POLYPUBLIE e |

PO'YtGChnique Montréal D'INGENIERIE

Titre:
Title:

Auteur:
Author:

Date:
Type:

Référence:
Citation:

POLYTECHNIQUE

A [
UNIVERSITE o

Heuristic Splitting of Source Code Identifiers

Nioosha Madani

2010

Mémoire ou these / Dissertation or Thesis

Madani, N. (2010). Heuristic Splitting of Source Code Identifiers [Master's thesis,
Ecole Polytechnique de Montréal]. PolyPublie. https://publications.polymtl.ca/294/

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie: . S
PolyPublie URL: https://publications.polymtl.ca/294

Directeurs de
recherche: Giuliano Antoniol

Programme

Advisors:

*|Génie informatique
Program:

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca/
https://publications.polymtl.ca/294/
https://publications.polymtl.ca/294/

UNIVERSITE DE MONTREAL

HEURISTIC SPLITTING OF SOURCE CODE IDENTIFIERS

NIOOSHA MADANI

DEPARTEMENT DE GENIE INFORMATIQUE ET GENIE LOGICIEL
ECOLE POLYTECHNIQUE DE MONTREAL

MEMOIRE PRESENTE EN VUE DE L’OBTENTION
DU DIPLOME DE MAITRISE ES SCIENCES APPLIQUEES
(GENIE INFORMATIQUE)

AVRIL 2010

© Nioosha Madani, 2010.

UNIVERSITE DE MONTREAL

ECOLE POLYTECHNIQUE DE MONTREAL

Ce mémoire intitulé:

HEURISTIC SPLITTING OF SOURCE CODE IDENTIFIERS

présenté par : MADANI, Nioosha

en vue de I’obtention du diplome de : Maitrise €s sciences appliquées

a ¢ét¢ diment accepté par le jury d’examen constitué de :

M. PESANT Gilles, Ph.D., président
M. ANTONIOL Giuliano, Ph.D., membre et directeur de recherche
M. DESMARAIS Michel, Ph.D., membre

ACKNOWLEDGMENT

I thank my supervisor, Dr. Giuliano Antoniol who was really helpful and offered
invaluable assistance, support and guidance. Special thanks to Dr.Yann-Gaél Guéhéneuc
for his supports and assistance; and my deepest gratitude to all my friends, especially
Soccer-lab and Ptidej team members. I wish to express my love and gratitude to my
husband and my beloved families; for their understanding & endless love, through the

duration of my studies.

RESUME

La maintenance regroupe I’ensemble des activités effectuées pour modifier un
logiciel aprés sa mise en opérations. La maintenance est la phase la plus coliteuse du
développement logiciel. La compréhension de programmes est une activité cognitive qui
repose sur la construction de représentations mentales a partir des artefacts logiciels. Les
développeurs passent un temps considérable a lire et comprendre leurs programmes

avant d’effectuer des changements.

Une documentation claire et concise peut aider les développeurs a inspecter et a
comprendre leurs programmes. Mais, 1'un des problémes majeurs que rencontrent les
développeurs durant la maintenance est que la documentation est souvent obsoléte ou
tout simplement pas disponible. Par conséquent, il est important de rendre le code source
plus lisible, par exemple en insistant aupres des développeurs pour qu’ils ajoutent des
commentaires dans leur code et respectent des régles syntaxiques et sémantiques en
écrivant les identificateurs des concepts dans leurs programmes. Mais certains
identificateurs sont constitués de termes des mots qui sont abrégés ou transformés. La
reconnaissance des termes composants les identificateurs n'est pas une tache facile,

surtout lorsque la convention de nommage n'est pas respectée.

A notre connaissance deux familles d’approches existent pour décomposer les
identificateurs : la plus simple considére ’'utilisation du renommage et la présence des
séparateurs explicites. La stratégie la plus compléte est implémentée par 1’outil Samurai
(Enslen, Hill et al. 2009), elle se base sur le lexique et utilise les algorithmes gloutons
pour identifier les mots qui constitue les identificateurs. Samurai est une technique qui
considére que si un identificateur est utilisé dans une partie du code, il est probablement

utilisé dans le méme contexte que son code d’origine (root).

Toutefois, les approches mentionnées ci-dessus ont leurs limites. Premiérement,

elles sont pour la plus part incapables d’associer des sous chaines d’identifiants a des

mots ou des termes; comme par exemple, des termes spécifiques a un domaine ou des
mots de la langue anglais. Ces associations pourrait étre utile pour comprendre le degré
d’expressivité des termes décrit dans le code source par rapport aux artefacts de haut
niveau qui leurs sont associé¢s (De Lucia, Di Penta et al. 2006). Deuxiémement, ils sont
incapables de prendre en compte les transformations de mots, tel que 1’abréviation de

pointeur en pntr.

Notre approche est inspirée de la technique de reconnaissance de la parole. La
décomposition que nous proposons est basée sur une version modifiée de ’algorithme
Dynamic Time Warping (DTW) proposé par Herman Ney pour la reconnaissance de la
parole (Ney 1984) et sur une métrique qui est la distance de Levenshtein (Levenshtein
1966). Elle a été développée dans le but de traiter les limitations des approches
existantes surtout celles qui consistent en la segmentation des identificateurs contenant

des abréviations et a la gestion des transformations des mots du dictionnaire.

L’approche proposée a été appliquée a des identificateurs extraits de deux
programmes différents : JHotDraw et Lynx. Les résultats obtenus ont été comparés aux
oracles construits manuellement et également a ceux d’un algorithme de "splitting" basé
sur la casse. Les résultats obtenus ont révélé que notre approche a un aspect non-
déterministe relatif a 1’établissent des méthodes de transformation appliquées et aux
mots du dictionnaire et aux choix des mots du dictionnaire qui subissent ces
transformations. Ils montrent que 'approche proposée a de meilleurs résultats que celle
basée sur la casse. En particulier, pour le programme Lynx, le Camel Case Splitting n’a
¢t¢ en mesure de décomposer correctement qu’environ 18% des identificateurs,
contrairement a notre approche qui a été capable de décomposer 93% des identificateurs.
En ce qui concerne JHotDraw, le Camel Case splitter a montré une exactitude de 91%

tandis que notre approche a assuré 96% de résultats corrects.

Vi

ABSTRACT

Maintenance is the most costly phase of software life cycle. In industry, the
maintenance cost of a program is estimated at over 50% of its total life cycle costs
(Sommerville 2000). Practical experience with large projects has shown that developers
still face difficulties in maintaining their program (Pigoski 1996). Studies (Corbi 1989)
have shown that over half of this maintenance is devoted to understanding the program

itself. Program comprehension is therefore essential.

Program comprehension is a cognitive activity that relies on the construction of
mental representations from software artifacts. Comprehension is more difficult for
source code (Takang, Grubb et al. 1996). Several tools for understanding have been
developed (Storey 2006); these tools range from simple visual inspection of the text
(such as the explorers of code) to the dynamic analysis of program performance through
program execution. While many efforts focus on automating the understanding of
programs, a significant part of this work must still be done manually, such as: analyzing

the source code, technical reports, and documentation.

A clear and concise documentation can help developers to inspect and
understand their programs. Unfortunately, one of the major problems faced by
developers, during maintenance, is that documentation is often outdated, or not
available. Indeed, developers are often concerned about time and costs constraints,

neglecting to update the documentation of different versions of their programs.

In the source code, identifiers and comments are key means to support
developers during their understanding and maintenance activities. Indeed, identifiers are
often composed of terms reflecting domain concepts. Usually, identifiers are built by
considering a set of rules for choosing the character sequence. Some identifiers are
composed of terms that are abbreviated and transformed of the words. Recognizing the

terms in the identifiers is not an easy task when naming convention is not used.

Vii

In this thesis we will use a technique inspired from speech recognition, Dynamic
Time Warping and meta-heuristic algorithms, to split identifiers into component terms.
We propose a novel approach to identify terms composing identifiers that is organized in

the following steps:

A dictionary of English words is built and will be our source of words. We take
an identifier and look through the dictionary to find terms that are exactly contained in
the identifier. For each word of a dictionary, we will compute the distance between word
and the input identifier. For terms that exactly exist in both dictionary and identifier, the
distance is zero and we obtain an exact splitting of the identifier and the process

terminate successfully.

Other words of the dictionary with non-zero distance may indicate that the
identifier is built from terms that are not exactly in the dictionary and some modification
should be applied on the words. Some words of the dictionary have more characters than
the terms in the identifier. Some transformations such as deleting all vowels or deleting
some characters will be applied on the words of the dictionary. The modification of the
words is applied in the context of a Hill Climbing search. For each new transformed
word, we will calculate its distance to the input identifier via Dynamic Time Warping

(DTW).

If the recently created word reduces the global minimum distance then we add
that word to the current dictionary otherwise another transformation is applied. We will
continue these steps until we reach to the distance of zero or the character number of the
dictionary word become less than three or all the possible transformation have been
applied. The identifier is split with words such that their distances are zero or have the

lowest distance between other words of the dictionary.

To analyze the proposed identifier splitting approach, with the purpose of
evaluating its ability to adequately identify dictionary words composing identifiers, even
in presence of word transformations, we carried out a case study on two software
systems, JHotDraw and Lynx. Results based on manually-built oracles indicate that the

proposed approach outperforms a simple Camel Case splitter. In particular, for Lynx, the

viii

Camel Case splitter was able to correctly split only about 18% of identifiers versus 93%
with our approach, while on JHotDraw, the Camel Case splitter exhibited a correctness
of 91%, while our approach ensured 96% of correct results. Our approach was also able
to map abbreviations to dictionary words, in 44% and 70% of cases for JHotDraw and
Lynx, respectively. We conclude that DTW, Hill Climbing and transformations are

useful to split identifiers into words and propose future directions or research.

CONDENSE EN FRANCAIS

La maintenance est la phase la plus colteuse du développement logiciel. Dans
l'industrie, le colt de maintenance d'un programme est estimé a plus de 50% de son cofit
de développement total (Sommerville 2000). L’expérience pratique, avec de grands
projets, a montré que les développeurs font toujours face a des difficultés dans la
maintenance de leurs programmes (Pigoski 1996). Des études (Corbi 1989) ont prouvé
que plus de la moitié¢ de la maintenance est consacrée a la compréhension du programme

lui-méme. La maitrise de la compréhension des programmes s'avere donc indispensable.

La maintenance regroupe I’ensemble des activités effectuées pour modifier un
logiciel aprés sa mise en opérations. Selon Swanson (Swanson 1976), il existe quatre
types de maintenances : la maintenance corrective qui consiste a corriger des erreurs;
la maintenance perfective qui cherche a ajouter et a modifier des fonctionnalités pour
répondre aux nouveaux besoins de ses utilisateurs; la maintenance adaptative qui est
l'adaptation du programme a un nouvel environnement d'opérations, tels qu’une nouvelle
plateforme matériel ou a un nouveau systéme d'exploitation; et la maintenance
préventive qui est l'effort pour prévenir les problémes futurs. Toutes ces catégories de
maintenance nécessitent des développeurs une compréhension approfondie du

programme.

La compréhension de programmes est une activité cognitive qui repose sur la
construction de représentations mentales a partir des artefacts logiciels. La
compréhension est plus difficile pour les représentations orientées texte (par exemple, le
code source) (Takang, Grubb et al. 1996). Les développeurs passent un temps
considérable a lire et comprendre leurs programmes avant d’effectuer des changements.
Plusieurs outils d’aide a la compréhension ont ét¢ développé (Storey 2006), ces outils
vont de la simple inspection visuelle du texte (tels que, les explorateurs de code) a
I'analyse dynamique de 1'exécution du programme en passant par l'analyse statique du

programme. Bien que beaucoup d'efforts portent sur l'automatisation de Ia

compréhension de programmes, une partie significative de ce travail doit encore se faire

manuellement, tels que : I’analyse du code source, la lecture de rapports techniques et de

la documentation.

Une documentation claire et concise peut aider les développeurs a inspecter et a
comprendre leurs programmes. Mais, I'un des problémes majeurs que rencontrent les
développeurs durant la maintenance est que la documentation est souvent obsoléte ou
tout simplement pas disponible. En industrie, les logiciels évoluent rapidement pour
rester utiles. Les développeurs sont souvent préoccupés par des contraintes (de temps et
de coiits) et négligent la mise a jour de la documentation au fur et & mesure que les

versions de leurs programmes changent.

Depuis quelques années, certains auteurs (Takang, Grubb et al. 1996; Anquetil
and Lethbridge 1998; Merlo, McAdam et al. 2003; Lawrie, Morrell et al. 2006; Lawrie,
Morrell et al. 2007) reconnaissent que le code source d'un programme est une source
d'information importante et fiable pour la compréhension du programme. Par
conséquent, il est important de rendre le code source plus lisible, par exemple en
insistant auprés des développeurs pour qu’ils ajoutent des commentaires dans leur code
et respectent des régles syntaxiques et sémantiques en écrivant les identificateurs des
concepts dans leurs programmes. En effet, les identificateurs sont souvent composés de
termes reflétant les concepts du domaine; ils sont donc trés utiles pour les activités de
compréhension. Ils sont construits en respectant un ensemble de régles, pour choisir la
séquence de caractéres la plus représentative du concept. Mais certains identificateurs
sont constitués de termes des mots qui sont abrégés ou transformés. La reconnaissance
des termes composants les identificateurs n'est pas une tache facile, surtout lorsque la

convention de nommage n'est pas respectée.

Dans le cadre de [I’analyse des identificateurs, Deilenbock et
Pizka(Deiflenbock and Pizka 2005) ont proposé deux régles de construction d’
identificateurs concis et cohérents. Les identificateurs qui ne respectent pas ces deux

regles augmentent la complexité de compréhension et ses colts associés. Ces

xi

identificateurs sont souvent identifiés a 1'aide des techniques de Deiflenbock et Pizka qui
sont basées sur un mapping entre le code source et la documentation. Dans un autre
travail, Tonella et Caprile (Caprile and Tonella 1999) affirment que la maintenance d’un
code source doit améliorer la lisibilit¢ des identificateurs pour les rendre plus
significatifs et compréhensibles. Ils ont aussi proposé une approche semi-automatique
pour la restructuration de noms des identificateurs afin de les rendre auto-descriptive

(Caprile and Tonella 2000).

Plusieurs travaux (Antoniol, Canfora et al. 2002; Marcus and Maletic 2003;
Maletic, Antoniol et al. 2005) existent pour étudier I'utilité des identificateurs dans la
tracabilité entre la documentation et le code source. De nombreux chercheurs (Jiang
and Hassan 2006; Lawrie, Morrell et al. 2006; Fluri, Wursch et al. 2007) affirment que
l'analyse des identificateurs et des commentaires peut aider a associer les concepts de
haut niveau d’abstraction a ceux du code source, car les identificateurs encapsulent
beaucoup d'informations et de connaissances des développeurs durant I'écriture du code.
La tracabilité d’informations permet aux développeurs de comprendre les relations et les
dépendances entre les divers artéfacts logiciels. Les identificateurs et les commentaires

reflétent les concepts du domaine du logiciel.

