 

corrosion behavior and the degradation mechanisms of the thin-on-thick coatings was studied 

using the electrochemical impedance spectroscopy (EIS) and the investigation of the 

simultaneous action of wear and corrosion as well. The results have shown that the CrN and DLC 

top coats have help to increase the corrosion potential of the Fe3Al coating (-0.71 V) to -0.34 V 

and -0.09 V, and decrease the corrosion rate by one and three orders of magnitude, respectively. 

The poor room temperature corrosion resistance of the Fe3Al coating is related to the presence of 

defects that favors the infiltration of the NaCl solution in the coating facilitating the corrosion of 

the Fe3Al alloy. The EIS reveals that the sputter-deposited top coats tend to act as a barrier 

between the electrolyte and the Fe3Al coating. The tribocorrosion results shown that the addition 

of the CrN and DLC top coats helps when the thin-on-thick coating is subjected to wear during a 

cathodic polarization. On the other hand, the simultaneous action of wear and corrosion in a 3.5% 

NaCl aqueous solution under anodic polarization conditions leads to severe damages when the 

sputter-deposited DLC and CrN top coats have been fractured by the hard Al2O3 counterpart 
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leading to the formation of strong CrN-Fe3Al and DLC-Fe3Al galvanic couples after the 

infiltration of the NaCl solution in the Fe3Al coating. The major contribution to the total materials 

loss is the contribution due to synergistic effects between wear and corrosion. 
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CHAPTER 1 INTRODUCTION 

Aging infrastructure is a major concern for many industrial sectors that includes 

hydroelectric power generation, aerospace, automotive, and construction. This problem is a result 

of a progressive deterioration of materials exposed to tribological contacts (material loss due to 

interactions between at least two surfaces), corrosive environments (material loss due to chemical 

or electrochemical reactions (Figure. 1.1)) or to a synergy of both actions. This problem can lead 

to a decrease of system efficiency, loss of performance or to a high cost of maintenance, repair or 

replacement of components or devices.  

 

Figure 1.1: Part of a crank component of a Pelton 

turbine after service in a corrosive environment. 

Hydro-Québec (HQ) commits approximately 900 million Canadian dollars annually for 

aging infrastructure, and an increase of this budget is to be considered if no action is taken [1]. 

The principal source of electricity in Canada is hydroelectricity and more than half of this source 

of energy is produced in the province of Quebec [2]. With a generating capacity of approximately 

37,000 megawatts annually (over 99% comes from renewable sources), HQ exports ~33 TWh of 

its electricity outside the province, and employs about 20,000 skilled workers. To keep this 

performance and standard, knowing that HQ's facilities were built more than 80 years ago, it is 

important to act accordingly with respect to aging infrastructure. An innovative approach to take 

is to develop appropriate and cost-effective solutions to protect and to extend the life time of 

systems' components. 
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In tribology, interactions between a solid body and the environment (tribological contacts 

or corrosive agents) take place at the surface level, and can lead to its alteration or deterioration. 

When at least two solids in contact are in relative motion in dry conditions, material removal is 

caused by the individual action or a combination of various degradation modes (abrasive, plastic 

deformation, adhesion etc.) (Figure 1.2a). For corrosion, the material loss initiated by the 

chemical or electrochemical reactions between the surface and corrosive agents in a liquid or 

gaseous environment can occur in various forms (pitting, crevice corrosion, fatigue corrosion 

etc.) (Figure 1.2b). In some situations, wear and corrosion can coexist and their simultaneous 

actions can be catastrophic. A surface deterioration that results from wear and corrosion is often 

referred to as tribocorrosion. In this context, surface engineering can be used to provide surfaces 

with new properties, functionality or protection to prevent and/or delay material loss. However, 

to select a coating for a specific application condition, it is necessary to better understand the 

mechanisms of the material loss. 

 

Figure 1.2: Surface degradation modes under the effect (a) of 

various tribological contacts [3], and (b) of corrosion [4]. 

Hydroelectric dams built by HQ in Quebec consist of different types of hydropower 

turbines (e.g. Francis, Kaplan and Pelton turbines) depending on the use [5]. The role of a 

hydropower turbine is to transform the energy of water into the mechanical energy which in turn 

is transformed to an electrical energy using an alternator. In service, hydropower turbines are 

susceptible to wear, to corrosion or to a simultaneous action of both degradation mechanisms. 
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In HQ's power system, the Francis turbine is the most commonly used turbine (Figure 1.3). 

It helps to provide a high level of efficiency compared to other hydroelectric turbines. In 

principle, water strikes the edge of the runner, pushes the blades and then flows towards the axis 

of the turbine. The Francis turbine operates best for medium to high range heads (from 10 m to 

300 m), and high-flow conditions [5]. The principal degradation mechanisms of the Francis 

turbines are cavitation and solid particle erosion. However, the shaft and the radial bearing 

system of the Francis turbine can be subjected to tribological contacts (e.g. sliding wear, 

abrasion, etc.) during the operation [6]. 

 
 

Figure 1.3: Image of a Francis turbine, adapted from [6]. 
 

The Kaplan turbine is used for dams with fall height below 30 meters, and behaves like a 

propeller turbine. It can be used to provide high rotation speeds using its adjustable blades 

(Figure 1.4). However, a Kaplan turbine operates at low head conditions, and may be exposed to 

wear from entrained debris in the water (cavitation and solid particle erosion). During the 

orientation of the blades, the radial bearings of the Kaplan blades are subjected to sliding wear. In 

addition, the crank and the crank pin can also be damaged by sliding wear since all these 

components are affected by a relative motion during the orientation of the blades [7]. 
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Figure 1.4: Image of a Kaplan turbine [8]. 

Pelton turbines usually operate in high head conditions and several components may be 

exposed to severe wear degradation mechanisms (e.g. sliding wear,  abrasion, erosion, cavitation 

etc.) [7].  On the one hand, the spear needle, the deflector plate as well as the impeller are parts 

that are susceptible to movements when the turbine is in operation (Figure 1.5). Therefore, these 

parts can be exposed to sliding wear. On the other hand, the Pelton buckets which are the main 

components of the turbine can be subjected to abrasive and erosion wear [7]. 

PEMP 
RMD510Schematic of Pelton Turbines

Pelton turbine with single jetg j

4Session-15 @ M.S. Ramaiah School of Advanced Studies, Bengaluru

Pelton turbine with two jets

 

Figure 1.5: Image of a Pelton turbine, adapted from [9]. 

Stainless steels are extensively used as base (or bulk) materials in various applications 

operating under harsh environmental conditions due to their good corrosion properties [10]. 



5 

 

However, their poor mechanical and tribological properties have motivated the use of advanced 

materials for protective coatings.  

Iron aluminides have gained interest and became an attractive class of materials for high 

temperature applications since the 1930s when its good resistance to corrosion and oxidation at 

high temperature was noticed. The use of iron aluminides for heating elements, furnace 

components, compressor blades in a jet engine, piping and tubing for automotive was considered 

as an important advancement in the field of intermetallics [11]. Furthermore, the application area 

of iron aluminides was extended to fossil fuel energy applications due to additional benefits such 

as good sulfidation resistance at high temperature [12, 13]. 

Beside all advantages at high temperature, iron aluminide alloys are known to be low-

density (5.4 - 6.5 g/cm3) materials and inexpensive to manufacture compared to many steels, bulk 

materials and other intermetallics. Such attributes have motivated the consideration of this class 

of intermetallics for structural applications under ambient conditions [14]. However, the low 

ductility (<5 %) and the low tensile strength at ambient temperatures limits the use of iron 

aluminides in the field where wear resistance is required [15-18].  

The work carried out at the Oak Ridge National Laboratory by McKamey and his 

colleagues have significantly contributed to the recognition of iron aluminide alloys as potential 

materials for structure applications. They have demonstrated that satisfactory ductility of about 

10 to 15 % could be achieved by controlling the composition and the microstructure of iron 

aluminide alloys [11]. Therefore, renewed interest in iron aluminides for applications where 

excellent mechanical properties are required grows significantly over the years. 

Research on iron aluminides has been intensified since an increase of the room temperature 

ductility was reported [17, 19]. Thereafter, various microstructure modification approaches 

(solid-solution, precipitates and particles strengthening) have led to a significant enhancement of 

the mechanical, tribological and corrosion properties of iron aluminide alloys. Surface 

engineering approaches have also been used to provide the material with new functionality at the 

surface level. 

Although each of these fabrication approaches helps to enhance the tribo-mechanical 

properties, their influence on the microstructure, the mechanical and the tribological properties of 

the iron aluminides could not be clarified from independent studies in the literature. In addition, 
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the wear behavior or the corrosion behavior of almost all existing materials have been studied and 

reported in the literature. However, the knowledge of wear in the absence of corrosion, and that 

of corrosion in the absence of wear is insufficient to predict the tribocorrosion behavior of 

materials [20].  

In this chapter, I will present the context of this work and the objectives of my Ph.D. thesis. 

Then, I will continue with the list of publications resulting from this work and conclude with the 

general outline of this thesis. 

1.1 Context and previous studies 

The search for new challenges is something that has fascinated me since my young age. 

After my bachelor's degree in Physics at the University of Buea, Cameroon, I was offered the 

possibility to continue my graduate studies in Sweden; a country where the name reminded me, at 

the time, of tricky math problems in high school called "le concours suédois" from Monge, and 

the Swedish winter.  

I was slowly introduced to the world of scientific research from multiple group projects 

within the Master program in Physics, and I was fortunate to have carried out my final-year 

project at the Angstrom Laboratory, Uppsala University in collaboration with ChromoGenics 

AB. It was an exciting project about studying the effect of insertion and extraction of different 

types and sizes of cation into electrochromic films on the coloration and de-coloration of the 

transparent flat panel devices. I participated in the conception, the fabrication and the testing of 

the devices. In this project, I could assess a correlation between the fundamental research and the 

applications. I was fascinated to have to identify the conditions in which devices will degrade and 

ultimately lose their efficiency. At the end of the project, the perspective pointed toward 

understanding the degradation mechanism of devices. Few months later, after completing my 

Master’s thesis, I was facing another challenge which was to travel to Canada via the skilled 

worker program. 

In my determination of pursuing my career, I met Prof. Ludvik Martinu, Prof. Jolanta 

Sapieha and their collaborators at Polytechnique Montréal few months later after my arrival in 

Montréal. I had told them my research orientations and my interest to work in a project similar to 

that carried out at the Angstrom Laboratory. I expected to study and to understand the 
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degradation mechanism of electrochromic devices using the characterization tools they have in 

their laboratories. Unfortunately, no such project was available at that time. For the mean time, I 

registered to a Master’s program with a project in Engineering Physics, and few months later I 

met again with Ludvik. This time his research group, the Functional Coating and Surface 

Engineering Laboratory (FCSEL) was involved in an R&D project with Hydro-Québec who later 

became partner of the Industrial Research Chair. The project was related to the design, 

fabrication, and testing of coatings, prepared using thermal spray of powder particles in which 

ceramic phases are dispersed, for their tribo-mechanical properties. It wasn't about 

electrochromic materials; however, characterization was a large part of the project. I accepted the 

project even though powder fabrication, thermal spray, and tribology were very new for me. 

I joined the FCSEL as a Master's student and my project was focused on the tribo-

mechanical evaluation of composite coatings prepared using the HVOF technique. I worked with 

Dr. Simon Gaudet, a postdoc at the FCSEL at the time, and I was able to develop my sample 

preparation protocol, and to define my mechanical, tribological and corrosion characterization 

methods. 

After my transfer to the Ph.D. program, I continued with the same project with more 

responsibilities. Beside the tribo-mechanical characterization of composite coatings, I was 

involved in the powder and coating fabrication. Therefore, I was participating in every aspect of 

the development from the fabrication to the characterization of coatings. It was easy for me to 

make a link between the resulting tribo-mechanical properties and the coating fabrication 

conditions.  

1.2 Objectives 

In the context of this collaborative project and the needs of the industrial partner, the 

principal objective of this project was to apply the concept of structural modification and surface 

engineering to the iron aluminide to enhance the mechanical, tribological and the corrosion 

properties. To accomplish this Ph.D. project, the main goal can be divided into specific objectives 

namely:  

a) To develop wear-resistant coatings based on iron aluminides reinforced with boride and 

nitride phases. Basically, the main goal was to obtain significantly enhanced tribo-
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mechanical properties by the addition of an optimum amount of different types of secondary 

phases formed within the matrix via solid state reactions during the powder fabrication 

process. 

b) To characterize the properties of the materials and to establish a relationship between the 

microstructure and the resulting tribo-mehanical properties. 

c) To evaluate the influence of the microstructural design on the corrosion and tribocorrosion 

properties of coating systems. 

d) To identify and to understand the mechanisms of the material loss.  

From the previously mentioned objectives, this Ph.D. work has led to five publications, 

three already published and two manuscripts submitted to peer reviewed journals (Table 1.1). 

Note that this thesis is presented by articles, and Chapters 4 to 8 represent the five published or 

submitted articles.  Indeed, my collaboration on various projects during the past four years has 

also resulted in the publication of two other articles in international journals (Table 1.1) and 

conference proceedings (Table 1.3).  

1.3 Thesis outline 

This thesis is divided into nine chapters including the introductory section (Chapter 1). The 

list of peer-reviewed articles that resulted from this research and other collaborations will be 

presented as well as a list of contributions from international conferences and highlights. In 

Chapter 2, I present the essential knowledge for understanding the context of this research; it 

includes the general characteristics of iron aluminide, the description of metal matrix composites, 

the fabrication of enhanced Fe3Al-based materials, the different types of mechanical surface 

response, the tribo-mechanical and corrosion properties of Fe3Al-based coatings. In Chapter 3 the 

experimental methods used in this thesis are described in detail. 

In Chapter 4, which is the integral copy of the first published article, the effect of high-

energy ball milling on the mechanical and tribological properties of Fe3Al-based coatings 

fabricated using the high velocity oxy-fuel (HVOF) technique is described. Composite powders 

are prepared from elementary powders with the purpose of forming ceramic precipitates in the 

Fe3Al matrix during the fabrication process. It will be shown that by combining the mechanical 

ball-milling, the heat treatment and the HVOF techniques, stable boride and nitride phases are 
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formed in the Fe3Al matrix leading to a significant enhancement of the tribo-mechanical 

properties. It will also be shown that the microstructure and the mechanical properties of 

composite powders are preserved in the HVOF coatings.  

The second published article is presented in Chapter 5, where the wear behavior of the 

Fe3Al-based HVOF coatings strengthened with different contents of secondary phases will be 

described. It will be shown that the wear resistance is related to the plasticity coefficient (i.e. the 

ratio of the hardness and the elastic modulus) of the coating and not necessarily with the content 

of the secondary phases. The weakness in the microstructure of thermal spray coatings (i.e. 

porosity, inter-splat boundaries) will be highlighted with respect to the mechanical and 

tribological properties of the HVOF coatings. 

In Chapter 6, I present my third published article where the mechanical and the wear 

behavior of the HVOF Fe3Al-TiN-TiB2 coatings prepared from two different ways namely the in 

situ and the ex situ powder fabrication routes will be compared with respect to different sliding 

velocities. In fact, the in situ fabrication approach is the one in which secondary phases are 

formed within the matrix during the fabrication process while the ex situ approach is the situation 

where pre-formed phases are added into the matrix. It will be shown that in situ coatings exhibit 

nano scale inclusions uniformly dispersed in the Fe3Al matrix compared to randomly distributed 

micron sized inclusions in the ex situ case. The tribo-mechanical performance and the 

degradation mechanisms will be discussed with respect to the characteristics (microstructure, 

plasticity coefficient etc.) of the coatings. 

The tribo-mechanical behavior of two thin-on-thick (duplex) coating systems consisting of 

a sputter-deposited CrN and DLC top layers on the SS304 substrate, the Fe3Al and the Fe3Al-

TiN-TiB2 coatings will be investigated under different loading conditions in Chapter 7. It will be 

shown that the addition of the CrN and DLC top coats can help to increase the wear resistance of 

the SS304 substrate and HVOF coatings. The load carrying capacity of the thick HVOF coatings 

will be compared to the SS304 substrate.  

In Chapter 8, the influence of the sputter-deposited CrN and DLC top coats on the 

corrosion behavior of the Fe3Al coatings, prepared using the HVOF technique, will be studied in 

a chlorine-containing NaCl aqueous solution. The corrosion behavior and the degradation 
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mechanisms of the thin-on-thick systems will be investigated using electrochemical impedance 

spectroscopy and the assessment of the simultaneous action of wear and corrosion. 

In the last chapter, I present a summary of the main results presented in this thesis as well 

as the general discussion. This is followed by the open questions and research orientations that 

can be considered in the future in order to further improve the tribo-mechanical characterization 

of thermal spray coatings. 

Table 1.1: Peer reviewed publications resulting from this thesis. 

F. Pougoum, J. Qian, Z. Zhou, K. Y. Li, L. Martinu, J. Klemberg-Sapieha, S. Savoie, R. Lacasse, 

E. Potvin, R. Schulz, "Study of corrosion and tribocorrosion of Fe3Al-based duplex PVD/HVOF 

coatings against alumina in NaCl solution "submitted to Journal of Materials Science and 

Technology. 

 F. Pougoum, J. Qian, Z. Zhou, K. Y. Li, L. Martinu, J. Klemberg-Sapieha, S. Savoie, R. Schulz, 

"Tribo-mechanical properties of Fe3Al-based PVD/HVOF duplex coatings " submitted to Wear. 

F. Pougoum, T. Schmitt, L. Martinu, J. Klemberg-Sapieha, S. Savoie, R. Schulz, "Wear behavior 

of Fe3Al-TiN-TiB2 HVOF coatings: A comparative study between in situ and ex situ powder 

processing routes" (2017) Ceramics International, 43, 8040 - 8050. 

 F. Pougoum, L. Martinu, J. Klemberg-Sapieha, S. Savoie, R. Schulz, "Wear properties of Fe3Al-

based HVOF coatings strengthened with in situ precipitated nitride and boride particles" (2016) 

Surface and Coatings Technology, 307, 109-117.  

F. Pougoum, L. Martinu, P. Desjardins, J. Klemberg-Sapieha, S. Gaudet, S. Savoie, R. Schulz, 

"Effect of high energy ball-milling on the characteristics of Fe3Al-based HVOF coatings 

containing boride and nitride phases" (2016) Wear, 358, 97-108. 
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CHAPTER 2 LITERATURE REVIEW 

In this chapter, I will give an overview of the general characteristics of iron aluminides and 

an introduction to composite materials. The various microstructural changes that can lead to the 

enhancement of mechanical, tribological and corrosion properties of the Fe3Al will be presented.  

2.1 General characteristics of Fe3Al 

2.1.1 Phase diagram 

Iron aluminides is a class of intermetallics that exhibit a variety of structural forms. In the 

context of this thesis, the base material consists of the iron aluminide with the Fe3Al phase. The 

phase diagram of the binary Fe-Al system is shown in Figure 2.1. In the iron-rich region there 

exists a disordered solid solution (a), an imperfectly ordered B2 structure, an ordered Fe3Al with 

a D03 structure, and regions of the phase diagram of a + B2 and a + D03. The range of 

composition of iron aluminides suitable for structural applications is in the iron-rich region where 

the Fe3Al phase is found [11, 19]. 

 

Figure 2.1: Phase relationships in the Fe-Al system, adapted from [11]. 

The schematic representation of the crystal structure of the Fe3Al phase (ordered D03 

structure) and the FeAl phase are shown in Figure 2.2. The D03 structure is a body-centered cubic 



14 

 

(b.c.c) structure which consists of eight B2 superlattices arranged such that aluminum and iron 

body-centered atoms alternate so as to maximize the spacing between aluminum atoms [14]. The 

B2 structure can be viewed as two interpenetrating simple-cubic lattices with iron atoms 

occupying one sublattice and aluminum atoms the other one, resulting in an AB-type 

stoichiometry, namely the FeAl.  

During the ordering transformation, small ordered regions nucleate and grow on different 

sublattice sites until they occupy the entire volume of the crystal. This process results in the 

creation of a planar ordering fault at the interface of the small regions which is known as the anti-

phase boundary (APB). Different APB faults exist depending on the structure of the iron 

aluminide phase. In the B2 structure, only one type of APB can be found; this formed during the 

transformation from disordered a-phase to the B2 phase; it consists of a fault vector of 1/2 a0 

<111> (a0 is the lattice parameter of the unit cell of the B2 superlattice). In the ordered D03 

structure, two types of APB occured. The first APB appears in a similar transformation as in the 

B2 phase with a fault vector of 1/4 a<111>; the second APB (D03-type) forms during the B2-D03 

transformation with a fault vector of 1/2 a<100> (a is the lattice parameter of the unit cell of the 

D03 superlattice).     

 

Figure 2.2: Schematic representation of a unit cell of the Fe3Al 

(D03) and FeAl (B2) superlattices, adapted from [11]. 

2.1.2 Mechanical properties 

In general, the mechanical properties of iron aluminides are influenced by many factors that 

include the composition, the type and amount of ordered structure, the environment, alloying 

additions and defects. In such a binary system, the hardness and the tensile yield strength of iron 
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aluminides increase with respect to the aluminum contents. Thus, the stoichiometric composition 

near the Fe3Al phase (e.g. between 20 and 40 at% of Al) has been shown to be the optimum 

composition range. Such compositions can lead to good mechanical properties in the iron-rich 

region of the Fe-Al phase diagram compared to austenite steel (e.g. stainless steel 300 series) 

[11]. Moreover, a higher amount of ordered D03 phases is expected near this range inducing a 

high number of APB which can help to stop the movement of dislocations. Nevertheless, a 

decrease of the mechanical properties can be observed when the aluminum content increases 

above the D03 limit (Figure 2.3). This limit is related to the decrease of the APB's energy. 

Strengthening in iron aluminides has also been related to grain refinement and to some extent the 

presence of defects [14].  

 

Figure 2.3: Room temperature tensile yield strength as a function of 

aluminum content in binary Fe-Al alloys, adapted from [11]. 

Iron aluminides with the Fe3Al phase is known to be intrinsically ductile. However, its 

room-temperature ductility is low (below 2 %) regardless of the type of the ordered structure 

(D03 or B2) present. The poor ductility of iron aluminides at ambient temperatures with the 

presence of moisture or water vapor is attributed to the effect of hydrogen embrittlement. In this 

situation, the reaction between the water vapor and aluminum in the alloy produces alumina, and 

generates hydrogen atoms which are chemisorbed at the surface of the material, migrate into 

crack tips causing brittle cleavage crack propagation [21]. Nevertheless, the alloy addition such 

as chromium [19] or the grain refinement (down to micron scale) [15] can be used to enhance the 
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ductility of iron aluminides at ambient temperatures. The addition of chromium will favor the 

formation of an oxide layer to protect the surface of iron aluminide while grain refinement will 

generate a large number of interfaces that can stop crack propagation. 

2.2 Development of Fe3Al-based metal matrix composites 

Metal matrix composites (MMC) are considered as a combination of at least two 

chemically and physically distinct phases such that the resulting properties are unachievable by 

only one component. A MMC consists of a matrix material and a specific volume or number of 

secondary phases (e.g. hard particles) randomly dispersed. MMC materials have been used in 

various engineering applications due to their excellent mechanical and tribological properties. For 

a specific application, the design of a MMC material is chosen accordingly [22], and it can be 

classified with respect to the type of inclusions (particles, whiskers or fibers). 

2.2.1 Matrix materials 

Matrix materials commonly used for MMC are metals and intermetallics due to their ability 

to be deformed and processed at low temperature, and also to their low density and low melting 

temperature. Iron aluminide is a promising candidate for the matrix component in a MMC, it is 

inexpensive to produce, and it exhibits good corrosion and oxidation properties at high 

temperature (advantage for high temperature applications) [15, 23]. In addition, a wide range of 

ceramic materials can be used as secondary phases, and it has been shown that these inclusions 

are thermodynamically stable an iron aluminide matrix [24]. 

2.2.2 Secondary phase materials 

The choice of secondary phases for a MMC is based on their compatibility with the matrix, 

their mechanical properties, their morphology (shape and size), as well as their cost. Among the 

inclusions that are used as secondary phases, particulates have been shown to be suitable for 

MMC. Particulates are used in a MMC to provide isotropic properties, and a substantial 

enhancement in strength and stiffness can be achieved [25]. In general, ceramic materials such as 

boride, carbide, nitride and oxide phases have been commonly used as secondary phases in 

MMC. They exhibit excellent mechanical characteristics compared to various alloys (Figure 2.4). 
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26 CHAPTER 3 OVERVIEW: MECHANICAL PROPERTIES OF CERAMICS

  2.     The hardness of a new ceramic composition or of a ceramic processed using 
a new synthesis (sintering) route should be measured using varying indent 
loads. This can reveal any  “ indentation size effect ”  and a conservative estimate 
of  “ true hardness ”  can be obtained.    

 To obtain a reliable measurement for hard ceramics, it is suggested to use 
electron microscopy to measure the indent diagonal (length scale in  “ micrometer 
order ” ) as any small error in measuring the diagonal length will lead to a large error 
in hardness (see also Eq.  3.7 ). 

 To illustrate the extremely high hardness of ceramic materials, Figure  3.6  
presents a comparison of hardness properties of various materials. Many of the 
ceramics have much higher hardness than all the refractory metals. In general, the 
hardness of ceramics varies in the range of 10 – 40   GPa. Just to realize how high such 
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            Figure 3.6     Comparison of various materials in terms of basic mechanical properties: 
(a) elastic modulus and (b) hardness.  23    
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Figure 3.6 (Continued )

values are, the hardness of fully hardened martensitic steel is around 7   GPa. Most 
ceramics, such as zirconia, alumina, and SiC, are around two to three times harder 
than fully hardened steel. As is explained later, the high hardness of ceramics imparts 
good wear resistance in various engineering applications.    

   3.3.2    Compressive Strength 

 Although ceramics have low tensile strength, they have a superior compression 
property. The difference can be ascribed to microstructural response to crack growth 
and the nature of crack propagation under two different loadings. The stress – strain 
response under tension and compression is compared in Figure  3.7 . While ceramics 
behave like a perfectly linear elastic material up to fracture, they exhibit a nonlinear 
response after reaching peak load (much higher than that in tension) in compression. 
As opposed to tensile crack growth, the cracks tend to extend vertically along the 

 

Figure 2.4: Comparison of various materials in terms of basic mechanical 

properties: (a) elastic modulus and (b) microhardness, adapted from [26]. 

The type and volume fraction of secondary phases dispersed in an iron aluminide matrix 

have been shown to influence the mechanical properties. Schneibel et al. have shown that 

irrespective of the chemical composition of ceramic materials, a maximum hardness is achieved 

with a specific number of secondary phases (Figure 2.5) [27]. The size of secondary phases and 

their spatial distribution in the matrix are important aspects that can also affect the mechanical 

properties of materials. The reduction of particle (or grain) size can lead to enhanced mechanical 

properties due to the increase of the amount of grain boundaries that block or stop crack 

propagation and dislocations in the material. However, the critical limit of grain refinement (grain 

size) is defined by the Hall-Petch relationship [28] which states that the yield strength is inversely 

proportional to the square root of the grain size. This relation was independently demonstrated by 

Hall [29] and Petch [30]. 
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flaws (presumably shrinkage cracks formed during the FeAl/boride composites exhibit substantial 
the solidification of the iron aluminide). At high porosity at lower ceramic volume fractions than 
ceramic volume fractions, pores similar to, or the FeAl/carbide composites. For comparison, 
larger than, those in Fig. 2 reduced the measured typical data for the Co/WC system are indicated.16 
densities below the theoretical ones. Optimum den- Since Co/WC may be processed to full density 
sities, i.e. minimum porosity, were obtained for even at very large WC volume fractions, it is free 
boride volume fractions on the order of 40%, and of porosity and its hardness at volume fractions 
carbide volume fractions on the order of 50-60X. above 60% exceeds that of FeAlWC. 

In attempts to remove the residual porosity, 
some composites were liquid-phase sintered at 
1723 K for times much longer than 900 s. As 
shown in Fig. 5, the longer sintering times did 
lead to density increases. However, whereas the Al 
content of the FeAl matrix in the composite con- 
taining 30 ~01% TiB, was approximately 39 at’% 
after sintering for 900 s, it dropped to approxi- 
mately 22 at% after sintering for 14.4 ks, as deter- 
mined by EDS. At the same time, no obvious 
changes in the level of residual porosity were 
noted. It is therefore concluded that evaporation 
of Al during vacuum sintering was a major factor 
contributing to the density increases. This is par- 
ticularly apparent for the 30% volume fraction, 
where the measured density substantially exceeds 
the theoretical one. It is easily verified that the 
measured densities are consistent with estimates of 
the theoretical density assuming an aluminum 
concentration of 22 ato/o for the matrix. 

Figure 7 shows the room temperature bend 
strength of FeAl/WC for different WC volume 
fractions.i4 The maximum bend strength, around 
1460 MPa, is found for a WC volume fraction of 
approximately 600/o. Consistent with the signifi- 
cant porosity found above 60 ~01% WC (see Fig. 
4), the bend strengths start to decrease above this 
WC volume fraction. For comparison, WC/Co 
hard metals with a WC volume fraction of 64% (75 
mass %) exhibit bend strengths on the order of 
2600 MPa.16 Since bend strengths depend on fac- 
tors such as grain size, microstructural homogene- 
ity, pore size distribution, and surface condition, 
none of which have been optimized for the present 
composites, it is likely that the bend strength of 

The hardness values, shown in Fig. 6 as a func- 
tion of the ceramic volume fraction, are consistent 
with the measured densities. Roughly speaking, 
the different composites all fall on one master 
curve, as long as their ceramic volume fraction 
does not exceed a critical value, which depends on 
the type of ceramic. Once this volume fraction is 
exceeded, the hardness drops off due to excessive 
porosity. The hardnesses of the FeAl/boride com- 
posites drop off at lower ceramic volume fractions 
than those of the FeAl/carbide composites, since 
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Figure 2.5: Comparison between Rockwell-A hardness FeAl composite 

prepared by the liquid phase sintering and melt infiltration, and WC/Co [31]. 

2.3 Fabrication of enhanced Fe3Al-based materials 

2.3.1 Mechanical milling 

Mechanical milling (MM) is a typical powder processing method widely used to produce 

materials in powder form with a fine and homogeneous microstructure that cannot be achieved 

from other conventional techniques. In the MM process, some number of elementary powders 

and milling balls are mixed in a jar or vial, and agitated at constant frequency for a specific 

period of time. During milling, the mechanical energy provided to powder particles depends on 

the milling system used. The horizontal arrangement (Figure 2.6) of a MM system is commonly 

used because it eliminates the effect of gravity on the grinding media and powder particles during 

processing, and provide a homogeneous particle size reduction [32]. 
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Figure 2.6: Schematic representation of the 

side-view of a horizontal MM apparatus. 

In a horizontal MM system, the energy transferred to the powder materials (pre-crushed or 

atomized) comes from the grinding media (rotors, vial and milling balls). During contact with 

milling balls, powder particles are highly stressed by high-energy collisions leading to severe 

deformation, particle reduction and/or particle growth by cold-welded [32]. Knowing that the 

primary source of energy transferred to powder materials is collision, different models have been 

developed to understand the effect of milling parameters (ball size, rotation frequency) on the 

milling time and reaction paths. For a single collision, the energy transferred to powder particles, 

!"    can be expressed as [33]  

!" = $
% &'()*)%   (2.1) 

where, !"    is the mass of the milling ball and !"    the relative impact velocity. !"    is a constant that 

depends on the elasticity of the collision: if the collision is perfectly elastic, !"    = 0, no energy is 

transferred. For perfectly inelastic collision, !"    = 1, i.e. the total energy generated is transferred. 

The relative impact velocity can be expressed as follows  

!" = $"%&'&     (2.2) 
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where, !"    and !"    are the angular velocity and the radius of the motor. !"    is a constant that 

depends on the geometry of the milling device. The collision frequency of a single milling ball 

can be expressed as  

! = #$%&                                            (2.3) 

where, !"    is a constant that depends on the geometry of the milling device. For a suitable number 

of milling balls, !"   , the total collision frequency nt can be given by the following expression 

!" = !	%& = %&'()*                            (2.4) 

These energy transferred characteristics can be applied to various milling systems with the 

consideration that the number of milling balls is the same [34]. Note, control agents can be added 

to the powder mixture to reduce the excess cold-welding, and avoid sticking of powder materials 

on the walls of the grinding vessel and milling balls during the process. In general, the HEBM 

process is carried out in a controlled environment (argon, nitrogen etc.), and the grinding vessel is 

usually cooled to avoid overheating of the system.  

During collisions, the mechanical energy transferred to powder materials can promote 

structural changes and/or phase transformations in the mixture. Such transformations usually 

happen through mechanosynthesis, and depend on the characteristics of powders (composition, 

mechanical properties, particle size etc.) as well as milling parameters (ball size, rotation speed). 

In principle, powder particles flattened and their surface area increases, as the milling process 

evolves. The exposure of new surfaces and the reduction of powder particle sizes can help to 

decrease the diffusion path, and increases the reaction activity between elementary powders [35]. 

In addition, a solid-state reaction can occur if the transferred energy is sufficiently higher than the 

activation energy of the new phase [34]. 

Iron aluminide alloys have been prepared using the MM processing [36-38]. It has been 

reported that several properties or characteristics of iron aluminides can be influenced by the 

mechanical milling.  The ordered B2 or D03 phases can be transformed to a disordered structure 

upon MM since powder particles are subjected to intense plastic deformation [39]. An increase of 
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the lattice parameter of iron aluminide alloys of about 0.8 % has been reported as well as the 

reduction of the grain size [40]. Consequently, the latter effect can cause a slight enhancement of 

the mechanical properties of iron aluminides [36]. 

2.3.2 Thermal spray techniques 

Thermal spray is a large group of techniques that can be used to deposit materials prepared 

in the form of wires, rods or powders. Materials to be sprayed range from metallic to nonmetallic. 

In principle, materials in a molten, semi-molten or solid particles are accelerated and propelled 

onto a substrate at high speed. The mechanism of the coating formation is similar to all thermal 

spray deposition systems. Deposits are formed from a buildup of splats (flattened droplets, 

melted or semi-melted particles) via mechanical bonding upon impinging the substrate 

(Figure 2.7). The substrate is often roughened to improve adhesion of particles or splats. 

 

Figure 2.7: Scanning electron spectroscopy micrograph of a cross-section 

showing the typical lamellar microstructure of thermal spray coatings. 

In thermal spray techniques, heat is the source of energy used to process materials. This 

source of energy can be grouped in three main categories namely flame, electric arc and plasma. 

Thermal spray techniques can also be classified in terms of the initial form of materials to be 

sprayed (wire, rod or powder) the pressure inside the spray gun, the gas temperature, and the 

particle temperature and velocity (Figure 2.8).    
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Cold Spray Process

COLD SPRAYING has come to be understood, within the
larger family of thermal spray processes, as a materials deposition
process in which relatively small particles (ranging in size from
approximately 1 to 50 µm in diameter, as shown in 
Fig. 1) in the solid state are accelerated to high velocities (typically
300 to 1200 m/s, or 980 to 3940 ft/s), and subsequently develop a
coating or deposit on an appropriate substrate by an impaction
process. Various terms—including “kinetic energy metallization,”
“kinetic spraying,” “high-velocity powder deposition,” and “cold
gas-dynamic spray method”—have been applied to the general
form of this technique. In most instances, deformable powder par-
ticles are brought to high velocities through introduction into a
nozzle, employing gas-dynamics principles of converging/diverg-
ing flows to develop high-velocity gas streams.

The mechanism by which the solid-state particles deform and
bond, both to a substrate and to each other, is not well understood;
however, it is thought that the high-velocity impact disrupts the
oxide films on the particle and substrate surfaces, pressing their
atomic structures into intimate contact with one another under
momentarily high interfacial pressures and temperatures (Ref 1).
This hypothesis is consistent with the fact that while various duc-
tile materials, including metals and polymers, have been cold-
spray deposited, attempts to deposit brittle or hard materials, such
as ceramics, have not been successful unless they are codeposited
with a ductile matrix material.

Process optimization is based on operational parameters of the
particular application device (typically a gas nozzle) that permit a
suitable distribution of particle velocities for producing the
desired physical properties of the deposit for any given material.
Typically these parameters include the gas preheat temperature,
pressure, nozzle geometry, and throat size. A critical process
parameter is the feedstock powder material itself—primarily par-
ticle size distribution and particle attributes such as oxide skins
and mechanical properties, which influence the ability to form a
compacted layer. Operational parameters are typically selected to
achieve the most suitable coating for its intended application at the
lowest operational temperatures and gas flows.

The distinguishing feature of the cold spray process compared
with conventional thermal spray processes is its ability to produce
coatings with preheated gas temperatures in the range of 0 to 700
°C (32 to 1290 °F), a range that is generally lower than the melt-
ing temperature of the coating particle materials. The nozzle exit
temperature is substantially lower than the gas preheat tempera-
ture, further lowering the temperature excursions experienced by
the feedstock particles. Consequently, deleterious effects of high-
temperature oxidation, evaporation, melting, recrystallization,
residual stresses, debonding, gas release, and other concerns asso-
ciated with thermal spray methods employing a liquefaction step
are minimized or eliminated.

Figure 2 compares the particle velocity and gas temperature
ranges of cold spray and other thermal spray processes (Ref 2).

When the particle velocity (Vp) is too low for a given coating/sub-
strate combination, the feedstock particles are simply reflected
from the surface and do not form a contiguous coating or deposit.
At higher values of Vp solid particle erosion of the surface may
occur, as with shot blasting of surfaces. When Vp exceeds a criti-
cal value Vcrit (which varies with particle and substrate material),

Fig. 1 Micron-sized copper powder used in cold spray experiments/appli-
cations. Source: Ref 1

Fig. 2 Temperature/velocity regimes for common thermal spray processes
compared to cold spray technology. Source: Ref 2

Cold Spray Process, as published in
Handbook of Thermal Spray Technology
J.R. Davis, editor, p 77-84

ASM International and the Thermal Spray Society, 2004
Copyright © 2004 ASM International®

 

Figure 2.8: Comparison between thermal spray processes with respect to the 

gas temperature and the particle/droplet velocity generated out of the gun [41]. 

2.3.2.1 High velocity oxy-fuel 

In flame spray, the source of energy is a hot gas produced using a combusting fuel gas such 

as acetylene, kerosene or natural gas. Here, materials in the form of powder, rod or wire are 

introduced in the expanding hot flame, heated and expelled at high velocity toward the substrate 

[42]. Therefore, coatings are formed as described previously. 

Among flame spray processes, the high velocity oxy-fuel (HVOF) technique (Figure 2.9) is 

widely used due to its ability to generate a relatively low gas temperature (~2800 °C) and a high 

gas velocity (~1800 m/s). In addition, the HVOF technique can be used to produce high quality 

coating with high deposition efficiency (>60 %), a high thickness (~mm), a low porosity level 

(<2 %) and a good adhesion (bond strength >70 N.m-2) on a wide range of substrates [43]. 

The HVOF technique was developed in the 1980s by Browning Engineering Co and the 

first commercial HVOF spray system was the Jet Kote. Thereafter, other HVOF systems were 

developed based on the design of the nozzle while keeping the same operational principles. Over 

the years, the evolution of HVOF systems spans over three generations. In the first and second 

generation HVOF systems, the combustion pressure can vary between 3 and 5 bar. This can lead 

to a particle velocity of about 450 m.s-1 while in the third generation, the combustion pressure is 

higher (6 - 10 bar) as well as the particle velocity (600 - 800 m/s) [43]. 
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2.3.2.1.1 Basic principles in a HVOF system 

In a HVOF system, the materials to be sprayed are in powder form with a well-defined 

range of particle sizes. In such a system, oxygen is mixed in the combustion chamber with a 

combusting fuel (e.g. kerosene, natural gas or propane etc.). The ignition of the mixture leads to 

the formation of a hot and high-pressure gas that expands and flows toward the nozzle. The 

reaction between a hydrocarbon fuel (kerosene) and oxygen is represented by the following 

equation [44]:  

!"#$% + (( + %
) )+, = .//∈12     (2.5) 

where !"    is the molar fraction of component !   in the combustion product (!"  ), and !   is the 

equivalent ratio. The parameter !   is defined as: ! = #$%& '()*+,- #$%& '()*+,-./    

where !"   means stoichiometric.  

Powder particles are introduced in the gas stream (at a precise location after the exit of the 

nozzle) for heating. The velocity of the expanding gas at the exit of the nozzle depends on the 

design. It can reach supersonic speeds with a converging/diverging nozzle [43]. 

 

Figure 2.9: Schematic diagram the HVOF spray system in operation [45]. 

2.3.2.1.2 Gas and particle flow characteristics in the HVOF deposition process 

Before impinging the substrate, powder particles interact with the gas flow. The coating-

quality strongly depends on particle velocities and particle temperature before impact on the 
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substrate. Several models have been developed based on numerical simulations for the 

understanding of the gas dynamics in HVOF systems [45]. The combustion process in a HVOF 

gun is similar to that of a rocket suggesting that a one-dimensional model can be used to interpret 

the interaction between a particle and the gas flow. Therefore, the trajectory of a single particle of 

mass !"    in the gun is determined, using its equation of motion under the influence of the gas 

dynamic drag as follows [44]:   

!"
#$%
#& =

(
) *#+,-"(/#-/") /#-/"    (2.6) 

where !"    u!   is the particle axial velocity, !"    the drag velocity, !"    the projected area of the 

particle on the plane perpendicular to the flow direction, !"    the drag coefficient, and r!    is the 

density of the gas. Note that the term in the absolute sign represents the relative velocity between 

particles and the gas in a moving fluid. In HVOF systems, powder materials are in general non-

spherical particles. Therefore, a new drag coefficient value as a function of the Reynolds number 

(Re), which accounts for the sphericity is used [43, 44].  

The heating of powder particles can be described using the following heat conductivity 

equation [45]:  

!"#"
$%&
$' = )*"+,-.(0.-0")    (2.7) 

where !"    is the specific heat of the particle, !"    the gas temperature, !"    the particle temperature, 

!"    the particle diameter, !"    the thermal conductivity of the gas and !"    the Nusselt number 

(which is a function of the Reynolds and Prandtl numbers [45]).  

2.3.2.2 Electric arc spray 

In this process, two consumable wires (ideally from the same material) acting as electrodes 

are connected to a direct current (dc) power, and melting of the materials occurs when wires 

touch in the gun. Therefore, material droplets with size in the micron range can form at the tip of 
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the electrodes, and are atomized using a compressed air and propelled toward the substrate 

(Figure 2.10).  The electric power is in the range of 5 to 10 kW and the arc voltage varies 

between 20 and 40 V. The size of the droplet increases with respect to the arc voltage. All 

electrically conductive materials can be sprayed using the arc spray process [46].   

 

 

Figure 2.10: Schematic diagram of a side-view of the electric arc wire spray process [42]. 

2.3.2.3 Plasma spray 

Plasma spray systems can be divided into two commonly used processes namely the 

air/atmospheric plasma spray (APS) and the vacuum plasma spray (VPS). In the APS process, the 

plasma is generated when an inert gas (e.g. argon) or a mixture of argon and hydrogen is heated 

by a dc arc. The VPS gun is basically a modified plasma torch which operates in a vacuum under 

a pressure range between 10 and 50 kPa. The working principle is similar for both processes, 

where powder particles are introduced in the plasma, heated and accelerated toward the 

workpiece (Figure 2.11). During the operation, the power of an APS gun can vary between 20 

and 200 kW [42]. As shown in Figure 2.8, the gas temperature in plasma spray guns is well 

above the melting point of all materials which can be detrimental to some applications. 
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Figure 2.11: Schematic diagram of a side-view of a typical plasma spray system [47]. 

2.3.2.4 Cold pray 

Cold spray is a relatively new technique in the family of thermal spray. It can allow the 

deposition of powder particles ranging from 1 to 50 µm in size. In this process, the gas 

temperature ranges from 0 to 900 °C and the temperature of particles at the exit of the gun is low 

(below the melting point of the material) compared to other thermal spray techniques 

(Figure 2.8). After heating, particles are accelerated toward a substrate with a velocity varying 

between 300 and 1200 m.s-1, and particles deform plastically upon impinging the substrate 

(Figure 2.12). With cold spray, coatings are formed from the buildup of plastically deformed 

solid particles, thus minimizing the effect of high temperature oxidation, melting, evaporation or 

recrystallization [42]. 
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Figure 2.12: Schematic diagram of a side view of a cold spray system [48]. 

2.4 Characteristics of Fe3Al-based composites 

2.4.1 Mechanical surface response 

Understanding a tribological process between at least two solid bodies is related to the type 

of interactions between tribological contacts. Therefore, the selection of materials for surface 

protection must be guided by a good understanding of such interactions. Upon the effect of 

loading or chemical reactions, the surface response can lead to severe deterioration. 

2.4.1.1 Elastic response 

For a material subjected to contact stresses (e.g.: tensile and compressive loadings), its 

mechanical behavior is characterized by the stress-strain curve. The typical stress-strain curve for 

brittle and ductile materials is presented in Figure 2.13 where stress (s) is plotted as a function of 

the strain (e). The elastic response from the material is represented by the linear portion of the 

curve. This behavior is reversible and is defined by Hooke's law,  

! = #$       (2.8) 

where E is the Young's modulus of the material. 
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Figure 2.13: Typical stress-strain curve for brittle and ductile materials [49]. 

2.4.1.2 Plastic response 

Plastic deformation (or a permanent deformation) takes place in the material when contact 

stresses induced by the effect of loading reaches a certain maximum. At this point, namely the 

elastic limit (also known as the material's yield strength), the material can no longer recover from 

such deformation. Indeed, above the elastic limit, the Hooke's law is no longer valid. This 

parameter is commonly obtained from the stress-strain curve by drawing a parallel line to the 

linear elastic portion that intercept the x-axis (Figure 2.13). The point of interception on the x-

axis corresponds to ~0.2% of the strain whereas on the stress-strain curve the yield strength of the 

material can be obtained. In some cases (e.g.: coatings or engineered surfaces), the hardness 

represents the strength of the material since the yield strength of a surface is not practically easy 

to measure [50]. 

2.4.1.3 Fracture response 

Fracture is a phenomenon that occurs when the contact stress applied on a material exceeds 

a certain limit. It is characterized by a sudden rupture of the material in an elastic or plastic 

deformation regime. For brittle materials, the fracture will occur with a little or no plastic 

deformation as illustrated by the point A in Figure 2.13. In the case of ductile materials, the 

rupture arises following a significant plastic deformation that lead to crack initiation at a local 
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point where stress is concentrated. These cracks propagate and reach a critical length where the 

rupture of the material occurs [50]. 

2.4.2 Wear 

In tribology, the physical meaning of wear is well understood but a formulation of its 

definition, which includes all aspects of its meaning, does not exist. In general, a broad definition 

of wear includes the following concepts: the material loss from a surface, material transfer from 

one surface to another or movement of material within a single surface [51, 52]. Wear can be 

defined as the surface damage or material removal when at least two solid surfaces are in relative 

motion of rolling, sliding, or impacting [53]. In such case, the loss of material from a surface can 

be progressive. Wear can also be considered as a process in which surfaces are subjected to the 

material displacement with no net variation in volume or mass loss (change in surface 

topography). 

The evaluation of the rate of wear is based on the real contact area of the surface under 

investigation. Archard and Hirst [54] showed that the rate of wear starts to be independent of the 

contact area when the variation of the contact surface conditions are minimized, and they 

demonstrated that the wear rate is proportional to the normal load. These rules of wear were 

supported by experimental studies in which various wear mechanisms were considered. The wear 

rate, K (mm3/Nm), can be obtained from the following equation: 

! = # $*&  ! = # $*&  ! = # $	´	&   (2.9) 

where V (mm3) is the volume of material loss or displaced, F (N) is the normal applied load and L 

(m) is the total sliding distance. 

2.4.3 Type of wear mechanisms 

In general, a wear process is driven by a mechanical, a chemical or a thermal (frictional 

heating) action that can take place individually or simultaneously between surfaces in relative 

motion. Surface interactions will lead to the alteration of surface morphology and/or properties or 

even to the material loss via various degradation modes. 

A comprehensive classification of wear was proposed by Kragelsky in 1962 (Figure 2.14) 

[3]. In tribology, interactions between surfaces are critical at the level of surface roughness where 
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the nominal contact area is often defined. Under the influence of loading, asperities can be 

subjected to the elastic and/or plastic deformation, resulting to the generation of external 

particles. In some case, the surface with hard asperities will act as abrasive components. 

Moreover, at the tip of asperities, a difference in adhesion bond strength can also initiate material 

loss. Beside all these phenomena occurring because of surface interactions, the frictional heating 

of surfaces will likely accelerate the material loss [55].  

Material removal due to the effect of wear is a common thing that exists between various 

wear degradation mechanisms. This phenomenon is unlikely to be caused by a specific wear 

mechanism instead of a combination of several modes that include abrasion, fatigue, adhesion 

and corrosion [53]. 

11.1.1 Wear Categories

Initially, based on actions on the friction surface, wear is divided into the following three types.

11.1.1.1 Mechanical Wear

On a friction surface, the wear produced by mechanical action includes abrasive wear, surface
plastic deformation, and brittle spalling. Among them, abrasive wear is the most common form in
mechanical wear.

11.1.1.2 Molecular and Mechanical Wear

The molecular force will cause surface point adhesion, and then the mechanical force shears the point
away and thus generate adhesive wear.

11.1.1.3 Corrosive and Mechanical Wear

The surface is first corroded by the chemical reaction caused and then themechanical action in the friction
process accelerates the corrosion process, which includes oxidation wear and chemical corrosion wear.
Clearly, although the above categories explain the causes of wear to a certain extent, it is too general to

be used.

11.1.2 Wear Process

In 1962,Kragelsky proposed amore comprehensive classification ofwear.According to his classification,
he dividedwear into three processes and used each process to illustrate the relationship of different wears,
as shown in Figure 11.1 [1].
The three processes of wear shown in the figure are as follows.

Figure 11.1 Wear classification of Kragelsky.

264 Principles of Tribology

 

Figure 2.14: Wear classification proposed by Kragelsky [3]. 

2.4.3.1 Abrasive wear 

In general, abrasive wear occurs in situations where plastic deformation or fracture can be 

initiated (Figure 2.15). The presence of hard asperities of one of the contacting surfaces or free 

hard particles entrapped between two surfaces in relative motion can result to a plastic 

deformation of the softer surface. Consequently, plowings are formed on the softer surface from a 

series of grooves. This process can lead to subsurface deformation where cracks can nucleate and 
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propagate in the material. In the case where the surface is brittle or exhibits a low fracture 

toughness, cracks initiate from the contact surface or defects (cracks, porosity, etc.) and materials 

can fail by brittle fracture [53]. In addition, the hard asperities of one surface can act as abrasive 

components. 

 

Figure 2.15: Schematic representation of different types 

of abrasive wear mechanisms [53]. 

2.4.3.2 Adhesive wear 

Material loss caused by adhesive wear is characterized by a transfer of materials from one 

mating surface to another. In this process, contact points between two surfaces (asperities) under 

normal pressure are sheared upon repeated sliding when the yield stress is exceeded [52]. The 

damage by adhesive wear can occur locally where the adhesive strength between a strong and a 

weak region of mating surfaces is lower than the breaking strength of these regions. In addition, 

material loss due to the accumulation or buildup of plastically sheared layers of material from 

asperities is also referred to as adhesive wear.  

In general, the loss of the adhesion strength results to the detachment of wear fragments if 

the residual elastic energy of adherent fragment is higher than its cohesive strength in the 

material. In some situations, materials detached from mating surfaces via adhesive wear can be 
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beneficial if acting as solid lubricants, or detrimental if they contain hard particles that can act as 

abrasive components [53]. 

2.4.3.3 Fatigue wear 

As described previously, abrasion or adhesion occurs primarily at the asperities of the two 

surfaces interact. However, in some situations asperities are not subjected to either adhesion or 

abrasion when they interact in a sliding context. Instead, they can be prone to plastic deformation 

due to contact stresses induced upon repeated loading and unloading. Therefore, a continuous 

deformation (until a certain stress limit is exceeded) can lead to crack nucleation at the surface 

and crack propagation in the subsurface. In the presence of defects in the material, these cracks 

can propagate much faster. Fatigue wear can also occur from a stress-dependent chemical 

reaction between the surface of the material and the corrosive medium [53]. 

2.4.3.4 Oxidative and corrosive wear 

Material loss due to chemical or electrochemical reactions depends on the environment in 

which the action takes place. In ambient air, oxygen is the dominant corrosive agent and the 

resulting chemical reaction when sliding occurs in dry conditions between mating surfaces is 

referred to as oxidation. In ambient and dry conditions, the increase of the contact temperature at 

the tip of the asperities can accelerate the oxidation of sliding surfaces [52].  

In wet conditions (presence of an electrolyte), chemical reactions take place due to a 

potential difference between two surfaces (or regions on the same surface), with a passage of an 

electric current, is referred to as the electrochemical corrosion. This type of corrosive wear 

frequently occurs in corrosive media that act as an ion conductor. In the presence of a current 

flow between a region at low potential (anode) and a region at high potentials (cathode), via an 

electrolyte, the material (metallic in most cases) at the anode dissolves producing ions and 

electrons. These electrons migrate from the anode to the cathode in order to reduce ions or 

oxygen in the electrolyte [53]. 

2.5 Enhancement of the tribo-mechanical properties of Fe3Al 

A suitable choice of material design and fabrication techniques usually results in a coating 

with unique microstructure and tailored tribo-mechanical properties [27]. As described 
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previously, changes in microstructure due to the solid-state phase transformation or the 

introduction of defects in the material, occurring during the Mechanical Milling (MM) process or 

the HVOF deposition, can provide the material with enhanced tribo-mechanical properties.  

2.5.1 Strengthening by micro-alloying and grain refinement 

A significant disordering of the iron aluminide structure resulting from the destruction of 

the long-range order of the cubic structure was observed when MM was used to process the Fe-

40%Al alloy leading to an increase in the hardness [39]. In the form of a coating, MM materials 

with disordered structure tend to exhibit an increase in hardness. The disorder structure of the 

MM iron aluminide powder retained in coatings contributed for the higher hardness exhibited by 

the coatings compared to materials with ordered structure [40, 56]. Therefore, the higher hardness 

of such material with disordered structure is attributed to defect hardening in the coatings.  

Grain refinement has been shown to have a positive impact on the toughness and ductility 

of iron aluminide alloys [56]. Similarly, FeAl coatings prepared with finer grains have been 

indicated to exhibit a higher hardness compared to larger powder particles. For thermal spray 

coatings, such a high hardness is attributed to the increased number of inter-splat boundaries [57]. 

However, a contradictory conclusion was reported from a similar study carried out by Grosdidier 

and colleagues [58]. These authors argued that large unmelted particles of MM FeAl powders, 

retained in the HVOF coating, were responsible for the high hardness. They also indicated that 

the hardness value of HVOF coatings increased with respect to the number of unmelted powder 

particles retained in the HVOF coatings (Figure 2.16). The use of different powder samples 

prepared under different milling and HVOF deposition conditions can result to such conflicting 

reports. In order to clarify this misunderstanding, it is imperative to perform a systematic study. 
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Figure 2.16: Evolution of the microhardness as a function of the amount 

of unmelted milled powder particles retained in the HVOF coatings [58]. 

Solid solution strengthening via the addition of alloying elements is another way to 

improve the mechanical properties of iron aluminides. This happens through the insertion or 

replacement of atoms in the cubic structure of the FeAl or Fe3Al. The formation of 

nanocrystalline Fe(Ti, Al) solid solutions were obtained by the MM of the mixture of Fe3Al and 

Ti powders. The addition of Ti was beneficial in two ways; first, a positive influence on the 

hardness was observed since Ti tends to substitute for Fe in the cubic structure of the Fe3Al; 

second the decrease of the grain size was noticed since the microstructure was refined by the hard 

Ti particles [59]. Grain refinement and grain boundary strength has also been achieved in iron 

aluminides with the addition of boron to avoid brittle intergranular fracture [15]. As discussed 

previously, iron aluminides exhibit poor mechanical properties characterized by the low cleavage 

strength and environmental brittleness due to hydrogen embrittlement in the presence of 

moisture. Improved ductility of iron aluminides has also been observed with the addition of C, 

Nb, and Ti into the Fe3Al compound, resulting in a change in slip behavior of superlattice 

dislocation from planar slip to multiple slip process [60].  
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2.5.2 Strengthening by precipitation 

Often, the energy provided to powder materials during the MM process is insufficient to 

initiate solid-state reactions. In other words, this energy is lower compared to the activation 

energy of some secondary phases (e.g.: ceramic materials). Therefore, heat treatment is used to 

bring the extra energy needed for such reactions to take place. MM combined with heat treatment 

has been used to prepare a wide range of MMC materials, for example iron aluminide-based 

composites reinforced with ceramic phases [61-65]. This fabrication approach is often referred to 

as in situ strengthening when the precipitation of secondary phases (ceramic materials in the 

context of this thesis) takes place within the matrix material during the fabrication process. This 

is a cost-effective manner to produce MMC leading to fine inclusions and a clean 

matrix/reinforcements interface. The resulting MMC coatings can thus exhibit enhanced tribo-

mechanical properties. 

Among ceramic materials used as secondary phases, carbides are commonly used. 

Krasnowski et al. obtained a nanocomposite material with TiC dispersion from a mixture of Fe, 

Al, Ti and C powders [66]. Nanoparticles of TiC formed within the metallic matrix during MM 

through a solid-state reaction between Ti and C [67]. Using a similar approach, Amiriyan et al. 

fabricated TiC-Fe3Al composite coatings and showed that the hardness and the wear resistance of 

the composite increases with the TiC content. The enhancement of the mechanical properties was 

associated with the precipitation strengthening of the Fe3Al matrix with TiC inclusions [61], 

whereas its high wear resistance was attributed to the load-carrying capacity of TiC particles [68]. 

Moreover, it has been shown that the coefficient of thermal expansion of the FeAl-TiC composite 

can be controlled to match that of various substrate materials by adjusting the TiC content [69].  

A mixture of the Fe, Al, Ti and B powder was heat treated at high temperature in order to 

initiate combustion synthesis reactions (SHS reactions) between elementary powders. The 

resulting material was composed of fine TiB2 particles dispersed in the FeAl matrix phase. The 

Vickers Hardness (HV) of the composites coating increases with the content of the secondary 

phases (TiB2 or TiC) (Figure 2.17) [70].  
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combustion synthesis reaction, TiB2 
crystallizes as the primary crystal, and then 
FeAl crystallizes by a peritectic reaction as 
the secondary crystal. Moreover, when TiB2 
concentration is higher, the primary TiB2 
crystal appears at higher temperatures and it 
coexists with the residual liquid for longer 
periods during cooling, which promotes the 
growth of TiB2 particle at higher TiB2 
concentrations. This may be a reason why 
TiB2 particles were larger when TiB2 
content was higher, as shown in Figs. 3 and 
4. 
Vickers Hardness. As shown in Fig. 6, 
Vickers hardness increased with an increase 
in volume fraction of TiB2. Schneibel et al. 
[2] reported that their liquid-sintered FeAl- 
50%TiB2 composites exhibited a Vickers 
hardness of 730 HV. Our composite having 
the same TiB2 content exhibited a similar 
hardness for combustion-synthesized 
samples without pressure, as shown in Fig. 
6. However, the hardness increased to 
approximately 1000 for combustion- 
synthesized samples with pressure. In all 
composites having different TiB2 content, 
the application of pressure during the 
combustion synthesis brought about an 
increase in Vickers hardness. This 
improvement in hardness was due to the 
decrease in porosity caused by the pressure 
application during the combustion synthesis 
reaction, as shown in Fig. 7. Vickers 
hardness could not be measured for a 
sample having fV =80 %, because it had a 
high porosity of 75% as shown in Fig. 7. 
However, the porosity was reduced to 20% 
by applying a pressure of 600 MPa. More 
increase in pressure applied during the 
combustion synthesis reaction will bring 
about more decrease in porosity in the 
reaction product. 
Fe-TiC and FeAl-TiC Composites. TiC 
particles dispersed Fe- and FeAl-based 
composites were also similarly combustion- 
synthesized. As shown in Fig. 8, TiC 
particle size was much smaller in the Fe- 
TiC composite than in FeAl-TiC composite.!
The FeAl-TiC composite has a higher TiC 
content of 80 %, while the Fe-TiC 
composite has 40 %. This may be one of the 
reasons why the TiC particle size was 

Fig.5 Hypothetical TiB2-FeAl pseudo- 
binary phase diagram 

Fig.6 Effects of the volume fraction of 
TiB2 particles on the Vickers 
hardness of the combustion- 
synthesized composites 
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Fig.7 Effects of the volume fraction of 
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smaller in Fe-TiC composite. However, 
the chief reason will be that the maximum 
temperature after the combustion synthesis 
was much lower in Fe-TiC system than in 
FeAl-TiC one, because there is no heat 
generation from FeAl formation enthalpy 
in Fe-TiC system. The Vickers hardness 
increased with the increase in TiC volume 
fraction both in Fe-TiC and FeAl-TiC 
systems, as shown in Fig. 9. 
 
Summary 

When powder mixtures consisting of 
Fe, Al, Ti and B having molar ratios of 
Fe : Al = 1 : 1 and Ti : B = 1 : 2 were 
heated to approximately 800 oC, the 
combustion synthesis reaction occurred 
and TiB2 particle dispersed FeAl-based 
composites were produced in approxi- 
mately 10 seconds. As the volume 
fraction of the TiB2 particles increased, 
the diameter of the particle and the 
Vickers hardness of the composites 
increased. The application of a pressure 
during the combustion synthesis reaction 
led to a decrease in porosity and an 
increase in Vickers hardness. Fe-TiC and 
FeAl-TiC composites were also similarly 
combustion-synthesized using the present 
method. 
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Figure 2.17: Vickers hardness (HV) of the FeAl alloy as a function of 

the volume fraction of (a) TiB2 and (b) TiC particles, adapted from [70]. 

The use of oxide phases has also been reported to provide enhanced tribo-mechanical 

properties to the iron aluminide matrix. Subramanian et al. fabricated and compared the 

mechanical properties of FeAl-based composites strengthened with alumina (Al2O3) particles 

[71]. The addition of alumina inclusions resulted in an increase in hardness and yield strength of 

the iron aluminide alloy. However, the authors suggested that an increase in the density (low 

porosity) and an increase of the bond strength between the matrix and in situ nanometric Al2O3 

inclusions can yield further improvement such as high fracture toughness and high bend strength 

[72]. 

Boride phases have been formed in the iron aluminide matrix by the in situ precipitation 

process leading to enhance mechanical and tribological properties. Kim et al. [73] reported a 

high-bonding strength between the matrix and TiB2 inclusions promoted by the clean 

matrix/reinforcement interface which resulted to a high hardness and a high elastic modulus. A 

significant increase of the fracture stress of the FeAl-TiB2 composite was also observed. 

2.5.3 Strengthening by particles 

The addition of preformed hard ceramic materials into a soft matrix is another way to 

provide enhanced mechanical and wear properties. With this approach, carbide particles have 

been used to reinforce the iron aluminide matrix in order to improve its tribo-mechanical 
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properties [65, 74]. The wear behavior of the pure FeAl coating fabricated using the high velocity 

air fuel technique was compared with the composite FeAl-WC coating [75]. The addition of WC 

particles shows enhancement of the wear resistance of the FeAl. The presence of carbide particles 

in the FeAl matrix enhances the fracture toughness, bend strength and hardness of the composite 

material [27]. In addition, the ability of the WC inclusions to bear the high contact pressure 

during sliding wear also contributed to an increase of the wear resistance of the composite 

coating.  

Huang et al. have reported that with the addition of 5 vol.% of WC, the hardness and 

Young's modulus of the Fe3Al material substantially increase compared to the Co-based 

composite prepared under the same conditions (Figure 2.18) [76]. Knowing that the hardness of 

WC-Co materials follows the Hall-Petch consideration, the authors attributed the higher hardness 

of the WC-Fe3Al composite material to the much finer grain size of the WC inclusions. In 

addition, the ability of the iron aluminide matrix to be worked hardened compared to cobalt can 

influence positively the mechanical properties of the Fe3Al-based composite [77]. 
binder. The smaller WC grain size in the WC–Fe3Al composites,
processed under identical conditions, can therefore be attributed
to the lower WC solubility, leading to a slower WC grain growth.
For WC–Co cemented carbides, rapid WC grain growth takes place
when sintering nanometer sized WC–Co starting powders even in
the solid state [17]. The maximum densification rate in the WC–
Co system is reported in the 1200–1280 !C range corresponding
to the rapid dissolution and significant solubility of WC in the Co
binder [18].

3.4. Mechanical properties

The Young modulus (E), Vickers hardness (HV10), fracture
toughness (KIC) and flexural strength (TRS) of the WC–Fe3Al mate-
rials are compared with those of the WC–Co cemented carbides in
Table 1 and Fig. 5 as a function of the Fe3Al and Co binder content.
The Young modulus of the WC–Fe3Al composites (see Table 1) is
substantially higher than for the WC–Co materials, due to the high-
er stiffness of the intermetallic binder. The stiffness decreased from
693 GPa for the 5 vol.% Fe3Al composite to 539 GPa for the 20 vol.%
Fe3Al composite. The hardness of the Fe3Al and Co binder materials
decreases with increasing binder content due to the lower intrinsic
hardness of the binder phase, as shown in Fig. 5a. The hardness of
the WC–Fe3Al composites was measured to decrease from an
excellent 25.65 ± 0.32 GPa at 5 vol.% Fe3Al to 19.90 ± 0.29 GPa at
20 vol.% Fe3Al. These values are about 4 GPa higher than for the
corresponding WC–Co materials. Since both composites have the
same binder content, the hardness difference can be directly corre-
lated to the WC grain size and binder type. For a given Co binder
content, it is well known that the hardness of cemented carbides
increases with decreasing WC grain size, follows actually a Hall–
Petch type relationship with 1/(dWC)0.5 [19]. The much finer WC
grain size in the WC–Fe3Al composites mainly attributed the high-
er hardness of the intermetallic binder grades. Combined with a
hardness of 27.46 GPa for fully dense binderless WC [20], the influ-
ence of the Fe3Al binder content on the hardness of the solid state
sintered WC–Fe3Al composites can be linearly fitted as HV10

(GPa) = 27.46!0.36 " vol.% Fe3Al, while the hardness of the WC–
Co materials can be expressed as HV10 (GPa) = 23.65!0.35 " vol.%
Co.

With respect to the fracture toughness, there exists an antago-
nistic correlation between the hardness and fracture toughness of
WC–Co materials, i.e., the hardness increases and fracture tough-
ness decreases with decreasing WC grain size for a given Co con-
tent [21]. The Co binder plays a crucial role in shielding the
stress field in front of a crack tip to improve the toughness [22].

Fig. 4. Microstructure of the PECS composites on fracture and polished surfaces, WC-5 vol.% Fe3Al (a), WC-10 vol.% Fe3Al (b), WC-20 vol.% Fe3Al (c) and WC-20 vol.% Co (d).
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Figure 2.18: Hardness of WC-Fe3Al and WC-Co materials as a 

function of binder content, adapted from [76]. 

As indicated previously, iron aluminides are potential materials for high temperature 

applications where high resistance to oxidation and corrosion is required. Under these 

considerations, composite materials fabricated from the pure Fe3Al reinforced with alumina 

(Al2O3) dispersions were used to provide additional attributes such as higher toughness at high 
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temperature [71]. However, the addition of Y2O3 particles to a Fe3Al matrix via the MM process 

has shown only little effect on the hardness of the composite material [78].  

The addition of preformed boride particles has also influenced the mechanical properties of 

the iron aluminide matrix. A significant improvement of the yield strength of the Fe3Al material 

was observed with the addition of TiB2 as well as SiC particles [79]. However, the elongation 

rate of the composite material was slightly lower compared to the matrix. The nanocrystalline 

composite of FeAl reinforced BN phases were prepared by Rosas et al. [80]. It has been 

demonstrated that the addition of BN particles contributes to refining the grains.  

Strengthening the iron aluminide matrix by the addition of hard secondary phases has 

shown to be effective when enhancing the mechanical and tribological properties is required. 

However, certain aspects of the material design should be considered such as the volume fraction 

of inclusions. Schneibel et al. [27] have shown that a volume of about 20 to 80% of WC, TiB2, 

TiC or ZrB2 particles can be added to the iron aluminide matrix. Even though the addition of 

secondary phases can lead to improved mechanical and tribological properties of iron aluminides, 

only an optimum volume fraction of these inclusions is required [27, 71].  

2.6 Enhancement of the corrosion properties of Fe3Al 

Iron aluminide alloys have been established as potential material for high temperature 

applications due to their ability to form protective aluminum oxide scales. However, the poor 

corrosion property of the iron aluminide at ambient temperature is a concern. The modification of 

the microstructure of the iron aluminide by micro alloying as well as the surface treatment in the 

case of coatings can provide an enhancement of corrosion properties.  

2.6.1 Micro-alloying 

Micro alloying is a process in which elements such as Cr, Ti, Nb, Mo, etc. added to a 

material using MM. They act as inhibitors for corrosion. In an oxidizing environment (e.g. liquid 

or gaseous) a material containing chromium will likely oxidize forming a passive layer in order to 

protect the surface of the material from the external environment. Taking advantage of this 

attribute, the addition of Cr and Ti into the iron aluminide induces a change of the electronic 

structure of the Fe3Al atoms by the formation of solid solutions that leads to enhanced passivity. 

Other elements such as Ta or Mo can provide enhanced passivation to iron aluminide alloys by 
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the formation of an ordered structure on the surface of the material  [81]. Combination of various 

elements has been shown to enhance the pitting and crevice corrosion of iron aluminide alloys. 

Kim and Buchanan [82] demonstrated that the presence of Cr and Mo will favor the formation of 

Al-rich passive layer containing MoO3 and Cr2O3 which delays the absorption of chloride ions. 

The alloying of iron aluminide and carbon has shown to be beneficial for corrosion in aqueous 

electrolytes. However, Rao et al. have shown that in a 0.5 M sulphuric acid, the carbide phase 

was the preferential site for the corrosion attack [83]. Therefore, a large amount of C in the iron 

aluminide has been shown to be detrimental for the corrosion resistance of the alloy. 

2.6.2 Surface engineering 

Using the basic idea behind the self-protection of Cr containing materials in oxidizing 

environment, surface protection of coatings using multilayer structures has been developed. 

Often, coatings exhibit defects on the surface which are passageways for corrosion agents. For 

that reason, the addition of a topcoat on the coating is a way to delay the infiltration of corrosion 

agents. Topcoats such as DLC (diamond-like carbon) and CrN deposited by physical vapor 

deposition (PVD) have been used in multilayer structures. The amorphous structure of the DLC 

and its chemical inertness have been considered as the principal reason for the high corrosion 

resistance of DLC films [84]. The CrN film will instead form a passive protective layer [85, 86]. 
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CHAPTER 3 EXPERIMENTAL METHODS 

This section describes the materials, and the main experimental methodology applied in the 

context of this Ph. D. work. First, I will present details on the fabrication of powders and 

preparation of coatings for characterization. Secondly, I will describe the mechanical, the 

tribological and the corrosion characterization approaches used in the context of this thesis. 

Finally, I will present the techniques used to assess the morphology and the microstructure of 

powders and coatings. 

3.1 Fe3Al-based powder preparation 

3.1.1 High-energy ball milling 

All composite powders were prepared by mechanical milling (MM) using a horizontal 

rotary high-energy ball mill (HEBM) system (Zoz GmbH Simoloyer CM01 2 Liter) equipped 

with a stainless-steel jar and milling balls of 4.75 mm in diameter each; all composite powders 

were prepared under argon atmosphere in order to avoid undesired reactions. For all 

compositions of powder mixtures, the ball-to-powder weight ratio was 10:1. The milling system 

was operated at different motor velocities (200 and 1000 rpm) and different milling times 

(between 2 and 10 h) so as to provide the powder materials with different energies leading to 

different microstructures of the resulting powders. 

In the context of this thesis, all starting materials were commercial powders provided by 

Hydro-Quebec (HQ). Two composite powder systems were studied. Each system contained 

different types of secondary phases dispersed in the iron aluminide matrix. In the first system, a 

stoichiometric mixture of hexagonal boron nitride (h-BN) and the pure iron aluminide (Fe3Al) 

powders were ball-milled in order to favor solid-state reactions between powder materials. In this 

system, aluminum nitride (AlN) and iron boride (Fe2B) are expected to form in an iron aluminide 

matrix. In the second system, the powder materials consisting of Fe3Al, h-BN and Ti powders 

were ball-milled at high energy. In this case, the secondary phases of interest are TiN and TiB2.  

3.1.2 Heat treatment 

In a MM process, new phases can form in the powder material mixture if the mechanical 

energy provided to the powder via collision is sufficiently higher than the activation energy. As 
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indicated previously, a structural change in such situations depends on the characteristics of 

powder materials and the milling parameters. Often, the energy transferred to powder materials is 

not enough to initiate solid-state reactions in the powder mixture leading to a resulting powder 

with metastable or stable phases. For that reason, it is necessary to provide the final powder with 

an extra energy needed for the reaction to complete using heat treatment. 

In this Ph. D. project, the HEBM of initial powder materials was followed by the heat 

treatment of part of as-milled powders. The process was carried out in a furnace under vacuum 

(~10-6 mbar) at a temperature varying between 400 °C and 1300 °C. Powders were heated at 3 

°C/min and cooling at 7 °C/min regardless of the system studied. 

3.1.3 Particle size distribution 

Powder materials were characterized before and after the HEBM process. Among, all 

characteristics of powders, the distribution of particle size was measured prior to powder 

deposition. The particle size distribution defines the efficiency of the deposition process and 

therefore influences the quality of the coatings. In this project, the particle size distribution of the 

powders studied was measured by laser diffraction spectroscopy using the Horiba LA-900 (Laser 

Scattering Particle Size Distribution Analyzer). During the measurement, a 633 nm laser beam 

passes and scatters through a cloud of powder particles suspended in a dispersant liquid. The 

intensity of the scattered light is converted to electrical signals, and the particle size distribution 

was calculated using the Mie scattering theory. This theory is appropriate for powders due to the 

wide range of particle sizes [87]. 

3.2 Fe3Al-based coatings deposited by HVOF 

All powders were deposited on stainless-steel (SS) 304 substrate using a Praxair TAPA J-

P 8000 series high pressure high velocity oxy-fuel (HVOF) system under the conditions shown in 

Table 3.1. To improve adhesion of melted and semi-melted particles impinging on the surface, 

the substrates were grit blasted (to roughen the surface) using 60 grit alumina particles and 

cleaned with methanol. Before the deposition, powders were sieved and a suitable range of 

particle sizes was kept for ensuring a good deposition efficiency and a high quality of coatings. 

The particles impinging on the surface at a high impact velocity will deform, flatten and adhere 

on the rough surface of the substrate. A uniform coverage on the substrates was achieved by 
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scanning the HVOF gun, mounted on an ABB robot arm and controlled with a computer, in 

perpendicular directions. Deposits were formed from a buildup of solid, melted and semi-melted 

particles as described in Chapter 2.  

Prior to further characterizations and analyses, HVOF deposits were cut into coupons and 

progressively grounded using silicon carbide polishing pads and mirror-finished using suspended 

diamond particles (3 and 1 µm). Samples were ultrasonically cleaned in acetone, and isopropanol 

for five minutes to remove the debris left on the surface as a result of polishing. 

Table 3.1: HVOF deposition parameters used in this thesis for coating fabrication. 

