
Titre:
Title:

Enhanced state history tree (eSHT): a stateful data structure for 
analysis of highly parallel system traces

Auteurs:
Authors:

Loïc Prieur-Drevon, Raphaël Beamonte, Naser Ezzati-Jivan, & Michel 
Dagenais 

Date: 2016

Type: Communication de conférence / Conference or Workshop Item

Référence:
Citation:

Prieur-Drevon, L., Beamonte, R., Ezzati-Jivan, N., & Dagenais, M. (juin 2016). 
Enhanced state history tree (eSHT): a stateful data structure for analysis of highly
parallel system traces [Communication écrite]. IEEE International Congress on Big
Data (BigData Congress 2016), San Francisco, CA, USA (8 pages). 
https://doi.org/10.1109/bigdatacongress.2016.19

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/2994/

Version: Version finale avant publication / Accepted version 
Révisé par les pairs / Refereed 

Conditions d’utilisation:
Terms of Use: Tous droits réservés / All rights reserved 

Document publié chez l’éditeur officiel
Document issued by the official publisher

Nom de la conférence:
Conference Name:

IEEE International Congress on Big Data (BigData Congress 2016)

Date et lieu:
Date and Location:

2016-06-27 - 2016-07-02, San Francisco, CA, USA 

Maison d’édition:
Publisher:

IEEE

URL officiel:
Official URL:

https://doi.org/10.1109/bigdatacongress.2016.19

Mention légale:
Legal notice:

©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, creating 
new collective works, for resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works. 

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://doi.org/10.1109/bigdatacongress.2016.19
https://publications.polymtl.ca/2994/
https://doi.org/10.1109/bigdatacongress.2016.19


Enhanced State History Tree (eSHT) : a Stateful Data
Structure for Analysis of Highly Parallel System Traces

Loïc Prieur-Drevon, Raphaël Beamonte, Naser Ezzati-Jivan, Michel R. Dagenais
Department of Computer Engineering

Ecole Polytechnique de Montréal
Montréal, QC, Canada

{loic.prieur-drevon, raphael.beamonte, n.ezzati, michel.dagenais}@polymtl.ca

Abstract—Behaviors of distributed systems with
many cores and/or many threads are difficult to un-
derstand. This is why dynamic analysis tools such as
tracers are useful to collect run-time data and help
programmers debug and optimize complex programs.
However, manual trace analysis on very large traces
with billions of events can be a difficult problem which
automated trace visualizers and analyzers aim to solve.
Trace analysis and visualization software needs fast
access to data which it cannot achieve by searching
through the entire trace for every query. A number
of solutions have adopted stateful analysis which re-
arranges events into a more query friendly structures
after a single pass through the trace.

In this paper, we look into current implementations
and model the behavior of previous work, the State His-
tory Tree (SHT), on traces with many thread creation
and deletion. This allows us to identify which properties
of the SHT are responsible for inefficient disk usage and
high memory consumption. We then propose a more
efficient data structure, the enhanced State History
Tree (eSHT), to store and query computed states, in
order to limit disk usage and reduce the query time for
any state. Next, we compare the use of SHT and eSHT
on traces with many attributes. We finally verify the
scalability of our new data structure according to trace
size.

As shown by our results, the proposed solution makes
near optimal use of disk space, reduces the algorithm’s
memory usage logarithmically for previously problem-
atic cases, and speeds up queries on traces with many
attributes by an order of magnitude. The proposed
solution builds upon our previous work, enabling it to
easily scale up to traces containing a million threads.

I. INTRODUCTION

Computer system tracing is one of many run-time anal-
ysis methods used by programmers to instrument systems
and applications. The advent of multithreading, many-
core systems and distributed systems creates a need for
such tools to understand system behavior, but raises new
challenges for trace storage, analysis and visualization.