Plusieurs chercheurs (Takang, Grubb et al. 1996; Anquetil and Lethbridge 1998;
Merlo, McAdam et al. 2003; Lawrie, Morrell et al. 2006; Lawrie, Morrell et al. 2007)
ont étudié¢ I'impact des commentaires et des identificateurs sur la compréhension des
programmes. Leurs études ont montré que la bonne utilisation des identificateurs et
commentaires peut influencer significativement la compréhension d’un programme. Les
chercheurs ont étudié également la qualit¢ des commentaires et des identificateurs
figurant dans le code source durant les taches de compréhension de maintenance. Ils ont
conclu que les identificateurs peuvent étre trés utiles si ils sont choisis efficacement pour
refléter la sémantique et les roles des entités nommées. La structure du code source et
des commentaires aident a la compréhension des programmes et réduit ainsi les cotits de

maintenance. Leurs études ont porté sur le rapport (ratio) entre le code source et les

xii

commentaires durant tout 1’historique du projet, ainsi que les entités qui sont presque

toutes commentées.

A notre connaissance deux familles d’approches existent pour décomposer les
identificateurs : la plus simple considére 'utilisation du renommage et la présence des
séparateurs explicites. La stratégie la plus compléte est implémentée par 1’outil Samurai
(Enslen, Hill et al. 2009), elle se base sur le lexique et utilise les algorithmes gloutons
pour identifier les mots qui constitue les identificateurs. Samurai est une technique qui
considere que si un identificateur est utilisé dans une partie du code, il est probablement

utilisé dans le méme contexte que son code d’origine (root).

Toutefois, les approches mentionnées ci-dessus ont leurs limites. Premiérement,
elles sont pour la plus part incapables d’associer des sous chaines d’identifiants a des
mots ou des termes; comme par exemple, des termes spécifiques a un domaine ou des
mots de la langue anglais. Ces associations pourrait étre utile pour comprendre le degré
d’expressivité des termes décrit dans le code source par rapport aux artefacts de haut
niveau qui leurs sont associés (De Lucia, Di Penta et al. 2006). Deuxiémement, ils sont
incapables de prendre en compte les transformations de mots, tel que 1’abréviation de

pointeur en pntr.

Notre approche est inspirée de la technique de reconnaissance de la parole. La
décomposition que nous proposons est basée sur une version modifiée de I’algorithme
Dynamic Time Warping (DTW) proposé par Herman Ney pour la reconnaissance de la
parole (Ney 1984) et sur une métrique qui est la distance de Levenshtein (Levenshtein
1966). Elle a été développée dans le but de traiter les limitations des approches
existantes surtout celles qui consistent en la segmentation des identificateurs contenant

des abréviations et a la gestion des transformations des mots du dictionnaire.

Notre approche décompose les identificateurs contenant n'importe quels mots
transformés. Le processus de segmentation se fait en une seule itération, si les mots qui

composent 1’identificateur a traiter figurent dans le dictionnaire en entrée. Sinon, nous

xiii

faisons appel aux transformations. Nous appliquons un ensemble de transformations
successives sur les mots du dictionnaire en nous appuyant sur un algorithme de descente
jusqu’a ce que nous puissions faire la correspondance entre les termes constituant
I’identificateur et ces mots transformés. La correspondance exacte est atteinte si la
distance entre un mot du dictionnaire et le terme traité est nulle. Nous avons développé
cinq transformations ; nous citons a titre d’exemple celle portant sur la suppression de
toutes les voyelles contenues au niveau d’un mot choisi du dictionnaire, celle portant sur

la suppression des m derniers caracteres et puis la suppression d’un caractere aléatoire.

Un mot transformé est considéré comme étant un nouveau mot du dictionnaire
courant si et seulement si il réduit la distance. Sinon et si il reste encore des
transformations a appliquer et la longueur du mot transformé est inférieure ou égale a
trois caracteres nous appliquons le méme processus de segmentation. Sinon, si on atteint
le nombre maximal d’itérations et que la distance est non nulle, le processus se termine

sur un échec.

La nouvelle approche s’inspire du fait que les développeurs forment les
identificateurs en appliquant un nombre de régles et des transformations sur les mots;
ces dernicres sont traitées a 1’aide d’un algorithme de descente de Hill Climbing
(Michalewicz and Fogel 2004) apres sélection des individus (mots du dictionnaire) a
I’aide d’un operateur de sélection qui est dans notre cas une Roulette biaisée dont
l'intérét apparait au niveau des algorithme génétique et évolutionnistes pour sélectionner
les individus appropriés a partir d'une population. Il est a noter que le Hill Climbing est
un algorithme de recherche locale qui par d’une solution initiale puis tente d’améliore
cette solution dans un espace de recherche. A chaque itération, le coiit de la solution
trouvée est comparée a celle trouvée. Si elle est meilleure, la nouvelle solution remplace
la solution actuelle. De méme, le voisinage de la nouvelle solution est étudié. Si une

meilleure solution est trouvée, nous opterons pour la nouvelle solution, et ainsi de suite.

Notre approche utilise un dictionnaire et des identificateurs extraits du code du

logiciel ; le dictionnaire est compos¢ des mots extraits d'un glossaire disponible sur

Xiv

I’Internet, des mots anglais, et des termes les plus fréquents dans le code source du
logiciel a étudier. La segmentation est effectuée par 1’algorithme DTW qui a été congu
dans le but d’étudier 1’alignement entre deux séries temporelles. Il a ét¢ adapté dans
notre cas pour trouver le chemin de colit minimal entre I’identificateur et les mots du
dictionnaire. En effet, le calcul de la distance se fait en initialisant pour chaque mot du
dictionnaire une forme de référence qui est une matrice ou 1’axe des abscisses représente
le mot a décomposer et I’axe des ordonnées représente le mot du dictionnaire. Chaque
matrice est calculée en faisant une comparaison entre les caractéres correspondants
appartenant a 1’identificateur et au mot du dictionnaire. La derniére cellule de la matrice
de colt représente la distance globale minimale entre les identificateur et les mots du
dictionnaire. Cette dernieére est basée sur une distance de Levenshtein qui refléte le
nombre de suppressions, d’insertions ou de substitutions nécessaires pour transformer

une chaine de caractéres en une autre chaine de caractéres.

L’approche proposée a été appliquée a des identificateurs extraits de deux
programmes différents : JHotDraw et Lynx. Les résultats obtenus ont été comparés aux
oracles construits manuellement et également a ceux d’un algorithme de "splitting" basé
sur la casse. Les résultats obtenus sont généralement encourageants. L’analyse de nos
résultats a été faite suite a une étude empirique dans 1’objectif de répondes aux questions
de recherche suivantes: Quel est le pourcentage d'identificateurs correctement
décomposes par I'approche proposée ? Comment I'approche proposée performe par
rapport au Camel splitter ? Quel est le pourcentage d’identificateurs contenant des

abréviations que notre approche est en mesure de décomposer ?

Les questions de recherche ci-dessus visent a comprendre si 1'approche proposée
contribue a décomposer les identificateurs. Ainsi, on suppose implicitement qu’étant
donné un identificateur, il existe une décomposition exacte de ce dernier en des termes et
des mots qui, éventuellement aprés des transformations et une fois concaténés,

composent l'identificateur.

XV

Les résultats obtenus ont révélé que notre approche a un aspect non-déterministe
relatif a 1’établissent des méthodes de transformation appliquées et aux mots du
dictionnaire et aux choix des mots du dictionnaire qui subissent ces transformation. Ils
montrent que l'approche proposée a de meilleurs résultats que celle basée sur la casse.
En particulier, pour le programme Lynx, le Camel Case Splitting n’a été en mesure de
décomposer correctement qu’environ 18% des identificateurs, contrairement a notre
approche qui a été capable de décomposer 93% des identificateurs. En ce qui concerne
JHotDraw, le Camel Case splitter a montré une exactitude de 91% tandis que notre

approche a assuré 96% de résultats corrects.

Nos futurs travaux de recherche portent sur 1'évaluation de notre approche sur
d’autres programmes et sur I’introduction de nouvelles heuristiques améliorées pour la
sélection des mots issus du dictionnaire ainsi que le choix des transformations a
appliquer. Le fait de combiner notre approche de recherche avec celle de Enslen et al.
(Enslen, Hill et al. 2009) en limitant la recherche aux mots utilisés dans la méme
méthode, la méme classe ou le méme paquetage sera aussi considérée comme direction

de recherche.

Pour conclure, nous pouvons dire que nos travaux de recherche ont été publiés a
la 14 Conférence européenne sur la rétro-conception et la maintenance (CSMR) en mars
2010. L'article publié est intitulé “Recognizing Words from Source Code Identifiers
using Speech Recognition Techniques”. Il a été rédige par: Nioosha Madani, Latifa
Guerrouj, Massimiliano Di Penta, Yann-Gaél Guéhéneuc et Giuliano Antoniol. Cet

article a eu le prix du meilleur article de la conférence.

XVi

TABLE OF CONTENTS

ACKNOWLEDGMENT ...ttt ettt sttt sse e ene e il
RESUME ...ttt ssse sttt iv
ABSTRACT ..ttt ettt sttt et ettt s et et et e e st e bt entesaeeseeneens vi
CONDENSE EN FRANCAISooiiiieieeeeeeeeeeeee e ses s seseesenanens ix
TABLE OF CONTENTS.ooteieeietteeeeee ettt sttt ettt e e eneas XVi
LIST OF TABLES ...ttt ettt Xviil
LIST OF FIGURES ...ttt sttt s Xix
LIST OF INITIALS AND ABBREVIATIONScccoiiiiiieeeeee e XX
CHAPTER 1 INTRODUCTIONcoiiieiieiecieie ettt ae e 1
CHAPTER 2 RELATED WORKcoiiiiiiiiieieeeee et 3

2.1 Identifier ANALYSIS......ccouieriieiieiie ettt ettt e sbe e 3

2.2 Traceability Links between Source Code and Documentation........................... 6

23 Conceptual Cohesion and Coupling.........c.cceeeevuerieniiiieniinieninieneeeeeneeees 7

2.4 Effects of Comments and Identifier Names on Program Comprehensibility7

2.5 Identifier SPITINGc.coiieeiiieeiieeieecie ettt ettt e ere et ebeereeesaeeaeeennees 11
CHAPTER 3 OUR IDENTIFIER SPLITTING APPROACHccccovvieirieenee 14
3.1 D INItIONS. ...uiiiiiiieciie ettt e e e e e e e e et e e e rreeeaaeeens 14
3.2 GOl ettt 14

TR B 1<) o 1SRRI 15
3.4 Dynamic Programming Algorithmcccccoeriiiiiiiniieiiieieeeecee e 17
341 DTW DEfINItION oottt 18
342 DTW Templatecocueriiiiiiiiieiieieeiese ettt 18

34.3 DTW OpPtMIZAtIONSeeruveerieriieeiienieeieentteereesteeeseesseesseesseessseenseessseenne 19

XVii

344 Weighting FUNCHONcooiiiiiiiiiciieie e 20
345 Computation PrOCESSccceevvieiiiieiiiiieeieecieeie ettt 21
34.6 DTW for Connected Word Recognition...........ccceeeeveeenieeinieeeeieesiee e 21
3.4.7 InitialiZation STEPccueeiiriiiiiniiiieeeee s 25
3.4.8 Distance Computation in Forwarding Template:.............cceeeeeiieniennnnne. 25
349 Trace BaCK STEP c.veoouiiiiieciiieiieeiieetteee ettt 29
3.5 Levenshtein Edit DIiStancecoocueeiieiiiiiiiiiieeeeeeeeeeeeeee e 30
3.6 Dictionary Word Selection and Roulette Wheel...........c.cccocceviriiniininiinnnn. 33
3.6.1 Roulette Wheel Rescaling...........ccceevieriiiiiiiniieiiecie e 34
3.6.2 Roulette Wheel Normalization...........c.cccceeeviierieniienieniieieeeieesee e 35
3.6.3 Roulette Wheel Selection............coceeiiiiiiiiiiniiiiieneeeeeeee e 35
3.7 Word Transformation RUIESc.cceecuiiiiiiiiiiieeiieccieeeee e 37
CHAPTER 4 EXPERIMENTAL STUDY AND RESULTScceoieiieieeeieeeenene 42
4.1 SUDJECt PrOZIAMS ..ottt et 43
4.2 Research QUESTIONScccuuiiiiiiiiiie et e araee e 43
4.3 Analysis Methodccciiiiiiiiiiiiiee e 44
4.4 StUAY RESULILS ..cueiieiiiiiiecieee ettt ettt et et ene 47
4.5 DISCUSSION ..cuvietiieiiieitieeteestte et eetteeteestteebeesseessbeesseessseesseessseesaessseenseessseenseens 50
4.6 Threats to Validity ...cc.coeeiieeciiiicieece ettt 52
CHAPTER S CONCLUSION......coiieiieieiteie ettt ettt ese e eaeenees 54
5.1 SUMIMATY ..ttt et sttt e e ene 54
5.2 LIMIEALIONS .eovviiiieiiieiieeieeeite et eeite ettt e et et e et e esteesnbeessaeenbeesaeeesseenssesnseesnnaans 56
53 FUture WOtkooiiiii e 56

REFERENCESottt s 58

XViii

LIST OF TABLES
Table 1 — FItNess taDIEcooviiiiiiiieiiiieeee et 35
Table 2 — Roulette wheel Word’s TE€ZI0Neeviiiiiiiiiieie et 36
Table 3 — Main characteristic of the two analyzed systems.........ccccceevveeevveencieencreeennen. 42
Table 4 — Percentage of correct classifications (RQ1)......ccceeciieiiieiieniiniiieniecieecieeen 48
Table 5 — Performance of the Camel Case Splitter........c.occveviieviiiniienieiiieieeieeee e 48

Table 6 — JHotDraw: Results and Statics for selected Identifiers in ten split attempts. .. 50

XiX

LIST OF FIGURES

Figure 1 - APPIOACh STEPS ..ccuveriiriieiiiiinieeeie ettt s s 16
Figure 2 - Example of DTW Templatecccccevirieiinineeineeeeinieeeese e e 18
Figure 3 -Connected Word Recognition Problem (Ney 1984)cccoovveeveninieenininencneeeenens 22
Figure 4 — (a) Within-template Transition Rules.ccceevirerieriinieninineeeeeeee s 23
Figure 5 - Connected Word Recognition (Ney 1984)......cccvveeienineeiinineeineeeeseseeeese e 25
Figure 6 - Distance CalCulationc.ceeceeriririeeriiieene e 27
Figure 7 - Forwarding and Back Pointer MatriXesc.ccocvreeverereeseneseeneneneeneseseesneseeeneens 29
Figure 8 - Splitting IAENtifierscecerrireeriiiieieier e e 30
Figure 9 - MatrixX 0f COMPATISOM ..c.virveeeerririeeieriisrietesie ettt sre e e e nesre e e e 31
Figure 10 - RoULEtte WHEEL........coeeiiiiiriieiinieneeer et 34
Figure 11 - Roulette Wheel Word's Probability........c.cceccevirieieriineesenineeeneneeeneseee s 36
Figure 13 - Phase I of Research Question 1 (RQ1).....cocuiiiiiiiiiiiieieeeeeeeeeeeee e 45

Figure 14- Phase II of Research Question 1 (RQ1)cocuiiiiiiiiiiiiiieeeeeseereeeesee et 46

BP

DP
DTW
HC
IR
LSI
LD
OR
RQ
SBSE

SA

LIST OF INITIALS AND ABBREVIATIONS

Back Points

Distance

Dynamic Programming
Dynamic Time Warping
Hill Climbing
Information Retrieval
Latent Semantic Indexing
Levenshtein Edit Distance
Odds Ratio

Research Question

Search Based Software Engineering

Simulated Annealing

XX

CHAPTER1 INTRODUCTION

One of the problems that developers face when understanding and maintaining a
software system is that, very often, documentation is scarce, outdated, or simply not
available. This problem is not limited to open source projects but is also true in industry: as
systems evolve, documentation is not updated due to time pressure and the need to reduce
costs. Consequently, the only up-to-date source of information is the source code and
therefore identifiers and comments are key means to support developers during their
understanding and maintenance activities. The paramount role of program identifiers in
program understanding, traceability recovery, feature and concept location tasks motivate the

large body of relevant work in this area.

