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Measuring and Visualizing Space-Time Congestion Patterns in an Urban 

Road Network Using Large-Scale Smartphone-Collected GPS Data 

Congestion is a dynamic phenomenon with elements of space and time, making it a 

promising application of probe vehicles. The purpose of this paper is to measure and 

visualize the magnitude and variability of congestion on the network scale using 

smartphone GPS travel data. The sample of data collected in Quebec City contained 

over 4000 drivers and 21,000 trips. The congestion index (CI) was calculated at the link 

level for each hour of the peak period and congestion was visualized at aggregate and 

disaggregate levels. Results showed that each peak period can be viewed as having an 

onset period and dissipation period lasting one hour. Congestion in the evening is 

greater and more dispersed than in the morning. Motorways, arterials, and collectors 

contribute most to peak period congestion, while residential links contribute little. 

Further analysis of the CI data is required for practical implementation in network 

planning or congestion remediation. 

Keywords: congestion; visualization; smartphone; GPS; space-time patterns 

Subject classification codes: 2.4; 9.1; 9.2; 9.8; 9.9; 9.10 

Introduction 

For transportation professionals, accurate and quantitative performance measures are needed 

to operate existing networks and plan future facilities (D'Este, Zito and Tayler 1999). For 

drivers, network performance influences travel choices (Liu and Ma 2009). Link or route 

travel time is a common performance measure of importance for road users and practitioners 

alike (Li and McDonald 2002). Although travel time is a key parameter defining traffic state 

(Zhang 1999) and is easily understood by the public (Liu and Ma 2009), it may not be the 

biggest factor influencing travel decisions. Traffic congestion occurs on a roadway ‘when 

demand … exceeds its ability to supply an acceptable level of service’ (D'Este, Zito and 

Tayler 1999), and can greatly affect travel time reliability. Road users are willing to accept 

longer travel times if they can be assured that they will usually arrive on time (Taylor 2013). 
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In other words, users may choose a route with a longer travel time in order to avoid 

congestion and decrease potential travel time variability (D'Este, Zito and Tayler 1999). 

Traffic congestion is worsening in many urban areas (Taylor, Woolley and Zi 2000), where 

traditional expectations of peak period congestion are being replaced by congestion lasting 

throughout the day. Efforts to understand and reduce the ‘extent, duration, and intensity’ of 

congestion (Sioui and Morency 2013) should be a high priority (Taylor, Woolley and Zi 

2000). 

Detailed road network congestion information would be beneficial for both 

transportation professionals and the public. Recently, new traffic sensors, including radar, 

magnetic, and video-based devices, have been developed, and advances in management 

practices have ‘increased [the] need for very accurate road traffic information’ (El Faouzi, 

Leung and Kurian 2011). Congestion ‘is a dynamic phenomenon with elements of both space 

and time’ (D'Este, Zito and Tayler 1999) and requires temporal and spatial data coverage, 

making it a promising application of probe vehicles, one of the only methods currently 

capable of providing such data. Probe vehicles act ‘as moving sensors, continuously feeding 

information about traffic conditions’ (El Faouzi, Leung and Kurian 2011) through continuous 

instrumentation and tracking, allowing for a precise measurement of route or link travel time 

for vehicles operating within normal traffic (Li and McDonald 2002). Although several 

methods for instrumenting vehicles exist, GPS data has been shown to be reliable in several 

applications (Jun, Ogle and Guensler 2007). While traditional floating car studies have been 

limited in driver sample size and spatio-temporal coverage (Liu and Ma 2009), GPS-enabled 

smartphones have the potential to increase the number of drivers sampled, increase temporal 

coverage to several weeks or months, and increase the spatial coverage to include the entire 

road network. 
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Although GPS probe vehicles have been successfully implemented in freeways 

(Quiroga and Bullock 1998), specific consideration for urban environments is required. Tall 

buildings in urban centers can completely block GPS signals or create spurious signals 

(D'Este, Zito and Tayler 1999), leading to positional noise which must be corrected. 

Sufficient network coverage is practically limited by driver sample size, regardless of the 

collection method. Additionally, methods for automating data handling and analysis are 

required due to large data volumes obtained through smartphone data collection. Other 

challenges include selecting appropriate measures of congestion to represent magnitude and 

variability across time and space. Despite technological advancement and increasing 

congestion levels, smartphone-based systems for measuring and monitoring traffic congestion 

are still rare in North American cities (Chen and Chien 2000), and ‘literature in network level 

dynamics and congestion propagation is limited especially in large urban networks’ 

(Saeedmanesh and Geroliminis 2016). The purpose of this paper is to present a methodology 

for measuring and visualizing the magnitude and variability of congestion on the network 

scale using smartphone GPS data collected from regular drivers. The three primary objectives 

are:  

(1) To process network-wide GPS travel data;  

(2) To quantify congestion on the network scale using the Congestion Index (CI); and,  

(3) To visualize changes in congestion levels across time and space at aggregate and 

disaggregate scales. 

