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A Game-Theoretic Decentralized Model
Predictive Control of Thermal Appliances in

Discrete-Event Systems Framework
Saad A. Abobakr, Student Member, IEEE, Waselul H. Sadid, and Guchuan Zhu, Senior Member, IEEE

Abstract—This paper presents a decentralized model
predictive control (MPC) scheme for thermal appliances
coordination control in smart buildings. The general sys-
tem structure consists of a set of local MPC controllers
and a game-theoretic supervisory control constructed in
the framework of discrete-event systems (DES). In this
hierarchical control scheme, a set of local controllers work
independently to maintain the thermal comfort level in dif-
ferent zones, and a centralized supervisory control is used
to coordinate the local controllers according to the power
capacity and the current performance. Global optimality is
ensured by satisfying the Nash equilibrium at the coordina-
tion layer. The validity of the proposed method is assessed
by a simulation experiment including two case studies.
The results show that the developed control scheme can
achieve a significant reduction of the peak power consump-
tion while providing an adequate temperature regulation
performance if the system is P-observable.

Index Terms—Smart buildings; Thermal appliance con-
trol; Model predictive control; Discrete-event systems;
Game theory.

NOMENCLATURE

i, j Indices of zones and controllers.

Ti Interior temperature of Zone i.
Ra,d

i,ij Thermal resistances of Zone i or cross Zone i, j.

Ci,Φi Heat capacity of and power input to Zone i.
L,K Regular languages.

ML Finite-state machine representing L.

Σ, s Finite set of events and sequence of events.

Pow(Σ) Power set of Σ.

πj(s) Operator of partial observation indexed by j.

f j , ηj Cost function and utility function indexed by j.

uj Control action indexed by j.

I. INTRODUCTION

THE peak power load in buildings can cost as much

as 200 to 400 times the regular rate [1]. Peak power

This work was supported in part by the Natural Sciences and En-
gineering Research Council of Canada under Grant RGPIN-312116-
2013. The work of S. A. Abobakr was supported in part by the Ministry
of Higher Education of Libya and the College of Electronic Technology,
Baniwaleed, Libya.

Saad A. Abobakr and Guchuan Zhu are with the Department
of Electrical Engineering, Ecole Polytechnique de Montreal, P.O.
Box 6079, Station Centre-Ville, Montreal, QC H3T 1J4, Canada.
Waselul H. Sadid is with Computer Science and Engineering Depart-
ment, East West University, Dhaka, Bangladesh, saad.abobakr,
guchuan.zhu@polymtl.ca, sadid.wh@ewubd.edu

reduction has therefore a crucial importance for achieving the

objectives of improving cost-effectiveness in building opera-

tions. Controlling thermal appliances in heating, ventilation,

and air conditioning (HVAC) systems is considered to be

one of the most promising and effective ways to achieve this

objective. As the highest consumers of electricity with more

than one-third of the energy usage in a building [2], and due

to their slow dynamic property, thermal appliances have been

prioritized as the equipment to be regulated for peak power

load reduction [3].

There exists a rich set of conventional and modern control

schemes that have been developed and implemented for the

control of building systems in the context of the Smart Grid,

among which Model Predictive Control (MPC) is one of the

most frequently adopted techniques. This is mainly due to its

ability to handle constraints, time varying processes, delays,

and uncertainties, as well as disturbances. In addition, it is also

easy to incorporate multiple-objective functions in MPC [4],

[5]. There has been a considerable amount of research aimed

at minimizing energy consumption in smart buildings, among

which the technique of MPC plays an important role [4]–[12].

MPC can be formulated into centralized, decentralized,

distributed, cascade, or hierarchical structures [4], [6], [7]. In

a centralized MPC, the entire states and constraints have to be

considered to find a global solution of the problem. While

in the decentralized model predictive control (DMPC), the

whole system is partitioned into a set of subsystems, each

with its own local controller. As all the controllers are engaged

in regulating the entire system [6], a coordination control is

required for DMPC to ensure the overall optimality.

Some centralized MPC-based thermal appliance control

schemes for temperature regulation and power consumption

reduction were implemented in [2], [8]–[10]. In [11], a robust

DMPC based on H∞-performance measurement was proposed

for HVAC control in a multi-zone building in the presence of

disturbance and restrictions. In [13], centralized, decentralized,

and distributed controllers based on MPC structure, as well as

proportional-integral-derivative (PID) control, were applied to

a three-zone building to track the temperature and to reduce

the power consumption. A hierarchical MPC was used for

power management of an intelligent grid in [14]. Charging

electrical vehicles was integrated in the design to balance the

load and production. An application of DMPC to minimize

the computational load is reported in [12]. A term enabling

the regulation flexibility was integrated into the cost function

to tune the level of guaranteed quality of service.
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Game theory is another notable tool, which has been ex-

tensively used in the context of smart buildings to assist the

decision making process and to handle the interaction between

energy supply and request in energy demand management.

Game theory provides a powerful means for modeling the

cooperation and interaction of different decision makers (play-

ers) [15]. In [16], a game-theoretic scheme based on Nash

equilibrium (NE) is used to coordinate appliance operations in

a residential building. A game-theoretic MPC was established

in [17] for demand side energy management. The proposed

approach in [18] was based on cooperative gaming to control

two different linear coupled systems. A game interaction for

energy consumption scheduling is proposed in [19] by taking

into consideration the coupled constraints. This approach can

shift the peak demand and reduce the peak to average ratio.

Inspired by the existing literature and in view of the advan-

tages of using discrete-event systems (DES) to schedule the

operation of thermal appliances in smart buildings as reported

in [3], our goal is to develop a DMPC-based scheme for

thermal appliance control in the framework of DES. Initially,

the operation of each appliance is expressed by a set of states

and events, which represent the status and the actions of the

corresponding appliance. A system can then be represented

by a finite-state machine (FSM) as a regular language over a

finite set of events in DES [20]. Indeed, appliance control can

be constructed using the MPC method if the operation of a

set of appliances is schedulable. Compared to trial and error

strategies, the application of the theory and tools of DES allow

for the design of complex control systems arising in the field

of the Smart Grid to be carried out in a systematic manner.

Based on the architecture developed in [21], we propose

a two-layer structure for decentralized control as shown in

Fig. 1. A supervisory controller at the upper layer is used to

coordinate a set of MPC controllers at the lower layer. The

local control actions are taken independently relying only on

the local performance. The control decision at each zone will

be sent to the upper layer and a game theoretic scheme will

take place to distribute the power over all the appliances while

considering power capacity constraints. Note that HVAC is a

heterogenous system consisting of a group of subsystems that

have different dynamics and natures [4]. Therefore, it might

not be easy to find a single dynamic model for control design

and power consumption management of the entire system.

Indeed, with a layered structure, an HVAC system can be

split into a set of subsystems to be controlled separately. A

coordination control, as proposed in the present work, can be

added to manage the operation of the whole system. The main

contributions of this work are twofold:

1) We propose a new scheme for DMPC-based game-

theoretic power distribution in the framework of DES for

reducing the peak power consumption of a set of thermal

appliances while meeting the prescribed temperature in a

building. The developed method is capable of verifying

a priori the feasibility of a schedule and allows for the

design of complex control schemes to be carried out in a

systematic manner.

2) We establish an approach to ensure the system perfor-

mance by considering some observability properties of
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Fig. 1. Architecture of a decentralized MPC-based thermal appliance
control system.

DES, namely co-observability and P-observability. This

approach provides a means for deciding whether a local

controller requires more power to satisfy the desired

specifications by enabling events through a sequence

based on the observation.

In the remainder of the paper, Section II presents the model

of building thermal dynamics. The settings of centralized and

decentralized MPC are addressed in Section III. Section IV

introduces the basic notions of DES and presents a heuristic

algorithm for searching the NE employed in this work. The

concept of P-Observability and the design of the supervi-

sory control based on decentralized DES are presented in

Section V. Simulation studies are carried out in Section VI,

followed by some concluding remarks provided in Section VII.

II. MODELING OF BUILDING THERMAL DYNAMICS

In this section, the continuous time differential equation is

used to present the thermal system model as proposed in [10].

The model will be discretized later for the predictive control

design. The dynamic model of the thermal system is given by:

dTi

dt
=

1

CiRa
i

(Ta − Ti) +
1

Ci

M
∑

j=1,j 6=i

1

Rd
ji

(Tj − Ti) +
1

Ci

Φi,

(1)

where M is the number of zones, Ti, i ∈ {1, . . . ,M}, is

the interior temperature of Zone i (the indoor temperature),

Tj is the interior temperature of a neighboring Zone j,

j ∈ {1, . . . ,M}\i, Ta is the ambient temperature (the outdoor

temperature), Ra
i is the thermal resistance between Zone i

and the ambient temperature, Rd
ji is the thermal resistance

between Zone i and Zone j, Ci is the heat capacity of Zone i,
and Φi is the power input to the thermal appliance located in

Zone i. Note that the first term on the right hand side of (1)

represents the indoor temperature variation rate of a zone due

to the impact of the outdoor temperature, and the second term

captures the interior temperature of a zone due to the effect of

2
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thermal coupling of all of the neighboring zones. Therefore,

it is a generic model, widely used in the literature.

The system (1) can be expressed by a continuous time state-

space model as:

ẋ = Ax+Bu+ Ed

y = Cx,
(2)

where x = [T1, T2, . . . , TM ]T is the state vector and u =
[u1, u2, . . . , uM ]T is the control input vector. The output

vector is y = [y1, y2, . . . , yM ]T where the controlled vari-

able in each zone is the indoor temperature, and d =
[T 1

a , T
2
a , . . . , T

M
a ]T represents the disturbance in Zone i. The

system matrices A ∈ R
M×M , B ∈ R

M , and E ∈ R
M in (2)

are given by:

A =





















A1
1

Rd
21C1

· · ·
1

Rd
M1C1

1

Rd
12C2

A2 · · ·
1

Rd
M2C2

...
...

. . .
...

1

Rd
1MCN

1

Rd
2MCN

· · · AM





















,

B =diag
[

B1 · · · BM

]

, E = diag
[

E1 · · · EM

]

,

with

Ai = −
1

Ra
iCi

−
1

Ci

M
∑

j=1,j 6=i

1

Rd
ji

, Bi =
1

Ci

, Ei =
1

Ra
iCi

.

In (2), C is an identity matrix of dimension M . Again,

the system matrix A captures the dynamics of the indoor

temperature and the effect of thermal coupling between the

neighboring zones.

III. PROBLEM FORMULATION

The control objective is to reduce the peak power while

respecting comfort level constraints, which can be formalized

as an MPC problem with a quadratic cost function which

will penalize the tracking error and the control effort. We

begin with the centralized formulation and then we find the

decentralized setting by using the technique developed in [22].

A. Centralized MPC setup

For the centralized setting, a linear discrete time model

of the thermal system can be derived from discretizing the

continuous time model (2) by using the standard zero-order

hold with a sampling period Ts, which can be expressed as:

x(k + 1) = Adx(k) +Bdu(k) + Edd(k),

y(k) = Cdx(k),
(3)

where x(k) ∈ R
M is the state vector, u(k) ∈ R

M is the

control vector, and y(k) ∈ R
M is the output vector. The

materices in the discrete-time model can be computed from

the continous-time model in (2) and are given by Ad = eATs ,

Bd=
∫ Ts

0
eAsBds, and Ed=

∫ Ts

0
eAsDds; Cd = C is an identity

matrix of dimension M .

Let xd(k) ∈ R
M be the desired state and e(k) = x(k) −

xd(k) be the vector of regulation error. The control to be fed

into the plant is resulted by solving the following optimization

problem at each time instance t:

f = min
ui(0)

e(N)TPe(N) +
N−1
∑

k=0

e(k)TQe(k) + uT (k)Ru(k)

(4a)

s.t x(k + 1) = Adx(k) +Bdu(k) + Edd(k),

x0 = x(t), (4b)

xmin ≤ x(k) ≤ xmax, (4c)

0 ≤ u(k) ≤ umax, (4d)

for k = 0, . . . , N , where N is the prediction horizon. In the

cost function in (4), Q = QT ≥ 0 is a square weighting

matrix to penalize the tracking error, R = RT > 0 is square

weighting matrix to penalize the control input, and P = PT ≥
0 is a square matrix that satisfies the Lyapunov equation

AT
d PAd − P = −Q (5)

for which the existence of matrix P is ensured if A in (2)

is a strictly Hurwitz matrix. Note that in the specification

of state and control constraints, the symbol “≤” denotes

componentwise inequalities, i.e., ximin ≤ xi(k) ≤ ximax,

0 ≤ ui(k) ≤ uimax, for i = 1, . . . ,M .

The solution of the problem (4) provides a sequence of

controls U∗(x(t)) = {u∗
0, . . . , u

∗
N}, among which only the

first element u(t) = u∗
0 will be applied to the plant.

B. Decentralized MPC Setup

For the DMPC setting, the thermal model of the building

will be divided into a set of subsystems. In the case where the

thermal system is stable in open loop, i.e., the matrix A in (2)

is strictly Hurwitz, we can use the approach developed in [22]

for decentralized MPC design. Specifically, for the considered

problem, let xj ∈ R
nj , uj ∈ R

nj , and dj ∈ R
nj be the

state, control, and disturbance vectors of the jth subsystem

with n1 + n2 + · · · + nm = M . Then for j = 1, · · · ,m, xj ,

uj , and dj of the subsystem can be represented as:

xj = WT
j x =

[

xj
1 · · · xj

nj

]T

∈ R
nj , (6a)

uj = ZT
j u =

[

uj
1 · · · uj

mj

]T

∈ R
nj , (6b)

dj = HT
j d =

[

dj1 · · · djlj

]T

∈ R
nj . (6c)

where Wj ∈ R
M×nj collects the nj columns of identity matrix

of order n, Zj ∈ R
M×nj collects the mj columns of identity

matrix of order m, and Hj ∈ R
M×nj collects the lj columns

of identity matrix of order l. Note that the generic setting of

the decomposition can be found in [22]. The dynamic model

of the jth subsystems is given by:

xj(k + 1) = Aj
dx

j(k) +Bj
du

j(k) + Ej
dd

j(k),

yj(k) = xj(k),
(7)

where Aj
d = WT

j AdWj , Bj
d = WT

j BdZj , and Ej
d =

WT
j EdHj are sub-matrices of Ad, Bd and Ed, respectively,

which are in general dependent on the chosen decoupling

3
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matrices Wj , Zj and Hj . As in the centralized setting, the

open-loop stability of the DMPC are guaranteed if Aj
d in (7)

is strictly Hurwitz for all j = 1, . . . ,m.

Let ej = WT
j e. The jth sub-problem of the DMPC is then

given by:

f j = min
uj(0)

∞
∑

k=0

ejT (k)Qje
j(k) + ujT (k)Rju

j(k)

= min
uj(0)

ejT (k)Pje
j(k) + ejT (k)Qj + ujT (k)Rju

j(k)

(8a)

s.t. xj(t+ 1) = Aj
dx

j(t) +Bj
du

j(0) + Ej
dd

j ,

xj(0) = WT
j x(t) = xj(t), (8b)

xj
min ≤ xj(k) ≤ xj

max, (8c)

0 ≤ uj(0) ≤ uj
max, (8d)

where the weighting matrices are Qj = WT
j QWj , Rj =

ZT
j RZj , and the square matrix Pj is the solution of the

following Lyapunov equation

AjT
d PjA

j
d − Pj = −Qj . (9)

At each sampling time, every local MPC provides a local

control sequence by solving the problem (8). Finally, the

closed-loop stability of the system with this DMPC scheme

can be assessed by using the procedure proposed in [22].

IV. GAME THEORETICAL POWER DISTRIBUTION

A normal-form game is developed as a part of the super-

visory control to distribute the available power based on the

total capacity and the current temperature of the zones. The

supervisory control is developed in the framework of DES

[20], [23] to coordinate the operation of the local MPCs.

A. Fundamentals of DES

DES is a dynamic system which can be represented by

transitions among a set of finite states. The behavior of

a DES requiring control and the specifications are usually

characterized by regular languages. These can be denoted by

L and K respectively. A language L can be recognized by a

finite-state machine (FSM), which is a 5-tuple:

ML = (Q,Σ, δ, q0, Qm),

where Q is a finite set of states, Σ is a finite set of events,

δ : Q × Σ → Q is the transition relation, q0 ∈ Q is the

initial state, and Qm is the set of marked states. Note that the

event set Σ includes the control components uj of the MPC

setup. The specification is a subset of the system behavior

to be controlled, i.e., K ⊆ L. The controllers issue control

decisions to prevent the system from performing behavior in

L \ K, where L \ K stands for the set of behaviors of L that

are not in K. Let s be a sequence of events and denote by

L := {s ∈ Σ∗ | (∃s′ ∈ Σ∗) such that ss′ ∈ L} the prefix

closure of a language L.

The closed behavior of a system, denoted by L, contains all

the possible event sequences the system may generate. The

marked behavior of the system is Lm, which is a subset of

the closed behavior, representing completed tasks (behaviors),

and is defined as Lm := {s ∈ L | δ(q0, s) = q′ ∧ q′ ∈ Qm}.
A language K is said to be Lm-closed if K = K ∩ Lm.

B. Decentralized DES

The decentralized supervisory control problem considers the

synthesis of m ≥ 2 controllers that cooperatively intend to

keep the system in K by issuing control decisions to prevent

the system from performing behavior in L\K [23], [24]. Here

we use I = {1, . . . ,m} as an index set for the decentralized

controllers. The ability to achieve a correct control policy

relies on the existence of at least one controller that can make

the correct control decision to keep the system within K.

In the context of the decentralized supervisory control

problem, Σ is partitioned into two sets for each controller

j ∈ I: controllable events Σc,j and uncontrollable events

Σuc,j : = Σ\Σc,j . The overall set of controllable events is

Σc :=
⋃

j=I Σc,j . Let Ic(σ) = {j ∈ I|σ ∈ Σc,j} be the set

of controllers that control event σ.

Each controller j ∈ I also has a set of observable events,

denoted by Σo,j , and unobservable events Σuo,j = Σ\Σo,j . To

formally capture the notion of partial observation in decen-

tralized supervisory control problems, the natural projection

is defined for each controller j ∈ I as πj : Σ∗ → Σ∗
o,j . Thus

for s = σ1σ2 . . . σm ∈ Σ∗, the partial observation πj(s) will

contain only those events σ ∈ Σo,j :

πj(σ) =

{

σ, if σ ∈ Σo,j ;

ε, otherwise,

which is extended to sequences as follows: πj(ε) = ε, and

∀s ∈ Σ∗, ∀σ ∈ Σ, πj(sσ) = πj(s)πj(σ). The operator πj

eliminates those events from a sequence that are not observable

to controller j. The inverse projection of πj is a mapping

π−1
j : Σ∗

o,j → Pow(Σ∗) such that for s′ ∈ Σ∗
o,j , π−1

j (s′) =
{u ∈ Σ∗ | πj(u) = s′}, where Pow(Σ) represents the power

set of Σ.

C. Co-Observability and Control Law

When a global control decision is made, at least one con-

troller can make a correct decision by disabling a controllable

event through which the sequence leaves the specification K.

In that case, K is called co-observable. Specifically, a language

K is co-observable w.r.t. L, Σo,j , and Σc,j (j ∈ I) if [23]

(∀s ∈ K)(∀σ ∈ Σc) sσ ∈ L\K ⇒

(∃j ∈ I) π−1
j [πj(s)]σ ∩ K = ∅.

In other words, there exists at least one controller j ∈ I
that can make the correct control decision (i.e., determine that

sσ ∈ L\K) based only on its partial observation of a sequence.

Note that an MPC has no feasible solution when the system is

not co-observable. However, the system can still work without

assuring the performance.

A decentralized control law for Controller j, j ∈ I, is

a mapping U j : πj(L) → Pow(Σ) that defines the set of

events that Controller j should enable based on its partial

observation of the system behavior. While Controller j can

4
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choose to enable or disable events in Σc,j , all events in Σuc,j

must be enabled, i.e.,

(∀j ∈ I)(∀s ∈ L) U j(πj(s)) = {u ∈ Pow(Σ) | u ⊇ Σuc,j}.

Such a controller exists if the specification K is co-observable,

controllable, and Lm-closed [23].

D. Normal-Form Game and Nash Equilibrium

At the lower layer each subsystem requires a certain amount

of power to run the appliances according to the desired per-

formance. Hence, there is a competition among the controllers

if there is any shortage of power when the system is not

co-observable. Consequently, a normal-form game is imple-

mented in this work to distribute the power among the MPC

controllers. The decentralized power distribution problem can

be formulated as a normal form game as below:

A (finite, n-player) normal-form game is a tuple

(N ,A, η) [25], where:

• N is a finite set of n players, indexed by j;

• A = A1 × . . . ×An, where Aj is a finite set of actions

available to Player j. Each vector a = 〈a1, ..., an〉 ∈ A
is called an action profile;

• η = (η1, ..., ηn) where ηj : A → R is a real-valued utility

function for Player j.

At this point, we consider a decentralized power distribution

problem with

• a finite index set M representing m subsystems;

• a set of cost functions F j for subsystem j ∈M for cor-

responding control action U j = {uj |uj = 〈uj
1, ..., u

j
mj
〉},

where F = F 1× . . .×Fm is a finite set of cost functions

for m subsystems and each subsystem j ∈ M consists

of mj appliances;

• and a utility function ηjk : F → xj
k for Appliance k of

each subsystem j ∈M consisting mj appliances. Hence,

ηj = 〈ηj1, ..., η
j
mj
〉, with η = (η1, ..., ηm).

The utility function defines the comfort level of the kth

appliance of the subsystem corresponding to Controller j,

which is a real value ηj,min
k ≤ ηjk ≤ ηj,max

k , ∀j ∈ I, where

ηj,min
k and ηj,max

k are the corresponding lower and upper

bounds of the comfort level.

There are two ways in which a controller can choose its

action: (i) select a single action and execute it; (ii) randomize

over a set of available actions based on some probability

distribution. The former case is called a pure strategy, and

the latter is called a mixed strategy. A mixed strategy for a

controller specifies the probability distribution used to select a

particular control action uj ∈ U j . The probability distribution

for Controller j is denoted by pj : uj → [0, 1], such that
∑

uj∈Uj pj(uj) = 1. The subset of control actions correspond-

ing to the mixed strategy uj is called the support of U j .

Theorem 1: ( [26, Proposition 116.1]) Every game with a

finite number of players and action profiles has at least one

mixed strategy Nash equilibrium.

It should be noticed that the control objective in the considered

problem is to retain the temperature in each zone inside a

range around a set-point rather than to keep tracking the set-

point. This objective can be achieved by using a sequence

of discretized power levels taken from a finite set of distinct

values. Hence, we have a finite number of strategies depending

on the requested power. In this context, an NE represents the

control actions for each local controller based on the received

power that defines the corresponding comfort level.

In the problem of decentralized power distribution, the NE

can now be defined as follows. Given a capacity C for m sub-

systems, distribute C among the subsystems (pw1, . . . , pwm)

∧
(

∑m

j=1 pw
j ≤ C

)

in such a way that the control action

U∗ = 〈u1, . . . , um〉 is an NE if and only if

• ηj(f j , f j) ≥ ηj(f̃ j , f j)for all f̃ j ∈ F j ;

• f∗ and 〈f̃ j , f j〉 satisfy (8),

where f j is the solution of the cost function corresponds to

the control action uj for jth subsystem, and f j denote the

set {fk | k ∈M∧ k 6= j}, and f∗ = (f j , f j).
The above formulation seeks a set of control decisions for

m subsystems that provides the best comfort level to the

subsystems based on the available capacity.

Theorem 2: The decentralized power distribution problem

with a finite number of subsystems and action profiles has at

least one NE point.

Proof: In the decentralized power distribution problem,

there are a finite number of subsystems M. In addition,

each subsystem m ∈ M conforms a finite set of control

actions U j = {u1, . . . , uj , . . .} depending on the sequence

of discretized power levels, with the probability distribution
∑

uj∈Uj pj(uj) = 1. That means that the DMPC problem has

a finite set of strategies for each subsystem including both

pure and mixed strategies. Hence, the claim of this theorem

follows from Theorem 1.

E. Algorithms for Searching the Nash Equilibrium

An approach for finding a sample NE for normal-form

games is proposed in [25], as presented by Algorithm 1. This

algorithm is referred to as the SEM (Support-Enumeration

Method), which is a heuristic-based procedure based on the

space of supports of DMPC controllers and a notion of

dominated actions that are diminished from the search space.

The following algorithms show how the DMPC-based game

theoretic power distribution problem is formulated to find the

NE. Note that the complexity to find an exact NE point is

exponential. Hence, it is preferable to consider heuristics-based

approaches that can provide a solution very close to the exact

equilibrium point with a much lower number of iterations.

It is assumed that a DMPC controller assigned for a

subsystem j ∈M acts as an agent in the normal-form game.

Finally, all the individual DMPC controllers are supervised

by a centralized controller in the upper layer. In Algorithm 1,

xj defines the support size of the control action available to

subsystem j ∈ M. It is ensured in the SEM that balanced

supports are examined first, so that the lexicographic ordering

is performed on the basis of the increasing order of the

difference between the support sizes. In the case of a tie, this

is followed by the balance of the support sizes.

An important feature of the SEM is the elimination of

solutions that will never be NE points. Since we look for the

best performance in each subsystem based on the solution

5
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Algorithm 1 NE in DES

1: for all x = (x1, . . . , xn) sorted in increasing order of first
∑

j∈M

xj followed by maxj,k∈M(|xj − xk|) do

2: ∀j Ũ j ← ∅ // uninstantiated supports

3: ∀j Dxj ← {uj ∈ U j |
∑

k∈M

|uj,k|= xj} // domain of

supports

4: if RecursiveBacktracking(Ũ ,Dx, 1) returns NE U∗

then

5: return U∗

6: end if

7: end for

of the corresponding MPC problem, we want to eliminate

the solutions that result always in a lower performance than

the other ones. An exchange of a control action uj ∈ U j

(corresponding to the solution of the cost function f j ∈ F j)

is conditionally dominated given the sets of available control

actions U j for the remaining controllers, if ∃ũj ∈ U j such

that ∀u j ∈ U j , ηj(f j , f j) < ηj(f̃ j , f j).

Procedure 1 Recursive Backtracking

Input: Ũ = Ũ1 × . . .× Ũm; Dx = (Dx1 , . . . , Dxm); j
Output: NE U∗ or failure

1: if j = m+ 1 then

2: Ũ ← {(γ1, . . . , γm) | (γ1, . . . γm)

← feasible(u1,. . . , um), ∀uj ∈
∏

j∈M

Ũ j}

3: Ũ ← Ũ \{(γ1, . . . , γm) | (γ1, . . . γm) does not solve

the control problem}
4: if Program 1 is feasible for Ũ then

5: return found NE U∗

6: else

7: return failure

8: end if

9: else

10: Ũ j ← Dxj

11: Dxj ← ∅
12: if IRDCA(Ũ1, . . . , Ũ j , Dxj+1 , . . . , Dxm ) succeeds

then

13: if RecursiveBacktracking(Ũ ,Dx, j + 1) returns

NE U∗ then

14: return found NE U∗

15: end if

16: end if

17: end if

18: return failure

In addition, the algorithm for searching NE points relies

on recursive backtracking (Procedure 1) to instantiate the

search space for each player. We assume that in determining

conditional domination, all the control actions are feasible, or

are made feasible for the purposes of testing conditional dom-

ination. In adapting SEM for the decentralized MPC problem

in DES, Procedure 1 includes two additional steps: (i) if uj is

not feasible, then we must make the prospective control action

feasible (where feasible versions of uj are denoted by γj)

(Line 2); and (ii) if the control action solves the decentralized

MPC problem (Line 3). The input to Procedure 2 (Line 12

Procedure 2 Iterated Removal of Dominated Control Actions

(IRDCA)

Input: Dx = (Dx1 , . . . , Dxm)
Output: Updated domains or failure

1: repeat

2: dominated← false

3: for all j ∈M do

4: for all uj ∈ Dxj do

5: for all ũj ∈ {U j} do

6: if uj is conditionally dominated by ũj

given D xj then

7: Dxj ← Dxj \ {uj}
8: dominated← true

9: if Dxj = ∅ then

10: return failure

11: end if

12: end if

13: end for

14: end for

15: end for

16: until dominated = false

17: return Dx

in Procedure 1) is the set of domains for the support of each

MPC. When the support for an MPC controller is instantiated,

the domain contains only the instantiated supports. The domain

of other individual MPC controllers contains the supports of

xj that were not removed previously by earlier calls to this

procedure.

Remark 1: In general, the NE point may not be unique and

the first one founded by the algorithm may not necessarily

be the global optimum. However, in the considered problem,

every NE represents a feasible solution that guarantees that the

temperature in all the zones can be kept within the predefined

range, as far as there is enough power, while meeting the

global capacity constraint. Thus, it is not necessary to compare

different power distribution schemes as long as the local

and global requirements are assured. Moreover, and most

importantly, using the first NE will drastically reduce the

computational complexity.

Program 1 Feasibility Program TGS (Test Given Supports)

Input: U = U1 × . . .× Um

Output: u is an NE if there exist both u = (u1, . . . , um) and

v = (v1, . . . , vm) such that:

1: ∀j ∈M, uj ∈ U j :
∑

u j∈U j

p j(u j)η
j(uj , u j) = vj

2: ∀j ∈M, uj /∈ U j :
∑

u j∈U j

p j(u j)η
j(uj , u j) ≤ vj

3: ∀j ∈M, uj ∈ U j : pj(uj) ≥ 0
4: ∀j ∈M, uj /∈ U j : pj(uj) = 0

5: ∀j ∈M :
∑

uj∈Uj

pj(uj) = 1

6
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We also adopted a feasibility program from [25], as shown in

Program 1, to determine whether or not a potential solution

is an NE. The input is a set of feasible control actions

corresponding to the solution to the problem (8), and the

output is a control action that satisfies NE. The first two

constraints ensure that the MPC has no preference for one

control action over another within the input set and it must

not prefer an action that does not belong to the input set. The

third and the fourth constraints check that the control actions

in the input set are chosen with a non-zero probability. The

last constraint simply assesses that there is a valid probability

distribution over the control actions.

Remark 2: It is pointed out in [25] that Program 1 will

prevent any player from deviating to a pure strategy aimed at

improving the expected utility, which is indeed the condition

for assuring the existence of NE in the considered problem.

V. SUPERVISORY CONTROL

A. Decentralized DES in the Upper Layer

In the framework of decentralized DES, a set of m con-

trollers will cooperatively decide the control actions. In order

for the supervisory control to accept or reject a request

issued by an appliance, a controller decides which events are

enabled through a sequence based on its own observations.

The schedulability of appliances operation depends on two

basic properties of DES: controllability and co-observability.

We will examine a schedulability problem in decentralized

DES, where the given specification K is controllable but not

co-observable.

When K is not co-observable, it is possible to synthesize

the extra power, so that all the MPC controllers guarantee

their performance. To that end, we resort to the property of

P-observability and denote the content of additional power

for each subsystem by Σp
j = {extpj}. A language K is called

P-observable w.r.t. L, Σo,j ∪ ( ∪j∈I Σp
j ), and Σc,j (j ∈ I) if

(∀s ∈ K)(∀σ ∈ Σc) sσ ∈ L\K ⇒

(∃j ∈ I) π−1
j [πj(s)]σ ∩ K = ∅.

B. Control Design

DES is used as a part of the supervisory control in the upper

layer to decide whether any subsystem needs more power to

accept a request. In the control design, a controller’s view Cj is

first developed for each subsystem j ∈M. Figure 2 illustrates

the process for accepting or rejecting a request issued by an

appliance of subsystem j ∈M.

1 2 3

4

5

requestj verifyj acceptj

rejectj

requestj

requestj

Fig. 2. Accepting or rejecting a request of an appliance.

If the distributed power is not sufficient for a subsystem j ∈
M, this subsystem will request for extra power (extpj) from

the supervisory controller, as shown in Fig. 3. The controller

of the corresponding subsystem will accept the request of its

appliances after getting the required power.

1 2 3

4

verify
j

reject
j

extpj

acceptj

Fig. 3. Extra power provided to subsystem j ∈ M.

Finally, the system behavior C is formulated by taking the

synchronous product [20] of Cj , ∀j ∈ M, and extpj , ∀j ∈
M. Let LC be the language generated from C and KC be the

specification. A portion of LC is shown in Fig. 4. The states to

avoid are denoted by double circle. Note that, the supervisory

controller ensures this by providing additional power.

1 2 3 4

5678

9

requestj verify
j

reject
j

acceptj
extpj

requestkverify
k

reject
k

acceptk
extpk

Fig. 4. A portion of LC .

Denote by U/LC the controlled system under the supervi-

sion of U = ∧Mj=1U
j . The closed behavior of U/LC is defined

as a language L(U/LC) ⊆ LC , such that

(i) ε ∈ L(U/LC), and

(ii) ∀s ∈ L(U/LC) and ∀σ ∈ U(s), sσ ∈ LC ⇒ sσ ∈
L(U/LC).

The marked behavior of U/LC is Lm(U/LC) = L(U/LC)∩Lm.

When the system is not co-observable, the comfort level

cannot be achieved. Consequently, we have to make the system

P-observable to meet the requirements. The states followed by

rejectj for a subsystem j ∈M must be avoided. It is assumed

that when a request for subsystem j is rejected (rejectj),

additional power (extpj) will be provided in the consecutive

transition. As a result, the system becomes controllable and P-

observable and the controller can make the correct decision.

Algorithm 2 shows the implemented DES mechanism for

accepting or rejecting a request based on the game-theoretic

power distribution scheme. When a request is generated for

subsystem j ∈M, its acceptance is verified through the event

verifyj . If there is an enough power to accept the requestj ,

the event acceptj is enabled and rejectj is disabled. When

7
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there is a lack of power, a subsystem j ∈M requests for extra

power exptj to enable the event acceptj and disable rejectj .

A unified modeling language (UML) activity diagram is

depicted in Fig. 5 to show the execution flow of the whole

control scheme. Based on the analysis from [27], the following

theorem can be established.

Theorem 3: There exists a set of control actions

{U1, . . . , Um} such that the closed behavior of ∧mj=1U
j/LC

is restricted to KC (i.e., L(∧mj=1U
j/LC) ⊆ KC) if and only if

(i) KC is controllable w.r.t. LC and Σuc,

(ii) KC is P-observable w.r.t. LC , πj and Σc,j , and

(iii) KC is Lm-closed.

Algorithm 2 DES-based Admission Control

Input:

• M: set of subsystems

• m: number of subsystems

• j: subsystem ∈M
• pwj : power for subsystem j ∈M from the NE

• cons: total power consumption of the accepted re-

quests

• C: available capacity

1: cons = 0

2: if
∑

j∈M

pwj <= C then

3: j = 1
4: repeat

5: if there is a request from j ∈M then

6: enable acceptj and disable rejectj

7: cons = cons+ pwj

8: end if

9: j ← j + 1
10: until j <= m
11: else

12: j = 1
13: repeat

14: if there is a request from j ∈M then

15: request for extpj

16: enable acceptj and disable rejectj

17: cons = cons+ pwj

18: end if

19: j ← j + 1
20: until j <= m
21: end if

VI. SIMULATION STUDIES

A. Simulation Setup

The proposed DMPC has been implemented on a Matlab-

Simulink platform. In the experiment, the YALMIP toolbox

[28] is used to implement the MPC in each subsystem, and

the DES centralized controllers view C is generated using the

Matlab Toolbox DECK [29]. As each subsystem represents

a scalar problem, there is no concern regarding the computa-

tional effort. A four-zone building, equipped with one heater in

each zone, is considered in the simulation. The building layout

is represented in Fig. 6. Note that the thermal coupling occurs

Start

End

Program 1

Decentralized

MPC setup Algorithm1

Algorithm2

Supervisory 

control

Game theoretic setup

True

False

Procedure 1

Procedure 2
Return NE to 

Procedure 1

No NE exists

Fig. 5. UML activity diagram of the proposed control scheme.

through the doors between the neighboring zones and the

isolation of the walls is supposed to be very high (Rd
wall =∞).

Note also that experimental implementations or the use of

more accurate simulation software, e.g., EnergyPlus [30], may

provide a more reliable assessment of the proposed work.

Fig. 6. Building layout.
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Fig. 7. Ambient temperature

In this simulation experiment, the thermal comfort zone is

chosen as (22 ± 0.5)◦C for all the zones. The prediction

horizon is chosen to be N = 10 and Ts = 1.5 time steps

which is about 3 minutes in the corresponding real time-

scale. Thus, the simulation is equivalent to about 10 hours

operation in a real time scale, which is implementable with

the currently available computing technology. The system is

decoupled into four subsystems, corresponding to a setting

with m = M . Furthermore, it has been verified that the system

and the decomposed subsystems are all stable in open loop.

The variation of the outdoor temperature is presented in Fig. 7.

The co-observability and P-observability properties are

tested with high and low constant power capacity constraints,

respectively. It is supposed that the heaters in Zone 1 and 2

8
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need 800 W each as the initial power while the heaters in

Zone 3 and 4 require 600 W each. The requested power is

discretized with a step of 10 W. The initial indoor temperatures

are set to 15 ◦C inside all the zones. The parameters of the

thermal model are listed in Table I and Table II based on the

configuration of [3], and the system decomposition is based

on the approach presented in [22]. The submatrices Ai, Bi,

and Ei can be computed as presented in Section III-B with

the decoupling matrices given by Wi = Zi = Hi = ei, where

ei is the ith standard basic vector of R4.

TABLE I
THERMAL MODEL PARAMETERS

Zone 1 2 3 4

Ra
i 69.079 69.079 105.412 105.412

Ci 0.94 0.94 0.78 0.78

TABLE II
THERMAL MODEL PARAMETERS

Rd
ji Rd

12
=Rd

21
Rd

13
=Rd

31
Rd

14
=Rd

41
Rd

23
=Rd

32

Value 709.2 1063.8 1063.8 1063.8

B. Case 1: Co-observability validation

In this case, we validate the proposed scheme to test the co-

observability property for various power capacity constraints.

We split the whole simulation time into two intervals, [0, 60)
and [60, 200], with 2800 W and 1000 W as power constraints,

respectively. At the start-up, a power capacity of 2800 W is

required as the initial power for all the heaters.

The zone’s indoor temperatures are depicted in Fig. 8. It

can be seen that the DMPC has the capability to force the

indoor temperatures in all zones to stay within the desired

range if there is enough power. Specifically, the temperature

is kept in the comfort zone until 140 time steps. After that, the

temperature in all the zones attempts to go down due to the

effect of the ambient temperature and the power shortage. In

other words, the system is no longer co-observable and hence,

the thermal comfort level cannot be guaranteed.

The individual and the total power consumption of the

heaters over the specified time intervals are shown in Fig. 9 and

Fig. 10, respectively. It can be seen that in the second interval,

all the available power is distributed to the controllers, and the

total power consumption is about 36% of the maximum peak

power.

C. Case 2: P-Observability validation

In the second test, we consider three time intervals [0, 60),
[60, 140), and [140, 200]. In addition, we raise the level of

power capacity to 1600 W in the third time interval. The indoor

temperature of all zones is shown in Fig. 11. It can be seen that

the temperature is maintained within the desired range over

all the simulation time steps, despite the diminishing of the

outdoor temperature. Therefore, the performance is achieved
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Fig. 8. Temperature in each zone in Case 1.

0 20 40 60 80 100 120 140 160 180 200
0

200
400
600
800

M
PC

1(
W

)

0 20 40 60 80 100 120 140 160 180 200
0

200
400
600
800

M
PC

2(
W

)

0 20 40 60 80 100 120 140 160 180 200
0

200
400
600

M
PC

3(
W

)

0 20 40 60 80 100 120 140 160 180 200
Time steps

0
200
400
600

M
PC

4(
W

)

Fig. 9. The individual power consumption in Case 1.

and the system becomes P-observable. The individual and

the total power consumption of the heaters are illustrated in

Fig. 12 and Fig. 13, respectively. Note that the power capacity

applied over the third interval (1600 W) is about 57% of the

maximum power, which is a significant reduction of power

consumption. It is worth noting that when the system fails

to ensure the performance due to the lack of the supplied

power, the upper layer of the proposed control scheme can

compute the amount of extra power that is required to ensure

the system performance. The corresponding DES will become
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Time steps
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w
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Fig. 10. Total power consumption in Case 1.
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P-observable if extra power is provided.

Finally, it is worth noting that the simulation results confirm

that in both Case 1 and Case 2, power distributions generated

by the game-theoretic scheme are always fair. Moreover, as

the attempt of any agent to improve its performance does not

degrade the performance of the others, it eventually allows

avoiding the selfish behavior of the agents.
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Fig. 11. Temperature in each zone in Case 2.
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Fig. 12. The individual power consumption in Case 2.
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Fig. 13. Total power consumption in Case 2.

VII. CONCLUDING REMARKS

This work presented a hierarchical decentralized scheme

consisting of a decentralized DES supervisory controller based

on a game-theoretic power distribution mechanism and a set

of local MPC controllers for thermal appliance control in

smart buildings. The impact of observability properties on

the behavior of the controllers and the system performance

have been thoroughly analyzed, and algorithms for running

the system in a numerically efficient way have been provided.

Two case studies were conducted to show the effect of co-

observability and P-observability properties related to the

proposed strategy. The simulation results confirmed that the

developed technique can efficiently reduce the peak power

while maintaining the thermal comfort within an adequate

range when the system was P-observable. In addition, the

developed system architecture has a modular structure and can

be extended to appliance control in a more generic context

of HVAC systems. Finally, it might be interesting to address

the applicability of other control techniques, such as those

presented in [31], [32], to smart building control problems.

REFERENCES

[1] T. X. Nghiem, M. Behl, R. Mangharam, and G. J. Pappas, “Green
scheduling of control systems for peak demand reduction,” in 50th IEEE

CDC and 2011 ECC, pp. 5131–5136, 2011.

[2] V. Chandan and A. Alleyne, “Optimal partitioning for the decentralized
thermal control of buildings,” IEEE Trans. Control Syst. Technol.,
vol. 21, no. 5, pp. 1756–1770, 2013.

[3] W. H. Sadid, S. A. Abobakr, and G. Zhu, “Discrete-event systems-based
power admission control of thermal appliances in smart buildings,” IEEE

Trans. Smart Grid, vol. 8, no. 6, pp. 2665–2674, 2017.

[4] A. Afram and F. Janabi-Sharifi, “Theory and applications of HVAC
control systems–a review of model predictive control (MPC),” Building

and Environment, vol. 72, pp. 343–355, 2014.

[5] T. Salsbury, P. Mhaskar, and S. J. Qin, “Predictive control methods to
improve energy efficiency and reduce demand in buildings,” Computers

& Chemical Engineering, vol. 51, pp. 77–85, 2013.
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