In the following, we will refer to any substring in a compound identifier as a term,
while an entry in a dictionary (e.g., the English dictionary) will be referred to as a word. A
term may or may not be a dictionary word. A term carries a single meaning in the context
where it is used; while a word may have multiple meanings (upper ontologies like WordNet'
associate multiple meanings to words).

Indeed, identifiers are often composed of terms reflecting domain concepts (Lawrie,
Morrell et al. 2006), referred to as ““hard words™. Hard words are usually concatenated to
form compound identifiers, using the Camel Case naming convention, €.g., drawRectangle,
or underscore, e.g., draw_rectangle. Sometimes, no Camel Case convention or other
separator is used. Also, acronyms and abbreviations may be part of any identifier, e.g.,
drawrect or pntrapplicationgid. The component words draw, application, the abbreviations
rect, pntr, and the acronym gid (i.e., group identifier) are referred to as ““soft-words”’(Lawrie,
Feild et al. 2006).

This thesis proposes a novel approach to segment identifiers into composing words
and terms. The approach is based on a modified version of the Dynamic Time Warping
(DTW) algorithm proposed by Ney for connected speech recognition (Ney 1984) (i.e., for
recognizing sequences of words in a speech signal) and on the Levenshtein string edit-

distance (Levenshtein 1966). The approach assumes that there is a limited set of (implicit

! http://wordnet.princeton.edu

and—or explicit) rules applied by developers to create identifiers. It uses words
transformation rules, plus a hill climbing algorithm (Michalewicz and Fogel 2004) to deal

with word abbreviation and transformation.

The main contributions of this thesis are the following:
1) A new approach to split identifiers, inspired from speech recognition. The
approach overcomes limitations of previous approaches and can split identifiers composed of

transformed words, regardless of the kind of separators;

2) Evidence that the approach can be used to map transformed words composing

identifiers to dictionary words and, therefore, to build a thesaurus of the identifiers;

3) Results of applying our approach on two software systems belonging to different
domains, JHotDraw (written in Java) and Lynx (written in C). Results based on manually-
built oracles indicate that the approach can correctly split up to 96% of the identifiers and

can even be used to identify errors in the oracle.

This thesis is organized as follows: The next chapter summarizes relevant works and
relates our work to the existing literature. Analyzing identifiers, splitting identifiers,
recovering traceability links between source code and documentation, and also measuring
the conceptual cohesion and coupling are discussed in this chapter. In Chapter 3, we
describe the novel approach to split identifiers, also reporting a primer on Ney’s connected-
words recognition algorithm (Ney 1984). Chapter 4 reports an empirical study aimed at
evaluating the proposed approach. We report results from our experimental study carried out
to analyze the proposed identifier splitting approach, with the purpose of evaluating its
ability to adequately identify dictionary words composing identifiers, even in presence of

word transformations. Finally, Chapter 5 concludes the thesis and outlines future work.

CHAPTER 2 RELATED WORK

Program comprehension is the activity of building mental abstraction from software
artifacts. Program comprehension is an essential and central part of reuse, maintenance, and
reverse engineering, and many other activities in software engineering. Often, a large
fraction of maintenance time is spent reading code to understand what functionality of the

program it implements.

Comprehension of the code is defined by Biggerstaff et al. (Biggerstaff, Mitbander et
al. 1993) as follows: “A person understands a program when he or she is able to explain the
program, its structure, its behavior, its effects on its operation context, and its relationships
to its application domain in terms that are qualitatively different from the tokens used to

construct the source code of the program”.

Developers and maintainers face the challenging task of understanding of the system
when the code is not sufficiently documented. Understanding of an existing system is a time
consuming activity especially when its documents are out-dated or do not exist. Then
software maintainers must study the source code of the software systems (Sulaiman S.
2002). Indeed the only up-to-date source of information is the source code. In the source
code, identifiers and comments are key means to support developers during their

understanding and maintenance activities.

2.1 Identifier Analysis

Developers use two sources of domain information such as identifier names and
comments for understanding the programs. Identifiers constructed by developers may
contain useful information that is often the starting point for the program comprehension

activities.

Well-formed variable names, as described by Deiflenbock and Pizka, can improve
code quality (Deilenbock and Pizka 2005). Deilenbdck and Pizka highlighted that proper
identifiers improve software quality. These authors believe that it is essential that the
identifiers and comments contain the concept that they represent. They introduced two rules
for creating well-formed identifiers: conciseness and consistency. In order to verify the
conciseness and consistency of identifiers, they provided a mapping from identifiers to the
domain of concepts. Identifiers that are not concise or consistent cause a complexity in

comprehension.

The motivation for their work is the observation that “lousy naming in one place
spoils comprehension in numerous other places”, while the basis for their work is found in
the quote “research on the cognitive processes of language and text understanding shows that
it is the semantics inherent to words that determine the comprehension process”(Deillenbock

and Pizka 2005).

More in detail, Deilenbock and Pizka define three rules, one for concise and two for
consistent identifier names. The authors name an identifier a concise identifier if its
semantics exactly match the semantics of the concept it is used to represent. For example,
drawlInputRectangle concisely represents the concept of drawing an input rectangle. A
related notion, correctness, allows an identifier to represent a more general concept. For
example, drawRectangle correctly but not concisely represents the concept of drawing a
rectangle but not the input rectangle. While the identifier of foo neither correctly nor

concisely represents the concept.

Homonyms and synonyms are two aspects which cause inconsistencies in identifiers.
When two or more words spelled and pronounced alike but different in meaning, they are a
homonymous (e.g., marc, mark, marquee or root, route). A synonym is one of two or more
words or expressions that have the same or nearly the same meaning in some or all senses
(e.g., search, seek, look for). Identifiers that fail to be concise or consistent increase the

comprehension complexity and its associated costs. Conciseness and consistency can be

identified via Deiflenbock and Pizka’s techniques that provide a mapping from identifiers to

concepts.

According to Tonella and Caprile (Caprile and Tonella 1999; Caprile and Tonella
2000), identifiers are one of the most important sources of information about system
concepts. Tonella and Caprile analyze the lexical, syntactical, and semantical structure of
function identifiers by means of a segmentation technique, a regular language, and a
conceptual classification. Caprile and Tonella then investigate the structure of function
identifiers in C programs. They build a dictionary of identifier fragments and then propose a
grammar that describes and shows the roles of the fragments. They use concept analysis to
perform a classification of the words in the dictionary. The analysis involves breaking
identifiers into well-separated words (i.e., hard words). The restructuring involves two steps.
First, a lexicon is standardized by using only standard terms as composing words within
identifiers. Second, the arrangement of standard terms into a sequence must respect a
grammar that conveys additional information. Tonella and Caprile believe that these types of
analyses are useful in the context of reverse engineering of existing systems. In fact,
“renovation of old code may include making identifiers more meaningful and understandable

and its comprehension may exploit the information extracted” (Caprile and Tonella 1999).

In another work, Caprile and Tonella proposed a semiautomatic technique for the
restructuring of identifiers with the goal of improving their meaningfulness and making

identifiers self descriptive (Caprile and Tonella 2000).

Also, methods to refactor identifiers were proposed in (Demeyer, Ducasse et al.
2000). The authors proposed heuristics for detecting refactorings by calculating metrics over
successive versions of a system. They validated their approach with three case studies for
which multiple versions are available with the goal of investigating how information of

identifying refactoring helps in program comprehension.

2.2 Traceability Links between Source Code and Documentation

Traceability information helps software engineers to understand the relationships and
dependencies among various software artifacts. Several papers proposed in the literature to
recover traceability links between source code and documentation. In various software
activities, such as program comprehension, software maintenance, and software verification
and validation, traceability between the free-text documentation and its source code is an
essential information. Researchers have studied the usefulness of identifiers to recover
traceability links (Antoniol, Canfora et al. 2002; Marcus and Maletic 2003; Maletic,
Antoniol et al. 2005). They believe that analysis of the identifiers and comments can help to
associate high-level concepts with program concepts and vice-versa because they capture

information and developers’ knowledge while writing the code.

Antoniol et al. (Antoniol, Canfora et al. 2002) used an Information Retrieval (IR)
method to recover traceability links between free-text documentation and source code. They
applied their approach in tracing C++ and Java source code units, manual pages, and
functional requirements. In their method, identifiers in the source code are assumed to be
meaningful names that are derived from the application, i.e., identifiers share the semantics
of the problem domain. They proposed two-phase approach: first they prepared the
document for retrieval by indexing its vocabulary extracted from the document; second they
extracted and indexed a query for each source code component by parsing the source code
component and splitting the identifiers to the composed word. With this method, Antoniol et
al. (Antoniol, Canfora et al. 2002) computed the similarity between queries and documents

and returned a ranked list of documents for each source code component.

Marcus and Maletic (Marcus and Maletic 2003) proposed to use IR methods to
support software engineering tasks and to recover source code to documentation links. They
presented a method to recovery traceability links between documentation and source code,

using an information retrieval method, namely Latent Semantic Indexing (LSI).

2.3 Conceptual Cohesion and Coupling

Identifiers and comments reflect concepts from the domain of the software system. In
object-oriented systems, classes contain these identifiers and comments.
Analyzing the identifiers and comments in classes can be used to measure the cohesion in a
system. Systems that contain high cohesion and low coupling among the classes facilitate

comprehension, testing, reusability,and maintainability.

Poshyvanyk and Marcus (Poshyvanyk and Marcus 2006) worked on a set of
operational measures for the conceptual coupling of classes in object-oriented systems,
which formulates and captures new dimensions of coupling, named conceptual coupling,
based on the semantic information obtained from the source code, encoded in identifiers and
comments. They measured the strength of conceptual similarities among methods of
different classes. They used information retrieval techniques to model and analyze the
semantic information embedded through comments and identifiers. Their results show that
the conceptual coupling captures new dimensions of coupling, which are not captured by

existing coupling measures.

Marcus et al. (Marcus, Poshyvanyk et al. 2008) propose a new measure for the
cohesion of classes in Object-Oriented software systems based on the analysis of the
unstructured information embedded in the source code, such as comments and identifiers.
The new measure named the Conceptual Cohesion of Classes (C3) captures the conceptual
aspects of class cohesion. It measures how strongly the methods of a class relate to each
other conceptually. They used Latent Semantic Indexing to extract this information for

cohesion measurement.

2.4 Effects of Comments and Identifier Names on Program
Comprehensibility

Many researchers investigated the effects of comments and identifiers on program

comprehension (Takang, Grubb et al. 1996; Anquetil and Lethbridge 1998; Merlo, McAdam

et al. 2003; Lawrie, Morrell et al. 2006; Lawrie, Morrell et al. 2007). They showed that

effective use of comments and identifiers can significantly increase program comprehension.

Takang et al. (Takang, Grubb et al. 1996) investigated the combined impact of
comments and identifiers on program comprehension using of controlled experimentation
based on existing program comprehension theories. They note that “ The quality of identifier
names is an issue that merits closer consideration and exploration in its own right” (Takang,
Grubb et al. 1996). Takang and his colleagues conducted an experiment using 89
undergraduates in Computer Science who studied a program for 50 minutes and used both an
objective and subjective means of assessing comprehensibility. They tested different
hypotheses:

1) Commented programs were more understandable than non-commented ones.

2) Programs that contain full identifiers are more understandable than those with

abbreviations.

3) The combined effect of comments and full identifiers was more understandable

than either independently.

In this experiment, the authors noted that: “the impact of identifier names on comprehension
of small or familiar programs might not be significant enough to be reflected in the test

scores.”

Lawrie et al. (Lawrie, Morrell et al. 2007) studied the effect of identifier structure on
developers’ ability to manipulate code. They studied two hypotheses:

1) Well-constructed abbreviations and full natural-language identifiers help

source code comprehension when compared to less informative identifiers.

2) Well-constructed abbreviations and full natural-language identifiers help
developers’ recall when compared to less informative identifiers.
They investigated if “the initials of a concept name provide enough information to represent

the concept? If not, and a longer identifier is needed, is an abbreviation satisfactory or does

the concept need to be captured in an identifier that includes full words?* Their results

showed that full-word identifiers lead to the best program comprehension.

Lawrie et al. (Lawrie, Morrell et al. 2006) studied the effect of identifiers (three
levels of identifier quality that are full words, abbreviations, and single letters) in source
code comprehension. They investigated two hypotheses: first, schooling and people with
more work experienced comprehend the source code better. Second, gender plays a great
role in confidence but not comprehension of the source code. They considered that if using
full words identifier helps program comprehension over the abbreviated identifiers, then it is
recommended to build tools that extract information from identifiers; for example, applying
a standard dictionary. They noted that: “better comprehension is achieved when full word
identifiers are used rather than single letter identifiers as measured by description rating and
confidence in understanding. It also shows that in many cases abbreviations are as useful as

the full word identifiers”.