Literature Review 

Existing methods for estimating road traffic conditions depend predominantly on the source 

of traffic data. Using fixed point traffic sensors, the naïve method uses spot speeds that, when 

combined with flow, density, and speed relationships, can define traffic conditions (Dailey 
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1993). This method may introduce a systematic bias (Ostrand, et al. 1997) as detector data 

‘only reflect conditions averaged over a fixed time period at a single point in space’ whereas 

traffic flow ‘reflects traffic conditions averaged over a fixed distance and a variable amount 

of time’ (Coifman 2002). In trajectory methods, trajectories of simulated vehicles are 

constructed based on traffic data observed by several consecutive fixed sensors (van Lint and 

van der Zijpp 2007). van Lint and van der Zijpp (2007) improved traditional methods by 

assuming linear speed variation (rather than piecewise-constant variation), which more 

accurately represents spatially and temporally dependent flow variation. Coifman (2002) 

constructed trajectories based on several loop detectors to estimate travel time in a freeway 

environment, demonstrating that estimated travel times were within 10 % of actual travel 

times on average. Liu and Ma (2009) fused loop data with signal phase information in urban 

corridors to estimate travel times generally within 5 % of ground truth. As with the naïve 

method, trajectory methods are limited because data is collected at discrete locations 

(Coifman 2002). 

Vehicle reidentification (VRI) is ‘the process of matching vehicles from one point on 

the roadway … to the next’ (Sun, et al. 2004) based on a reproducible feature or vehicle 

signature (Coifman and Krishnamurthy 2007). When a vehicle is identified at two locations 

within the network, the travel time between those locations is determined. Vehicle signatures 

may be captured using license plate recognition (Anagnostopoulos, et al. 2006) or media 

access control addresses captured from Bluetooth devices within passing vehicles (Haseman, 

Wasson and Bullock 2010), though most Bluetooth detectors have a detection rate of 5 % or 

less (Haghani, et al. 2010). Vehicle length (Coifman and Cassidy 2002) and magnetic 

signature (Kwong, et al. 2009) have also been used to define vehicle signature. Coifman and 

Cassidy (2002) reidentified 20 % of vehicles based on length, and Sun et al. (2004) used 

inductive loops and feature-based colour extracted from video stills to achieve an 
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approximately 90 % match rate. Kwong et al. (2009) used permanent wireless magnetic 

sensors installed across several intersections along an urban corridor. The authors estimate a 

successful matching rate of 65-75 % (Kwong, et al. 2009). Besides less than ideal detection 

rates, a limitation of VRI is that the accuracy depends on the distance between sensors. As 

distance between sensors increases, so do the unknowns of the vehicle’s path, decreasing the 

likelihood that the sensors actually measure travel time along the shortest path. 

Traditionally, floating cars have been popular for estimating traffic volumes, speeds, 

and travel times. Techniques for estimating travel time vary depending on the number of 

vehicles utilized. One approach uses the average travel time from a relatively large number of 

floating cars operating within the same time and space. However, the labor requirement 

associated with floating cars is high (Chen and Chien 2000), and approaches have been 

developed to use relatively fewer vehicles with statistical adjustments to extrapolate floating 

car travel time to mean travel time (Yang 2005). For example, Li and McDonald (2002) 

proposed an approach using only a single vehicle, using the driving pattern of the floating car 

to estimate the difference between the vehicle and average traffic conditions. Probe vehicles, 

with continuous spatio-temporal tracking, have become a popular method for measuring 

traffic conditions (Quiroga and Bullock 1998), and represent substantial improvement over 

methods using fixed sensors or floating cars. Initial work by D’Este, Zito, and Taylor (1999) 

explored the feasibility of using GPS to collect traffic data, concluding that GPS was ‘a 

relatively cheap, efficient and effective means’. GPS data collected from the smartphones of 

regular drivers enables the use of a large number of probe vehicles without the high labor 

costs associated with traditional floating cars. Additionally, data from regular drivers may 

better represent typical traffic conditions (Stipancic, Miranda-Moreno and Saunier 2016). 

Measures of congestion are typically based on either travel time or speed (Shi and 

Abdel-Aty 2015). Congestion may be measured as a change in travel time (Palen 1997) from 
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a baseline or expected travel time measurement (Coifman 2002). Measures like travel time 

index (TTI) use the ratio of travel time to off-peak travel time to determine congestion at the 

link level (Falcocchio and Levinson 2015). TTI and similar techniques can be used to derive 

historical trend data to separate recurring and non-recurring congestion (Coifman 2002). 