Tracing is based on the generation of a chronological
sequence of events, keeping track of what happened in
the traced program. This information is usually stored
in a trace file, called trace, but the format of such
files is optimized for data storage. Two types of traces
exist : event-based logging and state-based logging. In
event-based logging, the tracer stores events, which are

timestamped descriptions of system actions. In state-based
logging, the tracer stores the state of the system using
intervals. Intervals are tuples representing the state value
of an attribute between two timestamps.

Many tools already exist to convert traces into a human
readable format. Trace Compass [1] is one of these tools
for viewing and analyzing traces with informative views
and graphs. For interactive views, such as exploring pro-
cess states, querying information directly from the trace
file tends to be inefficient. Indeed, if we had to compute
a given state, we may need to search the entire trace for
the events responsible for the beginning and end of that
state.

Trace Compass, as well as other visualization tools,
needs a data structure that can store state information
through time in order to avoid recomputing said states
from the trace for every query. Because of the overwhelm-
ing size of traces, which can reach a terabyte, the data
structure must be suited for external memory.

Moreover, because we are dealing with interactive pro-
grams and large data files, the data structure must scale
well and be efficient for most queries for the user experi-
ence to remain satisfactory. To avoid recomputing states,
Trace Compass uses the State History Tree (SHT) [2], a
data structure which is efficient to query state information.

Our contribution is an enhanced data structure for
stateful trace analysis which deals with some worst case
scenarios, is scalable to the largest traces and allows
multithreaded queries.

The remainder of the paper is organized as follows: after
investigating this work’s context and related research, we
present the architecture of the data structure, and how
it compares to other structures. Then, we explain the
algorithms, queries used on the structure and also evaluate
its performance compared to previous work. Finally, we
conclude and outline possible future work.

II. RELATED WORK

The related work is divided into two relevant areas,
visualization tools, and multidimensional data structures
used by these tools.



A. Trace visualization

In this section, we compare open source trace visualizers
that deal with stateful analysis and have a documented
data structure to store this information.

Jumpshot [3] is the visualization component for the MPI
Parallel Environment software package. It displays the
nodes’ states evolutions over time and the messages that
they have exchanged. Jumpshot uses the slog2 format to
reduce the cost of accessing trace data. When using the
MPE tracing framework for MPI, users have the option for
a state based logging format, in which the tracer directly
produces state intervals, as opposed to event based tracing,
which produces a list of timestamped events.

Paraprof [4] uses tracing and profiling techniques to
summarize information, allowing it to scale well to HPC
applications. It stores data in a CUBE [4] data structure :
which is stored as a 3D XML when on disk, and in memory
as a double level map (the metric is the first level, the call
path is the second level) of vectors (where index is the
process number).

Trace Compass [1] is the extensible trace visualizer and
analyzer for traces generated by the LTTng [5] tracer and
other tracing tools. It is built using the Eclipse framework
and uses State History Trees (SHT) to store state data in
a query-efficient structure.

However, when working on huge traces, such software
cannot afford to query directly on the trace itself as
the query length could grow linearly with the trace size.
This is why such programs transform traces into other
data structures that are more efficient for querying. Most
programs choose to store "stateful" data, i.e., one object
per state [6]. For example, the state of the Attribute
"thread/42/Status" could be "Sleep" between two specific
timestamps.

B. Data structures

In this section, we compare the data structures used by
the trace visualizers presented previously and generic data
structures used for multi-dimensional data.

Figure 1: Representation of the Quad-Tree data struc-
ture [7]

Quad-Trees [8] are widely used in Geographical Infor-
mation Systems, as their granularity can be adapted to
the required resolution for a certain area. Quad-Tree nodes
are defined by square bounds of the geographical data they
contain. As shown in Figure 1, nodes can either be leaves
or have 4 children which are bounded by 4 equal, square
subquadrants. Because the quadrants are squares, quad-
trees are well adapted for homogeneous data where the
two dimensions both represent positions for example.

HV/VH-Trees [9] are used to store Integrated Circuit
Layouts. Like other trees, the nodes are defined by the
bounds of the data they contain. If a node contains more
elements than a predefined threshold, it is split into 2
with either a vertical divider (V node) or a horizontal
divider (H node). However, as a V (respectively H) node’s
children must be H (respectively V) nodes, the structure’s
flexibility for particularly skewed data is limited.