Lawrie et al. (Lawrie, Feild et al. 2006) studied the restriction and extension of
Deillenbock and Pizka’s rules that is computable without a mapping from names to concepts.
They define a syntax-based conciseness and consistency that does not require an expert-
constructed mapping from identifiers to concepts. They performed two case studies. First,
they considered all conciseness and consistency failures from two small programs; they then
compared the output of the tool to a human oracle. Second, they considered a sampling of
the conciseness and consistency failures from the larger program eMule, a 170 KLoC C++
program. Finally, a longitudinal study addressed the question “does evolution introduce
conciseness and consistency failures?” They found that full word identifiers lead to the best
comprehension; although, there is no statistical difference between full words and

abbreviations.

Researchers have also studied the quality of source code comments and the use of
comments and identifiers by developers during understanding and maintenance activities

(Jiang and Hassan 2006; Lawrie, Morrell et al. 2006; Fluri, Wursch et al. 2007). They all

10

concluded that identifiers can be useful if carefully chosen to reflect the semantics and role
of the named entities. Structure of the source code and comments help program

comprehension and therefore reduce maintenance costs.

Fluri et al. (Fluri, Wursch et al. 2007) applied an approach to map code and
comments to study their co-evolution over multiple versions. They investigated whether
source code and associated comments are really changed together along the evolutionary
history of three open source systems, ArgoUML, Azureus, Eclipse, and JDT Core. Their
study focused on the ratio between the source code and comments over the history of
projects and the entities that are most likely to be commented, e.g., classes, methods, and
control statements. They noticed that comment density, the percentage of comment lines in a
given source code base, is a good predictor of maintainability and hence survival of a
software project. Specifically, they observed whether the comment density remains stable
over time and whether developers maintain a strong commenting discipline over a project’s
lifetime. Regarding the comment ratio over a project’s lifetime they find that it does not stay

at a stable value.

Jiang and Hassan (Jiang and Hassan 2006) studied source code comments in the
PostgreSQL project over time. They measure how many header comments and non-header
comments were added or removed to PostgreSQL over time. Header comments are
comments before the declaration of a function; whereas non-header comments are all other
comments residing in the body of a function or trailing the function. They found that “apart
from the initial fluctuation due to the introduction of a new commenting style; the
percentage of functions with header and non-header comments remains consistant
throughout the development history”. They mentioned that the percentage of commented
functions remains constant except for early fluctuation due to the commenting style of a
particular active developer. A crucial role is recognized to the program lexicon and the
coding standards in the so-called naturalization process of software immigrants (Sim and

Holt 1998).

11

2.5 Identifier Splitting

The first step in analyzing words from identifiers requires splitting identifiers into
their constituent words. Two families of approaches exist to split compound identifiers: the
simplest one assumes the use of the Camel Case naming convention or the presence of an
explicit separator. A more complex strategy is implemented by the Samurai tool and relies
on a lexicon and uses greedy algorithms to identify component words (Enslen, Hill et al.
2009). Camel Case is a naming convention in which a name is formed of multiple words that
are joined together as a single word with the first letter of each of the multiple words
capitalized so that each word that makes up the name can easily be read. The name derives
from the hump or humps that seem to appear in any Camel Case name for example,

FirstYearSalary or numberOfDays use camel case rules.

The advantage of Camel Case is that, in any computer system where the letters in a
name must be contiguous (no spaces), a more meaningful name can be created using a
descriptive sequence of words without violating the programming language syntax and
grammar. Java programmers often use Camel Case, where words are identified by uppercase
letters or non-alphabetic characters. In cases that multi-word identifiers use the coding
conventions such as camel casing and non-alphabetic characters; splitting of the identifier
into their constituent word is possible via software analysis tools that use natural language
information rely on coding conventions. However, there are some cases where existing

coding conventions break down (e.g. serialversionuid, AST Visitor, GPSstate).

For any identifier, there are four possible cases to consider:
1- Character in place i is lowercase and character in place j is uppercase (e.g., getString)
2- Character of i is upper case and character of j is lower case (e.g. GPSState)
3- Both characters of i and are lower case (e.g., newlen)

4- Both characters of i and j are upper case (e.g. FILLRECT)

12

Case 1 is the straightforward Camel Case without abbreviations. Case 2, follows
Camel Case but, in some cases, it can cause an incorrect splitting (e.g., get MA Xstring, GP
Sstate). Samurai (Enslen, Hill et al. 2009), refer to cases 3 and 4 of the previous itemize , as
the same-case token splitting problem. In these two cases the programmer has not used any
camel case or naming convention, thus it is not easy to find out special rules to split these

kinds of identifiers.

Samurai (Enslen, Hill et al. 2009) is a technique and a tool that assumes that an
identifier is composed of words used (alone) in some other parts of the system. It therefore
uses words and word frequencies, mined from the source code, to determine likely splitting
of identifiers. Its hypothesis is that “the strings composing multi-word tokens in a given
program are most likely used elsewhere in the same program or in other programs. The
words could have been used alone or as part of another token”. Thus Samurai uses string
frequencies in the system to determine splits in the identifier. Samurai mines string
frequencies information from the source code and builds two tables of frequencies. The local
table consists of the numbers of occurrence of each unique sting in the current source code
and a global frequency table is built from the sets of strings extracted from a large corpus of
systems. These two tables of frequencies help the algorithm of Samurai to split multi-word
identifiers involving Camel Case (e.g., getWSstring) and same case multi-words (e.g.,

serialversionuid).

In its first step, for each identifier, Samurai executes the mixedCaseSplit algorithm
and splits the token by special character and digits and via splitting of the lowercase to upper
case characters. In this algorithm each mixed-case alphabetic substrings is tested to choose
from straightforward camel case splitting before the last upper case letter (e.g., “AST
Visitor”, “GP Sstate”) or the alternate split between the last upper case letter and the first
lower case letter (e.g., “ASTV isitor”, “GPS state”). This decision is determined via
comparing the frequency of the right hand side of the split in the program under analysis and

in a more global scope of a large set of programs.

13

The output of the mixedCaseSplit algorithm can be either (1) all lower case or (2) all
upper case or (3) a single upper case followed by all lower case letters. In this step, if the
identifier uses the coding conventions, such as Camel Casing or non-alphabetic characters it
can be easily split. The output of the previous algorithm is then processed by the
sameCaseSplit algorithm. In the sameCaseSplit algorithm each possible split are examined
by comparing the score of left and right of the split point. The substrings returned from

sameCaseSplit are linked together with space to construct the final split terms.

However, Samurai has the following limitations. First, it is not always possible to
associate identifier substrings to words or terms, €.g., domain-specific terms or English
words, which could be useful to understand the extent to which the source code terms reflect
terms in high-level artifacts (De Lucia, Di Penta et al. 2006). Second, they do not deal with

word transformations, €.g., abbreviation of pointer into pntr.

Overall, the above previous works highlights the importance of carefully choosing
identifiers for source code comprehension and maintainability. In this context, the
application of our approach would be to map terms in source code identifiers to domain
dictionary words to better assess the quality of these identifiers. Commonalities can be found
with the work of Enslen et al.(Enslen, Hill et al. 2009) and the approach proposed in this
thesis.Commonality is listed to the fact that we share with them the goal of automatically
splitting identifiers into component words. Our approach is different. We do not assume the
presence of Camel Casing nor of a set of known prefixes or suffixes. In addition, our
approach automatically generates a thesaurus of abbreviations via transformations
attempting to mimic the cognitive processes of developers when composing identifiers with

abbreviated forms.

14

CHAPTER 3 OUR IDENTIFIER SPLITTING APPROACH

3.1 Definitions

For sake of completeness we report in the following the basic definitions already defined
in the Introduction Chapter and needed to understand splitting of the identifiers We will refer
to any substring in a compound identifier as a term, while an entry in a dictionary (e.g., the
English dictionary) will be referred to as a word. A term may or may not be a dictionary
word. A term carries a single meaning in the context where it is used; while a word may
have multiple meanings (upper ontologies like WordNet associate multiple meanings to
words). Stemming from Deiflenbdck and Pizka (Deiflenbock and Pizka 2005) observation on
the relevance of words and terms in identifiers to drive program comprehension attempted to

segment identifiers by splitting them into component terms and words.

Indeed, identifiers are often composed of terms reflecting domain concepts (Lawrie,
Morrell et al. 2006), referred to as ““hard words™. Hard words are usually concatenated to
form compound identifiers, using the Camel Case naming convention, €.g., drawRectangle,
or underscore, e.g., draw _rectangle. Sometimes, no Camel Case convention or other
separator (€.g., underscore) is used. Also, acronyms and abbreviations may be part of any
identifier, e.g., drawrect or pntrapplicationgid. The component words draw, application, the
abbreviations rect, pntr, and the acronym gid (i.e., group identifier) are referred to as ““soft-
words™ (Lawrie, Feild et al. 2006).

3.2 Goal

Our approach intends to segment identifiers into composing words and terms. The
application of our approach would be to map terms in source code identifiers to domain
dictionary words to better assess the quality of these identifiers. Our approach is inspired
from speech recognition and overcomes the limitations of previous approaches, i.e. it is able
to associate identifier substrings to words or terms, €.g., domain-specific terms or English

words, which could be useful to understand the extent to which the source code terms reflect

15

terms in high-level artifacts (De Lucia, Di Penta et al. 2006). It also deals with word
transformations, e.g., abbreviation of pointer into pntr. Our approach splits identifiers

composed of transformed words, regardless of the kind of separators.

3.3 Steps

Our approach is based on a modified version of the Dynamic Time Warping (DTW)
algorithm proposed by Ney for connected speech recognition (Ney 1984) (i.e., for
recognizing sequences of words in a speech signal) and on the Levenshtein string edit-
distance (Levenshtein 1966). The approach assumes that there is a limited set of (implicit
and—or explicit) rules applied by developers to create identifiers. It uses words
transformation rules, plus a hill climbing algorithm (Michalewicz and Fogel 2004) to deal

with word abbreviation and transformation.

Our identifier splitting algorithm works as follows, as shown in Fig.1:

1) Based on the current dictionary, we (i) split the identifier using DTW that will be
explained in Section 3.4.,(i1) from the previous score calculation, each word captures the
score of comparison and then from these scores we compute the global minimum distance
between the input identifier and all words contained in the dictionary, (iii) associate to each
dictionary word a fitness value based on its distance computed in step (ii). If the
minimum global distance in step (ii) is zero, the process terminates successfully; else

2) From dictionary words with non-zero distance obtained at step (1), we randomly select
one word having the minimum distance and then (a) We randomly select one transformation
not violating transformation constraints, apply it to the word, and add the transformed word
to a temporary dictionary; (b) split the identifier via DTW and the temporary dictionary and
compute the minimum global distance. If the added transformed word reduces the global
distance, then we add it to the current dictionary and go to step (1); else (c) If there are still
applicable transformations, and the string produced in step (a) is longer than three characters,
we go to step (a); else,

3) If the global distance is non-zero and the iteration limit was not reached, then, we go to

step (1), otherwise we exit with failure.

Identifier
—
DTW Match
——
Best Matching
Success!
Select a Word
from current dictionary
by Roulette Wheel
Applv || Add transformed
transformation to word to temporary
the selected word dictionary
Yes
Current BestMatching pw
dictionary ~ [¥ - Match

Sl ecits ether
iramfermation

Exit & Split
Identifier to
terms with the
lowest score

Discard
Transformed word
From Temporary
dictionary

Figure 1 - Approach Steps

16

Each transformed word will be added to the dictionary if and only if it reduces the

global distance. Briefly, a hill climbing algorithm searches for a (near) optimal solution of a

problem by moving from the current solution to a randomly chosen, nearby one, and accepts

this solution only if it improves the problem fitness. The algorithm terminates when there is

no move to nearby solutions improving the fitness. Different from traditional hill climbing

algorithms, our algorithm attempts to explore as much as possible of neighboring solutions

17

by performing word transformations. Different neighbors can be explored depending on the

order of transformations.

3.4 Dynamic Programming Algorithm

Dynamic Programming (DP) is a method for efficiently solving complex problems
by breaking them into simpler steps. DP is a powerful technique for solving problems where
we need to find the best solutions one after another. A dynamic program is an algorithmic
technique that is usually based on a recurrent formula and some starting states; a sub-
solution of the problem is constructed from previously found ones following a divide and
conquers strategy. If sub-problems can be nested recursively inside larger problems, then
dynamic programming methods are applicable, then there is a relation between the solution
value of the larger problem and the values of the sub problems. In DP, first of all we need to
find a state for which an optimal solution is found and with the help of which we can find
the optimal solution for the next state. A state is a way to describe a situation, sub-solution

for the problem. Dynamic programming works either top-down or bottom-up:

In the top-down approach, if the solution to any problem can be formulated
recursively using the solution to its sub-problems then we will save the solutions to the sub-
problems in a table. When we want to solve a new sub-stproblem first , we check in this
table if we have already solved this problem. If there exists a solution, then we use it
directly, otherwise we solve the sub-problem and add its solution to the table. In the bottom-
up approach, each time that we solve sub-problems we must use their solutions to build-on
and reach to a solution to bigger sub-problems. This approach is also usually done in a
tabular form by iteratively generating solutions to bigger and bigger sub-problems by using

the solutions to small sub-problems.

18

3.41 DTW Definition

Dynamic time-warping (DTW) studies multi-dimensional time series of different
length and evaluates the similarity of two time series. The distance between two series after
warping is calculated. The distance measures how well the features of a new unknown
sequence match those of reference template. DTW uses a dynamic technique to compare
point by point two series by building a matrix. It will build this matrix staring from bottom-
left corner which is the beginning of the time series. Each neighboring cell in the matrix is
taken and the previous distance is added to the value of the local cell. The value in the top-
right cell contains the distance between the two strings that has the shortest path in this

matrix (Lachlan 2007).

Our approach is based on a modified version of Dynamic Time Warping. The input
identifier is compared with all English word of the dictionary, character by character. Each
word of the dictionary is stored in a template and this template is compared with the input
identifier to find the closest match. Then the distance is found by minimizing a cost that is
defined by the string edit distances between all matches. The minimum-distance of the top

best match decides the identifier split.

342 DTW Template

For each word of the dictionary, we should initiate a template. In each template, the
identifier is compared with one of the words from the dictionary. Let us consider words in
the dictionary along the y-axis of the template. Both strings (identifier and word dictionary) ,
see Fig. 2, start on the bottom left on the template. In each cell, we must calculate the

distance by comparing the two characters.