Skabardonis, Varaiya, and Petty (2003) utilized a delay-based approach to separate recurrent 

from non-recurrent delay. In Washington State, mean speeds below 75 % of free flow speed 

are used to define the onset of congestion (Falcocchio and Levinson 2015). In Quebec, a 

threshold of 60 % is used (ADEC 2014). The Congestion Index (CI) was proposed by Dias et 

al. (2009) as the difference between the actual speed and free flow speed over the free flow 

speed. Although CI and other indices are limited to calculations on a particular link or route, 

they ‘can be used for an urban area wide application’ (Aftabuzzaman 2007). With GPS probe 

vehicles, congestion measures based on spot speed measurements are preferred. Travel time 

estimation may be influenced by errors in the reported GPS coordinates and on assumptions 

of the start and end of trip (or link). Considering the relatively recent advent of GPS data in 

transportation research, several shortcomings remain in the literature. Few studies have 

considered the rich source of data available from GPS-enabled smartphones. Congestion 

studies using probe vehicles have primarily focused on the corridor-level without 

consideration for estimating travel time or congestion at the network level. Despite successful 

probe vehicle studies in freeways, additional focus on urban roadways is required. 

Methodology 

Data Structure 

GPS data from the smartphones of regular drivers contains observations describing the 

entirety of their trip, both across time and across the road network. For each trip, 𝑖𝑖, logged 

into a smartphone application, GPS travel data is returned as a series of observations, 𝑂𝑂𝑖𝑖𝑖𝑖, 
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such as 

𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑖𝑖 =

⎩⎪⎨
⎪⎧𝑂𝑂𝑖𝑖0𝑂𝑂𝑖𝑖1⋮𝑂𝑂𝑖𝑖𝑖𝑖⋮𝑂𝑂𝑖𝑖𝑖𝑖𝑖𝑖⎭⎪⎬

⎪⎫
=

⎩⎪⎨
⎪⎧ 𝑖𝑖,  𝑐𝑐𝑖𝑖0,  𝑡𝑡𝑖𝑖0,  𝑥𝑥𝑖𝑖0,  𝑦𝑦𝑖𝑖0,  𝑧𝑧𝑖𝑖0,  𝑣𝑣𝑖𝑖0𝑖𝑖,  𝑐𝑐𝑖𝑖1,  𝑡𝑡𝑖𝑖1,  𝑥𝑥𝑖𝑖1,  𝑦𝑦𝑖𝑖1,  𝑧𝑧𝑖𝑖1,  𝑣𝑣𝑖𝑖1⋮𝑖𝑖,  𝑐𝑐𝑖𝑖𝑖𝑖 ,  𝑡𝑡𝑖𝑖𝑖𝑖,  𝑥𝑥𝑖𝑖𝑖𝑖,  𝑦𝑦𝑖𝑖𝑖𝑖,  𝑧𝑧𝑖𝑖𝑖𝑖 ,  𝑣𝑣𝑖𝑖𝑖𝑖⋮

 𝑖𝑖,  𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 ,  𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 ,  𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ,  𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 ,  𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖 ,  𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖⎭⎪⎬
⎪⎫

 

where 𝑖𝑖 is a unique trip identifier, 𝑂𝑂𝑖𝑖𝑖𝑖 is the jth observation in trip 𝑖𝑖,  𝑐𝑐𝑖𝑖𝑖𝑖 is a unique coordinate 

identifier, 𝑡𝑡𝑖𝑖𝑖𝑖 is the datetime, 𝑥𝑥𝑖𝑖𝑖𝑖, 𝑦𝑦𝑖𝑖𝑖𝑖, and 𝑧𝑧𝑖𝑖𝑖𝑖 are the latitude, longitude, and altitude, and 𝑣𝑣𝑖𝑖𝑖𝑖 
is the speed. From each trip, several key pieces of trip information include the origin (𝑥𝑥𝑖𝑖0,𝑦𝑦𝑖𝑖0) 

and destination (𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖) and start (𝑡𝑡𝑖𝑖0) and end times (𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖). Total travel time can also be 

computed (𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑡𝑡𝑖𝑖0). The time between consecutive observations is typically between 1 and 

2 seconds. Depending on the application, socio-demographic information may also be 

available. Once a trip has been collected and reported by the user, initial pre-processing of the 

data using methods including Kalman filtering (Bachman 2011) to reduce variability are 

typical. The data is then stored in a database from which observations are exported for 

analysis. 