Spray parameters Value 

Standoff distance (cm) 38 

Nozzle length (cm) 15 
Nozzle diameter (mm) 11 

Chamber pressure (kPa) 700, 710 
Oxygen flow rate (slpm) 890, 897 

Kerosene flow rate (l/h) 23.5 
Equivalent ratio oxygen/kerosene 1.2, 1.1 

 

3.3 Mechanical characterization 

3.3.1 Indentation testing 

Indentation is typically a method that consists of pushing an object with known geometry 

and properties into a material. Consequently, mechanical properties (hardness and Young's 

modulus) of tested materials can be evaluated. Indentation has evolved from the 10-step scratch 

hardness scale established by Friedrich Mohs for minerals, to the evaluation of hardness of 

metallic materials using spherical indenters (Brinell, Rockwell), and to the use of sharp pyramidal 

indenters (Vickers, Berkovich etc.). 

During the indentation process, an indenter penetrates a material and the applied force is 

continuously monitored and recorded as a function of tip's penetration depth, and a load versus 

the indenter displacement curve is plotted (Figure 3.1). The loading segment of the curve 
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corresponds to the elasto-plastic response to the penetration of the indenter and the unloading part 

suggests that the material elastically recovers from the initial deformation (Figure 3.1b). Thus, 

the hardness and Young's modulus can be extracted using the methodology proposed by Oliver 

and Pharr [88] for elasto-plastic materials. 

 

Figure 3.1: (a) Schematic representation of the cross-section of an indentation 

and (b) typical load versus the indenter displacement curve (adapted from [88]). 

Hardness, expressed as H = F/A ! = # $   where F is the applied load and A is the 

projected contact area, is often referred to as a measure of the resistance to the penetration of a 

body (indenter) with known geometry. Hardness is typically used for comparison, and its 

evaluation depends on its scale (macro, micro or nano) and the class of material (polymers, 

metals, ceramics, composite, etc.) studied. Hardness can also be evaluated from the residual 

impression left on the sample in accordance with the ASTM C1327-15 [89]. In the case of a 

Vickers indenter, the projected area can be evaluated using the geometrical description as 

illustrated in Figure 3.2. Therefore, the expression of the hardness (Vickers hardness) becomes H 

= F/A=1.8544F/d2! = # $ = 1.8544	#/,-   [90]. This approach is also valid for the Berkovich 

tip because the area-to-depth is the same as for the Vickers tip. 
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Figure 3.2: Schematic representation of a geometrical description of 

the typical imprint of Vickers indenter, adapted from [90]. 

Regardless of the geometry of the indenter, the reduced modulus (Er) can be obtained using 

the following equation:!" = $%&/(/(2+    

!" = $ %
&

'
(   (3.1)  

where, A is the projected area on the surface of the sample and S = dP/dh ! = #$ #ℎ  is the 

stiffness of the material at the maximum load (Figure 3.1). In addition, the reduced modulus is 

strongly dependent on the diamond tip geometry and the surface of the sample studied, and it is 

given by the following expression [88]: 

!
"#
= !%&'

" + !%&)'

")
    (3.2) 

where, !  E is the indentation modulus to be measured, !   the Poisson coefficient of the sample, Ei 

is the Young's modulus and !"    is the Poisson coefficient of the diamond tip. 

In the context of this project where samples exhibit microstructure in which secondary 

phases are dispersed in a matrix, I have used Vickers and Berkovich indenters to evaluate the 

mechanical properties of the samples on the micrometer scale. Note that the HVOF samples are 

thick enough (few hundred microns) to avoid the effect of the substrate on indentation 
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measurements. Thus, the indentation parameters were chosen so that the volume of material 

plastically deformed under the indenter tip is confined in the HVOF coating. 

To study the effect of individual phases in composite materials, the depth-sensing 

indentation (also called nanoindentation) technique with a Berkovich indenter was employed. 

The advantage of this technique is that the Berkovich diamond tip is sharp (as opposed to 

Vickers) and the mechanical properties are evaluated at very shallow depth.  

A Micro-Combi tester (CSM, Peseux, Switzerland) was used to evaluate the microhardness 

of samples while the nanoindentation was performed using a Triboindenter (TI950 Hysitron Inc. 

Indianapolis, USA). During the indentation process, the load was linearly increased up to its 

maximum, kept constant at that maximum and then linearly decreased down to zero. Many 

indentations were performed on the cross-section and the top surface of coatings for statistical 

analysis purposes and the average hardness value and its standard deviation were calculated from 

these measurements. 

3.3.2 Scratch testing 

Scratch testing is a technique widely used to qualitatively and quantitatively characterize 

adhesion strength of a coating on a substrate. In this technique, a diamond tip typically (a 200 µm 

Rockwell C indenter) is drawn over the surface or the cross-section of the coating at constant 

speed. The applied force on the stylus can be constant, linearly increasing or decreasing. In 

general, the minimum applied load at which cracks appear with the detachment or removal of the 

coating from the substrate is used as the measure of adhesion of a coating. In the context of this 

project, the scratch test was performed on the cross-section of coatings because the minimum 

thickness of my samples was ~100 µm, and such test on the top surface could not yield any 

conclusive result. The appearance of the scratch damage (cracks, delamination, etc.) were used to 

qualitatively compare the adhesion strength of coatings on the substrate. Other useful information 

such as the cohesive bond strength between particles and/or splats can be extracted from this test.  
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3.4 Tribological characterization 

3.4.1 Dry sliding wear test 

A pin-on-disc tribometer is a laboratory test apparatus commonly used to evaluate friction 

and wear of materials due to its simple configuration and better control of experimental 

conditions. In this technique, a pin under a normal load, !(#)  , is pressed perpendicularly on the 

top surface of a rotating sample (disc) as illustrated in Figure 3.3, and the tangential force (!"   ) is 

continuously monitored and recorded. The dynamic coefficient of friction,  

! = #$ #   (3.3)  

that maintains the sliding motion throughout the test can be plotted with respect to time, sliding 

distance or number of turns. 

The wear rate, K(mm3/Nm) !(##$%&'#&')  of the coatings was determined after the test 

from the volume of material loss or displaced, V(mm3)!(##$)  . The product between the 

diameter of the wear track ring and its cross-sectional surface, measured by profilometry, was 

used to obtain V!  , and K!   was calculated using the expression, 

! = # $´%  ! = # $*&   (3.4) 

where, !   (m) is the total sliding distance. 

In this Ph. D. project, the wear test was performed using a pin-on-disc tribometer operating 

in ambient conditions. The normal force was chosen between 5 and 40 N and the diameter of the 

wear track ring was fixed and the sliding velocity varied between 0.1 and 1 cm/s. The sliding 

distance was maintained at 1000 m and the counterpart material was an alumina (Al2O3) ball of 

4.75 mm in diameter fixed at the end of a pin. The wear test conditions were selected in order to 

compare results with other systems studied at HQ [61, 91]. 
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Figure 3.3: Schematic representation of a pin-on-disc tribometer. 

3.5 Corrosion test 

The corrosion behavior of materials in aqueous solution is typically studied using a three-

electrode cell. In such a configuration, the sample is connected to the working electrode (WE) 

and its surface is in contact with the electrolyte (ionic conductor) in which the counter electrode 

(CE) (graphite rod or platinum wire) and the reference electrode (RE) are immersed. The 

Standard Calomel Electrode (SCE), which exhibits a potential of 0.242 mV with respect to the 

Standard Hydrogen Electrode (SHE), was used as the RE. These electrodes are connected to a 

potentiostat (equipped with a frequency analyzer) which controls and monitors the potential and 

current between the WE and the RE, and between the WE and the CE, respectively.  

In the context of this thesis, the corrosion test was performed in three steps without 

changing the electrolyte solution. In the first step, the potential between the sample and the RE, 

namely the Open Circuit Potential (OCP), was monitored and recorded as a function of time in 

the absence of a driving force (current or potential). In the second step, the Electrochemical 

Impedance Spectroscopy (EIS) was performed over a frequency range of 10-2 Hz and 105 Hz at 

OCP. Finally, the potentiodynamic polarization (pitting) test was carried out from 100 mV to 

2000 mV above the OCP, with a scan rate of 1 mV/sec. 

3.5.1 Electrochemical impedance spectroscopy 

Electrochemical impedance spectroscopy is a technique frequently used to study the 

electrochemical kinetics of reactions that occurred at the material/electrolyte interfaces. In 
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experimental situations, the electrochemical impedance is measured by applying an excitation 

alternating voltage with small amplitudes -10 to +10 mV. The voltage signal (!"   ) and its 

corresponding current (!  ) response, shifted in phase by !   with respect to !"   , can be expressed as a 

complex function using the Euler's relationship [92]:! = !#$%&(()*)    

!" = !$%&'()*+)    (3.5) 

and   

! = !#$%&(()*-,)  ! = !#$%&(()*-(,)    (3.6) 

where !"   and !"   are the amplitude of the potential and current, respectively, and ! = 2$%   is the 

angular frequency. The complex impedance, !  , can be obtained as: 

! = #$ % = #&/%&()*(,) = !&()*(,) = !&./0(,) + 2!&034(,) = !5678 + 2!9:   

! = # $ = #%/$%'()(+) = !%'()(+) = !%-./(+) + 1!%/23(+) = !4567 + 1!89     (3.7) 

where !"   is the amplitude of the complex impedance, !"#$%    and !"#    are the corresponding real 

and imaginary parts, respectively. 

In EIS, the complex impedance !  , represented by the length of the vector !  , is used to 

interpret the "Nyquist plot" (!"#$%    in x-axis is plotted with !"#    in y-axis with !   varying from 

high to low frequencies) or the "Bode plots" (log of frequency in x-axis with !"   or	  !   in the y-

axis) as illustrated in Figures 3.4a and 3.4b, respectively. 
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Figure 3.4: Schematic representation of the (a) Nyquist, (b) Bode plots, 

and (c) the Randle circuit, adapted from [93]. 

In general, impedance data are analyzed by fitting an equivalent electrical circuit model 

with electric elements (resistor, capacitor, inductor, etc.) representing the different interfaces, 

created as a result of electrochemical activities [92]. An equivalent circuit of an electrochemical 

system is also called the "Randle circuit". An ideal case of such a circuit is illustrated in Figure 

3.4c. Rs (resistance of the aqueous solution) represents the resistance to ionic migration in the 

electrolyte; Cdl represents the double layer capacitor and the charge accumulated at the interface 

between the WE and the electrolyte; Rp represents the resistance due to polarization. In such 

situations, the semi-circle in the Nyquist plot (Figure 3.4a) and the single peak in the Arg(Z) plot 

(Figure 3.4b) correspond to a single charge-transfer process [94]. In a situation where the system 

exhibits a double charge-transfer, ideal electrical elements can be inadequate to describe such 

complex impedance responses. Therefore, nonideal circuit elements such as the constant phase 

element (CPE), !  , or the Warburg (W) element can be considered. The expression of the CPE 

impedance is given by  

!" = $(&')-g   (3.8)  

where the unit of !   is (W-1secg) and the exponent g lies between -1 and 1. The physical behavior of 

the CPE strongly depends on the value of the constant g. For g = -1, !   behaves like a pure 

inductance, for g = 0, !   behaves like a pure resistor and if g = 1, !   behaves like a pure capacitor. 
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Situations exist where g is not an integer. For instance, if g = 0.5, the CPE becomes the Warburg 

impedance [92]. 

3.5.2 Polarization tests 

In an electrochemical cell, the reactions occurring at the WE electrode can initiate a 

passage of an electrical current in the system which causes a change in the WE potential. This 

phenomenon is referred to as polarization. The potential difference between the WE and the RE 

electrode is known as the overpotential (h) and defined as  

! = #$-#&'((   ! = #-#%&''    (3.9) 

where !"    is the applied potential between WE and CE. An electrochemical system can be 

anodically or cathodically polarized and the response can be represented by a polarization curve 

as illustrated in Figure 3.5. This plot is also known as the Tafel plot. When h = 0, the corrosion 

potential is !"#$$    and the system is said to be at equilibrium. The corrosion current density (!"#$$   ) 

can be obtained by extrapolating the linear portion of the anodic and cathodic curves and !"#$$    is 

determined by projecting the intercept of these lines on the x-axis (Figure 3.5). 

In the anodic polarization, the overpotential, !" = $%-$'())    is positive and this situation is 

associated with the oxidation (loss of electrons) of the WE and represented for a metal (M) by the 

following equation  

! = !#$ + &'-    (3.10) 

where Mn+ are ions from the dissolved metal in contact with the electrolyte. In the cathodic 

polarization, the overpotential !" = $%-$"'((   !" = $-$"&''    is negative implying that the applied 

potential is smaller than the corrosion potential. The reduction of dissolved oxygen, is the most 

probable cathodic reaction that can take place in an aerated solution as described by the equation 

[20] 

O2 + 2H2O + 4e- = 4OH-    (3.11) 
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In the steady state conditions (the electrochemical system is at equilibrium), the anodic and 

the cathodic overpotential is given, respectively, by the following relationships [95]: 

!" = $"%&'()"/)+,--)    (3.12) 

and 

!" = -%"&'((*"/*",--)    (3.13) 

where, !"    and !"    are the anodic and cathodic current densities, and !"    and !"    are the Tafel anodic 

and cathodic slopes, respectively. From the equations 3.12 and 3.13, the current density in each 

polarization condition can be given by the following relationship: 

for the anodic polarization, 

!" = !$%&&'()(2.303//1")   (3.14) 

and for the cathodic polarization, 

!" = !"$%%&'((-2.303//1")    (3.15) 

When the system is moved from its equilibrium, the kinetics of the electrochemical corrosion is 

given by the Butler-Volmer equation expressed as follows: 

! = !#$%%['()(2.303//12)-'()(-2.303//1#)]    (3.16) 

indicating that the corrosion current density measured on the WE electron depends on the 

potential.  
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80 CHAPTER 3. KINETICS OF ACTIVATION POLARIZATION 

3.3 POLARIZATION 
This section partially treats the copious literature for supporting the mathemat-
ical models for characterizing the kinetics of charge transfer mechanism involved 
in an electrochemical system. Thus, electrode reactions are assumed to induce 
deviations from equilibrium due to the passage of an electrical current through 
an electrochemical cell causing a change in the working electrode (WE) poten-
tial. This electrochemical phenomenon is referred to as polarization. In this 
process, the deviation from equilibrium causes an electrical potential difference 
between the polarized and the equilibrium (unpolarized) electrode potential 
known as overpotential [1]. 

Figure 3.2 shows a partial polarization diagram and related kinetic parame-
ters. For instance, both Evans and Stern diagrams are superimposed in order 
for the reader to understand the significance of the electrochemical behavior of 
a polarized metal ( M ) electrode in a hydrogen-containing electrolyte. 

From Figure 3.2, and are the open-circuit potentials for hydrogen 
and metal M, respectively, are the exchange current densities, and 
is the limiting current density. 

For a reversible electrode, Evans diagram allows the determination of the 
corrosion point where both the hydrogen cathodic and the metal anodic line 
intercept. On the other hand, the irreversible electrochemical behavior denoted 
by the cathodic and anodic Stern diagram is also used for determining the cor-
rosion point by simply extrapolating the linear portions of both curves until the 

 

Figure 3.5: Schematic representation of the Tafel plot (polarization curve) [96]. 

3.6 Tribocorrosion characterization 

The tribocorrosion behavior of coatings was studied using an apparatus in which the 

tribological contact was immersed in a 3.5 % NaCl electrolyte at ambient temperatures. The wear 

test was performed using a linear reciprocating pin-on-flat tribometer and the corrosion test was 

carried out in a three-electrode electrochemical cell. The working principle of the corrosion cell is 

similar to that described previously except that the CE was a platinum wire, and the surface of 

samples was horizontally positioned in the test apparatus. 

The sliding wear test was performed using an Al2O3 ball of 4.75 mm in diameter as the 

counterpart. The Al2O3 ball was chosen for chemical inertness and its high hardness (20 GPa). 

The applied normal load (dead load) was 5 N corresponding to a minimum average Hertzian 

contact pressure of 1.26 GPa. A total number of 1800 cycles were performed using a sliding 

frequency of 1 Hz, and a fixed stroke length of 10 mm. The material loss of the sample was the 

difference between the weight of the sample before and after the tribocorrosion test using a high-

precision scale. 

In the tribocorrosion test, the sliding wear was performed with a constant potential between 

the WE and the RE, and the corrosion current was monitored before, during and after the wear 

test. In the first step, the OCP of the system was measured and recorded during 60 min before 

rubbing. This step was used to ensure the electrochemical stability of the surface of coatings. In 
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the second step, the sliding wear test was performed with the system polarized cathodically or 

anodically.  

In the cathodic polarization, the applied potential was chosen below the corrosion potential 

of the Fe3Al coating. In this situation, the surface of the coating is under cathodic protection and 

all anodic reactions are suppressed. During sliding, the corrosion current is measured and 

recorded as a function of time for a fixed number of cycles. For all coatings, the passivation time 

(time to form of a protective oxide layer on the surface of the coating) before and after the sliding 

wear test was 20 min. As a result, the total material loss (Wtotal) from the surface of the coating is 

due to the mechanical wear only (Wmech). 

In the anodic polarization, the potential was chosen in such a way that it lies in the 

passivation region of the polarization curve of coatings. In this case, a potential of +250 mV with 

respect to the OCP was imposed to the system. Here, Wtotal is the sum of Wmech, static corrosion 

(Wcorr) and the synergistic action of wear and corrosion (Wsyn) as represented by the following 

equation [97]:  

Wtotal = Wmech + Wcorr + Wsyn  (3.17) 

where Wtotal can be obtained by weighting the sample after the tribocorrosion test while Wcorr is 

calculated using Faraday's law as follows: 

Wcorr = (Icorr ´ t ´ M) / (z ´ F)  (3.18) 

where Icorr (A) is the current measured before rubbing, t (s) is the duration of the sliding wear test, 

M (g/mol) is the molar mass of the sample, z is the number of electrons transferred for the 

dissolution of one atom of the corroded material, and F is the Faraday constant (96 485 C/mol). 

The term Wsyn in equation (3.17) can be expressed as a sum of two components namely 

Wsyn-c representing the material loss due to the effect of wear on corrosion, and Wsyn-w, the 

material loss due to the effect of corrosion on wear. On the one hand, the Wsyn-w component can 

be calculated using the Faraday's law where the current Icorr is the difference between the current 

measured before and during rubbing. On the other hand, the Wsyn-c is calculated from equation (1) 

as follows:  

Wsyn-c = Wtotal - Wcorr - Wmech - Wsyn-w  (3.19)  
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The corrosion current was recorded for 20 min before and after rubbing to ensure its 

stability. The tribocorrosion measurement was obtained for a minimum of two tests under similar 

surface conditions (similar sample preparation). 

3.7 Microstructural characterization 

3.7.1 X-ray diffraction spectroscopy 

X-ray diffraction (XRD) is commonly used for the crystallographic characterization of 

materials. The information obtained from XRD data includes the crystalline structure (phases) 

and the crystallographic orientation (texture). A Philips X'pert and a Brüker DISCOVER 

diffractometer using a copper source (Cu Ka) in a q/2q configuration was used to obtain the 

crystal structure of my samples. From the XRD diffractograms, one can identify the various 

crystalline phases in the materials by comparing with a suitable database. The average size of the 

crystallites (grain size) can be determined from the width at half maximum of the diffraction 

peaks and the Scherrer equation [98]. From the Bragg law, 

! = 2$ sin (  l = 2#$ sin q   (3.20) 

where, l is the wavelength of the monochromatic light, !"    is the distance between two atomic 

planes and q is the angle of diffraction, the crystal structure can be extracted. In the context of 

this project, the diffraction powder method (tiny crystal randomly oriented with respect to the 

incident beam) was applied to my samples. The diffraction data obtained using the Brüker 

DISCOVER diffractometer was used for phase quantification. 

3.7.2 Differential thermal analysis 

Differential thermal analysis (DTA) is typically used to determine the characteristic 

temperature range and enthalpy change of processes such as crystallization, melting or phase 

transformation in materials. In principle, the temperature difference between the sample and a 

reference material subjected to a controlled rate of heating or cooling, is recorded and plotted as a 

function of temperature or time. The temperature is measured with a thermocouple placed at the 

vicinity of the sample and the reference material, and the time is determined from the rate of 

cooling or heating. When a sample undergoes an exothermic transformation (heat is released) or 
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an endothermic transformation (heat is absorbed), a temperature change occurs. In the context of 

this thesis, the STA 449C Jupiter (NETZSCH-Gerätebau GmbH) and the SETSYS Evolution 

TGA-DTA-DSC (SETARAM Instrumentation) systems were used to study the thermal reactions 

of powders. 

3.7.3 Scanning electron microscopy and electron dispersive x-ray  

Scanning electron microscopy (SEM) is a commonly used surface analysis technique that 

uses signals generated from the interaction between electrons and matter. Electrons accelerated 

with sufficient energy bombard and interact (elastically or inelastically) with atoms at the surface 

of a sample. Such interactions generate several species that include:  

• Backscattered electrons (from elastic collisions) 

• Secondary electrons (from inelastic collisions), and  

• X-ray (photons of different energy levels). 

Each species is detected using a specific detector that provides an electric signal 

proportional to the number of species collected. Therefore, an image is formed by converting the 

signals using a visualization system. In the SEM, different observation modes can be obtained 

with respect to the type of species detected. In general, secondary electrons are low energy 

species that are generated from a volume of material near the surface. They provide the 

topographic information of the surface while the backscattered electrons that are sensitive to 

atomic number provide chemical information of phases in a material.  

When the SEM is coupled with an X-ray spectrometer, the elemental chemical composition 

of materials can be obtained in a small volume using the energy dispersive spectroscopy (EDS). 

The X-ray spectra acquired by scanning the electron beam on the surface can be used to image 

the elements present in the samples.  

A JEOL 7200 scanning electron microscope equipped with a field emission gun (FEG), the 

electron source, was used to observe the microstructure of my samples. In this SEM-FEG, 

samples were imaged at high resolution, and their chemical composition was determined by using 

an Inca X-max 80 Oxford EDS.   
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3.7.4 Scanning transmission electron microscopy 

Scanning transmission electron microscopy (STEM) is a technique that can be used to 

achieve atomic resolution imaging and nanoscale analysis. In this technique, a beam of energetic 

electrons (~300 keV) is generated at the electron source and focused on a thin sample (~100 nm) 

using a combination of electromagnetic lenses. The electron probe (10 Å in size) is scanned over 

the sample in a raster pattern by exciting the scanning deflection coils. The scattered electrons are 

detected and their intensity plotted with respect to the probe position to form an image of the area 

scanned.  

Similar to the SEM technique, incident electrons in STEM are subjected to elastic and inelastic 

interactions with atoms in the sample. Electrons can lose part of their energy, due to inelastic 

collision, before being transmitted. These electrons can provide useful information on the atomic 

composition of the sample using the Electron Energy Loss Spectroscopy (EELS) technique. In 

this work, this analysis has been used for selected samples to detect the presence of the ceramic 

particles in the as-milled powder mixtures.  
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Abstract 

In the present work, we investigate the effect of boron nitride (BN) addition to Fe3Al on the 

characteristics of ball-milled powders, and we study the influence of heat-treatment and 

subsequent milling of the powder mixtures on the microstructure and properties of coatings 

prepared by the high velocity oxy-fuel (HVOF) deposition process. The tribo-mechanical 

properties of the coatings were evaluated using indentation and pin-on-disc tribometry. Ball-

milling of the Fe3Al powder with BN and heat-treatment of the mixture lead to the formation of 

microstructures that contain BN, Fe2B and AlN components. Further milling refines such 

microstructures and disperses the ceramic phases homogeneously within the metallic matrix. 

Thermal spraying of these powders results in hard coatings with microstructures similar to that of 

the powders. Compared to coatings obtained from a pure Fe3Al milled powder, the coating 

hardness increases by ~40 % (from 5.6 GPa to 7.8 GPa), and the wear rate of 9 ´ 10-6 mm3/Nm 

decreases to 5 ´ 10-7 mm3/Nm when 30 mol.% of BN is added. The wear rate of the HVOF 

coatings further decreases to 2 ´ 10-7 mm3/Nm when the same powder is annealed and re-milled 
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at high energy for 10 h. The degradation mechanism appeared to be dominated by abrasive and 

fatigue wear. 

Keywords: Iron aluminides, Metal ceramic composites, Mechanical milling, Sliding wear, Wear 

mechanisms, HVOF 

4.1 Introduction 

Iron aluminide alloys have received a great deal of attention over the past years due to their 

low cost, low density, relatively high melting point and good corrosion, oxidation and sulfidation 

resistance at high temperature [14]. These properties have made iron aluminide alloys suitable for 

applications in automotive, power generation, and petrochemical industries [99]. However, such 

materials exhibit poor ductility and low resistance to creep at room temperature. The brittleness 

of the iron aluminide alloys can be reduced by using a combination of thermomechanical 

processing and heat-treatment [16, 100]. Ternary addition such as chromium helps to reduce 

environmental embrittlement [23], while the addition of boron has shown to improve grain 

boundary strength and avoid intergranular fracture [15].  

High strength and fracture toughness can be achieved by fine grain and dispersion 

strengthening [72, 101]. Krasnowski et al. reported an increase in the microhardness of 

nanocrystalline FeAl-TiN composites prepared by reactive milling of Fe, Al and Ti powders 

under nitrogen atmosphere, and they associated this effect to the fine matrix and TiN inclusions 

[102].  

Iron aluminide alloys also exhibit poor wear performances that limit their structural 

applications [15]. It has been shown that dispersing hard metals and ceramic particles in the iron 

aluminide matrix can enhance the tribological properties [27, 102-104]. Xu et al. demonstrated 

that the addition of hard WC particles within the iron aluminide matrix increases the sliding 

wear-resistance of the un-reinforced Fe-Al coating [105]. Comparable abrasive behavior was 

observed between the WC-10 vol.% Co and the WC-40 vol.% FeAl composite materials as they 

exhibited similar hardness [77]. Amiriyan et al. showed that the dry sliding wear resistance of the 

Fe3Al coating prepared by HVOF increased with the addition of in-situ precipitated TiC particles 

[61]. 
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Several types of ceramic particles based on nitrides, carbides, and borides were found to be 

thermodynamically stable within the iron aluminide matrix [24, 104]. Compared to other nitrides 

and borides, AlN and Fe2B have been less investigated as reinforcing agent in iron aluminides. 

Aluminum nitride exhibits high mechanical strength, and has a low thermal expansion coefficient 

[106]. Iron boride demonstrates high hardness, high fracture toughness and high chemical 

stability in iron aluminide [107, 108]. Avril et al. reported significant improvement of the 

tribological properties of the αFe (Cr)-based coating prepared by laser melting when Fe2B was 

used as reinforcing components [109]. Thus, AlN and Fe2B phases can be potential candidates for 

particle strengthening [110] and their effect on the microstructure and tribo-mechanical 

performance of Fe3Al have not been previously investigated. 

High energy ball-milling (HEBM) is a frequently employed process to produce composite 

materials with very fine microstructures in which a hard second phase can be uniformly dispersed 

within a metal matrix [111, 112]. In this method, the mixed powders are blended, cold worked, 

fragmented, and repeatedly welded to form homogeneous materials with a uniform distribution of 

stable and/or metastable phases. In the past years, iron aluminide alloys have been synthesized 

using this process [38, 80, 113-115]. It has been demonstrated that nanocrystalline alloys can be 

obtained through diffusion and formation of solid solutions using HEBM [38, 116-118]. Milling 

tools have been shown to be a crucial aspect of the degree of contamination and phase 

transformation during the fabrication of alloys [119]. The milling conditions such as revolution 

speed and time influence the degree of reaction, the size of the crystallite as well as the evolution 

of mechanical microstresses into the iron aluminide intermetallic [115, 116]. An iron aluminide-

based nanocomposite with nanoparticles (20 nm in size) of BN was obtained after 35 h of ball-

milling Fe, Al and BN powders [80] but the authors did not comment on the effects of the 

addition of BN on the mechanical and tribological properties of the iron aluminide. 

To produce thick protective coatings on metal substrates, thermal spray processes are 

generally preferred over technologies such as chemical or physical vapor deposition [120, 121]. 

Compared to other thermal spray techniques, the high velocity oxy-fuel (HVOF) process offers a 

possibility to project powder particles at relatively low temperatures and very high speeds, up to 

three times the speed of sound. Therefore, dense coatings can be formed from the buildup of 

successive layers of rapidly quenched splats of partially melted or even unmelted particles [122].  
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The main objective of the present work is to enhance the mechanical and tribological properties 

of the Fe3Al-based composite materials by the dispersion of nanoscale BN and in-situ 

precipitated AlN and Fe2B particles in the iron aluminide matrix using the HEBM process and 

thermal treatment. The effect of heat-treatment on the microstructure and the tribo-mechanical 

characteristics of the HVOF coatings are systematically investigated. 

4.2 Experimental Procedures 

Pre-alloyed iron aluminide (Fe3Al: FAS-100) 97.5 % pure with about 2 % of Cr from 

Ametek and boron nitride powder 98 % pure from Lower Friction were used in this study. The 

average particle sizes were 50 and 5 µm, respectively. Powder mixtures were prepared from 100, 

90, 70 and 50 mol.% Fe3Al ball-milled at high energy (1000 rpm) for 10 h with no BN, 10, 30 

and 50 mol.% of BN and they are labeled as P1, P2, P4 and P5, respectively. For comparison, the 

composition of 70 mol.% of Fe3Al and 30 mol.% of BN was milled at high energy for 2 h and 

labeled as P3. The powder mixture P4 was investigated in more detail in this work. The milling 

process was carried out under an argon atmosphere in a 2 liter high-energy mill (Zoz GmbH 

Simoloyer CM01). The ball to powder weight ratio was 10:1. 

Following initial ball-milling, the powder composition P4 was heat-treated at 1300 °C for 2 

h under vacuum (~ 10-6 mbar). The heating rate was 3 °C/min, and a cooling rate of 7 °C/min was 

used from 1300 to 500 °C. Part of the heat-treated powder was re-milled at low energy (200 rpm) 

for 5 min, and two other parts were milled at high energy (1000 rpm) for 2 and 10 h and they are 

labeled as AP45min, AP42h and AP410h, respectively. All powders were sieved to obtain particle 

sizes between 20 and 50 µm for the HVOF deposition. 

The HVOF coatings were prepared on austenitic (type 304) stainless steel (SS) substrates of 

dimensions 190 mm ´ 120 mm ´ 1.5 mm using kerosene fuel and oxygen gas for combustion. 

Before spraying, the substrates were sandblasted with alumina (grit 60) and cleaned with 

methanol. A Praxair J-P 8500 HVOF gun mounted on an ABB robot arm and controlled by a 

computer was used for deposition. Uniform coverage was achieved by scanning the gun in 

perpendicular direction at a speed of 10 cm/s for a total of fifteen passes. The gun was displaced 

by 10 mm between the line scans. The spray parameters shown in Table 4.1 were used for all 

coatings. Under these deposition conditions, the mean particle velocity measured using a DPV-

2000 is about 800 m/s and the estimated particle residence time inside the gun is less than 200 µs. 
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Particle temperature varied between 1500 and 2200 °C. In the text, coatings are labeled with a 

letter “C” added in front of the abbreviated name of the corresponding powder. 

 

Table 4.1: Parameters for high velocity oxy-fuel deposition experiments. 

Spray parameters Value 

Standoff distance (cm) 38 

Nozzle length (cm) 15 
Nozzle diameter (mm) 11 

Chamber pressure (kPa) 710 
Oxygen flow rate (slpm) 897 

Kerosene flow rate (l/h) 23.5 
Equivalent ratio oxygen/kerosene 1.2 

 

For further analysis, the deposits were cut into coupons of 2.5 cm ´ 2.5 cm in size. Before 

mechanical tests, the coupons were progressively polished using Al2O3 abrasive papers from 180 

to 1000 grits, and then polished down to mirror finish using 15, 6 and 1 µm diamond suspensions. 

Finally, the samples were ultrasonically cleaned in acetone and isopropanol for 5 min, and the 

surface roughness was evaluated using profilometry. The porosity level and the volume fraction 

of ceramic phases were estimated from the cross-section of sprayed coatings using image analysis 

software. 

The powders and coatings were characterized using a Phillips X’Pert X-ray diffractometer 

(XRD) equipped with a Cu Kα radiation at 50 kV and operated in the θ-2θ configuration. The 

average crystallite size, d, of the Fe3Al phase was estimated using the Scherrer formula d = λ/(ϖ. 

cosθ) at the principal peak of Fe3Al around 41 °. This rough estimate does not take into account 

the microstrain contribution: here λ is the X-ray wavelength and ϖ is the line broadening at half 

maximum intensity. The XRD data were used to quantify the phases present in the composite 

powders after heat-treatment. 

Surface morphology of the coatings was analyzed at 10 kV using a 7200 JEOL field 

emission scanning electron microscope (SEM) equipped with energy dispersive X-ray 
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spectroscopy (EDS Inca X-max 80 Oxford). The working distance was varied between 10 and 

21 mm. Powder particles were prepared with the focused ion beam and observed at 10 kV under 

a Hitachi HD2700 scanning transmission electron microscope (STEM) equipped with an Enfina 

Gatan electron energy loss spectroscopy (EELS). The thermal stability of the milled powders was 

investigated using a differential thermal analyzer (DTA) from Netzsch STA 449C at a heating 

rate of 10 °C/min using an alumina crucible and an argon atmosphere. 

In order to evaluate the nano-hardness of the composite materials in powder form, the 

powder particles were embedded in a non-conductive resin and polished down to mirror finish 

using 15, 6 and 1 µm diamond suspensions. Nanoindentation experiments have been carried out 

using a Hysitron Triboindenter with a Berkovich indenter. Indentations were performed at the 

center of a cross-sectional surface of selected powder particles of 50 µm in diameter. The load 

was linearly increased up to a maximum load of 2 mN with a dwell-time of 5 secs, and the 

maximum penetration depth was 300 nm. For the HVOF coatings, nanoindentation was 

performed on both the surface and the cross-section of the coatings over a grid of 5 ´ 5 points, 

evenly spaced by 3 µm. The micro-hardness of the coatings and of the alumina ball was measured 

using a CSM Micro-Combi tester equipped with a Berkovich indenter. The applied load was 

linearly increased up to a maximum of 3 N, kept constant for 15 s and linearly decreased. The 

maximum penetration depth was ~6 µm. 

The average micro-hardness was obtained using the Oliver and Pharr method [123] from a 

minimum of 100 indentations for the coatings and 10 indentations for the alumina ball. 

The tribological properties of coatings with respect to alumina ball (micro-hardness of 20 GPa) 

were measured according to ASTM-G99 using a pin-on-disc apparatus in dry conditions (relative 

humidity: 30 – 40 %) at room temperature. The diameter of the wear track rings was 6 mm, and a 

new alumina ball (4.75 mm in diameter) was used for each test. The total sliding distance was 

1000 m, and the linear speed was 7.86 cm/s. The applied normal force was 5 N and the wear rate, 

K, was calculated using the formula ! = # $´%  , where V is the total volume of material 

removed, F the normal force, and l the sliding distance. The testing parameters (alumina ball, 

load, sliding length) are those suitable for the comparison of metal-based coatings considered for 

the repair of hydroelectric generation equipment as described in [61]. These sliding conditions 

are chosen in a way to obtain high “sensitivity” with respect to the coatings’ microstructure, 
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composition and thickness. The average cross-sectional surface of the ring was obtained from 20 

measurements at different positions of the wear track. The error bars on the average hardness and 

wear rate are the standard deviation from the measurements. In order to assess the wear 

mechanism, SEM analysis of the wear track was performed, and worn and unworn regions of 

HVOF coatings were analyzed using EDS. 

4.3 Results 

4.3.1 Microstructure of the composite powders 

4.3.1.1 X-ray diffraction 

The XRD patterns of the Fe3Al and BN powders before milling, and those of a mixture of 

the Fe3Al and BN powders milled at high energy for 2 h (P3 trace) and 10 h (P4 trace) are 

compared in Figure 4.1. The Fe3Al and BN diffractograms reveal sharp and well-defined peaks of 

the Fe3Al and BN phases, respectively. Particularly, the peak at 44.11 ° in the Fe3Al 

diffractogram exhibits a shoulder on the right side that coincides with a broad peak of BN. After 

2 h of milling, the peaks of the BN phases are no longer visible in the diffractogram P3, while the 

Fe3Al peaks broadened and their intensity decreased. The Fe3Al peaks are slightly shifted 

towards lower 2θ angles compared to the un-milled powder suggesting that the composition of 

the matrix material had changed. Upon milling for 10 h, the Fe3Al peaks continued to broaden 

and their intensity decreases further. 
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Figure 4.1: XRD patterns of the Fe3Al and BN mixed powder, P3: Fe3Al and BN 

powder mixture milled for 2 h, and P4: Fe3Al and BN milled for 10 h. 

The XRD patterns of the mixture of Fe3Al and BN powders milled for 10 h (P4 trace) and 

that of the as-milled powder heat-treated at 1300 °C for 2 h in vacuum and re-milled at low 

energy for 5 min (AP45min trace), and at high energy for 2 h (AP42h trace) and 10 h (AP410h trace) 

are compared in Figure 4.2. After heat-treatment and re-milling for 5 min, the diffractogram 

shows evidence of sharp and well-defined peaks of the AlN and FeB2 phases. As expected, the 

peaks of the Fe3Al are sharper and their intensity is higher compared to the as-milled powder (P4 

trace). All peaks decrease in intensity and become broad when the heat-treated powder was re-

milled for 2 h (AP42h trace). These features become significant after 10 h of re-milling (AP410h 

trace). Upon subsequent re-milling, some ceramic peaks disappear from the diffractograms. A 

quantitative analysis carried out on the XRD data of the heat-treated powder re-milled for 2 h 

reveals that the composite powder contains approximately 59 wt.% of Fe3Al, ~9 wt.% of AlN and 

32 wt.% of Fe2B. 
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Figure 4.2: XRD patterns of: P4, powder mixture of Fe3Al and BN milled for 

10 h (as-milled powder); AP45min, as-milled powder annealed and re-milling 

for 5 min; AP42h, as-milled powder annealed and re-milled for 2 h, and AP410h, 

as-milled powder annealed and re-milled for 10 h. 

4.3.1.2 Differential thermal annealing 

The DTA curve of the mixture of Fe3Al and 30 mol.% of BN milled for 10 h is compared 

in Figure 4.3 to that of the un-milled Fe3Al powder. The curve of the as-milled powders exhibits 

two broad exothermic peaks at approximately 562 and 723 °C. A sharp endothermic peak is 

visible at about 1224 °C indicating that melting has occurred in the material during the ball-

milling process. On the contrary, the curve of the un-milled Fe3Al powder shows no evidence of 

exothermic or endothermic peaks. This indicates that no phase transformation or melting has 

occurred.  



66 

 

 

Figure 4.3: DTA curve of the Fe3Al powder milled at high energy for 10 h with 

30 mol.% of h-BN is compared to that of the un-milled Fe3Al powder. 

4.3.1.3 STEM and EELS observations 

STEM micrograph and EELS composition maps of a powder particle of the Fe3Al milled at 

high energy for 10 h with 30 mol.% of BN is shown in Figure 4.4. Figure 4.4a presents a 

“sandwich-like” microstructure where different components (gray and light-gray features) are 

superimposed. This structure results from the high-energy collision experienced by the powder 

particles in the HEBM process. The EELS mapping revealed a correlation between Boron and 

Nitrogen suggesting that BN phases with thicknesses of about 30 nm (initial BN particle size is 5 

µm) are still present, highly deformed and well dispersed in the iron aluminide matrix after 10 h 

of milling.  
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Figure 4.4: STEM micrograph of the powder particle from the mixture 

of the Fe3Al powder milled at high energy for 10 h with 30 mol.% of h-

BN, and EELS mapping of (b) Boron and (c) Nitrogen. 

4.3.2 Characteristics of the composite powders 

The characteristics of the powders are summarized in Table 4.2 in which the composition 

of the elementary powders was chosen to promote different contents of the second phases in the 

metal matrix. The nano-hardness (average of 100 indentations) initially increases with the BN 

content in Fe3Al and with the milling time. However, for 50 mol.% of BN the large amount of 

BN has probably diminished the physical properties of the composite materials. The Fe3Al 

powder milled at high energy for 10 h with 30 mol.% of BN exhibits the highest average nano-

hardness.  

After initial milling of the Fe3Al powder with 30 mol.% of BN for 10 h, heat-treatment and 

subsequent re-milling were performed. The characteristics of the heat-treated powders re-milled 

at low energy for 5 min and at high energy for 2 h and 10 h are given in Table 4.2. Interestingly, 

after reaching a maximum value just after heat-treatment the nano-hardness of the re-milled 

powders decreases with the re-milling time suggesting the influence of soft interfaces and 

porosities in the re-milled powders on the mechanical properties of the heat-treated powders. 
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Table 4.2: Composition of elemental powder mixtures and 

characteristics of as-milled and heat-treated and re-milled powders. 

  Composition Milling 
time       
(h) 

Fe3Al 
crystallite 

size 
estimation,   

d (nm) 

Fe3Al           
lattice    

constants        
(Å) 

Mean     
nano-

hardness 
(GPa) 

 Fe3Al 

(mol.%) 

BN 

(mol.%) 

Pu
re

 

po
w

de
rs

 

 - h-BN - 16 - - 

 Fe3Al - - 42 5.793 ± 0.001 4.9 ± 0.9 

A
s-

m
ill

ed
   

   
   

   
po

w
de

rs
 

P1 100 - 10 35 5.793 ± 0.001 5.3 ± 1.1 

P2 90 10 10 12  5.803 ± 0.016 9.2 ± 1.7 

P3 70 30 2 14 5.817 ± 0.003 7.7 ± 1.9 

P4 70 30 10 10  5.827 ± 0.002 10.4 ± 2.0 

P5 50 50 10 12 5.812 ± 0.001 8.3 ± 1.9 

H
ea

t-
tr

ea
te

d 

po
w

de
rs

 AP4 - - 5 min 29  5.816 ± 0.005 16.2 ± 4.7 

AP4 - - 2 14  5.811 ± 0.024 15.4 ± 6.7 

AP4 - - 10 10 5.802 ± 0.005 12.4 ± 3.1 

4.3.3 Microstructure of the HVOF coatings 

4.3.3.1 X-ray diffraction analysis 

The particle size distribution, the morphology of the P4 powder prior to HVOF spraying 

and the XRD diffractograms of the HVOF coatings prepared from the powders described in 

section 4.3.1 are shown in Figure 4.5. In Figure 4.5a, the particle size after sieving exhibits a uni-

modal Gaussian distribution. This size range and the quasi-spherical shape of the powder 

particles (Figure 4.5b) are suitable for HVOF deposition. The diffraction patterns of the coatings 

in Figure 4.5c are quite similar to that of the corresponding powders (see Figure 4.2). After 

spraying the mixture of the Fe3Al powder milled for 10 h with 30 mol.% of BN, the spectrum of 

the broad and low intensity peaks of the Fe3Al matrix is observed on the CP4 curve. On the other 

hand, sharp peaks of Fe3Al, AlN and Fe2B phases are observed for coatings prepared from the 

heat-treated and re-milled powders. Peak widths and positions are not significantly different from 
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that of the powder; this suggests that no significant transformation of the microstructure of the 

powders occurred under the deposition conditions described in Table 4.1.  

4.3.3.2 SEM and EDS observations 

The effect of h-BN addition on the microstructure of the milled iron aluminide is shown in 

Figure 4.6 where the coating made from pure milled Fe3Al is compared to that containing the BN 

phases. The coating fabricated from pure Fe3Al presents a significant amount of large unmelted 

particles (Figure 4.6a) as opposed to typical splats in composite coatings (Figures 4.6b, c and d) 

prepared from the powders containing boron nitride. The coatings containing BN powders exhibit 

uniform light-gray regions that represent the metal matrix in which large splats and small ones 

with a range of contrast are observed. Modification of microstructures and compositions by the 

addition of the boron nitride phase has most likely affected the overall characteristics of the iron 

aluminide matrix. In particular, the coating prepared from 50 mol.% of BN (Figure 4.6d) shows a 

porosity level of about 5.2 % compared to other coatings: 1.9 % for CP1, 2.5 % for CP2 and 

2.1% for CP4. 
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Figure 4.5: (a) Particle size distribution, (b) morphology of the P4 powder 

particles and (c) X-ray diffractograms of HVOF coatings prepared from the Fe3Al 

powder milled for 10 h with 30 mol.% of BN: CP4, as-milled powder, CAP45min 

heat-treated and re-milling for 5 min, CAP42h heat-treated and re-milled for 2 h, 

and CAP410h heat-treated and re-milled for 10 h. 
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Figure 4.6: SEM micrographs of the cross-section of the HVOF coatings made from the 

Fe3Al powder milled for 10 h with (a) no BN, (b) 10, (c) 30 and (d) 50 mol.% of BN. 

The SEM micrograph of the HVOF coatings prepared from the mixture of Fe3Al and 30 

mol.% of BN powders milled at high energy for 10 h is compared in Figure 4.7 to the as-milled 

powder heat-treated and re-milled. The coating prepared from the untreated powder shows a 

typical HVOF microstructure as described above, whereas coatings prepared from heat-treated 

powders reveals precipitates (white and dark features) dispersed within the matrix (Figures 4.7b-

d). The precipitates are almost spherical, and they occupy a volume fraction of about 20 to 32 % 

in the coating. Image analysis of the cross-section of the coatings showed that the mean size of 

the precipitates in the CAP45min coating decreases from 1.2 ± 0.1 µm to 800 ± 60 nm for CAP42h 

and to 435 ± 30 nm for CAP410h as the re-milling time increases. 
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Figure 4.7: SEM micrographs of the cross-section of HVOF coatings prepared 

from the Fe3Al powder milled for 10 h with 30 mol.% of BN: (a) as-milled 

powder (b) heat-treated and re-milling for 5 min, (c) heat-treated and re-milled 

for 2 h, and (d) heat-treated and re-milled for 10 h. 

The EDS analysis performed on the cross-section of the HVOF coating prepared from the 

heat-treated powder re-milled at high energy for 2 h is shown in Figure 4.8. Interestingly, the 

EDS mapping revealed a correlation between oxygen and aluminum suggesting that Al2O3 

formed from the oxidation of aluminum during the deposition process, while a correlation 

between aluminum and nitrogen indicates the presence of AlN phases in the metal matrix. 

Evidence of iron boride phases is not clear from the EDS mapping. 
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Figure 4.8: SEM micrograph of a cross-section of the HVOF coating prepared from 

the mixture of Fe3Al powder milled with 30 mol.% of BN, heat-treated and re-milled 

for 2 h, and EDS mapping of aluminum, oxygen, iron, nitrogen and boron. 

4.3.4 Tribo-mechanical characteristics of the HVOF coatings 

4.3.4.1 Wear rate and hardness 

The effect of BN addition on the wear rate, K, and micro-hardness, H, of the HVOF 

coatings is shown in Figure 4.9a. After polishing, the thickness of the HVOF coatings varies 

between 60 and 100 µm, which is larger compared to the maximum wear (~7 µm) depth reached 

for all tests. The wear rate of the 304-type stainless steel (~9 ´ 10-5 mm3/Nm) substrate is reduced 

by one order of magnitude (~9 ´ 10-6 mm3/Nm) when the Fe3Al coating made from pure iron 

aluminide milled powder (95 µm thick) is applied. The addition of BN phases in the iron 

aluminide matrix decreases K by one order of magnitude while increasing H (5.6 GPa without 

BN) by up to ~40 % in the case of the 30 mol.% of BN. The lowest K, 5 ´ 10-7 mm3/Nm, and the 

highest H, 7.8 GPa, are obtained for a coating prepared from the Fe3Al powder milled at high 

energy for 10 h with 30 mol.% of BN (CP4 coating). 

In Figure 4.9b, the values of K and H of the CP4 coating (98 µm thick) are compared to the 

HVOF coatings prepared from heat-treated and re-milled powders. The value of K, of the 
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CAP45min coating (60 µm thick) significantly increases by a factor of 6 and H decreases by 50 % 

compared to the CP4 coating. On the contrary, when the heat-treated powders were further re-

milled for 10 h, the value of K decreased up to ~2 ´ 10-7 mm3/Nm and H increased to ~9 GPa. 

The effects of BN addition in the Fe3Al and heat-treatment combined with re-milling were 

noticeable on the mechanical and tribological characteristics of the HVOF coatings.  

 

Figure 4.9: Micro-hardness and wear rate of HVOF coatings compared to the stainless 

steel substrate 304 (a) Effect of BN additions to the Fe3Al powders, and (b) effect of 

heat-treatment and re-milling of Fe3Al milled for 10 h with 30 mol.% of BN. 

SEM micrographs of the worn surfaces of the CP1, CP2, CP4 and CP5 coatings after a 

sliding distance of 1000 m with a 5 N normal load, are shown in Figure 4.10. The width of the 

wear track of the CP1, CP2 and CP5 coatings is large compared to that of the CP4 coating 

(Figures 4.10a-d). Scratches and wear debris that are visible inside the wear tracks result from the 
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rough interaction between the surface of the coating and the Al2O3 ball. Particularly, the worn 

surfaces of CP2 and CP5 materials show debris of a size smaller than 30 µm and large pieces of 

worn material are found inside the wear tracks. These features are indication of the severity of the 

interaction between the surface of the coatings and the hard counterbody. 

 

Figure 4.10: SEM micrographs of the wear track after wear tests for the HVOF coatings prepared 

from the Fe3Al powder milled for 10 h with: (a) no BN (CP1) (b) 10 mol.% of BN (CP2) (c) 30 

mol.% of BN (CP4), and (d) 50 mol.% of BN (CP5). SD indicates sliding direction. 

Figure 4.11 shows SEM micrographs of the worn surfaces of the CAP45min, CAP42h and 

CAP410h coatings and the EDS analysis inside and outside the wear track of the CAP45min 

coating. Inspection of the wear tracks reveals significant differences between the wear behaviors 

of these coatings. The wear tracks of the CAP45min and CAP42h coatings are large compared to 

CAP410h. The wear track of the CAP45min is covered with worn materials and shows micro-cracks 

(Figure 4.11c) as opposed to the CAP42h and CAP410h coatings where grooves of micro plowing 

with localized debris of about 30 µm and ~10 µm in size, respectively, can be seen. Examination 

of the curves of the EDS performed on the worn and unworn regions of the CAP45min coating 

(Figure 4.11d) reveals evidence of oxygen inside the wear track compared to the unworn region 
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suggesting that oxidation has taken place during the wear test. Moreover, no significant 

difference is noticed in the intensity of the Al peak regardless of the region examined while Fe is 

lower in the worn region indicating that aluminum oxide has probably formed during wear tests 

performed in ambient air. Moreover, oxides may originate from the degradation of the Al2O3 ball.   

 

Figure 4.11: SEM micrographs of the wear track after wear tests of various 

HVOF coatings prepared from the Fe3Al powder milled for 10 h with 30 mol.% 

of BN, heat-treated and re-milled for: (a) 10 h (CAP410h) (b) 2 h (CAP42h) and 

(c) 5 min (CAP45min), and (d) EDS analysis of the worn and unworn regions of 

the CAP45min coating. SD means sliding direction. 

4.4 Discussion 

4.4.1 Microstructure of the milled powders 

Figure 4.1 revealed no clear evidence of BN peaks on the diffractogram obtained after 2 h 

of milling. This observation can be attributed to the severe plastic deformation that occurred 

during the HEBM process where the hexagonal structure of boron nitride was severely modified, 

thus prompting extreme broadening of the BN peaks. A similar observation was made by Rosas 

et al. [80] where the absence of the h-BN peaks in the XRD diffractograms was associated with 
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the atomic difference between FeAl and BN. However, Figure 4.4 reveals a “sandwich-like” 

microstructure, and the EELS mapping shows a correlation between boron and nitrogen in the 

powder particle of Fe3Al milled at high energy with BN. This is an indication that no significant 

reaction has occurred between the h-BN and the Fe3Al during the milling process. 

The shift of the left side of the Fe3Al peaks towards lower 2θ angles is believed to be 

related to the formation of an Fe (Al, B, N)-based random solid solution as indicated by the 

increase of the lattice constant (Table 4.2) of the cubic Fe3Al from 5.793 Å before milling to 

5.817 Å and 5.827 Å after 2 h and 10 h of milling, respectively. On the contrary, the unit cell of 

the heat-treated powder contracts by 0.4 % after 10 h of re-milling, which is also associated with 

the formation of a Fe (Al)-based solid solution after AlN and iron boride phases were 

precipitated. The expansion or the contraction of the unit cell can be attributed to the formation of 

substitutional or interstitial solid solutions [124]. Further analysis is needed to identify more 

precisely the species (B and/or N) involved in the formation of such solid solutions. In addition, 

modifications of the composition of the Fe3Al upon milling and changes in the degree of 

chemical order can influence the XRD peak position of Fe3Al since the lattice constant of the 

pure Fe3Al (5.792 Å) slightly increases to 5.793 Å after 10 h of milling. 

The broadening of the peaks with the milling time observed in the XRD diffractograms 

(Figures 4.1 and 4.2) of the as-milled and heat-treated powders is believed to be a result of the 

reduction of the crystallite size (Table 4.2) and the possible introduction of defects into the 

structure [80, 125]. Particularly, the initial crystallite size of pure Fe3Al (42 nm) decreases down 

to 14 nm and to 10 nm after 2 h and 10 h of milling with 30 mol.% of BN, respectively. 

Similarly, the crystallite size of the heat-treated powders decreases from 29 nm when the powder 

was re-milled at low energy (200 rpm) for 5 min down to 10 nm after 10 h at high energy 

(1000 rpm). The heating temperature (1300 °C) employed was sufficient to form large ceramic 

particles in the as-milled powders [98, 126]. Upon re-milling, powder particles were repeatedly 

deformed, cold-welded, and fractured leading to a decrease in particle size. As the milling time 

was extended, severe plastic deformation and fragmentation became significant and dominant 

leading to further refinement. The disappearance of some XRD ceramic peaks in Figure 4.2 can 

be related to the extreme broadening of these peaks caused by the refinement of the ceramic 

particles (Figure 4.7d) [98]. The crystallite size of Fe3Al of the as-milled powders decreases as 
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the BN content increases in the powder mixtures suggesting that the large amount of hard and 

brittle BN phases accelerates the refinement of the microstructure of the as-milled powders. 

Heat-treatment was employed with the intent to precipitate nitride and boride phases within 

the metal matrix taking advantage of the microstructure of the milled powders where all 

components are present and likely to react. The XRD analysis performed on the heat-treated and 

re-milled powders revealed evidence of AlN and Fe2B phases. 

The differential thermal analysis of the Fe3Al powder milled at high energy for 10 h with 

30 mol.% of BN was used to investigate the mechanism of formation of the AlN and Fe2B 

ceramic phases in the iron aluminide matrix. The first exothermic peak observed at ~562 °C is 

attributed to the precipitation of AlN phases as its heat of formation (Table 4.3) is very large 

compared to that of Fe2B suggesting that there is a strong driving force for its formation. XRD 

analysis performed (not shown) after heat-treatment above 562 °C confirms the presence of AlN. 

The second exothermic peak is associated with the precipitation of Fe2B phases as nitrogen has 

reacted with the aluminum, and boron is free to react with iron. 

Table 4.3: Characteristics of the ceramic materials. 

Ceramic 

materials 

Heat of 

formation 

(kJ/mol) 

Vickers 

hardness 

(GPa) 

Melting 

temperature  

(°C) 

AlN -318 [127] 14.6 2200 

Fe2B -67.4 [128] 17.7 1410 

The endothermic peak seen at ~1224 °C is attributed to the melting of the milled product. 

Based on the previous discussion, a model for the microstructural and compositional changes of 

the powder during heat-treatment can be proposed. In the early stage of the heat-treatment of the 

Fe3Al powder milled for 10 h with 30 mol.% of BN, the reaction can be described by the 

following equation: 

0.7Fe&Al + 0.3BN ⟹  0.3AlN + 2.8 Fe0.12Al0.34B0.33     (4.1) 
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The second term on the right-hand side of equation (4.1) describes the solid solution formed once 

the aluminum has reacted with nitrogen to form AlN. The subsequent reaction that takes place at 

higher temperatures can be described using the following equation: 

2.8 Fe&.'(Al&.+,B&.++ ⟹ 0.3Fe1B + 1.9(Fe&.'6Al&.1+)     (4.2) 

Formation of the products of equation (4.2) can be explained from the ternary phase 

diagram of the Fe-Al-B system at 1000 °C (Figure 4.12a) [129] where the composition of the 

Fe0.75Al0.14B0.11 solid solution is indicated. At that particular composition, the Fe2B phase is 

expected to form in the Fe(Al)-based matrix as discussed previously. By analogy to the Fe-B 

binary system shown in Figure 4.12b [130], the liquidus temperature of a 0.3Fe2B + 

1.9(Fe0.79Al0.21) mixture is expected to be lower [131] compared to that of a mixture of the same 

Fe2B ceramic content in an Fe matrix due to the presence of aluminum as shown in Figure 4.12b.  

The complete transformation of the mixture  

0.7Fe&Al + 0.3BN   into  

0.3AlN + 0.3Fe*B + 1.9(Fe/.01Al/.*2)   would give weight fractions of AlN, Fe2B and iron 

aluminide of 8.6, 25.6, and 65.85 %, respectively. This estimation is close to that obtained from 

the XRD analysis discussed previously considering the fact that some aluminum oxides are also 

present in the composite materials. 

 

Figure 4.12: Fe-Al-B and Fe-B phase diagrams used to illustrate the composition 

of the Fe0.75Al0.14B0.11 powder mixture. Adapted from [129] and [130]. 
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4.4.2 Mechanical properties of the milled powders 

The effect of powder composition and milling time on the mechanical properties of the 

milled powders are compared in Table 4.2. It has been shown that the hardness can be controlled 

by the volume fraction of secondary phases in the iron aluminide matrix [27]. After 10 h of 

milling, the crystallite size of the Fe3Al phase is similar regardless of the powder composition. 

The average nano-hardness (8.3 GPa) of the Fe3Al powder milled for 10 h at high energy with 50 

mol.% of BN is lower compared to 10 mol.% (9.2 GPa) and 30 mol.% (10.4 GPa), respectively. 

These peculiar trends can be related to the large amount of BN that probably reduces the ability 

of the powder particles to cold-weld during milling, thus promoting fragmentation, which led to a 

brittle behavior and to a loss of strength and toughness. As expected, the nano-hardness increases 

with the milling time, which is believed to be a consequence of progressive hardening with time 

as the powder mixture is exposed to repeated cold-welding and severe plastic deformation. 

Therefore, particle fragmentation and grain refinement have led to an increase of the number of 

interfaces between the matrix and inclusions, thus limiting and/or stopping indentation crack 

growth as expected for nanocrystalline materials [132, 133]. The highest nano-hardness is 

achieved for the optimum concentration of 30 mol.% of BN in the Fe3Al. 

Compared to the as-milled powders, the nano-hardness of the heat-treated and re-milled 

powders is higher as presented in Table 4.2 probably due to the presence of ceramic phases (AlN 

and Fe2B) that occupy a volume fraction between 20 and 32 % in the material. The large standard 

deviation (± 3.1 to ± 6.7 GPa) calculated from the nano-indentation data of heat-treated powders 

indicates a large degree of inhomogeneity in the microstructure as opposed to the as-milled 

powders (± 1.1 to ± 2.0 GPa). These observations clearly show that the average nano-hardness of 

the heat-treated powders is a response from individual phases present in the material 

(precipitation hardening) as opposed to a response from the as-milled powders where solid 

solution hardening is the dominant strengthening mechanism. This analysis is supported by the 

distribution of nano-hardness in Figure 4.13. The heat-treated powder indicates two or three 

groups of nano-hardness as opposed to a broad peak from the as-milled powder.  
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Figure 4.13: Distribution of nano-hardness values of the mixture of Fe3Al and 

30 mol.% of BN milled at high energy for 10 h compared with that of the same 

powder heat-treated at 1300 °C for 2 h and re-milled for 10 h. 

4.4.3 Mechanical and tribological properties of the HVOF coatings 

The XRD diffractograms of the HVOF coatings in Figure 4.5c show similar phases and 

features compared to the corresponding powders presented in Figure 4.2 suggesting that no 

significant phase transformation occurred during the deposition process. The retention of the 

microstructure of the powders in the HVOF coatings can be attributed to the short residence time 

(<2 µs) of the powder particles in the gun and the short thermal spike associated with the process 

[122]. Grosdidier et al. in [134] made similar observations on iron aluminide powder and 

associated them with lower particle temperatures achievable by HVOF. However, the X-ray 

diffractogram of the CP5 coatings compared in Figure 4.14 to the CP1, CP2 and CP4 coating 

reveals evidence of ceramic phases formed in the HVOF gun when the BN content is sufficiently 

high. This observation suggests that the spraying conditions described in Table 4.1 may not be 

optimum to induce significant reactions between the reactants in the P4 powder. Nevertheless, 

SEM micrograph of the CP4 coating in Figure 4.6c reveals features with a range of contrast 

within the iron aluminide matrix that are believed to be ceramic precipitates. 
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Figure 4.14: X-ray diffractograms of the HVOF coatings prepared from the as-milled powders. 

The micro-hardness of the HVOF coatings (see Figure 4.9a) shows a similar trend to the 

nano-hardness of the corresponding powders discussed previously (Table 4.2). However, these 

observations are strongly dependent on the size of the indentation. Under micro indentation at 

3N, a large volume of material is displaced compared to the nano indentation at 2 mN. The 

increase in micro-hardness of the HVOF coatings prepared from pure Fe3Al ball-milled for 10 h 

with BN powder is associated with the nanocrystalline structure of the powders retained in the 

coatings. The hardness of the milled powders is enhanced by fine grains, solid solution 

strengthening, and by hardening via heat-treatment as discussed above. Moreover, the presence of 

oxides (Al2O3) and AlN particles (Figure 4.8) offers extra strength to the iron aluminide matrix. 

The micro-hardness of the HVOF coating prepared from the Fe3Al milled at high energy 

for 10 h with 30 mol.% of BN, heat-treated and mildly re-milled at low energy decreases by 50 % 

compared to the untreated powder (Figure 4.9b). Heat-treatment at such high temperature 

(1300 °C) is believed to have decreased the overall mechanical properties [98] of the matrix as a 

result of melting. After milling the heat-treated powder for 2 h and 10 h at high energy, the 

overall micro-hardness of the HVOF coatings approaches ~9 GPa. 

The wear rate (K, ~9 ´ 10-5 mm3/Nm) of the substrate decreases by one order of magnitude 

when the Fe3Al coating is used. The addition of the hard h-BN provides additional improvement. 
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High micro-hardness (7.8 GPa) and high wear resistance (5 ´ 10-7 mm3/Nm) are achieved for the 

CP4 coating compared to the CP2 and CP5 coatings. The poor wear performance of the CP2 and 

CP5 materials is associated with their poor mechanical properties described above. In addition, 

the CP5 coating exhibits a higher level of porosity compared to other materials. The highly 

fractured surface of the CP5 coating (Figure 4.10d) may be related to the special composition of 

this material with a large ceramic content and its high level of porosity. 

The wear performance under the selected tribological conditions seems to be defined by the 

micro-hardness of the HVOF coatings. The larger wear tracks in Figures 4.10b and 4.10d, and the 

features observed are believed to be associated with the lower micro-hardness and the brittle 

behavior of the corresponding coatings. The width of the wear track of the CP4 coating 

(Figure 4.10c) is ~3 times smaller compared to other coatings suggesting that 30 mol.% of BN is 

optimum under the chosen tribological conditions. 

The wear rate of the CAP45min coating, ~3 ´ 10-6 mm3/Nm, significantly increases as 

compared to the CP4, 5 ´ 10-7 mm3/Nm for which the powder was untreated as shown in Figure 

4.9b. This result seems surprising at first glance since the AP45min powder exhibits the highest 

mean nano-hardness (Table 4.2) and its microstructure is preserved in the HVOF coating as 

discussed previously. However, the micro-hardness of the coating is low (Figure 4.9b) and 

examination of the wear track of the CAP45min (inserted micrograph of Figure 4.11c) indicates the 

presence of cracks around large particles suggesting that the matrix-ceramic interface bond is 

weak and may be preferential sites for crack initiation and propagation. Moreover, the size and 

the distribution of the precipitates may not be adequate for providing good tribological properties. 

In Figure 4.9b, the CAP42h coating (79 µm thick) exhibits the highest hardness but its wear rate is 

higher compared to CAP410h (98 µm thick). This observation is related to the differences in the 

degradation mechanism of the coatings. The width of the wear track of the CAP410h coating is 2.5 

times smaller than that of the CAP42h. Although the precipitates are uniformly dispersed in the 

matrix after 2 h of re-milling, their size is much larger compared to 10 h (see Figure 4.7). The 

relatively large precipitates in the CAP42h coating prompted a much faster material removal 

compared to CAP410h coating. The CAP410h coating prepared from precipitate strengthening 

exhibits a 13 % increase in hardness and a 50 % decrease in wear rate compared to the CP4 

coating prepared from solid solution strengthened Fe3Al matrix as discussed previously. 
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4.4.4 Wear mechanism 

4.4.4.1 Fatigue and delamination 

Observation of the top surface of the wear track in Figures 4.10 and 4.11 reveals the 

presence of various tribo-features such as micro-cracks, parallel grooves and scratches in the 

direction of sliding. These features seem to indicate the fatigue degradation mechanism [53, 135]. 

In addition, SEM micrographs of the longitudinal cross-sections of the wear track of the pure 

Fe3Al coating shown in Figure 4.15 illustrate the degradation mechanism mode. In Figure 4.15a, 

the cross-section perpendicular to the sliding direction reveals micro-cracks below the region of 

contact of the worn surface of the coating. The initiation of micro-cracks inside particles is due to 

repeated stresses induced by the hard asperities of the alumina ball (20 GPa) (see Figure 4.15a). 

When the shear stress generated at a certain depth is maximum, cracks grow and propagate 

rapidly as shown on the longitudinal cross-section parallel to the sliding direction (Figure 4.15b) 

where a large crack can be seen within an unmelted particle of Fe3Al. Thus, the top surface of the 

Fe3Al coating primarily degrades via spallation/delamination. 

 

Figure 4.15: SEM micrographs of cross-sections (a) perpendicular and (b) 

parallel to the tangential force of the wear track of the pure Fe3Al coating. 

4.4.4.2 Abrasion 

The presence of debris in the wear tracks (Figures 4.10b-d and 4.11a-c) and parallel 

grooves and scratches in the direction of sliding (Figures 4.10b, 4.11b) are indications that 

material removal is, to a large extent, governed by abrasion [53]. In Figure 4.16, the SEM 

micrograph of the cross-section of the wear track of the CP5 coating shows that cracks due to 
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stress concentration propagate rapidly through splats and/or porosity and coating material is 

worn. It is believed that the hard asperities at the surface of the composite coatings were 

deformed upon interactions with the Al2O3 ball and materials including hard ceramic particles 

were removed. The hard particles from the generated debris act as abrasive particles between the 

surface of the composite coatings and the Al2O3 ball. 

Amiriyan et al. [61] identified similar degradation mechanisms as discussed above for the 

pure Fe3Al and Fe3Al-TiC coatings tested under comparable dry sliding conditions at a lower 

sliding speed (between 0.04 and 0.1 m/s). 

 

Figure 4.16: SEM micrograph of a longitudinal cross-section of the wear 

track of the CP5 composite coating perpendicular to the sliding direction. 

4.4.4.3 Oxidation 

The EDS analysis of the wear track of the CAP45min coating (Figure 4.11d) indicates the 

presence of a significant amount of oxygen compared to the unworn surface. From the peak 

intensity of Fe and Al, it is believed that aluminum oxide forms superficially in the wear track as 

a result of oxidation. In Figure 4.17a, inspection of the SEM micrograph of the region of contact 

of the counterbody after rubbing on the surface of the coating shows that the Al2O3 ball is worn. 

The traces of aluminum and oxygen from debris of the counterbody are likely to be observed in 

the wear tracks. The EDS analysis of the contact of the ball (Figure 4.17b) revealed coating 
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materials (Fe) transferred to the alumina. This is an indication that coating material losses also 

occur via adhesive wear.  

 

Figure 4.17: (a) SEM micrograph and (b) EDS analysis of the contact of 

the Al2O3 ball after sliding on the surface of the HVOF coating prepared 

from the as-milled powder containing 50 mol.% of BN. 

4.5 Conclusion 

High-energy ball-milling was successfully used to fabricate Fe3Al-based composite 

materials with nano-scale BN inclusions. Heat-treating this powder mixture led to the formation 

of AlN and Fe2B ceramic particles in the iron aluminide matrix. Re-milling the powders 

significantly reduces the size of the precipitates in the material. 

Following HVOF deposition of the powder mixture, it has been found that the 

microstructure of the feedstock materials was preserved in the coating to a large extent. 

Detailed mechanical analysis of both the powders and of the HVOF coatings has revealed 

that the micro-hardness of the pure milled Fe3Al sprayed coating was increased by ~40 %, and its 

initial wear rate ~9 ´ 10-6 mm3/Nm was decreased by one order of magnitude when 30 mol.% of 

BN was added to Fe3Al. Grains refinement, solid solution and particle strengthening are believed 

to be the main reason for the observed improvements. A homogeneous dispersion of ultra-fine 

and hard particles throughout the metal matrix by re-milling the heat-treated powder mixture was 

found to provide the best tribological performance. 

Particular insights have been gained when analyzing the HVOF coating wear mechanisms. 

The worn Al2O3 counterbody and the presence of particles and scratches inside the wear track 
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suggest that abrasion is the predominant wear degradation mechanism. Detailed inspection of the 

cross-section of the coating has revealed micro-cracks below the contact zone due to repeated 

stresses induced by the hard Al2O3 ball on the coating, suggesting that the fatigue mechanism 

also contributed to the coating failure during testing. 
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Abstract 

Iron aluminide coatings reinforced with in-situ precipitated TiN, TiB2 and Fe2B particles 

were synthesized from Fe3Al, BN and Ti powders using a combination of high-energy ball 

milling and high velocity oxy-fuel (HVOF) process. In the present work, we investigate the effect 

of the BN/Ti contents on the microstructure and characteristics of the HVOF coatings and we 

discuss their tribological properties. The microstructure and composition of powders and coatings 

were investigated using X-ray diffraction, differential thermal analysis and optical and scanning 

electron microscopies. The wear rate was evaluated by tribometry in a pin-on-disc configuration, 

and the mechanical properties were obtained using indentations. X-ray analysis of the coatings 

prepared from the as-milled powders revealed evidence of TiN, TiB2 and Fe2B peaks. The 

microhardness (4.3 GPa) and the wear resistance (3 ´ 10-4 mm3/Nm) of the coating prepared from 

the pure Fe3Al powder were increased 3.3 times and by about three orders of magnitude, 

respectively, when 70 wt% of Fe3Al was milled with 10 wt% of BN and 20 wt% of Ti. Fatigue 

and abrasive wear was found to be the predominant degradation mechanism during sliding 

against an alumina ball of the pure Fe3Al and composite HVOF coatings, respectively. Adhesive 
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wear also contributed to the material loss as confirmed by EDS analysis that revealed a transfer 

of the coating material to the counterpart.  

Keywords: Metal ceramic composites; Nitride and boride phases; HVOF; Wear mechanism; Iron 

aluminide; Ball milling 

5.1 Introduction 

Iron aluminide alloys with tailored tribo-mechanical properties have been extensively 

studied as potential candidates to replace bulk steels or hard chromium coatings due to their low 

density and low cost of manufacture. They exhibit good corrosion-, oxidation- and sulfidation-

resistance at high temperature [14]. These materials are suitable for applications in power 

generation, petrochemical and automotive industries owning to their interesting metallurgical 

properties [136]. At room temperature, iron aluminide alloys exhibit poor ductility (<5 %), low 

resistance to creep and poor wear performance that restrict their use for structural applications 

[15, 137]. It was demonstrated that these drawbacks can be improved through solid solution or 

precipitation strengthening [15, 19, 36, 138].  

Among different mechanical alloying processes, the high-energy ball milling (HEBM) 

technique is convenient to produce metal-ceramic composite materials in a powder form [139]. In 

this technique, powder particles are blended, cold worked, fragmented and repeatedly welded 

giving rise to materials with fine and homogeneous microstructure. The resulting materials often 

contain stable and/or metastable phases within a metallic binder with clean matrix/reinforcement 

interfaces. 

In many wear applications where severe environmental conditions are experienced such as 

high temperature corrosion, solid particle and cavitation erosion or abrasion, thick protective 

coatings are suitable [122]. To produce thick (hundreds of µm up to mm) coatings on metal 

substrates, thermal spray processes are preferred over technologies such as chemical or physical 

vapor deposition used to fabricate films with a thickness below 30 µm [120]. Compared to other 

thermal spray techniques, the high velocity oxy-fuel (HVOF) process can be used to achieve 

relatively low particle temperature and high speed (~800 m/s). Thus, dense coatings with low 

porosity and less prone to oxidation can be obtained [122]. 
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Borides and nitrites have been less frequently considered as reinforcing components for 

iron aluminide alloys compared to other refractory materials such as carbides and oxides. 

Titanium diboride (TiB2) is a wear-resistant material that exhibits high hardness, high elastic 

modulus and high toughness. Compared to TiB2, titanium nitride (TiN) exhibits higher melting 

temperature and demonstrates lower physical performance [140]. Both ceramic materials are 

thermodynamically stable in iron aluminides [24], and they can be considered as potential 

reinforcing components for metal matrices [27, 140]. The effect of single ceramic particles on the 

mechanical and wear properties of bulk iron aluminide alloys has been already studied [102, 104, 

141]. Alman et al. have demonstrated that the addition of 40 up to 70 vol% of TiB2 particles 

using arc melting decreased the wear rate of Fe3Al by one order of magnitude. They reported that 

the solid particle erosion resistance of FeAl is higher when TiB2 particles are used compared to 

TiC [142]. The micro-hardness of bulk iron aluminide alloys was increased with the addition of 

TiN particles with a size 20 nm [102]. It is believed that a combination of TiN and TiB2 particles 

as reinforcing components in iron aluminides can yield alloys with high fracture toughness and 

unique ductility. 

The main objective of this work is to enhance the tribo-mechanical performance of the 

Fe3Al-based composites reinforced via in-situ precipitation of borides and nitride particles. The 

effect of the BN/Ti contents on the mechanical and wear properties of the iron aluminide-based 

HVOF coatings are investigated in detail. 

5.2 Experimental methods 

5.2.1 Powder preparation 

Powder mixtures were prepared from 100, 78, 70, 57 and 37 wt% of Fe3Al (97.5 % pure 

with ~2 % of chromium from Ametek) with 0, 14, 20, 28 and 41 wt% of Ti (99.4 % pure from 

Alfa Aesar), and 0, 8, 10, 15 and 22 wt% of BN (98 % pure from Lower Friction), and labeled as 

M100, M40, M30, M20 and M10, respectively. The initial mean particle sizes of BN, Fe3Al and 

Ti powders were 5, 50 and 150 µm, respectively, and the ball-to-powder weight ratio was 10:1. 

The powders were ball milled at high energy (1000 rpm) for 10 h under an argon atmosphere 

using a Zoz GmbH Simoloyer CM01 2 Liter high-energy mill with stainless steel jar and milling 
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balls. For comparison, the powder mixture M30 was ball milled at high energy for 1 h and 4 h, 

and labeled as M30-1h and M30-4h, respectively. 

5.2.2 HVOF coating preparation 

The ball milled composite powders were sprayed onto sandblasted stainless steel 304 type 

substrates using a Praxair J-P 8500 HVOF gun mounted on an ABB robot arm and controlled by 

a computer. The deposits were cut into coupons prior to the tribo-mechanical characterization. 

Details of the preparation of the composite coatings and of the samples are described elsewhere 

[36]. The coatings are labeled with a letter “C” added in front of the abbreviated name of the 

corresponding powder. For example, CM100 for the coating prepared from the pure Fe3Al 

powder ball milled for 10 h. 

5.2.3 Microstructural analysis 

All powders and HVOF coatings were examined using a Phillips X’Pert X-ray 

diffractometer equipped with a Cu Kα radiation source operated at 50 kV and applied in the θ-2θ 

configuration. The X-ray diffraction data were used to determine and quantify the phases formed 

in the HVOF coatings. 

Microstructure of the HVOF coatings was assessed from the observations of polished 

cross-sections using a 7200 JEOL scanning electron microscope (SEM) equipped with energy 

dispersive X-ray spectroscopy (EDS, Inca X-max 80 Oxford) with a 10 kV electron beam. For 

better resolution, the specimens were observed and analyzed at a distance of 15 mm from the 

detector. The porosity level was estimated using image analysis of the polished cross-sectional 

surface of the HVOF coatings. 

The thermal stability of the as-milled powders was investigated using a SETSYS Evolution 

TGA-DTA/DSC (from SETARAM Instrumentation) at a heating rate of 10 °C/min. The milled 

powders were held in an alumina crucible under an argon atmosphere. Part of the M20 composite 

powders was heat-treated at different temperatures (450, 550, 740 and 900 °C) under vacuum 

(~10−6 mbar) and rapidly quenched in air. The heating rate was 10 °C/min up to the desired 

temperature. 
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5.2.4 Indentation 

The indentation measurements on the HVOF coatings were performed using a CSM Micro-

Combi tester. The microhardness was evaluated with a Berkovich tip, and the applied load was 

linearly increased up to a maximum of 3 N, kept constant for 30 seconds, and then linearly 

decreased. The average microhardness was obtained from a minimum of 200 indentations 

randomly conducted on the polished surface or cross-section of the coatings using the Oliver and 

Pharr method [123]. The error bars on the average hardness values represent standard deviation 

from the 200 indentation measurements. 

5.2.5 Scratch test 

The scratch tests were performed on polished cross-sectioned HVOF coatings using a CSM 

Micro-Combi tester equipped with a diamond Rockwell C indenter with a radius of 200 µm. The 

scratch test started in the substrate and ended in the resin. The scratch length was fixed at 1 mm, 

and the constant normal load was 10 N. The appearance of defects within the fractured cross-

section was used to classify the HVOF coatings. 

5.2.6 Pin-on-disc 

The wear rate of the HVOF coatings were measured according to ASTM-G99 using a pin-

on-disc configuration in the dry conditions at room temperature with a relative humidity between 

20 and 40 %. The diameter of the wear track ring was 9 mm, and a new alumina (Al2O3) 

counterpart of 4.75 mm in diameter was used for each test. Alumina and the sliding test 

conditions were chosen to compare results with previously reported experiments [36]. The total 

sliding distance, L, was 1000 m, and the linear speed was 15.7 cm/s. The applied normal force, F, 

was 10 N, and the wear rate, K, was calculated using the formula ! = # $*&  	  ! = # $´%  , 

where V is the total volume of coating material loss. The average cross-sectional surface of the 

ring was obtained from a minimum of 20 measurements at different positions of the wear track 

ring, and the error bars on the average wear rate are the standard deviation from these 

measurements. The SEM micrographs of the top and cross-sectional surfaces of the wear track 

were analyzed in order to assess the degradation mechanisms of the HVOF coatings. EDS 

analysis of the worn and unworn surfaces of the coatings and counterpart were performed to 

obtain more insight into the material loss mechanism. 
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5.3 Results and discussion 

5.3.1 Microstructure of the composite powders 

Figure 5.1 presents the X-ray diffractograms of the elementary powders (Fe3Al, BN and Ti) 

compared with the mixture of 78, 70, 57 and 37 wt% of Fe3Al milled for 10 h with with 14, 20, 

28 and 41 wt% of Ti, and 0, 8, 10, 15 and 22 wt% of BN. After one hour of ball milling, all peaks 

broadened and weakened compared to that of the elementary powders (Figures 5.1a and 5.1b). 

Broadening and weakening becomes more important as the milling is prolonged to 4 h (see the 

diffractogram for the M30-4h sample) due to a decrease of the crystallite size and presence of 

defects induced by the high-energy collisions of the powder particles. 

Following 10 h of milling, the left side of the principal peak of Fe3Al is slightly shifted 

toward lower 2θ angles indicating a change of its composition prompted by the formation of 

random Fe-based solid solutions. On the contrary, the titanium peaks remain unshifted regardless 

of the initial composition of the mixture (see Figure 5.1c) suggesting that asymmetric diffusion 

occurred upon ball milling. Compared to the unmilled powders, weakening and broadening of the 

Ti peaks indicate that part of Ti particles has been severely deformed and their size was 

significantly decreased. The iron aluminide peak at ~44.2 ° in the diffractograms exhibits a right 

shoulder that coincides with Ti and broad BN peaks. This right shoulder remains evident after 

10h of milling irrespective of the initial composition of the powder mixtures suggesting that its 

presence is a contribution from the un-shifted Ti and Fe3Al peaks. The contribution from the 

broad BN peak is not significant as we describe below. 

As ball milling evolved, the BN peaks rapidly disappeared in the diffractograms except for 

M10 where a weak peak is evident at ~26 ° due to a larger amount of BN in the mixture. The 

rapid disappearance of the BN peaks in the diffractograms in Figures 5.1b and 5.1c is associated 

with the destruction of the BN crystal structure and its low scattering power. Moreover, the 

microstructure of the M10 and M20 mixtures exhibits amorphous-like features between 33 ° and 

46 ° after 10 h of milling. These features are associated with the amorphization of the powder 

mixture upon HEBM. It has been reported that upon mechanical treatment, amorphization of h-

BN particles occurred when the nanocrystallites are less than several nanometers in size [35]. 
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Figure 5.1: X-ray diffractograms of (a) initial powders, (b) powder mixtures of 

70 wt% of Fe3Al milled for 1 h and 4 h with 10 wt% of BN and Ti of 20 wt%, 

and (c) powder mixtures of 78, 70, 57 and 37 wt% of Fe3Al milled for 10 h 

with 14, 20, 28 and 41 wt% of Ti and 8, 10, 15 and 22 wt%, respectively. 

The absence of new phases after 10 h of HEBM suggests that the milling time and/or the 

mechanical energy provided to the powder particles were not sufficient to initiate solid-state 

reactions between reactants in the mixtures regardless of the composition of the powder. In fact, 

there are conflicting reports on the synthesis of TiN/TiB2 composite powders via the HEBM of Ti 

and h-BN powders. Shim et al. obtained the TiN/TiB2 composite powders in a single step. The -

TiN and TiB2 phases were formed after 2 h of milling [143]. On the contrary, a two-step process 

was reported in [144] and [145]. The authors primarily observed the formation of TiN phases 

within 30 to 70 h of milling, and subsequent heat-treatment was employed to form TiB2 phases. It 

is evident that mechanical energy and/or milling time are critical in the formation of TiN and TB2 

phases. 

After ball milling, the powders were sieved and particle with sizes between 20 and 50 µm 

were kept for the HVOF spraying. The morphology and the distribution of the particle sizes are 

shown in Figure 5.2. SEM micrographs of the as-milled powder reveal that the shape of the 
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powder particles is irregular and the morphology exhibits a typical “sandwich-like” 

microstructure. In Figure 5.2a, the M30 powder particles seem to be compact as opposed to M10. 

The distribution of sizes of the as-milled powder particles exhibits a Gaussian-type unimodal 

distribution with an average particle diameter of about 35 µm except for the M10 powder which 

shows a bimodal distribution (Figure 5.2b). The average diameter of the M10 powder particles is 

5 and 40 µm with respect to the modes. This peculiar trend seems to indicate that smaller 

particles of the as-milled M10 powder are loosely bonded to larger ones due to the large amount 

of h-BN and Ti that has not favored cold-welding during the HEBM process. 

 

Figure 5.2: SEM micrographs and powder particle size distribution of two 

mixtures: (a) 70 wt% of Fe3Al and 10 wt% of BN and 20 wt% of Ti, and (b) 37 

wt% of Fe3Al and 22 wt% of BN and 41 wt% of Ti milled at high energy for 10 h. 

5.3.2 Microstructure of the HVOF coatings 

X-ray diffractogram of the HVOF coating prepared from the pure Fe3Al powder milled for 

10 h at high-energy is compared in Figure 5.3 to those of the coatings prepared from the as-

milled powders described in section 5.3.1. The presence of TiN, TiB2 and Fe2B peaks in the 
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diffractograms of the HVOF coatings prepared from the as-milled powder provides an evidence 

that phase transformation has occurred during the deposition. Ball milling of the mixture of 

Fe3Al, BN and Ti led to the formation of a powder with a microstructure in which all reactants 

are close to each other and likely to react. It has been demonstrated that the decrease of the 

particle sizes of Ti and BN down to nanoscale using the HEBM process favors the reaction 

between the components [144]. In general, decreasing the particle size leads to a reduction of the 

diffusion paths and it increases reaction activities and interface areas [146]. Although the powder 

particles were subjected to a short thermal spike and their residence time in the HVOF gun was 

short (<200 µs) [122], ceramic phases can be formed under the deposition conditions described in 

[36]. It is worth mentioning that no significant ceramic formation was observed in our coatings 

when a mixture of Fe3Al and h-BN powders was ball milled without Ti and sprayed under similar 

HVOF deposition conditions. This means that Ti significantly influences the phase evolution of 

the composite powders. 
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Figure 5.3: X-ray diffractograms of HVOF coatings prepared from the pure 

Fe3Al powder compared to those prepared with composite powders. A section 

(from 36 to 46 °) of the diffractograms is presented in the inserted graph. 
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DTA characteristics of the as-milled powders shown in Figure 5.4 can be used to 

understand powder behavior upon heat treatment. In Figure 5.4a, the DTA curves reveal two 

broad exothermic peaks that occurred at about 550 and 740 °C irrespective of the powder 

mixtures, suggesting the nucleation/precipitation of new phases. The first peak has been 

associated mainly with the formation of TiN since the X-ray diffractogram of the M20 powder 

shown in Figure 5.4b reveals evidence of TiN peaks when the powder mixture was annealed at 

550 °C. The second exothermic peak is attributed to the formation of both TiB2 and Fe2B phases: 

when the temperature was increased to 800 °C, TiB2 and Fe2B peaks become evident. 

Thermodynamically, Ti is more likely to react first with N than with B since the heat of 

formation of TiN (-338 kJ/mol) is more negative than that of TiB2 (-281 kJ/mol) [147]. From the 

thermodynamic point of view, Fe2B (-67.4 KJ/mol [148]) is unlikely to form before TiN and TiB2 

because of the low driving force for its formation. 

 

Figure 5.4: a) DTA curves of as-milled powders and b) X-ray 

diffractograms of the as-milled M20 powder heat-treated at 

various temperatures up to 1000 °C and quenched in air. 

The X-ray diffractograms of the CM40 and CM30 coatings reveal broad and weak peaks of 

iron aluminide compared to that of CM100. The increase of intensity of the TiN and TiB2 peaks 

with respect to the amount of BN/Ti can be related to the content of precipitated ceramic 

materials in the matrix as presented in Table 5.1. 
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Table 5.1: Composition of the elementary powders of the 

mixtures, and characteristics of the HVOF coatings. 

 

Composition   

Starting powders 
(wt%) 

Phases  

(wt%) 

Scratch 
appearance 

Porosity 
level 
(%) 

Fe3Al BN Ti Fe3Al FeAl TiN TiB2 Fe2B   

A
s-

m
ill

ed
 p

ow
de

rs
 M100 100 - -        

M40 78 8 14        

M30 70 10 20        

M20 57 15 28        

M10 37 22 41        

 H
V

O
F 

co
at

in
gs

 

CM100    100 - - - - Poor 2.2 ± 0.1 

CM40    59 - 28 13 - Good 2.4 ± 0.1 

CM30    46 - 36 18 - Good 2.5 ± 0.2 

CM20    - 10 44 34 12 Poor 4.7 ± 0.1 

CM10    - 8 58 25 9 Poor 5.8 ± 0.2 

 

In particular, for the CM10 and CM20 coatings, the Fe2B peaks are visible in the 

diffractograms as the iron aluminide peaks are significantly weakened and shifted toward higher 

2θ angles. This change of composition is attributable to the loss of Fe in the iron aluminide 

crystal structure through the formation of Fe2B phases. 

5.3.3 Mechanical and tribological properties of HVOF coatings 

The microhardness (H) of the HVOF coatings prepared from the as-milled Fe3Al powder 

(CM100) is compared in Figure 5.5 with the coatings prepared from the composite powders. The 

H value of 4.3 GPa for the CM100 coating increased 3.3 times when BN and Ti were added. 

Compared to other compositions, the M30 seems to contain the optimum BN/Ti content. 
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Interestingly, the microhardness of the HVOF coatings does not increase continuously with the 

BN/Ti contents. This observation was also previously made by Schneibel et al. for various iron 

aluminide-based alloys [27]. The authors showed that the mechanical properties do not improve 

linearly with the volume fraction of the secondary phases. 

The presence of oxides (Al2O3) originated from the oxidation that occurred during spraying 

can offer extra strength to the coatings. Such mechanical improvement can be associated with the 

microstructure of the coatings.  

 

Figure 5.5: Microhardness of the HVOF coatings. 
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Figure 5.6: Cross-section SEM micrographs of the HVOF coatings prepared from 

(a) pure Fe3Al powder milled for 10 h, and from the as-milled powders of (b) 78 

wt% of Fe3Al and 8 wt% of BN and 14 wt% of Ti, (c) 70 wt% of Fe3Al and 10 

wt% of BN and 20 wt% of Ti, (d) 57 wt% of Fe3Al and 15 wt% of BN and 28 

wt% of Ti, and (e) 37 wt% of Fe3Al and 22 wt% of BN and 41 wt% of Ti. 

In Figure 5.6a the CM100 coating shows unmelted rounded particles as opposed to the 

typical HVOF microstructure seen for other coatings (Figures 5.6b – 5.6e). The melted powder 

particles in which fine and hard ceramic precipitates are dispersed in an iron aluminide matrix is 

beneficial to the mechanical properties [58]. These fine dispersions increase the number of 

interfaces in the material that can help to delay or stop the propagation of cracks initiated via 

indentation compared to unreinforced and unmelted particles of the CM100 coating. The CM10 

and CM20 coatings exhibit lower H compared to the CM30 and CM40. First, both CM10 and 

CM20 coatings (Figures 5.6b and 5.6c) show fewer light-gray regions that were identified to be 

the Fe(Al) matrix. These regions display dark inclusions that are Ti-rich and believed to be the 

ceramic precipitates formed during HVOF deposition. Second, the CM10 and CM20 coatings 

exhibit micro-cracks and higher porosity level (5 – 6 %) compared to other coatings as detailed in 

Table 5.1. The presence of cracks and porosities are believed to be a consequence of the brittle 
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nature of the M10 and M20 powder particles rich in BN and Ti as described above (Figure 5.2b). 

The brittle behavior was inherited from that of the powders. This type of microstructures and 

defects can be detrimental to the mechanical properties of the CM10 and CM20 coatings.  

 

Figure 5.7: Comparison of the wear characteristics of the HVOF coatings: 

a) wear rate and elasticity index, and b) wear track depth profiles. 

Figure 5.7 presents the wear rate, elasticity index and wear track profiles of the HVOF 

coatings after the wear test under dry conditions. In analogy to the mechanical properties, the 

wear rate of the HVOF coating prepared from the pure Fe3Al powder milled for 10 h is 

significantly enhanced when BN and Ti are added as shown in Figure 5.7a. The wear resistance 

of the CM100 coating (3 ´ 10-4 mm3/Nm) was increased by nearly three orders of magnitude (8 ´ 

10-7 mm3/Nm) when ceramic inclusions are added. The mechanical properties of the coatings 

seem to define the wear behavior since the hardest coating exhibits the lowest wear rate (see 

Figures 5.5 and 5.7a). In addition, the hardest coating displays the highest H/E suggesting that it 

is prone to show elastic behavior compared to other coatings as can be seen in Figure 5.7a. Thus, 

the surface of the hardest coating is capable of absorbing and dissipating energy from contact 

pressure induced by the hard Al2O3 ball during the wear test. It has been demonstrated that 

porosity can affect the mechanical properties of coatings, thus influencing its elastic/plastic 

behavior [149]. The hardest coating exhibits the lowest wear track depth. The profiles of the worn 

region are not smooth which is an indication that the wear features such as debris, grooves or 

holes can be found inside the wear track. 
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The CM30 and CM40 coatings exhibit a relatively high wear resistance compared to other 

coatings. Despite a larger amount of the BN/Ti contents (15/28 and 22/41 wt%) in the CM10 and 

CM20 coatings, their poor wear performance is associated with their poor mechanical properties 

as described above. In addition, poor particle cohesion and coating adhesion on the 304 stainless 

steel substrate were observed for CM10 and CM20 that also exhibit pores and cracks. The 

observations in Figure 5.8a indicate that after scratch test, cracks are initiated within the coating 

and at the substrate/coating interface, and they propagate perpendicularly to the scratch direction. 

Particles show weak cohesion bonds, and delamination of the coating follows. On the contrary, 

the CM30 and CM40 coatings show good particle bonding since they exhibit no cracks or 

delamination (Figure 5.8b).  

 

Figure 5.8: SEM micrographs of the HVOF coating cross-sections fractured after 

the scratch test: (a) poor (CM10) and (b) good (CM30) adhesion/cohesion behavior. 

5.3.4 Degradation mechanisms of the HVOF coatings 

5.3.4.1 Fatigue and delamination wear 

In Figure 5.9 SEM micrographs of the top surface of the wear track of the HVOF coatings 

after wear test reveal various tribo-features such as holes, debris, micro-cracks and parallel 

grooves. These features are characteristic of strong interactions between the surface of the HVOF 

coatings and of the hard asperities with the Al2O3 counterpart. In Figures 5.9a and 5.9b, the 

presence of micro-cracks near holes inside the wear track is an indication that the surface of the 

coating degraded via fracture (dislocation fracture) [135, 150]. 
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Figure 5.9: SEM micrographs of the wear tracks of two different 

HVOF coatings: (a) CM40, and (b) CM30. 

The tensile and compressive stresses repeatedly induced by the hard asperities of the Al2O3 

ball at the surface led to the generation of cracks from defects on the surface and sub-surface. The 

inspection of the cross-sectional surface of the wear track of the CM100 coating perpendicular to 

the sliding direction shown in Figure 5.10a reveals that cracks (indicated by arrows) initiate and 

propagate within unmelted particles. To some extent, these cracks grow and reach the surface of 

the coating as revealed by the SEM micrograph of the cross-sectional surface parallel to the 

sliding direction (Figure 5.10b). As a consequence, the surface of the CM100 coating is prone to 

fracture and delamination.  

 

Figure 5.10: SEM micrographs of the cross-sections (a) perpendicular and (b) 

parallel to the tangential force of the wear track of the CM100 coating. 

In the case of composite coatings, the wear mechanism is similar. The cracks initiated in 

the sub-surface rapidly propagate to the surface via the defects in the coating as shown in Figures 
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5.6b to 5.6e leading to material removal. This behavior is linked to the fact that inter-splat 

boundaries and porosities are weak links in the HVOF coatings in agreement with [122]. 

5.3.4.2 Abrasive wear 

In Figures 5.11a and 5.11b, the presence of parallel grooves inside the wear track and 

debris is an indication that the surface of the coating was damaged by abrasive wear. The surface 

of the coating is plastically deformed by the hard asperities of the Al2O3 ball and materials are 

displaced in the direction of sliding. The coating materials removed via plastic deformation 

and/or fatigue wear as described above contained hard secondary phases. These hard materials 

trapped between the Al2O3 counterparts and the surface of the coating act as abrasive 

components. Catastrophic failure of the CM10 and CM20 coatings occurred since they contain a 

higher ceramic content (Table 5.1) and their fragile microstructure favored removal of a large 

amount of material. The size of the debris inside the wear track of the CM10 and CM20 coatings 

is smaller than 10 µm. 

 

Figure 5.11: SEM micrographs of the top surface of the wear track of (a) CM20 and (b) CM10 

HVOF coatings, and (c) EDS analysis of the worn and unworn surfaces of the CM20 coating. 
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5.3.4.3 Oxidative and adhesive wear 

The top surface of the wear tracks reveals discontinued tribo-films formed inside the worn 

area after rubbing (see Figures 5.11a and 5.11b). Chemical inspection using EDS has shown that 

these tribo-films are O-rich. However, the CM10 and CM20 have demonstrated poor tribological 

performance suggesting that the discontinuity of the tribo-films could not help to reduce wear. In 

Figure 5.11c, the EDS analysis shows a significant amount of oxygen and aluminum in the worn 

surface compared to the unworn area, whereas the content of Fe and Ti decreased. Based on our 

results, we believe that O and Al originate from the worn Al2O3 ball (Figures 5.12a and 5.12b). 

Upon rubbing under a relatively high contact pressure, fresh coating surfaces exposed to the 

ambient air (humidity between 20 and 40%) can oxidize. In addition, it has been shown that in 

dry sliding conditions, oxide formation can be a consequence of increasing contact surface 

temperature [105]. Furthermore, the oxide inclusions that formed during HVOF spraying in the 

oxygen-rich regime described in [36] can appear at the surface during the wear test. 

Chemical analysis performed on the contact surface of the counterpart body after sliding on 

the polished surface of the composite coatings shows evidence of coating materials (Fe and Ti) 

transferred onto the Al2O3 ball (Figure 5.12c). This is an indication of material loss via adhesive 

wear [150]. Therefore, it can be concluded that adhesive wear contributed to material removal in 

this system and under the sliding wear test conditions used. 

 

Figure 5.12: Optical microscope images of the counter surface of (a) CM100 and (b) CM30 

coatings, and (c) EDS analysis of unworn and worn surfaces of the Al2O3 ball after the wear test. 
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5.4 Conclusion 

Fe3Al-based coatings reinforced with in-situ TiN, Fe2B and TiB2 precipitates were 

fabricated using a combination of high-energy ball milling and high velocity oxy-fuel processes. 

The microstructure of the as-milled powders evolved during the HVOF spraying as confirmed by 

X-ray analysis of the coatings that revealed evidence of nitride and boride phases in the iron 

aluminide matrix. 

The microhardness of the HVOF coating prepared from the pure Fe3Al was increased 3.3 

times and its initial wear rate 3 ´ 10-4 mm3/Nm, was decreased by about three orders of 

magnitude when 10 wt% of BN and 20 wt% of Ti were added to Fe3Al powder and milled at 

high-energy for 10 h. We found a close relationship between the microhardness and the wear 

behavior of the HVOF coatings. 

Inspection of the wear tracks of the pure Fe3Al coating revealed the presence of micro-

plowing, micro-crack, wear-debris, and localized hole formation suggesting that repeated tensile 

and compressive stresses induced by the hard Al2O3 counterpart led to material removal by 

fatigue wear. For composite coatings, abrasive wear was shown to be the predominant 

degradation mechanism since the hard ceramic particles from the coating materials acted as 

abrasive components during the wear test. EDS analysis of the contact area on the counterpart 

body provided evidence of coating materials transfer indicating that adhesive wear has played a 

role in material loss. 
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Abstract 

In the present study, the tribological properties of High Velocity Oxy-Fuel (HVOF) 

coatings prepared from Fe3Al-based composite powders were investigated. The iron aluminide 

matrix of the composite powders was reinforced with TiN and TiB2 particles made using two 

different processing routes: a) an in situ method where fine ceramic particles were formed in the 

matrix by the reaction between Ti and BN, and b) an ex situ method where preformed coarse TiN 

and TiB2 particles were added to the matrix. The tribo-mechanical performance of the coatings 

was assessed using indentations and pin-on-disc wear tests. Compared to ex situ samples, the 

Fe3Al-based coatings strengthened with in situ ceramic particles exhibit higher microhardness 

and wear resistance regardless of the sliding velocity. The presence of voids, cracks and 

scratches/grooves in the wear track of the in situ coatings and the coating material transferred to 

the corresponding counterpart suggest that coatings with fine reinforcing particles fail 

predominantly via delamination and adhesive wear mechanisms. In the case of the ex situ 

coatings, the presence of a significant amount of hard ceramic particles within the wear track 

indicates that abrasive wear plays a dominant role in the degradation mechanism. Oxidation wear 

also contributed to material removal at high sliding velocity since transfer materials inside the 
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wear track contain a high oxygen content compared to the unworn region regardless of the 

coating type. 

Keywords: Metal ceramic composites; ball milling; In situ/Ex situ powder synthesis; iron 

aluminides; HVOF; Wear 

6.1 Introduction 

Metal matrix composites (MMC) have been widely recognized as materials of interest for 

wear protection due to their special microstructure and excellent mechanical properties [151]. 

The combination of the metallic matrix and the secondary phases give rise to enhanced properties 

of the resulting material [152]. MMC are promising potential candidates for replacing 

conventional bulk steels or hard chrome in many areas of applications such as aerospace, 

automotive, hydroelectricity or manufacturing industries [12].  

Among potential matrix candidates, special attention has been given to low-cost and low-

density materials such as iron aluminides. These materials are environmentally friendly and 

demonstrate good corrosion and oxidation resistance at high temperature [23]. However, their 

poor mechanical and tribological performances have restricted their use in the fields where wear-

resistance is particularly important. It has been shown previously, that the modification of 

microstructure of iron aluminides leads to improvement of mechanical properties [15, 18].  

Iron aluminides are thermodynamically compatible with several borides, carbides, nitrides 

and oxides [24, 36]. The iron aluminide (Fe3Al) MMC including ceramic inclusions exhibit 

unique microstructure and excellent mechanical properties such as high hardness, high strength 

and high fracture toughness [27, 140]. 

High-Energy Ball Milling (HEBM) is widely used to manufacture MMC materials [111, 

153]. In this process, powder particles are plastically deformed, fragmented and repeatedly cold-

welded in order to form materials with fine and homogeneous microstructure in which secondary 

phases are uniformly dispersed. The technique allows one to manufacture composites with a 

relatively defect-free matrix/reinforcement interfaces [111].  

Thermal spray techniques are often used for producing thick coatings that exhibit 

interesting wear resistance characteristics [154]. In many applications subjected to hostile 

environmental conditions, thick protective coatings are preferred compared to thin films prepared 
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using PVD or CVD for extended lifetime protection. Among the fabrication techniques, High 

Velocity Oxy-Fuel (HVOF) deposition can be used to obtain dense protective coatings on 

different types of substrates [155]. In the high-pressure HVOF process, such as the one used in 

this work, oxygen and kerosene are mixed and ignited to form a hot and high-pressure gas into 

which powder particles are injected. The particles are heated and expelled at about three times the 

speed of sound toward the substrate, and coatings are formed from the successive buildup of 

melted or semi-melted splats [155]. 

Ball milling followed by subsequent heat treatment has been used to prepare Fe3Al-based 

composite powders reinforced with in situ formed ceramic particles. Specifically, it has been 

demonstrated that the microstructure and the mechanical properties of the hybrid Fe3Al/(AlN, 

Fe2B) powders could be preserved during the HVOF deposition [36]. Improved tribo-mechanical 

properties of these coatings were attributed to the fine dispersion of in situ precipitated AlN and 

Fe2B particles within the Fe3Al matrix. Using an ex situ approach, Peng et al. [101] have shown 

that the room temperature toughness and flexural strength of the ball milled then hot-pressed 

Fe3Al-based composite were improved by the addition of preformed ZrO2 particles. The low 

thermal expansion mismatch between the Fe3Al matrix and the coarse ZrO2 particles, and the 

stress-induced transformation of ZrO2 particles were reported to be particularly beneficial [101].  

Both in situ and ex situ approaches lead to enhanced mechanical and tribological properties 

of Fe3Al-based composites. However, little has been done to sufficiently identify which 

fabrication route can effectively enhance the tribo-mechanical properties of such materials.  

In the present work, we compare the microstructure and the mechanical properties of the 

Fe3Al-based composite coatings prepared using powders with in situ strengthened and ex situ 

preformed ceramic particles namely titanium nitride and titanium diboride. The wear behavior of 

the HVOF coatings are compared and discussed with respect to different sliding test conditions. 

6.2 Materials and Experimental Methods 

6.2.1 Powder preparation 

In the in situ approach, the initial powder mixture consisted of 70 wt% of pre-alloyed iron 

aluminide (Fe3Al: 97.5 % pure with ~2% of Cr from Ametek), 10 wt% of boron nitride (BN: 98% 

pure from Lower Friction) and 20 wt% of titanium (Ti: 99.4 % pure from Alfa Aesar). The mean 
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particle size of BN and Ti was 5 and 150 µm, respectively. This powder mixture was milled for 

10 h using the HEBM technique, and is labeled M30 in the following text. More details on the 

fabrication of the composite powders are described in [37]. 

Following the initial HEBM, the as-milled M30 powder; was heat-treated in a furnace at 

1000 °C for 2 h under vacuum (10-6 mbar) to form TiN and TiB2 particles in the matrix; it is 

labeled AM30 in the following text below. The heating rate was 7 °C/min, and a cooling rate of 

4 °C/min was used from 1000 °C to 500 °C. Thereafter, the heat-treated powder was re-milled at 

high energy (1000 rpm) for 5 h; it is labeled In-M30. This fabrication approach is referred to as 

the in situ synthesis route because the hard ceramics (TiN and TiB2) are formed during the 

powder fabrication process. The re-milling time of 5 h was chosen in order to obtain a reasonable 

amount of powder (after sieving) with an average particle size between 20 and 50 µm which is 

adequate for the HVOF deposition. 

During the ex situ approach, X-ray diffractograms of the AM30 samples were used to 

evaluate the amount of TiN and TiB2 materials in the composite powder. An equivalent amount 

of preformed titanium nitride (TiN: 99.8 % pure) and titanium diboride (TiB2: 99.5 % pure) 

particles from Alfa Aesar was ball milled at high energy (1000 rpm) with the Fe3Al powder. The 

initial size of the TiN and TiB2 particles was <10 µm and 44 µm, respectively. The powder 

mixture is labeled Ex-M30 in the following text. To monitor the evolution of the Ex-M30 particle 

size as a function of milling time, a small amount of powder (~1 g) was collected every hour and 

analyzed using the Horiba LA 900 Particle Size Analyzer. The HEBM of the Ex-M30 powder 

was stopped (after 4 h) when the average particle size of the as-milled powder was identical to 

that of the In-M30 powder (i.e. 30 – 40 µm). 

6.2.2 Coating preparation 

The HVOF coatings were fabricated using a Praxair J-P 8000 HP-HVOF system mounted 

on an ABB robot arm and controlled by a computer using the deposition conditions described in 

Table 1. The composite powders were deposited onto flat 304 stainless steel substrates previously 

sandblasted using 60 grits alumina particles and cleaned with methanol. The HVOF gun was 

scanned at a speed of 10 cm/s for a total of ten passes. The gun was displaced by 10 mm after 

each pass. The coatings are labeled with a “C” in front of the names of the corresponding powder. 
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For example, In-CM30 is referred to the HVOF coating prepared from the In-M30 composite 

powder. More details on the HVOF coating process can be found in [36] 

Table 6.1: Experimental conditions for HVOF deposition. 

Spray parameters Value 

Standoff distance (cm) 38 

Nozzle length (cm) 15 

Nozzle diameter (mm) 11 

Chamber pressure (kPa) 700 

Oxygen flow rate (slpm) 890 

Kerosene flow rate (l/h) 23.5 

Equivalent oxygen/kerosene ratio 1.1 

 

6.2.3 Microstructural analysis 

X-ray diffractograms of composite powders and of their corresponding HVOF coatings 

were obtained using a Brüker D8 DISCOVER diffractometer in a θ/2θ configuration. The 

diffractometer, operated at 40 kV and 40 mA, was equipped with a copper source (l: 1.5406 Å), 

a Gobel mirror, a divergent slit of 0.6 mm and a LynxEye detector set with soller slit (2.5 °). The 

diffractograms were acquired from 20° to 90 ° in 2θ, with a step size of 0.051 ° and a time per 

step of 0.5 sec. The phase quantification was obtained by Rietveld refinement using Topas 4.2 

software (Brüker AXS).  

Surface morphology and chemical composition of the powders and the HVOF coatings 

were obtained on polished cross-sectional surfaces using a 7200 JEOL scanning electron 

microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS Inca X-max 80 

Oxford) operating at 15 kV. 
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6.2.4 Mechanical characterization 

The depth-sensing indentation measurements on the surface and on the cross-section of the 

HVOF coatings were performed using a Triboindenter (TI950 Hysitron) equipped with a 

Berkovich diamond tip calibrated with a quartz standard. Matrices of 20 x 20 points evenly 

spaced by 5 µm were used with a trapezoidal load function: the load was linearly increased up to 

a maximum of 2 mN for 5 sec, kept constant for 2 sec, and linearly decreased for 5 sec. The 

maximum penetration depth was about 150 nm. Measurements were obtained from two distinct 

and randomly chosen regions of the polished surfaces of the specimen (because of the 

heterogeneity of the coating), and a minimum of 300 indents was considered for statistical 

analysis. The nanoindentation technique was chosen in order to measure the mechanical 

properties of the individual phases of the coatings in a small volume.  

In order to evaluate the influence of several phases on the mechanical properties of the 

coatings, the microindentation method was used as well. The volume of interaction of material 

under microindentation is much higher than in nanoindentation. For microhardness 

measurements, a CSM Micro-Combi tester equipped with a Berkovich diamond tip was used, and 

the applied load was linearly increased up to a maximum of 3 N, kept constant at 3N for 30 sec, 

then linearly decreased. The maximum penetration depth was ~5 µm. Note that the HVOF 

coatings were thick enough (few hundreds µm) to avoid the influence of the substrate. The 

average microhardness value, H, was obtained from a matrix of 25 ´ 25 points evenly spaced by 

150 µm conducted on the polished surface of the coatings using the Oliver and Pharr method 

[123]. The error bars on the average H values are the standard deviation from a minimum of 200 

indentation measurements. 

6.2.5 Sliding wear tests 

A pin-on-disc tribometer operated in dry conditions at room temperature with a relative 

humidity between 45 and 50 % was used to measure the wear rate of the HVOF coatings 

according to ASTM-G99. The normal load (F) was fixed at 5 N, and the sliding distance was 

maintained at 1000 m. The sliding velocity (!"  ) was varied between 20 and 60 cm/s. The 

diameter of the wear track ring was 9 mm, and a new alumina (Al2O3) ball of 4.75 mm in 

diameter was used for each test. These test conditions were chosen in order to adequately assess 
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the wear behavior of the HVOF coatings and to compare results with previous studies [36, 37]. 

During the wear test, the tangential force, FT, was continuously recorded and the friction 

coefficient, µ, was obtained from ! = #$ #  . The average value of µ was obtained from the stable 

segment of the friction coefficient curves. 

The wear rate, K, was calculated using the formula ! = # $´%  ! = # $*&  , where V is the 

total volume of material removed or displaced upon interaction between the hard Al2O3 ball and 

the coating. The average cross-sectional surface of the ring was obtained from a minimum of 20 

measurements at different positions of the wear track ring, and the error bars on the average wear 

rate are the standard deviation from these measurements.  

The wear mechanisms of the HVOF coatings were identified from the morphology of the 

top surface and longitudinal cross-section of the wear track. Moreover, the SEM micrographs and 

EDS analysis of the wear track and the worn contact of the counterpart provided additional 

information necessary for the assessment of the degradation mechanisms.   

6.3 Results and Discussion 

6.3.1 Microstructure of the composite powders 

Figure 6.1 presents X-ray diffractograms of the as-milled (M30) and of the as-annealed 

(AM30) powders prepared from a mixture of 70 wt% of Fe3Al (ICDD: 00-045-1203), 10 wt% of 

BN and 20 wt% of Ti powders ball milled for 10 h. The presence of TiN (ICDD: 00-038-1420) 

and TiB2 (ICDD: 04-010-8470) peaks in the diffractogram of the AM30 composite powder is an 

evidence that phase transformation occurred in the powder during heat-treatment. The evolution 

of the microstructure of the M30 powder mixture during HEBM and the formation mechanism of 

the TiN and TiB2 phases in an Fe3Al matrix are discussed in [37].  
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Figure 6.1: X-ray diffractograms of the as-milled (M30) and heat-treated powder mixture 

(AM30) of 70 wt% of Fe3Al ball milled for 10 h with 10 wt% of BN and 20 wt% of Ti. 

Rietveld analysis of the AM30 diffractogram reveals that about 15 wt% of TiN and 15 wt% 

of TiB2 phases were formed in situ within 70 wt% of Fe3Al matrix during thermal treatment. 

1 1- Fe3Al
3- TiN
4- TiB2

In-M30

Ex-M30

1

13
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Figure 6.2: X-ray diffractograms of the composite powders prepared from 

Fe3Al matrix reinforced with in situ and ex situ formed TiN and TiB2 particles. 
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Using this information, an ex situ sample with the same amount of preformed ceramic 

particles was prepared. In Figure 6.2, the X-ray diffractogram of the AM30 composite powder re-

milled for 5 h at high energy (In-M30) is compared to that of the Ex-M30 powder mixture 

prepared from pre-alloyed Fe3Al ball milled for 4 h with preformed TiN and TiB2 (commercial 

powder) particles. Both samples have about the same amount of ceramics. The diffractograms 

reveal no differences between the structure of the Ex-M30 and In-M30 composite powders 

except, perhaps, for the width of the different peaks, indicating a different size of the crystallites 

in each sample.  

The morphology and particle size distribution of the In-M30 and Ex-M30 powder samples 

are presented in Figure 6.3. The cross-sectional surface of powder particles reveals that the In-

M30 composite contains very small ceramic inclusions (<300 nm) homogeneously dispersed 

within the Fe3Al matrix (Figure 6.3a). On the contrary, the Ex-M30 powder contains larger 

ceramic particles (<3 µm), and they are randomly distributed in the Fe3Al matrix (Figure 6.3b). 

Both composite powders have about the same particle size distribution after sieving prior to the 

HVOF deposition (Figure 6.3c). 
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Figure 6.3: SEM micrographs of the cross-sectional surface of powders: (a) Fe3Al milled 

for 10 h with 10 wt% of BN and 20 wt% of Ti and heat-treated at 1000 °C for 2 h and re-

milled for 5 h, (b) Fe3Al milled for 4 h with preformed TiN and TiB2 powders, and (c) the 

corresponding particle size distribution of powders prior to HVOF deposition. 

6.3.2 HVOF coatings 

6.3.2.1 Microstructure 

Figure 6.4 presents X-ray diffractograms and SEM micrographs of HVOF coatings 

prepared from the In-M30 and Ex-M30 composite powders. It can be seen in Figure 6.4a that the 

phase composition (crystallography) of composite powders was preserved during HVOF 

deposition. This observation can be attributed to the thermodynamic stability of the ceramic 

phases and the chosen deposition conditions (Table 6.1). Moreover, the peaks due to the ceramic 

phases TiN and TiB2 are better defined and the full width at half maximum of the peaks is 

smaller which is comparable to the corresponding powders shown in Figure 6.2. This indicates 
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that reduction of defects and crystal growth took place during HVOF deposition [98]. The 

disappearance or broadening of the peaks due to ceramic phases arise as a result of internal 

strains developed in the powder particles by rapid heating and cooling (solidification) [156]. 

SEM micrographs of the coating cross-section reveal significant differences. In Figure 

6.4b, the In-CM30 coating exhibits a microstructure in which very small ceramic precipitates (see 

the encircled region) are homogeneously dispersed in the Fe3Al matrix. At high magnification, 

this microstructure is similar to that of the corresponding powder shown in Figure 6.3a. On the 

contrary, the Ex-CM30 coating shows large reinforcing particles randomly distributed in the 

Fe3Al matrix (Figure 6.4c). The inter-particle distance is higher in the Ex-CM30 coating 

compared to In-CM30. 
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Figure 6.4: (a) X-ray diffractograms of the HVOF coatings prepared from Fe3Al-based 

composites reinforced with in situ precipitated and ex situ formed TiN and TiB2 particles, and 

SEM micrographs of cross-sectional surface of (b) In-CM30, and (c) Ex-CM30 HVOF coatings. 
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6.3.2.2  Mechanical properties 

The mechanical properties of a composite depend on the amount, size and distribution of 

secondary phases in the material as well as the characteristics of internal interfaces. The 

microhardness (H) values for the In-CM30 and Ex-CM30 coatings are compared in Figure 6.5. 

The H value of In-CM30 (9.3 GPa) is about 34 % higher compared to Ex-CM30 (6.5 GPa). This 

result can be attributed to the microstructure of the coatings described above. When the sizes of 

the ceramic particles are in the nanometer range, the relative area of interfaces between the 

matrix and reinforcing components increases. Inter-particle distances are small; this can help to 

delay and/or stop crack propagation during indentation. On the contrary, large portions of the soft 

Fe3Al matrix decrease the mechanical properties of the Ex-CM30 coating as reflected by the 

lower H value of the Ex-CM30 coating. Note that the microhardness of the HVOF coating 

prepared from unreinforced Fe3Al was found to be 4.3 GPa [37]. 

The distribution of the microhardness values for the In-CM30 and Ex-CM30 coatings is 

shown in Figure 6.6a. Both coatings display a Gaussian-type unimodal distribution with an 

average H value of ~9.3 and ~6.5 GPa for In-CM30 and Ex-CM30, respectively. In Figure 6.6b, 

the distribution of the elastic modulus, E, obtained from microindentation measurements, shows a 

similar behavior (i.e., unimodal distribution) as in the case of the H values. The average E value 

is higher in the case of the In-CM30 coating reflecting the fact that the stiffness is higher when 

the size of the reinforcing particles is small (number of grain boundaries increases). 
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Figure 6.5: Comparison of the microhardness of the coatings. 

For comparison, the nanohardness values presented in Figure 6.6c exhibit a much broader 

and unimodal distribution in the case of the In-CM30 coating, whereas a distinct bimodal 

distribution is observed for the Ex-CM30 sample. To some extent, this observation indicates that 

the microstructure of the In-CM30 coating is homogeneous on the nanoscale compared to the Ex-

CM30 coating. In the former coating, the effect of individual phases is less apparent as opposed 

to the latter one where the nanoindentation response from the soft Fe3Al matrix and the hard-

secondary phases is noticeable. However, a clear bimodal distribution of E is not observed in the 

case of the Ex-CM30 coating probed by nanoindentation (Figure 6.6d). This could be due to the 

fact that E measured by nanoindentation depends on a much larger volume of material and as a 

result, the measurement reflects mechanical properties of a large volume compared to the size of 

the imprint. However, the width of the distribution of E for the Ex-CM30 coating is much larger 

when measured by nanoindentation compared to microindentation indicating the fact that 

inhomogeneity in the Ex-CM30 coating are better observed with small tip size. As in the case of 

microindentation, E value of the In-CM30 coating measured by nanoindentation is higher 

compared to the Ex-CM30 sample which, as mentioned before, indicates that the Fe3Al matrix 

reinforced by a distribution of fine ceramic inclusion is much stiffer. 
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Figure 6.6e shows a typical micro-indent imprint on a polished surface of the Ex-CM30 

coating. The size of this imprint (~1050 µm2) is at least 100 times larger than the maximum size 

of reinforcing particle (<10 µm2) and, as a result, microindentation represents average mechanical 

properties. On the other hand, the size of the nano-indent imprint (~0.1 µm2) is smaller than the 

average size of the ceramic inclusions in the Ex-CM30 sample; for this reason, nanoindentation 

can help to distinguish the properties of both phases. Therefore, in the Ex-CM30 coating, where 

inclusions are randomly dispersed and the inter-particle distance is larger, individual phases are 

likely to be probed during nanoindentation. On the contrary, the nanoindentation response for in 

situ coatings is a contribution from the Fe3Al matrix and of the ceramics inclusions in a small 

volume of the material. Thus, the broad distributions are a consequence of the small imprint, 

small inter-particle distances, and uniform dispersion of inclusions in the matrix of in situ 

coatings.  

Considering that ceramic contents are about the same in both coatings, these results suggest 

that the size and distribution of reinforcing agents in a material have a large effect on their 

mechanical properties.  



122 

 

 

Figure 6.6: Distribution of hardness and elastic modulus values obtained from 

microindentation: (a) microhardness and (b) elastic modulus; and from 

nanoindentation: (c) nanohardness and (d) elastic modulus of HVOF coatings. (e) is a 

micrograph of a micro-indent imprint on a polished surface of the Ex-CM30 coating. 

6.3.2.3 Wear behavior 

The coefficient of friction, µ, of the In-CM30 and Ex-CM30 coatings at different sliding 

velocities, !"  , as a function of sliding distance is presented in Figure 6.7. After a rapid increase, 

up to 0.7 at the start of the test, the value of µ of the In-CM30 sample tends to slowly decrease in 
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time and it finally reaches a value of 0.6 for !" = 40	cm/s   (Figure 6.7a). For other sliding 

velocities conditions, the value of µ seems to fluctuate around its average (~0.6) until the end of 

the wear test. For Ex-CM30 coatings, µ shows less variation and remains stable after the initial 

rise (Figure 6.7b) regardless of !"  . However, the average value of µ (~0.7) is slightly higher at 

!" = 40	cm/s   compared to other !"   where µ varies between ~0.65 and 0.6. Interestingly, the In-

CM30 and the Ex-CM30 coatings exhibit marginally lower value of µ (0.6) at 60 cm/s. The error 

(standard deviation), obtained from µ data of three tests is approximately 0.02. 

These behaviors of µ with !"   and with the sliding distance could be associated with changes 

occurring at the surfaces of the coating and of the counterpart as the wear test progresses.  

 

Figure 6.7: Coefficient of friction of the In-CM30 and Ex-CM30 

coatings with respect to !"   as a function of the sliding distance. 
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Figure 6.8 presents the wear rate, K, as a function of !"   of the In-CM30 and Ex-CM30 

coatings. K of the In-CM30 coating is lower regardless of the !"  . This observation is in 

agreement with the fact that the In-CM30 coating (H = 9.3 GPa) is harder than the Ex-CM30 

sample (H = 6.3 GPa). Thus, the wear resistance of the HVOF coatings scales with the 

microhardness. This behavior has also been observed in similar coating systems and under 

similar wear test conditions, where the unreinforced Fe3Al coating (H = 4.3 GPa) exhibited a K = 

3 ´ 10-4 mm3/Nm!	 = 	3	´	10'(	))*+',)',   at !" = 15	cm/s   [37]. As discussed above, the 

In-CM30 coating exhibits a better resistance to crack propagation because of the multiple 

interfaces within its microstructure. On the contrary, the large areas of unreinforced Fe3Al matrix 

in Ex-CM30 seems to weaken the mechanical strength of the coating and favor fast material 

removal during wear tests. Moreover, a faster wear process might be expected if large ceramic 

particles detach from the coatings and are entrapped between sliding surfaces [36].  

20 40 60
 

Figure 6.8: Wear rate as a function of sliding speed of the In-M30 and Ex-M30 coatings. 
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K increases when !"   changes from 20 to 40 cm/s suggesting that the wear mechanisms 

change as well (Figure 6.8). It has been shown that the increase of K with respect to !"   can be 

attributed to the delamination of the surface layer [157]. Inspection of the wear track of both 

coatings after the wear test at 40 cm/s reveals the presence of voids and debris irrespective of the 

coating (Figure 6.9). This suggests that worn materials likely remained inside the wear track and 

influenced the friction behavior. As shown in Figure 6.9a, the size of the particles inside the wear 

track of the In-CM30 coating is smaller compared to Ex-CM30 (Figure 6.9b).   

At !" = 60	cm/s  , K decreases regardless of the coating type. Often, the increase of !"   can 

lead to an increase of the contact temperature between two surfaces in relative motion [55]. 

Consequently, oxidation of the contact surface is likely to occur at high !"  , and the oxide may act 

as a solid lubricant to protect surfaces from further material removal [53]. Thus, the average 

value of µ of the In-CM30 and Ex-CM30 coatings at !" = 60	cm/s   is marginally lower (~0.6) 

compared to other !"   values (Figure 6.7). Note that the wear rate at !" = 60	cm/s   decreases at 

the same rate compared to !" = 40	cm/s   regardless of the HVOF coating. The friction behavior 

described above suggests that both coatings experienced distinct degradation mechanisms as 

suggested by their different wear performances shown in Figure 6.8. 
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Figure 6.9: SEM micrographs of the top surface of the wear track of 

(a) In-CM30, and (b) Ex-CM30 coatings at !" = 40	cm/s  . 

6.3.2.4 Wear mechanisms 

All the wear mechanisms described below, responsible for the degradation of the In-CM30 

and Ex-CM30 HVOF coatings were present in both coating systems during wear tests. However, 

some wear mechanisms were predominant in the in situ coatings namely adhesive and 

delamination wear compared to abrasive and oxidation wear in the ex situ coatings. These 

mechanisms of material loss will be separately described in the following sections. 

6.3.2.4.1 In situ coatings 

6.3.2.4.1.1 Adhesive wear 

SEM micrographs and the EDS compositional maps of the worn contact of the Al2O3 ball 

shown in Figure 6.10 reveal evidence of the worn region and the coating materials (e.g. Fe and 

N) transferred to the counterpart. These observations suggest that the coating and the counterpart 

materials have been transferred from one to the other during sliding and rubbing. This is an 

indication that beside other degradation mechanisms, adhesive wear also influenced the wear 

behavior of the In-CM30 coating. 
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Figure 6.10: SEM image and EDS compositional maps of the worn Al2O3 

ball after the wear test of the In-CM30 coating at !" = 40	cm/s  . 

6.3.2.4.1.2 Delamination wear 

Inspection of the top surface of the worn region of the In-CM30 coating reveals evidence of 

isolated voids inside the wear track (Figures 6.9a and 6.11a). It is likely that the exposure of the 

surface of the sample to cyclic tensile and compressive stresses induced by the hard Al2O3 ball 

during the wear test initiated cracks near defects in the contact area . A magnified SEM image of 

a void reveals the presence of cracks and debris which is an indication that the coating material 

was removed via delamination between the splats (Figure 6.11a). The cracks generated at the 

surface could propagate in the subsurface via weaker links (splat boundaries and porosities), and 

coating would fracture as shown in the encircled regions of the longitudinal cross-sectional 

surface of the In-CM30 coating (Figure 6.11b). Therefore, delamination with the formation of 

voids on the surface of the coatings follows when the shear stress is maximum in these regions. 

Random distribution of these voids within the wear track suggests that material removal on the 

surface of the In-CM30 coating was irregular. 
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Figure 6.11: SEM micrographs of (a) the top surface of the wear track, and (b) the longitudinal 

cross-sectional surface of the wear track of the In-CM30 coating at !" = 40	cm/s  . 

6.3.2.4.2 Ex situ coatings 

6.3.2.4.2.1 Abrasive wear 

The top surface of the wear track of the Ex-CM30 coating presented in Figure 6.9b reveals 

presence of parallel grooves and scratches. These features are also seen in the case of In-CM30 

coatings but they are less pronounced (Figure 6.9a).  Particles as large as ~3 µm are present 

inside the wear track of the Ex-CM30 coating. The size of these particles is similar to that of the 

preformed ceramic particles dispersed in the Fe3Al matrix (Figure 6.4c). In addition, detailed 

inspection of the wear track of the Ex-CM30 coating shows fractured or loose TiB2 particles with 

sharp edges as shown in Figure 6.12. The particles found inside the wear track in Figure 6.9b can 

originate from materials removed from the surface of the coating or from debris of the worn 

Al2O3 ball (Figure 6.13a). 
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Figure 6.12: SEM micrograph of the top surface of the wear track of the Ex-CM30 coating 

at !" = 40	cm/s   showing fractured and loose TiB2 particles detached from the matrix. 

When the fractured particles with sharp edges get loose and entrapped between the surface 

of the Ex-CM30 coating and that of the Al2O3 ball they act as abrasive components and severe 

damage of the coating can be observed. This suggests that three-body abrasive wear is likely the 

main reason for the poorer wear performance of the Ex-CM30 coating since larger portions of 

unreinforced Fe3Al matrix exposed to these particles can be subjected to high shear stresses. It 

has been shown that third-body particles with sharp edges can induce severe damage when they 

are entrapped between two surfaces in relative motion [53].  

Abrasive wear likely contributed to the material loss since the analysis of the worn contact 

region of the Al2O3 ball also reveals large cracks and sharp asperities as shown in Figure 6.13a. 

The interaction between these asperities and the surface of the coating result in the removal of 

materials and formation of grooves inside the wear track as presented in Figure 6.13b. 
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Figure 6.13: SEM micrographs of (a) the contact region of the worn Al2O3 

counterpart showing cracks and large asperities (black arrows indicate the tip 

of the asperities), and (b) the top surface of the wear track of the Ex-CM30 

coating showing grooves/scratches after a wear test at !" = 40	cm/s  . 

6.3.2.4.2.2 Oxidation wear 

Figure 6.14 presents an SEM image of the top surface of the wear track after a wear test at 

!" = 60	cm/s   and the chemical composition of the worn and unworn regions of the Ex-CM30 

coating. The presence of transfer materials inside the wear track indicates that chemical changes 

(oxidation of the contacts) occurred between the surface of the coating and that of the Al2O3 ball. 

The amount of oxygen inside the wear track (region 1) is higher compared to the outside 

(region 2) suggesting that oxidation of the wear track has likely occurred. As discussed above, 

this phenomenon can be beneficial in tribology to lower the coefficient of friction and 

consequently to decrease the wear rate [55] as shown in Figure 6.8. 
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Figure 6.14: SEM micrograph of the top surface and EDS analysis of the worn (1) 

and unworn (2) regions of the Ex-CM30 sample after a wear test at !" = 60	cm/s  . 

6.3.3 Conclusion 

Iron aluminide-based MMC coatings prepared using the in situ and ex situ fabrication 

routes were reinforced with fine and large ceramic particles (TiN and TiB2), respectively, using 

the HEBM and HVOF techniques. 

The HVOF coating fabricated from the in situ composite powder exhibits higher 

microhardness compared to the ex situ materials. The distribution of nano- and microhardness 

values showed that the homogeneity of the microstructure influenced the mechanical 

performance of the HVOF coatings. The MMC coatings fabricated using powders prepared via 

the in situ approach exhibit a higher wear resistance compared to the ex situ ones, regardless of 

the sliding velocities. 

Detailed inspection of the wear track of the in situ coatings revealed voids, debris and 

presence of cracks at the surface and subsurface of the coatings suggesting that delamination was 

the primary wear mechanism. It was found that adhesive wear also contributed to material 

removal since the EDS analysis revealed coating materials transferred to the counterpart. In the 

case of the ex situ coatings, the presence of scratches, grooves and debris with a size similar to 
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that of the hard-ceramic particles inside the wear track indicates that abrasive wear was the 

predominant mechanism of material removal. 
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Abstract 

In this work, the tribo-mechanical properties of several duplex (thin-on-thick) coatings 

were evaluated under different loading conditions. The coating systems consisted of a 304-

stainless steel (SS304) substrate or the same steel previously coated with a layer of iron 

aluminide (Fe3Al) based material using the high velocity oxy-fuel (HVOF) technique, onto which 

a thin film of CrN or DLC (diamond-like carbon) was deposited using the physical vapor 

deposition (PVD). The mechanical properties of coatings were investigated by indentation, and 

their wear performances were evaluated using a pin-on-disc tribo-system in ambient conditions 

under applied loads between 5 N and 15 N. Wear mechanisms of coatings were assessed by 

examining the morphology of top surfaces and cross-sections of wear tracks, and by analyzing 

the counterpart material using scanning electron microscopy, energy dispersive and Raman 

spectroscopies. Results show that the addition of a top coat significantly enhances the wear 

resistance of the SS304 substrate and of the HVOF coatings due to the excellent tribological 

properties of DLC and CrN films. Moreover, the PVD/HVOF/SS304 coating systems exhibit 

excellent wear properties when compared to PVD/SS304 coatings alone due to the high load 

bearing capacity of the HVOF layers. The wear resistance of such systems increases with the 

hardness of the HVOF layer. The DLC/HVOF/SS304 duplex coatings show the best tribo-
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mechanical performance due to their very low coefficient of frictions and good bond strengths 

between layers. On the contrary, the relatively poor tribological performance of the 

CrN/HVOF/SS304 duplex coatings can be attributed to the brittle nature of the CrN film. The 

main degradation mechanisms for the DLC-based duplex coatings were adhesive wear and plastic 

deformation, while in the case of the CrN-based duplex system, brittle fractures and oxidation 

wear were predominant. In both coating systems, abrasive wear has also contributed to the 

material loss. 

Keywords: Thin-on-thick coatings; PVD/HVOF duplex coating; DLC and CrN films; Wear, Iron 

aluminides, SS304 

7.1 Introduction 

Stainless steels (SS) are used in many applications owing to their good corrosion 

resistances, their machinability, their appearance and durability. However, they are relatively soft 

and they often exhibit poor wear properties in applications where high load is required. The poor 

tribo-mechanical properties of SS as well as their high cost have motivated the use of engineered 

coatings that exhibit superior tribological properties for protection in hostile environments (e.g., 

tribological contacts or corrosion agents). 

Traditionally, relatively thick coatings are used to protect materials in applications where 

harsh and hostile environmental conditions exist. For instance, thick coatings fabricated by 

thermal spray techniques such as the high velocity oxy-fuel (HVOF) are often used. HVOF 

coatings can exhibit high density (<2 % porosity) and excellent mechanical and wear properties 

[43]. Moreover, a wide range of materials (ceramics, polymers, composites, metals, etc.) can be 

deposited using thermal spray techniques.  

In the past, iron aluminide alloys have been extensively studied due to their light-weight 

and low production costs. The good oxidation resistance of iron aluminides at high temperature 

has been a reason for the use of these materials in the area of energy generation [11]. However, 

there are some concerns about their mechanical properties at low temperature. Low ductility and 

strength in ambient conditions are drawbacks, and as a result, various microstructural 

modifications have been proposed to improve room temperature properties and increase their 

applicability, especially in tribology  [15]. 
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 Recently, it has been shown that the wear resistance of the SS 304 (SS304) substrate can 

be significantly improved by the addition of Fe3Al-based composite coatings using the HVOF 

technique [36, 37, 158]. The coefficient of friction (µ) of such coatings is still high (µ ~0.7) [159] 

and, therefore, reducing it would improve wear properties even more [160]. Multilayer structures, 

consisting of a thick layer and a wear- and corrosion-resistant thin film with low µ on top, have 

been considered in applications where superior tribological properties are required. In such 

systems, the thick layer supports the load and the thin film acts as a functional coating and 

protective barrier against the environment. Such systems can yield tribo-mechanical properties 

that are unachievable by a single layer.  

The thick layer can be obtained by nitriding the bulk substrate [161, 162], but such nitrided 

layers are usually thin and brittle. Duplex coatings consisting of thick HVOF coatings and thin 

films fabricated by physical vapor deposition (PVD) have been modelled, developed and 

evaluated for their tribological performance [163, 164]. The thick HVOF layer reduces contact 

stresses in the substrate during repeated loading and unloading, and the top coat decreases µ and 

consequently influences the wear behavior of the duplex system [162]. Among potential materials 

appropriate for the top layer, DLC and CrN films have been suggested due to their low µ (below 

0.4 for CrN and below 0.1 for DLC) [28, 97, 162, 165]. 

In this work, two coating systems namely PVD/SS304 and PVD/HVOF/SS304 were 

investigated with two different types of HVOF layers showing different mechanical properties. 

The PVD layer consisted of a magnetron sputtered DLC or CrN thin film. The objective of this 

work was to evaluate and compare the tribo-mechanical properties of such systems. The 

influence of the mechanical properties of the HVOF layer and of the type of the PVD film on the 

wear rate was studied at different applied loads up to 15 N. The wear mechanisms of coatings 

were also investigated and discussed. 
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7.2 Experimental methodology 

7.2.1 Preparation of PVD/HVOF duplex coatings 

7.2.1.1 HVOF deposition 

All thick coatings were deposited from ball milled powders using a high pressure high 

velocity oxy-fuel (HVOF) technique (Praxair TAFA JP 8000 series). Two types of HVOF 

coatings with different compositions and mechanical properties were used in this work, namely 

Fe3Al and Fe3Al-TiN-TiB2, which were synthesized from the pure iron aluminide (Fe3Al) and a 

mixture of Fe3Al, BN and Ti powders, respectively. These two types of powders were both 

prepared by ball milling at high energy (1000 rpm) for 10 h using a high-energy mill (Zoz 

Simoloyer CM01 2L) apparatus. Prior to the HVOF deposition, the stainless-steel 304 (SS304) 

substrate was grit blasted with alumina particles (grit 60) to roughen the surface with the purpose 

of improving the mechanical bonding of impinging molten or semi-molten particles. More details 

about the fabrication of the Fe3Al and the Fe3Al-TiN-TiB2 coatings can be found in the references 

[36] and [37], respectively. 

Before the physical vapor deposition (PVD) and the mechanical characterization of 

fabricated coatings, the bare SS304 substrate and the HVOF/SS304 coatings were cut into 

coupons of 25 mm ´ 25 mm in size, and polished. The coupons were grounded with silicon 

carbide pads (grit 320 to 4000) and mirror finished with diamond suspension solutions (3 and 1 

µm). All coupons were ultrasonically cleaned in acetone and isopropanol for 5 min to remove 

debris left during the polishing process. 

7.2.1.2 PVD deposition 

CrN and DLC layers were deposited on top of the HVOF coatings and of the bare SS304 

substrates by magnetron sputtering using a closed field unbalanced magnetron sputtering system 

(UDP650/4, Teer Coatings Ltd, UK). with a target 380 mm × 175 mm. All substrates were cut 

into coupons of 2.5 cm × 2.5 cm and polished using SiC pads (grit 320 to 4000) and diamond 

suspension solutions (3, 1 and 0.1 µm). Prior to deposition, the substrates were sputter-cleaned in 

an Ar plasma for 30 min at a bias of -450 V for adhesion promotion. The background pressure of 

the deposition system was <2.7 × 10-4 Pa.  
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The CrN films were deposited by reactive sputtering using two Cr targets facing each other. 

The Cr targets were powered by a DC power supply at a constant current of 4 A. The sputtering 

process was carried out using a gas mixture of N2: Ar (1:1) at a pressure of 0.4 Pa. A 200 nm 

thick Cr interlayer has been applied to enhance adhesion. DLC films were DC sputtered at a 

constant current of 4 A in an Ar atmosphere at a pressure of 0.17 Pa. In order to improve 

adhesion a compositionally graded interlayer consisted of 200 nm of Cr followed by a 400 nm 

CrCx layer. During all the depositions, the substrate holder rotated at 10 rpm; the substrates were 

biased at −80 V; and the substrate temperature was maintained at ~200 °C. The schematic 

structures of the thin-on-thick PVD/HVOF duplex coatings are shown in Figure 8.1. More details 

about the sputtering processes for CrN and DLC can be found in references [166] and [167], 

respectively. 

 

 

Figure 7.1: Schematic representation of the structure of the thin-on-thick 

PVD/HVOF duplex coatings studied in this work. 



138 

 

7.2.2 Mechanical characterization 

7.2.2.1 Indentation tests 

The mechanical properties, namely hardness (H) and elastic modulus (E), of the SS304 

substrate, HVOF thick coatings, and PVD thin coatings were evaluated by the indentation 

techniques. The microhardness of the HVOF coatings was measured using a CSM Micro-Combi 

tester equipped with a pyramidal Berkovich diamond tip. The normal force was linearly increased 

up to its maximum (3 N), kept constant for 30 sec and then linearly decreased to obtain a load-

displacement curve from which the H and E values were extracted using the Oliver and Pharr 

method [88].  More details about the indentation methodology of HVOF coatings can be found in 

[37]. The mechanical properties of DLC and CrN thin films on HVOF coatings, were measured 

by depth-sensing nanoindentation using a Triboindenter (TI950 Hysitron) also equipped with a 

pyramidal Berkovich diamond tip. The maximum load applied was 5 mN, and the H and E values 

were obtained using the Oliver and Pharr method as well [88]. 

7.2.2.2 Scratch test 

The adhesion bond strength of PVD films on SS304 substrate, Fe3Al and Fe3Al-TiN-TiB2 

coatings was evaluated by scratch test using a CSM Micro-Combi tester equipped with a 200 µm 

Rockwell C diamond tip. The normal force was linearly increased from 0 to 30 N and the 

diamond tip was drawn on the coating surface at a constant speed of 10 mm/min over a scratch 

length of 5 mm. 

7.2.3 Tribological characterization 

The tribological behavior of coatings was studied using a tribo-system in a pin-on-disc 

configuration under ambient conditions (~25 °C) with a relative humidity varying between 45 % 

and 50 %. Different normal loads (F) varying from 5 to 15 N were applied on an alumina (Al2O3) 

ball (hardness: 20 GPa) of 4.75 mm in diameter to study the effect of the mechanical properties 

and load carrying capacity of the HVOF coatings on the tribological performance of the duplex 

coatings. A new ball was used in each experiment to ensure repeatability of the wear tests. 

During the pin-on-disc wear tests, the diameter of the wear track ring was fixed at 7.5 mm, the 

sliding velocity was maintained at 20 cm/s, and the sliding distance (L) was kept at 1000 m.  
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The coefficient of friction (µ) was calculated using the equation: µ = FT/F, where FT is the 

tangential force measured during the test. The average value of µ for each wear test was obtained 

from a stable segment of the friction coefficient curve (preferably toward the end of the test). In 

some cases, the wear test had to be stopped after an abrupt increase of the value of µ was 

observed. The wear rate, K, was obtained from the expression: K = V/(F ´ L), where V is the 

volume of material loss and/or displaced which was calculated by multiplying the diameter of the 

wear track ring and the surface area of its cross-section, measured by profilometry. The value of 

K was determined by averaging the results obtained from a minimum of two tests. 

7.2.4 Microstructure and surface characterization 

The surface morphology of coatings and wear tracks was obtained from cross-sections 

using a JEOL 7200 series Scanning Electron Microscope (SEM) equipped with a field emission 

gun as electron source. The analysis of the chemical composition of debris and worn regions of 

the wear track was performed using an Inca X-max 80 Oxford energy dispersive spectroscopy 

(EDS) system. Prior to the SEM analysis of cross-sections of wear tracks, a thin layer of titanium 

was deposited on the top surface of duplex coatings in order to protect surfaces and reduce the 

effect of rounding edges of interfaces during polishing. The Raman spectra of the as-deposited 

DLC coating and of the wear tracks obtained with different loads were recorded using a RM3000, 

InVia Reflex-Raman from Remishaw with an excitation wavelength of 514 nm. 

7.3 Results and discussion 

7.3.1 Microstructural analysis 

The microstructure and morphology of the thick Fe3Al and Fe3Al-TiN-TiB2 coatings have 

been described in detail in reference [37]. For the present study, representative SEM micrographs 

of the cross-section of the CrN/Fe3Al/SS304 and DLC/Fe3Al/SS304 duplex coatings are 

presented in Figure 7.2. In Figure 7.2a, the CrN/Fe3Al/SS304 coating exhibits a uniform CrN 

film thickness of about ~1 µm including the bond coat. In the case of the DLC/Fe3Al/SS304 

coating, the thickness is slightly higher of ~1.5 µm (Figure 7.2b). In both duplex systems, the Cr-

based interlayer can be distinguished. 
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Figure 7.2: SEM micrographs of the cross-section of the duplex 

coatings: (a) CrN/Fe3Al/SS304 and (b) DLC/ Fe3Al/SS304. 

7.3.2 Mechanical characterization 

7.3.2.1 Mechanical properties 

The hardness (H), the Young's modulus (E) and the ratio of the H/E of the SS304 substrate, 

the HVOF coatings, obtained by microindentation, and the sputter-deposited CrN and DLC top 

coats, determined using nanoindentation, are presented in Table 7.1. For the substrate and thick 

coatings, the H value and the ratio of the H/E increase in the following order: SS304 < Fe3Al < 

Fe3Al-TiN-TiB2. The higher H of the Fe3Al-TiN-TiB2 coating is due to the presence of 

nanometer size ceramic precipitates (< 100 nm) homogenously dispersed in the Fe3Al matrix as 

reported previously [159]. The variation trend in E does not follow that in H. The Fe3Al coating 

shows the lowest E value among the three samples, which is most likely related to the presence of 

porosity. It has been shown that porosity has a detrimental effect on the elastic modulus of 

nanocrystalline materials [168]. Meanwhile, the Fe3Al-TiN-TiB2 coating shows the highest E 

value as a result of a low porosity level compared to the Fe3Al coating and due to the presence of 

fine ceramic inclusions within the matrix [159]. For the sputter-deposited top coats, the CrN 

exhibits a higher H (19 GPa) and E (230 GPa) values compared to the DLC film. However, the 

higher ratio of the H/E of the DLC top coat indicates its high resistance to plastic deformation as 

opposed to the CrN film. 
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Table 7.1: Mechanical properties of individual layer of the thin-on-thick structures. 

 Samples H (GPa) E (GPa) H/E 
M

ic
ro

in
de

nt
at

io
n SS304 1.3 ± 0.04 175 ± 7 0.007 

Fe3Al/SS304 4.3 ± 0.8 131 ± 9 0.033 

Fe3Al-TiN-TiB2/SS304 12.6 ± 1.4 217 ± 10 0.064 

N
an

oi
nd

en
ta

tio
n 

CrN/SS304 19 ± 1.3 230 ± 11 0.083 

DLC/SS304 14 ± 1.8 150 ± 9 0.093 

7.3.2.2 Adhesion 

Scratch tests under increasing load were performed on all six types of coating structures 

illustrated in Figure 7.1. Figure 7.3 presents the SEM micrographs of their top surface after the 

scratch tests. Regardless of the type of the top coat, it can be seen that the width and the volume 

of the scratch track decrease as the hardness of the underneath layers increases. In the case of the 

PVD/SS304 system, the coating is subjected to severe plastic deformation. With increasing 

applied normal force, the severity of such deformation increases, which leads to the failure of the 

top thin films as revealed by the regions 1 and 3 in Figures 7.3a and 7.3b, respectively. The 

HVOF coatings show less plastic deformation compared to the SS304 substrate, which can be 

attributed to their high stiffness. For all PVD/HVOF duplex coatings in Figure 7.3, no 

delamination was observed, which reveals a good adhesion strength between the PVD thin films 

and the HVOF thick layers (see regions 2 and 4 in Figures 7.3a and 7.3b, respectively). These 

observations also suggest that in such duplex coating systems, the applied normal force is 

uniformly distributed over the surface of the structure during loading via the thick and hard 

HVOF layers. 
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Figure 7.3: SEM micrographs showing the top surface of scratch tracks on (a) 

DLC-coated and (b) CrN-coated samples. The bottom micrographs represent a 

magnification of the regions toward the end of the scratch track indicated above. 
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7.3.3 Tribological characteristics 

7.3.3.1 Coefficients of friction 

Figure 7.4 presents the coefficient of friction, µ, as a function of the sliding distance under 

different applied normal loads for different coating systems. For the CrN-based coatings shown 

in Figures 7.4a, 7.4a' and 7.4a", µ increases rapidly at the initial stage of the wear test, and it then 

reaches a stable value afterwards. Under a normal load of 5 N, µ stabilizes between 0.3 and ~0.4, 

which is a typical µ value for CrN films [169]. When the normal load increases to 10 N or 15 N, 

an abrupt increase of µ from ~0.4 to ~0.7 can be observed after a sliding distance of ~50 m, 

except for the CrN/Fe3Al/SS304 coating under a load of 10 N. Such rapid increase of µ is 

indicative of a failure of the CrN film; the steady value of µ reached afterward is similar to that of 

the SS304 substrate [36], and of the Fe3Al or the Fe3Al-TiN-TiB2 coatings alone tested under 

similar wear conditions [159] (Table 7.1). In the case of the CrN/Fe3Al/SS304 coating, µ remains 

at about 0.3 till the end of the test at 10 N suggesting that the CrN film was subjected to little or 

no damage. The difference in the ratio of the H/E between the CrN top coat and the Fe3Al seems 

to be optimum to avoid cracking and debonding.   

In the case of the DLC-based duplex coatings (Figures 7.4b, 7.4b' and 7.4b"), the values of 

µ obtained under different loads vary between ~0.04 and ~0.09 for all coatings which are much 

lower compared to the CrN-based coatings. These values are typical for hydrogen-free DLC films 

obtained under dry sliding wear conditions in ambient atmosphere [170]. In addition, no failure 

was observed after 1000 m long wear tests for all of the DLC-coated samples, that is attributed to 

the excellent tribological performance of the DLC material in agreement with the published data 

[162, 171]. Particularly, the DLC/Fe3Al/SS304 system exhibits a very low µ of ~0.04 under a 

load of 5 N (Figure 7.4b). This very low µ was maintained even for longer sliding distances 

(~2000 m). Such ultra-low value of µ for DLC films after a long sliding distance has been 

reported in [171] for similar test conditions (same Al2O3 counterpart and sliding distance). This 

observation has been attributed to the formation of a tribofilm on the surface of the counterpart 

during sliding due to the unique combination of chemical, physical, and mechanical interactions 

at the interface between the DLC film and Al2O3 ball [170]. 
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Figure 7.4: Evolution of µ of coating as a function of time under 

different loads: 5 N load (a, b), 10 N (a', b'), and 15 N (a", b"). 

7.3.3.2 Wear rate 

The wear rate, K, of the DLC- and CrN-based samples under different normal loads are 

compared with the SS304 substrate, and the Fe3Al and Fe3Al-TiN-TiB2 coatings in Figure 7.5. 

Under a load of 5 N, the wear rate of the SS304 substrate decreased from 8.5 ´ 10-5 mm3/Nm to 

9.7 ´ 10-6 mm3/Nm and 2.6 ´ 10-7 mm3/Nm with the addition of the Fe3Al and Fe3Al-TiN-TiB2 
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coatings, respectively, as shown in Figure 7.5a. The wear properties of the SS304 substrate and 

the Fe3Al and Fe3Al-TiN-TiB2 coatings are presented in Table 7.2. 

 

Figure 7.5: Wear rate of the CrN (a) and DLC (b) coated SS304 substrate and 

Fe3Al and Fe3Al-TiN-TiB2 layer using 5 N, 10 N and 15 N applied loads. 

 

Table 7.2: Wear properties of substrate and HVOF coatings obtained under the 

conditions: Al2O3 ball as counterpart, 5 N load and 15-20 cm/s in an ambient atmosphere. 

Sample K  
(mm3/Nm) 

µ Wear mechanisms 

SS304 8.5 ´ 10-5 0.7 - 0.8 Adhesive [36] 

Fe3Al/SS304 9.7 ´ 10-6 0.6 - 0.7 Fatigue, delamination [37] 

Fe3Al-TiN-TiB2/SS304 2.6 ´ 10-7 0.6 Abrasive, adhesive [37,	159]  

 

The addition of a CrN top layer increases the wear resistance of the SS304 substrate and of 

the Fe3Al and Fe3Al-TiN-TiB2 coatings by several orders of magnitude under 5 N loads (Figure 

7.5a). At higher normal loads, K is higher as well. The increase is relatively large when changing 

the load from 5 to 10 N in the case of CrN/SS304, and from 10 to 15 N in the case of 
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CrN/Fe3Al/SS304. However, the value of K increases gradually as a function of load in the case 

of CrN/Fe3Al-TiN-TiB2/SS304. The wear rate decreases as the hardness of the interlayer 

increases in the following order: SS304 < Fe3Al < Fe3Al-TiN-TiB2 except at the 15 N load where 

a large increase of K (one or two orders of magnitude) is observed for the CrN/Fe3Al/SS304 and 

CrN/Fe3Al-TiN-TiB2/SS304 coatings. The poor wear resistance at such high loads in the CrN-

based systems is related to the failure of the CrN film that led to the abrupt increase of µ at the 

early stage of the wear test (Figures 7.4a' and 7.4a"). 

Compared to the CrN-based samples, the DLC-based coatings exhibit a higher wear 

resistance (Figure 7.5b). Under the same loading conditions, the values of K for DLC-based 

samples decrease as the hardness of the underneath layer increases in the following order SS304 

< Fe3Al < Fe3Al-TiN-TiB2. This observation is attributed to the excellent tribological properties 

of the DLC film and its ability to exhibit low µ regardless of the underneath layer and loading 

conditions (Figures 7.4b, 7.4b' and 7.4b").  

Indeed, the wear rate is related to the volume of material removed or displaced during the 

test as represented by the wear track depth. In Figure 7.5b, K slightly increases with the normal 

load irrespective of the coating structure. In addition, inspection of the line profiles of the cross-

section of the wear tracks for DLC-based duplex coatings obtained after the wear test at 5, 10 and 

15 N loads reveals that the wear track depth increases with the normal load (Figure 7.6). 

Moreover, the depth slightly decreases as the hardness of the HVOF coating increases. In the case 

of the DLC/SS304 coating, the pileup on both sides of the wear track as revealed by the positive 

line profile, reflects the deformation of the SS304 substrate upon repeated loading and unloading 

conditions during sliding. This indicates a strong plastic deformation of the SS304 substrate, and 

most likely the good adhesion strength between the DLC film and the substrate. The pileup is not 

observed in the cases of DLC/Fe3Al/SS304 or DLC/Fe3Al-TiN-TiB2/SS304 coatings regardless 

of the applied load. In the case of the PVD/HVOF duplex systems, plastic deformation is less 

severe due to the high hardness of HVOF interlayers compared to the SS304 substrate. Moreover, 

the wear track depth of the DLC/Fe3Al/SS304 and DLC/Fe3Al-TiN-TiB2/SS304 coatings under 

15 N is about 1 µm as opposed to ~1.5 µm for the DLC/SS304 coating. This observation is in 

agreement with the scratch results in Figure 7.3, where the width and the volume of the scratch 

track are higher for the SS304 substrate compared to HVOF coatings. The line profiles for the 
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CrN-based coatings are not presented because the top coat was completely removed after the 

wear test at 10 N and 15 N.  

Under similar wear conditions, the value of K is lower for DLC-based coatings compared to 

the CrN-based ones. The superior wear performance of the DLC-based coatings can be explained 

by the fact that during the wear test, the DLC film undergoes structural transformation that leads 

to the formation of a tribofilm on the counterpart material which helps to reduce friction. 
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(b)

(c)

Load 5 N

Load 10 N

Load 15 N

 

Figure 7.6: Line profiles of the wear track of DLC-based coatings tested 

under different normal loads (a) 5 N, (b) 10 N, and (c) 15 N. 
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7.3.4 Wear degradation mechanisms 

7.3.4.1 CrN coatings 

The SEM micrographs of the CrN-based coating surfaces after the wear tests under 

different loading conditions are presented in Figure 7.7. The thin CrN film on a soft SS304 

substrate exhibits significantly lower tribological performances compared to the duplex coatings. 

The wear track of the CrN/SS304 coating tested under 5 N exhibits parallel and curved cracks 

oriented mostly perpendicular to the sliding direction (Figure 7.7a), that can be attributed to the 

relative brittle behavior of the CrN film and the soft nature of the SS304 substrate. In order to 

inhibit debonding or cracking, the thin and hard CrN film should not exhibit too different 

mechanical properties (H, E and H/E ratio) compared to those of the substrate [172]. By 

comparing the properties of individual layers presented in Table 7.1, it can be observed that there 

exists a very large difference between the CrN film and the SS304 substrate. This may be the 

reason for the initiation and propagation of cracks in the film upon repeated loading and 

unloading conditions. On the other hand, no cracks are evident at low load in the case of duplex 

coatings with the Fe3Al and Fe3Al-TiN-TiB2 interlayer (Figures 7.7b and 7.7c). It was shown 

above that the hard and thick HVOF coating helps to distribute the contact stresses on the surface 

of the thin-on-thick coating. Therefore, the reduction of localized stresses and more similar 

mechanical properties between top and bottom layers likely inhibited crack formation in these 

multilayer systems.  

For the CrN/HVOF/SS304 coatings (Figures 7.7b, 7.7c and 7.7d), there is evidence of 

grooves parallel to the sliding direction, appearance of short needle-like debris perpendicular to 

the sliding direction, and of small spherical-like particles outside the wear track. These features 

indicate that abrasive wear has contributed to the material loss. As the applied load increases 

from 5 N to 10 and 15 N, the contact pressure increases and these features become more 

significant leading to catastrophic failure of the CrN film as described above. The SEM 

micrographs of the surface of the wear tracks of coatings where the top coat has been completely 

worn down are not presented. 
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Figure 7.7: SEM micrographs of the surface of the wear track of the (a) 

CrN/SS304, (b) CrN/Fe3Al/SS304 and (c) CrN/Fe3Al-TiN-TiB2/SS304 samples 

tested at 5 N load, and (d) CrN/Fe3Al/SS304 sample tested at 10 N load. 

 

The EDS analysis of the needle-like debris found inside the wear track of the 

CrN/Fe3Al/SS304 coating after the wear test under 5 N is presented in Figure 7.8. The EDS maps 

reveal that the debris are composed of Cr, O and C suggesting that the interaction between the 

CrN film and the hard Al2O3 ball in ambient atmosphere leads to oxidation of the top coat. 

Carbon originates from the fabrication of the CrN films [173]. In addition, the absence of 

aluminum in the debris indicates that the Al2O3 ball was not damage during the wear test under 

these wear conditions. Therefore, the main mechanisms responsible for the material loss in the 

case of CrN-based coatings are brittle fracture and oxidation wear with a non-negligible 

contribution from abrasive wear.  
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Figure 7.8: EDS mapping of debris found inside the wear track of the 

CrN/Fe3Al/SS304 coating after the wear test under a load of 5 N. 

7.3.4.2 DLC coatings 

Figure 7.9 presents SEM micrographs of the surface of wear tracks of DLC-based coatings 

after the tests at different applied loads. In the case of the DLC/SS304 coating, the width of the 

wear track significantly increases with the load as expected from the soft and ductile SS304 

substrate (Figures 7.9a, 7.9b and 7.9c). Plastic deformation is preponderant in these cases as 

indicated by the line profile (Figure 7.7a). The wear tracks exhibit parallel grooves at 5 N and 10 

N with no evidence of debris. At 15 N, parallel cracks oriented at about 45 ° from the sliding 

direction are observed on both sides of the track. 

In the case of the DLC/Fe3Al/SS304 and DLC/Fe3Al-TiN-TiB2/SS304 coatings, the change 

in the width of the wear track with the applied load is less significant due to the hard HVOF 

interlayer. As the load increases, the grooves inside the wear track become more pronounced 

especially in the case of the DLC/Fe3Al/SS304 system, and a significant amount of debris is 

observed on both sides of the wear track (Figures 7.9a', 7.9b' and 7.9c'). This suggests that 

abrasive wear plays a major role in the degradation mechanisms of the DLC/HVOF/SS304 

coatings.   
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Figure 7.9: SEM micrographs of the surface of the wear track of DLC-based 

coatings after the wear test at 5 N (a, a', a"), 10 N (b, b', b"), and 15 N (c, c', c") 

with different underlayers: SS304, Fe3Al/SS304 and Fe3Al-TiN-TiB2/SS304. 

 

Figure 7.10 presents SEM micrographs of the cross-section of the wear track of the 

DLC/SS304 coating after a wear test performed at 15 N. In Figure 7.10a, the width of the wear 

track is highlighted by the dash lines and the magnification of the interface near the center of the 

track (Figure 7.10b) shows an undulated interface caused by the grooves in the wear track 

described previously. This feature is a consequence of the severe deformation by plastic flow that 

occurred in the SS304 substrate, and not in the DLC film, during the wear test. The good 

adhesion between the DLC film and the substrate, and the large difference between the 

mechanical properties of the DLC film and the SS304 substrate seem to be the reasons for 
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cracking. In Figure 7.10c the high magnification of the SEM micrograph of the interface reveals 

no observable difference in the coating thickness in the wear track compared to the unworn area. 

The integrity of the DLC film seems to be preserved after a wear test at 15 N despite the severe 

plastic deformation taking place in the soft SS304 substrate. 

 

Figure 7.10: SEM micrographs of the cross-section of the wear track of the DLC/SS304 

coating after the wear test performed at 15 N: (a) surface and cross-section of the wear 

track perpendicular to the sliding direction, (b) higher magnification of a section in the 

middle of the wear track and (c) high magnification image of the DLC top coat. 

 

Since the wear track depths of these coatings are comparable to the thickness of the DLC 

layer (e.g. between 1 µm and 1.5 µm (Figure 7.6)), these observations suggest that plastic 

deformations play a dominant role in the degradation of these DLC-based coatings. As before, 

the DLC on a soft SS304 substrate represents the worst scenario where severe deformations lead 

to crack formation in the carbon film as a result of the mismatch of the mechanical properties 

between the DLC film and the SS304 substrate. As for the case of the CrN/SS304 coating where 
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brittle fractures were the main degradation mechanism, in the case of DLC/SS304, plastic 

deformations are preponderant degradation mechanisms. The DLC film on hard Fe3Al and Fe3Al-

TiN-TiB2 interlayers exhibits significantly better wear-resistant properties especially compared to 

the CrN films. For instance, the DLC/Fe3Al-TiN-TiB2/SS304 system reaches a K value as low as 

~8 ´ 10-8 mm3/Nm at 5 N. 

 

Figure 7.11: (a) Raman spectra from the unworn and worn regions of the DLC/Fe3Al-

TiN-TiB2/SS304 coating tested under different loading conditions. (b) Corresponding 

Raman spectra obtained from the Al2O3 ball after the wear tests under at 5 and 15 N. 
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In Figure 7.11, the Raman spectrum of the unworn surface of the DLC/Fe3Al-TiN-

TiB2/SS304 coating is compared to the worn surfaces obtained after wear tests performed at 5 N 

and 15N loads; Raman spectra from the contact surface on the corresponding Al2O3 ball are also 

shown. In Figure 7.11a, the spectra of the worn and unworn regions of the coating are similar. 

The graphite-like (G) peak at about 1545 cm-1 and the diamond-like (D) peak around 1332 cm-1 

have the same intensities, and no peak shift is observed irrespective of the applied load. This 

indicates that no observable structural transformation occurred inside the wear track during the 

wear test. On the other hand, a comparison of the Raman spectrum of the as-deposited DLC film 

and the counterpart reveals that the G peak is slightly shifted to higher frequencies (Figure 

7.11b). This observation suggests that the DLC film undergoes structural transformations under 

strain and/or thermal effects when transferred to the counter material [171]. As the applied load 

increases from 5 N to 15 N, the G peak decreases in intensity and the D peak becomes better 

defined reflecting the effect of a variation of the sp2/sp3 ratio in the tribofilms [174]. 

7.3.5 Conclusions 

The tribo-mechanical properties of CrN and DLC duplex coating systems were investigated 

under different loading conditions. The coating structure consisted of a thin film of CrN or DLC 

deposited, using PVD, on (i) a SS304 substrate, and (ii) a SS304 substrate previously coated with 

a layer of Fe3Al or Fe3Al-TiN-TiB2 materials prepared by HVOF.  

The wear resistance at low load of the SS304 substrate and the HVOF/SS304 systems was 

significantly enhanced with the addition of a CrN or a DLC top layer. This performance was 

attributed to the excellent tribological and friction properties of these PVD top layers. In addition, 

the wear resistance of CrN- or DLC-based coatings increased with the hardness of the interlayer 

in the following order: SS304 (1.7 GPa) < Fe3Al (4.2 GPa) < Fe3Al-TiN-TiB2 (12.3 GPa) 

indicating the high load carrying capacity of the thick and hard HVOF interlayer compared to the 

SS304 substrate. 

Compared to CrN, the excellent wear resistance of the DLC-based coatings at high loads is 

attributed to the good bonding between DLC film and the HVOF coatings, its ability to preserve 

its structural integrity and to form a tribofilm on the counterpart during the wear test which acts 

as a solid lubricant to reduce the coefficient of friction. DLC films on hard HVOF interlayers are 

the best coating systems in term of wear resistance with a wear rate as low as 8 ´ 10-8 mm3/Nm 
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for the DLC/Fe3Al-TiN-TiB2 coating system at 5 N. On the other end, CrN-based coatings fail 

catastrophically at high loads due to their brittle nature. It was found that the large difference 

between the mechanical properties (H, E, H/E) of the top coat and the underlying substrate or 

interlayer leads to poor tribological performances. 

At low load, CrN/SS304 coatings exhibit brittle fractures but no evidence of debris. When 

the normal load increases, abrasion and oxidation predominantly act as main wear mechanisms, 

particularly for CrN/HVOF/SS304 coating systems. The degradation mechanism that led to wear 

in the case of DLC/SS304 coatings is plastic flow deformation followed by crack formation and 

propagation due to the cyclic loading and unloading condition. At high loads, abrasive wear is 

observed from particle removal. 
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Abstract 

In this study, we assess the corrosion and tribocorrosion of duplex (thin-on-thick) coating 

systems formed by thin CrN or DLC layers sputter deposited on top of thick Fe3Al layers thermal 

sprayed on 304-type stainless steel (SS304) substrates using the high velocity oxy-fuel (HVOF) 

technique. The corrosion behavior of coatings was evaluated in a 3.5 % NaCl aqueous solution 

using a three-electrode cell, and the tribocorrosion assessment was carried out in an apparatus in 

which the contact of the reciprocating pin-on-flat tribometer was immersed in the aqueous 

solution. The microstructure and surface morphology of the coatings were analyzed using X-ray 

diffraction, scanning electron microscopy and energy dispersive spectroscopy. Results show that 

the corrosion resistance of the Fe3Al coating increased by approximately 1 and 3 orders of 

magnitude with the addition of a CrN and DLC top layers, respectively. The electrochemical 

impedance spectroscopy analysis revealed that the poor corrosion behavior of the Fe3Al coating 

can be attributed to the presence of defects (porosity, cracks and inter-splat boundaries) in the 

HVOF layer that favor infiltration of the electrolyte and formation of corrosion products. The 

tribocorrosion results show that the addition of DLC and CrN layers is particularly beneficial 

when the duplex system is subjected to wear tests during cathodic polarization. However, in the 
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anodic regime, defects formed at the surface by the wear process are detrimental since the 

electrolyte infiltrates the top layer and causes the dissolution of the Fe3Al interlayer. In this 

situation, material losses are due to synergistic effects of wear and corrosion.   

Keywords: Fe3Al; Thin-on-thick, PVD/HVOF duplex coatings; Corrosion; Tribocorrosion, 

Electrochemical impedance spectroscopy 

8.1 Introduction 

Iron aluminide alloys have been considered as potential candidates for high temperature 

applications due to their ability to form protective aluminum oxide (Al2O3) scales at the surface. 

The good corrosion and oxidation resistance at high temperature makes iron aluminides suitable 

for applications in automotive industry (e.g. exhaust pipes and tubes) [11]. Moreover, iron 

aluminide alloys offer other benefits such as low density and low cost which make them 

attractive as base materials to form metal matrix composites. However, its poor room temperature 

corrosion and poor wear properties in hostile environments remain a concern. 

Over the years, aqueous corrosion resistance of iron aluminides (Fe3Al, FeAl) has been the 

subject of particular attention. Various approaches, based on the modification of microstructure 

with the addition of different inhibitors such as Cr, Mo, Nb, Ti etc., have been employed to 

improve their room temperature corrosion resistance [175-177]. In addition, thick and dense 

coatings of these materials have been considered as potential protective layers against harsh 

environments, where severe tribological, chemical or electrochemical conditions prevail [158, 

178]. 

The field of thermal spray covers a wide range of techniques commonly used to fabricate 

thick and dense coatings; among them, the High Velocity Oxy-Fuel (HVOF) deposition offers 

many benefits such as high particle velocity and relatively low particle temperature. Such 

characteristics of powder particles can lead to coatings with low porosity (< 2 %), large thickness 

(0.3 - 1.0 mm) and excellent mechanical properties [155]. 

The poor corrosion resistance of nanocrystalline iron aluminide HVOF coatings in a 0.5 M 

aqueous solution of H2SO4 at room temperature  was attributed to localized attacks at inter-splat 

boundaries and/or around unmelted particles [179]. Zhao et al. reported that pores, micro-cracks 

and the typical lamellae structure of thermal spray deposits can be detrimental for the corrosion 
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resistance of HVOF-based coatings [180]. These defects are prone to favor infiltration of the 

liquid electrolyte in the coatings. Moreover, previous wear studies showed that the deterioration 

of the surface of Fe3Al-based HVOF coatings takes place by material removal due to crack 

propagation in the subsurface via defects (i.e. porosity and inter-splats boundaries) [36, 37, 159].  

Different coating structures and designs have been explored in order to reduce material 

removal at the surface, and to stop or delay infiltration of electrolyte and formation of corrosive 

products into thermal spray coatings [162, 164, 181, 182]. Zhao et al. have proposed to seal the 

pores [180], while studies have shown that improved corrosion and better wear performance of 

thermal spray coatings can be achieved by the addition of a top corrosion resistant layer prepared 

by physical vapor deposition (PVD) or chemical vapor deposition (CVD) techniques [164, 183].  

In such a multi-layer structure, often referred to as duplex or thin-on-thick coating, the 

HVOF layer acts as a load-bearing-interlayer to avoid localized plastic deformations of the 

substrate during wear tests. Thick HVOF interlayers can be used to uniformly distribute contact 

stresses when the surface is subjected to repeated loading and unloading. The top PVD layer 

behaves like a barrier between the HVOF coating and the external environment. Among potential 

materials for the top layer, DLC and CrN films deposited by PVD have been extensively studied 

for their corrosion resistance in chloride containing solutions [84, 184-186]. It has been shown 

that on a metallic substrate (e.g. Ti6Al4V, stainless-steels, etc.), the amorphous structure of the 

DLC film and its chemical inertness are beneficial for the corrosion resistance, while CrN can 

form a thin passive layer of chromium oxide on the surface. Beside their good corrosion 

attributes, DLC and CrN are well-known for their excellent resistance to dry sliding wear due to 

their high hardness and ability to exhibit low coefficient of friction (< 0.1 for DLC and < 0.3 for 

CrN films) [183]. However, there is no study, in the literature, of the influence of the CrN or 

DLC films by PVD on the corrosion and tribo-corrosion behavior of the Fe3Al coatings prepared 

by HVOF.   

In continuation of our previous studies on thick Fe3Al-based HVOF coatings for 

tribological property investigation [36, 37, 159] and in view of the merit of DLC and CrN thin 

films, the objective of this work is to study the effect of sputter-coating CrN and DLC layers on 

top of HVOF Fe3Al coatings on corrosion performances in a chlorine containing NaCl solution. 

The corrosion behavior and the degradation mechanisms of the PVD/HVOF thin-on-thick system 



160 

 

are studied using Electrochemical Impedance Spectroscopy (EIS) and the simultaneous action of 

wear and corrosion was investigated. 

8.2 Materials and Experimental Methods 

8.2.1 Preparation of the HVOF coatings 

Fe3Al iron aluminide powders (97.5 % purity with ~2 % of Cr and an initial particle size of 

150 µm) from Ametek were ball-milled for 10h at high-energy (1000 rpm) using a Zoz 

Simoloyer CM01 apparatus in order to refine the microstructure and reduce the particle size to an 

appropriate value for thermal spray.  

After milling, the Fe3Al powders were deposited on 304-type stainless steel (SS304) 

substrates (190 mm × 120 mm × 2.5 mm) using a TAFA JP 8000 series high pressure HVOF gun 

from Praxair. Prior to the deposition, the substrate was grit-blasted with alumina (Al2O3) particles 

(grit 60), and rinsed with methanol. Such pre-treatment helped to roughen the surface, to improve 

adhesion of the impinging melted or semi-melted powder particles. Details of the ball milling 

process, HVOF deposition parameters and coating preparation can be found in reference [36]. 

8.2.2 PVD deposition of CrN and DLC thin films 

CrN and DLC layers were deposited on top of the HVOF coatings and on the bare SS304 

substrates by magnetron sputtering using a closed field unbalanced magnetron sputtering system 

(UDP650/4, Teer Coatings Ltd, UK) with up to four 380 mm × 175 mm target. All substrates 

were cut into coupons of 2.5 cm × 2.5 cm and polished using SiC pads (grit 320 to 4000) and 

diamond suspension solutions (3, 1 and 0.1 µm). Prior to deposition, the substrates were sputter-

cleaned in an Ar plasma for 30 min at a bias of -450 V for adhesion promotion. The background 

pressure of the deposition system was <2.7 × 10-4 Pa.  

The CrN films were deposited by reactive sputtering using two Cr targets facing each other. 

The Cr targets were powered by a DC power supply at a constant current of 4 A. The sputtering 

process was carried out using a gas mixture of N2: Ar (1:1) at a pressure of 0.4 Pa. A 200 nm 

thick Cr interlayer was deposited to enhance adhesion. DLC films were sputtered from pure 

graphite targets at a constant current of 4 A in an Ar atmosphere at a pressure of 0.17 Pa. In order 

to improve adhesion, an interlayer consisting of 200 nm of Cr followed by a 400 nm CrCx layer 
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was used. During all the depositions, the substrate holder rotated at 10 rpm; the substrates were 

biased at −80 V; and the substrate temperature was maintained at ~200 °C. More details about the 

sputtering processes for CrN and DLC can be found in references [166] and [167], respectively. 

8.2.3 Corrosion tests 

The corrosion tests were carried out in a 3.5 % NaCl aqueous solution at room temperature 

(~25 °C) using a three electrode-cell described in reference [97]. The sample was positioned 

vertically and its surface was in contact with the electrolyte. The coating was chosen to be the 

working electrode (WE) while a graphite rod (6 mm diameter) was the counter electrode (CE). 

The reference electrode (RE) was a Saturated Calomel Electrode (SCE of 242 mV vs standard 

hydrogen electrode), and the area of the specimen exposed to the solution was 0.79 cm2. The 

electrochemical measurements including open circuit potential (OCP), electrochemical 

impedance spectroscopy (EIS) and polarization were performed using a potentiostat (Autolab 

PGSTAT302 Echochemie) equipped with a frequency response analyzer.  

The surface of the coating was stabilized in the electrolyte for 60 min to reach a stable OCP 

value. The OCP values for all coatings were obtained from the stable segment of the OCP curve.  

Following the OCP measurement, the EIS was performed at OCP with a frequency varying 

between 105 Hz and 10-2 Hz using an AutoLab frequency response analyzer program (FRA, Eco 

Cemie B.V. Utrecht).  

The potentiodynamic polarization tests were carried out from cathodic to anodic 

polarization at a rate of 5 mV/s. The breakdown potential is defined by the potential at which an 

irreversible increase of current occurs. 

8.2.4 Tribocorrosion tests  

The tribocorrosion behavior of coatings was studied by performing the wear tests using a 

reciprocating ball-on-flat tribometer where the sliding contact was fully immersed in a 3.5 % 

NaCl aqueous electrolyte at room temperature (~25 °C). The corrosion tests were performed in a 

three-electrode-type electrochemical cell in which the coating served as the WE; a platinum wire 

was used as the CE, and a SCE was used as the RE electrode. In this configuration, the surface of 

coatings was horizontally positioned. 
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An alumina (Al2O3) ball (4.75 mm in diameter) was used as the wear counterpart due to its 

high hardness (20 GPa) and its chemical inertness. A normal load (dead load), F, of 5 N was 

applied corresponding to a minimum average Hertzian contact pressure of 1.26 GPa. The wear 

tests were performed under wet conditions with a total number of 1800 cycles using a sliding 

frequency of 1 Hz and a fixed stroke length of 10 mm. The material's loss of the coating was 

calculated by measuring its weight difference before and after the tribocorrosion test using a high 

precision scale. 

The tribocorrosion test was performed in several steps. In the first step, the OCP of the 

system was measured and recorded during 60 min before rubbing. This step was used to ensure 

the electrochemical stability of the surface of the coating. In the second step, the system was 

polarized cathodically or anodically, and the sliding wear test was performed. In both cases, the 

test was conducted at a fixed potential between the WE and the RE, and the corrosion current was 

monitored before, during and after the wear test. In the cathodic polarization, the applied 

potential was -800 mV, which was below the corrosion potential of the Fe3Al coating. Note that 

under cathodic protection, anodic reactions are suppressed (no corrosion takes place). In the 

anodic polarization, a potential of +250 mV with respect to the OCP of the coating was applied. 

This potential lies in the passive region of the polarization curve of coatings. During sliding, the 

corrosion current was measured and recorded as a function of time for a fixed number of cycles. 

The corrosion current was recorded for 20 min before and after rubbing to ensure its stability. 

The coefficient of friction (µ) was calculated using the equation: µ = FT/F, where FT is the 

tangential force measured during the test. In this context, a minimum of two tribocorrosion tests 

was performed under similar surface conditions (similar sample preparation) to validate the 

measurements and ensure reproducibility of the results. 

8.2.5 Surface characterization 

The structural characteristics of coatings were obtained using a Phillips X'Pert X-ray 

diffractometer (XRD) in a q/2q  configuration operating at 50 keV and 40 mA. The 

diffractometer was equipped with a copper source (l = 1.5406 Å) with a fixed divergent slit of 

1.5 mm. The diffractograms were acquired from 20 ° to 90 ° with a step size of 0.02 ° and a time 

per step of 2 sec.  
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The morphology and the chemical composition of the coating surface and cross-section 

before and after exposure to the electrolyte were characterized using a JEOL 7200 series 

Scanning Electron Microscope (SEM) equipped with a field electron gun as electron source, and 

an Inca X-max 80 Oxford Energy Dispersive Spectroscopy (EDS) system. 

8.3 Results and discussion 

8.3.1 Microstructure of the deposited coating systems  

Figure 8.1 presents SEM micrographs of surfaces and cross-sections, and the X-ray 

diffractograms of the coatings studied in this work. The surface of the Fe3Al coating reveals some 

porosity and defects (Figure 8.1a) while its cross-section shows melted and un-melted particles 

and pores (Figure 8.1a'). These features likely originated from the deposition process as described 

in reference [36]. For the Fe3Al HVOF coating, a thickness of 120 µm was obtained after the 

deposition. Prior to the deposition of the CrN and DLC films, coupons of the Fe3Al HVOF 

coating were polished. Fe3Al layer with an average thickness of 100 µm and a relative surface 

roughness below 100 nm were obtained. 

In the case of the CrN/Fe3Al/SS304 and the DLC/Fe3Al/SS304 samples, the top surface 

exhibits some defects (bumps and pits) which may come from the polished surface of the Fe3Al 

sublayer (Figures 8.1b and 8.1c). The SEM micrographs of the cross-section of the duplex 

coatings (Figures 8.1b' and 8.1c') show that the CrN and DLC films are dense and uniform; the 

thicknesses, including the bond layers, are approximately 1 and 1.5 µm for CrN and DLC films, 

respectively.  

The XRD diffractograms of the Fe3Al HVOF coating (Figure 8.1a") reveals peaks from the 

pure iron aluminide. For the CrN/Fe3Al/SS304 coating (Figure 8.1b"), well-defined peaks due to 

CrN phases were observed, and the left shoulder of the peak at ~43 ° is attributed to the Fe3Al 

phase. In the case of the DLC/Fe3Al/SS304 coating (Figure 8.1c"), no diffraction peaks due to 

DLC were observed since the DLC layer is amorphous. The diffraction peaks observed are from 

the Cr phase from the interlayer. The XRD patterns from the Fe3Al and Cr phases overlap in the 

diffractograms in this case. 
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Figure 8.1: SEM micrographs of the coating (a, b, c) surface and (a', b', c') cross-section, and 

(a", b", c") X-ray diffractograms of Fe3Al, CrN/Fe3Al/SS304 and DLC/Fe3Al/SS304 coatings. 

8.3.2 Corrosion characterization 

8.3.2.1 Open circuit potential (OCP)  

Figure 8.2 presents the evolution of the OCP of the coatings exposed to a 3.5 % NaCl 

aqueous solution as a function of time. In most cases, the value of the OCP slightly decreases 

before stabilization indicating that the electrochemical evolution of the surface of the coating has 

reached a steady state. However, a sharp voltage drop was observed after around 600 sec for the 

CrN/Fe3Al/SS304 duplex sample which indicated some instability in this system. This behavior 

may be related to the presence of defects and the breakdown of the CrN top protective layer after 
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this period of time. The OCP for the uncoated SS304 substrate and Fe3Al coatings increased 

when a top layer of CrN or DLC was added. The increase of the OCP is relatively small in the 

case of the SS304 substrate, which indicates only marginal differences in the corrosion resistance 

performances of these materials. In contrast, a large shift of the OCP toward anodic potential was 

observed for the Fe3Al coating when coated with a CrN or DLC film. This means that the PVD 

layers delayed the corrosion of Fe3Al upon exposure to the electrolyte, and led to a large 

improvement of its corrosion resistance. 

 

Figure 8.2: Evolution of the OCP of the SS304 substrate and of the pure Fe3Al 

coatings as a function of time, in comparison with the duplex coatings. 

8.3.2.2 Electrochemical impedance spectroscopy (EIS) 

The EIS data of the Fe3Al-based duplex coatings are presented in Figure 8.3 in the form of 

Bode and Nyquist plots [187]. In Figure 8.3a, the logarithm of the amplitude of the impedance, 

log |Z|, and the negative argument of the complex impedance Z (phase shift between the current 

and the potential), -Arg(Z) are plotted as a function of the logarithm of the frequency (ƒ), log ƒ.   
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Figure 8.3: EIS data of the Fe3Al, CrN/Fe3Al/SS304 and DLC/Fe3Al/SS304 

coatings represented in the form of (a) Bode, and (b) Nyquist plots. 

The -Arg(Z) curves for the CrN/Fe3Al/SS304 and DLC/Fe3Al/SS304 coatings shifts rapidly 

from low values near 0 ° at high frequencies to high values approaching 80 ° (close to 90 °) at 

low frequencies, and stay fairly high as we move towards dc conditions. The corresponding log 

|Z| curves of these coatings show basically two straight lines one horizontal at high frequencies, 

and one inclined with a negative slope at low frequencies with a breakpoint between 1 and 10 

kHz. The corresponding Nyquist plots presented in Figure 8.3b show almost vertical straight 

lines with relatively small angles with respect to the y axis for the PVD-coated samples. This 

behavior is typical for Bode and Nyquist plots of a simple electrical circuit consisting of a 
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resistance (R) in series with a capacitor (C). Therefore, these coating systems are mainly 

characterized by a single time constant (t = RC).      

The –Arg(Z) curve for the Fe3Al/SS304 coating shows a significantly different behavior. 

Two maxima, one between 10 and 100Hz, and the other between 0.01 and 0.1 Hz are 

distinguishable. The corresponding impedance curve (log |Z|) shows a gradual slow increase with 

decreasing frequency. At low frequencies, the impedance of the duplex coatings is about three 

orders of magnitude higher than that of the Fe3Al/SS304 system reflecting the much higher 

resistance of the DLC and CrN layers compared to the intermetallic Fe3Al coating. These 

observations indicate that the Fe3Al/SS304 system is characterized by more than one t. The 

existence of multiple time constants in this case is also reflected on the corresponding Nyquist 

plot where a fairly well-defined capacitive loop is observed at low frequency, while at high 

frequency the curve approaches the origin at an angle of about 45 °. 

The total impedance of an electrode consists of the contributions of the electrolyte 

(resistance of the solution Rs), the electrode-solution interface (double layer capacitance Cdl and 

charge transfer resistance Rct), and the electrochemical reaction taking place on the surface or 

within the electrode when the electrolyte is able to penetrate the coating via defects. 

For a coating consisting of multi-layers, the impedance can be represented by an equivalent 

electrical circuit consisting of a series of resistances and capacitances in parallel such as those 

shown in Figure 8.4, each block corresponding to one layer in the coating [93].   

 

Figure 8.4: Equivalent electrical circuits representing: (a) the solution 

resistance, (b) the CrN or DLC layer, and (c) the Fe3Al HVOF coating. 
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According to [93], the case of the CrN/Fe3Al/SS304 and DLC/Fe3Al/SS304 systems would 

be represented by an equivalent electrical circuit consisting of a linear combination of the circuits 

of Figures 8.4a, 8.4b and 8.4c in series, while the Fe3Al/SS304 system would be represented by a 

linear combination of Figures 8.4a and 8.4c. R1 is the charge transfer resistance (Rct), Q1 is the 

double layer capacitance (Cdl) at the surface, while R2 and Q2 are components associated with the 

subsurface or internal structure of the electrode (pores and inter-splats boundaries). These 

components may also represent a diffusion process when the reaction is diffusion limited. In this 

case, a Warburg impedance is often introduced instead of R2 and Q2 [187].     

In solid state electrodes, because of the surface roughness and dispersion of dielectric 

constants in the material, the behavior cannot be represented by a connection of simple R/C 

elements. Therefore, the capacitance is often expressed in terms of a constant phase element Q 

(CPE) whose impedance is given by ZQ = 1/ Y0(jw)g, where w = 2pƒ and Y0 (F/cm2 sg-1) is a 

constant and g is related to the angle of rotation of a purely capacitive line on the complex plane 

plots: b = 90 ° (1 - g) (see Figure 8.3b) [187]. When g = 1 (b = 0, straight vertical line in the 

complex plane), the CPE behaves as a pure capacitor. When g = 0 (b = 90 °, horizontal line in the 

complex plane), the CPE is a simple resistance, and when g = 0.5 (b = 45 °), the CPE is 

equivalent to a Warburg element which represents the impedance of a Faradaic reaction in the 

presence of semi-infinite linear diffusion [187]. 

In our case, the CrN and DLC layers are very dense and almost defect free. They block the 

infiltration of electrolyte fairly well and, as a result, the equivalent circuit of the underlying Fe3Al 

layer (Figure 8.4c) is masked by the top layer. Therefore, in a first approximation, the equivalent 

circuit of the CrN/Fe3Al/SS304 and DLC/Fe3Al/SS304 systems can be represented by Figures 

8.4a and 8.4b only. Moreover, since R1 (the charge transfer resistance) is very high for these 

coatings as indicated before, the equivalent circuit of the duplex coating consists simply of the 

solution resistance in series with the CPE element Q1. 

Table 8.1 shows the values of the fits of the impedance data with the equivalent electrical 

circuits described above. For the CrN/Fe3Al/SS304 and DLC/Fe3Al/SS304 systems, the values of 

Q1 of 1.0 ´ 10-5 F/cm2 and 6.7 ´ 10-6 F/cm2, respectively, are relatively small compared to that of 

the Fe3Al/SS304 coating. This suggests that the surfaces of these duplex coatings are smooth, and 

the effective surface areas with the electrolyte are small. The time constant t1 of 2.2 and 3.4 kHz 
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correspond to the break points between the horizontal and inclined lines in the log |Z| versus log ƒ 

curves as discussed above. The values of g1 of about 0.9 in both cases indicate nearly ideal 

capacitive behavior. The angle b = 90 °(1 - 0.9) in the Nyquist plots is about 10 °.  

The value of Q1 and Q2 for the Fe3Al/SS304 system is several orders of magnitude higher 

compared to the double layer capacitances of the duplex coatings. This is due to the very high 

effective surface area of the HVOF coating caused by its porous structure. The electrolyte can 

migrate into the coating via pores and inter-splats boundaries. The intercepts of the capacitive 

loop shown in the Nyquist plot of Figure 8.3b is about 5.1 kW.cm2 (Rs + R1 + R2) at low 

frequency, and about 230 W.cm2 (Rs + R1) at high frequency. The value of g2 is close to 0.5 (a is 

~45 °) which means that this constant phase element is similar to an infinite Warburg impedance. 

Therefore, diffusion processes are most likely relevant in the corrosion of the Fe3Al/SS304 

coating.    

Table 8.1: Characteristics of the fitted models for the EIS data of 

coatings immersed in a 3.5 % NaCl aqueous solution. 

Coatings 

Rs 
(W.cm2) Q1 

R1 
(W.cm2) Q2 

R2  

(W.cm2) 

t1 

(kHz) 

t2 

(kHz) 

 

Yo1 
(F/cm2) g1 

 

Yo2 

(F/cm2) 
g2 

 
  

 

CrN/Fe3Al/SS304 45 1.0 ´ 10-

5 0.9 > 109       2.2  - 

Est. Error (%) 0.6 3.1 6.4            

DLC/Fe3Al/SS304 44 6.7 ´ 10-

6 0.9 > 109       3.4 - 

Est. Error (%) 0.8 11.6 1.1            

Fe3Al/SS304 28 6.4 ´ 10-

4 0.7 2.0 ´ 102 1.3 ´ 10-3 0.6 4.9 ´ 103 0.008 0.001 

Est. Error (%) 0.5 5.7 1.3 7.5 2.7 1.4 3.3 
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8.3.2.3 Potentiodynamic polarization tests 

The polarization curves of the SS304 substrate and the Fe3Al coating are compared to their 

corresponding duplex coatings in Figure 8.5, and the resulting corrosion characteristics (i.e. 

corrosion potential, Ecorr, and corrosion current density, icorr) are summarized in Table 8.2. The 

Ecorr value of the SS304 substrate (-0.24 V) is higher compared to the Fe3Al coating (-0.71 V). 

For duplex coatings, the top CrN and DLC layers raised Ecorr of the Fe3Al coating up to 

approximately -0.34 V and -0.09 V, respectively. The lower Ecorr of the CrN/Fe3Al/SS304 coating 

compared to the OCP value in Figure 8.2 can be associated with the surface instabilities in this 

system as indicated above. The icorr of the Fe3Al coating decreases by one and three orders of 

magnitude with the addition of the CrN and DLC top layers, respectively. 

DLC/Fe3Al/SS304

CrN/Fe3Al/SS304

SS304

CrN/SS304

Fe3Al/SS304

DLC/SS304

(A/cm2)  

Figure 8.5: Polarization curves of coating systems and of the substrate. 

The Fe3Al system which exhibits a microstructure with a large number of defects 

(porosities and inter-splat boundaries) seems to be unable to produce a protective oxide layer on 

the surface. The low Ecorr value is an indication that the Fe3Al material starts to corrode 

immediately when exposed to the NaCl solution. A passive region is not observed in the 

polarization curve. On the contrary, the SS304 substrate shows a wide passive region associated 

to a protective oxide layer which inhibits surface corrosion. The polarization curve of the 
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PVD/SS304 and PVD/Fe3Al/SS304 systems also exhibit a passive region. It has been shown that 

a protective oxide layer forms on CrN films when immersed in chlorine-based solutions. The Cr 

bond coat may also play a beneficial role by acting as a diffusion barrier and by blocking the 

migration of species [84, 188].  

Table 8.2: Corrosion characteristics obtained after a 

polarization test in a 3.5 % NaCl aqueous solution. 

Coating Ecorr (V) icorr (A/cm2) 

SS304 -0.24 1 ´ 10-7 

SS304/CrN -0.15 1 ´ 10-7 

SS304/DLC -0.13 1 ´ 10-8 

Fe3Al -0.71 2 ´ 10-5 

CrN/Fe3Al/SS304 -0.34 1 ´ 10-6 

DLC/Fe3Al/SS304 -0.09 1 ´ 10-8 

8.3.2.4 Degradation mechanisms 

SEM micrographs of the surface of the SS304 substrate and of the Fe3Al coating after the 

corrosion test are shown in Figure 8.6. The surface morphology of the SS304 substrate shows 

localized corrosion pits (Figure 8.6a). In general, these pits form after the break down of the 

passive oxide layer as chlorine ions (Cl-) diffuse into the layer initiating cracks on the surface. 

The perforation of the oxide film leads to a rapid increase of the corrosion current density as 

shown in the polarization curve of the SS304 coating (Figure 8.5).  
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Figure 8.6: SEM micrograph of the surface of the (a) SS304 substrate and (b) 

Fe3Al HVOF coating obtained after the corrosion test in a 3.5 % NaCl solution. 

In the case of the Fe3Al coating shown in Figure 8.6b, the surface morphology reveals the 

presence of corrosion products surrounding defects (cracks, porosities, inter-splat boundaries, 

oxides). This observation suggests that the corrosion of the Fe3Al material started in the vicinity 

of defects. The extent and random distribution of corrosion products confirms that the surface 

was not protected by a passive oxide film, in conjunction with the presence of inhomogeneity on 

the surface and subsurface (Figures 8.1a and 8.1a’). Surface inhomogeneity may also create 

micro-galvanic cells which can aggravate the corrosion process.  

Figure 8.7 presents SEM micrographs of the surface of the CrN and DLC coatings after 

polarization tests. In all cases, the surface morphology shows the presence of pits.  Near them, the 

protective films are removed, and cracks are observed. The size of the pits is typically around 

100-150 µm in diameter. DLC and CrN films are well-known for their chemical inertness and 

excellent corrosion resistance. However, in duplex systems, the films deposited by PVD still 

exhibit defects (pinholes, porosity, cracks) that can be regarded as passageways for the solution 

to reach the sublayer or substrate. The corrosion resistance of these coating systems is therefore 

highly related to surface defects and quality of the top coat. 
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Figure 8.7: SEM micrograph of the surface of coatings obtained after 

the polarization test in a 3.5% NaCl aqueous solution: (a) CrN/SS304, 

(b) CrN/Fe3Al/SS304, (c) DLC/SS304 and (d) DLC/Fe3Al/SS304. 

8.3.3 Tribocorrosion of the single layer and duplex coatings 

We have evaluated the wear tests performed under both cathodic and anodic polarization 

conditions. For the cathodic polarization, the system was subjected to cathodic protection, i.e., 

the anodic reactions were suppressed. As a result, the total material loss (Wtotal) from the surface 

of the coating is principally due to mechanical wear only (Wmech), whereas in the case of an 

anodic polarization, Wtotal is the sum of three components, namely Wmech, static corrosion (Wcorr) 

and the synergistic action of wear and corrosion (Wsyn) as represented by the following equation 

[97]: 

 Wtotal = Wmech + Wcorr + Wsyn  (8.1) 

where Wtotal can be obtained by weighing the coating after the tribocorrosion test, while Wcorr is 

calculated using the Faraday's law: 

 Wcorr = (Icorr ´ t ´ M) / (z ´ F)  (8.2) 

where Icorr (A) is the corrosion current measured before rubbing, t (s) is the duration of the sliding 

wear test, M (g/mol) is the molar mass of the coating, z is the number of electrons transferred 
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from the dissolution of one atom of the corroded material, and F is the Faraday constant (96485 

C/mol).  

The term Wsyn in equation (8.1) can be expressed as a sum of two components:  

 Wsyn = Wsyn-c + Wsyn-w (8.3) 

where Wsyn-c represents the material loss due to corrosion during rubbing and Wsyn-w is the 

material loss by wear during the tribocorrosion test.  The Wsyn-c component can be calculated as 

before using the Faraday's law but in this case, Icorr is the mean current measured during rubbing. 

Finally, Wsyn-w is calculated from equations 8.1 and 8.3 as follows:  

 Wsyn-w = Wtotal - Wcorr - Wmech - Wsyn-c  (8.4)  

The total mass loss and its components for the Fe3Al/SS304, CrN/Fe3Al/SS304 and 

DLC/Fe3Al/SS304 coating systems are presented in Table 8.3.  

Table 8.3: Total weight loss and its various contributions, and the 

coefficient of friction of the coatings after the tribocorrosion test. 

Samples 

Weight loss due to 
mechanical wear, 
Wmech (mg) 

(cathodic 
polarization) 

Total weight 
loss, Wtotal (mg) 

(anodic 
polarization) 

Weight loss 
due to 
corrosion, 
Wcorr (mg) 

Synergistic contribution 
to Wtotal, Wsyn (mg) 

Wsyn-c Wsyn-w 

Fe3Al/SS304 0.9  2.3  0.3 0.2  0.9  

CrN/Fe3Al/SS304 0.6  5.2  0.03 0.97 3.6  

DLC/Fe3Al/SS304 0.2  7.9  0.002 0.9 6.798  

8.3.3.1 Cathodic polarization (-800mV vs SCE)  

Under the cathodic polarization condition, Wmech represents the total mass loss due to the 

mechanical interaction between the surface of the coating and the Al2O3 ball. The Wmech values 

for the CrN/Fe3Al/SS304 and DLC/Fe3Al/SS304 duplex coatings are 0.6 mg and 0.2 mg, 

respectively, which are lower than that of the pure Fe3Al coating (0.9 mg). This indicates that the 

mechanical wear under wet conditions is reduced, respectively, by a factor of 1.5 or 4.5 when a 

CrN or DLC top layer are added.  
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SEM micrographs of the surface of the wear track of coatings, after the tribocorrosion tests 

under cathodic polarizations are shown in Figure 8.8. Inspection of the uncoated Fe3Al surface 

reveals cracks, voids and parallel grooves (Figure 8.8a) that result from severe interactions with 

the Al2O3 ball due to repeated contact stresses induced by the hard Al2O3 ball during the 

reciprocal movement [36]. During the wear test, cracks propagate to the subsurface, and the 

coating material is removed via delamination. In Figure 8.8b, the surface of the wear track of the 

CrN/Fe3Al/SS304 sample also shows grooves parallel to the sliding direction, but no cracks have 

been observed. In contrast, the top surface of the DLC/Fe3Al/SS304 coating system is smooth 

with no groove as seen in Figure 8.8c; this can be attributed to the good elastic properties of the 

amorphous DLC film.  
Fe3Al/SS304 CrN/Fe3Al/SS304 DLC/Fe3Al/SS304

(a) (b) (c)Sliding	direction Sliding	direction Sliding	direction

 

Figure 8.8: SEM micrographs of the surface of the wear track obtained after a 

tribocorrosion test in a 3.5 % NaCl solution under cathodic polarization of (a) 

Fe3Al/SS304, (b) CrN/Fe3Al/SS304, and (c) DLC/Fe3Al/SS304 coatings. 

8.3.3.2 Anodic polarization (+250mV vs SCE)  

The evolution of Icorr and the coefficient of friction (µ) during the tribocorrosion test under 

the anodic polarization is shown in Figure 8.9. During the OCP measurement, no current is 

recorded for 3600 s for all coatings. Before the onset of the wear test, the current increases until a 

plateau is reached (~0.11 A) for the Fe3Al coating during the subsequent 1200 s, whereas a weak 

signal (<10-6 A) is recorded for the duplex coatings during the same period of time. This 

observation is an indication that during the OCP measurements, little or no oxide layer has been 

formed to protect the surface of the pure Fe3Al coating, while the CrN/Fe3Al/SS304 and the 

DLC/Fe3Al/SS304 coating surface is better protected by a passive layer. 

When rubbing starts, the current gradually drops for the Fe3Al coating until the end of the 

wear test. Such evolution of the current during rubbing indicates a tendency of the surface to 
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passivate either by the formation of an aluminum oxide from the Al exposed to the solution, the 

closing of pores by the mechanical action of the counter body or from the oxidation of the SS304 

substrate after significant infiltration of the electrolyte in the coating. The marginal decrease 

observed on the coefficient of friction of the Fe3Al coating (Figure 8.9b) reflects changes 

occurring on the surface and the influence of the electrolyte and third body in the contact area. 

From the start of the wear test, an increase of the current is measured after 200 s for the 

DLC/Fe3Al/SS304 and 400 s for the CrN/Fe3Al/SS304 coatings. This observation suggests that 

the thin protective layer on the surface of the CrN/Fe3Al/SS304 coating breaks down after 400 s 

due to interactions with the hard Al2O3 ball. An increase of µ is recorded when this event takes 

place.  

In the case of the DLC/Fe3Al/SS304 coating, the chemical inertness of the DLC film is the 

reason for the ultra-low current with little or no effect on µ as shown in Figure 8.9b. Thereafter, 

one can notice a slight increase of the current up to approximately 0.004 A and 0.009 A for the 

DLC/Fe3Al/SS304 and CrN/Fe3Al/SS304 coatings, respectively. In these cases, the slow increase 

of the current may be related to the gradual increase of the area exposed to the electrolyte which 

occurs when the wear track is formed and the slow degradation of the protective layer. As the 

wear test evolves, the width of the wear track increases leading to an increase of Icorr (Figure 

8.9a). When the wear test stops, a gradual decrease of the current is observed for all coatings; this 

can be associated with the re-passivation of the surface leading to the reduction of active areas. 
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Figure 8.9: Evolution of the corrosion current (a) and the coefficient of friction (b) as a function 

of time during the tribocorrosion test of all coatings performed under anodic polarization. 

For the anodic polarization, Wtotal is a combination of the mass loss due to corrosion, 

mechanical wear, and a synergistic contribution of both effects as described by the equation (8.1). 

Therefore, Wtotal for all samples is higher than their corresponding Wmech, as presented in Table 

8.3. The Wtotal values of duplex coatings are higher than that of the Fe3Al coating suggesting that 

under the anodic polarization conditions used in this work, the CrN and DLC layers do not 

sufficiently protect the Fe3Al coating when corrosion and wear act simultaneously. When Wcorr 

and Wsyn are compared (Table 8.3), it can be seen that Wcorr which ranges from 0.1 - 0.001 mg is 

a small fraction of Wtotal [189]. Therefore, the major contribution to the mass loss originates from 

synergistic effects between wear and corrosion. By comparing the weight loss due to corrosion, it 

can be seen that Wsyn-c is comparable to Wcorr in the case of Fe3Al/SS304 but much higher for the 
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duplex coatings. This is an indication that rubbing has a strong influence corrosion rates in the 

case of the duplex coatings.  

100	µm 100	µm100	µm

(a) (b) (c)Sliding	direction Sliding	directionSliding	direction

 

Figure 8.10: SEM micrographs of the surface of the wear track obtained after a 

tribocorrosion test in a 3.5 % NaCl solution under anodic polarization of: (a) 

Fe3Al/SS304, (b) CrN/Fe3Al/SS304, and (c) DLC/Fe3Al/SS304 coatings. 

The difference between the Wsyn-w components of the three samples is relatively large. For 

duplex coatings, Wsyn-w is significantly higher compared to Wmech which means that the 

mechanical wear is substantially aggravated by the corrosion process and the presence of 

corrosion products. During rubbing, the oxide layer formed is destroyed and as a result, new fresh 

surfaces are accessible by the electrolyte. This increases the electrochemical activities of the 

surface. Moreover, the repeated formation and destruction of the protective oxide layer inside the 

wear track likely leads to the generation of wear debris that acted as abrasive components inside 

the wear track and accelerate material removal. Finally, in the case of the duplex coatings, strong 

galvanic couples consisting of DLC-Fe3Al and CrN-Fe3Al (see Figure 8.2) are being formed on 

the surface during the tribocorrosion tests. These local defects accelerate corrosion and lead to the 

formation of pits at the surface.  

SEM images obtained from the wear track of coatings under the anodic polarization are 

presented in Figure 8.10. Inspection of the surface reveals the presence of parallel grooves inside 

the wear track of the Fe3Al/SS304 coating (Figure 8.10a) compared to the CrN/Fe3Al/SS304 and 

the DLC/Fe3Al/SS304 duplex coatings (Figures 8.10b and 8.10c, respectively) where large pits 

are observed.   

In the case of the pure Fe3Al HVOF coating, the total mass loss comes from significant 

contributions of the wear and corrosion processes. For duplex coatings, the severe damage is 

related to the fact that the mechanical action of the wear process breaks down the passive film 
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while inducing cracks in the PVD layer. The electrolyte infiltrates the interface between the PVD 

film and the Fe3Al coating. This leads to the formation of strong galvanic couples between the 

CrN or DLC component and the Fe3Al sublayer. As a result, the subsurface is subjected to severe 

pitting corrosion that weakened the coating structure and generated large voids upon continuous 

loading and unloading. 

8.3.4 Conclusion 

The corrosion behavior of the Fe3Al-based HVOF coating evaluated in a 3.5 % NaCl 

aqueous solution was compared to the duplex CrN/Fe3Al/SS304 and the DLC/Fe3Al/SS304 

coatings. The single layer Fe3Al coating exhibits a poor corrosion resistance, while the addition 

of CrN and DLC layers shifts the corrosion potential from -0.7 V for the Fe3Al coating to -0.34 V 

and -0.09 V for the duplex coatings respectively (Table 8.2). This leads to a decrease of the 

corrosion rates by formation of a protective barrier against the corrosive electrolyte. 

The corrosion current density of the uncoated Fe3Al coating decreases by one and three 

orders of magnitude with the addition of CrN and DLC films, respectively. The poor corrosion 

resistance of the Fe3Al coating is related to the presence of defects that favor infiltration of the 

electrolyte within the coating, thus contributing to the rapid dissolution of the iron aluminide 

material. The electrochemical impedance spectroscopy investigation revealed that the PVD layers 

tend to act as a protective capacitive barrier between the electrolyte and the Fe3Al coating. 

The tribocorrosion studies of coatings subjected to cathodic polarization show that the DLC 

and CrN top layers help in reducing material removal during wear. However, the simultaneous 

action of wear and corrosion in a 3.5 % NaCl aqueous solution under anodic polarization 

conditions leads to severe damages once the protective top layer of DLC and CrN has been 

broken by the hard Al2O3 counterpart. This leads to the formation of strong CrN-Fe3Al and DLC-

Fe3Al galvanic couples. Thus, the major contribution to the total material loss is the contribution 

due to synergistic effects of wear and corrosion and more specifically, the mass loss by wear 

during rubbing as a result of galvanic corrosion. 
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CHAPTER 9 GENERAL DISCUSSION 

This chapter provides a summary and a general discussion of the results presented in the 

last five chapters. In the first section, I summarize the main findings and discuss how they have 

fulfilled the objectives defined in Chapter 1. The following section discusses the main 

contribution of this research to the development of iron aluminide alloys for wear applications. 

The chapter concludes with ideas and interests that can be explored to further enhance the tribo-

mechanical properties of the materials developed in this thesis. 

9.1 Summary of the main results 

The concept of structural modification by the addition of hard secondary phases in a metal 

matrix via mechanical ball-milling was used in this thesis as the principal tool to enhance the 

mechanical and wear properties of iron aluminide (Fe3Al). In this context, two composite powder 

systems were considered: the first system consisted of an Fe3Al matrix in which AlN and Fe2B 

phases formed in situ within the matrix during the fabrication process; and the second system was 

made using the same matrix, but it was reinforced in situ with TiN and TiB2 phases. Further 

improvement of the mechanical and wear properties of the Fe3Al-based HVOF coatings was 

achieved via surface engineering where sputter-deposited CrN and DLC top coats were added. A 

summary of the mechanical and the tribological properties of the coatings fabricated in the 

context of this thesis are presented in Table 9.1. As mentioned in Chapter 3, all wear tests were 

performed using an Al2O3 ball (4.75 mm diameter) as a counterpart. 

In the first powder system, we controlled the microstructure of the Fe3Al matrix with 

different concentrations of the BN phases using ball-milling. Composite materials with different 

inclusion sizes (400 nm - 1.2 µm) were obtained after heat treatment and re-milling. 

Consequently, the mechanical performance of the SS304 substrate was significantly enhanced 

with the addition of the Fe3Al-based HVOF coatings. The microhardness (4.3 GPa) of the pure 

Fe3Al/SS304 coating was found to increase up to 7.8 GPa and 8.9 GPa when the BN, and a 

combination of AlN and Fe2B phases were added, respectively; its wear rate (~10-6 mm3/Nm) 

decreases by one order of magnitude when an optimum amount of ceramic inclusions was added. 
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Table 9.1: Summary of the mechanical and tribological properties of 

different coating systems fabricated in the context of this thesis. 

Coating systems H (GPa) E 
(GPa) 

H/E K 
(mm3/N

m) at 5 N  

K 
(mm3/Nm
) at 10 N  

K 
(mm3/Nm
) at 15 N 

µ Wear 
mechanisms 

 
SS304 1.3 ± 0.04 175 ± 7 0.007 8.5 ´ 10-5 <3 ´ 10-4 > 3 ´ 10-4 0.8 Fracture and 

adhesion 

 Fe3Al/SS304 4.3 ± 0.8 131 ± 9 0.033 9.7 ´ 10-6 2.9 ´ 10-4 - 0.7-0.8 Delamination and 
fracture 

Fi
rs

t c
oa

tin
g 

sy
st

em
 

H
V

O
F/

SS
30

4 Fe3Al-BN/SS304 7.8 ± 2.1 141 ± 12 0.068 5 ´ 10-7 - - 0.8 Delamination 

Fe3Al-AlN-Fe2B/SS304 8.9 ± 1.7 195 ± 10 0.065 2.1 ´ 10-7 - - 0.6 - 0.7 Fracture and 
abrasion 

Se
co

nd
 c

oa
tin

g 
sy

st
em

 
H

V
O

F/
SS

30
4 

Fe3Al-TiN-TiB2/SS304 (in situ) 14.2 ± 1.6 217 ± 10 0.064 - 9.3 ´ 10-7 - 0.6 Delamination, 
abrasion 

Fe3Al-TiN-TiB2/SS304 (in situ) 9.3 ± 1.5 177 ± 13 0.053 1.2 ´ 10-6 - - 0.6 - 0.7 Abrasive and 
adhesion 

Fe3Al-TiN-TiB2/SS304 (ex situ) 6.5 ± 1.4 149 ± 12 0.044 5.6 ´ 10-6 - - 0.6 - 0.7 Abrasive and 
oxidation 

PV
D

 c
oa

te
d 

su
bs

tra
te

*  CrN/SS304 19 ± 2.3 230 ± 11 0.083 3.5 ´ 10-7 6.2 ´ 10-6 1 ´ 10-5 0.3 Fracture and Plastic 
deformation 

DLC/SS304 14 ± 1.8 150 ± 9 0.093 1.4 ´ 10-7 2.6 ´ 10-7 5.1 ´ 10-7 < 0.1 Plastic deformation 

PV
D

/H
V

O
F/

SS
30

4 
du

pl
ex

 sy
st

em
s * CrN/Fe3Al/SS304 - - - 2.6 ´ 10-7 5.4 ´ 10-7 7.8 ´ 10-5 0.3 - 0.7 Fracture, abrasive 

and oxidation 

CrN/Fe3Al-TiN-TiB2/SS304 - - - 9 ´ 10-8 3.8 ´ 10-7 9.1 ´ 10-6 0.3 - 0.7 Fracture, abrasive 
and oxidation 

DLC/Fe3Al/SS304 - - - 1.0 ´ 10-7 1.8 ´ 10-7 3.6 ´ 10-7 < 0.1 Plastic deformation 

DLC/Fe3Al-TiN-TiB2/SS304 - - - 7 ´ 10-8 9 ´ 10-8 2.3 ´ 10-7 < 0.1 Plastic deformation 
and abrasion 

* The mechanical properties of the top coat (CrN or DLC film) using nanoindentation. Sliding 
velocities are: 20 cm/s (dark gray), 14.7 cm/s (middle-gray), and 4.83 cm/s (light gray).  

 

The tribo-mechanical properties of the Fe3Al alloy was also enhanced using the second 

powder system: in this case, the homogeneous dispersion of fine in situ precipitates of the TiN 

and TiB2 phases in the Fe3Al matrix led to the increase of the hardness value by a factor of about 
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3.3 and 1.6 compared to the Fe3Al and Fe3Al-AlN-Fe2B coatings, respectively. However, the 

wear rate of the HVOF coatings prepared with this powder system was of the same order of 

magnitude compared to the first powder system. The comparison of the HVOF coatings prepared 

from the composite powders fabricated via the in situ and ex situ routes showed that the presence 

of pre-formed ceramic particles in the Fe3Al matrix exposes a large portion of the soft matrix 

which has a detrimental effect on the mechanical properties of coatings as opposed to in situ 

precipitated phases. The wear results have shown that the in situ HVOF coatings exhibit higher 

resistance to sliding wear compared to the ex situ coatings, irrespective of the sliding velocity. 

In the continuation to further enhance the mechanical and the wear properties of the HVOF 

coatings fabricated in this thesis, we designed a thin-on-thick coating system in which sputter-

deposited CrN and DLC top coats were added to the Fe3Al-based HVOF coatings. It was shown 

that the wear resistance at low load (5 N) of the SS304 substrate and of the HVOF/SS304 system 

was increased with the addition of the sputtered top coats. We demonstrated that the wear 

resistance of the duplex coatings increases with the microhardness of the HVOF layer, which 

indicates an improved load-carrying capacity of the thick HVOF layer. The ability of the DLC 

film to maintain its integrity at high loads (10 N or 15 N), and to form a tribofilm on the 

counterpart that acts as a solid lubricant to reduce friction are the reasons for the better wear 

resistance of DLC-based coatings compared to the CrN-based ones. 

Although the mechanical and the wear properties of the SS304 substrate and the pure Fe3Al 

coating have been enhanced with the addition of hard secondary phases, no significant changes 

have been observed regarding the coefficient of friction. It remains relatively high (~0.6 - 0.7), 

irrespective of the composite powder system considered or test conditions employed. 

Nevertheless, surface engineering the HVOF coatings by the addition of a top coat led to a 

significant decrease of the friction coefficient from about 0.7 down to 0.3 and <0.1 for CrN and 

DLC films, respectively. 

Following the study of the wear behavior of the Fe3Al-based HVOF coatings including the 

thin-on-thick architecture, we focused our attention to their corrosion behavior. The influence of 

the sputter-deposited CrN and DLC top layers on the corrosion resistance of the Fe3Al-based 

HVOF coatings in a chlorine-containing NaCl solution was particularly studied. It was found that 

the corrosion potential of the uncoated Fe3Al coating, -0.71 V, was increased up to -0.34 V and 
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-0.09	V   with the addition of the CrN and DLC top coats, respectively. Such improvement was 

attributed to the good corrosion resistance of the CrN and DLC films. In addition, the corrosion 

rate of the uncoated Fe3Al coating (corrosion current density ~10-7 A/cm2) decreases by one or 

three orders of magnitude when the CrN or the DLC top layers were added, respectively. We 

have used the EIS method to demonstrate that the corrosion process in the Fe3Al coating was 

governed by a diffusion process while in the case of the thin-on-thick structures, the corrosion 

was limited by a charge transfer process. 

In tribology interactions, the material loss in a given system can occur under the influence 

of different wear mechanisms that can take place simultaneously. However, a predominant mode 

of deterioration can exist. We have shown that the wear mechanisms were strongly dependent on 

the microstructure of the HVOF coatings. In the case of the pure Fe3Al coating which exhibited 

large unmelted particles, delamination was the predominant wear mechanism. The removal of the 

Fe3Al particles from the surface was preceded by the propagation of cracks in the subsurface via 

defects in the HVOF coating. These cracks are initiated by the contact stresses induced by the 

hard counterpart. For coatings prepared from the first or the second composite powder systems, 

the abrasive wear was the main mechanism of material loss. The material removed from the 

surface of the coating contained boride and nitride particles. When entrapped between the coating 

and the counterpart, these hard particles act as abrasive components to accelerate material 

removal. 

In summary, we believe that the first objective of this thesis, which was to develop wear-

resistant Fe3Al-based HVOF coatings, has been fulfilled. Specifically, we have shown that the 

mechanical and the wear properties of the pure Fe3Al coating are significantly enhanced by 

precipitation strengthening and particle reinforcement with boride and nitride phases. For the first 

time, the tribo-mechanical properties of the Fe3Al matrix have been enhanced with "hybrid" 

secondary phases in situ precipitated from the BN and Ti powders using the HEBM and the 

HVOF techniques.  

In Chapters 4 and 6, we have shown that the wear rate is strongly related to the size and the 

distribution of the secondary phases in the matrix as well as the plastic coefficient (ratio of the 

H/E) of the coatings. This illustrate the accomplishment of the second objective which basically 
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referred to the characterization and the establishment of a relationship between the microstructure 

and the resulting tribo-mechanical properties of the coatings.  

In Chapter 7, we have shown that the sputter-deposited top coats act as a barrier to a 

corrosive environment providing a good protection against corrosion of the pure Fe3Al coatings 

under specific conditions. Therefore, the third objective which had been to evaluate the influence 

of the thin-on-thick structure on the corrosion behavior of the Fe3Al coating has been justified as 

well. 

Finally, for different types of coatings, the identified degradation mechanisms were 

described with respect to the test conditions used as presented in the last five chapters. We 

believe that the last objective which was in essence to identify and to understand the mechanisms 

of the materials loss has been fulfilled as well.  

9.2 General discussion and conclusions 

As mentioned in Chapter 1, the enhancement of the mechanical and wear properties of the 

iron aluminide has been mainly addressed via microstructural modifications by adding hard 

secondary phases. For effective protection of components in an industrial context, the physical 

properties, the applicability of the materials as well as the fabrication cost are considered. This is 

guided by a good understanding of the degradation mechanisms. From this point of view, the 

fabrication method for the MMC used in this thesis comprising a metal matrix component of Fe 

and Al, and a ceramic component, has been protected by a patent (number: US20150225301 A1) 

[190]. This invention was also related to the fabrication of protective coatings for tribological 

applications using the HVOF technique.  

In practice, the composite materials developed in this thesis exhibit good mechanical and 

wear properties compared to stainless steel substrates, and their degradation mechanisms vary 

under the range of tribological conditions used. In the form of HVOF coatings, these materials 

can offer good wear protection which helps to extend the life time of various engineering surfaces 

under given application conditions. The results obtained in this work is compared to those 

published in the literature in Table 9.2. 
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Table 9.2: Tribo-mechanical characteristics of various Fe3Al-based alloys found in the literature. 

Coating  H 
(GPa) 

E 
(GPa) 

H/E K   

(mm3/Nm) 

µ Wear mechanisms 

Fe3Al [191] ~4 121 0.03 10-3 - 10-4 ~0.7 - 0.8 Fracture, delamination 
and adhesion 

Fe3Al-TiC [191] ~6 - - 10-5 ~0.7 - 0.8 Abrasion and oxidation 

Fe3Al-TiB2 [91] 12 201 0.06 10-4 - 10-7 ~0.7 - 0.8 Oxidation and adhesion 

Fe3Al-WC [75] 3 - - 10-5  ~0.7 - 0.8 Delamination, abrasion 
and oxidation 

Fe3Al-WC [192] 12   10-7 ~0.7 - 0.8 Abrasion and oxidation 

Fe3Al-Al2O3 [193] ~2 - - 10-2 - 10-3 0.5 Microploughing, 
adhesion and oxidation 

Fe3Al/SS304 4.3 131 0.03 9.7 ´ 10-6 ~0.7 - 0.8 Delamination and 
fracture 

Fe3Al-AlN-Fe2B/SS304 (in situ) 8.9 195 0.07 2.1 ´ 10-7 ~0.7 Fracture and abrasion 

Fe3Al-TiN-TiB2/SS304 (in situ) 14.2 217 0.06 9.3 ´ 10-7 0.6 Delamination, abrasion 

 

In this work, the effect of the mechanical ball-milling on the microstructure of the 

composite materials fabricated with BN and Ti powder additions was studied. The hard BN 

phases tend to refine the grain size of the matrix leading to materials with fine microstructure. 

This result is consistent with the findings of Rosas et al. [80]. These authors attempted to 

fabricate a composite material from the FeAl and the BN powders by mechanical ball-milling 

[80]; however, they limited their studies to the microstructural characterization of the ball-milled 

powders without evaluating the tribo-mechanical properties and the degradation mechanisms.    

Our findings are further in agreement with various reports with respect to bulk materials 

[65, 71, 73, 78, 79, 138, 194-196]. In the form of HVOF coatings, the composite materials 

fabricated in this thesis exhibit better mechanical properties compared to those in the literature 

(see Table 9.2).  

It is interesting to compare our results to those of Amiriyan et al. [91, 191, 197]. With the 

addition of 70 mol.% of in situ TiC phases, Amiriyan et al. showed that the microhardness of the 
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pure Fe3Al-based HVOF alloys (~3 GPa) increased up to (~7 GPa) [191], and they also reported 

an increase up to ~12 GPa when 50 vol.% of TiB2 phases were added [91]. These hardness values 

are lower compared to that obtained with the Fe3Al-TiN-TiB2 coating (~14 GPa) fabricated in our 

work (see Table 9.2).  

The findings of this thesis reveal that there exists an optimum amount of secondary phases 

that can be added to the Fe3Al matrix. Our result is thus consistent with Schneibel et al. who 

indicated that this is valid for different types of secondary phases [27]. The hardness of our 

coatings is higher compared to that of the pure Fe3Al matrix reinforced with 10 wt.% of WC 

particles (12 GPa) obtained by Liu et al. [192]. The latter authors obtained high hardness of the 

WC-Fe3Al material compared to WC-Co due to the presence of fine WC particles. In addition, 

Wang et al. [198] and Bai et al. [193] studied the Al2O3-reinforced Fe3Al matrix. This system 

exhibits a hardness about 7 times lower compared to the coatings studied in this thesis. 

We have found that the sliding wear rate of the pure Fe3Al alloy (~10-5 mm3N-1m-1) can be 

enhanced by one or two orders of magnitude by adding boride and nitride phases whereas its 

coefficient of friction remains relatively high (0.6 - 0.7). This finding is in agreement with the 

Amiriyan et al.'s study where the Fe3Al matrix was reinforced with TiC or TiB2 particles [91, 

191], and Xu et al.'s [75] and Liu et al.'s [192] studies where WC particles were added to the 

Fe3Al matrix. The latter authors reported that the wear performance of the WC-Fe3Al coating is 

better than that of the WC-Co materials fabricated and tested under similar conditions. On the 

contrary to our work, some authors use the hardness of the material to predict the wear resistance 

of a given system [74, 75, 192] while we pointed out the importance of the H/E parameter. 

In this research, the results from the wear degradation mechanisms depend on the type of 

materials tested. We have shown that the predominant degradation mechanisms for the 

unreinforced Fe3Al alloy are fracture and delamination wear, while for the Fe3Al matrix 

containing hard secondary phases abrasive wear prevails. At high sliding velocities, the oxidation 

wear seems to also contribute to the material's removal process in ambient atmosphere. These 

findings are supported by Amiriyan et al.'s [191] study that found that the large unmelted Fe3Al 

particles fracture upon repeated loading and unloading during the wear test, and delamination 

follows. Moreover, when the sliding velocity increases, the contact temperature increases as well 

leading to localized oxidation of the surface [75]. For composite materials, the hard ceramic 
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particles dispersed in the matrix can debond, and act as abrasive components when they are 

entrapped between the counterpart and the surface of the coating [192]. 
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CHAPTER 10 CONCLUSION AND RECOMMENDATIONS 

This thesis has focused on two principal axes, namely the fabrication of HVOF coatings 

from composite powder materials, and the characterization of the tribo-mechanical properties. It 

is the first study in the area of tribology at the FCSEL in which all steps (the fabrication of 

powders, the deposition and characterization of coatings) have been investigated in collaboration 

with HQ. By comparing the wear results obtained in the literature, I can conclude that the 

materials fabricated in this thesis exhibit better mechanical and wear properties compared to 

stainless steel substrates and similar class of composites. Nevertheless, I believed that there exist 

possibilities for further improvement via the optimization of the microstructure. In fact, some 

aspects were more prioritized than others, meaning that there are still other ideas and interests 

that have not been explored yet. Below is a list of recommendations I believe should be explored 

at HQ and at FCSEL in the near future. 

First of all, the preparation of composite powders by mechanical ball-milling and the 

fabrication of HVOF coatings involves complex thermodynamic reactions; understanding the 

thermodynamic properties (e.g. Gibb's energies, melting temperature of alloys, etc.) of such 

reactions can help to better control the fabrication process as well as the material's properties. The 

thermodynamic properties  can be obtained using commercial software such as FactSage [199] or 

ThermoCalc [200]. These tools can reveal information such as the stable and meta-stable phase 

equilibria, the amounts of phases and their compositions, the driving force for phase 

transformations, the phase diagram of multi-components, etc. [200]. I trust that the knowledge of 

the theoretical prediction and of the thermodynamic calculations of a given system of powder 

mixture can have a positive influence on the mechanical properties of the materials. 

The mechanical characteristics of coatings strongly depend on the microstructure [27]. 

Therefore, the control of the microstructure can be achieved by controlling the fabrication 

conditions. However, less attention was given to the deposition conditions such as the 

temperature of the substrate (or of the already deposited layers), the particle temperature and 

velocity at the exit of the HVOF gun, and the standoff distance (the distance between the 

substrate and the exit of the gun). The substrate temperature plays an important role in the 

buildup of the coating [201]. Moreau et al. have shown that with the substrate temperature above 

room temperature, the deposition efficiency can significantly increase as well as the density of 
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the coating [201]. They have also demonstrated that the particle temperature has a larger effect on 

the coating properties than the particle velocity  [202]. Berghaus et al. [203] have shown that the 

particle velocity decreases with increasing standoff distance. The complications such as 

evaporation and oxidation of the powder materials can occur before impinging the substrate  

[203]. I believe that well-controlling these parameters can help to minimize the risk of oxidation 

between layers in the coating buildup, help to increase the coating-substrate adhesive as well as 

the inter-particle bonding, and reduce the porosity level.  

In general, the degradation of the composite materials under sliding contact conditions 

occurs at the surface via fatigue, fracture, delamination and/or oxidation. These degradation 

mechanisms are enhanced by the presence of defects in the materials. Therefore, reducing the 

level of defects in the HVOF coatings can delay or inhibit some wear mechanisms. Finally, I 

believe that the remelting of the already deposited layers can increase the cohesion bond strength 

between particles and/or splats, and can help to further enhance the tribo-mechanical properties.  

The analysis of the wear data can also be carried out in the form of a wear map in which the 

wear rate is related to more than one parameter (e.g., load, sliding velocity or sliding distance) as 

shown in Figure 9.1. Simultaneously, the wear mechanism can also be investigated under a wide 

range of experimental conditions [204]. In this way, it is possible to predict the wear behavior 

(wear rate, wear mechanisms and/or wear mechanism transitions) of coatings under defined 

conditions and avoid critical operating conditions where undesirable degradation mechanisms can 

occur. Wear maps can also be used to establish a relationship between the wear rate and the wear 

mechanisms [205], or as a tool to engineer surfaces in order to improve the resistance to wear 

[206].  



191 

 

0 1 2 3 4 5 6 7 8
Energy	(keV)Severewear

Ultra-mild	wear

Ultra	severe	wear

mild	wear

Fracture,	delamination	and	
abrasion	

Micro-cracks

Plastic	deformation,	
oxidation,	
micro-cracks,	
fatigue

oxidation

Fatigue

oxidation

1	µm

10	μm10	μm

Worn	debris	

Cracks	

Cracks	

Fe
Fe

Fe

Al

Ti

Ti Cr

O

oxidation

 

(RPM)

 

Figure 10.1: Wear mechanism map of the Fe3Al-TiN-TiB2/SS304 HVOF coating. 

Finally, modelling can be helpful to predict the behavior of the coatings under well-defined 

contact conditions. I believe that it can be used to define more precisely the critical operation 

conditions for various test configurations. Modelling the tribological contact between the 

counterpart (the hard Al2O3 ball) and the coating surface in the micron scale using finite element 

can help to obtain tribological contact properties such as contact pressure, contact surface area, 

stress field and shear stress in order to better comprehend the mechanism of materials loss. 
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