Figure 2 - Example of DTW Template

19

Let us consider that we have two strings of X and Y as:

X=X1, X2, X3,-., Xn

Y=y1, ¥2, ¥35-.» ¥m

The sequence of X and Y will be arranged in a matrix of n-by-m, where each cell,
(1)) , correspond to the difference of character x; and y;. There is a warping path, W, that
maps the elements of X and Y, in a way that the distance between these two sequences is

minimized.

After comparison of the two sequences we can find a path through the template that
minimizes the total distance between the sequences. The main goal for computing the overall
distance measure is to find all possible paths through the template. The number of possible
paths through the template can be more than one. We must select the best path among the
existing paths. We can define the dynamic time warping problem as a minimization over the
warping path;

£
DIW(X.Y)=min[| x— 3| (w)]

Eal

3.4.3 DTW Optimizations

As the number of alignment path is exponential in the pattern length, there is a need to
reduce complexity with a suitable strategy. The approach most often use is to impose
constraints to the possible alignment function. This is to say: given a cell (i,j), only a limited

number of other cells [(i-1,j),(1,j-1),(i-1,j-1)] can originate the path through (i,j).

The major optimizations to the DTW algorithm stems from observations on the nature of
good paths through the grid. These paths characteristic outlined in Sakoe and Chiba and can
be summarized as (Sakoe and Chiba 1978):

= The path will not turn back on itself, both i and j indexes either stay the same or

increase, they never decrease.

20

= The path advances one step at a time. Both i and j can only increase by 1 at each step
along the path.
= The path starts at the bottom left and ends at the top right.

3.4.4 Weighting Function

A weight function is a mathematical formula used to give some elements in a same
sets more “weight” to influence some results than other elements. The weighting function is

used to normalize the path.

There exist two families of weighting functions. With a symmetric function, we
combine direction of i and j while the asymmetric function just consider direction of i. If the
path move in a diagonal step then i and j will increase by 1 and we have wij= w;j; ; while in
the asymmetric, we have w;# wj; ; this is a kind of normalization for the path overall

distance measures (Cassidy 2002).

Then, for any intermediate point the cost of D(i;) is computed as:

c(i; j) = dlxi; 37)

D jy=mm[wi1 DG -1; 7)) +cli; j); Hinsertion
w2D(; j- 1)+ e J) ; /deletion
Dii-1;7-1)+wseli; j)] Amatch

Equation 1- Distance calculation

Where D(i; j) is the global distance and the d(i,j) is the distance found in the current cell as a
local distance (i.e., comparison of characters). That is, the sum of the distance between
current characters and the minimum of the distance of the neighboring points. Our

implementation uses a symmetric function where wi=w>,

Eq.1 computes the current value of the distance based on the previous values thus it

imposes continuity constraints. Each value of the weights wi, w,, ws are problem-dependent

21

and most of the times, w; is chosen equal to w, and the value of w3 is often chosen to be
twice of the value of w; and w,. In our computation, we choose Wl =w2 =1and w3 =2 as

in the classic Levenshtein string edit distance (Alshraideh and Bottaci 2006).

3.4.5 Computation Process

The computation starts from the bottom-left cell of the matrix and we compute the
distance D(i,j) based on the d(x;,y;) for each cell in the distance matrix. In this part we will
compare the characters of x; and y; and finding the local path of minimum cost between (i-
1,j),(i,)),(i,j-1). This comparison can be done by columns or rows. After all cells of are
computed then value of D(N,M) contains the minimum distance between X;; X;; ... ; Xy and
Yii Y2; 5 Ym

Backtracking from (N;M) down to (0; 0) recovers the warping path corresponding to

the optimal alignment of X;; Xp; ... ; Xy and Yi; Y25 ...; Ym.

3.4.6 DTW for Connected Word Recognition

Identifier splitting is performed via an adaptation of the connected speech recognition
algorithm proposed by Ney (Ney 1984) that, in turns, extends to connected words the
isolated word DTW (Sakoe and Chiba 1978) algorithm. DTW was conceived for time series
alignment and was widely applied in early speech recognition applications in the 70s and
80s. Herman Ney (Ney 1984) presents a simple approach to the pattern matching problem
for connected word recognition which is based on parametrizing the time warping path with

single index and by using path constraint both in the word boundaries and word interior.

22

j K~

Figure 3 -Connected Word Recognition Problem (Ney 1984)

In Ney’s approach, there is an input that is composed of individual words or test
pattern that contains i=1,...,N time frames. Also there exist words templates which are
distinguished by the index of k=1,...,k. The time frames of the template k are denoted as j =
1,. .., J(k), where J(K) is the length of the template k.

The basic idea is illustrated in Fig.3. The time frames i of the test pattern and the time
frames | of each template k define a set of grid points (i, j, k). There is a local distance
measure of d(i, j , k) which indicate the dissimilarity between the corresponding acoustic
events. The goal of his approach is to find the best path (i.e. time warping path) through
these grid points of (i,j,k) that shows the best match between the test pattern and the
unknown sequence of templates. Different constraints are applied in finding the best path.
Path with minimum global distance, i.e., the sum over the local distances along a given path

1s the best one to select.

Two types of transition rules are applied due to concatenation of single word
templates to a “super” reference pattern: (1) Within-template transition rules, i.e., transitions
rules in the template interior; (2) Between-template transitions rules, i.e., transition rules at

the template boundaries.

Herman Ney illustrates these two types of transition rules in Fig.4:

23

1K)

(a)

TIME FEAMES OF TEMFPFLATE K
T
(- T - - T -]
Q
A
(- T - I - -]

TIME FEAMES OF INFUT PATTEEN

1K)

.

ooE||ea

o (b)

L= - N - -
° o
L=]

1 i M

TIME FRAMES OF TEMFLATEK

TIME FEAMES OF INFUT PATTERN

Figure 4 — (a) Within-template Transition Rules.

(b) Ilustration of Between-template (Ney 1984)

As shown in Fig.4(a), a within- template transition rule is:
if w(l) = (i,j, k), j > 1, then
w(l-1) {Gi-1,j,k),(i-1,j-1,k),(i,j-1,k)}

i.e., it explains that the point (i,j,k) can be reached from one of the points of (i-1,j,k),
(i,j-1,k), (i-1,j-1,k).
Also as shown in Fig.4(b), a between-template transition rules is:
if w(l) = (i, 1, k), then
w(I-1) e {(i- 1, 1.k); (i- 1 ,J(k*), k*):k*=1,...,K}.

Where point (i,1, k) is the beginning frame of the template K that it can reach from the ending
frame of any template k* including k itself. Ney algorithm finds the best path through these

24

points which is the minimum distance along any path to grid point (i, j, k). To obtain the best

path the algorithm uses following formula:

DG, j, k) =d(i,j,k +min{D(-1,j,K),
DG-1,j-1,k),D(i,j-1,k)}.

And at the template boundaries with j = 1, the between-template transition rules yield:

DG, 1,K)=d(i, 1,k)+ min {D(i- 1, 1 k);
DG-1,7(k*),k*):k*=1;..,K}.

By using these two relations, the accumulated distances D(i,j,k) can be recursively evaluated
point by point.

Once computation is completed, backtracking step recovers the unknown sequence of
words. The backtracking information is recorded during the evaluation of the dynamic
programming recursion. In backtracking, Ney uses two terms of from frame and from
template, which helps in keeping track of the frames along the pattern time axis from which
the best path to the grid point (i,j,K) has come. Also from template helps keeping track of the
respective decision about the recognized word. “It is crucial to realize that for each time
frame i, only the best template, i.e., the template with minimum accumulated distance at its
ending frame, and the corresponding word boundary must be kept track of in order to be able

to determine the optimal global path” (Ney 1984).

We present our custom algorithm in Fig. 5. Assume that the x axis is an identifier
that could contain one or more words, these words can be the dictionary words or the
abbreviation of words. In this example, we have “UserCounterPtr” as an identifier. All
words of the dictionary are represented on the y axis. In Fig.5 the dictionary contains 3
words for Counter, User and Ptr. One instance for each dictionary entry as shown in Fig. 5,
where at each column end, €.g., column i, each word in the dictionary can start at the next

position i+1. In other words, the algorithm performs a warping of each word and then

25

identifies an optimal path among these warpings (shown by dashed arrows in Fig. 5) to

match the identifier.

o i w3
:] X
p i ; W2
— il‘ i
5 |
= ; Wi
5 :

UserCounterPtr
Figure 5 - Connected Word Recognition (Ney 1984)

3.4.7 Initialization Step

In the first step, we create matrices for all the words of the dictionary with M
columns and N rows where M and N correspond to the size of the identifier and dictionary
word to be matched. For each word of the dictionary, we initialize two matrixes of M by N;
one matrix is filled by the distance values and another matrix is filled with integers that will
guide us in back tracing step. For each word in the dictionary, we store the information of
position of the word in the dictionary, its score that we calculated in the step of score

calculation, so that we can go back and tag word with fitness value.

3.4.8 Distance Computation in Forwarding Template:

In the forwarding matrix we want to find the minimum global alignment score by
starting in the bottom left hand corner in the matrix and finding the minimum score D(i; j)
for each position in the matrix. To find D(i; j) for any i,j, it is necessary to know D(i -1; j),

D(i; j - 1) and D(i - 1; j - 1).

26

For each position, D(i; j) is defined to be the minimum score at position i,j; i.e.

D(i; j) = Minimum [
wiD(i -1;) + c(i;) ; /linsertion
wWoD(i; j-1) +c(i; j) ; //deletion
D(i-1;j-1) +wsc(i;)] //match

My, M,

My, i M

In the example, M;.; ;.1 will be diagonal, M;;.; will be vertical and M;.;j will be horizontal.
Consider example of comparison of identifier pointercntr with two words of cntr and
pointer; there are two different matrices for these two words. One template of 11*4 for word

cntr and one template of 11*7 for word pointer are created.

We start with left bottom of the template of Fig.6 where both identifier and word
start; the comparison starts from this init point. Considering word pointer, the first character
in both sequences is p. Since this example assumes there is no gap opening or gap extension

penalty, the first row and first column of the matrix can be initially filled with 0.

Thus, M 1-pointer 18 calculated as:

D(1; 1) = Minimum [
w;D(0; 1) +c(i; J) ;
w2D(1;0) +c(i; j) ;
D(0; 0) + wac(i; J)]

D(1; 1) = Minimum [0+0 ; 0+0; 0+0]=0

A value of 0 is then placed in position 1,1 of the scoring matrix.

27

Figure 6 - Distance Calculation

For word cntr the score at the position of 1,1, in the matrix is the comparison of

character p and C: the value of S; ;= 1, and we have:

Ml,l-cntr: Min[Moﬁo +2*1, MI,O +1, MO,] + 1] = Min [2, 1, 1] =1.

D(1; 1) = Minimum [
wiD(0; 1) +c(i; J) ;
w,D(1;0) + c(i; j) ;
D(0; 0) + wac(i; j)]

D(1; 1) = Minimum [0+1; 0+1; 0+2*1]=1

The same calculation is applied for cell i=2, j=2 of word cntr where there are two
characters of O in identifier pointercntr and character N from word cntr that are compared to
each other.
D(2; 2) = Minimum [
wiD(1; 2) +c(i;) ;
woD(2;1) +c(i; J) ;
D(1;1) + wac(i; J)]

D(1; 1) = Minimum [2+1 ; 2+1;1+1]=2

The identifier pointercntr, should be split to two words of cntr and pointer. In this

example, the value of matrix in a diagonal for 4 last characters cntr is zero while this term

28

exists exactly in the word of the dictionary cntr. We gain the same result for the 7 first
characters of the word pointer.

The value of top right in each word shows the score of that word, the lowest score
indicate the best word. If an exact splitting happens, we always have zero for this score, but
most of the times the identifiers consist of terms that are abbreviated and transformed words
of the word and maybe does not exist in the input dictionary. By the above example we
considered that word cntr, however it is abbreviated of word counter but it exists in our
dictionary. If this word does not exist, then we had different score from zero for this

identifier.

We now show the algorithm of filling both matrixes of forwarding and back pointer.

We name the template of field for distance (DL) and the back points (BP):

if (t.DL[i-1][j] <t.DL[i][j - 1] AND
(t.DL[i-1][j]+1) < (t.DL[i - 1][j - 1]+2*d)){
// deletion
t.DL[i][j] = t.DL[i-1][j]+1;
t.BP[i][j] = t.BP[i - 1][j];

relse if (t.DL[i][j-1] < t.DL[i-1][j] AND
(t.DL[i][j-1]+1) < (t.DL[i- 1][j - 1]+2*d) {
// insertion
t.DL[i][j] = t. DL[i][j-1]+1;
t.BP[i][j] = t.BP[i][j-1];

telse{

// possible substitution
t.DL[i][j] = t.DL[i-1][j-1]+2*d;
t.BP[i][j] = t.BP[i-1][j-1];

H

29

Let us consider an identifier of pointercntr for this calculation for two words of cntr and
pointer; using the above rules we can fill the backtracking matrix of these words as Fig.7:

Forwarding Matrix: Back pointer Matrix:

1[2]3[4

L2534 15] oo o To o o To a2
= -
g i ;’ i j’ T FKEEREBEEREREREEEEEEE

i Nl 0|0 (0|0 |0 |0 |0 |2]-T|-T]-7
1131415 '? @0 00 |00 |0 |0 |4 |-T|-T|-T]-10
31213]14]5 W 00 |0|0 |0 |2|6]-7]|-7]|=8]-10
2|11]12]3]4 ;M 0|0 0|0 | 2| 5| 67| =8|=2]-10

P OINTE R N T

olojojofojo |0 T1-7|-T|-7
glojojofojof|l-6(-7(-7-7|-7
olojojofo|-3(e|-7|-7|-7|-7
olojojof4|-3(-6|(-7(-7|-7|-10

Figure 7 - Forwarding and Back Pointer Matrixes

349 Trace Back Step

By tracing back the matrix of back pointer, each negative valued cell helps us to find
the best points to split our string. We use information of word position in the dictionary and
the value of its distance that we have stored in the previous step of forwarding calculation in
this part. These data and the negative value of back pointer matrix show us the decomposing
point of the identifier to proper terms with the minimum distance. In the example of Fig. 7,
negative value of -7 indicates that the identifier of pointercntr may be split from the 7"
character of the identifier into terms of pointer and cntr. This is to say the 7™ character is the

boundary where the path of cntr arrives from a different word.

N |W| [N
WA [WIN|—
AW (W N
DWWk |w
AN~ |~

30

Figure 8§ - Splitting Identifiers

As mentioned above, this process of distance calculation is similar to Levenshtein

Distance in determination of the similarity between the strings.