Map Matching 

Although the raw GPS data from a smartphone application are spatio-temporally rich, 

position is provided only in terms of latitude and longitude and is not linked spatially to the 

road network. If the goal is to determine congestion at the link level, then it is necessary to 

explicitly match each trip to the travelled network links. A map matching procedure ensures 

that traffic conditions extracted from the trip data are correctly assigned to the links in which 

the traffic conditions are occurring. TrackMatching is a commercially available, cloud-based 

web map-matching software service (F. Marchal 2015) that matches GPS trip data to the 

OpenStreetMap (OSM) road network (OpenStreetMap 2015). Before GPS data is sent to 
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TrackMatching, the data is split into individual trips and formatted according to the software 

input requirements, including only the coordinate ID, timestamp, latitude, and longitude for 

each observation. The software returns a new latitude and longitude, 𝑥𝑥𝑖𝑖𝑖𝑖′  and 𝑦𝑦𝑖𝑖𝑖𝑖′ , which 

correspond to a specific OSM link ID, 𝑙𝑙𝑖𝑖𝑖𝑖, as shown below. 

�𝑐𝑐𝑖𝑖𝑖𝑖,  𝑡𝑡𝑖𝑖𝑖𝑖 ,  𝑥𝑥𝑖𝑖𝑖𝑖 ,  𝑦𝑦𝑖𝑖𝑖𝑖� → TrackMatching → �𝑐𝑐𝑖𝑖𝑖𝑖,  𝑡𝑡𝑖𝑖𝑖𝑖 ,  𝑥𝑥𝑖𝑖𝑖𝑖′ ,  𝑦𝑦𝑖𝑖𝑖𝑖′ ,  𝑙𝑙𝑖𝑖𝑖𝑖,  𝑠𝑠𝑖𝑖𝑖𝑖,  𝑑𝑑𝑖𝑖𝑖𝑖� 
𝑥𝑥𝑖𝑖𝑖𝑖′  and 𝑦𝑦𝑖𝑖𝑖𝑖′  are chosen based on the Euclidean distance from the raw GPS points to the nearest 

link and on network topology (Marchal, Hackney and Axhausen 2005). Track Matching also 

returns the source, 𝑠𝑠𝑖𝑖𝑖𝑖, and destination nodes, 𝑑𝑑𝑖𝑖𝑖𝑖, which can be used to identify direction of 

travel along the link. The algorithm generates a set of candidate paths and assigns the trip to 

the most probable path from origin to destination. After map-matching is completed, each 

observation corresponds to an exact location within the road network, and the series of links 

can be used to define the route from origin to destination. Once merged with the original data, 

the complete data set is as shown below.    

𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑖𝑖 =

⎩⎪⎪⎨
⎪⎪⎧ 𝑖𝑖,  𝑐𝑐𝑖𝑖0,  𝑡𝑡𝑖𝑖0,  𝑥𝑥𝑖𝑖1′ ,  𝑦𝑦𝑖𝑖0′ ,  𝑧𝑧𝑖𝑖0,  𝑣𝑣𝑖𝑖0,  𝑙𝑙𝑖𝑖0,  𝑠𝑠𝑖𝑖0,  𝑑𝑑𝑖𝑖0𝑖𝑖,  𝑐𝑐𝑖𝑖1,  𝑡𝑡𝑖𝑖1,  𝑥𝑥𝑖𝑖1′ ,  𝑦𝑦𝑖𝑖1′ ,  𝑧𝑧𝑖𝑖1,  𝑣𝑣𝑖𝑖1,  𝑙𝑙𝑖𝑖1,  𝑠𝑠𝑖𝑖1,  𝑑𝑑𝑖𝑖1⋮𝑖𝑖,  𝑐𝑐𝑖𝑖𝑖𝑖,  𝑡𝑡𝑖𝑖𝑖𝑖 ,  𝑥𝑥𝑖𝑖𝑖𝑖′ ,  𝑦𝑦𝑖𝑖𝑖𝑖′ ,  𝑧𝑧𝑖𝑖𝑖𝑖,  𝑣𝑣𝑖𝑖𝑖𝑖 ,  𝑙𝑙𝑖𝑖𝑖𝑖,  𝑠𝑠𝑖𝑖𝑖𝑖 ,  𝑑𝑑𝑖𝑖𝑖𝑖⋮

 𝑖𝑖,  𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 ,  𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 ,  𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖′ ,  𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖′ ,  𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖 ,  𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖 ,  𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖 ,  𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 ,  𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖⎭⎪⎪⎬
⎪⎪⎫

 

The processes of data collection and map matching are illustrated in Figure 1. 

Network Definition 

Although the map-matching procedure links each observation to the road network, the use of 

the OSM network in the TrackMatching algorithm presents a challenge. The majority of the 

network consists of five distinct functional classes: freeway, primary, secondary, tertiary, and 
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residential (where primary, secondary, and tertiary are arterials and collectors classified by 

importance to the road network, with primary being most important). Ideally, these links 

would never be divided by an intersection (Sioui and Morency 2013) (each link should 

connect adjacent intersections). The OSM road network is generated non-systematically by 

users, and OSM links do not always meet this definition. In urban centers, intersection design 

and operation can significantly impact congestion levels on consecutive links. It is desired to 

redefine the network such that each link is properly defined between adjacent intersections. 