Multi-version B-Trees [10] store data items of the type
< key, tstart, tend, pointer > where key is unique for every
version and tstart, tend are the version numbers for the
item’s lifespan. It has a number B-Tree root nodes that
each stand for an interval of versions. Each operation
(insertion or deletion) creates a new version. Versioning
uses live blocks which duplicate the open intervals of the
old block and have free space to store future values.

R-trees [11] are a type of tree used to store multidimen-
sional data. They use "bounding boxes" to divide multi-
dimensional spaces, grouping the closest objects together.
Such bounding boxes become smaller as the depth in the
tree increases, which allows queries to search only the
relevant nodes. R-Trees can be used for spatio-temporal
data by assigning the time to one dimension, though it is
most efficient if intervals remain short.

Historical R-Trees (HR-Trees) [12] are another modifica-
tion of R-Trees to support timestamps, by building an R-
Tree for each timestamp and sharing common nodes with
linkage between trees. This is more efficient when there are
few modifications between a small number of timestamps.

The MV3R-Tree [13] combines an Historical R-Tree and
a 3D R-Tree as one is suited to long intervals and the other
to short intervals.

The slog2 data structure [3] uses a tree structure where
the root node is the length of the trace and each node is
half the length of its parent. Intervals fit in the shortest
node that can contain them. Nodes and state intervals
cannot overlap, so the challenge is finding the right depth
(leaf node length) to obtain a high fill ratio. Figure 2 shows
a representation of that data structure.

The State History Tree (SHT) structure [2] was de-
signed with trace analysis and visualization storage in
mind. Like with slog2, the tree is built in a single pass
through the trace. The SHT is also designed to perform
well on rotating media, so each node is a multiple of the
disk block size. The main difference with slog2 is that the
depth of the tree and the length of the intervals are not
predefined, so the build starts with a single node. Then,



Figure 2: Representation of the slog2 data structure [3]

siblings and parents are added as the nodes fill up. Sibling
nodes are still consecutive, but their start and end times
depend on the intervals that they contain.

Finally, multi-dimensional indexes have largely been
studied in fields such as Geographical Information Sys-
tems, Integrated Circuit Layout, or even graphical dis-
plays. However, working on traces and processes’ states is
fairly different. Indeed, the information we have to store
in the data structure is already sorted in time, and aimed
to be processed in one pass. Such conditions allows for
specific optimizations and tuning.

To our knowledge, there isn’t currently any trace view-
ing software that implements an external memory struc-
ture which offers reliable performance, even for very large
trace size and number of intervals. In this paper, we
propose a scalable data structure, which has performance
gains compared to previous implementations, is well suited
to parallel and distributed systems, and offers good query
times.

III. LIMITATIONS OF THE STATE HISTORY

TREE

In this section, we briefly present the current implemen-
tation of the State History Tree (SHT), a data structure
designed for state storage on external memory [14], and
detail the issues that it encounters when dealing with
highly parallel traces.

A. Structure of the State History Tree (SHT)

The State History Tree (SHT) [2] is suited for storage
of stateful information that is computed while reading
through the trace. It keeps the current states in memory
with their start times. Every time an event changes a state,
we write the ending state interval to external memory and
update the current state value.

The SHT is used as a database to store state changes
through time. The stored data takes the form of intervals,
which consist of an attribute key, a start time, an end time
and a value. The start time and end time are specified
to the nanosecond level. The attribute key is a unique
identifier for the object whose state we are tracking. The
value is the payload of the interval which can be a null, a
boolean, an integer, a long or a character string.

The SHT is composed of nodes created as the tree is
built. A node is defined by a unique sequence number, a
start time and an end time. They also contain the sequence
numbers of their parent as well as the sequence numbers
and start times of their children. Each node also has the
ability to store intervals. The unique sequence numbers of
the nodes represent the relative position of their block on
disk.

Figure 3: Build steps of the State History Tree using an
incremental process [14]

The tree’s construction starts from a single node, into
which intervals arrive by increasing end times. Once a node
is full, it is closed and written to disk as shown in Figure 3.
If the node has a parent, we add a sibling node, else we
add a new parent and sibling. When the tree becomes
deeper, we fit intervals in the shallowest node possible
in the current branch, knowing that the time ranges of
children nodes are included in that of their parents.

B. Shortcomings on highly parallel trace analysis

Since we store intervals from the beginning for every
attribute (such as threads), the State System has many
intervals that begin at the SHT’s start time. The SHT’s
design imposes that intervals that begin at the SHT’s start
time fit in the left most node. Therefore, a trace for a
many-threaded program leads to a very deep tree. Indeed,
the depth of the tree increases when we try to insert an
interval beginning at the tree’s start time and it cannot fit
into the deeper non filled nodes, as its start time is earlier
than theirs. Therefore, it can only fit in the root node, and
when the root node is full, another depth level is added.

We have a very deep tree but most intervals fit in leaf
nodes, therefore the branches are mostly empty from the
left most node to the leaves. As the SHT implements nodes
as disk blocks, many empty nodes means a very low disk
usage rate (10-14%). As queries on an SHT search down
a branch for which the nodes cover the queried time, and
most intervals are stored in the leaf nodes, the average
query takes a long time.

Because the tree is very deep and the State System
stores its in progress branch in memory, the SHT con-



Figure 4: Schematization of a State History Tree for 10k
threads

struction may even crash with a JVM OutOfMemoryError
on the deepest trees.

IV. THE ENHANCED STATE HISTORY TREE

(a) Representation of consecu-
tive nodes in SHT

(b) Representation of overlap-
ping nodes in eSHT

Figure 5: Comparison of the relations between sibling
nodes of SHT (left) and eSHT (right)

A. Enhanced SHT structure

As we have seen previously, the consecutive node con-
straint is responsible for the tree degenerating into combs.
Figure 5(a) shows this constraint on two children nodes.
We remove this constraint and replace the new start time
for sibling nodes with the start time of the first interval
inserted after filling up the previous node. Removing this
constraint ensures that incoming intervals will fit into the
new leaf nodes, thus preventing the tree’s depth from
degenerating. However, the data structure and algorithms
must be modified to account for this overlap as shown in
Figure 5(b).

Because the nodes overlap, we are now querying on
sub-trees instead of branches, as shown respectively in

Figure 6(b) and 6(a). The query algorithm is also modified,
as shown in Algorithm 1. To query the relevant sub-tree,
we add children’s time ranges to the parent node’s header.

There are a number of benefits to allowing the nodes to
overlap. We can now fit a large number of attributes that
cover the same time ranges, which is typical for highly
parallel trace analysis, without degenerating into a list.
Therefore the tree is shallower, so queries are shorter and
less memory is used. There are also far less empty nodes, so
better use of the disk space is made, reducing the number
of writes when building the tree (and consequently, build
times).

As the data we are handling is multidimensional (time as
well as attribute key), we also add attribute key bounds to
the header. These represent the minimum and maximum
attribute values for intervals in a node. We also store
children’s bounds in their parents’ headers, to help narrow
down the number of nodes searched during a query.

B. Query algorithms

(a) Representation of a branch
query as used by SHT

(b) Representation of a sub-
tree query as used by eSHT

Figure 6: Comparison of queries between SHT (left) and
eSHT (right)

Unlike for the SHT and slog2, queries on eSHTs cannot
simply go down a branch in the tree, since there are poten-
tially several children nodes that contain the relevant time.
Therefore, each core node carries an index on the start
and end times of each of its children to determine which
sub-tree to explore: the method node.getChildren(t)
produces a list of node’s children which contain time t

in the following algorithm. The node.getInterval(k, t)
method retrieves the interval on t with key k when it exists
in node.

Moreover exploration on a sub-tree allows queries to be
multithreaded by assigning a new thread to each children
and sharing a queue of the children to be explored between
threads. Whereas a path exploration must be sequential as
the result exists only in one child.

C. Comparison of query bounds with SHT

The State History Tree aiming at query performance,
the number of nodes searched per query is a good mea-
sure of the data structure efficiency. In order to prove
that queries on our enhanced State History Tree perform



Algorithm 1 Multithreaded Single State Query

procedure singleQuery(key, time)
interval← null

queue← List(rootNode)
while interval = null do ⊲ Parallel Section

node← queue.pop()
if node.type() = CoreNode then

queue.addAll(node.getChildren(t))

interval← node.getInterval(k, t)

return interval

Interval

Time

A
tt
ri
b
u
te
s

A

2

1

0

T0

..
.

Figure 7: Schematization of the intervals in a node

better than on the original one, we thus will theoretically
compare the number of nodes searched in each case.

The theoretical trace used for comparison is represented
in Figure 7. That trace is of duration T and contains A

different attributes. Each attribute is split into I equal
intervals through the trace. Intervals from different at-
tributes are offset by T

AI
. Each node can store up to n

attributes and have up to c children.
In the case of the SHT, the upper bound is the depth

of the trace, as explained in IV-B. With our comparison
trace, considering a large number A of attributes, we will
reach the degenerating tree situation. The query bound
QSHT for SHT can thus be formulated in this way:

QSHT =

⌈

A

n

⌉

Where
⌈

A

n

⌉

is the depth of the tree.
When it comes to the eSHT, we need to consider the

depth of the tree, but also the number of overlapping nodes
for each level at the queried time. The query bound QeSHT

for eSHT can then be expressed as the following:

QeSHT ≤ h +

(

A + n

n + 1

)

×

(

1− c−h

1− c−1

)

With h being the depth of the eSHT. Considering that
in our example, all the data is in the leaf nodes, we can
use the standard formula [10] to compute the value of h:

h = logc

(

AI

n

)

The approximation of QeSHT is obtained by calculating
the number of nodes needed to fit A intervals. Because of
the build algorithm of eSHT and our worst case theoretical
trace, all the intervals reside in leaf nodes. As intervals are
inserted by increasing end times, the node duration D is

D =
T

I
+ n×

T

AI

Where T

I
is the interval duration, neglecting border

effects. The overlap Θ is then determined by how many
nodes in the tree contain a time t, which is the ratio of
node duration D over node offset ∆t:

Θ =
D

∆t

Which can be developped as:

Θ =
T

I
+ n× T

AI

(n + 1)× T

AI

And finally reduced to:

Θ =
n + A

n + 1

However, we have to search the tree from the root node
down to the leaves. We deduce the total number of core
nodes from the maximum number of children c referenced
by each parent. This relation can be expressed as follows:

QeSHT =
h

∑

i=0

⌈

Θ

ci

⌉

Which allows to determine the limit on the maximum
value of QeSHT :

QeSHT ≤

h
∑

i=0

(

Θ

ci
+ 1

)

That we can then reduced to the following:

QeSHT ≤ Θ×
1− c−h

1− c−1
+ h

While this is slightly larger that the query on an SHT,
when we compare the average query size, the average query
on an eSHT is half that of the upper bound, as the intervals
are uniformly spread over the possible DFS or BFS search
path.

Meanwhile, on the SHT, we have to compute the average
depth of nodes containing data. According to Figure 4,
data is either in the left most nodes, in the deepest core
nodes, or in the leaf nodes. If we consider:

• H as the height of the tree
• Nleaf = c(H − 1) as the number of leaf nodes, of

depth H



• Ncore = (H − 1) as the number of core nodes, of
depth H − 1

• Nleft = (H − 2) as the number of left nodes, with
increasing depths from 0 to H − 2− 2.

We can express the average depth of nodes as the
following:

davg =

∑

d
∑

N

Which can be developed as:

davg =

∑

i∈leaf d +
∑

i∈core d +
∑

i∈left d

Nleaf + Ncore + Nleft

And thus:

davg =

∑H−2

i=0 i + (H − 1)2 + c(H − 1)H

H − 2 + H − 1 + c(H − 1)

As we know that H ≫ 1, the equation can finally be
reduced to:

davg ≃ H

Therefore, the average eSHT query on problematic
traces is faster than the average SHT query.

V. RESULTS

A. Test environment

All experiments were conducted on an Intel Core i5 6500
@ 3.2GHz with 8 GB RAM, a Samsung 850 EVO-Series
250GB Solid State Drive, using Eclipse version 4.5.1 and
OpenJDK version 1.8.0_66. The trace files were generated
using LTTng version 2.7.0 and the Linux kernel version
4.3.0. The trace files contain the detailed execution trace
at kernel level, including all the system calls, schedul-
ing events and interrupts. For the following benchmarks
we traced the following program 2, which creates many
threads, leading to many attributes in the State System.

Algorithm 2 Manythread Test Program

procedure runThreads

phtread_t threads[NUM_CPUS];
for i← 0 to NUM_THREADS do

for j ← 0 to NUM_CPUS do

pthread_create(threads[j], BURN_CPU);

for j ← 0 to NUM_CPUS do

pthread_join(threads[j]);

The analysis behind our benchmarks is Trace Compass’
kernel analysis. This analysis reads all the events from the
trace and tracks different attributes by storing them in the
SHT. Among those attributes, multiple information are
stored for each thread and CPU of the traced system. This
means that the bigger the trace is, and the more activity
there was on the system during the trace, the bigger the
generated SHT will be. This analysis will thus allow us

to perform a thorough comparison between the SHT and
eSHT metrics.

B. Tests cases

First, we consider the gains obtained on the pathological
case of a trace with 10k threads, with 10 repetitions of
the tree build process and a sample of single queries at 10
timestamps for 1000 attributes :

Table I: Gains of using eSHT instead of SHT for a 10k
threads trace. Statistics on 10 executions.

Gains of using

SHT eSHT Gain

Build (ms)

min. 8 715 5 848 32.9%

max. 17 986 8 753 51.3%

avg. 14 156 6 991 50.6%

std. dev. 3 002 1 029

Nodes 23 716 2 788 88.2%

Size (MiB) 1 486 178 88.0%

Node Fill 9% 95% x10.5

Depth 206 7 96.6%

Query Complexity 84 41 51.2%

We see in Table I that the eSHT is in average twice as
fast to build and query than the SHT, while disk size usage
is divided by ten. The build time is the only thing that is,
and should be, variable, as it depends on the system. On
the other side, the other metrics presented in the Table
are, and should be, constant. The tree built is always
the same. We can also see that the eSHT tree is thirty
times shallower than the SHT one. However, since we are
querying a few subtrees, instead of a single branch, because
the nodes overlap, this information is not as relevant as the
rest.

The build time is mainly faster because the program
has far less information to write to disk, and thus requires
much fewer operations to grow the tree (namely, making
it deeper and opening and closing empty nodes).

Single queries are faster, as seen in Table I. Despite
querying on a sub-tree instead of a branch, the tree is
much shallower and we have additional information on
keys contained by the node to further narrow down the
query.

The number of Nodes is correlated with the disk size
and fill ratio. Since we almost only have full nodes, we do
not waste much disk space.

C. Scalability

To evaluate the scalability of the solution, we consider
a test bench which generates the intervals from Figure 7
and builds the associated data structures. We generate 20
intervals of equal duration per each attribute and consider
the cases from one thousand to one million attributes.



105 106
103

104

105

Number of attributes

T
im

e
(m

s)
eSHT

SHT

Figure 8: Comparison of SHT and eSHT build times
for traces with many attributes. Each data point is the
average of 5 executions.

1) Build Times: We look at how long it takes to build
the full eSHT compared to the full SHT.

Figure 8 SHT takes longer to build, as the algorithm
creates a number of empty nodes, which it has to write
to disk. The difference between the SHT and eSHT is
significantly bigger on a mechanical hard drive than on an
SSD, as write speeds for state intervals are much slower
than their generation rate by the CPU.

2) Size on Disk: We compare how much space is occu-
pied on disk by an eSHT versus the SHT. Because of the
very low node fill ratio for SHT, we cannot fit the structure
on disk for the million threads case.

105 106

101

102

103

104

105

Number of attributes

S
iz

e
(M

iB
)

eSHT

SHT

Figure 9: Comparison of the size of SHT and eSHT on
disk for traces with many attributes. Each data point is
the average of 5 executions.

As we can see in Figure 9, the size on disk is much

reduced because we do not waste any space on empty
nodes. Indeed, nodes are nearly 96% full for the eSHT,
whereas the SHT uses the disk inefficiently, despite storing
the same information.

3) Tree Depth: While tree depth is de-correlated from
query complexity, it is nonetheless interesting as the algo-
rithm stores the current branch in memory.

105 106

101

102

103

Number of attributes

T
re

e
d
ep

th

eSHT

SHT

Figure 10: Comparison of SHT and eSHT depths for traces
with many attributes. Each data point is the average of 5
executions.

A shallower tree means a smaller branch, and with
each node occupying 8 KiB, Figure 10 shows there are
substantial memory savings here.

4) Queries: Single queries search for the status of an
attribute at a certain time. Full queries return the status
of all attributes at desired time.

105 106

102

103

104

105

106

Number of attributes

Q
u
er

y
T

im
e

(µ
s
)

eSHT − single

SHT − single

eSHT − full

SHT − full

Figure 11: Comparison of SHT and eSHT query times
for traces with many attributes. Each data point is the
average of 5 executions.



We see in Figure 11 that for the same data, queries on
the eSHT are more than an order of magnitude faster.
Moreover, the results in Figure 11 match the theoretical
results from section IV-C with eSHT single queries being
twice as fast as those on SHTs.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented the Enhanced State
History Tree, an evolution of the State History Tree
(SHT), that scales much better to highly parallel systems.
By modeling the SHT and eSHT’s behaviors, we have
proved that the eSHT behaves significantly better than the
SHT in queries, being at least twice as fast and featuring
near-optimal disk usage. Experiments on highly parallel
trace analysis also show that the new data structure
behaves better in real scenarios.

We believe that the enhanced SHT structure paves the
road for consistently faster (build and query times divided
by 2, memory and disk usage divided by 10) analysis
and visualization of traces from highly parallel systems.
Moreover, said enhancements retain a good performance
for use cases that were well suited to the SHT’s behavior
and already performed well.

Future work could include modifications to the build
algorithm that will optimize the tree by minimizing over-
lap and reducing single query complexity with R-Tree
properties. Other modifications to the Trace Compass
Framework may insure that the optimizations on the
underlying data structure result in visible speedups to the
rest of the program.

ACKNOWLEDGMENT

The support of the Natural Sciences and Engineering
Research Council of Canada (NSERC), Prompt, Ericsson
and EfficiOS is gratefully acknowledged.

References

[1] M. Côté and M. R. Dagenais, “Problem Detection in Real-Time
Systems by Trace Analysis,” Advances in Computer Engineer-
ing, vol. 2016, 2016, article ID 9467181.

[2] A. Montplaisir-Goncalves, N. Ezzati-Jivan, F. Wininger, and
M. Dagenais, “State history tree: An incremental disk-based
data structure for very large interval data,” in Social Computing
(SocialCom), 2013 International Conference on, Sept 2013, pp.
716–724.

[3] A. Chan, W. Gropp, and E. Lusk, “An efficient format for nearly
constant-time access to arbitrary time intervals in large trace
files,” Scientific Programming, vol. 16, no. 2-3, pp. 155–165,
2008.

[4] M. Geimer, B. Kuhlmann, F. Pulatova, F. Wolf, and
B. Wylie, Scalable Collation and Presentation of Call-Path
Profile Data with CUBE, ser. NIC series. Jülich: John von
Neumann Institute for Computing, 2007, vol. 38, pp. 645–652,
record converted from VDB: 12.11.2012. [Online]. Available:
http://juser.fz-juelich.de/record/58173

[5] M. Desnoyers and M. R. Dagenais, “The lttng tracer: A low
impact performance and behavior monitor for gnu/linux,” in
OLS (Ottawa Linux Symposium), vol. 2006. Citeseer, 2006,
pp. 209–224.

[6] N. Ezzati-Jivan and M. R. Dagenais, “A stateful approach
to generate synthetic events from kernel traces,” Advances in
Software Engineering, vol. 2012, p. 6, 2012.

[7] M. T. G. David Eppstein and J. Z. Sun. (2005, Jun.)
The Skip Quadtree: A Simple Dynamic Data Structure
For Multidimensional Data. Presentation at the 21st ACM
Symp. on Computational Geometry, Pisa, June 2005.
[Online]. Available: http://www.ics.uci.edu/~eppstein/pubs/
EppGooSun-SoCG-05.pdf

[8] R. A. Finkel and J. L. Bentley, “Quad trees a data structure
for retrieval on composite keys,” Acta Inf., vol. 4, no. 1, pp.
1–9, Mar. 1974. [Online]. Available: http://dx.doi.org/10.1007/
BF00288933

[9] G. G. Lai, D. Fussell, and D. F. Wong, “Hv/vh trees: A new
spatial data structure for fast region queries,” in Design Au-
tomation, 1993. 30th Conference on, June 1993, pp. 43–47.

[10] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer,
“An asymptotically optimal multiversion b-tree,” The VLDB
Journal, vol. 5, no. 4, pp. 264–275, Dec. 1996. [Online].
Available: http://dx.doi.org/10.1007/s007780050028

[11] A. Guttman, “R-trees: A dynamic index structure for
spatial searching,” in Proceedings of the 1984 ACM
SIGMOD International Conference on Management of
Data, ser. SIGMOD ’84, vol. 14, no. 2. New York, NY,
USA: ACM, Jun. 1984, pp. 47–57. [Online]. Available:
http://doi.acm.org/10.1145/602259.602266

[12] M. A. Nascimento and J. R. O. Silva, “Towards historical
r-trees,” in Proceedings of the 1998 ACM Symposium on
Applied Computing, ser. SAC ’98. New York, NY, USA: ACM,
1998, pp. 235–240. [Online]. Available: http://doi.acm.org/10.
1145/330560.330692

[13] Y. Tao and D. Papadias, “The mv3r-tree: A spatio-temporal
access method for timestamp and interval queries,” in Pro-
ceedings of Very Large Data Bases Conference (VLDB), 11-14
September, Rome, 2001.

[14] A. Montplaisir, N. E. Jivan, F. Wininger, and M. Dagenais, “Ef-
ficient model to query and visualize the system states extracted
from trace data,” in Runtime Verification - 4th International
Conference, RV 2013, Rennes, France, September 24-27, 2013.
Proceedings, 2013, pp. 219–234.

http://juser.fz-juelich.de/record/58173
http://www.ics.uci.edu/~eppstein/pubs/EppGooSun-SoCG-05.pdf
http://www.ics.uci.edu/~eppstein/pubs/EppGooSun-SoCG-05.pdf
http://dx.doi.org/10.1007/BF00288933
http://dx.doi.org/10.1007/BF00288933
http://dx.doi.org/10.1007/s007780050028
http://doi.acm.org/10.1145/602259.602266
http://doi.acm.org/10.1145/330560.330692
http://doi.acm.org/10.1145/330560.330692

	2016_Prieur-Drevon_Enhanced_state_history_tree_eSHT
	INTRODUCTION
	RELATED WORK
	Trace visualization
	Data structures

	RESULTS
	Test environment
	Tests cases
	Scalability
	Build Times
	Size on Disk
	Tree Depth
	Queries


	CONCLUSIONS AND FUTURE WORK
	References