3.5 Levenshtein Edit Distance

In many applications, it is necessary to determine the similarity of two strings. A
widely-used notion of string similarity is the edit distance that is the number of deletions,
insertions, or substitutions required to transform one string into another string.As an
example, if we can consider two strings s=“counter” and t="counter”, then LD(s, t) =0,
because no transformations are needed and the strings are already identical. But if we have
s=“cntr” and t="pntr”, then LD (s,t) = 2, because we need one deletion of character “c” and

one insertion of character “p” to change the string s into t.

The first step in the calculation of LD is the initialization of the matrix. The two
strings with n and m characters build the matrix. The matrix can be filled from the lower left
to the upper right corner. Each cell of the matrix indicates the distance of the characters.
Horizontal or vertical jumps correspond to an insert or a delete, respectively. The cost is
normally set to 1 for each of the operations. The diagonal jump can cost either two, if the
two characters in the row and column do not match or 0, if they do. Each cell always
minimizes the cost locally. The number in the upper right corner is the Levenshtein distance

between both words.

31

After initializing the matrix, we have to examine each character of both strings. If the
characters are equal, there is no distance; the cost is zero unless the cost is one. Each cell of

the matrix is set with minimum of its neighbors.

In Fig. 9 we have two strings len and length thus a matrix 3*6 is initialized for these
two string of len with 3 characters and string of length with 6 characters. The distance

between these two strings is 3;

Ry |[=2| S || == || W3 || €3

Figure 9 - Matrix of Comparison

In general, the algorithm of Levenshtein Edit Distance works as follow:

Step 1- Matrix initialization:
1.1) Set n to be the length of first string of S and set m as the length of String t.
1.2) If n = 0, return m and exit and If m = 0, return n and exit.
1.3) Construct a matrix containing 0...m rows and 0...n columns.
1.4) Initialize the first row to 0...n and the first column to 0...m.

Step 2:
2.1) Calculate distance for each character of s (i from 1 to n).
2.2) Calculate distance for each character of t (j from 1 to m).
Step 3:
3.1) If s[i] equals t[j], the cost is 0.
3.2) If s[i] doesn't equal t[j], the cost is 1.

Step 4:
Set cell d[i,j] of the matrix equal to the minimum of:
a. The cell immediately above plus 1: d[i-1,j] + 1.
b. The cell immediately to the left plus 1: d[i,j-1] + 1.
c. The cell diagonally above and to the left plus the cost: d[i-1,j-1] + cost.

Step 5:

After the iteration steps (2, 3, 4) are complete, the distance is found in cell d[n,m].

32

As an example, considering two words of string and str, we have the following steps:

Initializing the rows and columns and fill the value of cells for i=1:

Step 2,3 and 4 for i=2:

Step 2,3,4 and 5 for i=3:

5 | |
4

3

2 |||
10
o [1] 2
5 | 4 |
4]
3 2
2 || 1 |
1][o
0o |1] 2
5 | 4 || 3
4 3 2
3 2 1
2 1] o
1][0][1
0o [1] 2

33

In the last step, the distance is in the lower right hand corner of the matrix, i.e., 3.
This corresponds to our intuitive realization that string can be transformed into str by
substituting ing (3 substitution = 3 changes).

Levenshtein Distance counts the differences between two strings, where we would
count a difference not only when strings have different characters but also when one has a

character whereas the other does not.

3.6 Dictionary Word Selection and Roulette Wheel

Some identifier substrings may not be part of the dictionary and need to be either
generated from existing dictionary word or added to it. Thus we must select some words
from the current dictionary to generate new words by applying different transformation

rules. Selection of the word is possible using the Roulette Wheel algorithm.

Roulette wheel is used for selecting a suitable individual from a population. The
most common type of genetic algorithm works as below: The population of a group of
individuals is created and then the individuals in the population are evaluated. This
evaluation assigns the individuals a score and one identifier is then selected based on its

fitness, the higher the fitness, the higher of the chance to be selected.

Pseudo-code for a roulette wheel selection algorithm is shown below:

for all members of population
sum += fitness of this individual
end for

for all members of population
probability = fitness / sum
sum of probabilities += probability
end for

loop until new population is full
number = Random between 0 and 1
for all members of population
if number > probability but less than next probability
then you have been selected
end for
end loop

34

Considering a roulette wheel in which all chromosomes in the population are placed

according to fitness, as in the Fig.10:

B chromosome 1
M chromosome 2
W chromosome 3

m chramaosome 4

Figure 10 - Roulette Wheel

The best chromosome that has the maximum probabilty to be selected is
chromosome 1 that allocate 57% of the percentages of the roulette to itself. In general in
tournament selection n individuals are selected at random and the fittest is selected. The best
chromosome is copied to the population in the next generation. The roulette method of
selection will have problems when the fitnesses differs greatly. For example, if the best
chromosome fitness is 90% of all the roulette wheel then the other chromosomes will have a

slim chance of being selected.

In this thesis, the population of the roulette contains words of the dictionary. Based
on the current dictionary, we computed the distance between the input identifier and all
words contained in the dictionary and associated to each word of dictionary a fitness value
based on its distance computed in the step of calculation. In the algorithm, a list of the words

with theirs fitness value is created.

3.6.1 Roulette Wheel Rescaling

There is no way to guarantee that the raw scores will fit a certain set of parameters.

Instead, we rescale the scores so that these scores will be suitable for calculating the fitness

35

value of the words. The fitness value of the words is rescaled by subtracting the value of
fitness from a fixed value of as the maximum value that should remain always a positive
value, e.g., for m=20, word with score of 1, will be rescaled to value of 19. We set the new

fitness of the word with the new rescaled fitness.

3.6.2 Roulette Wheel Normalization

After rescaling, we have to normalize the value of the probability in the roulette. We
calculate the probability of the word in the roulette by dividing the fitness with the sum of
the whole fitness. The fitness is used to calculate the probability of the selection with other
words in the roulette.

This fitness level is used to associate a probability of selection with each individual words. If
fi is the fitness of word i in the current dictionary, its probability of being selected is
fi

N
>

n=1

pi = , where N is the number of words in the dictionary.

3.6.3 Roulette Wheel Selection

After rescaling and normalizing, we should prepare regions of fitness intervals by
assigning probabilities. The region based on the sum of value of word’s fitness beside each
other. One value is selected randomly. This value is compared to the region. If the value of
the random value is less than the region, that region is selected. Each region is limited to one
the words in the dictionary. So the word with the biggest region has the highest probability
to be selected.

For example for identifier “pntr”, we consider 6 words of the dictionary; below you

can find the table of fitness:

Table 1 — Fitness table

rectangle‘ counter‘ pointer | information | decimal ‘ pntr

SN 9.0 6.0 5.0 11.0 7.0

Related to the Table 1, we will have bellow probabilities:

36

Figure 11 - Roulette Wheel Word's Probability

As we can see in Fig.11, words with lowest fitness value such as pointer and pntr
allocate more places in the figure in comparison to other words of the dictionary (e.g. pointer
18% and pntr 24%). Thus there is more probability for these words to be selected in the
roulette wheel.

In Table 2, we can find the word’s region for above dictionary’s words; the region is
between 0-1 and the new region of each word is the sum of its probability with previous
region value. For example word information is placed between region value of 0.49 and

0.60. Random number 0.80 is in the region of word pntr.

Table 2 — Roulette wheel word’s region

Eandom : 0.80

37

3.7 Word Transformation Rules

Usually, identifiers are built by terms that are taken from words of the dictionary. But
some identifier substrings may not be part of the dictionary and need to be either generated
from existing dictionary entries or added to it. We have to match a substring of the identifier
to the dictionary words. Sometimes omitting some characters of the words causes an exact
matching of the substring with that word. Let us consider the identifier of addlIbl that is built
from two substrings of add and Ibl. Clearly, term add matches the word of the dictionary if it
contains that word. For the substring of Ibl each word of the dictionary that contains these
characters can match this term. If our dictionary contains word label then it is possible that
this word exactly match the substring of Ibl by omitting all the vowels of this word (label).
For each word of the dictionary we have to determine which word has the minimum distance
from the substring and we will select that word. There may exist several words in the

dictionary that have the same (minimum) distance from the substring to be matched.

During matching the substring of the identifier with words of dictionary, it can
happen that two or three words have the lowest distances. Thus we have to select one of the
possibilities to generate the missing dictionary entry term. As an example, let us consider the
identifier fileLen and suppose that the dictionary contains the words length, file, lender, and
ladder. Clearly, the word file matches with zero distance the first four characters of fileLen,
while both length and lender have a distance of three from len, because their last three
characters could be dropped. Finally, the distance of ladder to len is higher than that of other
words because only | matches. Thus, both length and lender should be preferred over ladder
to generate the missing dictionary entry len. Thus, both words of length and lender are
suitable for the substring of the identifier of fileLen; we should select one of the words for

the modification, maybe omitting all vowels or randomly deleting a character.

To choose the most suitable word to be transformed, we use the following simple
heuristic. We select the closest words, with non-zero distance, to the substring to be matched

via an algorithm of Roulette wheel. In the algorithm, a list of the words with theirs fitness

38

value is created. Word with minimum value in distance should have the highest probability
to be chosen. Then, repeatedly, we modify them using a randomly chosen transformation
rule among five possible rules. This process continues until a transformed word matches the
substring being compared or when transformed words reach a length shorter than or equal to

three characters.

The available transformation rules are the following:
e Delete all vowels;
e Delete Suffix;
e Keeping the first n characters ;
e Delete a random vowel;

e Delete a random character.

Delete all vowels:

One of the regular ways of abbreviation of the substrings of the identifier is omitting
all the vowels of the word.
In this rule, a word is sent to an algorithm that walks characters by characters of the word
and if it face one of the vowels “0”,’¢”,”’1”,”u” and”a”, it deletes that character and continues
for the left characters of the word. Deletion of characters continues until the length of the
string is more or equal to three. For example, if we consider the word “pointer”, by this

transformation of deleting all vowels, the algorithm returns string “pntr” as a transformed

word.

Delete Suffix:

Some words in English end with special suffix, some developers abbreviate
identifiers by omitting these suffixes. In this rule, suffixes such as ing, tion , ment, able , ful
, less are removed from the word.In this algorithm the word of the dictionary is taken as an
input and the algorithm consider if this word ends with one of the suffixes.

As an example, we can point to the word improvement that is transformed to the word

improve in this rule by omitting the suffix of ment from the word.

39

Keeping the first n characters:

Some developers abbreviate the long length words to the short form by keeping their
first 3 or 4 characters. In this transformation, we consider keeping the n first characters of the
word and the value of n is changeable during transformation.

For example, word rectangle will be abbreviated by this rule to rect for n=4.

Delete a random vowel:

In this transformation algorithm, one of the vowels of the word is selected randomly.
The word is passed to the algorithm of removing the vowel at the selected position that is
specified by the function of random. For example word number is transformed to numbr by

selecting the vowel of e from the word.

Delete a random character:
One randomly-chosen character is omitted in this rule. For example word pntr is

transformed to ptr by selecting and deleting the character n from the word.

The transformations are applied in the context of a hill climbing search. DTW, word
transformation rules and hill climbing are the key components of our identifier segmentation
algorithm.

Briefly, the algorithm works as follows:

1) Based on the current dictionary :

1.1) We calculate the distance of each word with the input identifier. We split the
identifier using DTW, as explained in Section 3.4.

1.2) Distance of zero indicates that the substring of the word exists in the
dictionary and the identifier can be split in these substrings. For non-zero
distances, we will sort all the words of the dictionary by their distance(score).

1.3) We compute the global minimum distance between the input identifier and all
words contained in the dictionary. If the minimum global distance 1is zero, the

process terminates successfully; else

40

2) For the roulette wheel algorithm that we explained in Section 3.6.

2.1) We set the words of current dictionary with non-zero distance obtained from
stepl.1.

2.2) We associate to each dictionary word a fitness value based on its distance
computed in Step 1.1. Usually word with the lowest distance receives the best
fitness in the dictionary.

2.3) Using the fitness value that we calculated in Step 2.2 we have to select one
word. The characteristic of the roulette wheel guide us to select an individual
from a population with the greates probability to be selected. An individual
with the best fitness value allocate the most probability to be selected.

3) In the transformation rules algorithm,

3.1) We randomly select one transformation not violating transformation
constraints, apply it to the word and add the transformed word to a temporary
dictionary.

3.2) We split the identifier via DTW and the temporary dictionary and compute

the minimum global distance. If the added transformed word reduces the global

distance, then we add it to the current dictionary and go to step (1)

3.3) If there are still applicable transformations, and the string produced in step

(3.1) is longer than three characters, we go to step (3.1).

4) If the global distance is non-zero and the iteration limit was not reached, then, we go
to step (1), otherwise we exit with splitting the identifier with substrings that have the

minimum score.

These previous steps describe a hill climbing algorithm, in which a transformed word
is added to the dictionary if and only if it reduces the global distance. Briefly, a hill climbing
algorithm (Michalewicz and Fogel 2004) searches for a (near) optimal solution of a problem
by moving from the current solution to a randomly chosen, nearby one, and accepts this
solution only if it improves the problem fitness (the distance in our case). The algorithm

terminates when there is no move to nearby solutions improving the fitness. Different from

41

traditional hill climbing algorithms, in Steps (3.1) and (3.2), our algorithm attempts to
explore as much as possible of the neighbors by performing word transformations. Different

neighbors can be explored depending on the order of transformations.

42

CHAPTER 4 EXPERIMENTAL STUDY AND RESULTS

In this chapter, we report results from a preliminary experimental study carried out to
analyze the proposed identifier splitting approach, with the purpose of evaluating its ability
to adequately identify dictionary words composing identifiers, even in presence of word
transformations. In the next subsections, we describe the hypotheses, and the main
experimental steps, details about the algorithmic settings, and finally, we present results and
their interpretation.

The quality focus of the study is the precision and recall of the approach when
identifying words composing identifiers with respect to manually-built oracles. The
perspective is of researchers, who want to evaluate an approach for identifier splitting that
can be used as a means to assess the quality of source code identifiers, i.e., the extent to
which they would refer to domain words or in general to meaningful words, e.g., words
belonging to a requirements’ dictionary.

The context consists of a dictionary and identifiers extracted from the source code of

two software systems, JHotDraw and Lynx.

Table 3 reports some relevant figures (e.g., number of identifiers) about the two

systems.

Table 3 — Main characteristic of the two analyzed systems

Metrics JHotDraw | Lynx
Analyzed Releases 5.1 2.8.5
Files 155 247
KLOCs 16 174
Identifiers (> 2 chars) 2,348 12,194

The dictionary contains about 2,500 words extracted from a glossary found on the
Internet’, 500 most frequent English words’, plus terms and words contained in Lynx and

JHotDraw.