Redefining the network requires several steps, which can be completed in any GIS software 

environment. The process is as follows: 

(1) Identify all nodes that represent an intersection in the road network. In doing so, 

nodes that only define network topology, such as those used to define curves, are 

ignored. 

(2) Split the road network at the identified nodes. Any links connecting more than two 

intersections are broken into several smaller links. Links already properly defined are 

unchanged. 

(3) Rename each link according to its original ID and the nodes on either end of the link. 

Step 2 leaves several links with the same ID. In order for each link to have a unique 

identifier, the nodes on either end of the link are used to provide a unique ID. 

(4) Remap the GPS observations to the new network. Travelled links in the GPS trip data 

are renamed using the same scheme as the mapping data, by concatenating the link 

ID, source node, and destination node into a unique identifier. 

The results of this process are shown in Figure 2.  



11 
 

Computing Congestion Index 

The map matching procedure enables congestion measurement for every link containing 

sufficient GPS data, providing either a disaggregate view of link performance, or an 

aggregate view of network performance. Aftabuzzaman (2007) suggested that congestion 

measures meet several criteria including clarity, simplicity, comparability, and continuity. As 

discussed, time-based measures have been proposed. However, because link travel time is 

dependent on position, and because the precise latitude and longitude are untrustworthy (and 

are in fact removed as part of the map matching procedure), a congestion measure based on 

speed measurements is preferred, even if those speeds are originally derived from the GPS 

positions. Dias et al. (2009) proposed the Congestion Index (CI) as one speed-based 

congestion measure, calculated as  

 
𝐶𝐶𝐶𝐶 =

free flow speed − actual speed

free flow speed
          if 𝐶𝐶𝐶𝐶 > 0 

= 0                                                                 if 𝐶𝐶𝐶𝐶 ≤ 0 

(1) 

This formulation yields CI values ranging from 0 (speed equal to the free flow speed) and 1 

(speed is zero), and meets several of the suggested criteria. The first necessary step is 

calculating the free flow speed on each link, 𝐿𝐿𝑖𝑖𝑖𝑖. Free flow speed has been defined in 

numerous ways, though as congestion is generally constrained to the AM and PM peak 

periods, the speeds observed outside of these times can be used to estimate free flow speed. 

For this project, the morning peak period was defined as 6:00 to 10:00 AM, and the evening 

peak from 3:00 to 7:00 PM. The off-peak time, 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜, includes all other times. Free flow speed 

on a given link, 𝐿𝐿𝑖𝑖𝑖𝑖, is calculated as the average of all observed speeds on 𝐿𝐿𝑖𝑖𝑖𝑖 during 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜, or 
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 𝐹𝐹𝐹𝐹𝐹𝐹𝐿𝐿𝑖𝑖𝑖𝑖 =
∑ ∑ 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑁𝑁  (2) 

where 𝑣𝑣𝑖𝑖𝑖𝑖 is the speed for every observation on link 𝐿𝐿𝑖𝑖𝑖𝑖 during  𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜, and 𝑁𝑁 is the number of 

those observations. Next, the congestion index for every observation can be computed 

according to 

 
𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 =

𝐹𝐹𝐹𝐹𝐹𝐹𝐿𝐿𝑖𝑖𝑖𝑖 − 𝑣𝑣𝑖𝑖𝑖𝑖  𝐹𝐹𝐹𝐹𝐹𝐹𝐿𝐿𝑖𝑖𝑖𝑖        if 𝐹𝐹𝐹𝐹𝐹𝐹𝐿𝐿𝑖𝑖𝑖𝑖 > 𝑣𝑣𝑖𝑖𝑖𝑖  

= 0                              otherwise 

(3) 

where 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 is the congestion index for observation 𝑂𝑂𝑖𝑖𝑖𝑖, 𝐹𝐹𝐹𝐹𝐹𝐹𝐿𝐿𝑖𝑖𝑖𝑖 is the free flow speed on link 𝐿𝐿𝑖𝑖𝑖𝑖, and 𝑣𝑣𝑖𝑖𝑖𝑖 is the observed speed. As congestion levels vary across both distance and time, it 

is not only necessary to calculate CI at the link level, but also to calculate CI at different time 

intervals. The peak periods were divided into 60-minute time periods (one per hour) resulting 

in 8 total time periods. Therefore, the congestion index for link 𝐿𝐿𝑖𝑖𝑖𝑖 during time period 𝑇𝑇 is 

calculated as: 

 𝐶𝐶𝐶𝐶𝐿𝐿𝑖𝑖𝑖𝑖𝑇𝑇 =
∑ ∑ 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑁𝑁  (4) 

where 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 is the congestion index for observation 𝑂𝑂𝑖𝑖𝑖𝑖 on link 𝐿𝐿𝑖𝑖𝑖𝑖 during a time period 𝑇𝑇, and 𝑁𝑁 is the number of observations on link 𝐿𝐿𝑖𝑖𝑖𝑖  during 𝑇𝑇. To minimize noise, filters were added 

by setting minimum acceptable numbers of trips and observations for CI calculation. For a 

valid 𝐶𝐶𝐶𝐶𝐿𝐿𝑖𝑖𝑖𝑖𝑇𝑇, 𝐿𝐿𝑖𝑖𝑖𝑖 must contain at least 2 trips during time 𝑇𝑇, and each of those trips must have 

at least 2 observations falling on link 𝐿𝐿𝑖𝑖𝑖𝑖. CI is calculated for bi-directional traffic using the 

source and destination nodes within the map matched data to define two unique links. 
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Data Visualization 

After the data is processed and CI is calculated, congestion can be visualized throughout the 

network, as has been discussed by several authors (Kartika 2015). Although CI can be 

computed for any single hour on any given day, a single instant in time does not provide 

general insight which would be beneficial to transportation professionals or to the driving 

public. Congestion levels vary significantly throughout the day (due to variation in demand) 

and vary significantly between days (due to variation in demand and non-recurrent 

phenomena including construction or crashes) and quantifying and/or visualizing this 

variation using only GPS travel data would be a significant contribution to existing research. 

Firstly, congestion can be visualized using a disaggregate approach, where each link is 

considered individually. First, CI was calculated for each hour of the peak periods, by 

pooling together all of the weekday travel data in order to demonstrate hourly congestion 

variation on a typical weekday. Maps and animations were generated by coloring each link 

according to the congestion level observed during each hour. For this purpose, CI was 

divided into three categories; high congestion, CI of 0.30 or greater (consistent with 

Washington State and Quebec guidelines); moderate congestion, CI of 0.15 to 0.30, and low 

congestion, CI of 0.00 to 0.15. A detailed understanding of congestion should include both 

the average level of congestion for a given link and some indication of how variable that level 

of congestion is from day to day. In order to capture variation between days, CI was also 

calculated for every hour of each weekday independently. The number of hours that each link 

experienced CI above 0.30 were summed, out of a possible 120 hours (8 peak hours per day 

over 15 weekdays). Maps were generated to show not only which links were most congested, 

but also to show which links were congested most consistently over the 15 days of study. 

Although one strength of this type of analysis is that each link can be viewed 

independently, it may be difficult or impossible to make meaningful conclusions about the 
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behavior of the network in general. To facilitate observation of network-wide trends, it may 

be appropriate to aggregate the data in some way. Congestion does not occur all at once. 

Instead, it gradually builds and then subsides throughout the peak periods. Similarly, 

congestion does not occur across all network links simultaneously. This study aggregated in 

two different ways; first by distance to the city center, and second by roadway functional 

classification. Aggregation by distance has the potential to show how congestion propagates 

with respect to the downtown core. To accomplish this, the city center was defined as the 

location of Quebec City Hall. Bins of 200 m distances were defined with respect to City Hall. 

The average CI was then computed for each distance bin for each hour of the day, by pooling 

together all of the weekday travel data. Next, links were categorized according to their OSM 

functional classification. The analysis was completed separately considering five distinct 

functional road classes: freeway, primary, secondary, tertiary, and residential. Using the 

pooled weekday data, the proportion of links experiencing high, moderate, and low 

congestion levels were computed and plotted for each hour for each of the five functional 

classes. 

Results 

Data Description 

GPS travel data was collected in Quebec City, Canada using the Mon Trajet application (City 

of Quebec 2015) developed by BriskSynergies (2015). Screenshots from the application are 

shown in Figure 3. The application, which was available for Apple and Android devices, was 

installed voluntarily by drivers and allowed them to anonymously log trips into the 

application. As part of the system developed by BriskSynergies, data is automatically 

uploaded and stored in a cloud-based platform. In total, approximately 5000 driver 

participants have logged nearly 50,000 trips using the application. The data used in this study 
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is a sample of open data made available by the City of Quebec. The sample for this study 

contained over 4000 drivers and 21,939 individual trips during the period between April 28 

and May 18, 2014. Over the 21 days sampled, 19.7 million individual data points were 

logged.  

Disaggregate Visualization 

Figure 4 and Figure 5 present the level of congestion experienced throughout the road 

network for each of the eight AM and PM peak period hours, for the entire network and 

downtown respectively. As CI for these maps is based on pooled weekday data, the figures 

demonstrate the level of congestion expected on a typical weekday. In this pooled data set, 

containing fifteen weekdays of data, each peak hour contains CI measurements for between 

6600 and 12,000 links. Considering the Quebec City network contains over 50,000 total 

links, this represents between 13 % and 24 % of the total road network. Although the 

collection campaign in Quebec City was large (the sample for this study contained nearly 

22,000 trips), many network links, primarily residential streets, contain no observations. Still, 

the most critical links, including major freeways, arterials, and collectors, are well populated, 

and provide a good view of congestion trends across the network. In fact, those links that are 

missing data tend to be low volume streets were congestion is highly unlikely anyway. As 

with the total number of trips in the population, the total number of GPS trips logged varies 

with time, first growing to a maximum and then subsiding throughout the peak periods. This 

phenomenon is clearly observed in Figure 4 and Figure 5. For example, the period beginning 

at 6:00 PM has far fewer observations than the period beginning at 4:00 PM. 

The results from these figures largely corroborate intuition. Take, for example, the 

AM peak period. Beginning at 6:00 AM, very few links are highly or moderately congestion 

(most links have CI < 0.15, so are operating at or near free flow speed). However, by 7:00 
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AM, the freeways and major arterials toward downtown become highly congested (CI 

exceeds 0.30, and in some cases is as high as 0.85). A similar pattern is observed at 8:00 AM. 

However, by 9:00 AM, congestion has largely subsided on the freeways and arterials, while 

some streets in the downtown core remain congested. A mirror image of this pattern is 

observed in the PM peak period, with congestion beginning to form at 3:00 PM, highly 

congestion conditions at 4:00 PM and 5:00 PM, and dissipation at 6:00 PM. In this way, each 

4-hour peak period can be roughly viewed as having an onset period (lasting approximately 

one hour), the peak itself (lasting approximately two hours), and a dissipation period (lasting 

approximately one hour).  

Rather than pooling all weekday data together, each peak hour of every weekday can 

be considered separately. Each individual weekday yields at least one CI measurement for 

between 2000 and 4000 links (about 6 % of the network on an average day). For each 

individual peak period hour, there are between 250 and 1750 links with a CI measurement 

(between 0.5% and 3.5% of the total road network). Figure 6 shows the total number of hours 

that each link spent in the highly congested state (CI > 0.30). It was observed that the 

majority of highly congested links are only highly congested for about 30 hours over the 15 

study days (about 2 hours per day). However, for some links, the number of hours in the 

highly congested state are as high as 61. To provide some perspective, highly directional 

links, such as motorways and arterials which carry commuters towards the city center, 

experience peak flow for one peak period (either AM or PM). This relates to a possible 60 

hours out of the total 120 peak period hours. Any link with nearly 60 hours in the highly 

congested state could be considered to be chronically congested (it is always highly 

congested during either the AM or PM peak). The most consistently congested locations are 

Autoroute Felix-Leclerc, which runs east/west north of the city center, the interchange 
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connecting Autoroute Felix-Leclerc with Autoroute Henry-IV, and several arterial links near 

Laval University west of the city center.  

Aggregate Visualizations 

In order to observe some general trends in the formation and propagation of congestion 

within Quebec City, links were aggregated first according to distance to the city center, and 

second by functional classification. Figure 7 shows the average CI for each peak hour 

(calculated from the pooled weekday data) based on distance from the city center. Some of 

the results gleaned from the disaggregate analysis become even more pronounced when 

aggregating by distance. Firstly, the onset and dissipation period in both the AM and PM, in 

which levels of congestion are lower in comparison to the two hours in the middle of the peak 

period, are clearly seen. Across the network, CI levels are generally lower in the first and last 

hour of each peak period. Secondly, the propensity of congestion to move towards the city 

center in the morning, and away from it in the evening is also shown. Finally, it appears that 

congestion levels in the PM peak period tend to both be higher, and more spatio-temporally 

dispersed when compared to the AM peak, particularly links within 5 km of the city center. 

When aggregating links by functional classification, the relative impact of different 

facility types on the magnitude of and variation in congestion levels can be detected. Figure 8 

shows the proportion of links in each of the low, moderate, and high congestion states for five 

roadway functional classes. Motorways had the most severe CI and the most pronounced 

variation in congestion. During the most congested hours, nearly 20 % of all motorway links 

were in the highly congested state, and an additional 10 % to 15% were in the moderately 

congested state. In terms of variation, the proportion of links in the low congested state 

ranged between 66 % and 95 %. Much of this variation was attributed to links in the highly 

congested state (ranging between 1 % and 18 %). Primary, secondary, and tertiary links all 
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share a similar pattern. Although variation in congestion levels was still observed, the 

variation on these arterials and collectors was less pronounced than for motorways. While the 

proportion of links in the highly congested state is more stable across the peak hour (between 

2 % and 14 %), a greater proportion of links were at moderate congestion levels. In contrast, 

congestion of residential links was much more stable throughout the peak periods, with 

approximately the same proportion of links at all three congestion levels throughout. In 

general, the PM peak period shows greater spatio-temporal distribution of congestion. 

Several key results from the above analysis are summarized as follows: 

(1) Each peak period can be viewed as having an onset period and dissipation period 

lasting approximately one hour each. Between these periods, congestion levels are 

relatively stable. 

(2) Congestion in the evening peak period is greater and more spatio-temporally 

dispersed than for the AM peak period. 

(3) Chronically congested links include the major motorways and arterials which lead to 

the city center. 

(4) Motorways, followed by major arterials and collectors, contribute most to peak period 

congestion. Residential links contribute little to peak period congestion levels. 

Conclusions 

The purpose of this paper was to propose measures for estimating and visualizing congestion 

levels across time and space in an urban road network (Quebec City, Canada) using data 

collected from the GPS-enabled smartphones of regular drivers. This paper first presented the 

methodology for processing the GPS data and computing CI. Through map matching and 

network definition, observations are explicitly related to links in the road network. The 

measure and method for evaluating congestion proved to be relatively easy to compute, and 
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the data analysis showed that results were consistent with the expected behavior of 

congestion at both the microscopic and macroscopic levels. Despite some limited spatio-

temporal data coverage, enough data was available to calculate and visualize congestion for 

the majority of major freeways, arterials, and collectors within Quebec City.  

Several methods for visualizing congestion and its variation over time and space were 

explored. Several disaggregate maps were generated, which ably demonstrated the rise and 

fall of congestion throughout the AM and PM peak periods on a typical weekday. 

Furthermore, several chronically congested links were identified by counting the hours each 

link spent in a highly congested state (CI > 0.30). While this type of work is beneficial for 

visualizing congestion and identifying sites for improvement, more aggregate analyses are 

required to observe general network trends. By aggregating links based on distance from the 

city center, the peak periods were clearly observed to have both an onset and dissipation 

period lasting approximately one hour each. Furthermore, congestion was observed to move 

towards the city center in the morning, and away from it in the evening. Perhaps the most 

surprising observation was that congestion is both more severe and more spatio-temporally 

dispersed in the PM peak compared to the AM peak. Finally, by aggregating links by 

functional classification, the relative influence of each facility type on peak period congestion 

trends was observed. Unsurprisingly, motorways had the most severe CI levels and the most 

variation within the peak periods, followed by collectors and arterials. Residential links had 

little effect on peak period congestion. This bodes well for this type of analysis. As stated, 

GPS data is absent for a vast majority of residential links. However, based on the links for 

which data is available, the links with missing data are unlikely to have a major effect on 

overall congestion trends, and so their absence from the data set is unlikely to skew the 

results. 
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In this study, it is assumed that the studied smartphone users are representative of all 

drivers. While not an exact representation, collecting data from the smartphones of regular 

drivers represents the least biased method currently feasible for collecting large volumes of 

GPS travel data, particularly when compared to methods using fleet vehicles or taxis which 

are inherently biased towards a specific segment of the population. Although the 

methodology and proof of concept were shown to be successful, several items are planned for 

future research. First, the OSM data is incomplete in some key areas of the network. This is 

again partially due to the ad-hoc nature of the OSM data. Methods for finding and completing 

the map itself are required to complete these key corridors. In terms of measuring congestion, 

although it is acceptable for some links to be without data (specifically residential streets 

without trip data to process), there are several isolated links in the network without data 

despite links before and after having data. Methods for filling in this missing data (based on 

both spatial correlation with other links and temporal correlation with other time periods) 

would provide a benefit for work in this area. A greater depth of analysis of the computed CI 

data is also required if this type of work is to be applicable in practice for network planning 

or congestion remediation. Finally, a software platform for automating the entire process 

could be built to make this an accessible and practical tool for city planners. 
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Figure 1. Collection and map matching of smartphone-collected GPS data 

 

 

Figure 2. Redefinition of OSM links 
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Figure 3. Smartphone application interfaces 

  



27 
 

 

 

06:00                                                                                            07:00 

 

08:00                                                                                            09:00 

 

15:00                                                                                            16:00 

 

17:00                                                                                            18:00 

 

 

Figure 4. High, moderate, and low CI levels for the network during peak periods 
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Figure 5. High, moderate, and low CI levels for downtown during peak periods 
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Figure 6. Total number of peak period hours exceeding CI levels of 0.3 over three weeks 
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Figure 7. Average CI levels over peak periods with respect to distance from city center 
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Figure 8. Proportions of links at high, moderate, and low CI levels divided by functional 

classification  
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Figure 1. Collection and map matching of smartphone-collected GPS data 

Figure 2. Redefinition of OSM links 

Figure 3. Smartphone application interfaces 

Figure 4. High, moderate, and low CI levels for the network during peak periods 

Figure 5. High, moderate, and low CI levels for downtown during peak periods 

Figure 6. Total number of peak period hours exceeding CI levels of 0.3 over three weeks 

Figure 7. Average CI levels over peak periods with respect to distance from city center 

Figure 8. Proportions of links at high, moderate, and low CI levels divided by functional 

classification 
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