? http://www.matisse.net/files/glossary.html

43

4.1 Subject Programs

The first program is a JHotDraw”, which is a well-known Java two-dimensional
graphics framework used in drawing 2D graphics and structured drawing editors. JHotDraw
started in October 2000 with the main purpose of illustrating the use of design patterns in a
real context. It provides support for a range of programs from simple paint package style
editors to more complex programs that have rules about how their elements can be used and
altered (e.9. a UML diagramming tool). It provides support for the creation of geometric and
user-defined shapes, editing those shapes, creating behavioral constraints in the editor and

animation.

The second program is Lynx. Lynx® is known as “the textual Web browser”, i.e., a
free, open-source, text-only Web browser and Gopher client for use on cursor-addressable,
character cell terminals. Lynx is entirely written in C. Its development began in 1992 and it

is now available on several platforms, including Linux, UNIX, and Windows.

4.2 Research Questions

The study reported in this section aims at addressing the following research
questions:

1) RQ1: What is the percentage of identifiers correctly split by the proposed

approach? This research question investigates the overall performance of our

approach, comparing the results with a manually-built oracle.

2) RQ2: How does the proposed approach perform compared with a Camel Case
splitter? This research question compares the performance of the proposed
approach with the simple Camel Case splitter, specifically the capability of

correctly splitting identifiers and of mapping substrings to dictionary words.

? http://www.world-english.org/
* http://www.jhotdraw.org
> http://lynx.isc.org/

44

3) RQ3: What percentage of identifiers containing word abbreviations is the
approach able to map to dictionary words? This research question evaluates the
ability of the proposed approach to map identifier substrings to dictionary words

when these substrings represent abbreviations of dictionary words.

4.3 Analysis Method

The above research questions aim at understanding if the proposed approach helps in
decomposing identifiers. Thus, we implicitly assume that, given an identifier, there exists an
exact subdivision of this identifier into terms and words that, possibly after transformations
and once concatenated, compose the identifier.

We limit our analysis to identifiers longer than or equal to three characters: 2,348
identifiers in JHotDraw and 12,194 identifiers in Lynx. We have explicitly split identifiers
containing digits, e.g., name4Tag into name and tag and sent2user into sent and user,
because our approach cannot map 2 to the word to and 4 to for, which are the intended
meanings of these digits.

To evaluate our approach, we selected the 957 JHotDraw and 3,085 Lynx composed
identifiers for which it was possible to define a segmentation. We excluded from our
analysis identifiers that were composed of one single English word and identifiers for which
it was not possible to clearly identify a splitting into dictionary words and an expansion of
abbreviations.

Examples of identifiers belonging to such a category are some identifiers extracted
from Lynx source code, e.g., gieszczykiewicz, hmmm, ixoth, pgrstuvwxyz, or tiocgwinsz. The
957 (3,085, respectively) identifiers were manually segmented into composing substring
mapped into words and terms, thus, creating oracles for JHotDraw and for Lynx.

RQ1 aims at answering a preliminary research question about the applicability and
usefulness of the proposed approach. To answer RQ1, we follow a two-step approach. First,
we execute the proposed algorithm in a single iteration mode and with no transformations.

Thus, only identifiers composed of dictionary words are split with zero distance, see Fig. 13.

45

Not-split identifiers, i.e., with splitting distance not equal to zero, were fed into the
second phase. In the second phase, we applied our approach with an upper bound of 20,000
iterations, i.e., 20,000 dictionary word transformations and DTW splits, Fig.14.

We chose 20,000 iterations as we noticed that after such a number of iterations, the approach
was almost always able to find a splitting in a reasonable time, i.e., within 2 minutes with

our dictionary composed of 3,000 words.

After automatic splitting has been performed, results are compared to the oracle to
compute the percentage of correctly segmented identifiers.
In phase two, we only included those identifiers that were not split in phase one and for
which the composing substrings were longer than or equal to three characters, as shorter
substrings were conservatively considered as spurious characters, pre-/post-fix or errors, thus
penalizing our approach. Also, matching such short identifiers by performing
transformations of dictionary words would not be feasible as too many dictionary words,

after a sequence of transformations, would match the (short) substrings.

For example, in the identifier fpointer the character f can be generated by any
dictionary words containing the letter f. Much in the same way, the substring ly in Lynx
identifiers such as lysize can be expanded to several different words.

Fig.13. and 14 we illustrate the two phases to answer the first research question.

Phase I
r -
Iteration=1
All Identifiers taken Suweccess!
from programs DTW Best Matching Sphit exactly!
* Match
Phase IT
L F

Figure 12 - Phase I of Research Question 1 (RQ1)

46

Phaze IT

Iteration=20,000

Not-split identifiers
from Phase 1 Best Matching
Word DTW

[Transformations * Match

Suceess!

Split exactly!

—_—

Save word -
-+ and create new 1 Improved?
dictionary
Temporary
Dictionary

Discard word NO
and create new
dictionary

F 3

Figure 13- Phase II of Research Question 1 (RQ1)

RQ2 aims at performing a comparison of the proposed approach with a Camel Case
splitting approach. We implemented a basic Camel Case identifier splitting algorithm and
compared its results with the manually-built oracle.

To statistically compare percentage of correct splittings performed by the proposed approach
with those of the Camel Case splitter, we use Fisher’s exact test (Sheskin 2007) and tested
the null hypothesis:

HO: the proportions of correct splittings obtained by the two approaches are not

significantly different.

To quantify the effect size of the difference between the two approaches, we also
computed the odds ratio (OR) (Sheskin 2007) indicating the likelihood of an event to occur,
defined as the ratio of the odds p of an event occurring in one sample, i.e., the percentage of
identifiers correctly split by our approach (experimental group), to the odds q of it occurring
in the other sample, i.e., the percentage of identifiers correctly split by the Camel Case

splitter (control group): Then the odds ratio is:

47

p/(1-p) _ p(-q)
q/(1-a) g(-p)

An odds ratio of 1 indicates that the event is equally likely in both samples.
OR > 1 indicates that the event is more likely in the first sample (proposed approach) while
an OR < 1 indicates the opposite (Camel Case splitter).

RQ3 aims at assessing the ability of our approach to split identifiers when their component
substrings are obtained by means of dictionary word transformations, such as in rectpntr
using pntr instead of pointer and rect in place of rectangle. RQ3 is addressed similarly to
RQI1, comparing identifiers matched in phase two (as explained for RQ1) with the subset of
the identifiers in the oracle that, according to our manual classification, contained

abbreviations.

4.4 Study Results

This section reports the results of our study with the objective of addressing our
research questions.

1) RQ1: What is the percentage of identifiers correctly split by the proposed approach?
Table 4 reports for JHotDraw and Lynx the results of the identifier splittings obtained with
our approach.

In particular, the third column reports the number of identifiers exactly split in a
single step, i.e., with DTW distance zero and matching the oracle. Results indicate that, for
both systems, a large percentage of identifiers have been created via simple concatenations
of dictionary words. In fact, 93% of JHotDraw identifiers, and 70% of Lynx identifiers have
been exactly split into dictionary words within a single iteration of our algorithm in the first

phase.

The fourth column cumulates results of the third columns with the number of
composed identifiers made of dictionary words abbreviations split with zero distance within

20,000 iterations. In other words, the fourth column shows the numbers and percentages of

48

all the correctly-split identifiers in second phase. Finally, the fifth column shows the
numbers of identifiers that were not exactly split or for which the splitting did not match the

oracle. There are 37 of identifiers for JHotDraw and 217 identifiers for Lynx that are split

wrongly.
Table 4 — Percentage of correct classifications (RQ1)
e . Exact Splittings
Systems Idegtlflers "N Identifiers Single Iteration Multiple Errors
racle '
Iteration
JHotDraw 957 2,348 891 (93%) 920 (96%) 37
Lynx 3,085 12,194 2,169 (70%) 2,901 (94%) 217

Wrong splittings are due to identifiers containing acronyms or too short
abbreviations. For example, it may be impossible to identify correctly component words of
the acronyms such as afaik, imho, or foobar. For different reasons, we also believe that it is
impossible to find the exact splittings of identifiers such as fsize; even if we consider that the
context of the identifiers fsize could be reasonably associated with both concepts of file size
and figure size depending on the JHotDraw code region where it is used, even though the

letter f really means that the field is private.

Overall, about 96% of JHotDraw identifiers and 94% of Lynx identifiers were
correctly segmented with zero distance. These results support our claim and conclusion that
a very large fraction (above 90%) of identifiers can be exactly split by using our approach
(RQ1).

Table 5 — Performance of the Camel Case Splitter

Identifiers in - Correct
Systems Oracle Identifiers splittings Errors
JHotDraw 957 2,348 874 83
Lynx 3,085 12,194 561 2,524

2) RQ2: How does our approach compares to the Camel Case splitter?

49

Table 5 summarizes results of Camel Case splitting. Not surprisingly, the Camel
Case approach works well on JHotDraw. Indeed, Java coding guidelines and identifier
construction rules tend to promote Camel Case splitting and JHotDraw developers carefully
followed coding standards and identifier creation rules. As the second line of the same table
shows, unsurprisingly this is not the case of Lynx, the C Web browser. Indeed, C coding
standards such as the Indian Hill® coding standards or the GNU coding standards’ do not

enforce Camel casing.

When comparing the performances of the proposed approach (see Table 4,
considering results after the second phase, i.e., the third column) with those of the Camel
Case splitting (see Table 5), the Fisher’s exact test indicated no significant (or marginal)
difference for JHotDraw (p- value = 0.1) with a OR = 1.3, i.e., the proposed approach has
chances of correctly splitting an identifier 1.3 more times than the Camel Case splitter.

For Lynx, differences are statistically significant (p-value < 0.001) and we have an
extremely high OR=60, i.e., chances of our approach to correctly split identifiers are 60
times higher than the Camel Case splitter.

Referring to above comparison we can therefore conclude that the proposed approach
performs better than Camel Case splitter on both systems and significantly better on Lynx
(RQ2).

3) RQ3: What percentage of identifiers containing word abbreviations is the approach able
to map to dictionary words?

Table 4 and 6 reports results aimed at addressing RQ3. The fourth and fifth columns of
Table 4 shows that a substantial fraction of identifiers containing abbreviations can be split
into dictionary words that originate such abbreviations.

More precisely, 44% and 70% of JHotDraw and Lynx identifiers containing abbreviations
were correctly split into component words. The percentage of success for the two systems is
quite different and the reason is the different ways in which identifiers have been composed.
Indeed, in Lynx, very short prefixes are much more frequent and cryptic than in JHotDraw.

For example , Lynx prefixes, such as ly, ht, or hta, make it hard to produce correct splittings

® http://www.chris-lott.org/resources/cstyle/
7 http://www.gnu.org/prep/standards/

50

without a specialized dictionary in which such prefixes are added with, possibly, the proper

expansion.

Table 6 — JHotDraw: Results and Statics for selected Identifiers in ten split attempts.

25%, 50% and 75% indicate the first, second (median), and third quartiles of the results

distribution respectively

Identifiers Successes | Min. | 25% 50% 75% Max. Split | Split 11
borddec yes 208 617 1,346 1,938 8,831 bord decimal bord decision
anchorlen yes 154 689 1,220 3,097 7,056 anchor length anchor lender
drawrect yes 29 779 2,385 4,877 8,629 draw rectangle
drawroundrect yes 77 6,509 10,300 17,403 19,173 draw round rectangle
fillrect yes 898 3,549 | 5,942 10,932 12,659 | file rectangle
javadrawapp yes 86 480 972 4,582 6,965 java draw apply java draw append
netapp yes 76 788 1,529 4,183 7,394 net apply net append
newlen yes 176 534 600 704 2,503 new length new lender
nothingapp yes 90 305 11,425 | 4,803 9,956 nothing apply nothing application
addcolumninfo yes 457 1,296 | 1,806 2,631 4,146 add column information add column inform
addlbl yes 43 793 1,130 3,498 4,843 add label
casecomp yes 124 327 437 938 1,836 case compare case complete
serialversionuid No serial version did
selectionzordered No selection ordered
jhotdraw No hot draw
getvadjustable No get bad just able
fimagewidth No him age width
fimageheight No him age height
writeref No write red
4.5 Discussion

The proposed approach has a non-deterministic aspect in the way word
transformation rules are applied and in the way in which the candidate words to be
transformed are selected.

Consequently, different runs of the approach may lead to different identifier
splittings. Table 6 reports for a subset of JHotDraw identifiers the splittings obtained in ten
runs, each run with an upper limit of 20,000 iterations. The lower part of the table shows
identifiers wrongly segmented and for which the zero distance was never achieved.

Two phenomena can be observed. First, because the word red is part of the
dictionary, the identifier writeref is split into write red with distance 1; 1 is also the
minimum distance and, thus, red is always preferred over reference. This observation
suggests the need for improving the heuristic to select the candidate words to be used in
splitting an identifier as any word shorter than reference with the current simple heuristic

(based on the matching distance) is preferred.

51

We believe that for words such as selectionzordered, jhotdraw, getvadjustable,
fimagewidth and fimageheight, it would be impossible to compute the correct splitting and
identify originating words. For example, in our dictionary the character f is contained in
about 300 words, each of these words could generate f in fimageheight. We believe that a
substantial reduction of the search space is needed to match single characters, for example,
by coupling our algorithm with the approach of Enslen et al.(Enslen, Hill et al. 2009), which
would restrict the search to the dictionary words containing f to the words used in the same
method, class, or package.

It should be considered that the number of authors for each application can have a
large influence on our results because of idiosyncrasies and individual quality of each
author. We can mention that the programmers of the Java code, e.g., authors of JHotDraw
pay more attention to following the naming convention rules such as algorithm of Camel
Case, however the programmers of C may not consider the Camel Case rules.

Finally, serialversionuid suffers of the problem of acronym expansion mentioned
above. We believe that the dictionary should also be expanded with well-known acronyms,
such as afaik, and with technical abbreviations, such as uid, gid, smtp. In general, the
dictionary should contain as many words belonging to the application domain as possible.

Requirement documents and user manuals are precious sources of such words.

The upper part of Table 6 shows another limitation of the proposed approach.
Sometimes, different component words are discovered in different runs. For example, the
identifier newlen was split in two different ways: new length and new lender. Clearly, the
latter splitting is semantically wrong: even if lender can generate len, in the (intended)
context of newlen, the term lender is nonsensical. We believe that the heuristic choosing the
words to be transformed needs to be improved, possibly by relying on the strategy derived

from(Enslen, Hill et al. 2009), i.e., favoring words already used in the same context.

Finally, it is important to remark that building an oracle for this kind of approach is a

difficult and challenging task. Each composed identifier must be split in component words

52

and abbreviations expanded into English words. We have experienced that the task is non
trivial: we discovered eight mistakes in the initial JHotDraw oracle, while assessing our
approach output and similar errors also occurred in the first version of the Lynx oracle (both
oracles were fixed after such runs and the corrected ones were used to produce the results

reported in this thesis).

4.6 Threats to Validity

Threats to construct validity concern the relation between the theory and the
observation. Here, this threat is mainly due to mistakes in the oracles. Indeed, we cannot
exclude that errors are still present in the oracles, despite the corrections made and explained
above. However, the discovered errors were less than 1% of the numbers of identifiers
contained in the oracles, thus the presence of some errors would not greatly affect our
results. Nevertheless, as the intent of the oracles is to explain identifiers semantics, we
cannot exclude that a part of identifiers could have been split in different ways by the
developers that originally created them. This problem is somehow related to guessing the
developers’ intent and we can only hope that, given the application domain, the class, file,
method, or function containing the identifiers (and the general information that can be
extracted from the source code and documentation), it will be possible to infer the
developers’ likely intent. We are working on improving our oracle and increasing the number
of manually-split identifiers. Variety in the set of developers and different code style should
be considered as another threat to validity in the splitting the identifiers. By a different group
of developers, projects can be developed in different programming understanding; however
it is not obvious and we do not have evidence that various team or group of developers
generate different identifiers with level of difficulties that are not the same. It also should be
considered that a deterministic model is one in which every set of variable states is uniquely
determined by parameters in the model and by sets of previous states of these variables;
considering the fact that a stochastic model and variable states are not described by unique
values, but rather by probability distributions; applying a roulette wheel algorithm for
selection of words from the dictionary produce faster and in some cases better results in

comparison of the results that we do not use this algorithm.

53

Threats to internal validity concern any confounding factor that could influence our
results. In particular, these threats can be due to subjectiveness during the manual building of
the oracles. We attempted to avoid any bias in the oracles by using the same oracles and
simple string matching when comparing a Camel Case splitter with our approach.
Furthermore, both oracles were built by the same researcher and manually verified by two
other people. Whenever a disagreement was detected a majority vote was taken. The size of
the oracle was chosen large enough to ensure that even an error of a few percent in splits

would not have affected algorithm comparison.

Threats to Conclusion validity concern the relationship between the treatment and the
outcome. Identifiers split exactly into dictionary words in a single iteration may sometime be
split in a different way from the developers’ intent. However, we do not claim any relation
between the splitting produced and the semantics of the identifiers; this relation is left to the
developers’ judgment and experience. We limit ourselves to comparing our approach with
the Camel Case splitter and validating the quality of computed splittings with respect to the
oracles. Conclusion validity may play a role when we compared the effectiveness in
detecting word abbreviations. To limit such a threat, we manually inspected all splittings

produced with multiple iterations and word transformations.

Threats to external validity concern the possibility of generalizing our results. The
study is limited to two systems: JHotDraw and Lynx. Yet, our approach is applicable to any
other system. However, we cannot claim that similar results would be obtained with other
systems. We have compared our approach with a Camel Case splitter but cannot be sure that
their relative performances would remain the same on different systems. However, the two
systems correspond to different domains and applications, have different sizes, and are
developed by different teams, with different programming languages. We believe this choice

mitigates the threats to the external validity of this study.

54

CHAPTERS CONCLUSION

Systems that are carefully designed and well documented are easier to understand,
change and reuse in the future. Most of the times documents are not available or they are not
up-to-dates because of time pressure or reduction of the costs. Therefore, the source code of
the programs is a key means to support developers during program comprehension.
Identifiers and comments in the code are rich source of information for each program. Thus,
the proper choice of identifiers can help in promoting software understanding and software
evolution. Often, identifiers are created by concatenating English terms and—or acronyms
and abbreviated form of words identifying domain concepts. Recognizing terms composing
identifiers is a nontrivial task when concatenation does not follow Camel Case rules or when

abbreviations are used.

5.1 Summary

In this thesis, we presented an algorithm inspired by Ney’s extension of the Dynamic
Time Warping (DTW) algorithm to split identifiers into component words. We coupled the
DTW extension with transformation rules and hill climbing to infer segmentation in
identifiers composed of dictionary words and also of word abbreviations. We applied our
approach to split the identifiers of two systems, developed with different programming

languages, and belonging to different application domains: JHotDraw and Lynx.

The segmentation process is done in one iteration if the terms contained in the
identifiers include words the dictionary. Otherwise, we use transformations rules: we apply a
set of successive transformations on dictionary words based on an algorithm of Hill
Climbing to match the terms forming the identifier and the created word whose origin comes
from words of the dictionary. The exact matching is achieved if the distance between a

dictionary word and the term is zero.

55

Results have been obtained by comparing the obtained splittings with manually-built
oracles. They showed that the proposed approach outperforms a simple Camel Case splitter.
In particular, for Lynx, the Camel Case splitter was able to correctly split only about 18% of
the identifiers versus 93% with our approach. On JHotDraw, the Camel Case splitter

exhibited a correctness of 91% while our approach ensured 96% of correct results.

The usage of techniques inspired from speech recognition is not the only way of
splitting identifiers into words. Clearly, when Camel Case separators (or other separators,
such as the underscore) are being used, there is no need for complex splitting techniques.
However: In some situations, the Camel Case separator or other explicit separators are not
used, thus other approaches must be used. A possible alternative approach is the one by

Enslen et al. (Enslen, Hill et al. 2009);

The DTW algorithm is able to provide a distance between an identifier and a set of
words in a dictionary even if there is no perfect match between substrings in the identifier
and dictionary words; for example, when identifiers are composed of abbreviations, e.g.,
getPntr, filelen, or DrawRect. It accepts match by identifying the dictionary words closest to
identifier substrings; The DTW algorithm is able to perform an alignment when matching
words from the dictionary, thus it is able to work even when the word to be matched is
preceded or followed by other characters, €.g., Xxpntr; thus, it is better than, for example,

applying only the Levenshtein edit distance.

The DTW algorithm assigns a distance to matched substrings. Thus, in the identifier
of fileLen, we would discover that file matches the first four characters with a zero distance
(thus distance = 0) and that length matches the five to seven characters (at distance = 3); The
dictionary can be sorted so that the approach favors matching longest words with respect to
multiple words composing the longest one. Thus, the identifier copyright would be matched
to the word copyright rather than to the composition of words copy and right, which also

belong to the dictionary.

56

5.2 Limitations

DTW is a powerful technique but it has also some disadvantages. The first
disadvantage is the intrinsic quadratic complexity of a single match with a cubic cost.
Furthermore, sentence syntax and semantics are not involved as matching is done at the
character level. Going back to the fileLen example, length should be preferred over lender,

however DTW cannot choose between the two.

Finally, developers are able to disambiguate complex situations leading to optimal
non-zero distance split when DTW cannot. Consider the identifier imagEdges; it is
immediate to recognize the component words image and edges. However, image and edges
match the identifier with a distance of 1 because the E character is shared by both terms in

the identifier and, thus, the optimal minimum cost is 1 and not 0.

Our approach deals with similar disadvantages by transforming words and running
multiple times the DTW algorithm to build multiple candidate splittings. Clearly, any
developer would use syntax and semantics as well as her knowledge of the domain and
context implicitly: even if imag is not a well-formed English word, it will correctly split

imagEdges into image and edges.

5.3 Future Work

Future work should be devoted to extend the evaluation of our approach to other
systems and other splitting algorithms, e.g., Lawrie et al.’s (Lawrie, Feild et al. 2006). In our
thesis, we used hill climbing as an algorithm of search-based techniques; this algorithm may
be improved in the future. For example, it is possible to introduce enhanced heuristics for
term selection and word transformations, with the aim of improving the current

performances.

Also,contextualizing our search approach by coupling our algorithm with the
approach of Enslen et al. (Enslen, Hill et al. 2009) , which restrict the search to the words

used in the same method, class or package, will improve this approach.

57

Finally, we published our work at the 14™ European conference on software
maintenance and reengineering in March 2010. The article published is entitled
“Recognizing Words from Source Code Identifiers using Speech Recognition Techniques”,
by Nioosha Madani, Latifa Guerrouj, Massimiliano di Penta, Yann-Gaé&l Guéhéneuc and

Giuliano Antoniol . This paper received the Best Paper award during the conference.

58

REFERENCES

Alshraideh, M. and L. Bottaci (2006). "Search-based software test data generation for string
data using program-specific search operators: Research articles." Softw. Test. Verif. Reliab.

vol. 16, no. 3: pp. 175-203.

Anquetil, N. and T. Lethbridge (1998). "Assessing the relevance of identifier names in a

legacy software system." in Proceedings of CASCON: pp. 213-222.

Antoniol, G., G. Canfora, et al. (2002). "Recovering traceability links between code and

documentation." Software Engineering, IEEE Transactions on 28(10): 970-983.

Biggerstaff, T., B. Mitbander, et al. (1993). The concept assignment problem in program
understanding. ._Proceedings of the International Conference on Software Engineering

(ICSE). Los Alamitos CA, U.S.A., IEEE Computer Society. 482-498.

Caprile, B. and P. Tonella (2000). Restructuring program identifier names. International

Conference on Software Maintenance, 2000.

Caprile, C. and P. Tonella (1999). Nomen est omen: analyzing the language of function

identifiers. Sixth Working Conference on Reverse Engineering, 1999.

Cassidy, S. (2002). from http://web.science.mq.edu.au/~cassidy/comp449/html/.

Corbi, T. A. (1989). "Program understanding : challenge for the 1990's. IBM Syst. ." 289--
294.

De Lucia, A., M. Di Penta, et al. (2006). Improving Comprehensibility of Source Code via

Traceability Information: a Controlled Experiment. 14th IEEE International Conference on

Program Comprehension, 2006. ICPC 2006.

59

Deillenbock, F. and M. Pizka (2005). "Concise and Consistent Naming." Proc. of the
International Workshop on Program Comprehension (IWPC) 14: 261--282.

Demeyer, D., S. Ducasse, et al. (2000). Finding refactorings via change metrics. Proceedings
of the 15th ACM SIGPLAN conference on Object-oriented programming, systems,

languages, and applications. Minneapolis, Minnesota, United States, ACM: 166-177.

Enslen, E., E. Hill, et al. (2009). Mining source code to automatically split identifiers for

software analysis. 6th IEEE International Working Conference on Mining Software

Repositories, 2009.

Falkenauer, E. (1998). Genetic Algorithms and Grouping Problems, John Wiley \&

Sons, Inc.

Fluri, B., M. Wursch, et al. (2007). Do Code and Comments Co-Evolve? On the Relation

between Source Code and Comment Changes. Reverse Engineering, 2007. WCRE 2007.

14th Working Conference on.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine [earning,

Addison-Wesley Longman Publishing Co., Inc.

Jiang, Z. M. and A. E. Hassan (2006). "Examining the evolution of code comments in
PostgreSQL,." in Proceedings of the 2006 International Workshop on Mining Software
Repositories, MSR 2006.: ,pp. 179—-180.

Lachlan, R. (2007). from http://luscinia.sourceforge.net/page26/pagel6/pagel6.html.

Lawrie, D., H. Feild, et al. (2006). Syntactic Identifier Conciseness and Consistency. Source

Code Analysis and Manipulation, 2006. SCAM '06. Sixth IEEE International Workshop on.

60

Lawrie, D., C. Morrell, et al. (2006). What’s in a name? A Study of Identifiers. Program
Comprehension, 2006. ICPC 2006. 14th IEEE International Conference on.

Lawrie, D., C. Morrell, et al. (2007). "Effective identifier names for comprehension and

memory." Innovations in Systems and Software Engineering vol. 3, no. 4, : pp. 303--318.

Levenshtein, V. L. (1966). "Binary codes capable of correcting deletions, insertions, and

reversals." Cybernetics and Control Theory no.10: 707-710.

Maletic, J. 1., G. Antoniol, et al. (2005). 3rd international workshop on traceability in

emerging formsof software engineering (tefse 2005). ASE.

Marcus, A. and J. I. Maletic (2003). Recovering documentation-to-source-code traceability

links using latent semantic indexing. Software Engineering, 2003. Proceedings. 25th

International Conference on.

Marcus, A., D. Poshyvanyk, et al. (2008). "Using the Conceptual Cohesion of Classes for
Fault Prediction in Object-Oriented Systems." Software Engineering, IEEE Transactions on

34(2): 287-300.

Merlo, E., 1. McAdam, et al. (2003). "Feed-forward and recurrent neural networks for source
code informal information analysis,." Journal of Software Maintenance, vol. 15, no. 4,: pp.

205-244.

Michalewicz, Z. and D. B. Fogel (2004). "How to Solve It: Modern Heuristics - (2nd

edition)." Berlin Germany: Springer-Verlag.

61

Ney, H. (1984). "The use of a one-stage dynamic programming algorithm for connected
word recognition." Acoustics, Speech and Signal Processing, IEEE Transactions on 32(2):

263-271.

Pigoski, T. M. (1996). Practical Software Maintenance :._Best Practices for Managing Your

Software Investment. Wiley, New York, .

Poshyvanyk, D. and A. Marcus (2006). The Conceptual Coupling Metrics for Object-
Oriented Systems. Software Maintenance, 2006. ICSM '06. 22nd IEEE International

Conference on.

Sakoe, H. and S. Chiba (1978). "Dynamic programming algorithm optimization for spoken

word recognition." Acoustics, Speech and Signal Processing, IEEE Transactions on 26(1):

43-49.

Sheskin, D. J. (2007). Handbook of Parametric and Nonparametric Statistical Procedures,
Chapman \& Hall/CRC.

Sim, S. E. and R. C. Holt (1998). "The ramp-up problem in software projects: a case study of

how software immigrants naturalize,." in ICSE ’98: Proceedings of the 20th international

conference on Software engineering. Washington DC USA: IEEE Computer Society, : pp.

361-370.

Sommerville, I. (2000). "Software Engineering. Addison-Wesley, sixth edition."

Storey, M. A. (2006). "Theories, tools and research methods in program comprehension:

past, present and future." Software Quality Journal Volume 14(3): 187--208.

Sulaiman S., I. N. B., and Sahibuddin S. (2002). Production and Maintenance of System
Documentation: What, Why, When and How Tools Should Support the Practice.

62

Proceedings of the 9th Asia Pacific Software Engineering Conference (APSEC'2002), IEEE
Computer Society Press. USA. pp. 558-567.

Swanson, B. E. (1976). The dimensions of maintenance. . In Intl. Conf. on Software

Engineering,. San Francisco, California,, IEEE Computer Society.: 492--497.

Takang, A., P. Grubb , et al. (1996). "The effects of comments and identifier names on

program comprehensibility: An experiential study." Journal of Program Languages.

	Button1:

