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RÉSUMÉ 

La préoccupation des citoyens et des autorités locales sur la qualité de l’eau du lac Raymond et de 

la rivière du Nord a permis d’établir un enjeu socio-environnemental sur la contamination de l’eau 

et de l’usage récréative de celle-ci. Avec le bassin versant du lac Raymond comme aire d’étude, ce 

projet de recherche s’inscrit comme l’une des stratégies de restauration durable dans le cadre de la 

protection de l’environnement du lac Raymond et de la rivière du Nord. Une meilleure 

compréhension du comportement hydraulique et bactériologique du bassin versant est alors 

identifiée comme le but ultime cette étude. Pour se faire, un modèle SWAT est paramétré afin de 

simuler les composantes hydriques du bassin versant pour ensuite s’en servir afin de modéliser le 

transport et le devenir de la bactérie Escherichia coli comme indicateur de contamination fécale. 

Des échantillonnages de coliformes fécaux en 2015 et de l’activité enzymatique GLUC par le 

ColiMinder en 2016 sont utilisés en guise d’observations.  

De prime abord, la caractérisation du bassin versant permet le paramétrage initial du modèle. Une 

topographie hétérogène avec des pentes de légères à fortes, des sols majoritairement sableux et très 

bien drainés, un réseau hydrographique dense avec de nombreux lacs et des zones forestières 

dominant l’utilisation du territoire en sont résultant. Après la calibration et la validation 

satisfaisante du modèle par l’ajustement du débit, le bilan hydrique présente un drainage souterrain 

soutenu et une sensibilité accrue aux sols. La qualité des données climatiques s’impose d’ailleurs 

comme une sensibilité commune à l’ajustement du débit et des concentrations d’E. coli.  

Une calibration acceptable des matières en suspension et des concentrations d’E. coli simulées a 

permis de dresser un portrait global du comportement bactériologique du bassin versant. Quatre 

sources de contamination fécale y sont d’ailleurs modélisées. Les sources de contamination en 

temps sec ont constitué l’apport de base des concentrations d’E. coli simulées en rivière alors que 

les débordements par surverse d’effluents municipaux ont occasionné les plus hautes 

concentrations. Par ailleurs, une forte corrélation est identifiée entre les concentrations d’E. coli en 

rivière et les volumes de débordements par surverse. Parmi ces débordements, ceux ayant des 

volumes supérieurs à 1 000 m³ d-1 sont associées aux concentrations excédant 200 UFC/100ml au 

sous-bassin du lac Raymond. L’absence de variabilité temporelle intra-journalière des données 

entrantes est ciblée en tant qu’incertitude primaire. Alors que la distribution spatiale des 

exportations d’E. coli désigne la rivière du Nord comme principale véhicule de la contamination 
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fécale au lac Raymond, le ruissellement est identifié comme vecteur principal du transport de 

sédiments et d’E. coli depuis les sources de contamination diffuse terrestre. L’implantation de 

pratiques de gestion optimale en milieu urbain est ici proposée afin de réduire les apports des 

contaminants dans les eaux pluviales. Enfin, la complexité des processus environnementaux 

régissant le transport et le devenir d’un contaminant à l’échelle d’un bassin versant reflète 

l’importance d’acquérir des observations pour la calibration d’un modèle. 

Mots clés : Modélisation, bassin versant, bilan hydrique, environnement, E. coli, matières en 

suspension, santé publique, contamination fécale, protection de sources d’eau, échantillonnage.  
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ABSTRACT 

The concern of citizens and local authorities over the water quality of the lake Raymond and the 

Du-Nord river has established a socio-environmental issue concerning the fecal contamination of 

the water and its recreational use. With the lake Raymond’s watershed as a study area, this research 

project is one of the sustainable restoration strategies for the protection of the lake’s environment. 

A better understanding of the watershed’s hydrological and bacteriological behavior is identified 

as the goal of this study. To do so, a SWAT model is set up to simulate the water components and 

the fate and transport of the Escherichia coli bacteria as an indicator of fecal contamination. 

Samples of fecal coliforms from 2015 and GLUC enzymatic activity measured by the ColiMinder 

in 2016 are used as observations. 

First, the characterization of the watershed allows the parameterization of the model. This is 

summarized by a heterogeneous topography with light to strong slopes, well drained soils that are 

mostly sandy, a dense hydrographic network with numerous lakes and a highly forested land use. 

After a satisfying calibration and validation of the model by the flow adjustment, the water balance 

showed high groundwater flows with high sensitivity to soils parameterization. Furthermore, 

climate data quality showed a sensitivity to both flow adjustment and E. coli concentrations. 

An adequate calibration of suspended solids and E. coli concentrations simulations provided an 

overall picture of the bacteriological behavior of the watershed. Four sources of faecal 

contamination are modeled. Contamination in dry weather constituted the basic contribution of E. 

coli concentrations simulated in the river while combined sewer overflows (CSO) caused the 

highest concentrations. A strong correlation was found between the E. coli river concentrations and 

CSO’s volumes. Among these overflows, those with volumes greater than 1,000 m³ d-1 were 

associated with E. coli concentrations over 200 CFU/100ml at lake Raymond subbassin. The lack 

of temporal variability in input data is targeted as a primary source of uncertainties. 

While the spatial distribution of E. coli showed the Du-Nord river as the principal fecal 

contamination medium, runoff is identified as the primary vector of sediments and E. coli 

transported from non-point sources of contamination. Best management practices are proposed in 

urban areas to reduce the input of contaminants into stormwater. Finally, the complexity of 

environmental processes that occurs in the fate and transport of a waterborne pathogen at a 

watershed scale shows that an important amount of input data is required for modeling purpose.  
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CHAPITRE 1 INTRODUCTION 

1.1 Cadre du travail 

1.1.1 Problématique du lac Raymond 

Situé dans la région des Laurentides, la municipalité de Val-Morin donne accès à la plage publique 

du lac Raymond, celui-ci bordé par la piste cyclable du P’tit Train du Nord. Citoyens, cyclistes et 

touristes ont donc accès à cette étendue d’eau qui constitue un élargissement la rivière du Nord 

d’une superficie de 70 hectares.  

En 2005, l’observation d’une qualité inacceptable de l’eau met en péril l’usage de cette plage. Une 

pollution caractérisée par une contamination fécale y est donc observée notamment à la suite 

d’épisodes de pluies (Côté, 2016). Le lac Raymond étant situé sur la rivière du Nord, plusieurs 

sources de contamination peuvent être impliquées en amont dont la présence d’usines d’épurations 

d’eaux usées municipales. De ce fait, la station d’épuration de la ville de Sainte-Agathe-des-Monts 

attire toute l’attention avec ses six ouvrages de surverse situés à moins de 10 km en amont du lac 

Raymond sur la rivière du Nord. La pollution de la rivière et du lac en question occasionne ainsi la 

fermeture de la plage à partir de l’été 2007.  

La préoccupation des citoyens et des autorités locales sur la qualité de l’eau du lac Raymond et de 

la rivière du Nord a donc permis d’établir un enjeu socio-environnemental sur la contamination de 

l’eau. Outre l’utilisation récréative de cette rivière, elle est notamment la source principale d’eau 

potable pour certaines municipalités qui en sont bordées telles que la ville de Saint-Jérôme 

desservant plus de 55 000 personnes (MDDELCC, 2017b). L’étude de la qualité de l’eau du lac et 

de la provenance de la contamination inscrit alors cet enjeu dans un contexte de santé publique. 

Des campagnes d’échantillonnage supplémentaires ont d’ailleurs été effectuées par la municipalité 

de Val-Morin afin d’effectuer un suivi de l’évolution de la contamination fécale de l’eau.  

Au cœur de cette problématique se trouve également l’Association de Protection de 

l’environnement du Lac Raymond et de la Rivière du Nord inc. (APELRRIN). Ayant comme 

mission de « […] protéger l'environnement du lac Raymond et de la rivière du Nord en misant sur 

l'élaboration et l'implantation d'une stratégie de restauration durable » (APELRRIN, 2016), cette 

association est présidée par M. Guy Drouin ing. Ce dernier a d’ailleurs joué un rôle clé dans cette 
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lutte pour la restauration de l’intégrité du lac Raymond. En 2008, une mise en demeure est déposée 

contre la ville de Sainte-Agathe-des-Monts en lien avec sa responsabilité de la contamination fécale 

de la rivière du Nord. Il en résulte que les débordements du trop-plein Brissette constituent la source 

principale de contamination en amont du lac Raymond. La Cour supérieure du Québec ordonne 

ainsi en 2009 à la ville Sainte-Agathe-des-Monts de cesser tous déversements d’eaux usées non 

conformes en vertu de la Loi sur la qualité de l’environnement et de réaliser les travaux nécessaires 

afin de mettre à niveau leur station d’épuration d’eaux usées. Un enregistreur de débordements 

installé la même année dénombre quatorze surverses en temps sec confirmant ainsi la 

contamination occasionnée par l’ouvrage de surverse Brissette. Un investissement important est 

d’ailleurs annoncé par Ottawa et Québec pour atteindre ces conformités dont une contribution de 

Sainte-Agathe-des-Monts. Des travaux de mise-à-jour ne débutent qu’en 2013 pour se terminer en 

2016. 

Le suivi de la qualité de l’eau au sein du Lac Raymond de même que dans l’ensemble de la rivière 

du Nord est donc une priorité pour la municipalité de Val-Morin, pour l’APELRRIN de même que 

pour ses riverains. Dans le cadre de divers projets de recherche, la collaboration entre Val-Morin 

et Polytechnique de Montréal permet ainsi de répondre à cette problématique environnementale. 

D’une part, ce projet de maîtrise présente la modélisation hydrologique du bassin versant du lac 

Raymond. Ce modèle est ensuite exploité dans le cadre de l’étude du transport et du devenir d’un 

indicateur de pollution fécale, la bactérie Escherichia coli (E. coli). D’autre part, l’instrument 

d’échantillonnage en continu ColiMinder est déployé à la plage municipale du lac Raymond depuis 

août 2016 afin d’analyser la qualité microbiologique de l’eau en temps réel.  
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1.2 Objectifs 

Avec le lac Raymond et son bassin versant comme aire d’étude, ce projet de recherche s’inscrit 

comme l’une des stratégies de restauration durable dans le cadre de la protection de 

l’environnement du lac Raymond et de la rivière du Nord. Une meilleure compréhension du 

comportement hydrologique et bactériologique du bassin versant est ici identifiée comme le but 

utile cette étude.  

1.2.1 Objectif général 

• Modéliser le transport et le devenir d’Escherichia coli à l’échelle d’un bassin versant. 

1.2.2 Objectifs spécifiques 

I. Caractériser le bassin versant du lac Raymond et ses sources de contamination fécale ; 

II. Modéliser le bilan hydrique du bassin versant avec SWAT ; 

III. Intégrer un module bactériologique au modèle pour étudier le transport et le devenir d’E. 

coli ; 

IV. Analyser les paramètres sensibles au transport et au devenir d’E. coli à l’échelle d’un 

bassin versant ; 

V. Comparer les estimations d’E. coli aux données mesurées par le ColiMinder ; 

VI. Étudier la variabilité des données d’entrée du modèle ; 

VII. Analyser le risque de l’impact des différentes sources de contamination fécale ;  

VIII. Établir des moyens de mitigation à la contamination fécale du bassin versant. 
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1.3 Revue de la littérature 

1.3.1 Problématique de qualité de l’eau et cadre réglementaire 

Ressources en eau 

La gestion des ressources en eau s’inscrit désormais parmi les critères de décisions politico-sociaux 

tant à l’échelle municipale que nationale. En abondance ou en pénurie, la gestion de l’eau comme 

ressource naturelle nous oblige à faire face à de nombreux défis qui doivent nécessairement 

s’inscrire dans un contexte de développement durable afin d’allier les aspects environnementaux, 

économiques, sociaux et même technologiques. Petrella (1998) présente d’ailleurs l’eau comme un 

pacte social dans son manifeste de l’eau pour le XXIe siècle. Six principes y sont énoncés par 

l’auteur afin de répondre à la crise imminente de l’eau, celle-ci étant surnommé l’« or bleu » : [1] 

la disponibilité et l’accessibilité de l’eau potable doit être un droit humain universel, indivisible et 

inaliénable, [2] l’eau est un bien commun, un patrimoine de l’humanité qui ne doit pas être une 

marchandise, [3] la gouvernance de l’eau relève de la responsabilité publique de l’État, [4] le 

financement de la gestion de l’eau doit être effectué par la collectivité, [5] le citoyen doit être au 

centre des décisions et [6] une nouvelle architecture politique mondiale doit faire le jour et 

empêcher toute guerre de l’eau. 

Tel que les énoncés de ce manifeste, la gestion et la protection des ressources en eau sont toujours 

actualité. À l’automne 2015, un déversement planifié d’eaux usées dans le fleuve Saint-Laurent 

par la ville de Montréal a provoqué une controverse médiatisée. L’intercepteur sud-est devant être 

asséché pour divers travaux, quelques milliards de litres d’eaux usées ont dû être déversées sans 

traitement dans le fleuve. Alors que des rejets au fleuve par surverse sont fréquents, les impacts de 

cet événement surnommé « Flushgate » sur la qualité de l’eau du fleuve a été mitigé. La 

vulnérabilité des prises d’eau potable en aval du déversement a d’ailleurs été remise en question. 

Il reste que l’intérêt suscité par cet événement et l’inquiétude de la population envers ses impacts 

auront permis de réitérer l’importance de la protection de l’environnement, de l’eau et de la santé 

humaine (Polytechnique, 2015). Avec les investissements importants que nécessitent les 

infrastructures de la province, leur promotion sera d’ailleurs assurée par les échos du Flushgate. 
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Gestion intégrée 

Alors qu’une quantité considérable d’eau douce mondiale se trouve en territoire québécois, une 

responsabilité sociale de cette ressource naturelle doit être assumée. La notion de gestion intégrée 

des ressources en eau (GIRE) est une approche misant sur la participation de tous les acteurs et 

usagers de l’eau au sein d’un bassin versant. Ce dernier se défini comme étant un territoire délimité 

par une ligne de partage des eaux où les toutes ressources hydriques cheminent à un même point 

nommé l’exutoire. À l’échelle d’un bassin versant, la GIRE transige par différentes parties 

prenantes. Des organismes, des associations et des autorités sont donc impliqués de près ou de loin 

dans la gestion des cours d’eau et des lacs au Québec. Le prochain tableau présente une liste non 

exhaustive de ces entités selon différentes instances.  

Tableau 1.1: Parties prenantes dans la gestion des ressources en eau du Québec 

Instance Abréviation Nom 

Gouvernement 

fédéral 

EC Environnement Canada 

MPO Pêches et Océans Canada 

Gouvernement 

provincial 

MDDELCC Ministère du développement durable, de l’environnement et de 

la lutte contre les changements climatiques  

CEHQ Centre d’expertise hydrique du Québec 

CEAEQ Centre d'expertise en analyse environnementale du Québec 

MAMOT Ministère des Affaires municipales et de l’Occupation du 

territoire 

MAPAQ Ministère de l’agriculture, des Pêcheries et de l’Alimentation 

du Québec 

MSP Ministère de Sécurité publique 

MFFP Ministère des Forêts, de la Faune et des Parcs 

MERN Ministère de l’Énergie et des Ressources Naturelles 

MSSS Ministère de la Santé et des Services sociaux 

MTQ Ministère des Transports du Québec 

MCE Ministère du Conseil exécutif  

 RSVL Réseau de surveillance volontaire des lacs  

Organisme ROBVQ Regroupement des organismes de bassins versants du Québec 

RAPPEL Regroupement des Associations pour la protection de 

l’environnement des lacs 

BR Bande riveraine (FIHOQ) 

AGRCQ Association des gestionnaires régionaux des cours d’eau du 

Québec 
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Il est à noter que le ROBVQ représente 40 organismes de bassins versants (OBV). Également, 

toutes les municipalités et MRC sont à inclure parmi cette liste de parties prenantes. En plus de 

représenter leurs citoyens et leurs intérêts, elles sont fréquemment au premier plan des actions 

concrètes réalisées sur les cours d’eau et les lacs situés sur leur territoire. Les établissements 

académiques et les instituts de recherche jouent aussi un rôle important par l’entremise de leurs 

activités en recherche et développement dans plusieurs domaines de la science environnementale. 

Bien que la multitude d’intervenants présents dans le milieu des ressources en eau puisse être un 

obstacle dans la gestion de celles-ci, la participation de ces nombreux organismes à différents 

niveaux décisionnels permet en soi de s’inscrire dans la GIRE.  

Politique nationale de l’eau 

La législation de l’eau au Québec s’est vue introduite par la Politique nationale de l’eau signée en 

2002. Cette politique fait acte d’affirmation envers le peuple que l’eau fait partie intégrante du 

patrimoine collectif des Québécois. Elle présente aussi diverses mesures afin de répondre à trois 

enjeux centraux autour des ressources en eau : [1] reconnaître l’eau comme patrimoine collectif 

des Québécois, [2] assurer la protection de la santé publique et des écosystèmes aquatiques et [3] 

gérer l’eau de façon intégrée dans une perspective de développement durable (Québec, 2002). Cinq 

orientations guident ensuite ces enjeux comme axes d’intervention afin de réformer la gestion de 

l’eau au Québec.   

Tableau 1.2 : Orientations majeures de la Politique nationale de l’eau (Québec, 2002) 

Orientation 1 Réformer la gouvernance de l’eau : un choix stratégique 

Orientation 2 Implanter la gestion intégrée du Saint-Laurent 

Orientation 3 Protéger la qualité de l’eau et des écosystèmes aquatiques 

Orientation 4 Poursuivre l’assainissement de l’eau et améliorer la gestion des services d’eau 

Orientation 5 Favoriser les activités récréotouristiques relatives à l’eau 

Néanmoins, ce n’est qu’en 2009 que l’Assemblée nationale adopte la Loi affirmant le caractère 

collectif des ressources en eau et visant à renforcer leur protection. Cette « loi sur l’eau » permet 

d’ailleurs la mise en œuvre des dispositions de l’Entente sur les ressources en eau durables du 

bassin des Grands Lacs et du fleuve Saint-Laurent, signée en 2005 par le Québec, l’Ontario et huit 

États américains riverains des Grands Lacs (MDDELCC, 2016). Un régime d’autorisation de 

prélèvements d’eau est également instauré dans le cadre de la protection de la ressource. 
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Avec cette modernisation de la gouvernance de l’eau, les gestionnaires régionaux peuvent 

s’inscrire dans la GIRE par l’entremise d’un Plan directeur de l’eau. Étant le premier mandat d’un 

OBV, le PDE est un document de référence et un outil de planification pour guider la gestion de 

l’eau. Dans la région impliquée dans ce projet de recherche, l’OBV Abrinord régit actuellement 

leurs activités grâce à leur second PDE pour 2013-2018. Trois sections y figurent : le portrait, le 

diagnostic et plan d’action. Le diagnostic a permis d’établir 14 problématiques reliées aux 

ressources en eau au sein du bassin versant de la Rivière du Nord. Au prochain tableau, ces enjeux 

sont répertoriés en catégories et un classement d’action prioritaire leur est attribué.  

Tableau 1.3 : Classement prioritaire des problèmes relatifs aux ressources en eau du bassin versant 

de la rivière du Nord. Tableau tiré du Plan d’action de la zone de gestion intégrée de l’eau 

d’(Abrinord, 2015a) 

Catégorie Problèmes Priorité* 

Qualité de 

l’eau 

Concentration de microorganismes compromettant les usages de l’eau 1 

Concentration de matières en suspension compromettant les usages 

de l’eau 
2 

Concentration de phosphore compromettant les usages de l’eau et 

eutrophisation accélérée des plans d’eau 
1 

Concentration d’azote compromettant les usages de l’eau 2 

Concentration de pesticides compromettant les usages de l’eau 2 

Concentration de métaux lourds ou autres contaminants 

compromettant les usages de l’eau 
2 

Présence de fleurs d’eau de cyanobactéries 1 

Quantité 

d’eau 

Fluctuations ou niveaux inadéquats des lacs et des cours d’eau 2 

Disponibilité de l’eau souterraine insuffisante pour soutenir les usages 3 

Écosystème 

Prolifération d’espèces exotiques envahissantes 3 

Dégradation ou perte de milieux aquatiques, riverains ou humides 1 

Perte de biodiversité 3 

Aspects 

sociaux 

Accessibilité et mise en valeur limitées de la ressource eau 3 

Non-application des principes de gestion intégrée 3 

 *1 = prioritaire, 3 = moins prioritaire  

Besoins futurs et changements climatiques 

Avec les changements climatiques et l’augmentation de l’urbanisation faisant pression sur les 

écosystèmes ainsi que sur les ressources en eau, le défi de protection et de mise en valeur de l’eau 

au Québec est toujours d’actualité. Le MDDELCC maintient et relance sa participation dans cette 

lutte avec sa Stratégie québécoise de l’eau 2017-2032. Celle-ci permettra de « […] fixer le cadre 



8 

 

stratégique qui, au cours des prochaines années, orientera la mise en œuvre de mesures visant à 

conserver l’eau et les écosystèmes aquatiques, au bénéfice des générations actuelles et futures. » 

(MDDELCC, 2017c) 

À l’échelle mondiale, des études récentes ont analysé les impacts sur les ressources en eau des 

différents scénarios de changements climatiques. Par exemple, Shen et al. (2014) indique que la 

disponibilité des ressources en eau pourrait augmenter avec le réchauffement climatique malgré 

une grande différence de volumes d’eau simulés entre les scénarios ainsi qu’une très faible 

réduction de la pression exercée sur les ressources mondiales. Par ailleurs, l’augmentation de la 

population et le développement socio-économique y sont identifiés comme étant les deux enjeux 

majeurs causant l’augmentation du stress hydrique. Enfin, l’optimisation de l’efficacité des usages 

de l’eau y est reconnue comme solution durable à appliquer dans la GIRE. 

1.3.2 Sources et processus de transport de contamination fécale 

E. coli : indicateurs d’organismes fécaux (IOF) 

Nonobstant la politisation de cette ressource, la qualité de l’eau est une variable critique dans un 

contexte de santé publique et ce à travers le monde. Le contrôle de la contamination 

microbiologique et bactériologique est un défi complexe autant pour l’usage récréatif de l’eau que 

pour sa protection et sa potabilisation. De source diffuse ou ponctuelle, la contamination fécale 

figure parmi les types de pollution des eaux de surface. Escherichia coli O157:H7 est d’ailleurs 

l’un des indicateurs d’organismes fécaux (IOF) des plus utilisés pour identifier une contamination. 

En tant que coliforme thermotolérant, E. coli est une bactérie provenant de source humaine ou 

animale à sang chaud  à des concentrations de 10 log UFC/100ml (Edberg et al., 2000). Elle a 

d’ailleurs été responsable en partie de l’épidémie de Walkerton en Ontario survenue en 2000 suite 

à la contamination d’un puits d’eau potable par des eaux usées d’une ferme voisine (O'Connor, 

2002). 

Alors que l’évaluation de la qualité bactériologique d’une eau est essentielle dans le cadre de la 

gestion et protection des ressources en eau, plusieurs méthodes ont été développées afin de mesurer 

les concentrations d’E. coli. Traditionnellement, la détection de bactérie peut se faire par 

échantillonnage de l’eau suivi d’une culture bactérienne en dénombrant les colonies formées 

(UCF/100mL), mais cette technique nécessite plus de 24 heures et s’avère dispendieuse. Plus 
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récemment, la mesure de l’activité enzymatique a permis d’améliorer le processus. L’enzyme β-

D-glucuronidase (GLUC) avec un substrat fluorogène est l’une des analyses utilisées, mais 

nécessite un temps relativement long soit de 18 à 48 heures (Bukh & Roslev, 2010). Le 

développement de systèmes de détection rapide a donc été réalisé. Les méthodes d’amplification 

en chaîne par polymérase (ACP) ont initialement été développé comme technique de détection afin 

d’obtenir des résultats en moins de 24 heures (Bouvet & Vernozy-Rozand, 2000). Actuellement en 

essai, le ColiMinder permet quant à lui la mesure de paramètres microbiologiques tel que E. coli 

selon un échantillonnage de 30 minutes d’intervalle (Koschelnik et al., 2015; Ryzinska-Paier et al., 

2014). Basée également sur l’activité GLUC, cette technologie permet l’analyse d’échantillons 

d’eau en temps réelle selon l’unité modifiée de Fishman (MFU/100mL). D’autres paramètres tels 

que la turbidité, le pH, et la température peuvent aussi y être mesurés. Néanmoins, il est à noter 

que cette technique prend en considération les cellules cultivables et de même que les celles non-

cultivables.  

Sources de contamination fécale 

La caractérisation des sources de contamination fécale est nécessaire à la gestion des ressources en 

eau en termes de protection de la ressource et de santé publique. À l’échelle d’un bassin versant, 

ces sources peuvent être d’origine ponctuelle ou diffuse. D’une part, les principales sources 

ponctuelles de contamination fécales sont les débordements d’égouts des réseaux municipaux vers 

les eaux de surfaces (Madoux-Humery, A.S. et al., 2015). Les eaux de surface étant l’une des 

principales sources d’eau potable urbaines au Québec, les débordements ou surverses sont 

également une source de contamination de micropolluants présents dans les eaux usées 

municipales. Par exemple, on retrouve des produits pharmaceutiques et des perturbateurs 

endocriniens parmi les micropolluants d’effluents municipaux. Alors que les débordements 

surviennent principalement lors d’événements de pluies ou de fontes de neige, les concentrations 

d’E. coli sont conséquentes de l’interaction des trois phénomènes : [1] la dilution des eaux usées, 

[2] la remise en suspension des sédiments dans le réseau d’égouts et [3] le lessivage par le 

ruissellement en surface (Madoux-Humery, A. S. et al., 2013). Néanmoins, les surverses sont à ce 

jour des événements complexes et leurs caractéristiques diffèrent entre chaque réseau d’égouts. 

Les autres sources de contamination ponctuelle sont représentées par les lots d’élevage d’animaux, 

les fosses septiques ainsi que par les entreposages de fumier (Gagliardi & Karns, 2000).  
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D’autre part, les sources diffuses ou indirectes de contamination fécale sont généralement le 

résultat du ruissellement suite à des événements de pluies. Ainsi, le pâturage d’animaux, l’épandage 

de fumier et la présence de faune présentent un risque de contamination par lessivage. L’impact de 

ces sources de contamination sont proportionnelles à différents facteurs qui doivent être pris en 

compte lors de la modélisation microbiologique d’un bassin versant. Ces facteurs se divisent en 

différentes catégories soit l’utilisation du territoire, les caractéristiques des sols, le climat, la 

topographie ainsi que le comportement hydrologique du territoire (Coffey et al., 2010).  

Enfin, une source indirecte de contamination fécale non négligeable est l’apport d’organismes 

fécaux par les sédiments en cours d’eau. En période de débit de base (sans apport d’eau ruisselée), 

une contribution notable d’E. coli cultivable et de cellules entérocoques des sédiments du lit de 

rivière a été démontrée (Pachepsky, Yakov et al., 2017). Il est donc proposé d’intégrer la remise en 

suspension des sédiments comme source de contamination fécale lorsque des IOF sont utilisés pour 

évaluer la qualité microbiologique de l’eau.  

Règlementation et normes en vigueur 

Une classification de la qualité de l’eau en fonction du nombre de coliformes fécaux est utilisée 

par le MDDELCC afin d’évaluer le risque relié à la santé humaine par rapport à l’usage récréatif 

d’une eau de surface (Tableau 1.4). Des programmes gouvernementaux tels que Réseau-rivières et 

Environnement-plage permettent d’ailleurs le suivi de la qualité des eaux récréatives par des 

campagnes d’échantillonnage.  

Tableau 1.4 : Classification de la qualité de l'eau utilisée pour les usages récréatifs (MDDELCC, 

2015) 

Qualité de l’eau #UFC/100mL Explication 

Excellente 0-20 Tous les usages récréatifs permis 

Bonne 21-100 Tous les usages récréatifs permis 

Médiocre 101-200 Tous les usages récréatifs permis 

Mauvaise Plus de 200 Baignade et autres contacts directs avec l’eau compromis 

Très mauvaise Plus de 1 000 Tous les usages récréatifs compromis 

Outre la bactérie E. coli, d’autres indicateurs de contamination peuvent être utilisés tels que les 

Bacteorides spp., Clostridium perfringens, les coliphages à ARN-F+ et les bactériophages infectant 

le Bacteroides fragilis, mais ceux-ci ne figurent pas dans les recommandations au sujet de la qualité 
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des eaux récréatives au Canada. Il en est de même pour les virus et protozoaires. Des 

recommandations sur ces derniers sont cependant exigées pour l’eau potable. Le tableau 1.5 

présente le sommaire des recommandations au sujet de la qualité des eaux utilisées à des fins 

récréatives au Canada. En plus d’y retrouver des taux maximaux pour E. coli et les entérocoques, 

des recommandations sur les caractéristiques physiques de l’eau sont présentes de même que pour 

les cyanobactéries (aussi connues comme des algues bleu-vert).  

Tableau 1.5 : Recommandations au sujet de la qualité des eaux utilisées à des fins récréatives au 

Canada : tableau sommaire (Canada, 2012) 

Paramètre Considérations Recommandation 

Escherichia coli 

(Activités récréatives de 

contact primaire) 

Moyenne géométrique (d'au moins 5 

échantillons) 

≤ 200 E. coli/100 mL 

Concentration maximale dans un seul 

échantillon 

≤ 400 E. coli/100 mL 

Entérocoques 

(Activités récréatives de 

contact primaire) 

Moyenne géométrique (d'au moins 5 

échantillons) 

≤ 35 entérocoques/100 mL 

Concentration maximale dans un seul 

échantillon 

≤ 70 entérocoques/100 mL 

Microorganismes 

pathogènes (bactéries, 

virus, protozoaires) 

Analyse requise uniquement lorsque les 

données épidémiologiques ou autres le 

justifient 

Aucune valeur numérique 

recommandée 

Cyanobactéries Nombre total de cyanobactéries ≤ 100 000 cellules/mL 

Cyanotoxines Nombre total de microcystines ≤ 20 µg/L 

Autres dangers 

biologiques  

Les activités récréatives ne devraient pas être 

pratiquées dans des eaux où les autorités 

responsables estiment que la présence 

d'organismes représente un risque pour la 

santé et la sécurité des usagers 

Aucune valeur numérique 

recommandée 

pH Pour les eaux utilisées pour des activités 

récréatives de contact primaire 

5,0 à 9,0 

Température Ne doit pas entraîner une hausse ou une 

baisse sensible de la température corporelle 

des baigneurs 

Aucune valeur numérique 

recommandée 

Dangers chimiques Les risques associés aux dangers chimiques 

dépendent des conditions propres au secteur 

considéré et devront être évalués au cas par 

cas 

Aucune valeur numérique 

recommandée 

Turbidité Doit être propice à la plupart des usages 

récréatifs 

50 uTN 
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Tableau 1.5 : Recommandations au sujet de la qualité des eaux utilisées à des fins récréatives au 

Canada : tableau sommaire (Suite) 

Limpidité L’eau doit être suffisamment limpide pour 

que les usagers puissent estimer la profondeur 

et apercevoir les dangers sous l’eau 

Disque de Secchi visible à 

une profondeur de 1,2 m 

Couleur Ne doit pas être intense au point de réduire la 

visibilité dans les eaux de baignade 

Aucune valeur numérique 

recommandée 

Huiles et graisses Ne doivent pas être présentes en 

concentrations telles qu’elles forment un film 

visible ou des reflets, colorent la surface ou 

dégagent une odeur, et forment des dépôts sur 

les rives ou le fond qui sont visibles ou 

décelables à l’odeur 

Aucune valeur numérique 

recommandée 

Déchets  Les eaux doivent être exemptes de débris 

flottants et de matières en suspension qui 

forment des dépôts indésirables 

Aucune valeur numérique 

recommandée 

Le gouvernement du Canada propose que « […] E. coli et les entérocoques sont considérés 

comme les meilleurs indicateurs actuels de ce type de contamination ; toutefois, aucun organisme 

ne peut à lui seul répondre à l’ensemble des critères qui définissent l’indicateur idéal (Canada, 

2012). » Bref, les deux paliers gouvernementaux sont du même avis quant à l’utilisation des eaux 

récréatives selon un seuil maximal d’E. coli à 200 UFC/100ml. 

D’autres pays et organisations ont également leurs critères et recommandations quant à la qualité 

bactériologique des eaux douces à vocation récréative. Le tableau 1.6 présente ces différentes 

recommandations en fonction d’E. coli et des entérocoques comme IOF.   
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Tableau 1.6 : Recommandations pour les concentrations d’indicateurs de matières fécales dans les 

eaux douces à vocation récréative par d’autres pays ou d’autres organisations (Canada, 2012) 

Pays ou 

organisation 

Indicateur 

d'eau douce 
Paramètres et recommandations Référence 

U.S. EPA E. coli Moyenne géométrique de la concentration : 

126/100 mL 

Concentration maximale dans un seul 

échantillon: 

235/100 mL 

U.S. EPA, 

2002 

Entérocoques Moyenne géométrique de la concentration : 

33/100 mL 

Concentration maximale dans un seul 

échantillon1 : 62/100 mL 

OMS Entérocoques 

intestinaux 

95e centile/100 mL : 

A : ≤40 

B : 41-200 

C : 201-500 

D: > 500 

OMS, 2003a 

Australie Entérocoques 

intestinaux2 

95e centile/100 mL : 

A : ≤40 

B : 41-200 

C : 201-500 

D : > 500 

NHMRC, 

2008 

Union 

européenne 

Entérocoques 

intestinaux 

95e centile : 

Excellente : 200/100 mL 

Bonne : 400/100 mL 

90e centile : 

Acceptable : 330/100 mL 

UE, 2006 

E. coli 95e centile : 

Excellente : 500/100 mL 

Bonne : 1 000/100 mL 

90e centile : 

Acceptable : 900/100 mL 

 

1 Zone de plage désignée (niveau de confiance de 75 %) 
2 Conseille d'utiliser les recommandations pour les eaux côtières jusqu'à ce qu'un nombre plus 

important de données sur l'eau douce soient disponibles. 

 

1.3.3 Approche par modélisation hydrologique  

Alors que plusieurs modèles hydrologiques ont été développés depuis le XXe siècle afin d’étudier 

la quantité et la qualité des eaux, le processus de décision en gestion des eaux urbaines et agricoles 

s’est vu évolué en parallèle. Également utilisés dans plusieurs autres sphères environnementales, 

les modèles hydrologiques s’inscrivent en tant qu’outil interdisciplinaire. Défini comme étant les 

bénéfices dérivés de la nature par l’humain, le concept de service écologique ou écosystémique 
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permet ici d’aborder la dépendance de la vie humaine envers les écosystèmes (Daily, 1997). Avec 

la croissance de la population mondiale et de l’urbanisation, la demande de l’Homme pour les 

services écologiques démontre le besoin d’évaluer les impacts environnementaux sur les 

écosystèmes par l’entremise de modèles. Il en est de même pour les différents scénarios de 

changements climatiques qui sont modélisés afin d’évaluer leurs impacts sur divers domaines 

d’activités dépendants d’une ressource naturelle. Par exemple, l’impact des changements 

climatiques sur le régime hydraulique du bassin versant de la rivière Manicouagan au Québec s’est 

récemment fait évaluer à l’aide de modèle SWAT. Ces simulations se sont traduites par une 

diminution et un devancement de la crue printanière et par l’augmentation des volumes annuels 

d’écoulement (Haguma et al., 2015). Ce modèle a ici permis d’établir divers scénarios de 

production dans le cadre de la gestion hydroélectrique de cette rivière. Néanmoins, plusieurs 

incertitudes sont relatives aux changements climatiques quant à leurs impacts et leurs moyens de 

mitigations (Grieneisen & Zhang, 2011), d’où la nécessité de modéliser différents scénarios. 

La modélisation hydrologique est largement impliquée en recherche et développement dans 

plusieurs domaines scientifiques environnementaux. Certains types de modèles sont cependant 

critiqués pour être surparamétrés et difficiles d’usage étant donné le nombre de processus 

modélisés et de données nécessaires au paramétrage de ces modèles (Fatichi et al., 2016). Un des 

défis primaires de la modélisation est donc l’acquisition de données, mais aussi la validation de 

celles-ci. Au-delà du grand nombre de données possibles à impliquer, les résultats d’une simulation 

sont conséquents du paramétrage du modèle d’où la nécessité de construire un modèle avec une 

base de données valide. 

D’autre part, la variabilité spatio-temporelle des composantes d’un bassin versant étudié s’impose 

comme obstacle à la modélisation celui-ci. L’acquisition d’une meilleure compréhension des 

dynamiques environnementales à l’échelle du bassin versant est aussi déterminante (Clark et al., 

2011). Par exemple, l’accumulation et la fonte de neige sur un territoire donné dépendent d’une 

multitude de processus et sont par conséquent des phénomènes très variables. Plusieurs choix 

s’offrent donc au modélisateur quant à la représentation voulue des phénomènes 

environnementaux.  

Plusieurs logiciels sont disponibles afin de modéliser le régime hydraulique de rivières ou de 

bassins versants de différentes superficies. Certains permettent d’ailleurs l’étude de la qualité de 
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l’eau et/ou du processus d’érosion. Le prochain tableau tiré de Moriasi et al. (2015) présente une 

synthèse de modèles utilisés à l’échelle d’un bassin versant et leurs différents champs d’études 

spécifiques.  

Tableau 1.7: Modèles hydrologiques à l’échelle d’un bassin versant  (Moriasi et al., 2015) 

Modèle Composante Source 

BASINS/HSPF Hydrologie, fonte de neige, source de polluants, 

érosion, transport et devenir 

(Duda et al., 2012) 

KINEROS2/AGWA Ruissellement, érosion, sédiments (Goodrich et al., 2012) 

MIKE-SHE Dynamique de surface et souterrain, interception, 

évapotranspiration, hydraulique fluviale, niveaux 

d'eau, qualité des eaux de surface et des eaux 

souterraines 

(Jaber & Shukla, 2012) 

SWAT Hydrologie, croissance de plantes, sédiments, 

nutriments, pesticides, source de polluants  

(Arnold, Moriasi, et al., 

2012) 

WAM Hydrologie, sédiments, nutriments (Bottcher et al., 2012) 

WARMF Hydrologie, sédiments, nutriments, miner acide, 

carbone, bactérie 

(Herr & Chen, 2012) 

WEPP Watershed Hydrologie, érosion (Flanagan et al., 2012) 

Transport et devenir de microorganismes d’origine fécale 

La présence de micro-organismes dérivés de matières fécales dans une eau de surface indique 

nécessairement le contact de celle-ci avec une source de contamination fécale.  Pour identifier la 

présence de ces micro-organismes, le recours à des IOF sont utilisés. Malgré la présence de ces 

derniers dans une eau, ils ne confirment pas tous la présence d’agents pathogènes (Pachepsky, Y. 

et al., 2016). Ces indicateurs permettent plutôt d’évaluer la qualité d’une eau ainsi que le risque 

pour la santé publique par l’usage quelconque de cette eau (Cho et al., 2016).  Ce sont dès lors les 

agents pathogènes présents dans une eau qui sont corrélés avec le risque pour la santé. 

Cryptosporidium parvum, Campylobacter jejuvi et Escherichia coli O157:H7 sont parmi ces 

agents. L’étude du devenir des IOF dans l’eau est donc un enjeu clef dans la protection des 

ressources en eau. Pour ce faire, la modélisation demeure un outil essentiel pour concrétiser ces 

études. Une synthèse des modèles récemment utilisés à cet effet est présentée au tableau 1.8. Ces 

modèles y sont présentés en fonction des différents processus régissant le transport et le devenir de 

microorganismes fécaux dans un environnement naturel. Ce cheminement est d’ailleurs présenté à 

la figure 1.1. 
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Tableau 1.8 : Synthèses des modèles récemment utilités dans l’étude du transport et devenir 

d’indicateurs fécaux à l’échelle d’un bassin versant, adapté de Cho et al. (2016) 

 

La complexité et la variabilité de ces processus engendrent cependant des incertitudes dans les 

résultats des modèles. Ayant des objectifs communs, tous les modèles sont néanmoins uniques par 

la façon dont ils ont été développés, leurs données d’entrées ou leur complexité d’exécution. La 

modélisation de la qualité microbiologique de l’eau permet ici une meilleure compréhension des 

processus et des composantes régissant le transport et le devenir d’IOF au sein d’un bassin versant. 

Par conséquent, un meilleur contrôle de la qualité de l’eau est possible de même qu’une meilleure 

gestion et développement des normes et règlementations des ressources hydriques. Plusieurs défis 

restent également à surmonter dans l’échantillonnage et la prise de données afin de réduire les 

incertitudes associées aux résultats de modélisation (Harmel et al., 2016). Par exemple, les 

concentrations d’E. coli sont soumises à diverses variabilités en échantillonnage telles que les 

conditions hydrauliques à la prise d’eau, les conditions d’entreposage des échantillons et les 

intervalles d’échantillonnage. 
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Figure 1.1 : Cheminent des micro-organismes fécaux vers une eau de surface, adapté de Cho et al. 

(2016) 

L’inactivation d’E. coli en milieu naturel est également à considérer dans l’étude de son 

comportement. Bien que de multiples méthodes physico-chimiques soient disponibles pour 

inactiver la bactérie dans le domaine de l’épuration des eaux, de nombreuses interactions en milieu 

naturel guident le devenir d’E. coli. D’une part, une recherche littéraire a été conduite afin d’évaluer 

les effets des propriétés des sols et de la température sur la survie d’E. coli dans le sol (Park et al., 

2016). Des cinétiques d’inactivation à une et deux phases ont été analysées et définies pour 

différentes combinaisons de paramètres. La température, la consistance du fumier ou des boues, le 

contenu en eau du sol et la texture des sols y sont ainsi identifiés comme variables contrôlant le 

nombre de phases de cinétique d’inactivation et le temps de survie. Les taux d’inactivation d’IOF 

y sont présentés comme étant très sensibles aux conditions de leur milieu. De ce fait, les 

caractéristiques propres à un bassin versant ont alors des impacts distincts sur la qualité de l’eau 

telles que les différentes utilisations du territoire, les variabilités saisonnières et les caractéristiques 

topographiques. Yu et al. (2016) démontrent ultimement que les zones de fortes pentes d’un bassin 

ainsi que la proximité des cours d’eau de certaines utilisations du sol sont des facteurs ayant une 

forte influence sur le devenir d’IOF. 

Dans une même suite d’idées, les caractéristiques d’un bassin ont été étudiées afin d’évaluer 

l’impact du ruissellement sur la qualité de l’eau (Paule-Mercado et al., 2016). La modélisation et 

la prédiction des concentrations de différents IOF dans des régions agricoles, mixtes et urbaines 
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ont permis de déterminer que la température, les matières solides en suspension et la turbidité sont 

hautement corrélées avec les concentrations d’IOF. Également, le ruissellement en zone urbaine 

s’est révélé avoir les plus grands niveaux de contamination fécale due aux activités anthropiques 

et à l’urbanisation.  

D’autre part, la combinaison d’un modèle sur la prédiction d’IOF à l’échelle d’un bassin versant 

avec un modèle de risque pour la santé humaine de type dose-réponse a été effectuée par Liao et 

al. (2016). Cette étude a permis d’établir les risques associés aux différentes sources de pollutions 

fécales présentes au sein du bassin versant en question afin de dresser une liste d’interventions 

prioritaires. Les débordements d’égouts sanitaires ont ici été associés au plus grand risque pour la 

santé humaine comparativement aux aux sources de contamination par l’élevage de bétail, des 

déchets d’animaux domestiques et de la faune. 

L’attachement des bactéries à la phase particulaire vient jouer un rôle essentiel dans le transport et 

le devenir d’E. coli. En effet, il a été démontré par Garzio-Hadzick et al. (2010) que le temps de 

survie de la bactérie en solution est moindre que lorsqu’elle est attachée à des particules 

sédimentaires. Cette étude indique également que l’inactivation d’E. coli est inversement 

proportionnelle au taux de carbone organique dans les sédiments et au contenu en particules fines. 

Peu importe la source de contamination, le transport d’E. coli est alors relié à celui des sédiments. 

Les processus d’érosion, de déposition et de remise en suspension de sédiments doivent ainsi être 

compris dans la modélisation du transport et du devenir d’E. coli. À l’échelle d’un bassin versant, 

l’inclusion de la remise en suspension des sédiments avec une fraction d’E. coli y étant attachée a 

été évaluer par Pandey et Soupir (2013). Leur modèle a permis d’obtenir des prédictions de l’ordre 

de 1010 jusqu’à 1014 unités formant colonie (UFC/100mL) avec remise en suspension des sédiments 

comparativement à des prédictions de 107 (UFC/100mL) sans ce processus. L’évaluation des 

concentrations d’E. coli au sein des dépôts de sédiments s’impose alors comme principale source 

d’incertitudes. 

Soil & Water Assessment Tool (SWAT) 

Développé par le département de l’agriculture des États-Unis (USDA), SWAT est un outil de 

modélisation de bassin versant impliquant une multitude de données entrantes. Ce modèle a 

initialement été conçu pour évaluer les impacts de pratiques agricoles et des utilisations du sol sur 

la qualité de l’eau (Arnold, Moriasi, et al., 2012). Par exemple, Beaudin et al. (2006) ont exploité 
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ce modèle pour évaluer le fonctionnement hydrologique, le processus d’érosion et la mobilité du 

phosphore du bassin versant de la rivière aux Brochets au sud-ouest du Québec. Les flux de 

phosphore occasionnant la prolifération de cyanobactéries ont été identifiés comme problématique 

de ce bassin. Causée par un ruissellement important et un taux d’érosion élevé, une forte 

discrimination spatiale dans la distribution des exportations a été mise en évidence par l’entremise 

de SWAT. D’ailleurs, le paramétrage indépendant des sections amont et aval du bassin versant a 

été effectué pour la calibration hydraulique du modèle. 

Également, les variabilités spatiales et temporelles dans la qualité de l’eau ont été analysées dans 

des régions agricoles avec un modèle SWAT (Boskidis et al., 2010). La température, le pH, 

l’oxygène dissous, et la conductivité électrique ont d’ailleurs été mesurés in situ pour calibrer le 

modèle. Avec huit scénarios de gestion agricole différents, les sources diffuses ont eu la plus grande 

influence sur les flux d’azote et de phosphore. SWAT s’est ici présenté comme un outil efficace 

pour simuler des hydrographes et des charges de nutriments.  

D’autre part, un modèle bactériologique a été intégré à SWAT afin d’analyser le transport et le 

devenir de pathogènes au sein de bassins versants, particulièrement les organismes d’origine fécale 

(Sadeghi & Arnold, 2002). La caractérisation des sources de pollution a été le principal défi à 

surmonter dans ce type de modélisation. Parajuli (2007) a d’ailleurs établi une méthodologie à cette 

fin pour des sources diffuses telles que la faune et l’élevage de bétails. L’implantation de bandes 

végétatives filtrantes s’est avérée la meilleure solution pour réduire les concentrations de bactéries 

d’origine fécale en simulation.  

L’implantation des sources ponctuelles est également possible dans SWAT telle que le rejet d’eaux 

usées en rivière. Le choix du type de modèle et du pas de temps de simulation est d’ailleurs 

dépendant des sources de contamination à intégrer selon le types de données disponibles pour leur 

modélisation. 

Enfin, plusieurs incertitudes sont présentes dans la modélisation de pathogènes à l’échelle d’un 

bassin versant considérant toutes les sources potentielles de contamination et leurs différentes 

influences sur l’environnement (Coffey et al., 2010).   
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1.3.4 Résumé 

La gestion intégrée des ressources en eau permet une gouvernance participative de cette richesse 

naturelle et elle s’applique de façon à distribuer le pouvoir décisionnel entre les acteurs d’un même 

bassin versant. Ce moyen de gérer la ressource s’inscrit d’ailleurs dans la législation de l’eau au 

Québec comme un aspect clef dans la Politique nationale de l’eau.  

L’optimisation de l’efficacité des usages de l’eau est reconnue comme solution durable à appliquer 

dans la GIRE. La Stratégie québécoise de l’eau 2017-2032 vise également à développer la gestion 

de cette ressource de façon durable en tenant compte des besoins futurs et des changements 

climatiques. La mise en valeur et la protection des sources d’eau potables au Québec figurent parmi 

les orientations et les axes d’interventions de cette stratégie. De ce fait, la modélisation de 

contaminants afin de mieux comprendre leur comportement dans l’environnement permet 

d’orienter la mise en place d’actions pour la protection de la ressource. La bactérie E. coli est 

notamment utilisée comme indicateur de contamination fécale. Plusieurs modèles sont disponibles 

pour effectuer la simulation de contaminants selon les données disponibles, les variables résultantes 

désirées et le pas de temps de simulation. SWAT permet d’ailleurs d’effectuer la modélisation 

hydrologique d’un bassin versant et la prédiction de concentrations de contaminants. Différents 

processus et composantes sont en interaction avec le transport et le devenir d’E. coli dans 

l’environnement tels que le lessivage des sols par ruisselement, la remise en suspension de 

sédiments et l’inactivation de la bactérie. Afin de réduire les incertitudes associées à la prédiction 

de cette bactérie, une caractérisation complète et fidèle des sources de contamination fécale est 

nécessaire.
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CHAPITRE 2 THÉORIE 

SWAT a été développé afin de prédire l’impact qu’auront la gestion agricole et l’utilisation des 

sols sur les ressources en eau. Avec la topographie, la pédologie, l’utilisation du sol et les données 

climatiques comme données d’entrée, ce logiciel incorpore ces informations physiques afin de 

modéliser les processus environnementaux régissant l’hydrologie, l’exportation de sédiments, la 

croissance de cultures agricoles ainsi que le transport des nutriments et de bactéries au sein d’un 

bassin versant. Une multitude de scénarios et de résultats peuvent ainsi être simulés, mais une 

quantité initiale d’informations en est proportionnellement requise. 

La division du bassin versant en sous bassins puis en unités de réponse hydrologique permet 

d’acquérir une variabilité spatiale hautement appréciable pour la calibration du modèle. Les 

processus régissant les routines des différentes sphères environnementales ont alors une réponse 

proportionnelle au paramétrage des URH. Les décisions prises quant aux choix d’équations et de 

modèles climatiques et hydrologiques disponibles sont également conséquentes de la 

caractérisation du bassin versant effectuée.  

Cette section présente les dynamiques et les interactions utilisés par le modèle SWAT. Il s’agit 

d’une description détaillée du modèle traduite depuis le guide théorique de Neitsch et al. (2011a). 

Les équations utilisées y sont d’ailleurs présentées et détaillées pour fin de compréhension. Seuls 

les processus utilisés au sein du modèle à l’étude sont abordés.  
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2.1 Hydrologie 

2.1.1 Cycle de l’eau 

Le module hydrologique dans SWAT se divise en deux composantes : la phase terrestre contrôlant 

le cycle de l’eau tel que présenté à la figure 3.1 et la phase hydrographique simulant le mouvement 

de l’eau et des sédiments en rivière. Un bilan masse permet de décrire le cycle hydrologique tout 

en liant ces deux phases. Cette équation représente la dynamique de l’eau régissant au sein du 

bassin versant et elle constitue la base du modèle pour la suite des aspects théoriques. 

𝑆𝑊𝑖 = 𝑆𝑊𝑖−1 + ∑ (𝑅𝑖 − 𝑄𝑟𝑢𝑖𝑠 − 𝐸𝑎 − 𝑤𝑖𝑛𝑓 − 𝑄𝑔𝑤)
𝑡

𝑖=1
 Éq. 2.1 : Bilan hydrologique 

Où 𝑆𝑊𝑖 ∶ Volume d’eau journalier dans un URH (mm) 

 𝑅𝑖 ∶ Volume d’eau de précipitations journalier (mm) 

 𝑄𝑟𝑢𝑖𝑠 :  Ruissellement (mm) 

 𝐸𝑎 ∶ Évapotranpiration 

 𝑤𝑖𝑛𝑓 ∶ Infiltration (mm) 

 𝑄𝑔𝑤 ∶ Eau souterraine (mm) 

 

Figure 2.1 : Schéma du cycle de l’eau, traduit de Neitsch et al. (2011a) 
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Des précipitations orographiques peuvent être prises en compte dans SWAT pour certaines régions 

du monde où la topographie le permet. Ce type de précipitation est considéré nul dans le bassin à 

l’étude. Malgré la topographie accidentée de ce-dernier, les effets orographiques sont ici considérés 

insuffisants pour influencer le cycle hydrologique du bassin. La figure 3.2 présente la séquence 

décisionnelle du cheminement de l’eau pour un URH. Il est à noter que le bilan masse hydrologique 

se situe au centre de cette boucle de commande. La présence de neige est d’ailleurs prise en compte 

dans le modèle. 

 

Figure 2.2: Boucle de commande d’un URH dans SWAT, adapté de Neitsch et al. (2011b) 

2.1.2 Ruissellement 

Le ruissellement est déterminé selon le modèle de pluie nette du Soil Conservation Service 

américain (SCS, 1972). Cette méthode permet d’évaluer le volume de ruissellement en tenant 

compte des propriétés hydrologiques des sols. Elle est d’ailleurs appropriée pour les simulations 

d’un pas de temps journalier puisqu’elle détermine le volume de ruissellement pour l’ensemble 

d’une précipitation et non des valeurs d’infiltrations en fonction du temps (Anctil et al., 2012). 
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𝑄𝑟𝑢𝑖𝑠 =
(𝑅𝑑 − 𝐼𝑎)2

(𝑅𝑑 − 𝐼𝑎 + 𝑆)
 Éq. 2.2 : Ruissellement - Équation SCS 

Où 𝑄𝑟𝑢𝑖𝑠 : Ruissellement [mm] 

 𝐼𝑎 : Infiltration initiale ≈ 0.2𝑆  [mm] 

 𝑅𝑑  : Précipitations totales d’une journée [mm] 

 𝑆 : Rétention du sol [mm] 

L’infiltration initiale est d’ailleurs estimée à 20% de la rétention. Cette dernière est alors définie en 

fonction des caractéristiques du sol par la méthode du SCS. L’indice de ruissellement ou numéro 

de courbe CN2 est utilisée à cette fin. Ce paramètre est directement proportionnel au ruissellement 

de surface tel qu’illustré à la figure 3.3. Classifiant le potentiel de ruissellement des sols, les 

groupes hydrologiques permettent de déterminer le paramètre CN2. De ce fait, les surfaces pavées 

ont les valeurs CN2 les plus élevées étant donné leur imperméabilité importante. Le tableau 3.1 

présente les valeurs des paramètres CN2 en fonction du groupe hydrologique et de l’utilisation du 

sol.  

𝑆 = 25.4 (
1000

𝐶𝑁2
− 10) Éq. 2.3 : Rétention du sol 

Où 𝑆 : Rétention d’eau [mm] 

 𝐶𝑁2 : Indice de ruissellement (Numéro de courbe SCS) 

 
Figure 2.3 : Relation entre le ruissellement et les précipitations selon le numéro de courbe SCS, 

traduit de Neitsch et al. (2011b) 
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Tableau 2.1 : Valeurs du paramètre CN2 pour différents types de sol ou d’occupation du sol, tiré 

de Anctil et al. (2012) 

 
 ¹Groupe A : Peu de potentiel de ruissellement et infiltration forte. Sol excessivement bien drainé 

²Groupe B : Sol avec un taux d’infiltration modéré et bien drainé. 

³Groupe C : Sol avec un taux d’infiltration faible et conductivité hydraulique faible. 
4Groupe D : Grand potentiel de ruissellement et infiltration très faible.  

La rétention d’eau est ajustée lorsque la surface du sol est en condition de gel. Ainsi, une partie de 

la rétention maximale possible en condition normale est utilisée afin de déterminer la rétention 

d’eau en condition de gel. 

𝑆′ = 𝑆𝑚𝑎𝑥 ∙ (1 − exp[−0.000862 ∙ 𝑆]) Éq. 2.4 : Rétention du sol gelé 

Où 𝑆 : Rétention d’eau [mm] 

 𝑆′ : Rétention d’eau en condition de gel [mm] 

 𝑆𝑚𝑎𝑥: Rétention d’eau maximale [mm] 

Un débit de pointe est ensuite déterminé en fonction du ruissellement. Ce débit permet d’ailleurs 

d’indiquer le potentiel d’érosion d’un événement de pluie pour estimer les quantités de sédiments 

transportées. La méthode rationnelle est ici utilisée selon laquelle une pluie d’intensité i permet un 

ruissellement maximal selon un temps de concentration. 
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𝑞𝑝𝑜𝑖𝑛𝑡𝑒 =
𝐶 ∙ 𝑖 ∙ 𝐴

3.6
 Éq. 2.5 : Débit de pointe 

Où 𝑞𝑝𝑜𝑖𝑛𝑡𝑒 : Débit de pointe [m³ s-1] 

 𝐶 : Coefficient de ruissellement 

 𝑖 : Intensité de pluie [mm h-1] 

 𝐴 : Aire du sous bassin [km²] 

Le coefficient de ruissellement est ici défini comme le rapport entre le ruissellement et la pluie 

nette d’une précipitation. 

𝐶𝑖 =  𝑄𝑟𝑢𝑖𝑠,𝑖/𝑅𝑖 Éq. 2.6: Coefficient de ruissellement 

Où 𝐶𝑖 : Coefficient de ruissellement de la journée i 

 𝑄𝑟𝑢𝑖𝑠,𝑖 : Ruissellement [mm] 

 𝑅𝑖: Volume de pluie [mm] 

Le temps de concentration se définie par le temps nécessaire à la contribution totale de la 

superficie d’un bassin versant au débit sortant lors d’un événement de pluie.  

𝑡𝑐 = 𝑡𝑞 + 𝑡𝑟 = (
𝐿0.4 ∙ 𝑛0.6

285 ∙ 𝑝0.3
) + (

0.62 ∙ 𝐿 ∙ 𝑛0.75

𝐴0.125 ∙ 𝑝0.375
)  Éq. 2.7 : Temps de concentration 

Où 𝑡𝑐 : Temps de concentration du sous bassin [h] 

 𝑡𝑞 : Temps de concentration du ruissellement [h] 

 𝑡𝑟 : Temps de concentration en rivière [h] 

 L : Longueur du sous bassin [km]  

 n : Coefficient de Manning 

 A : Aire du sous bassin [km²] 

 p : Pente moyenne [m m-1] 

Selon leur superficie, certains bassins versants ont un temps de concentration supérieur à 24 heures. 

Une fraction du ruissellement atteint donc le réseau hydrographique après un événement de pluie. 

Un coefficient de délai est inclus dans SWAT afin de transférer le ruissellement accumulé d’une 

journée à l’autre.  

𝑄𝑟𝑢𝑖𝑠 = (𝑄′𝑟𝑢𝑖𝑠 + 𝑄𝑎𝑐𝑐,𝑖−1) ∙ [1 − exp (
−𝑠𝑢𝑟𝑙𝑎𝑔

𝑡𝑐
)]  Éq. 2.8 : Ruissellement différé 
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Où 𝑄𝑟𝑢𝑖𝑠 : Ruissellement atteignant le réseau hydrographique [mm] 

 𝑄′𝑟𝑢𝑖𝑠 : Ruissellement de surface généré [mm] 

 𝑄𝑎𝑐𝑐,𝑖−1 : Ruissellement différé de la journée précédente [mm] 

 𝑠𝑢𝑟𝑙𝑎𝑔 : Coefficient de délai du ruissellement de surface 

La prochaine figure présente l’influence du délai de ruissellement et du temps de concentration sur 

la fraction ruisselée atteignant le réseau hydrographique. Ainsi, pour un temps de concentration 𝑡𝑐 

donné, le volume d’eau ruisselé emmagasiné ou différé est inversement proportionnel au 

coefficient de délai surlag. 

 

Figure 2.4 : Influence du délai de ruissellement et du temps de concentration sur la fraction 

ruisselée atteignant le réseau hydrographique, traduit de Neitsch et al. (2011a) 

2.1.3 Infiltration et écoulement latéral 

Une partie de l’eau ruisselée peut s’infiltrer dans le sol et suivre différents parcours. Elle peut être 

évaporée ou absorbée par la végétation, mais également recharger les aquifères ou se déplacer 

latéralement dans le profil du sol et aussi contribuer au débit du réseau hydrographique. De ce fait, 

la porosité du sol influence le comportement de l’eau dans le sol quant à son emmagasinement et 

son transport. Le comportement hydraulique du sol est donc dépendant du diamètre des pores qu’il 

contient. Ceux-ci se classent en trois catégories : les macropores, les mésopores et les micropores. 
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Les teneurs en sable, en limon et en argile définissent généralement le type de porosité. SWAT 

prend d’ailleurs en compte la réserve utile en eau disponible pour la végétation puisqu’elle 

représente la majeure partie de l’eau soutirée du profil du sol (Neitsch et al., 2011a).  

𝐶𝐶 = 𝑅𝑈 + 𝑃𝐹  Éq. 2.9 : Réserve utile 

Où 𝐶𝐶 : Capacité au champ [mm mm-1] 

 𝑅𝑈 : Réserve utile [mm mm-1] 

 𝑃𝐹 : Point de flétrissement [mm mm-1] 

Alors que la réserve en eau du sol est connue, la capacité au champ est calculée en fonction du 

point de flétrissement relié au pourcentage d’argile et de la densité du sol. 

𝑃𝐹 = 0.4 ∙
𝑚𝑐 ∙ 𝜌𝑏

100
 Éq. 2.10 : Point de flétrissement 

Où 𝑚𝑐: Pourcentage d’argile du sol (%) 

 𝜌𝑏 : Densité apparente du sol [Mg m-3] 

L’infiltration d’eau ou la percolation est ensuite déterminée selon l’équation 3.12. Le volume d’eau 

disponible dans le sol est ici dépendant de la teneur en eau du sol par rapport à la capacité au champ. 

Il est à noter que l’infiltration est calculée unitairement selon les couches de sol présentes dans un 

URH. Par ailleurs, aucune eau n’est drainée d’une couche de sol lorsque celle-ci est gelée.  

∆𝑉𝑑 = 𝑉 − 𝐶𝐶 si             ∆𝑉 > 𝐶𝐶  Éq. 2.11 : Volume d’eau drainé 

∆𝑉𝑑 = 0 si ∆𝑉 ≤ 𝐶𝐶  

Où ∆𝑉𝑑: Volume d’eau disponible dans le sol [mm] 

 𝑉 : Teneur en eau du sol [mm] 

𝑤𝑖𝑛𝑓 = ∆𝑉𝑑 ∙ [1 − exp (
−∆𝑡

𝑇𝑇𝑖𝑛𝑓
)] Éq. 2.12 : Infiltration 

Où 𝑤𝑖𝑛𝑓 : Infiltration [mm] 

 ∆𝑉𝑑 : Volume d’eau disponible dans le sol [mm] 

 ∆𝑡 : Pas de temps de simulation [24h] 

 𝑇𝑇𝑖𝑛𝑓 : Temps d’infiltration [h] 
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𝑇𝑇𝑖𝑛𝑓 =
𝑆𝐴𝑇 − 𝐶𝐶

𝐾𝑠𝑎𝑡
 Éq. 2.13 : Temps d’infiltration 

Où 𝑆𝐴𝑇 : Teneur d’eau à saturation (mm) 

 𝐾𝑠𝑎𝑡  : Conductivité hydraulique du sol [mm h-1] 

 𝐶𝐶 : Capacité au champ 

Un débit latéral est également simulé lorsqu’un sol avec une grande conductivité hydraulique 

possède une couche imperméable ou semi-perméable à une faible profondeur.  

𝑄𝑙𝑎𝑡 = 0.024 ∙ (
2 ∙ ∆𝑉𝑑 ∙ 𝐾𝑠𝑎𝑡 ∙ 𝑆

𝜑𝑑 ∙ 𝐿
) Éq. 2.14 : Débit latéral 

Où 𝑄𝑙𝑎𝑡 =  : Teneur d’eau à saturation [mm] 

 ∆𝑉𝑑 : Volume d’eau drainée [mm] 

 𝐾𝑠𝑎𝑡  : Conductivité hydraulique du sol [mm h-1] 

 𝑆 : Pente 

 𝜑𝑑 : Porosité de drainage [mm/mm] 

 𝐿 : longueur de pente [m] 

Un coefficient de délai peut également être considéré dans le calcul du débit latéral pour les bassins 

versants ayant un temps de concentration supérieur à 24 heures. Ce coefficient s’intègre au calcul 

du débit latéral de la même manière que le calcul du ruissellement. 

2.1.4 Eaux souterraines 

Suite à l’infiltration de l’eau dans le sol, celle-ci se définie alors comme une eau souterraine et se 

loge dans deux aquifères distincts selon les caractéristiques du sol. Respectivement, la nappe libre 

et la nappe captive sont les aquifères peu profond et profond notamment présentés à la figure 3.5. 

Comme l’infiltration présentée à la section précédente, l’écoulement des eaux souterraines est 

relatif à la conductivité hydraulique et à la porosité du sol. La présence de couche perméable dans 

le sol n’a pas été identifiée dans la caractérisation de la pédologie du territoire. Alors qu’il est fort 

probable que de telles couches soient présentes en réalité, une incertitude dans l’évaluation des 

écoulements souterrains y sont donc associées. 
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Figure 2.5 : Nappe libre et nappe captive, adapté de Neitsch et al. (2011a) 

SWAT simule ces deux nappes au sein d’un sous bassin. Il est ici défini que la nappe libre d’un 

sous bassin donné contribue au débit du réseau hydrographique alors que la nappe captive 

correspondante ne contribue qu’à un débit d’un bassin versant subséquent. Un bilan massique 

permet de contrôler les volumes d’eaux souterraines. 

𝑁𝐿𝑖 = 𝑁𝐿𝑖−1 + 𝑤𝑟𝑐ℎ𝑟𝑔 − 𝑄𝑔𝑤 − 𝑤𝑟𝑒𝑣𝑎𝑝

− 𝑤𝑝,𝑁𝐿 

Éq. 2.15 : Bilan de masse de la nappe libre 

Où 𝑁𝐿𝑖  : Quantité d’eau dans la nappe libre pour la journée i [mm] 

 𝑤𝑟𝑐ℎ𝑟𝑔 : Apport en eau de recharge [mm] 

 𝑄𝑔𝑤 : Débit d’eau souterraine [mm] 

 𝑤𝑟𝑒𝑣𝑎𝑝 : Demande en eau vers les zones non saturées [mm] 

 𝑤𝑝,𝑁𝐿 : Eau pompée depuis la nappe libre si existant [mm] 

La recharge des nappes est effectuée par le biais de la demande en eau vers les zones non saturées 

du sol. Un délai de drainage y est imposé pour prendre en compte le temps réponse du sol. Cette 

variable est d’ailleurs estimée et ajustée lors de la calibration du modèle puisqu’elle ne peut être 

mesurée. 

𝑤𝑟𝑐ℎ𝑟𝑔,𝑖 = (1 − exp[−1 𝛿𝑔𝑤⁄ ]) ∙ 𝑤𝑛𝑠 + exp[−1 𝛿𝑔𝑤⁄ ]

∙ 𝑤𝑟𝑐ℎ𝑟𝑔,𝑖−1 

Éq. 2.16 : Recharge de 

l’eau souterraine 
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Où 𝑤𝑟𝑐ℎ𝑟𝑔 : Eau de recharge de la nappe pour la journée i [mm] 

 𝛿𝑔𝑤 : Délai de drainage des formations géologiques (GW_DELAY) [d] 

 𝑤𝑛𝑠 : Demande en eau vers les zones non saturées [mm] 

Le débit de base ou débit souterrain permet de réguler la contribution de la nappe libre au réseau 

hydrographique. Ce débit est défini à l’équation 3.17 et régit en réseau selon l’équation 3.18. 

𝑄𝑔𝑤 =
8000 ∙ 𝐾𝑠𝑎𝑡

𝐿𝑔𝑤
2

∙ ℎ𝑛 
Éq. 2.17: Débit de base 

Où 𝑄𝑔𝑤 : Débit de base [mm] 

 𝐾𝑠𝑎𝑡  : Conductivité hydraulique du sol [mm h-1] 

 𝐿𝑔𝑤 : Distance du réseau souterrain jusqu’en rivière [m] 

 ℎ𝑛: Hauteur d’eau de la nappe [m]  

𝑄𝑔𝑤,𝑖 = 𝑄𝑔𝑤,𝑖−1 ∙ exp[−𝛼𝑔𝑤 ∙ ∆𝑡] + 𝑤𝑟𝑐ℎ𝑟𝑔 ∙ (1 − exp[−𝛼𝑔𝑤 ∙ ∆𝑡]) 

𝑄𝑔𝑤,𝑖 = 0    si  𝑁𝐿𝑖 ≤ 𝐺𝑊𝑄𝑀𝑁 

Éq. 2.18 : Débit de 

base 

Où 𝑄𝑔𝑤,𝑖 : Débit d’eau souterraine pour la journée i [mm] 

 𝛼𝑔𝑤 : Constante de régression du débit de base (ALPHA_BF) [d] 

 ∆𝑡 : Pas de temps de simulation [d] 

 𝑤𝑟𝑐ℎ𝑟𝑔 : Eau de recharge de la nappe pour la journée i [mm] 

 𝑁𝐿𝑖  : Quantité d’eau dans la nappe libre pour la journée i [mm] 

 𝐺𝑊𝑄𝑀𝑁 : Niveau seuil d’eau de la nappe libre pour un débit de débit nul [m] 

ℎ𝑖 = ℎ𝑖−1 ∙ 𝑒𝑥𝑝[−𝛼𝑔𝑤 ∙ ∆𝑡] +
𝑤𝑟𝑐ℎ𝑟𝑔 ∙ (1 − 𝑒𝑥𝑝[−𝛼𝑔𝑤 ∙ ∆𝑡])

800 ∙ 𝜇 ∙ 𝛼𝑔𝑤
 

Éq. 2.19 : Hauteur d’eau 

souterraine 

Où ℎ𝑖  : Hauteur d’eau souterraine pour la journée i (mm) 

 𝛼𝑔𝑤 : Constante de régression du débit de base [d] (ALPHA_BF) 

 ∆𝑡 : Pas de temps de simulation 

 𝜇 : Rendement spécifique de la nappe libre [m m-1] 

La quantité d’eau dans la nappe captive est contrôlée par un bilan de masse. L’apport en eau depuis 

la nappe libre est ici partitionné à l’aide d’un coefficient de percolation aussi utilisé en calibration.  

𝑁𝐶𝑖 = 𝑁𝐶𝑖−1 + 𝑤𝑁𝐶 − 𝑤𝑝,𝑁𝐶 Éq. 2.20 : Bilan de masse de la nappe captive 
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Où 𝑁𝐶𝑖 : Quantité d’eau dans la nappe captive pour la journée i [mm] 

 𝑤𝑁𝐿 : Apport en eau de recharge depuis la nappe libre [mm] 

 𝑤𝑝,𝑁𝐶  : Eau pompée depuis la nappe captive si existant [mm] 

𝑤𝑁𝐶 = 𝛽𝑝 ∙  𝑤𝑟𝑐ℎ𝑟𝑔 Éq. 2.21 : Partitionnement entre les nappes 

Où 𝑤𝑁𝐿 : Recharge de la nappe captive depuis la nappe libre (mm) 

 𝛽𝑝 : Coefficient de percolation (RCHRG_DP) 

 𝑤𝑟𝑐ℎ𝑟𝑔 : Recharge en eau souterraine [mm] 

Une demande en eau de la couche supérieure du sol peut être provoquée en période de sécheresse. 

L’eau souterraine se voit alors diffusée vers le haut entre la frange capillaire des zones saturées et 

non-saturées. Le terme « revap » est utilisé par SWAT pour définir ce phénomène.  

𝑤revap = 𝛽revap ∙  E0 = wrevap,𝑚𝑎𝑥  si  𝑁𝐿𝑖 ≥ (𝑅𝑚𝑖𝑛 + 𝑤𝑟𝑒𝑣𝑎𝑝,𝑚𝑎𝑥) Éq. 2.22 : 

Remontée 

capillaire 

𝑤revap = wrevap,𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛  

𝑤revap = 0 

si  𝑅𝑚𝑖𝑛 < 𝑁𝐿𝑖 < (𝑅𝑚𝑖𝑛 + wrevap,𝑚𝑎𝑥) 

si  𝑁𝐿𝑖 ≤ 𝑅𝑚𝑖𝑛 

Où 𝛽revap : Coefficient  

 E0 : Potentiel d’évapotranspiration [mm] 

 𝑁𝐿𝑖  : Quantité d’eau dans la nappe libre pour la journée i [mm] 

 𝑅𝑚𝑖𝑛: Niveau d’eau minimum de la nappe libre permettant la remontée capillaire 

(REVAPMIN) [mm] 

2.1.5 Lacs et réservoirs 

Les réservoirs sont définis dans SWAT comme étant des étendues d’eau situées au fil des cours 

d’eau. Dans le bassin versant à l’étude, les lacs ayant des barrages à leur exutoire sont définis en 

tant que réservoir dû à leur contrôle par déversoir. Toutes autres étendues d’eau n’ayant pas de 

barrage et n’étant pas situés sur un cours d’eau implémenté dans le modèle sont définies en tant 

que lac. 

𝑉𝑖 =  𝑉i−1 + (𝑉𝑒𝑛𝑡𝑟é𝑒 − 𝑉𝑠𝑜𝑟𝑡𝑖𝑒) + 𝑉𝑝𝑐𝑝 − 𝑉é𝑣𝑎𝑝𝑜 − 𝑉𝑖𝑛𝑓𝑖𝑙  Éq. 2.23 : Bilan massique d’un lac 

Où 𝑉𝑖 : Volume d’un réservoir à la journée i [m3] 

 𝑉𝑒𝑛𝑡𝑟é : Volume quotidien entrée dans un réservoir depuis un ou plusieurs cours d’eau 

[m3] 
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 𝑉𝑠𝑜𝑟𝑡𝑖𝑒 : Volume quotidien sortie d’un réservoir à son exutoire [m3] 

 𝑉𝑝𝑐𝑝 : Volume quotidien entrée dans un réservoir par les précipitations [m3] 

 𝑉é𝑣𝑎𝑝𝑜 : Volume quotidien sortie d’un réservoir par évaporation [m3] 

 𝑉𝑖𝑛𝑓𝑖𝑙 : Volume quotidien sortie d’un réservoir par infiltration [m3] 

𝑉𝑝𝑐𝑝 = 10 ∙ 𝑅𝑑 ∙ 𝑆𝐴 Éq. 2.24 : Volume de précipitations 

Où 𝑅𝑑: Précipitation quotidienne (mm) 

 𝑆𝐴: Surface du réservoir [ha] 

𝑉é𝑣𝑎𝑝𝑜 = 10 ∙ 𝜂 ∙ 𝐸𝑜 ∙ 𝑆𝐴 Éq. 2.25 : Évaporation d’un lac 

Où 𝜂: Coefficient d’évaporation = 0,6 

 𝐸𝑜: Potentiel d’évapotranspiration [mm] 

𝑉𝑖𝑛𝑓𝑖𝑙 = 240 ∙ 𝐾𝑠𝑎𝑡 ∙ 𝑆𝐴 Éq. 2.26 : Infiltration au fond d’un lac 

Où 𝐾𝑠𝑎𝑡  : Conductivité hydraulique effective au fond du réservoir [mm h-1] 

La configuration d’un réservoir permet la gestion de son volume selon les niveaux d’opération et 

de leurs déversoirs respectifs.  Le volume de sortie 𝑉𝑠𝑜𝑟𝑡𝑖𝑒 est calculé en fonction de la méthode de 

gestion des réservoirs. La variable IRESCO permet de différencier les quatre méthodes disponibles. 

 

Figure 2.6: Configuration d’un réservoir dans SWAT, traduit de Neitsch et al. (2011a) 

Dans le bassin versant à l’étude, les réservoirs sont munis de barrages à déversoir libre. Ces seuils 

permettent un contrôle indirect du niveau et du débit sortant des réservoirs. La gestion de ceux-ci 

étant seulement dictée par ces ouvrages, la méthode IRESCO=0 pour un réservoir non contrôlé est 

choisie. Cette option requiert alors un niveau d’opération pour être valide dans le modèle. Les 
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autres méthodes sont écartées puisqu’elles nécessitent des débits de sortie mesurés ou la présence 

de vannes aux déversoirs.  

Tableau 2.2 : Méthode de simulation des réservoirs 

IRESCO Méthode 

0 Réservoir non contrôlé 

1 Débit de sortie mensuel mesuré 

2 Réservoir contrôlé selon un volume d’emmagasinement  

3 Débit de sortie quotidien mesuré 

Étant d’envergure faible, les barrages n’ont pas de déversoir d’urgence tel qu’illustré à la figure 

3.6. Afin de respecter les critères des volumes de sortie, les variables du volume d’urgence 𝑉𝑢𝑟𝑔 et 

de la surface d’urgence 𝑆𝐴𝑢𝑟𝑔 sont surestimées au point où il serait impossible à atteindre. De ce 

fait, le débit de sortie journalier d’un réservoir varie proportionnellement à ses apports et à son 

volume des journées précédentes. Le niveau d’opération est associé à un volume d’opération lequel 

permet de déterminer ledit débit de sortie.  

𝑉𝑠𝑜𝑟𝑡𝑖𝑒 = 𝑉0 − 𝑉𝑝  si   𝑉0 − 𝑉𝑝 <  𝑄𝑑𝑑 ∙ 86 400 Éq. 2.27 : Volume sortant d’un 

réservoir 𝑉𝑠𝑜𝑟𝑡𝑖𝑒 = 𝑄𝑑𝑑 ∙ 86 400 si   𝑉0 − 𝑉𝑝 >  𝑄𝑑𝑑 ∙ 86 400 

Où 𝑉𝑝 : Volume d’eau au niveau d’opération [m³] 

 𝑄𝑑𝑑 : Débit sortant maximal d’un réservoir [m³ s-1] 

Les niveaux et volumes d’eau des réservoirs ne sont pas calibrés dans ce modèle. Ces variables 

sont toutefois des aspects déterminants dans l’évaluation du comportement hydrologique du bassin 

versant à l’étude. Elles sont néanmoins prises en compte dans le paramétrage du modèle. 

2.1.6 Caractéristiques d’écoulement 

Les théories de l’hydraulique fluviale dictent ici les caractéristiques de l’écoulement de l’eau au 

sein du bassin versant. La méthode du coefficient de stockage variable (VSC) développée par 

Williams (1969) est utilisée. Les routines de stockage d’eau sont calculées selon un coefficient de 

stockage CS adimensionnel. Ce paramètre est évalué itérativement à chaque pas de temps en 

fonction des caractéristiques du canal et de l’écoulement. 
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Pour un segment de canal et un pas de temps donné, le volume d’eau emmagasiné est contrôlé par 

une équation de continuité représentée par la différence entre les volumes entrant et sortant. Cette 

équation est réécrite sous une forme étendue. 

𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡 = ∆𝑉𝑠𝑡𝑜𝑐𝑘 Éq. 2.28 : Équation de continuité 

∆𝑡 ∙ (
𝑄𝑖𝑛,1 + 𝑄𝑖𝑛,𝑖−1

2
) − ∆𝑡 ∙ (

𝑄𝑜𝑢𝑡,1 + 𝑄𝑜𝑢𝑡,𝑖−1

2
) = 𝑉𝑖𝑛,𝑖 − 𝑉𝑜𝑢𝑡,𝑖−1 

Un coefficient de stockage est ensuite déterminé pour chaque segment du réseau par l’entremise 

de l’équation de continuité. Ce paramètre adimensionnel permet d’ajuster le cheminement de l’eau 

en fonction du volume stocké et du pas temps de simulation. Le volume sortant d’un segment du 

réseau est ensuite évalué avec le coefficient de stockage. 

𝐶𝑆 =
2 ∙ ∆𝑡

2 ∙
𝑉𝑠𝑡𝑜𝑐𝑘,𝑖

𝑄𝑠𝑜𝑟𝑡𝑎𝑛𝑡,𝑖
+ ∆𝑡

 
Éq. 2.29 : Coefficient de stockage 

Où 𝐶𝑆 : Coefficient de stockage 

 ∆𝑡 : Pas de temps [s] 

 𝑉𝑠𝑡𝑜𝑐𝑘,𝑖 : Volume stocké [m3] 

 𝑄𝑠𝑜𝑟𝑡𝑎𝑛𝑡,𝑖 : Débit sortant [m3 s-1] 

𝑉𝑠𝑜𝑟𝑡𝑎𝑛𝑡,𝑖 = 𝐶𝑆 ∙ (𝑉𝑒𝑛𝑡𝑟𝑎𝑛𝑡,𝑖 + 𝑉𝑠𝑡𝑜𝑐𝑘,𝑖−1) Éq. 2.30 : Volume sortant 

Où 𝑉𝑠𝑜𝑟𝑡𝑎𝑛𝑡,𝑖 : Volume sortant [m3] 

 𝐶𝑆 : Coefficient de stockage 

 𝑉𝑒𝑛𝑡𝑟𝑎𝑛𝑡,𝑖 : Volume entrant [m3] 

 𝑉𝑠𝑡𝑜𝑐𝑘,𝑖 : Volume stocké [m3] 

De plus, l’évaluation des caractéristiques d’écoulement s’élabore selon ’équation de Manning pour 

un écoulement uniforme selon le pas de temps de simulation choisi.  

𝑞𝑐ℎ =
𝐴𝑐ℎ ∙ 𝑅𝑐ℎ

2/3
∙ 𝑆𝑐ℎ

1/2

𝑛
 Éq. 2.31 : Équation de Manning 

Où 𝑞𝑐ℎ : Débit d’un canal ch [m³/s] 

 𝐴𝑐ℎ : Aire de la section transversal du canal [m²] 

 𝑅𝑐ℎ : Rayon hydraulique du canal [m] 

 𝑆𝑐ℎ : Pente longitudinale du canal [m m-1] 

 𝑛 : Coefficient de Manning 
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D’une part, les coefficients de Manning sont prédéfinis selon le type de canal tel que présenté  au 

tableau 3.3. Il est possbile d’attribuer une valeur différente pour chaque canal du réseau 

hydrographique. Ainsi, deux coefficients de rugosité distincts pour le canal principal et pour les 

canaux secondaires sont définis. Ceux-ci sont d’ailleurs inclus dans les paramètres lors de la 

calibration du débit. Notamment, un coefficient supplémentaire est aussi défini pour les plaines 

inondables lors de crues importantes. 

Tableau 2.3 : Coefficients de Manning pour des différents canaux, tiré de (Arnold, Kiniry, et al., 

2012) 

Caractéristiques du canal Moyenne Plage 

Excavé ou dragué   

Terre, droit et uniforme 0.025 0.016-0.033 

Terre, sinueux et stagnant 0.035 0.023-0.050 

Non entretenu, herbes et résidus 0.075 0.040-0.140 

Réseau naturel   

Peu d’arbres, rocs et résidus 0.050 0.025-0.065 

Billots et résidus  0.100 0.050-0.150 

D’autre part, la section du canal principal et de ses tributaires sont de formes trapézoïdales avec 

des pentes latérales de 2:1. Chaque canal se distingue alors par sa largeur ainsi que par sa longueur 

et sa pente longitudinale. Une section supplémentaire est prévue pour les plaines inondables. Elle 

est également de forme trapézoïdale avec une largeur de 5L et une pente latérale de 4:1. 

 

Figure 2.7 : Section transversale d’un canal - Forme trapézoïdale 

La hauteur d’eau au sein d’un canal est évaluée de à partir de calculs géométriques de la section 

mouillée correspondante. Une fois cette hauteur déterminée, le rayon hydraulique et le périmètre 

mouillé peuvent être déterminés et l’équation de Manning peut être résolue. 
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𝐻𝑐ℎ = √
𝐴𝑐ℎ

𝑧𝑐ℎ
+ (

𝐵𝑐ℎ

2𝑧𝑐ℎ
)

2

−
𝐵𝑐ℎ

2𝑧𝑐ℎ
 Éq. 2.32 : Hauteur d’eau  

Où 𝐻𝑐ℎ : Hauteur d’eau d’un canal [m] 

 𝐴𝑐ℎ : Aire de la section transversale du canal [m²] 

 𝑧𝑐ℎ : Ratio de pente du canal 

 𝐵𝑐ℎ : Largeur au fond du canal [m] 

Les pertes par transmission sont relatives au type de sol. Par conséquent, les groupes hydrologiques 

des sols ayant un faible potentiel de ruissellement possèdent un haut taux de transmission de l’eau 

infiltrée tels que les groupes A et B (MDDELCC, 2014b). Ces pertes sont faibles, mais non 

négligeables. Elles sont donc inclues dans le paramétrage du modèle par le biais de la conductivité 

hydraulique des lits de rivières.  

𝑡𝑙𝑜𝑠𝑠 = 𝐾𝑐ℎ ∙ 𝑇𝑇 ∙ 𝑃𝑐ℎ ∙ 𝐿𝑐ℎ Éq. 2.33 : Perte par transmission d’un canal   

Où 𝑡𝑙𝑜𝑠𝑠 : Pertes par transmission du canal [m³] 

 𝐾𝑐ℎ: Conductivité hydraulique [mm h-1] 

 𝑇𝑇 : Temps de parcours de l’eau [h] 

 𝑃𝑐ℎ : Périmètre mouillé [m²] 

 𝐿𝑐ℎ : Longueur du canal [km] 

Un volume d’eau mis en banque est ensuite déterminé. En d’autres termes, cette eau est retirée 

temporairement du canal afin de contribuer ultérieurement au débit d’un canal ou aux zones non 

saturées du sol.  

𝐵 = 𝑡𝑙𝑜𝑠𝑠 ∙ (1 − 𝑓𝑟𝑡𝑟𝑛𝑠) Éq. 2.34 : Stockage d’eau depuis un canal  

Où 𝐵 : Quantité d’eau mise en banque [m³] 

 𝑡𝑙𝑜𝑠𝑠 : Perte par transmission du canal [m³] 

 𝑓𝑟𝑡𝑟𝑛𝑠: Partitionnement des pertes par transmission vers la nappe captive (TRNSRCH) 

𝑉𝐵 = 𝐵 ∙ (1 − exp [−𝛼𝐵]) Éq. 2.35 : Stockage d’eau depuis un canal  

Où 𝑉𝐵 : Volume d’eau entrant du canal depuis la banque de stockage [m³] 

 𝐵 : Quantité d’eau mise en banque [m³] 

 𝛼𝐵: Coefficient de régression  

Les pertes par évaporation sont également évaluées puisqu’elles sont non négligeables. Un bilan 

de masse permet ensuite d’évaluer le volume d’eau d’un canal pour un pas de temps donné. 
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𝐸𝑐ℎ = 𝐶𝑒𝑣 ∙ 𝐸0 ∙ 𝐿𝑐ℎ ∙ 𝑊 ∙ 𝑓𝑟∆𝑡 Éq. 2.36 : Évaporation d’un canal  

Où 𝐸𝑐ℎ : Évaporation du canal [m³] 

 𝐶𝑒𝑣: Facteur d’ajustement de l’évaporation du canal (EVRCH) 

 𝐸0 : Potentiel d’évapotranspiration [mm] 

 𝐿𝑐ℎ : Longueur du canal [km] 

 𝑊 : Largeur du canal en surface [m] 

 𝑓𝑟∆𝑡 : Fraction du temps parcours sur le pas de temps de simulation 

𝑉𝑖 = 𝑉𝑖−1 + 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡 − 𝑡𝑙𝑜𝑠𝑠 − 𝐵 + 𝑉𝑏 Éq. 2.37 : Bilan hydrique d’un canal  

Où 𝑉𝑖 : Volume d’eau présent dans un canal à la journée i [m³] 

 𝑉𝑖𝑛 et 𝑉𝑜𝑢𝑡 : Volume d’eau entrant et sortant du canal [m³] 

 𝑡𝑙𝑜𝑠𝑠 : Perte par transmission du canal [m³] 

 𝐸𝑐ℎ : Évaporation du canal [m³] 

 𝑉𝑏 : Volume d’eau ajouté depuis la banque de stockage [m³] 

2.2 Climat 

2.2.1 Évapotranspiration 

L’évapotranspiration se traduit ici par la perte d’eau d’un bassin versant vers l’atmosphère. Ce 

processus inclue la transpiration, la sublimation ainsi que l’évaporation depuis diverses partitions 

environnementales influencées par le climat et les caractéristiques propres à la région étudiée. Alors 

qu’une importante fraction de l’eau de précipitation est évapotranspirée, l’estimation de celle-ci est 

alors critique dans l’évaluation des ressources en eau.  

SWAT suggère trois types de méthodes pour calculer l’évapotranspiration potentielle : Penman-

Monteith, Preistley-Taylor et Hargreaves. Celles-ci peuvent prendre en compte jusqu’à quatre 

types de données climatiques : la température de l’air, le vent, l’humidité relative et le rayonnement 

solaire. La méthode choisie est la celle de Hargreaves (1985) étant donné qu’elle utilise seulement 

la température de l’air comme paramètre de calcul. Alors que l’évapotranspiration réelle se 

distingue par rapport à l’évapotranspiration potentielle (Anctil et al., 2012), cette dernière est 

évaluée de prime abord. La transpiration, la sublimation et l’évaporation sont ensuite calculées en 

fonction du climat. 
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𝜆𝐸0 = 0.0023 ∙ 𝐻0 ∙ √(𝑇𝑚𝑎𝑥,𝑖 − 𝑇𝑚𝑖𝑛,𝑖 ) ∙ (𝑇̅𝑖 + 17.8) 
Éq. 2.38 : Évapotranspiration 

potentielle 

Où 𝜆 : Énergie de vaporisation [MJ kg-1]  

 𝐸0 : Évapotranspiration potentielle [mm d-1] 

 𝐻0 : Rayonnement solaire extraterrestre [MJ m-2 d-1] 

 𝑇𝑚𝑎𝑥,𝑖 : Température maximale quotidienne [°C] 

 𝑇𝑚𝑖𝑛,𝑖 : Température minimale quotidienne [°C] 

 𝑇̅𝑖 : Température moyenne quotidienne [°C] 

𝐸𝑅 = E0 = ECV = 𝑅𝐶𝑉,𝑖−1 − 𝑅𝐶𝑉,𝑖 si  𝐸0 ≤ 𝑅𝐶𝑉 Éq. 2.39 : Évaporation 

ECV = 𝑅𝐶𝑉,𝑖−1 ;    𝑅𝐶𝑉,𝑖 = 0 si  𝐸0 > 𝑅𝐶𝑉  

Où 𝐸𝑅: Évapotranspiration réelle [mm] 

 E0: Évapotranspiration potentielle [mm] 

 𝐸𝐶𝑉  : Évaporation du couvert végétal [mm] 

 𝑅𝐶𝑉,𝑖 : Quantité d’eau libre contenue dans le couvert végétal [mm] 

L’évaporation est ici déterminée en fonction de la quantité d’eau présente dans le couvert végétal 

par rapport au potentiel d’évapotranspiration. La transpiration est quant à elle déterminée selon le 

type de couvert végétal représenté par l’indice foliaire.  

𝐸𝑡 =
𝐸0

′ ∙ IF

3
 si    0 ≤ 𝐼𝐹 ≤ 3 Éq. 2.40 : Transpiration 

𝐸𝑡 = 𝐸0
′  si    𝐼𝐹 > 3  

Où 𝐸𝑡: Transpiration [mm] 

 IF : Indice foliaire 

 𝐸0
′ : Évapotranspiration potentielle ajustée selon l’évaporation du couvert végétal 

La sublimation est également influencée par le couvert végétal, mais par l’entremise de l’ombrage 

produit. L’indice de couverture du sol permet de considérer cet impact. Il est fixé à 0.5 si la quantité 

de neige au sol est supérieure 0.5 mm d’eau. 

𝐸𝑠 = 𝐸0
′ ∙ 𝑐𝑜𝑣𝑠𝑜𝑙 Éq. 2.41 : Évaporation maximale du sol 

Où 𝐸𝑠: Évaporation/sublimation maximale du sol [mm] 

 𝐸0
′ : Évapotranspiration potentielle ajustée selon l’évaporation du couvert végétal 
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 𝑐𝑜𝑣𝑠𝑜𝑙  : Indice de couverture du sol 

𝑐𝑜𝑣𝑠𝑜𝑙 = exp (−5×10−5 ∙ 𝐶𝑉)  Éq. 2.42 : Indice de la couverture du sol 

CV est la biomasse en surface du sol [Kg ha-1]. La quantité maximale de sublimation du sol est 

ensuite ajustée selon son minimum possible.  

𝐸′
𝑠 = min [𝐸𝑠 ;  

𝐸𝑠

1 + 𝑐𝑜𝑣𝑠𝑜𝑙
] Éq. 2.43 : Sublimation maximale du sol 

Où 𝐸′
𝑠 : Évaporation/sublimation maximale ajustée [mm] 

 𝐸𝑠 : Évaporation/sublimation maximale [mm] 

 𝑐𝑜𝑣𝑠𝑜𝑙: Indice de couverture du sol 

Avec la quantité maximale d’évaporation du sol déterminée, une partie de l’eau contenu dans le 

couvert de neige est sublimée en fonction dans la quantité initialement présente. 

𝐸𝑠𝑢𝑏 = 𝐸′
𝑠 = SNOi−1 − SNOi ,    𝐸′′𝑠 = 0  si   𝐸′

𝑠 ≤ 𝑆𝑁𝑂𝑖 Éq. 2.44 : Sublimation avec 

présence de neige 
𝐸𝑠𝑢𝑏 = SNOi−1 ,    𝐸′′𝑠 = 𝐸′

𝑠 − 𝐸𝑠𝑢𝑏 si   𝐸′
𝑠 > 𝑆𝑁𝑂𝑖 

Où 𝐸𝑠𝑢𝑏: Sublimation [mm] 

 𝐸′
𝑠 : Évaporation/sublimation maximale ajustée [mm] 

 𝑆𝑁𝑂𝑖 : Quantité d’eau présente dans le couvert de neige [mm] 

 𝐸′′𝑠 : Évaporation maximale du sol [mm] 

L’évaporation interne du sol se calcule d’ailleurs selon la profondeur. Chaque couche de sol 

interagie avec les couches adjacentes.  

𝐸𝑠𝑜𝑙,𝑧 = 𝐸′′𝑠 ∙
𝑧

𝑧 + exp (2.374 − 0.00713 ∙ 𝑧)
 Éq. 2.45: Évaporation selon la 

profondeur du sol 

Où 𝐸′′𝑠 : Évaporation/sublimation du sol maximale [mm] 

 𝑧 : Profondeur du sol [mm] 

𝐸𝑠𝑜𝑙,𝑧 = 𝐸𝑠𝑜𝑙,𝑧−1 − 𝐸𝑠𝑜𝑙,𝑍+1 ∙ 𝑒𝑠𝑐𝑜 Éq. 2.46 : Évaporation du sol  

Où 𝐸𝑠𝑜𝑙,𝑧 : Demande d’évaporation du sol à la profondeur z [mm] 

 𝑒𝑠𝑐𝑜 : Coefficient d’ajustement de l’évaporation pour la profondeur 
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2.2.2 Température 

Outre les données de précipitations, la température de l’air est la seule autre donnée climatique 

nécessaire au modèle. Cette information est ici utilisée pour déterminer la température du sol avec 

une formule dévirée de l’équation de Carlsaw et Jaeger (1959) quantifiant les variations de 

température saisonnière. La température interne du sol est d’ailleurs dépendante de celle en surface.  

𝑇𝑠𝑜𝑙(𝑧, 𝑖𝑛) = 𝑙 ∙ 𝑇𝑠𝑜𝑙(𝑧, 𝑖𝑛 − 1) + [1 − 𝑙] 

                                              ∙ [𝑧𝑓 ∙ [𝑇̅𝐴𝑎𝑖𝑟 − 𝑇𝑠𝑠𝑢𝑟𝑓] + 𝑇𝑠𝑠𝑢𝑟𝑓] 

Éq. 2.47 : Température du sol 

Où 𝑇𝑠𝑜𝑙(𝑧, 𝑖𝑛) : Température du sol (°C) de la journée i à l’année n et à la profondeur 𝑧 [mm] 

 𝑙 : Coefficient de délai = 0.80 [TIMP] 

 𝑧𝑓 : Coefficient empirique d’influence sur la profondeur de la couche de sol 

 𝑇̅𝐴𝑎𝑖𝑟 : Température annuelle moyenne de l’air [°C] 

 𝑇𝑠𝑠𝑢𝑟𝑓 : Température journalière de la surface du sol [°C] 

𝑇𝑠𝑠𝑢𝑟𝑓 = 𝑏𝑐𝑣 ∙ 𝑇𝑠𝑜𝑙(1, 𝑖𝑛 − 1) ∙ (1 − 𝑏𝑐𝑣) ∙ 𝑇𝑏𝑎𝑟𝑒 Éq. 2.48 : Température du sol en surface 

Où 𝑏𝑐𝑣 : Coefficient d’influence de la couverture du sol 

 𝑇𝑠𝑜𝑙[1, 𝑖𝑛 − 1] : Température du sol [°C] de la journée précédente à l’année n pour la 

première couche de sol 

 𝑇𝑏𝑎𝑟𝑒 : Température du sol à découvert en surface [°C] 

Le coefficient bcv permet de prendre en considération l’impact d’une couverture quelconque du 

sol telle que la neige. Variant entre 0 et 1, ce paramètre est calculé empiriquement selon le type de 

couverture. La température de l’eau est également requise pour simuler les processus de qualité de 

l’eau. Elle est calculée selon une équation développée par Stefan et Preud'homme (1993). La 

température de l’eau est donc proportionnelle à la température moyenne de l’air 𝑇̅𝑖 (°C) seulement.  

𝑇𝑒𝑎𝑢,𝑖 = 5.0 + 0.75𝑇̅𝑖 Éq. 2.49 : Température de l’eau 

Où 𝑇𝑒𝑎𝑢,𝑖 : Température de l’eau à la journée i [°C] 

 𝑇̅𝑖 : Température moyenne de l’air à la journée i [°C] 



42 

 

2.2.3 Neige 

L’accumulation et la fonte de neige sont contrôlées par les seuils de température respectifs SFTMP 

et SMTMP. Pour ce faire, ces variables sont comparées à la température moyenne de l’air 𝑇̅𝑖 de la 

journée de simulation.  

𝑆𝑁𝑂𝑖 = 𝑆𝑁𝑂𝑖−1 + 𝑅𝑖 − 𝐸𝑠𝑢𝑏 − 𝑆𝑁𝑂𝑓𝑜𝑛𝑡𝑒 Éq. 2.50 : Bilan massique de neige d’un URH 

• 𝑅𝑖 = 0       si  𝑇̅𝑖 ≥ 𝑆𝐹𝑇𝑀𝑃  

• 𝑆𝑁𝑂𝑓𝑜𝑛𝑡𝑒 = 0    si  𝑇̅𝑖 ≤ 𝑆𝑀𝑇𝑀𝑃 
 

Où 𝑆𝑁𝑂𝑖 : Quantité d’eau contenue dans le couvert de neige [mm] 

 𝑅𝑖 : Précipitation sous forme de neige [mm] 

 𝐸𝑠𝑢𝑏 : Quantité d’eau sublimée [mm] 

 𝑆𝑁𝑂𝑓𝑜𝑛𝑡𝑒 : Quantité d’eau de fonte de neige [mm] 

 𝑇̅𝑖 : Température moyenne de l’air à la journée i [°C] 

 𝑆𝐹𝑇𝑀𝑃 : Température permettant une précipitation sous forme de neige [°C] 

 𝑆𝑀𝑇𝑀𝑃 : Température permettant la fonte de neige [°C] 

La couverture de neige sur un bassin versant est toutefois rarement uniforme dû à la fonte et à 

l’accumulation de neige hétéroclite sur son territoire. SWAT utilise ici la quantité de neige 

contenue dans son couvert pour déterminer la surface occupée par ledit couvert. 

𝑠𝑛𝑜𝑐𝑜𝑣 =
𝑆𝑁𝑂𝑖

𝑆𝑁𝑂100
∙ (

𝑆𝑁𝑂𝑖

𝑆𝑁𝑂100
+ 𝑒𝑥𝑝 [𝑐𝑜𝑣1 − 𝑐𝑜𝑣2 ∙

𝑆𝑁𝑂𝑖

𝑆𝑁𝑂100
])

−1

 Éq. 2.51 : Couvert de neige 

• 𝑠𝑛𝑜𝑐𝑜𝑣 = 1     si  𝑆𝑁𝑂𝑖 ≥ 𝑆𝑁𝑂100  

Où 𝑠𝑛𝑜𝑐𝑜𝑣 : Fraction de l’URH couvert de neige 

 𝑆𝑁𝑂𝑖 : Quantité d’eau contenue dans le couvert de neige [mm] 

 𝑆𝑁𝑂100 : Quantité seuil de neige pour une couverte de neige de 100% [mm] 

 𝑐𝑜𝑣1−2 : Coefficient empirique 

Les coefficients 𝑐𝑜𝑣1 et 𝑐𝑜𝑣2 établissent la relation entre la surface occupée et le volume de neige 

puisque celle-ci n’est pas linéaire. Les courbes pour différentes fractions de la surface occupée par 

le couvert de neige sont présentées en annexe. La fonte de neige est alors grandement influencée 

lorsque la quantité calculée est près du seuil 𝑆𝑁𝑂100. La fonte est également proportionnelle à la 

température du couvert de neige. 



43 

 

 

Le coefficient de fonte 𝑏𝑓𝑜𝑛𝑡𝑒  varie selon les saisons. Il prend en considération la fonte minimale 

et maximale possible en fonction de la journée de simulation. La quantité initiale de neige est 

d’ailleurs nulle. Un nombre d’années de simulation d’équilibre en début de simulation permet 

d’ajuster le contenu en neige au fil des saisons et des années. Il en est de même pour diverses 

variables de simulation au sein du modèle. Ce nombre est fixé à trois années de simulation telle 

que proposée par SWAT.  

2.3 Érosion 

Le processus d’érosion dans SWAT inclus le détachement, le transport et le dépôt de particules de 

sol. Les précipitations et le ruissellement sont d’ailleurs les principales sources d’érosion. La 

présence de lacs et réservoirs permet entre autres le contrôle des sédiments provenant de l’érosion 

en aval de leur emplacement au sein d’un bassin versant. L’équation MUSLE (Modified Universal 

Soil Loss Equation) développée par Williams (1995) est utilisée pour simuler l’érosion dans 

SWAT.  

𝑠𝑒𝑑𝑖 = 11,8(𝑄𝑠𝑢𝑟𝑓,𝑖 ∙ 𝑞𝑝𝑒𝑎𝑘,𝑖 ∙ 𝐴𝑈𝑅𝐻)0,56 ∙ 𝐾𝑈𝑆𝐿𝐸 

∙ 𝐶𝑈𝑆𝐿𝐸 ∙ 𝑃𝑈𝑆𝐿𝐸 ∙ 𝐿𝑆𝑈𝑆𝐿𝐸 ∙ 𝐶𝐹𝑅𝐺 

Éq. 2.54 : Équation MUSLE 

Où 𝑠𝑒𝑑𝑖 : Sédiments transportés à la journée i [t.m.] 

 𝑄𝑖𝑛𝑓,𝑖 : Ruissellement à la journée i [mm] 

𝑇𝑠𝑛𝑜,𝑖 = 𝑇𝑠𝑛𝑜,𝑖−1 ∙ (1 − 𝑙𝑠𝑛𝑜) + 𝑇̅𝑖 ∙ 𝑙𝑠𝑛𝑜 Éq. 2.52 : Température du couvert de neige 

Où 𝑇𝑠𝑛𝑜,𝑖 : Température du couvert de neige (°C) 

 𝑙𝑠𝑛𝑜: Coefficient de délai pour la température de la neige (TIMP) 

 𝑇̅𝑖 : Température moyenne de l’air journalière [°C] 

𝑆𝑁𝑂𝑓𝑜𝑛𝑡𝑒 = 𝑏𝑓𝑜𝑛𝑡𝑒 ∙ 𝑠𝑛𝑜𝑐𝑜𝑣

∙ [
𝑇𝑠𝑛𝑜,𝑖 + 𝑇𝑚𝑎𝑥,𝑖

2
− 𝑆𝑀𝑇𝑀𝑃] 

Éq. 2.53 : Fonte de neige 

Où 𝑆𝑁𝑂𝑓𝑜𝑛𝑡𝑒 : Quantité d’eau de fonte de neige [mm] 

 𝑏𝑓𝑜𝑛𝑡𝑒 : Coefficient de fonte (mm·d-1·°C-1) 

 𝑠𝑛𝑜𝑐𝑜𝑣: Fraction de l’URH couvert de neige 

 𝑇𝑚𝑎𝑥,𝑖 : Température maximale de l’air journalier [°C] 
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 𝑞𝑝𝑒𝑎𝑘,𝑖 : Débit de pointe à la journée i [m³ s-1] 

 𝐴𝑈𝑅𝐻: Aire de l’URH [m²] 

 𝐾𝑈𝑆𝐿𝐸  : Coefficient d’érodabilité USLE [(Mg ha h)/(ha MJ mm)] 

 𝐶𝑈𝑆𝐿𝐸  : Coefficient de surface ULSE 

 𝑃𝑈𝑆𝐿𝐸: Coefficient de pratique USLE 

 𝐿𝑆𝑈𝑆𝐿𝐸  : Coefficient topographique USLE 

 𝐶𝐹𝑅𝐺 : Fraction des fragments grossiers du sol 

Les coefficients d’érodabilité 𝐶𝑈𝑆𝐿𝐸, 𝑃𝑈𝑆𝐿𝐸  et 𝐿𝑆𝑈𝑆𝐿𝐸 sont prédéterminés selon les caractéristiques 

du bassin versant. 𝐾𝑈𝑆𝐿𝐸 est quant à lui calculé en fonction des caractéristiques du sol. 

𝐾𝑈𝑆𝐿𝐸 =  𝑓𝑐𝑠𝑎𝑏𝑙𝑒 ∙ 𝑓𝑐𝑙−𝑠𝑖 ∙ 𝑓𝑜𝑟𝑔𝑐 ∙ 𝑓ℎ𝑠𝑎𝑏𝑙𝑒 Éq. 2.55 : USLEK 

Où 𝑓𝑐𝑠𝑎𝑏𝑙𝑒 : Facteur de proportionnalité du contenu en sable grossier 

 𝑓𝑎𝑟𝑔−𝑠𝑖 : Facteur de proportionnalité du contenu en argile et en limon du sol 

 𝑓𝑜𝑟𝑔𝑐 : Facteur de proportionnalité du contenu en carbone organique du sol 

 𝑓ℎ𝑠𝑎𝑏𝑙𝑒 : Facteur proportionnalité du contenu en sable du sol 

Cette équation permet de considérer l’érodabilité du sol en fonction de son contenu. Ainsi, de 

faibles facteurs d’érosion sont attribués aux sols ayant des fortes teneurs en sable grossier, en argile 

et limon ou en carbone organique de même que les sols à très fortes teneurs en sable. 

𝑓𝑐𝑠𝑎𝑏𝑙𝑒 = 0,2 + 0,3 ∙ exp [−0,256 ∙ 𝑚𝑠 ∙ (1 −
𝑚𝑠𝑖𝑙𝑡

100
)] Éq. 2.56 : Coefficient de contenu en 

sable grossier   

𝑓𝑐𝑙−𝑠𝑖 = (
𝑚𝑠𝑖𝑙𝑡

𝑚𝑎𝑟𝑔 + 𝑚𝑠𝑖𝑙𝑡
)

0,3

 
Éq. 2.57 : Coefficient de contenu en argile 

et en limon  

𝑓𝑜𝑟𝑔𝑐 = 1 − (
0,25 ∙ 𝑜𝑟𝑔𝐶

𝑜𝑟𝑔𝐶 + exp[3,72 − 2,95 ∙ 𝑜𝑟𝑔𝐶]
) 

Éq. 2.58 : Coefficient de contenu en 

carbone organique 

𝑓ℎ𝑖𝑠𝑎𝑛𝑑 = 1 − (
0,7 ∙ (1 −

𝑚𝑠𝑖𝑙𝑡

100 )

(1 −
𝑚𝑠𝑖𝑙𝑡

100 ) + exp [−5,51 + 22,9 ∙ (1 −
𝑚𝑠𝑖𝑙𝑡

100 )]
) 

Éq. 2.59 : Coefficient de 

contenu en sable 

Où 𝑚𝑠 : Fraction du contenu en sable (φ 0.05 – 2.00 mm)   

 𝑚𝑠𝑖𝑙𝑡 : Fraction du contenu en limon (φ 0.002 – 0.05 mm) 

 𝑚𝑎𝑟𝑔 : Fraction du contenu en argile (φ < 0.002 mm)   

 𝑜𝑟𝑔𝐶 : Pourcentage de carbone organique du sol (%) 
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2.3.1 Sédiments en rivière 

Le modèle simplifié de Bagnold est utilisé pour déterminer la concentration maximale de sédiments 

que peut transporter l’eau. Établit dans l’équation originale de Bagnold sur le flux d’énergie dissipé 

sur un lit de rivière, le coefficient spexp est fixé à 1.5.  

𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑐ℎ𝑚𝑎𝑥 = 𝑐𝑠𝑝 ∙ 𝑣𝑝𝑜𝑖𝑛𝑡𝑒,𝑐ℎ
𝑠𝑝𝑒𝑥𝑝 Éq. 2.60 : Concentration maximale de sédiments 

Où 𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑐ℎ𝑚𝑎𝑥 : Concentration maximale de sédiments en rivière [kg L-1] 

 𝑐𝑠𝑝 : Coefficient d’ajustement linéaire (SPCON) (0.0001 – 0.01) 

 𝑣𝑝𝑜𝑖𝑛𝑡𝑒,𝑐ℎ : Vitesse de pointe d’un canal [m s-1] 

 𝑠𝑝𝑒𝑥𝑝 : Coefficient d’ajustement exponentiel (1.0 – 2.0) 

Si la concentration de sédiments dans un canal est inférieure à la concentration maximale de 

sédiments définie précédemment, il y a une remise en suspension selon l’équation 3.61. 

𝑠𝑒𝑑𝑟𝑠𝑢𝑠,𝑖 = (𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑐ℎ𝑚𝑎𝑥,𝑖 − 𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑐ℎ,𝑖) ∙ 𝑉𝑐ℎ ∙ 𝐾𝑐ℎ ∙ 𝐶𝑐ℎ  Éq. 2.61 : Remise en suspension 

de sédiments   

Où 𝑠𝑒𝑑𝑟𝑠𝑢𝑠,𝑖 : Quantité de sédiments remise en suspension [t.m.] 

 𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑐ℎ𝑚𝑎𝑥,𝑖 : Concentration maximale de sédiments en rivière [kg L-1] 

 𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑐ℎ,𝑖 : Concentration de sédiments dans un canal [kg L-1] 

 𝑉𝑐ℎ : Volume d’eau du canal [m3] 

 𝐾𝑐ℎ : Coefficient d’érodabilité de la banque de sédiments 

 𝐶𝑐ℎ : Coefficient d’érodabilité du lit rivière 

À l’inverse, lorsque la concentration de sédiments d’un canal est supérieure à la concentration 

maximale de sédiments, une déposition de sédiments se produit au lit de rivière. Un bilan massique 

est ensuite défini pour contrôler les quantités de sédiments en rivières. 

𝑠𝑒𝑑𝑑𝑒𝑝,𝑖 = (𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑐ℎ,𝑖 − 𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑐ℎ𝑚𝑎𝑥,𝑖) ∙ 𝑉𝑐ℎ Éq. 2.62 : Déposition de sédiments  

Où 𝑠𝑒𝑑𝑑𝑒𝑝,𝑖 : Quantité de sédiments déposée [t.m.] 

 𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑐ℎ,𝑖 : Concentration de sédiments dans un canal [kg L-1] 

 𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑐ℎ𝑚𝑎𝑥,𝑖 : Concentration maximale de sédiments en rivière [kg L-1] 

 𝑉𝑐ℎ : Volume d’eau du canal [m3] 
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𝑠𝑒𝑑𝑐ℎ,𝑖 = 𝑠𝑒𝑑𝑐ℎ,𝑖−1 + 𝑠𝑒𝑑𝑟𝑠𝑢𝑠,𝑖 − 𝑠𝑒𝑑𝑑𝑒𝑝,𝑖 Éq. 2.63 : Bilan masse des sédiments en 

rivière   

Où 𝑠𝑒𝑑𝑐ℎ,𝑖 : Quantité de sédiments au sein d’un canal à la journée i [t.m.] 

 𝑠𝑒𝑑𝑟𝑠𝑢𝑠,𝑖 : Quantité de sédiments remis en suspension [t.m.] 

 𝑠𝑒𝑑𝑑𝑒𝑝,𝑖 : Quantité de sédiments déposée [t.m.] 

2.3.2 Sédiments dans lacs et les réservoirs 

Telle qu’en rivière, un bilan massique permet de simuler le transport de sédiments entrant et sortant 

des lacs et réservoirs. Pour ce faire, ceux-ci sont considérés comme un système complètement 

mélangé. Les sédiments sont ainsi distribués instantanément dès qu’ils entrent dans un lac. Il est à 

noter que la remise en suspension de sédiments n’est possible qu’en rivière. 

𝑠𝑒𝑑𝑖 = 𝑠𝑒𝑑𝑖−1 + 𝑠𝑒𝑑𝑄,𝑖𝑛 − 𝑠𝑒𝑑𝑄,𝑜𝑢𝑡 − 𝑠𝑒𝑑𝑠𝑒𝑑 Éq. 2.64 : Bilan de masse des sédiments 

dans un lac  

Où 𝑠𝑒𝑑𝑖 : Quantité de sédiments à la journée i [t.m.] 

 𝑠𝑒𝑑𝑄,𝑖𝑛 et 𝑠𝑒𝑑𝑄,𝑜𝑢𝑡 : Quantité  de sédiments entrant et sortant du lac [t.m.] 

 𝑠𝑒𝑑𝑠𝑒𝑑 : Quantité de sédiments déposés [t.m.] 

La sédimentation ou le dépôt de sédiments survient lorsque la concentration de sédiments est 

supérieure à sa concentration de sédiments à l’équilibre. Celle-ci est posée à 5 mg/L. 

𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑖 = (𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑖−1 − 𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑒𝑞)

∙ exp[−𝑘𝑠 ∙ 𝑡 ∙ 𝑑50] + 𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑒𝑞 

• si 𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑖−1 > 𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑒𝑞 

Éq. 2.65 : Concentration de sédiments 

𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑖 = (𝑠𝑒𝑑𝑖−1 + 𝑠𝑒𝑑𝑄,𝑖𝑛)/(𝑉𝑖 + 𝑉𝑄,𝑖𝑛)  

• si 𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑖−1 ≤ 𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑒𝑞 

Où 𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑖 : Concentration de sédiments à la journée i [Mg m-3] 

 𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑒𝑞 : Concentration de sédiments à l’équilibre [Mg m-3] 

 𝑘𝑠 : Constante de décroissance = 0.184 

 𝑡 : Pas de temps (1d) 

 𝑑50 : Diamètre médian d’une particule de sédiment [mm] 

 𝑠𝑒𝑑𝑖 : Quantité de sédiments du lac à la journée i [t.m.] 
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 𝑠𝑒𝑑𝑄,𝑖𝑛: Quantité de sédiments entrant du lac [t.m.] 

 𝑉𝑖 : Volume du lac [m3] 

 𝑉𝑄,𝑖𝑛 : Volume entrant [m3] 

La constante de décroissance est fixée à 0.184 assumant que 99% des particules inférieures à 1 μm 

de diamètre se déposent à l’intérieur de 25 jours. La taille médiane des particules d50 de sédiments 

est déterminée en fonction du contenu de la première couche de sol puisqu’elle soumise au 

processus d’érosion en surface.  

𝑑50 = exp (0.41 ∙
𝑚𝑎𝑟𝑔

100
+ 2.71

𝑚𝑠𝑖𝑙𝑡

100
+ 5.7

𝑚𝑠

100
) Éq. 2.66 : Taille de la particule médiane 

Où 𝑑50: Taille médiane des particules de sédiments [mm] 

 𝑚𝑠 : Fraction du contenu en sable (φ 0.05 – 2.00 mm)   

 𝑚𝑠𝑖𝑙𝑡 : Fraction du contenu en limon (φ 0.002 – 0.05 mm) 

 𝑚𝑎𝑟𝑔 : Fraction du contenu en argile (φ < 0.002 mm) 

Le dépôt de sédiments est alors déterminé en fonction de la différence des concentrations au sein 

d’un lac. La quantité de sédiments sortant est d’ailleurs déduite du volume sortant. 

𝑠𝑒𝑑𝑠𝑒𝑑,𝑖 = (𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑖−1 − 𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑖) ∙ 𝑉𝑖  Éq. 2.67 : Dépôt de sédiments 

Où 𝑠𝑒𝑑𝑠𝑒𝑑,𝑖 : Quantité de sédiments déposé [t.m.] 

 𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑖 : Concentration de sédiments à la journée i [Mg m-3] 

 𝑉𝑖  : Volume du lac [m3] 

𝑠𝑒𝑑𝑄,𝑜𝑢𝑡 = 𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑖 ∙ 𝑉𝑄,𝑜𝑢𝑡  Éq. 2.68 : Sédiments sortant 

Où 𝑠𝑒𝑑𝑄,𝑜𝑢𝑡: Quantité de sédiments sortant du lac [t.m.] 

 𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑖 : Concentration de sédiments à la journée i [Mg m-3] 

 𝑉𝑄,𝑜𝑢𝑡 : Volume sortant du lac [m3] 

2.3.3 Sédiments en eaux souterraines 

SWAT permet le transport de sédiments dans les eaux souterraines. Le débit latéral est d’ailleurs 

pris en compte dans ce calcul.  

𝑠𝑒𝑑𝑔𝑤 =
(𝑄𝑙𝑎𝑡 + 𝑄𝑔𝑤) ∙ 𝐴𝑈𝑅𝐻 ∙ 𝐶𝑜𝑛𝑐𝑠𝑒𝑑

1000
 

Éq. 2.69 : Transport de sédiments en eaux 

souterraines  
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Où 𝑠𝑒𝑑𝑔𝑤 : Sédiments transportés en eaux souterraines [t.m.] 

 𝑄𝑙𝑎𝑡 : Débit latéral [mm] 

 𝑄𝑔𝑤 : Débit d’eau souterraine [mm] 

 𝐴𝑈𝑅𝐻 : Aire de l’URH [km²] 

 𝐶𝑜𝑛𝑐𝑠𝑒𝑑 : Concentration en sédiments [mg L-1] 

2.3.4 Effet du couvert de neige 

Le couvert de neige diminue l’effet d’érosion de la pluie et du ruissellement. L’apport en sédiments 

est donc réduit selon l’équation suivante. 

𝑠𝑒𝑑′ =
𝑠𝑒𝑑

exp [
3 ∙ 𝑆𝑁𝑂

25.4
]
 

Éq. 2.70 : Impact du couvert de neige sur l’érosion  

Où 𝑠𝑒𝑑′ : Sédiments transportés si présence d’un couvert de neige [t.m.] 

 𝑠𝑒𝑑 : Sédiments transportés [t.m.] 

 𝑆𝑁𝑂 : Quantité de neige [mm] 

2.4 Zones urbaines 

2.4.1 Ruissellement en milieu urbain 

Différents types de zone urbaine peuvent être simulés telles que les zones résidentielles à haute ou 

basse densité, industrielle, commerciale ou encore les zones de transport routier. Ces utilisations 

du sol influencent le ruissellement en termes de quantité et de qualité d’eau. D’une part, la 

caractérisation des zones urbaines est présentée au tableau 3.4. Seules les zones de type résidentiel 

et de type transport routier figurent au sein du bassin versant à l’étude.  
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Tableau 2.4 : Valeurs des variables utilisées en milieu urbain 

Item URBN URTN 

Type Résidentiel Transport 

Surface imperméable 𝑖𝑚𝑝𝑡𝑜𝑡 [%] 38 98 

Surface imperméable drainée 𝑖𝑚𝑝𝑑 [%] 30 95 

Coefficient de lessivage en milieu urbain 𝑢𝑟𝑏𝑐𝑜𝑒𝑓 [mm-1] 0.18 0.18 

Maximum de sédiments cumulable 𝑆𝐸𝐷𝑚𝑎𝑥 [kg km-1] 225 340 

𝑡1/2 [d] 0.75 3.9 

Densité de bordure CURBDEN [km ha-1] 0.24 0.12 

𝐶𝑁2𝑢𝑟𝑏
  98 98 

D’autre part, l’impact de l’urbanisation se traduit dans SWAT par la modification du numéro 

courbe SCS selon le type de zone urbaine. La présence de surfaces imperméables est alors 

directement proportionnelle au ruissellement.   

𝐶𝑁′2 = 𝐶𝑁2 + 𝑖𝑚𝑝𝑡𝑜𝑡(𝐶𝑁2𝑢𝑟𝑏
− 𝐶𝑁2) Éq. 2.71 : Lessivage de sédiments 

Où 𝐶𝑁2′ : Numéro de courbe SCS modifié 

 𝐶𝑁2: Numéro de courbe SCS  

 𝑖𝑚𝑝𝑡𝑜𝑡 : Surface imperméable [%] 

 𝐶𝑁2𝑢𝑟𝑏 : Numéro de courbe SCS en milieu urbain 

L’accumulation de sédiments se fait lors de journées sèches lesquelles sont définies par un 

ruissellement inférieur à 0.1 mm. Lors d’un événement de pluie, le lessivage du sol se produit et la 

quantité de sédiments entraînés dépend alors de l’accumulation présente et du débit pointe de 

l’événement en question.  

𝑆𝐸𝐷 =
𝑆𝐸𝐷𝑚𝑎𝑥 ∙ 𝑡𝑑

(𝑡1/2 + 𝑡𝑑)
 

Éq. 2.72 : Accumulation de sédiments 

Où 𝑆𝐸𝐷 : Sédiments accumulés [kg km-1] 

 𝑆𝐸𝐷𝑚𝑎𝑥: Maximum de sédiments cumulable [kg km-1] 

 𝑡1/2 : Temps nécessaire pour accumuler la moitié de 𝑆𝐸𝐷𝑚𝑎𝑥 

 𝑡𝑑 : Nombre de jours secs depuis le dernier lessivage par ruissellement   

𝑌𝑠𝑒𝑑 = 𝑆𝐸𝐷0 ∙ [1 − exp (−𝑢𝑟𝑏𝑐𝑜𝑒𝑓 ∙ 𝑞𝑝𝑜𝑖𝑛𝑡𝑒 ∙ 𝑡)] Éq. 2.73 : Lessivage de sédiments 

Où 𝑌𝑠𝑒𝑑: Sédiments lessivés au temps t [kg km-1] 
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 𝑆𝐸𝐷0: Sédiments accumulés au début d’un épisode de pluie [kg km-1] 

 𝑢𝑟𝑏𝑐𝑜𝑒𝑓 : Coefficient de lessivage en milieu urbain [mm-1] 

 𝑞𝑝𝑜𝑖𝑛𝑡𝑒 : Débit de pointe [mm h-1] 

2.5 Modèle bactériologique 

Avec SWAT, le transport et le devenir d’E. coli est simulé au sein du réseau hydrographique depuis 

les premiers 10 mm du sol d’un URH jusqu’à l’exutoire du bassin versant. Tel que le cycle de l’eau, 

le modèle bactériologique s’applique à l’échelle des URH. Alors que chaque source de 

contamination a une influence différente sur les concentrations d’E. coli en rivière, le climat et les 

caractéristiques physiques d’un bassin versant ont néanmoins un rôle déterminant dans le transport 

et le devenir de cet indicateur. 

Cette section présente les divers processus et calculs utilisés pour la simulation des concentrations 

d’E. coli au sein du bassin versant. Les partitions environnementales prises en compte dans ce 

modèle bactériologique sont le sol, les sédiments, l’eau ainsi que le fumier et la végétation.  

2.5.1 Source diffuse de contamination 

L’épandage de fumier est ici abordé dans le cadre de la modélisation des sources diffuses de 

contamination fécale. Cette pratique agricole permet de simuler la dispersion de micro-organismes 

d’origine fécale par le biais de fumier. Notamment, il est ainsi possible de reproduire la 

contamination fécale causée par la faune en milieu forestier par l’épandage uniforme de fumier. 

Une quantité d’E. coli est alors déposée sur la végétation et en surface du sol suite à l’application 

de fumier. La concentration de bactéries dans ces deux partitions est une fonction de la couverture 

du sol définie par le coefficient gc. Ce dernier est déterminé empiriquement selon l’indice foliaire 

de l’URH. 

𝐵𝑎𝑐𝑡𝑣𝑒𝑔,𝑖 =
𝑔𝑐 ∙ 𝑓𝑟𝑎𝑐𝑡𝑖𝑣𝑒 ∙ 𝐵𝑎𝑐𝑡𝑓𝑒𝑟𝑡 ∙ 𝑓𝑒𝑟𝑡

10
 Éq. 2.74 : E. coli sur végétation    

Où 𝐵𝑎𝑐𝑡𝑣𝑒𝑔,𝑖 : Quantité d’E. coli sur la végétation à la journée i [UFC m-²] 

 𝑔𝑐: Fraction du sol couvert par la végétation 

 𝑓𝑟𝑎𝑐𝑡𝑖𝑣𝑒: Fraction du fumier contenant des UFC actives  

 𝐵𝑎𝑐𝑡𝑓𝑒𝑟𝑡 : Concentration d’E. coli dans le fumier [UFC g-1] 

 𝑓𝑒𝑟𝑡 : Quantité de fumier appliquée au sol [kg ha-1] 
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La quantité de bactéries au sol est ensuite déduite avec l’ajout d’un coefficient de partitionnement 

des bactéries entre la phase adsorbée aux particules de sol et la phase en solution. Une bactérie est 

principalement en solution lorsque la valeur de ce coefficient s’approche de 1 et vice-versa.  

𝐵𝑎𝑐𝑡𝑠𝑜𝑙,𝑓𝑒𝑟𝑡,𝑖 =
(1 − 𝑔𝑐)

𝑔𝑐
∙ 𝑘𝑏𝑎𝑐𝑡 ∙ 𝐵𝑎𝑐𝑡𝑣𝑒𝑔,𝑖  Éq. 2.75 : E. coli au sol     

Où 𝐵𝑎𝑐𝑡𝑠𝑜𝑙,𝑓𝑒𝑟𝑡: Quantité d’E. coli au sol à la journée i [UFC m-²] 

 𝑔𝑐 : Fraction du sol couvert par la végétation 

 𝑘𝑏𝑎𝑐𝑡 : Coefficient de partitionnement (BACTKDDB)  

 𝐵𝑎𝑐𝑡𝑣𝑒𝑔,𝑖 : Quantité d’E. coli sur la végétation à la journée i [UFC m-²] 

2.5.2 Lessivage 

Pour la partition de la végétation, une fraction de la concentration d’E. coli est utilisée pour la suite 

des calculs dû au lessivage des plantes par la pluie ou le ruissellement. Cette fraction WOFp est 

initialement posée à 0.75 et demeure constante pour un événement de pluie, mais cette fraction à 

sujette à des changements ultérieures en calibration. Un lessivage survient d’ailleurs s’il y a plus 

de 2.54 mm de précipitation lors d’une journée (Neitsch et al., 2011a). Ce processus influence 

notamment les sources de contamination diffuse telle que la faune. La quantité de bactéries 

lessivées est ensuite considérée en solution et présente en surface du sol.  

𝐵𝑎𝑐𝑡′𝑣𝑒𝑔,𝑖 = 𝑊𝑂𝐹𝑝 ∙ 𝐵𝑎𝑐𝑡𝑣𝑒𝑔,𝑖 Éq. 2.76 : Lessivage de la végétation    

Où 𝐵𝑎𝑐𝑡′𝑣𝑒𝑔,𝑖: Quantité d’E. coli lessivée à la journée i [UFC m-²] 

 𝐵𝑎𝑐𝑡𝑣𝑒𝑔,𝑖 Quantité initiale d’E. coli sur la végétation avant ruissellement 

[UFC m-²] 

 𝑊𝑂𝐹𝑝 : Fraction de lessivage 

2.5.3 Infiltration 

L’infiltration d’eau dans le sol entraîne avec elle une certaine quantité d’E. coli. La concentration 

de la bactérie dans les 10 premiers mm du sol est ainsi fonction de la quantité d’eau infiltrée et des 

caractéristiques du sol. Également, un coefficient d’infiltration permet d’établir le ratio entre la 

concentration de bactéries disponible dans le sol et celle dans l’eau infiltrée.  
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𝑏𝑎𝑐𝑡𝑖𝑛𝑓,𝑖 =
𝐵𝑎𝑐𝑡𝑠𝑜𝑙,𝑖 ∙ 𝑤𝑖𝑛𝑓,𝑖

10 ∙ 𝜌𝑏 ∙ ℎ𝑠𝑜𝑙 ∙ 𝑘𝑏𝑎𝑐𝑡,𝑖𝑛𝑓
 Éq. 2.77 : Infiltration d’E. coli   

Où 𝐵𝑎𝑐𝑡𝑖𝑛𝑓,𝑖 : Quantité d’E. coli infiltrée dans la première couche du sol [UFC m-²] 

 𝐵𝑎𝑐𝑡𝑠𝑜𝑙,𝑖: Quantité d’E. coli au sol [UFC m-²] 

 𝑤𝑖𝑛𝑓,𝑖: Infiltration [mm] 

 𝜌𝑏 : Densité apparente du sol [Mg m-3] 

 ℎ𝑠𝑜𝑙  : Profondeur d’infiltration (10 mm) 

 𝑘𝑏𝑎𝑐𝑡,𝑖𝑛𝑓 : Coefficient d’infiltration bactérien (BACTMX) [10 m3 Mg-1] 

2.5.4 Ruissellement 

Un des moyens de transport des bactéries depuis les sources diffuses au sol est le ruissellement. Le 

type de sol et son utilisation en surface contrôlent essentiellement la quantité de bactéries entraînées 

par le ruissellement. Le coefficient de partition permet d’établir le ratio entre la concentration de 

bactéries dans les 10 premiers mm de sol et celle dans l’eau ruisselée. Parajuli (2007) suggère une 

valeur de 175 m3 Mg-1 afin d’obtenir un partitionnement représentatif. 

𝐵𝑎𝑐𝑡𝑟𝑢𝑖𝑠,𝑖 =
𝐵𝑎𝑐𝑡𝑠𝑜𝑙,𝑖 ∙ 𝑄𝑟𝑢𝑖𝑠,𝑖

𝜌𝑏 ∙ ℎ𝑠𝑜𝑙 ∙ 𝑘𝑏𝑎𝑐𝑡,𝑟𝑢𝑖𝑠
 Éq. 2.78 : Transport par ruissellement   

Où 𝐵𝑎𝑐𝑡𝑟𝑢𝑖𝑠,𝑖 : Quantité d’E. coli à la journée i dans le ruissellement [UFC m-²] 

 𝐵𝑎𝑐𝑡𝑠𝑜𝑙,𝑖: Quantité d’E. coli à la journée i au sol [UFC m-²] 

 𝑄𝑟𝑢𝑖𝑠,𝑖: Eau ruisselée [mm] 

 𝜌𝑏 : Densité apparente du sol [Mg m-3] 

 ℎ𝑠𝑜𝑙  : Profondeur d’infiltration (10 mm) 

 𝑘𝑏𝑎𝑐𝑡,𝑟𝑢𝑖𝑠 : Coefficient de partition bactérien (BACTKDQ) [m3 Mg-1] 

2.5.5 Sédiments 

Les bactéries peuvent également être transportées lorsqu’elles sont fixées aux particules de sol. 

L’érosion est donc un processus influençant le devenir d’E. coli au sein du bassin versant. De ce 

fait, la quantité de sédiments érodés est directement proportionnelle au nombre d’E. coli transporté 

par ces sédiments.  
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𝐵𝑎𝑐𝑡𝑠𝑒𝑑,𝑖 = 1×10−4 ∙ 𝐶𝑜𝑛𝑐𝑏𝑎𝑐𝑡,𝑠𝑒𝑑𝑠𝑜𝑙,𝑖 ∙
𝑠𝑒𝑑𝑖

𝐴𝑈𝑅𝐻
∙ 𝜀𝑏𝑎𝑐𝑡,𝑠𝑒𝑑 

Éq. 2.79 : E. coli transportés par les 

sédiments   

Où 𝐵𝑎𝑐𝑡𝑖𝑛𝑓,𝑖 : Quantité d’E. coli transportée par les sédiments à la journée i [UFC m-²] 

 𝐶𝑜𝑛𝑐𝑏𝑎𝑐𝑡,𝑠𝑒𝑑,𝑖 : Concentration d’E. coli fixée aux sédiments dans le premier 10 mm de sol 

à la journée i [UFC t.m.-1]  

 𝑠𝑒𝑑𝑖 : Sédiments érodés à la journée i [t.m.] 

 𝐴𝑈𝑅𝐻 : Aire de l’URH [m²] 

 𝜀𝑏𝑎𝑐𝑡,𝑠𝑒𝑑,𝑖 : Ratio d’enrichissement à la journée i 

Seules les bactéries préalablement fixées aux sédiments dans le premier 10 mm de sol peuvent être 

impliquées dans le transport par sédiments. Ces concentrations seront ensuite impliquées avec le 

ruissellement pour le calcul des routines bactériologiques. 

𝐶𝑜𝑛𝑐𝑏𝑎𝑐𝑡,𝑠𝑒𝑑𝑠𝑜𝑙,𝑖 = 1×103 ∙
𝐵𝑎𝑐𝑡𝑠𝑜𝑟𝑏,𝑖

𝜌𝑏 ∙ ℎ𝑠𝑜𝑙
 

Éq. 2.80 : Concentration d’E. coli dans les 

sédiments du sol   

Où 𝐶𝑜𝑛𝑐𝑏𝑎𝑐𝑡,𝑠𝑒𝑑𝑠𝑜𝑙,𝑖 : Concentration d’E. coli attachée aux sédiments dans le premier 10 mm 

de sol à la journée i [UFC t.m.-1] 

 𝐵𝑎𝑐𝑡𝑠𝑜𝑟𝑏,𝑖 : Quantité d’E. coli sorbée au sol à la journée i [UFC m-²] 

 𝜌𝑏 : Densité apparente du sol [Mg m-3] 

 ℎ𝑠𝑜𝑙  : Profondeur d’infiltration (10 mm) 

Le ratio d’enrichissement permet d’établir le rapport de bactéries transportées par les sédiments et 

celles fixées aux particules du sol. Cette variable est unique pour chaque épisode de pluie.  

𝜀𝑏𝑎𝑐𝑡,𝑠𝑒𝑑,𝑖 = 0.78 ∙ (𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑟𝑢𝑖𝑠,𝑖)
−0.2468

 Éq. 2.81 : Ratio d’enrichissement   

Où 𝜀𝑏𝑎𝑐𝑡,𝑠𝑒𝑑 : Ratio d’enrichissement à la journée i 

 𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑟𝑢𝑖𝑠 : Concentration de sédiments dans l’eau ruisselée à la journée i [Mg m-3] 

𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑟𝑢𝑖𝑠,𝑖 =
𝑠𝑒𝑑𝑖

10 ∙ 𝐴𝑈𝑅𝐻 ∙ 𝑄𝑟𝑢𝑖𝑠,𝑖
 Éq. 2.82 : Ratio d’enrichissement   

Où 𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑟𝑢𝑖𝑠,𝑖 : Concentration de sédiments dans l’eau de ruissellement [Mg m-3] 

 𝑠𝑒𝑑𝑖 : Sédiments érodés à la journée i [t.m.] 

 𝐴𝑈𝑅𝐻 : Aire de l’URH [m²] 

 𝑄𝑟𝑢𝑖𝑠,𝑖: Infiltration à la journée i [mm] 
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Le ruissellement étant impliqué dans ces équations, les quantités d’E. coli respectives 𝐵𝑎𝑐𝑡𝑠𝑒𝑑,𝑖 et 

𝐵𝑎𝑐𝑡𝑟𝑢𝑖𝑠,𝑖 dans les sédiments et dans le ruissellement de surface sont soumises à des temps de 

concentration supérieurs à 24 heures. Le coefficient de délai surlag est ainsi intégré à ces variables 

de la même manière qu’à l’équation 3.8.  

2.5.6 Inactivation 

Dès le dépôt ou l’apparition d’E. coli dans une partition du modèle depuis une source de 

contamination, sa concentration se voit suivre une réaction de premier ordre avec ajustement de la 

température à 20°C. La loi de Chick-Watson assure ce processus. Il est à noter que les quantités de 

bactéries sont évaluées par unité de surface. Les concentrations en sont ensuite déduites.  

𝐵𝑎𝑐𝑡𝑝,𝑖 = 𝐵𝑎𝑐𝑡𝑝,𝑖−1 ∙ exp[−𝑘𝑝,𝑇 ∙ 𝜃𝑏𝑎𝑐𝑡
(𝑇̅−20)] Éq. 2.83 : Réaction de premier ordre   

 Où 𝐵𝑎𝑐𝑡𝑝,𝑖: Quantité d’E. coli à la journée i pour une partition p [UFC m-²] 

 𝑘𝑝,20: Coefficient d’inactivation d’E. coli pour une partition p à 20°C [d-1] 

 𝜃𝑏𝑎𝑐𝑡 : Coefficient d’ajustement de la température = 1,07 

 𝑇̅: Température quotidienne moyenne [°C] 

L’inactivation d’E. coli est donc dépendante de la température et de la partition où elle se trouve. 

Pour ce faire, les constantes cinétiques ou coefficients d’inactivation du tableau 1.6 sont utilisés. 

Ces paramètres sont ensuite ajustés en fonction de la température de la journée de simulation.  

Tableau 2.5 : Constantes cinétiques à 20 °C pour différentes partitions environnementales 

Coefficient Partition p Valeur [d-1] 

Ksed,20 Sédiments 1 x 10-1 

Ksol,20 Sol 1 x 10-1 

Kfum,20 Fumier 2 x 10-1 

Keau,20 Eau 4 x 10-1 

2.5.7 Routines 

Les routines d’E. coli dans le réseau hydrographique sont fonction du bilan hydrique du bassin et 

du flux de sédiments. D’une part, les sédiments remis en suspension permettent l’entrée ou le retour 

de bactéries en rivière. 
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𝐵𝑎𝑐𝑡𝑟𝑠𝑢𝑠,𝑖 = 𝑠𝑒𝑑𝑟𝑠𝑢𝑠,𝑖 ∙ 𝐶𝑜𝑛𝑐𝑏𝑎𝑐𝑡,𝑠𝑒𝑑,𝑖 Éq. 2.84 : Bilan d’E. coli en réseau   

Où 𝐵𝑎𝑐𝑡𝑟𝑠𝑢𝑠,𝑖 : Quantité d’E. coli remis en suspension à la journée i [UFC] 

 𝑠𝑒𝑑𝑟𝑠𝑢𝑠,𝑖 : Quantité de sédiments remis en suspension [t.m.] 

 𝐶𝑜𝑛𝑐𝑏𝑎𝑐𝑡,𝑠𝑒𝑑,𝑖 : Concentration d’E. coli dans les sédiments du lit rivière [UFC t.m.-1] 

La concentration d’E. coli dans les sédiments du lit rivière est déterminée selon une équation 

empirique de régression sinusoïdale développée Woo Kim et al. (2009) du USDA. 

log(𝐶𝑜𝑛𝑐𝑏𝑎𝑐𝑡,𝑠𝑒𝑑,𝑖)

= 𝑏𝑠𝑐1 ∙ sin (𝑏𝑠𝑐2 ∙
𝑖 − 𝑏𝑠𝑐3

366
∙ 𝜋) + 𝑏𝑠𝑐4 

Éq. 2.85 : Bilan d’E. coli en réseau   

Où 𝐶𝑜𝑛𝑐𝑏𝑎𝑐𝑡,𝑠𝑒𝑑,𝑖 : Concentration d’E. coli dans le lit rivière [UFC t.m.-1] 

 𝑏𝑠𝑐𝑥 : Coefficient de régression  

 𝑖 : Journée de l’année de simulation 

Tableau 2.6 : Coefficient de régression empirique 

Coefficient Valeur 

𝑏𝑠𝑐1 1.534 

𝑏𝑠𝑐2 2.194 

𝑏𝑠𝑐3 187.0 

𝑏𝑠𝑐4 3.870 

D’autre part, la réduction de bactéries en réseau est possible avec le dépôt de sédiments aux lits des 

rivières ou des lacs.  

𝐵𝑎𝑐𝑡𝑑𝑒𝑝,𝑖 = 𝐵𝑎𝑐𝑡𝑐ℎ,𝑖 ∙ (
𝐾𝑝 ∙ 𝑠𝑒𝑑𝑑𝑒𝑝,𝑖

𝑉𝑐ℎ ∙ (1 + 𝐾𝑝 ∙ 𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑐ℎ,𝑖)
) Éq. 2.86 : Bilan d’E. coli en réseau   

Où 𝐵𝑎𝑐𝑡𝑑𝑒𝑝,𝑖 : Quantité d’E. coli déposée dans un canal à la journée i [UFC] 

 𝐵𝑎𝑐𝑡𝑐ℎ,𝑖 : Quantité d’E. coli initiale d’un canal à la journée i [UFC] 

 𝐾𝑝 : Coefficient de partitionnement linéaire [L kg-1] 

 𝑠𝑒𝑑𝑑𝑒𝑝,𝑖 : Quantité de sédiments déposée [t.m.] 

 𝑉𝑐ℎ : Volume d’eau du canal [m3] 

 𝐶𝑜𝑛𝑐𝑠𝑒𝑑,𝑐ℎ,𝑖 : Concentration de sédiments dans un canal [kg L-1] 
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Le coefficient 𝐾𝑝 permet le partitionnement linéaire des bactéries entre les matières en suspension 

et l’eau (Pachepsky, Y. et al., 2006). Ce coefficient n’est pas inclus dans la calibration car il tient 

compte du pourcentage d’argile dans les particules sédimentaires des sols. 

𝐾𝑝 = 10−6 ∙ 𝑎𝑟𝑔𝑖𝑙𝑒1.98 Éq. 2.87 : Partitionnement linéaire   

Où 𝐾𝑝 : Coefficient de partitionnement linéaire [L kg-1] 

 𝑎𝑟𝑔𝑖𝑙𝑒 : Pourcentage d’argile dans les matières en suspension   

Un bilan massique permet le contrôle des quantités d’E. coli dans le réseau hydrographique. Ce 

calcul est effectué pour chaque segment et étendue d’eau du bassin. L’évaluation du processus 

d’érosion revêt ainsi une importance considérable dans le transport de bactéries.  

𝐵𝑎𝑐𝑡𝑐ℎ,𝑖 = 𝐵𝑎𝑐𝑡𝑐ℎ,𝑖−1 + 𝐵𝑎𝑐𝑡𝑟𝑠𝑢𝑠,𝑖 − 𝐵𝑎𝑐𝑡𝑑𝑒𝑝,𝑖 Éq. 2.88 : Bilan d’E. coli en rivière   

Où 𝐵𝑎𝑐𝑡𝑐ℎ,𝑖 : Concentration de sédiments dans l’eau de ruissellement [Mg m-3] 

 𝑠𝑒𝑑𝑖 : Sédiments transportés à la journée i [t.m.] 

 𝐵𝑎𝑐𝑡𝑟𝑠𝑢𝑠,𝑖 : Quantité d’E. coli remis en suspension à la journée i [UFC] 

 𝐵𝑎𝑐𝑡𝑑𝑒𝑝,𝑖 : Quantité d’E. coli déposé dans un canal à la journée i [UFC] 

Néanmoins, il est à noter que la remise en suspension de sédiments et par le fait même de bactéries 

ne tient pas en compte la distribution d’E. coli dans les dépôts de sédiments selon la profondeur. 
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CHAPITRE 3 MÉTHODOLOGIE 

Alors que plusieurs facteurs peuvent contribuer au transport et au devenir de contaminants 

microbiologiques au sein d’un bassin versant, la caractérisation de ce dernier est primordiale dans 

le cadre de sa modélisation afin d’obtenir une représentation fidèle des variables simulées. D’une 

part, le module hydrologique est initialement élaboré par le biais du débit comme variable à 

calibrer. Ensuite, un module de la qualité de l’eau y est joint pour évaluer le transport et le devenir 

d’E. coli comme IOF au sein du bassin versant. L’hypothèse que le réseau hydrographique du 

bassin est le vecteur principal de la contamination fécale est alors émise afin de mettre en place la 

méthodologie de ce projet.  

Dans un premier temps, le territoire à l’étude est détaillé en fonction des données entrantes 

nécessaires à la modélisation avec SWAT. Ainsi, la topographie, l’hydrographie, l’utilisation du 

territoire, la pédologie ainsi que la météorologie sont les informations nécessaires pour constituer 

la base du modèle. D’autre part, la définition du bassin versant, des sous bassins et des unités de 

réponses hydrologiques est présentée. Ce partitionnement permet la différenciation spatiale des 

caractéristiques du bassin versant dans le cadre des simulations. Enfin, le paramétrage du modèle 

pour sa calibration est détaillé. Le débit, les matières en suspensions (MES) et les E. coli sont les 

principales variables simulées à l’étude. 

 
Figure 3.1 : Superposition de données en format matriciel (F. Anctil, 2012) 
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3.1 Description du site d’étude et paramétrage du modèle 

Le lac Raymond se situe dans la municipalité de Val-Morin dans la région des Laurentides au 

Québec. Ce lac étant un agrandissement de la rivière du Nord, son bassin versant s’inscrit ainsi 

dans celui de la rivière du Nord (Annexe A) et par conséquent dans la région hydrographique de 

l’Outaouais et de Montréal. Afin de caractériser la zone à l’étude, l’utilisation des données 

d’informations géographiques (SIG) est de mise. Ces données sont utilisées selon le système 

projeté NAD83 CSRS Canada Atlas Lambert.  

Le bassin versant du lac Raymond (BVLR) couvre une surface de plus de 400 km² et représente la 

partie amont et extrême nord de la rivière du Nord. Celle-ci parcours près de 40 km en amont du 

lac Raymond jusqu’au lac de la Montagne Noire en passant par le lac Brûlé. En aval, la rivière du 

Nord se jette à près de 100 km plus loin dans la rivière des Outaouais aux environs de Carillon.  

 
Figure 3.2 : Localisation du bassin versant du Lac Raymond 
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Dans un contexte de protection des ressources en eau, la région hydrographique du lac Raymond 

est tributaire aux prises d’eau potable de plusieurs municipalités en aval telle que la ville de Saint-

Jérôme. Tel que présenté au tableau 2.1, les municipalités du BVLR ont principalement recours à 

l’eau souterraine comme source d’eau potable.  

Tableau 3.1 : Réseaux de distribution d’eau potable desservant le BVLR, adapté de Abrinord 

(2015b) 

Municipalités 

Eau souterraine Eau de surface Indéterminé 

Nb de 

réseaux 

Population 

desservie 

Nb de 

réseaux 

Population 

desservie 

Nb de 

réseaux 

Population 

desservie 

Lantier 1 49     

Sainte-Agathe-des-Monts 4 114 2 9 150 1 45 

Sainte-Lucie-des-

Laurentides 
2 994     

Saint-Faustin-Lac-Carré   1 63   

Val-David 4 3 273   3 450 

Val-Morin 3 2 758   4 1 236 

Localement, le lac Raymond représente une ressource naturelle à caractère récréatif et touristique. 

De ce fait, une partie considérable de la population du BVLR se classe en tant que villégiature. Le 

tableau 2.2 dénombre la population des différentes municipalités du bassin en fonction de leur type 

d’occupation. Les municipalités de Sainte-Lucie-des-Laurentides et Saint-Faustin-Lac-Carré sont 

d’ailleurs situées aux limites est et ouest du bassin respectivement.  

Tableau 3.2 : Estimation de la population en 2005, tiré de Abrinord (2015b) 

Municipalités 
Population Proportion de 

villégiature Permanente Villégiature 

Lantier 665 1 291 66% 

Sainte-Agathe-des-Monts 9 396 4 840 34% 

Sainte-Lucie-des-Laurentides 959 1 126 54% 

Saint-Faustin-Lac-Carré 2 945 1 963 40% 

Val-David 4 128 1 769 30% 

Val-Morin 2 346 1 770 43% 

La ville de Sainte-Agathe-des-Monts présente la plus grande population et se situe d’ailleurs au 

centre du BVRL. La seconde plus grande population appartient à la municipalité de Val-David. 

Ces deux municipalités regroupent ainsi plus de 60% de la population du BLVR et sont situées en 

amont du lac Raymond sur la rivière du Nord. Cette caractéristique est notamment importante dans 
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le paramétrage du modèle en raison de l’impact occasionné par l’urbanisation en amont du lac. 

D’ailleurs, les réponses hydrologiques et bactériologiques du modèle en zones urbaines sont 

abordées au chapitre 3. Enfin, le paramétrage du modèle se réfère aux diverses informations 

d’entrées nécessaires à SWAT. 

Tableau 3.3 : Synthèse des informations d’entrée de modélisation 

Donnée Source 

Topographie Ressources Naturelles du Canada via GéoGratis (2016) 

Occupation du sol Ressources Naturelles du Canada via AAC (2015) 

Pédologie MAPAQ via IRDA 

Météorologie Ressources Naturelles du Canada (McKenney et al., 2011) via Ouranos 

 Données historiques en ligne de Climat Canada (2016) 

 

3.1.1 Topographie 

La topographie est utilisée dans SWAT pour la définition des cours d’eau et des sous bassins 

versant par l’entremise des pentes et des élévations du terrain. Disponible en ligne, le modèle 

numérique de surface du Canada (MNSC) a été extrait pour la région à l’étude. Il est à noter que la 

bathymétrie n’est pas incluse dans ce modèle de données. Elle est d’ailleurs présentée à l’annexe 

C. 

Tableau 3.4 : Informations sur les données topographiques 

Item Commentaire 

Source Agriculture et Agroalimentaire Canada 

Modèle MNSC 

Résolution 20 m 

Système de référence  Atlas Lambert, NAD83 CSRS (EPSG:3979) 

Une élévation maximale et minimale de 675 mètres et 280 mètres respectivement se distinguent 

pour obtenir un dénivelé total du terrain de 395 mètres. Situé dans le secteur géographique du 

bouclier canadien, le BVLR présente une topographie hétérogène avec des pentes de légères à 

fortes. Plusieurs sommets y sont présents tels que démontré par la courbe hypsométrique où 

seulement 10% de la superficie du bassin inclut les élévations supérieures à 500 mètres.  
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Figure 3.3 : Topographie, relief ombré-couleur. Données tirée de Canada, R.N. (2016) 

 

Figure 3.4 : Courbe hypsométrique, bassin versant du lac Raymond 

Le profil en long de la rivière du Nord permet de distinguer les emplacements de lacs dans son 

parcours ainsi que la présence de la station d’épuration de la ville de Sainte-Agathe-des-Monts. 

Une pente moyenne de la rivière du Nord est notée à 0.44%. 
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Figure 3.5 : Profil en long de la Rivière du Nord, bassin versant du lac Raymond 

3.1.2 Hydrographie 

La présence accrue d’étendues d’eau douce dans la région des Laurentides se reflète au sein du 

bassin versant avec son réseau hydrographique comprenant plus d’une centaine de lacs. Dans le 

modèle, les lacs considérés sont ceux recensés par Abrinord. Un total de 91 lacs y sont donc 

identifiés dont 7 sont munis d’un barrage à forte contenance à leur exutoire. Ceux-ci sont ici définis 

en tant que réservoir dans SWAT. Plusieurs autres barrages à faible contenance sont présents sur 

le réseau hydrographique, mais ils ne sont pas considérés dans le modèle. Dix surfaces d’eau non 

identifiées ont été attribuées d’un acronyme (L1 à L10) pour fin d’identification. Une liste des 

étendues d’eau du bassin et de leur superficie est présentée à l’annexe B. Les détails des exutoires 

des lacs ainsi que les données historiques tels que les débits sont parfois incomplètes ou 

indisponibles. Les informations nécessaires à la modélisation des lacs dans SWAT dépendent 

cependant du type de fonctionnement de ces réservoirs d’eau tel qu’abordé au chapitre 2. 

Tableau 3.5 : Caractéristiques des réservoirs avec barrage à forte contenance 

Nom Volume [m³] Superficie [m²] 

Montagne Noire 6.0E+06 2.8E+06 

Papineau 9.1E+05 8.2E+05 

Ludger 3.0E+06 1.6E+06 

Brûlé 6.0E+06 2.7E+06 

Manitou 3.7E+06 4.1E+06 

Cornu 2.8E+06 1.4E+06 

Des Sables 5.3E+06 3.0E+06 

Raymond 1.4E+06 7.0E+05 
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Figure 3.6 : Eaux de surface, bassin versant du lac Raymond 

Seules les variables connues telles que l’emplacement, la superficie et le volume des lacs sont 

utilisées. Cependant, les résultats de simulation des lacs tels que les niveaux et les volumes d’eau 

ne sont pas calibrés et ils sont ainsi non représentatifs. Par ailleurs, l’accumulation de l’eau 

effectuée par SWAT est contrôlée par les débits sortant des réservoirs. Ceux-ci sont pris en 

considération lors de la calibration du débit. 

La division du bassin versant illustrée à la figure 3.7 a été effectuée en fonction des superficies de 

drainage correspondant aux principales sources d’eau du réseau hydrographique telles que les lacs 

et réservoirs. Une seconde division est effectuée à la section 2.3.1 afin d’obtenir les sous bassins 

nécessaires au paramétrage du modèle. 
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Figure 3.7 : Sous-bassins versant  

À la figure 3.8, l’ordre des cours d’eau selon la classification de Strahler permet d’illustrer la 

ramification du réseau de drainage. Un ordre de 5 est d’ailleurs attribué à la rivière du Nord à 

l’exutoire du bassin. Une densité de drainage est déterminée à 0.57 selon le ratio de la longueur du 

réseau et de la surface du bassin. Ces indicateurs permettent ici d’évaluer le potentiel de drainage 

du réseau hydrographique. Ainsi, leurs valeurs relativement élevées indiquent un drainage rapide 

du bassin selon une densité importante du réseau. 

Tableau 3.6 : Caractéristiques hydrographiques du bassin versant 

Item Commentaire 

Surface du bassin versant  41 652 ha 

Ordre du cours d’eau principal à l’exutoire 5 

Densité de drainage (ΣL/A) 0.57 
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Figure 3.8 : Classification des cours du bassin versant 

La station hydrométrique du CEHQ 040122 situé à Sainte-Agathe-des-Monts permet l’analyse des 

débits historiques de même que la calibration du débit au sein du modèle.  

Pour la période d’activité de la station hydrométrique, un débit minimal et maximal de 0.6 et 79 

m³ s-1 respectivement sont notés. Cette série chronologique permet de déterminer les crues pour 

différentes périodes de retour. La méthode de Gumbel est utilisée à cette fin. Le débit maximal 

historique est alors associé à une période de retour de 44 ans. 

Tableau 3.7 : Débits historiques à la station CEHD 040122, rivière du Nord. (CEHQ, 2016) 

Année 
Débit [m³ s-1] 

Minimum Moyenne Médiane Maximum 

2010 1.177 6.68 4.17 43.0 

2011 1.425 8.02 4.27 57.2 

2012 0.900 5.37 3.76 50.3 

2013 1.708 7.78 4.05 49.5 

2014 1.303 7.78 4.02 50.9 

1971-2014 0.610 7.00 4.12 78.9 
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Tableau 3.8 : Crue de la rivière du Nord 

Période de retour 

T (ans) 

Probabilité de non-

dépassement p 

Crue QT 

 [m³ s-1] 

2 50 % 51 

5 80 % 60 

10 90 % 66 

20 95 % 72 

25 96 % 74 

50 98 % 80 

100 99 % 86 

3.1.3 Utilisation du territoire 

La prise en compte de l’utilisation du territoire dans le modèle permet de dicter le comportement 

de l’eau ainsi que des contaminants en surface du sol ou des terres. Telle que présenté à la section 

précédente, la superficie des étendues d’eau au sein du bassin est considérable. Néanmoins, la 

couverture forestière domine en termes de proportion de la surface occupée. Les simulations du 

modèle sont donc principalement influencées par une dynamique forestière. De ce fait, Andréassian 

(2002) a évalué l’impact de la forêt sur le comportement hydrologique d’un bassin versant. Cette 

influence se traduit par une plus grande consommation d’eau qu’un autre couvert végétal et par la 

réduction des pointes de crues de même que les périodes d’étiages. L’impact d’un couvert forestier 

est néanmoins différent d’un bassin à l’autre.  

Tableau 3.9 : Informations sur les données d’utilisation du territoire 

Item Commentaire 

Producteur Agriculture et Agroalimentaire Canada (AAC) 

Titre  Utilisation des Terres en 2010 (UT10) 

Forme de représentation spatiale Quadrillage 

Résolution spatiale 30 mètres 

Description géographique Canada, zone UTM 18 

Également, les zones urbaines présentent une surface équivalente à celle occupée par l’eau. Elles 

sont principalement représentées par des secteurs résidentiels, mais aussi par des secteurs 

commerciaux et industriels. L’impact de l’urbanisation sur le ruissellement a  d’ailleurs été abordé 

à la section 2.4. D’autres superficies d’eau non contributoire au réseau hydrographique sont 

présentes telles que des étangs ou des marais. On retrouve ces surfaces dans la classe de zones 

humides et celles-ci représentent la plus faible proportion du bassin versant.  
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La figure 3.9 permet de contempler l’étendue de la couverture terrestre du BVLR. Il est à noter que 

le bassin est traversé par l’autoroute des Laurentides, la route nationale 117 ainsi que par la route 

régionale 329. Ces dernières représentent par conséquent un certain risque environnemental 

considérant l’impact d’un accident de la route impliquant un déversement de produits chimiques 

ou d’hydrocarbures.  

Tableau 3.10 : Distribution de l’utilisation du territoire  

Type Code Superficie (ha) Superficie (%) 

Forêt mixte FRST 34 003 81.6 

Eau WATR 3 108 7.5 

Urbain URBN 3 069 7.4 

Route UTRN 1 237 3.0 

Zone humide WETF 235 0.6 

  41 652 100.0 

 

Figure 3.9 : Utilisation du territoire, données tirées de AAC (2015) 
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3.1.4 Pédologie 

Les réponses hydrologiques sont sensibles aux caractéristiques de sols d’où l’importance 

d’acquérir des informations représentatives à leur sujet. Des données numériques en couches 

vectorielles sont utilisées pour caractériser les sols du BVLR. Depuis une banque de données 

mères, ces données sont intégrées au modèle depuis leur cartographie. La distribution des 

différentes minéralogies des sols se fait par leur regroupement en dix types de sols. Leurs noms 

sont d’ailleurs attribués en fonction de leur emplacement géographique.  

Tableau 3.11 : Informations sur les données numériques de pédologie 

Item Commentaire 

Source MAPAQ via IRDA 

Échelle de numérisation 1:20 000 

Année de numérisation  1998 – 2006 

Numéro des feuillets utilisés 31G16201, 31G16202, 31J01101, 31J01102, 31J01201, 31J01202 

Type de données Couches de données vectorielles 2D 

Référence géodésique NAD83 CSRS 

Référence ellipsoïde GRS80 

 

Tableau 3.12 : Distribution des sols du bassin versant 

Nom Code Superficie (ha) Superficie (%) 

Alluvions non-différenciées  ALL 1 686 4.0 

Guindon GDO 1 592 3.8 

Ivry IVR 2 113 5.1 

Lakefield LKF 269 0.7 

Marais MEM 167 0.4 

Morin MOI 223 0.5 

Saint-Faustin SFU 1 951 4.7 

Saint-Gabriel SGB 4 897 11.8 

Saint-Agathe SNG 25 757 61.8 

Étendue d'eau ZZZ 2 970 7.1 

Les sols sableux sont en prédominance avec les types SGB et SNG. Une infiltration rapide est donc 

attendue des sols puisque ces derniers sont majoritairement très bien drainés. Les sols présentent 

indépendamment une à quatre couches. Les premiers 100 mm du sol ont d’ailleurs la plus grande 

influence sur l’hydrologie et l’érosion dans SWAT. Les caractéristiques des sols pour chacune de 

leurs couches sont présentées à l’annexe E. Leurs aspects qualitatifs sont présentés au tableau ci-

dessous. 
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Figure 3.10 : Cartographie des classes minéralogiques 

 

Figure 3.11 : Pédologie du territoire 
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Tableau 3.13 : Classification des sols minéraux du bassin versant du lac Raymond 

Code 
Sous-

groupe 

Classe de 

drainage 

Mode de 

déposition 

Granulo-

métrie 

Classe de 

profondeur 

Classe 

calcaire 

Groupe 

hydrologique 

GDO 

Podzol 

humo-

ferrique 

orthique 

 

Bien drainé Fluviatile Sableux Profond 
Non 

calcaire 
A 

IVR 
Très rapidement 

drainé 
Fluviatile Sableux Profond 

Non 

calcaire 
A 

LKF Bien drainé Morainique 
Loameuse -

grossière 

Lithique 

mince 

Non 

calcaire 
C 

MOI 
Très rapidement 

drainé 
Fluviatile Sableux Profond 

Non 

calcaire 
A 

SFU 
Très rapidement 

drainé 

Fluvio-

glaciaire 

Squelettique-

sableux 
Profond 

Non 

calcaire 
A 

SGB 
Très rapidement 

drainé 

Fluvio-

glaciaire 

Squelettique-

sableux 
Profond 

Non 

calcaire 
A 

SNG Bien drainé Morainique 
Loameuse -

grossière 
Profond 

Non 

calcaire 
B 

La réserve utile en eau du sol (SOL_AWC) est un paramètre non disponible. Elle est pourtant 

requise dans les calculs des eaux souterraines. Une valeur nulle peut y être attribuée sans échec du 

modèle, mais ceci implique une représentation erronée du comportement des aquifères. Une 

fonction de pédotransfert permet ici d’estimer les valeurs initiales des réserves utiles en eau à partir 

des caractéristiques des sols disponibles telles que les teneurs en sable et en argile. Le logiciel 

SPAW développé par le USDA (United States Department of Agriculture) est utilisé à cette fin. 

Aucun roc n’est présent dans les premières couches de sol malgré sa présence soutenue au parc 

régional de Val-David-Val-Morin où une pratique d’escalade y est reconnue.  

3.1.5 Météorologie 

SWAT permet l’utilisation de cinq types de données pour effectuer une simulation soit la 

température, les précipitations, la vitesse du vent, l’humidité relative et la radiation solaire. Leur 

inclusion ou exclusion dépend du modèle d’évapotranspiration utilisé tel qu’abordé à la section 

3.2.1. Ces données peuvent être intégrées au modèle soit en tant qu’observation ou en tant que 

variable simulée. Par contre, la simulation de données est effectuée en fonction de données 

moyennes mensuelles ou annuelles et une trop faible variabilité temporelle est alors impliquée. Ce 

type de données est donc rejeté. Ainsi, les observations journalières de précipitations et de 

températures représentent les données climatiques du modèle. Ce choix s’appuie sur la disponibilité 

spatio-temporelle limitée des données climatiques. 
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Une erreur relative maximale de 10% sur les données de précipitations mesurées est considéré 

comme étant acceptable (Winter, 1981). Cependant, une erreur de 30% peut être attribuée aux 

précipitations sous forme de neige (Larson & Peck, 1974). Lors de la calibration du modèle, une 

erreur de 15% est donc prise en compte car le bassin à l’étude comprend une fraction importante 

de ses précipitations sous forme de neige. 

L’utilisation de deux séries de données climatiques est d’ailleurs primée afin de rencontrer les 

objectifs de cette étude. D’une part, les données provenant de Ressources Naturelles Canada 

(RNCan) (Hutchinson et al., 2009) (Hopkinson et al., 2011) (McKenney et al., 2011) et acquises 

via Ouranos couvrent toute la superficie du bassin versant à l’étude selon une large période 

historique (1950 à 2013). Cependant, ces données ne couvrent pas la plage de 2015-2016 qui sont 

les années utilisées pour la simulation d’E. coli. De ce fait, les données publiques du gouvernement 

du Canada (2016) couvrant la période 2015-2016 sont également utilisées. Cependant, ces données 

ne bénéficient pas d’une aussi bonne couverture spatiale que les données de RNCan. Les 

caractéristiques des données climatiques sont présentées au tableau 2.15. 

Tableau 3.14 : Caractéristiques des données climatiques  

Source RNCan Climat Canada 

Type de couverture Surfacique Ponctuelle 

Couverture Polygone 3 stations climatiques 

Période couverte 1950-2013 1995-2016 

Type de données  Température et précipitations Température et précipitations 

Une première calibration du modèle hydraulique a été effectuée avec les données de RNCan. La 

validation de ce modèle permettra ensuite d’utiliser les paramètres obtenus afin de calibrer une 

seconde fois le modèle avec données de Climat Canada. La prochaine figure ci-dessous permet de 

contempler les plages de disponibilités des données climatiques. Le choix des périodes de 

calibration et de validation du débit est d’ailleurs conséquent de ces disponibilités.  

 

Figure 3.12 : Plage de disponibilités des données climatiques 
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Avec les données de Climat Canada, seules les stations de St-Jovite et de St-Hippolyte sont 

utilisées. N’étant plus en service depuis 1992, la station de Sainte-Agathe-des-Monts n’a pas été 

intégrée comme troisième station. Le tableau 2.16 présente les caractéristiques des deux stations 

utilisées. Il est à noter que ces stations sont situées à l’extérieur du bassin versant, mais leur 

emplacement géographique est pris en compte dans SWAT selon leur distance de chacun des sous 

bassins. Leurs emplacements permettent d’ailleurs obtenir une variabilité spatiale satisfaisante telle 

qu’illustrée à la figure 2.15. 

Tableau 3.15 : Caractéristiques des stations climatiques de Climat Canada 

Nom Saint-Jovite Saint-Hippolyte 

No de station 703GDKB 7037310 

Latitude 46°04'49.000" N 45°59'00.000" N 

Longitude 74°33'21.000" O 74°00'00.000" O 

Altitude 238.50 m 365.80 m 

Identification OMM 71376 - 

Identification TC WJT - 

 

Figure 3.13 : Moyennes mensuelles de précipitations entre 1995 et 2016. Stations St-Jovite et St-

Hippolyte. (Canada, 2016) 

Janv. Févr. Mars Avr. Mai Juin Juill. Août Sept. Oct. Nov. Déc.

Neige 61 49 44 10 0 0 0 0 0 2 23 65

Pluie 81 62 84 88 98 120 110 108 114 109 85 98
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Figure 3.14 : Localisation des stations climatiques de Climat Canada 

3.1.6 Définition du bassin versant 

Les caractéristiques du bassin versant abordées précédemment permettent la définition numérique 

de celui-ci par l’entremise de son paramétrage. Pour fin d’identification, le modèle est nommé 

LacRaymond_ArcSwat. Cette section présente les différents attributs et propriétés nécessaires au 

paramétrage du modèle. 

Les extensions des paramètres sont relatives au fichier correspondant dans la banque de données 

d’entrée. Chacun de ces fichiers est utilisé selon les processus à modéliser sur différentes échelles. 

Le niveau de détails permet la distinction de ces échelles. Respectivement, on dénote trois entités : 

le bassin versant, le sous-bassin versant et l’URH où chacun d’eux composent le précédent. 

La topographie guide le tracé du bassin versant. Son contour est ainsi défini comme la ligne de 

partage des eaux. Tout volume d’eau entrant dans le bassin par cette frontière contribue alors au 

débit de l’exutoire. Ce dernier est positionné en aval du lac Raymond afin de prendre en 

considération toutes les surfaces qui lui sont adjacentes. Les sous-bassins sont ensuite tributaires 

du réseau hydrographique par le biais de ses nœuds. Ils permettent ainsi des analyses partielles du 

bassin versant pour chacune des parties intégrantes du réseau. L’ajout supplémentaire de sous-

bassins à des endroits clés est effectué pour optimiser la variabilité spatiale des résultats puisque 
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les résultats sont analysés par sous-bassin. Il est à noter que la numérotation des sous-bassins ne 

sert qu’à identifier ces derniers au sein du modèle.   

Tableau 3.16 : Description des fichiers d’entrées 

Échelle Extension Description 

Bassin 

versant 

file.cio Fichier maître du bassin versant  

.fig Fichier de configuration définissant le réseau de routage 

.bsn Fichier de paramétrage du bassin versant  

.pcp Fichier de données de précipitations journalières mesurées 

.tmp Fichier de données de températures minimum et maximum mesurées 

crop.dat Banque de données de l’utilisation des terres 

fert.dat Banque de données des engrais et fumiers 

urban.dat Banque de données de zones urbaines 

.wwq Fichier de paramétrage de la qualité de l’eau  

Sous bassin .sub Fichier de paramétrage des sous bassins versant 

.pnd Fichier de paramétrage des lacs et des zones humides 

.rte Fichier de paramétrage du cours d’eau principal 

.sep Fichier de paramétrage des systèmes septiques 

.recday Fichier de données mesurées de source de pollution ponctuelle. 

.swq Fichier de paramétrage de la qualité de l’eau en rivière 

.res Fichier de paramétrage des réservoirs 

.lwq Fichier de paramétrage de la qualité de l’eau des réservoirs 

URH .hru Fichier de paramétrage des URH 

.mgt Fichier de paramétrage de gestion agricole des sols 

.sol Fichier de paramétrage des sols 

.gw Fichier de paramétrage des eaux souterraines  

Le réseau hydrographique est défini automatiquement par SWAT et il n’est donc pas 

nécessairement fidèle au réseau réel en raison de la résolution des données topographiques et de la 

densité du réseau de drainage désirée. Une édition manuelle est réalisée afin de mieux représenter 

l’emplacement des étendues d’eau tel que les lacs et les milieux humides depuis les données 

d’Abrinord. Cependant, plusieurs points d’eau présents sur le bassin versant sont des zones 

humides ou des étendues d’eau sans exutoire permanent. Ceux-ci ne sont pas considérés dans 

l’ajustement des sous bassins. Aussi, la rivière du Nord géo-référencée par Abrinord est utilisée 

afin d’implanter le cours d’eau principal au sein du modèle. Ce cours d’eau est donc 

géographiquement représenté de manière fidèle. La figure 3.15 présente la division du bassin 

versant en sous-bassins de même que la numération qui leur sont attribuée.   
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Figure 3.15 : Numérotation des sous-bassins 

3.1.7 Unités de réponses hydrologiques (URH) 

La création des URH permet d’effectuer les simulations selon un niveau de détails optimal pour 

l’obtention d’une variabilité spatiale maximale des caractéristiques du bassin versant. Chaque URH 

regroupe et organise ainsi un ensemble unique d’informations nécessaires aux routines de SWAT. 

Le nombre total d’URH d’un bassin versant est relatif à la superficie de celui-ci et du détail de ses 

caractéristiques. Une aire moyenne des URH représentant un minimum de 2% de la superficie du 

bassin est suggérée par SWAT (Arnold, Kiniry, et al., 2012). 
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Figure 3.16 : Distribution géographique des URH 

Tableau 3.17 : Caractéristiques des URH 

Item Commentaire 

Nombre 2 493 

Aire moyenne 16.7 ha – 0.04 % 

Ratio par sous-bassin 13:1 

3.2 Sources de contamination fécale 

Cette section présente le paramétrage du modèle afin d’analyser la contamination fécale de l’eau 

au sein du BVLR. Pour se faire, le transport et le devenir de l’indicateur E. coli est simulé avec 

SWAT suite à la modélisation de l’hydrologie du bassin. Également, la considération des matières 

en suspension comme véhicule de la bactérie E. coli vient complémenter les simulations. 

L’intégration de ce modèle bactériologique est effectué selon les méthodes prescrites par Parajuli 

(2007). De prime abord, la caractérisation des sources de contamination fécale est effectuée. La 
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méthodologie et les informations nécessaires à la simulation de ces sources sont ensuite abordées. 

Les années 2015 et 2016 sont utilisées à cette fin. 

Une source contamination dans SWAT se distingue en deux catégories soit la contamination 

ponctuelle ou diffuse. Ces sources se caractérisent respectivement par l’ajout d’un contaminant à 

un endroit précis ou bien uniformément sur une surface donnée. Ces processus peuvent s’appliquer 

simultanément dans le cadre de la modélisation de plusieurs sources de contamination et ce de 

manière continue ou non. Le tableau 3.19 présente les informations nécessaires à la simulation des 

sources de contamination fécale simulées au sein du BVLR. Les impacts respectifs de ces sources 

seront analysés de manière globale ainsi qu’individuellement. Néanmoins, ces sources sont non 

exhaustives puisqu’il est improbable de connaître toutes les sources possibles en temps réel (par 

exemple, la localisation exacte de la faune aquatique).  

Tableau 3.18 : Informations nécessaires à la simulation de sources de contamination fécale 

Contamination Description Informations nécessaires 

 

Ponctuelle 

 

Station d’épuration d’eaux 

usées  

Emplacement géographique 

Volume déversé [m³] 

Concentration en E. coli [UFC/100mL] 

 

 

 

Diffuse 

 

Système d’assainissement 

résidentiel/ fosse septique 

Nombre de fosses septiques défaillantes 

Contamination [kg ha-1 d-1] 

Surface de contamination (ha) 

Concentration en E. coli [UFC/g] 

Faune 

Contamination [kg ha-1 d-1] 

Surface de contamination [ha] 

Concentration en E. coli [UFC/g] 

Remise en suspension de 

sédiments 

Régime hydraulique 

Concentration en E. coli [UFC/100mL] 

 

3.2.1 Source ponctuelle : Rejet d’eaux usées 

La source de contamination ponctuelle se définie par le rejet d’un effluent d’une station d’épuration 

d’eaux usées municipale avec abattement normal des concentrations d’E. coli ainsi que par les 

débordements par surverse d’affluents non traités. D’une part, trois municipalités avec un système 

d’épuration des eaux se situent en amont du lac Raymond le long de la rivière du Nord. 
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Tableau 3.19 : Stations d’épuration en amont du Lac Raymond. tiré de MAMROT (2013) 

Nom Val-Morin Val-David Sainte-Agathe-des-Monts 

Station No 63530-1 63530-2 63610-1 

Type Fosse septique Étangs Aérés Boues activées 

Mise en service  1980-01 1981-06 1986-11 

Population concept. 105 4 200 11 500 

Débit moyen [m³ d-1] 1 1 640 8 786 

Charge Moyenne DBO5 [Kg d-1] - 200 776 

Nombre d’ouvrages de surverse 0 0 6 

Dans le cadre de cette étude, seuls les ouvrages de surverse associés à la station d’épuration de 

Sainte-Agathe-des-Monts est intégrée au modèle bactériologique car ils représentent une source de 

rejets non-traités ayant des concentrations élevées. Les débordements simulés sont caractérisés 

avec les informations recueillies à la ville de Sainte-Agathe-des-Monts (2016). Les étangs aérés de 

la municipalité de Val-David sont ici considérés avoir une charge de contaminants fécaux 

négligeables dans la rivière du Nord. Les rapports de performance des ouvrages d’assainissement 

d’eaux usées de cette municipalité ont d’ailleurs révélé aucune défaillance pour l’année 2015.  

Tableau 3.20 : Caractérisation de la source de contamination ponctuelle 

Item Commentaire 

Station Sainte-Agathe-des-Monts 

Nombre d’ouvrage de surverse simulé 4 

Emplacement  

A: 46o 2’ 58.58’’N, 74o 15’ 

52.23’’O 

B: 46o 2’ 41.94’’N, 74o 14’ 

56.98’’O 

Fichier de paramétrage  Recday.dat 

Apport en E. coli (Madoux-Humery, A.S. et al., 2015) 1.0X106 UFC/100ml 

Apport en MES (Madoux-Humery, A.S. et al., 2015) 50 mg L-1 

 

Deux emplacements sont utilisés pour la simulation des débordements. La station A inclut trois 

ouvrages : le régulateur Brissette, la station d’épuration (amont prétraitement) et la station 

d’épuration (poste de relèvement). La station B inclut seulement qu’un ouvrage soit la station 

Rivière du Nord. Une distance en rivière d’environ 1 750 mètres sépare ces deux emplacements. 

Également, plus de 12.5 kilomètres en rivière distancent les stations d’épurations du lac Raymond. 
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Figure 3.17 : Localisation des ouvrages de surverses de Sainte-Agathe-des-Monts 

Les apports en E. coli et en MES des débordements par surverses sont considérés constants et 

proportionnels aux volumes d’eaux usées déversés. L’effet d’un lessivage en début de surverse de 

type « first flush » est considéré nul, une hypothèse raisonnable selon les résultats de Madoux-

Humery, A.S. et al. (2015) pour les débordements de réseaux d’égouts. Étant des données 

mesurées, les eaux de surverse ne sont pas influencées par la cause du débordement telle que la 

fonte de neige, des précipitations abondantes ou un rejet pour entretien. Néanmoins, ces données 

sont parfois incomplètes et offrent très peu de variabilité temporelle. Elles sont composées d’un 

nombre de débordements produits par jour accompagné d’un volume et d’une durée de surverse. 
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Une mesure de débordement exclue parfois une à deux de ces variables. Pour compléter ces 

données, il est supposé que les volumes déversés par surverse aient un débit constant étant donné 

qu’aucune variation horaire n’est disponible à leur sujet. Cette hypothèse s’accorde d’ailleurs avec 

le pas de temps de simulation journalier. Ainsi, un débit a été déterminé pour chaque ouvrage de 

surverse en fonction des volumes et durées de débordement recensés. L’ensemble des informations 

sur les événements de surverse est présenté à l’annexe G.  Un total de 76 et de 61 débordements 

sont simulés en 2015 et 2016 respectivement pour une fréquence journalière totale de 19%.  

Enfin, la station d’épuration est considérée avoir un abattement d’E. coli de 4 log (Bourrier, 2008) 

pour un débit journalier moyen de 8 786 m³d-1. Une charge minimale en E. coli est alors déversée 

quotidiennement depuis cette source de contamination ponctuelle.   

Tableau 3.21 : Caractéristiques des débordements par surverse, Sainte-Agathe-des-Monts (2016) 

Ouvrage de surverse 
Débit moyen 

[m³ s-1] 

Nombre de débordements  

2015 2016 

Régulateur Brissette 1.44 12 24 

Station d’épuration (amont prétraitement) 0.001 34 18 

Station d’épuration (poste de relèvement) 1.20 0 7 

Station Rivière du Nord 1.20 30 12 

3.2.2 Source diffuse : Fosses septiques 

Malgré la présence d’usines d’épurations municipales d’eaux usées au sein du BVLR, plusieurs 

secteurs résidentiels sont munis de fosses septiques. Certaines de ces unités peuvent être 

défaillantes et libérer une charge quelconque de microorganismes d’origine fécale dans 

l’environnement. Ces unités de traitement sont alors prises en compte comme une source de 

contamination diffuse. Il est ici considéré que l’emplacement et l’état fonctionnel des fosses 

septiques résidentielles sont des informations inconnues. La modélisation de cette source de 

contamination est alors basée sur les hypothèses suivantes: 

a) L’utilisation du sol de type urbaine (URBN) est utilisée pour définir l’emplacement des 

fosses septiques résidentielles selon l’échelle d’une unité de réponse hydrologique (URH). 

Seulement les zones urbaines de type rurale sont considérées ayant une fosse septique. Ces 

zones rurales sont définies selon leur distance d’une municipalité ayant une station 

d’épuration. 

b) Une proportion de 30 % des fosses septiques sont défaillantes.  
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c) La portion de fosses septiques défaillantes est définie aléatoirement au sein de la zone 

urbaine rurale. 

d) Les fosses septiques définies comme non-défaillantes ont une contribution nulle à la 

contamination fécale au sein du bassin versant. 

e) Le débit d’effluent d’une fosse septique est défini à 0.75 m³d-1 basé sur une consommation 

d’eau unitaire de 300 Lp-1d-1 pour 2.5 personnes par ménage (Brière, 2012). 

f) Un apport en E. coli de 6.3X106 UFC/100ml est fixé pour les fosses septiques défaillantes 

(Overcash & Davidson, 1980). 

Les sources diffuses sont intégrées dans SWAT en utilisant un outil de gestion agricole. 

L’épandage d’engrais ou de fumier est ainsi adapté pour simuler l’apport en microorganismes 

d’origine fécale au sein d’un URH. Un fumier aux caractéristiques d’un effluent de fosse septique 

défaillante est ici utilisé à cette fin. Une incorporation immédiate de ce fumier dans la première 

couche de sol est utilisée pour simuler l’apport d’E. coli journalier d’une fosse septique. Ainsi, 

l’ajout d’une quantité constante et uniforme de matière fécale est simulé à chaque jour. Les 

coefficients d’inactivation ou de mortalité de la bactérie E. coli sont présentés dans la section 3.5.6. 

Tableau 3.22 : Informations sur la simulation d’un effluent de fosse septique 

Item Commentaire 

Fichier de paramétrage .mgt2 

Zone URBN 

No d’opération 14 (Continuous fertilization) 

Débit d’effluent non traitée 750 L d-1 

Densité 10 un. ha-1 

Apport en E. coli (Parajuli, 2007) 6.3X106 UFC/100ml 

Masse volumique  750 g L-1 

Quantité de fumier appliquée 9.5 kg d-1 ha-1 

3.2.3 Source diffuse : Faune 

Une seconde source de contamination diffuse simulée est l’apport de microorganismes d’origine 

fécale par la faune. Celle-ci est considérée avoir une densité suffisante d’animaux sauvages au sein 

du bassin versant afin d’avoir un impact non négligeable sur les concentrations d’E. coli en rivière. 

Puisqu’aucune superficie n’est occupée par des zones agricoles selon les données de l’utilisation 

du territoire utilisées, aucun bétail n’est inclus dans cette source de contamination. Les hypothèses 

suivantes sont émises afin de simuler la contamination fécale par la faune : 
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a) Les surfaces du territoire de type forêt (FSRST) sont considérées comme habitat de la faune. 

Seules ces zones sont alors soumises à une contamination par la faune. 

b) Tout type de faune est confondue. 

c) La faune ne tient pas en compte la vie aquatique. 

d) La matière fécale produite par la faune est de 0.8 kg d-1 ha-1 avec une concentration initiale 

de 5.0x106 UFC g-1. Ces valeurs sont basées sur une densité d’animaux de type mammifère 

de taille mixte (Parajuli, 2007).  

Le paramétrage de cette source de contamination est également réalisé à l’aide de la simulation 

d’épandage de fumier. La simulation d’entrée de matières fécales dans le bassin versant par la faune 

est effectuée de la même manière que par les fosses septiques résidentielles. Le tableau 2.22 

présente les informations nécessaires à la simulation de la contamination fécale par la faune. 

Tableau 3.23 : Informations sur la simulation de la faune 

Item Commentaire 

Fichier de paramétrage .mgt2 

Zone FRST 

No d’opération 14 (Continuous fertilization) 

Concentration initiale 5.0X106 UFC g-1 

Quantité de fumier appliquée 0.8 kg d-1 ha-1 

 

3.2.4 Source diffuse : Apports en temps sec 

L’apport d’E. coli en temps sec est ajouté aux simulations afin de répondre aux concentrations non-

nulles observées lorsqu’aucune précipitation n’est présente lors d’un pas de simulation de 24 

heures. Cette source de contamination est caractérisée par des sources dites internes au réseau 

hydrographique du bassin versant. Celles-ci sont représentées par deux sources distinctes : les 

animaux sauvages qui accèdent rives de lacs et de rivières ainsi que la remise en suspension de 

sédiments. De la même manière que les sources diffuses précédente, une charge d’E. coli est 

appliquée uniformément au sein des zones où la contamination est présente. Pour les sources de 

contamination en temps sec, les surfaces d’eau de type WATR et WETF sont utilisées à cette fin. 

Les hypothèses suivantes sont émises afin de simuler la contamination fécale en temps sec : 

a) La concentration initiale d’E. coli dans le lit des rivières et des lacs est uniforme. 
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b) L’apport primaire d’E. coli aux sédiments est effectuer par les autres sources de 

contamination simulées (ponctuelle et diffuses). 

c) Un apport constant d’E. coli est ajouté aux lits des rivières et des lacs pour simuler la 

contamination fécale interne au réseau hydrographique.  

d) La source de contamination en temps sec constitue un apport minimal d’E. coli en rivière 

par le débit de base.  

Tableau 3.24 : Informations sur la simulation des apports en temps sec 

Item Commentaire 

Fichier de paramétrage .mgt2 

Zone WATR, WETF 

No d’opération 14 (Continuous fertilization) 

Concentration initiale 5.0X106 UFC g-1 

Quantité de fumier appliquée 2.0 kg d-1 ha-1 

3.3 Données de calibration et de validation 

Afin d’assurer la représentativité des résultats de simulation, la présentation des données utilisées 

dans le calage et la validation du modèle est ici effectuée. Respectivement, la modélisation de 

l’hydrologie, de l’érosion et de la qualité de l’eau sont calibrées par les variables du débit, des 

matières en suspension et des concentrations en E. coli.  

3.3.1 Hydrologie 

L’ajustement du débit est effectué avec les observations de la station CEHQ no 040122 pour la 

période de 1988 à 2007 selon un pas de temps journalier. Cette station se situe d’ailleurs au même 

endroit que la station d’épuration de la ville de Sainte-Agathe-des-Monts sur la rivière du Nord. 

Les débits simulés du sous-bassin 125 sont utilisés pour cette calibration. Une surface drainage de 

321.8 km² représentant plus de 77% du bassin versant est notée à cette endroit ce qui est ici 

considéré acceptable pour établir une représentation fidèle du comportement hydrologique du 

bassin versant.  
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Tableau 3.25 : Fiche signalétique de la station hydrométrique 040122 

Item Commentaire 

No de station 040122 

Nom  Du Nord 

Description À 0,5 km en aval du pont C.P. près de Sainte-Agathe-des-Monts  

Période d’activité 1971 à ce jour 

Municipalité Sainte-Agathe-des-Monts 

Région administrative Laurentides 

Cours d’eau Nord, Rivière du 

Région hydrographique Outaouais et Montréal 

Bassin versant à la station 311 km² 

Régime d’écoulement Influencé mensuellement 

No fédéral de la station 02LC021 

 
Figure 3.18 : Emplacement de la station CEHQ no 040122 

Tel qu’abordé à la section 3.1.5 portant sur la météorologie, deux séries chronologiques de données 

climatiques sont utilisées. Les périodes respectives de calibration et de validation en sont 
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conséquentes. Il est ici espéré que les résultats de simulation issus des données de RNCan 

obtiennent les meilleurs coefficients de corrélation en raison de leur couverture spatiale adéquate. 

Tableau 3.26 : Période de calibration et de validation 

Données Calibration Validation 

RNCAN 1988 – 2000 2001 – 2013 

Climat Canada 1997 – 2006 2007 – 2016 

Par ailleurs, les volumes d’eau soutirés par les prises d’eau municipales de même que les volumes 

déversés par les stations d’épuration ne sont pas considérés dans le bilan hydrique du bassin 

versant. Ces volumes représentent moins de 1% des débits moyens historiques selon une 

consommation d’eau de 300 Lp-1d-1. 

3.3.2 Matières en suspension 

Les observations utilisées pour la calibration proviennent du programme de suivi de la qualité de 

l’eau effectué mensuellement par Abrinord. La station d’échantillonnage no 4 est utilisée parmi 

celles disponibles de ce programme. Sa proximité et son emplacement en amont du lac Raymond 

justifie ce choix. La figure 3.19 marque l’emplacement des différentes stations. Avec un pas de 

temps de simulation journalier, une mesure mensuelle est ici considérée insuffisante pour calibrer 

adéquatement le modèle. L’ajustement des concentrations de MES simulées est alors effectué en 

tenant compte de la représentativité de l’érosion des sols simulée selon le régime hydraulique et 

les caractéristiques des sols. La comparaison du flux de MES simulé avec le débit en rivière sert 

ici de d’indicateur d’ajustement pour la calibration manuelle de l’érosion des sols.  

Tableau 3.27 : Informations sur la station d’échantillonnage no 4 d’Abrinord (2016) 

Item Commentaire 

Station 4 

Partenaire APELRRIN 

Cours d’eau Rivière du Nord 

Emplacement Pont de la 7e avenue, Val-Morin 

Latitude 46.006 

Longitude -74.1784 
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Figure 3.19 : Stations d’échantillonnage du suivi de la qualité de l’eau d’Abrinord (2017) 

 

Figure 3.20 : Matières en suspensions mesurées, station d’échantillonnage no 4, rivière du Nord 

(Abrinord, 2016) 

La distribution des concentrations de matières en suspensions observées se situe majoritairement 

sous les 5 mg/L. Quelques pointes de concentrations sont supérieures au critère de satisfaction de 
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la qualité de l’eau de 13 mg/L du MDDELCC. Néanmoins, une qualité acceptable de l’eau est 

observée à cette station d’échantillonnage. 

3.3.3 E. coli 

L’étude du transport et du devenir de la bactérie E. coli se fait par l’entremise du modèle SWAT 

caractérisé précédemment. Le paramétrage du module bactériologique est effectué selon une 

calibration manuelle. Pour se faire, des séries d’observations selon des échantillonnages et des 

périodes de temps distincts sont utilisées : [1] la campagne d’échantillonnage de 2015 avec culture 

bactérienne et dénombrement des unités formant colonies (UFC/100ml) et [2] l’échantillonnage en 

continu avec le ColiMinder en 2016 en selon l’activité enzymatique GLUC (mMFC/100ml). 

Tableau 3.28 : Données mesurées de la contamination fécale de l’eau 

Nom Campagne d’échantillonnage 2015  ColiMinder 

Période de mesure Juillet à Octobre 2015 Août à Novembre 2016 

Type de mesure 
Coliformes fécaux par culture 

bactérienne 
Activité enzymatique GLUC 

Unité de mesure UFC/100ml mMFC/100ml 

Intervalle 2 – 3 jours 20 – 120 min 

Nombre de stations 8 1 

Localisation Divers Plage municipale Val-Morin 

Les observations de la campagne d’échantillonnage 2015 sont répertoriées sur huit stations 

lesquelles sont situées principalement en amont du lac Raymond. La figure 3.21 présente leur 

emplacement sur le réseau hydrographique du bassin versant. Ces observations détiennent ainsi 

une certaine variabilité spatiale avec ce nombre de stations. La prise d’échantillons a été effectuée 

lors des mêmes journées pour toutes les stations.  

Tableau 3.29 : Attribution des stations d’échantillonnage 2015 au modèle SWAT 

No Nom Sous bassin 

1 Plage municipale 151 

2 Secteur champ d’épuration 154 

3 Ruisseau Domaine Val-Morin 163 

4 Secteur Bellerive 145 

5 Décharge lac Dream 157 

6 Station parc 10e avenue 155 

7 Amont barrage lac Dream 162 

8 Plage lac Trudeau 176 
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Figure 3.21 : Localisation des stations d’échantillonnage 2015 

Il est assumé que les concentrations simulées aux stations 3, 5, 7 et 8 ne seront pas influencées par 

la contamination des ouvrages de surverses étant donné que ces stations sont situées sur des 

affluents de la rivière du Nord. Également, une différence considérable entre les concentrations 

simulées et mesurés à la station 1 est attendue puisque le lac Raymond se comporte en bassin 

complètement mélangé au sein du modèle. De plus, les observations de cette campagne étant des 

échantillons représentant une quantité d’eau à un instant précis dans le temps, elles sont 

conséquemment pourvues d’une faible variabilité temporelle. Un intervalle minimum de 48 heures 

entre les échantillons est d’ailleurs noté. Enfin, les résultats de cette campagne d’échantillonnage 

sont représentés par des concentrations en coliformes fécaux ou thermotolérants. Ceux-ci sont alors 

interprétés comme étant équivalant à des concentrations d’E. coli. Cette hypothèse se base sur le 

fait que la bactérie E. coli est présente à plus de 80% au sein des coliformes thermotolérants 

détectés (Edberg et al., 2000). L’ensemble des données des deux séries d’observations sont 

présentées aux figure 3.23 et 3.24 sous forme de séries chronologiques alors que leur distribution 

est présentée à la figure 3.22 ci-dessous. 
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Figure 3.22 : Distribution des échantillons selon les campagnes d’échantillonnage 

Les observations tirées du ColiMinder sont quant à elles issues d’un échantillonnage à faible 

intervalle de temps selon un système de mesure automatique. La contamination microbiologique 

fécale est ainsi mesurée selon l’activité enzymatique bêta-Glucuronidase et elle est ensuite 

transmise en temps réelle sur un service de données internet. Ce système est positionné à la plage 

municipale de Val-Morin soit le même endroit que la station d’échantillonnage no 1. Les résultats 

de simulations seront seulement présentés pour fin de comparaison avec les données du ColiMinder 

puisque qu’aucune corrélation n’est à ce jour proposée entre les unités de mesure de ce dernier 

(Modified Fishman Units ou MFU) et les unités formant colonies (UFC). Ceci est également dû au 

fait que les unités modifiées de Fishman prennent en considération les bactéries viables, mais non-

cultivables. Tels que les échantillons de 2015 à la station 1, les observations du ColiMinder sont 

représentatives de leur prise d’eau au sein du lac Raymond alors les concentrations simulées 

correspondent aux résultats d’un lac complètement mélangé. Cette différence de variabilité spatiale 

agit donc comme obstacle à l’interprétation des résultats.
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Figure 3.23 : Concentrations d’E. coli de la campagne d’échantillonnage 2015  

 
Figure 3.24 : Activité GLUC et transmission mesurées par le ColiMinder (2016) 
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3.4 Processus de calage et de validation  

La calibration du modèle a pour objectif d’optimiser le paramétrage de ce dernier afin d’obtenir 

des simulations correspondantes aux valeurs mesurées. Ici, le débit est la variable simulée primaire 

à calibrer selon une période de temps donné. Une validation des paramètres optimaux est ensuite 

effectuée selon une seconde période de même envergure. Les concentrations d’E. coli et de MES 

dans le réseau hydrographique du bassin versant à l’étude sont les variables secondaires à calibrer 

suite au calage du débit. 

Cette étape permet d’analyser les incertitudes des résultats de simulation du modèle en fonction de 

son paramétrage. Ces incertitudes peuvent provenir de la simplification ou de l’omission de 

processus au sein du modèle de même que de l’inclusion ou l’exclusion de processus dans le 

modèle qui sont inconnus dans le bassin versant. De ce fait, les données d’entrée du modèle sont à 

considérer comme une source d’incertitude considérable. 

L’utilisation du logiciel SWAT-CUP (Abbaspour, 2015) permet ici d’effectuer les itérations 

nécessaires au calage du modèle selon une variation désirée des paramètres. Cependant, un modèle 

calibré ne représente pas nécessairement le comportement exact du bassin versant simulé. Les 

paramètres optimaux choisis sont issus d’une combinaison qui n’est pas unique. Une multitude de 

combinaisons de paramètres permettant d’obtenir un modèle calibré doit être prise en compte. 

Cependant, un ensemble de paramètres permettant la convergence du modèle peut être lié à une 

fausse représentation des processus d’un bassin versant. L’implication d’un nombre optimal de 

paramètres lors de la calibration permet néanmoins d’éviter ce faux positif. 

Une approche stochastique est ici utilisée pour calibrer le modèle avec les procédures d’analyse 

séquentielle d’incertitudes de SUFI-2 (Sequential Uncertainty Fitting) (Abbaspour, 2015). Pour se 

faire, la propagation d’incertitudes des paramètres du modèle ou des données mesurées s’exprime 

sous forme de distributions uniformes afin de prendre en compte toutes les sources possibles. Ces 

distributions sont représentées par une probabilité de 95% où se retrouve les variables simulées. 

Entre d’autre termes, les résultats de simulation sont inclus dans une plage de distribution 

probabiliste reflétant les incertitudes possibles du modèle. La calibration avec SUFI-2 permet ici 

d’obtenir un ensemble de paramètres optimaux admettant un maximum d’observations inclus dans 

la plage probable des résultats de simulation. Afin de quantifier cette cohésion, les variables 
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statistiques p-factor et r-factor représentent respectivement le pourcentage de données observées 

inclus dans la plage probable de 95% des simulations ainsi que la densité de cette plage. Ces 

coefficients sont d’ailleurs nécessaires au fil des itérations afin de cibler les plages de valeurs 

convergentes du modèle. 

Les étapes de calibration semi-automatique avec SUFI-2 suggérées par Van Liew et al. (2005) sont 

ensuite appliquées.   

1. Définition des paramètres initiaux et insertion des observations dans SWAT-CUP ; 

2. Réalisation d’une première simulation d’une seule itération afin de s’assurer du 

fonctionnement adéquat du logiciel ; 

3. Définition des périodes de calibration et de validation selon le nombre d’années de mesures 

disponibles ; 

4. Attribution des plages de valeurs des paramètres selon leur incertitude ; 

5. Réalisation d’une simulation de plus de 100 itérations ; 

6. Analyse de sensibilité globale afin d’établir les paramètres les plus sensibles au modèle en 

plus d’obtenir une mise à jour des plages de valeurs de ces paramètres ; 

7. Simulation supplémentaire facultative de plus de 100 itérations afin d’obtenir une seconde 

mise-à-jour des paramètres ; 

8. Paramétrage par analyse de sensibilité unitaire : itérations successives d’un paramètre à la 

fois afin d’étudier la tendance individuelle de chaque paramètre vis-à-vis la convergence du 

modèle.  

Enfin, l’utilisation du coefficient de Nash-Sutcliffe (NS) et du coefficient de détermination (R2) 

permettent d’établir la régression linéaire du modèle selon les paramètres résultant de chacune des 

séries d’itérations. Ces indicateurs sont ensuite utilisés pour évaluer qualitativement la convergence 

du modèle. Les indices m et s dans les prochaines équations désignent respectivement une variable 

mesurée ou simulée.   

𝑅2 =
[∑ (𝑄𝑚.𝑖 − 𝑄̅𝑚)(𝑄𝑠.𝑖 − 𝑄̅𝑠)𝑖 ]2

∑ (𝑄𝑚.𝑖 − 𝑄̅𝑚)2
𝑖 ∑ (𝑄𝑠.𝑖 − 𝑄̅𝑠)2

𝑖

 
Éq. 3.1 : Coefficient de détermination  

𝑁𝑆 = 1 −
∑ (𝑄𝑚 − 𝑄𝑠)𝑖

2
𝑖

∑ (𝑄𝑚.𝑖 − 𝑄̅𝑚)2
𝑖

 
Éq. 3.2 : Coefficient Nash-Sutcliffe 
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Tableau 3.30 : Critères d’évaluation pour un modèle journalier à l’échelle d’un bassin versant 

(Moriasi et al., 2015) 

Critère Très bon Bon Satisfaisant Passable Inacceptable 

R2 0.85 < R2 ≤ 

1.00 

0.75 < R2 ≤ 

0.85 

0.60 < R2 ≤ 

0.75 

0.18 < R2 ≤ 

0.60 
R2 < 0.18 

NS 0.80 < NS ≤ 

1.00 

0.70 < NS ≤ 

0.80 

0.50 < NS ≤ 

0.70 

0.0 < NS ≤ 

0.50 
NS < 0.0 

3.4.1 Hydrologie 

D’une part, une sous-estimation du débit de base peut être effectuée par le logiciel lors de la 

calibration. Afin d’assurer une représentation adéquate du bilan hydrique, la séparation des 

hydrogrammes de ruissellement et du débit base est implantée comme contrainte. Le logiciel 

WHAT (Web-based Hydrograph Analysis Tool) (Kyoung et al., 2005) est utilisé à cette fin. 

Parallèlement, l’évaluation du volume de ruissellement se voit donc optimisée. L’année 2015 est 

utilisée en exemple à la figure 3.25. 

 

Figure 3.25 : Séparation des hydrogrammes pour l’année 2015. Débit CEHQ 040122. 

Avec la séparation des hydrogrammes, deux séries d’observations sont alors utilisées pour le calage 

du débit. L’utilisation de l’erreur quadratique moyenne (MSE) sous forme de sommation comme 

fonction objective de la calibration est recommandée (Arnold, Moriasi, et al., 2012). La 

minimisation de cette erreur est donc recherchée lors des itérations.  
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𝑔 = ∑ [
1

𝑛𝑗𝜎𝑗
2 ∑(𝑋𝑚 − 𝑋𝑠)𝑖

2

𝑛

𝑖=1

]

𝑗

 Éq. 3.3 : Erreur quadratique moyenne 

où j :  jième variable mesurée 

 𝑋𝑚 : Variable mesurée 

 𝑋𝑠 : Variable simulée 

 𝑛𝑗  : Nombre d’observations de la variable mesurée 

 𝜎𝑗
2 : Variance de la variable mesurée 

Tableau 3.31 : Paramètres utilisés pour l’ajustement du débit 

Paramètre Description 

CN2.mgt     Numéro de courbe du SCS : Coefficient de ruissellement pour la condition II 

d’humidité des sols. Fonction de la perméabilité des sols, de l’utilisation du territoire 

et des conditions hydrologiques. 

ALPHA_BF.gw     Constante de régression de l’écoulement de base souterrain 𝛼𝑔𝑤 (d-1) 

GW_DELAY.gw     Délai de la nappe phréatique 𝛿𝑔𝑤 (d) 

GWQMN.gw     Hauteur d’eau minimal pour qu’il y ait un transfert d’eau de l’aquifère peu profond 

vers le cours d’eau (mm) 

GW_REVAP.gw Coefficient permettant le transfert d’eau de l’aquifère vers les horizons sus-jacents et 

non-saturés du sol 

RCHRG_DP.gw Fraction de l’eau qui percole vers l’aquifère profond 

REVAPMIN.gw Hauteur d’eau minimal dans l’aquifère peu profond pour qu’il y ait un mouvement 

d’eau vers le sol ou le l’aquifère profond (mm) 

CH_N2.rte     Constante de Manning du cours d’eau principal 

CH_K2.rte Conductivité hydraulique du cours d’eau principal (mm h-1) 

SFTMP.bsn Température moyenne de l’air permettant une précipitation sous forme de neige. (°C) 

SMTMP.bsn Température permettant la fonte de neige. (°C) 

TIMP.bsn Coefficient de délai de la température journalière du couvert de neige. 

EPCO.bsn Facteur de compensation de l’évapotranspiration pour la flore 

SURLAG.bsn Coefficient de délai du ruissellement de surface. 

ESCO.bsn Facteur de compensation de l’évapotranspiration au sol 

SLSUBBSN.hru Longueur de pente moyenne (m) 

HRU_SLP.hru Pente moyenne de l’URH (m/m) 

OV_N.hru Constante de Manning hors rivière 

CH_K1.sub Conductivité hydraulique des cours d’eau tributaires (mm h-1) 

CH_N1.sub Constante de Manning des cours d’eau tributaires 

RES_K.res Conductivité hydraulique des réservoirs (mm h-1) 

RES_RR.res Débit sortant maximal des réservoirs (m³ d-1) 

PND_K.pnd Conductivité hydraulique des lacs (mm h-1) 
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Le tableau 3.31 présente les paramètres testés pour la calibration du débit. Il est à noter qu’aucun 

paramètre sur les caractéristiques des sols n’est inclus car ceux-ci reposent sur leurs propriétés 

physiques provenant d’études minéralogiques. 

L’attribution des plages de valeurs pour effectuer les itérations est réalisée selon leurs valeurs 

initiales par défaut et leurs limites inférieures et supérieures. Celles-ci sont fixées selon des plages 

de valeurs respectives où chacun des paramètres est valide et représentatif du bassin versant. La 

propagation d’incertitudes est dès lors prise en compte parmi ces écarts de valeurs.  

Tableau 3.32 : Paramétrage initiale pour l’ajustement du débit 

Paramètre Méthode  Valeur initiale Limite inférieure Limite supérieure 

CN2.mgt     Multiplier Par défaut -0.5 1.0 

ALPHA_BF.gw     Remplacer 0.1 0.01 0.6 

GW_DELAY.gw     Remplacer 200 0 500 

GWQMN.gw     Remplacer 100 10 1 000 

GW_REVAP.gw Remplacer 0.02 0.02 0.2 

RCHRG_DP.gw Remplacer 0.05 0.01 1 

REVAPMIN.gw Remplacer 750 10 1 000 

CH_N2.rte     Remplacer 0.014 0.01 0.1 

CH_K2.rte Remplacer 50 0 250 

SFTMP.bsn Remplacer 0.5 -2.0 2.0 

SMTMP.bsn Remplacer 0.5 -2.0 2.0 

TIMP.bsn Remplacer 1 0 1 

ESCO.bsn Remplacer 1 0 1 

SURLAG.bsn Remplacer 4 1 10 

EPCO.bsn Remplacer 0.95 0 1 

EVRCH.bsn Remplacer 1.0 0.0 1.0 

SLSUBBSN.hru Multiplier Par défaut -0.1 0.1 

HRU_SLP.hru Multiplier Par défaut -0.1 0.1 

OV_N.hru Multiplier Par défaut -0.1 0.1 

CH_K1.sub Remplacer 50 0 250 

CH_N1.sub Remplacer 0.014 0.01 0.1 

RES_K.res Remplacer 0.1 0 1 

RES_RR.res Remplacer 20 0 50 

PND_K.pnd Remplacer 0.5 0 1 
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3.4.3 Matières en suspension 

Tel que présenté dans la partie théorique au chapitre 2, la concentration d’E. coli en rivière est une 

fonction du flux de sédiments. De ce fait, la simulation des MES par SWAT est paramétrée et 

analysée. D’une part, le paramétrage du modèle est ici effectué afin de simuler l’érosion des sols 

et du transport des MES selon les caractéristiques du bassin versant.  

Les caractéristiques des sols ne sont pas impliquées dans la calibration des MES étant donné 

qu’elles sont des propriétés physiques. Néanmoins, le paramètre USLEK est inclus dans la 

calibration puisqu’il est le seul à avoir été calculé. Par ailleurs, les routines de sédiments dans 

SWAT sont évaluées selon l’équation simplifiée de Bagnold car cette méthode est appropriée pour 

les sols fins limoneux-sableux (Mittelstet et al., 2017) tels que majoritairement présents dans la 

pédologie du bassin versant. Les données de paramétrage relatives à l’érosion et au transport de 

sédiments est présenté au tableau 3.33. 

Tableau 3.33 : Paramètres utilisés pour l’ajustement des matières en suspension 

Paramètre Description 

CH_EQN.rte Méthode de calcul du module de sédiments 

USLE_K.sol Coefficient d’érodabilité USLE 

USLE_P.mgt Coefficient de pente USLE pour l’érodabilité des sols 

PRF.bsn Facteur d’ajustement du débit de pointe pour l’acheminement des 

sédiments dans le cours d’eau principal. 

SPEXP.bsn Coefficient exponentiel contrôlant la concentration maximale de MES 

en rivière 

SPCON.bsn Coefficient linéaire contrôlant la concentration maximale de MES en 

rivière 

CH_COV.rte Coefficient d’érodabilité du cours d’eau  

RILL_MULT.bsn Coefficient d’érodabilité des cours d’eau éphémères 

RES_NSED.res Concentration de sédiments à l’équilibre dans les réservoirs 

ADJ_PKR.bsn Facteur d’ajustement du débit de pointe dans les canaux secondaires 

EROS_EXPO.bsn Coefficient d’érosion exponentiel en conditions d’inondation  
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Tableau 3.34 : Paramétrage initiale pour l’ajustement des sédiments 

Paramètre Méthode  Valeur initiale Limite inférieure Limite supérieure 

USLE_K.sol Multiplier Variable -0.2 0.2 

USLE_P.mgt Remplacer 1.0 0.5 1.0 

PRF.bsn Remplacer 1.0 0.5 2.0 

SPEXP.bsn Remplacer 1.0 1.0 2.0 

SPCON.bsn Remplacer 0.0001 0.0001 0.01 

CH_COV1.rte Remplacer 0 0 0.5 

RILL_MULT.bsn Remplacer 0.7 0.5 1.5 

RES_NSED.res Remplacer 10 1 20 

ADJ_PKR.bsn Remplacer 1.0 0.5 2.0 

EROS_EXPO.bsn Remplacer 1.2 1.0 3.0 

3.4.4 E. coli 

Le terme bactérie est ici utilisé puisque plusieurs types peuvent être modélisées en fonction de leurs 

caractéristiques. Deux types de bactéries à la fois peuvent être intégrés dans SWAT, l’une en tant 

que persistante et l’autre en tant que moins persistante. Dans le cadre de ce projet, seule la bactérie 

de type persistante est utilisée afin de simuler les concentrations d’E. coli. Parmi les paramètres 

présentés au tableau 3.35, ceux se référant à des bactéries se rapportent donc à E. coli. 

Étant calibrés manuellement, ces paramètres sont ici soumis à une variation de plus ou moins 10 

% de leur valeur initiale sauf exceptions. La concentration initiale de bactéries depuis les sources 

de contamination se voit variée sur une échelle de 4 log. Également, les paramètres WOF_P et 

BACTMIX varient selon des plages respectives de valeurs possibles dans SWAT. 
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Tableau 3.35 : Paramètres utilisés pour l’ajustement des concentrations d’E. coli 

Paramètre Description 

WDPQ.bsn Coefficient de mortalité d’ordre 1 pour les bactéries dans le sol à 20°C (d-1) 

WDPS.bsn Coefficient de mortalité d’ordre 1 pour les bactéries adsorbées au sol à 20°C (d-1) 

WDPF.bsn Coefficient de mortalité d’ordre 1 pour les bactéries sur la végétation à 20°C (d-1) 

WDPRCH.bsn Coefficient de mortalité d’ordre 1 pour les bactéries en rivière 20°C (d-1) 

WDPRES.bsn Coefficient de mortalité d’ordre 1 pour les bactéries en réservoir à 20°C (d-1) 

BACTKDQ.bsn Coefficient de partitionnement des bactéries en solution dans le premier 10 mm de 

sol pour le ruissellement (m3/Mg) 

BACTPDB.fert Concentration initiale de bactéries (UFC/g) 

THBACT.bsn Facteur d’ajustement de la température pour les coefficients de mortalité 

BACTKDDB.fert Coefficient de partitionnement des bactéries sol/solution des fumiers    

WOF_P.bsn Fraction de lessivage des bactéries sur la végétation 

BACT_SWF.bsn Fraction du fumier appliqué ayant des unités de formation de colonies actives 

BACTMIX.bsn Coefficient d’infiltration des bactéries dans le sol (10 m3/Mg) 

Tableau 3.36 : Paramétrage initiale pour l’ajustement des concentrations d’E. coli 

Paramètre Méthode  Valeur initiale Limite inférieure Limite supérieure 

WDPQ.bsn Multiplier 0.1 -0.10 0.10 

WDPS.bsn Multiplier 0.1 -0.10 0.10 

WDPF.bsn Multiplier 0.1 -0.10 0.10 

WDPRCH.bsn Multiplier 0.06 -0.10 0.10 

WDPRES.bsn Multiplier 0.06 -0.10 0.10 

BACTKDQ.bsn Multiplier 175 -0.10 0.10 

BACTPDB.fert Remplacer Variable 1.0X104 1.0X108 

THBACT.bsn Multiplier 1.07 -0.10 0.10 

BACTKDDB.fert Multiplier 0.9 -0.10 0.10 

WOF_P.bsn Remplacer 0.75 0.25 0.95 

BACT_SWF.bsn Multiplier 0.15 -0.10 0.10 

BACTMIX.bsn Remplacer 10.0 7.0 20.0 
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CHAPITRE 4 RÉSULTATS 

Les résultats ici présentés proviennent des simulations effectuées par SWAT2012 suite au 

paramétrage et au calage du modèle pour la région à l’étude. Il est à noter que ces résultats sont 

représentatifs du paramétrage utilisé et que leur analyse est établie en fonction du comportement 

global du bassin versant. Trois principales variables simulées sont présentées afin de rencontrer les 

objectifs du projet : le débit, les matières en suspensions et l’indicateur de contamination fécale E. 

coli. 

Premièrement, le bilan hydrique est détaillé afin mettre en évidence le comportement hydrologique 

du bassin versant en fonction de ses caractéristiques détaillées au chapitre 2. Le débit simulé est 

alors présenté comme variable de calibration des composantes hydrologique du modèle. 

Deuxièmement, les matières en suspension sont présentées en fonction de l’érosion simulée des 

sols et des concentrations de sédiments simulées en rivière.  

Enfin, les concentrations simulées d’E. coli au lac Raymond sont présentées en fonction des 

différentes sources de contamination fécale.  Les années de référence pour ces résultats sont 2015 

et 2016 afin des analysés avec les observations de la campagne d’échantillonnage de 2015 et les 

mesures effectuées par le ColiMinder en 2016. Une analyse de sensibilité conclue la présentation 

de chacune des trois principales variables simulées à l’étude. 
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4.1 Débit 

La répartition globale du bilan hydrique semble représentative des caractéristiques du bassin 

versant selon ses propriétés d’écoulement et d’infiltration. En effet, les sols étant majoritairement 

de granulométrie squelettique sableuse ou loameuse et ayant un bon drainage, ils ont permis de 

contribués à un drainage souterrain moyen des eaux de 230 mm comparativement à un 

ruissellement moyen de 187 mm. La fraction importante de la surface perméable du sol est 

également responsable de ce drainage. Une partie de cette eau souterraine contribue à 46% au débit 

en rivière par l’aquifère peu profond (207 mm). Les précipitations sous forme neigeuse représentent 

30% (303 mm) des précipitations annuelles totales (1 026 mm). Un ruissellement annuel moyen de 

187 mm est associé à ces précipitations et contribue à 42% au débit en rivière. La fonte du couvert 

de neige contribue pour sa part avec 288 mm annuellement. Par ailleurs, l’évapotranspiration 

représente plus de la moitié (53%) du volume de précipitations. La figure 4.1 illustre la distribution 

de l’écoulement souterrain et de la contribution au débit en rivière. 

Tableau 4.1 : Bilan hydrique annuel moyen simulé selon les données climatiques de RNCan (1955-

2013) 

Fractionnement du bilan hydrique Quantité (mm) 

Précipitation totale1 1 026 

Précipitation neigeuse 303 

Fonte de neige 288 

Ruissellement 187 

Débit latéral dans le sol contribuant au débit de rivière 51 

Écoulement de l’aquifère peu profond (contribution au débit de rivière) 207 

Écoulement de l’aquifère profond 12 

Transfert d’eau entre l’aquifère peu profond et les plantes (stress hydrique) 14 

Recharge de l’aquifère profond par percolation 228 

Recharge totale des aquifères 230 

Débit en rivière 457 

Percolation vers l’aquifère peu profond 228 

Évapotranspiration réelle 542 

Évapotranspiration potentielle 788 

Pertes par transmission 0 
1 Précipitations rapportées selon les données climatiques entrantes au modèle 
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Figure 4.1 : Distribution de l’écoulement souterrain (a) et du débit en rivière (b) 

Puisque le débit en rivière est la seule variable simulée ayant des observations pour le calage 

hydrologique du modèle, une certaine incertitude demeure présente pour le restant des composantes 

du bilan hydrique. L’ajustement des débits simulés en rivière par l’entremise de SWAT permet 

néanmoins d’acquérir une représentation des flux souterrains et du ruissellement de surface au sein 

du bassin versant. La reproduction du ruissellement est d’ailleurs un aspect clé pour l’étude du 

transport et du devenir des contaminants en ce qui a trait aux exportations des sédiments, au 

lessivage du sol et à la dilution des effluents municipaux.  

 

Figure 4.2 : Bilan annuel des moyennes mensuelles entre 1985 et 2013 

Le bilan des moyennes mensuelles à la figure 4.2 permet d’illustrer la distribution des précipitations 

annuelles et des différentes composantes du bilan hydrique. De ce fait, l’évapotranspiration est 

dominante durant l’été alors que les rivières sont en étiage. Il est à noter que les plus faibles valeurs 
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de débit en rivière sont en février. Des températures moyennes sous le point de congélation causant 

des précipitations neigeuses et une fonte de neige presque nulle sont considérées comme étant 

responsables de ce faible débit. Les crues printanières sont d’ailleurs présentes de mars à avril avec 

les plus grands volumes de ruissellement et d’écoulement en rivière. Ainsi, une distribution 

saisonnière se distingue bien au sein du bilan hydrique. 

 

Figure 4.3 : Distribution spatiale à l’échelle de sous-bassins de l’évapotranspiration annuelle 

moyenne (a), du drainage souterrain annuel moyen (b), du ruissellement annuel moyen (c) et du 

débit en rivière annuel moyen (d). 

La figure 4.3 permet d’analyser la distribution spatiale des différentes composantes du bilan 

hydrique du bassin versant à l’échelle des sous-bassins. D’une part, la distribution de 

l’évapotranspiration est proportionnelle à l’emplacement des étendues d’eau tel que le lac de la 
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Montagne Noire à l’extrême nord, les lacs Ludger, Papineau et Brûlé au centre du bassin versant, 

les lacs Manitou et des Sables au sud de même que le lac Raymond au sud-Est. D’autre part, une 

corrélation spatiale se note entre le drainage souterrain et les sols de groupe hydrologique ayant 

une classe de drainage très rapide. Le drainage souterrain est ici constitué exclusivement de 

l’écoulements de l’aquifère peu profond. Enfin, l’apport en eau de ruissellement et le débit au sein 

des sous-bassins augmentent proportionnellement à l’approche de l’exutoire du bassin versant. 

Les volumes d’écoulement simulées varient selon les données climatiques utilisées. En validation, 

une sous-estimation de 16% et une surestimation de 14% des volumes d’eaux simulés sont 

attribuées aux modèles utilisant les données de RNCan et de Climat Canada respectivement. En 

termes de corrélation, l’ajustement du débit se caractérise en fonction du coefficient de 

détermination (R2) et du coefficient de Nash-Sutcliffe (NS). Pour les périodes de validation, ces 

coefficients permettent de qualifier l’ajustement du débit de satisfaisant et de passable pour chacun 

des modèles respectifs.  

Tableau 4.2 : Indicateurs d’ajustement du débit journalier selon les données climatiques 

Modèle  Période R2 NS Dv% 

Données RNCan Calibration 1988-2000 0.61 0.64 +19 % 

Validation 2001-2013 0.60 0.62 +16 % 

Données Climat Canada Calibration 1997-2006 0.50 0.54 -15% 

Validation 2007-2016 0.46 0.50 -14 % 

Les paramètres optimaux résultant de la calibration du débit sont présentés à l’annexe I selon 

chacun des modèles climatiques. Entre autres, les coefficients de Manning affichent des valeurs 

moyennes de 0.06 et 0.04 pour le cours d’eau principal et les cours d’eau secondaires 

respectivement. Ces valeurs sont d’ailleurs satisfaisantes comparativement aux valeurs théoriques 

pour des canaux naturels. Également, une surestimation d’environ 40% des numéros de courbe 

SCS résultent de la calibration pour les deux modèles. Ceci suggère que l’influence de l’utilisation 

des sols sur l’infiltration et le ruissellement est initialement sous-estimée. De ce fait, la majorité de 

la surface du BVLR étant occupée par la forêt, l’impact de cette couverture se traduit alors par une 

augmentation du volume du ruissellement initialement prévue. Cependant, un plus grand temps de 

concentration est attribué aux zones forestières avec la hausse du paramètre SURLAG.  



104 

 

 

Figure 4.4 : Série chronologique journalière des températures moyennes, des débits mesurés à la 

station CEHQ 040122 et des débits simulés par le modèle SWAT avec les données climatiques de 

RNCan. Rivière du Nord 2011-2013. 

 

Figure 4.5 : Série chronologique journalière des températures moyennes, des débits mesurés à la 

station CEHQ 040122 et des débits simulés par le modèle SWAT avec les données climatiques de 

Climat Canada. Rivière du Nord 2014-2016. 
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Figure 4.6: Régressions linéaires entre les débits journaliers mesurés et simulés en période de 

validation pour les séries de données climatiques respectives RNCan et Cilmat Canada 

Telle qu’espérée, une meilleure corrélation est observée pour le modèle utilisant les données de 

RNCan. La couverture spatiale est ici considérée la composante principale permettant d’acquérir 

une représentation optimale des données climatiques. Par contre, même si une plus faible 

corrélation est attribuée au modèle issu des données de Climat Canada, une meilleure prédiction 

du débit de base y est remarquée telle qu’illustrée à la figure 4.4. Certaines pointes maximales du 

débit y sont néanmoins surestimées. Celles du modèle de RNCan semblent correspondes davantage 

aux pointes observées à l’exception de la pointe de février 2013 où un volume simulé est 

grandement surestimé. Ceci peut être causé par une donnée de précipitation erronée ou par une 

observation erronée de la station CEHQ.   

4.1.1 Analyse de sensibilité 

Deux indices sont étudiés afin d’analyser la sensibilité de chacun des paramètres, les variables p-

value et t-stat (Abbaspour, 2015). Celles-ci sont déterminées à partir d’une fonction de régression 

multiple. Chacun des paramètres testés y sont régressés par rapport à la fonction objective utilisée 

en calibration avec la méthode d’échantillonnage par hypercube latin. Ainsi, t-stat est obtenue à 

partir du test de Student. Celui-ci permet ensuite de déterminer p-value et par le fait même de tester 

l’hypothèse nulle de manière à déterminer si un paramètre a aucun effet sur la variable simulée, ici 

le débit. Dans cette analyse, une valeur absolue élevée de t-stat et une valeur faible de p-value sont 

attribuées aux paramètres les plus sensibles.  
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Figure 4.7 : Analyse de sensibilité des paramètres relatifs au débit 

Les cinq paramètres étant les plus sensibles pour la simulation du débit sont respectivement la 

conductivité hydraulique du cours d’eau principal (CH_K2), le numéro de courbe SCS ou l’indice 

de ruissellement (CN2), la constante de régression du débit de base (ALPHA_BF), la constante de 

Manning du cours d’eau principal (CH_N2) et le débit sortant maximal des réservoirs (RES_RR). 

Ces paramètres ont d’ailleurs tous des valeurs de p-value inférieurs à 0.05 permettant ainsi de 

rejeter l’hypothèse de nulle. 

Le comportement hydrologique du bassin versant est alors grandement influencé par les 

caractéristiques physiques de ce dernier puisque ce sont les sols et leurs utilisations en surface qui 

dictent principalement les conductivités hydrauliques et le ruissellement par les numéros de courbe 

SCS et les coefficients de Manning.  

4.2 Matières en suspension 

Le flux de MES est déterminé en fonction du l’érosion des sols à l’aide de leurs taux d’érodabilité 

et du modèle simplifié de Bagnold. La présentation des résultats de simulation au sous-bassin 161 

permet de comparer ce flux aux observations mensuelles de la station d’échantillonnage no 4 

d’Abrinord. Le modèle a été paramétré afin de simuler un flux de sédiments représentatif aux 

observations ainsi qu’afin d’obtenir une proportionnalité avec le débit en rivière. 

De ce fait, la figure 4.8 présente la série chronologique des concentrations de MES simulées entre 

2014 et 2016. Une moyenne de 5 mg/L y est simulée et une variation du flux de MES affichent une 
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corrélation avec le débit simulé. Alors que les valeurs simulées sont généralement supérieures aux 

observations, une de celles-ci affiche cependant une valeur de 22 mg/L et aucune simulation excède 

15 m/L. La fréquence d’échantillonnage des observations ne permet pas d’établir la distribution 

réelle des concentrations en rivières. L’érosion accrue des sols lors d’événements de pluie et la 

remise en suspension de sédiments lors de crue sont les processus ciblés pour la simulation de ces 

pointes. 

La figure 4.8 présente également des débits hivernaux avec un signal plus faible et constant du flux 

de MES. La séquence simulée entre novembre 2014 et février 2015 illustre bien cet énoncé. 

 

Figure 4.8 : Flux de matières en suspension simulé, matières en suspension mesurées (Station no. 

4, Abrinord) et débit simulé pour la période de 2014 à 2016. Amont du lac Raymond, sous bassin 

161, Rivière du Nord. 

Également, la distribution de ces deux séries de données affiche peu de concentrations inférieures 

ou égales à 13 mg/L ce qui établit une qualité bonne ou satisfaisante de l’eau (MDDELCC, 2017a).  

Les exportations de sédiments varient spatialement pour chacun des URH simulées en fonction de 

leur composition de pente, de type de sol et d’utilisation du territoire. La figure 4.9 présente la 

distribution spatiale du flux de MES selon la concentration moyenne de sédiments exportés à 

l’échelle des sous-bassins. Une corrélation spatiale se note entre le ruissellement (figure 4.3c) et 

l’érosion lesquels s’accentuent vers l’aval du bassin versant. La présence de zones urbaines est 

également associée à certains sous-bassins ayant une exportation de sédiments importante. 
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L’érosion moyenne par sous-bassin est inférieure à 15 kg/ha. La présence accrue de forêts est ciblée 

comme responsable de cette faible érosion en raison de son couvert végétal imposant. Globalement, 

les concentration de MES en rivière semble représentatif au régime hydrique simulé. Tel qu’espéré, 

le flux de MES présente une corrélation avec le débit. Avec de plus grandes vitesses en rivière, les 

débits élevés occasionnent alors une augmentation de l’érosion du lit de rivière et de la remise en 

suspension de sédimentations. Également, une variation temporelle et spatiale du flux de MES est 

notée pour l’ensemble du bassin selon les saisons et le type d’utilisation du territoire. 

 

Figure 4.9 : Distribution spatiale des exportations moyennes de sédiments 

L’ajustement des MES au sein du modèle inclus néanmoins un lot d’incertitudes quant à l’érosion 

des sols et au régime hydraulique simulé. Même si la représentation des MES simulées semble 

satisfaisante, le nombre insuffisant de données mesurées et leur faible variabilité temporelle sont 

ciblés en tant que facteur déterminant dans la convergence du modèle. Ainsi, aucun coefficient de 

corrélation n’est utilisé pour qualifier l’ajustement des MES dans le modèle. Cet ajustement est 

plutôt effectué selon la représentativité du paramétrage du modèle et des résultats obtenus. Le 

paramétrage final pour l’ajustement des MES est présenté au tableau 4.3. L’ajustement de 10% de 
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USLE_K est ici jugée acceptable puisqu’il a été estimé (équation 2.55) et ce depuis les 

caractéristiques granulométriques des sols. Enfin, la représentativité de l’érodabilité des sols est 

considérée satisfaisante avec le paramétrage final qui varie faiblement comparativement au 

paramétrage initial suite au calage des MES. 

Tableau 4.3 : Paramétrage optimal des concentrations de matières en suspension simulées 

Paramètre Méthode  Valeur initiale Valeur finale 

USLE_K.sol Multiplier Variable -0.1 

USLE_P.mgt Remplacer 1.0 0.75 

PRF.bsn Remplacer 1.0 0.75 

SPEXP.bsn Remplacer 1.0 1.0 

SPCON.bsn Remplacer 0.0001 0.0001 

CH_COV1.rte Remplacer 0 0 

RILL_MULT.bsn Remplacer 0.7 0.7 

RES_NSED.res Remplacer 10 10 

ADJ_PKR.bsn Remplacer 1.0 0.75 

EROS_EXPO.bsn Remplacer 1.2 1.0 

4.2.1 Analyse de sensibilité 

Tel que pour le débit, le paramétrage des MES est ici analysé en fonction des variables de sensibilité 

p-value et t-stat afin vérifier l’hypothèse nulle. Le tableau 4.11 présentent ces coefficients pour 

chacun des paramètres utilisés. Un de ceuxi-ci se démarque nettement parmi les autres. Le 

coefficient d’érodabilité USLE_K est donc le paramètre le plus sensible aux concentrations de MES 

en rivière ainsi qu’à l’érosion des sols. Ce paramètre influence d’ailleurs directement l’érosion des 

sols. 

  

Figure 4.10 : Analyse de sensibilité des paramètres relatifs aux MES 
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Ensuite, les coefficients d’ajustement de la concentration de MES en rivière SPCON et SPEXP se 

classent parmi les paramètres les plus sensibles, mais ils demeurent néanmoins peu influents sur le 

flux de MES comparativement à USLE_K. Il en est de même pour le paramètre d’ajustement du 

débit de pointe PRF_BSN pour l’acheminement des sédiments dans le cours d’eau principal.  

4.3 E. coli 

La simulation des concentrations d’E. coli au sein du bassin versant est ici présentée en fonction 

des observations des stations d’échantillonnage de 2015 dont fait partie la plage municipale de Val-

Morin. Une calibration manuelle des paramètres régissant les concentrations d’E. coli en rivière a 

été effectué avec ces observations au sous-bassin 151 du modèle où se trouve le lac Raymond.  

4.3.1 Toutes sources de contamination 

Pour toutes sources de contamination confondues, la distribution des concentrations d’E. coli 

simulées au lac Raymond entre 2015 et 2016 à la figure 4.11 permet d’établir qu’une majorité 

(87%) de ces concentrations sont incluses entre 10 et 100 UFC/100mL. Peu de concentrations entre 

de 3 et 5 log d’UFC/100mL (3%) sont simulées. Cette faible fréquence de hautes concentrations 

est représentée par les pointes maximales de concentrations simulées lors d’événements de fortes 

pluies. La figure 4.13 présente la série chronologique d’E. coli simulées entre 2015 et 2016 où ces 

pointes sont identifiables. La figure 4.14 reprend ensuite cette série de simulation avec les 

observations de la campagne d’échantillonnage à la station de la plage municipale. 

 

Figure 4.11 : Distribution des concentrations d’E. coli simulées en 2015 et 2016 au lac Raymond 

pour toutes sources de contamination 

5% 

87% 

6% 
2% 1% 
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La courbe de non-dépassement à la figure 4.12 permet de rependre la distribution des 

concentrations d’E. coli simulées afin déterminer les seuils de fréquence pour des concentrations 

données. Au lac Raymond, le critère de concentration maximale permise pour l’usage récréatif de 

l’eau (200 UFC/100mL) est ainsi dépassé pendant 6% du temps de simulation. Également, 96% 

des concentrations simulées sont supérieures à 10 UFC/100mL alors que moins de 2% des 

concentrations en sont inférieures.  

 

Figure 4.12 : Courbe de fréquence des concentrations d’E. coli simulées en 2015 et 2016 au lac 

Raymond pour toutes sources de contamination 

 

Figure 4.13 : Corrélation des prédictions d’E. coli au lac Raymond et des observations à la plage 

municipale 
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Figure 4.14 : Série chronologique d’E. coli simulés et des débits simulés au lac Raymond. Toutes sources de contamination 

 

Figure 4.15 : Série chronologique d’E. coli simulés et mesurées à la station 1, sous bassin 151, bassin versant du lac Raymond 
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En général, le flux d’E. coli simulé réagit proportionnellement aux pluies. Les observations 

sont quant à elles dispersées au fil du flux simulé alors que ces deux séries de données 

divergent parfois de 1 log UFC/100mL d’écart. Il est à noter que le lac Raymond est 

modélisé en tant que bassin complètement mélangé et que les concentrations d’E. coli y 

sont simulées uniformément. La station d’échantillonnage au lac Raymond recueille quant 

à elle la contamination fécale de l’eau à la plage municipale et il est supposé que de larges 

variations sont présentes entre les concentrations d’E. coli au sein du lac. L’écart entre les 

valeurs simulées et mesurées est donc plausible. Une certaine corrélation est néanmoins 

notée entre les observations et les simulations d’E. coli à la figure 4.13. 

La figure 4.16 compare les distributions des concentrations simulées et mesurées en 

fonction du temps sec ou du temps humide. Une précipitation nulle à l’intérieur de 24 

heures définie ici un temps sec. Les observations font alors état d’importantes variabilités 

avec des valeurs similaires en temps sec et en temps humide. Également, les premiers et 

derniers quartiles des observations sont davantage étendus que ceux des simulations. 

 

Figure 4.16: Concentrations d’E. coli simulées et observées au lac Raymond en fonction 

du temps sec ou du temps humide, 2015-2016 
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Aucune valeur inférieure à 1 log UFC/100mL n’est simulée en temps humide. Dans cette 

analyse, l’influence des précipitations sur les concentrations d’E. coli en rivière est notable 

en simulation, mais pas avec les observations. Les pointes maximales des concentrations 

simulées sont du même ordre de grandeur peu importe le type de temps. Globalement, les 

médianes des valeurs simulées et mesurées se situent dans une même plage de valeurs 

logarithmiques.  

La figure 4.17 illustre la distribution des valeurs simulées en amont et en aval de la 

municipalité de Sainte-Agathe-des-Monts afin de vérifier l’impact des effluents 

municipaux sur les concentrations d’E. coli dans la rivière du Nord. Des médianes 

légèrement supérieures et des valeurs plus étendues sont ainsi notées pour les 

concentrations simulées en temps humide. Des écarts-types considérables se notent en aval 

de la municipalité avec des pointes maximales d’environ 4 log UFC/100mL. Celles-ci sont 

associées aux débordements par surverses survenant 19% du temps pour les années de 

simulation. 

 

Figure 4.17 : Concentrations d’E. coli simulées en amont et en aval de la municipalité de 

Sainte-Agathe-des-Monts en fonction du temps sec ou du temps humide, 2015-2016 
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Spatialement, les exportations de la bactérie sont illustrées à la figure 4.18a en fonction de 

des concentrations totales annuelles en rivière à l’échelle des sous-bassins. Une distribution 

spatiale d’E. coli est alors principalement répartie dans les zones où se trouve la rivière du 

Nord ainsi que dans les zones urbaines. Également, une densité importante se note en aval 

des points de surverses de la station d’épuration de la ville de Sainte-Agathe-des-Monts au 

sous bassin 125. 

 

Figure 4.18 : Distribution spatiale à l’échelle de sous-bassins en 2015 des concentrations 

annuelles d’E. coli simulées (a) et du pourcentage d’occupation urbaine (b). 

Enfin, la prédiction des concentrations d’E. coli en rivière a permis d’obtenir des résultats 

acceptables selon un comportement global du bassin versant représentatif de ses 

caractéristiques. 

4.3.2 Sources individuelles de contamination  

Afin de présenter les résultats de simulation selon les différentes sources de contamination, 

une série de figures illustrent les séries chronologiques d’E. coli et les débits simulés. 

Respectivement, les résultats de simulation relatifs à la faune, aux fosses septiques 
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résidentielles, aux sources en temps sec ainsi qu’aux débordements par surverses sont 

présentés aux figures 4.20 à 4.23.   

De prime abord, les simulations de sources de contamination diffuse et ponctuelle ont été 

effectuées indépendamment afin d’analyser l’impact de chacune d’entre elles sur le taux 

d’E. coli en réseau. La figure 4.19 illustre les distributions des concentrations simulées au 

lac Raymond selon le type de contamination fécale. D’une part, les concentrations des 

sources de contamination en temps sec affichent une distribution semblable à celle des 

concentrations simulées pour toutes les sources diffuses. L’impact de la faune et des fosses 

septiques se voit alors négligeable face aux sources en temps sec. Les pointes de 

contamination simulées par ces sources se notent d’ailleurs lors d’épisodes de pluies 

seulement.  

D’autre part, les débordements par surverses occasionnent des pointes de concentrations 

importantes de l’ordre de 4 log UFC/100mL. Pour la simulation de toutes les sources de 

contamination, les pointes maximales sont ainsi associées aux débordements par surverses 

alors que les concentrations médianes s’avèrent être principalement impactées par les 

sources diffuses.  

 

Figure 4.19 : Concentrations d’E. coli simulées en 2015-2016 au lac Raymond selon le 

type de contamination fécale
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Figure 4.20 : Série chronologique d’E. coli simulées et des débits simulés au lac Raymond. Source de contamination : Faune 

 
Figure 4.21 : Série chronologique d’E. coli simulées et des débits simulés au lac Raymond. Source de contamination : Fosses septiques 
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Figure 4.22 : Série chronologique d’E. coli simulées et des débits simulés au lac Raymond. Source de contamination : Sources en 

temps sec 

 
Figure 4.23 : Série chronologique d’E. coli simulées et des débits simulés au lac Raymond. Source de contamination : Stations 

d’épuration de Sainte-Agathe-des-Monts 
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4.3.3 ColiMinder 

Telle que la campagne d’échantillonnage de 2015, le ColiMinder mesure des échantillons d’eau 

directement à la plage municipale du lac Raymond. Une discrimination spatiale et temporelle est 

alors présente entre les données simulées et l’échantillonnage du ColiMinder. Également, ce 

dernier a une fréquence d’échantiollonnage variant de 15 à 120 minutes alors que les concentrations 

d’E. coli simulées s’affichent sur un pas de temps journalier d’où le fait de présenter les résultats 

avec le signal moyen GLUC. De ce fait, il est difficile d’observer une corrélation entre ces deux 

séries de données. Certaines pointes de l’activité GLUC correspondent toute de même aux 

concentrations simulées telles qu’aux journées du 16 et du 18 septembre 2016. Ces pointes sont 

d’ailleurs associées à des débordements par surverses telle qu’illustrée à la figure 4.25. Un écart de 

24 heures peut être noté entre les débordements et les concentrations puisqu’un tel délai est 

attribuable à la distance séparant les points de surverses et le lac Raymond.  

 

Figure 4.24 : Série chronologique d’E. coli simulées au lac Raymond pour toues sources de 

contamination et activité GLUC moyenne mesurée par le Coliminder à la page municipale de Val-

Morin en 2016. 
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Figure 4.25 : Série chronologiques des débordements par surverse à Sainte-Agathe-des-Monts et 

activité GLUC du ColiMinder mesurée au lac Raymond 

Une similitude entre les courbes de distribution d’E. coli simulées (UFC/100mL) et l’activité 

GLUC (mMFU/100mL) se note à la figure 4.26. Cependant, les deux d’unités ici utilisées ne 

mesurent pas les mêmes types de concentration. Alors que les simulations résultent en des 

concentrations d’E. coli de type cultivable analysées sous une échelle logarithmique, le ColiMinder 

permet la mesure de cellules cultivables et non-cultivables analysées sous une échelle arithmétique. 

À ce jour, la corrélation entre ses unités de mesures est à l’étude.  

 

Figure 4.26 : Distribution des concentrations d’E. coli simulées et de l’activité GLUC du 

ColiMinder au lac Raymond
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4.3.4 Analyse de covariance 

Certaines tendances sont notées entre les différentes variables simulées, les observations et les 

données d’entrées. D’une part, les concentrations d’E. coli simulées au lac Raymond affichent une 

forte corrélation avec les volumes des débordements par surverses. Parmi ces concentrations, celles 

étant inférieures à 200 UFC/100mL sont relatives aux volumes de débordement inférieurs à 1 000 

m³ par jour. Le nombre de débordements quotidiens n’est pas une variable sensible aux 

concentrations simulées puisque les volumes et les durées de surverses sont invariables à l’intérieur 

d’un pas de temps de simulation.  

 

Figure 4.27 : Concentrations d’E. coli simulées au lac Raymond en fonction des volumes de 

surverses à Sainte-Agathe-des-Monts 
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Figure 4.28 : Simulations pour les sources en 

temps sec 

Figure 4.29 : Simulations pour les sources diffuses 

Enfin, les observations de la campagne d’échantillonnage de 2015 sont mises en relation avec les 

débits simulés à l’emplacement respectif de chacune des stations. Il est ainsi possible d’établir une 

relation proportionnelle distincte pour chaque station entre ces deux variables. Des coefficients de 

détermination jusqu’à 0.43 y sont attribués. Pour les stations situées sur la rivière du Nord (1, 2, 4 

et 6), les débits simulés supérieurs à 10 m³/s ont tendance à correspondent à des concentrations 

d’E. coli mesurées supérieures à 200 UFC/100mL. Ces débits sont majoritairement présents entre 

les mois de mars et mai durant les crues printanières, mais également lors d’événements de fortes 

pluies.  
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Figure 4.30 : Relations entre les concentrations d’E. coli mesurées et le débit simulées 

aux huit stations d’échantillonnage en 2015. 
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4.3.5 Analyse de sensibilité 

Parmi les douze paramètres testés, quatre y sont identifiés comme ayant une influence significative 

sur les concentrations d’E. coli simulées avec une des valeurs de p-value égales ou inférieures 0.05. 

Il s’agit du facteur d’ajustement de la température pour les coefficients de mortalité (THBACT), 

du coefficient de mortalité pour les bactéries sur la végétation ou dans le fumier (WDPF), de la 

fraction de lessivage des bactéries sur la végétation ou du fumier (WOF_P) et de la fraction du 

fumier appliqué ayant des unités de formation de colonies actives (BACT_SWF).  

  

Figure 4.31 : Analyse de sensibilité des paramètres relatifs aux concentrations d’E. coli 

Également, le coefficient mortalité pour les bactéries adsorbées au sol (WDPS) et le coefficient de 

partitionnement des bactéries en solution dans le premier 10 mm de sol (BACTKDQ) présentent 

une sensibilité considérable. Étroitement reliées, ces variables régissent le devenir des 

concentrations d’E. coli au sol où les sources diffuses ont un grand impact par l’entremise du 

ruissellement. Enfin, les paramètres optimaux obtenus suite aux essais de calibration des 

concentrations d’E. coli au sous-bassin 151 sont présentés au tableau 4.4. 
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Tableau 4.4 : Paramétrage optimal des concentrations d’E. coli simulées 

Paramètre Valeur initiale Valeur finale 

WDPQ.bsn 0.1 0.09 

WDPS.bsn 0.1 0.10 

WDPF.bsn 0.1 0.09 

WDPRCH.bsn 0.06 0.07 

WDPRES.bsn 0.06 0.06 

BACTKDQ.bsn 175 186 

BACTPDB.fert.dat Variable 1.8E+08 

THBACT.bsn 1.07 0.98 

BACTKDDB.fert.dat 0.9 0.88 

WOF_P.bsn 0.75 0.17 

BACT_SWF.bsn 0.15 0.15 

BACTMIX.bsn 10 16 
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CHAPITRE 5 DISCUSSION 

5.1 Modélisation hydrologique 

Suite au calage du débit avec les observations de la station CEHQ 040122, la prédiction des débits 

en rivière s’est avérée satisfaisante selon les coefficients de corrélations obtenus. D’une part, les 

attributs de la caractérisation du BVLR ont permis d’acquérir une variabilité spatiale suffisamment 

détaillée afin d’obtenir un raffinement optimal des URH. Alors que le modèle SWAT utilisé 

comporte un besoin considérable de données d’entrées, l’accès et la mise en forme de ces dernières 

ont été effectués avec succès dans le cadre du paramétrage. Les paramètres optimaux résultant du 

calage ne représentent néanmoins qu’une solution unique parmi plusieurs combinaisons possibles 

permettant la convergence du modèle. Il faut alors considérer que toutes modifications au modèle 

ont un impact sur les résultats de simulations et qu’une nouvelle calibration du débit est 

conséquemment nécessaire. 

D’autre part, les des cours d’eau ne sont pas nécessairement représentatifs à leur forme et leur 

trajectoire réelle. Alors que la topographie a guidé leurs tracés, ces composantes ne sont pas géo-

référencées telle que la rivière du Nord. Une meilleure résolution des données topographiques 

aurait donc été souhaitée. Également, les sections transversales des cours d’eau ont été estimées 

selon des formes trapézoïdales. Ces estimations s’affichent alors comme des incertitudes, mais 

elles font parties intégrantes de la modélisation du bassin versant et permettent de combler les 

informations manquantes et nécessaires au modèle.  

Par ailleurs, l’intégration de deux séries de données climatiques a permis de comparer l’impact de 

leur type de couverture spatiale sur la convergence du modèle. Les données provenant de RNCan 

et bénéficiant d’une couverture complète du bassin selon des polygones d’informations climatiques 

géo-référencées, des coefficients de corrélations supérieurs y ont été associés comparativement aux 

données provenant de Climat Canada et leurs deux stations climatiques. Néanmoins, il a été 

possible de calibrer le modèle avec ces dernières. L’utilisation de données climatiques avec une 

faible distribution spatiale figure alors parmi les possibilités pour paramétrer un modèle, mais une 

divergence de celui-ci est cependant à envisager. Dans la cadre de cette modélisation, le faible 

éloignement des stations climatiques et leurs emplacements opposés au bassin versant sont 

identifiés comme facteurs déterminants à la convergence du débit simulé. 
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Également, les paramètres optimaux obtenus pour chacun des deux modèles climatiques se sont 

avérés généralement semblables, mais quelques valeurs s’opposent. Par exemple, les paramètres 

GWQMN et SLSUBBSN affichent une différence de plus de 50%, mais ils ne sont pas inclus dans 

les paramètres les plus sensibles à l’ajustement du débit. À l’inverse, le paramètre RES_RR 

définissant le débit sortant maximal des réservoirs révèle une sensibilité considérable et diffère de 

43 m³/s entre chacun des modèles. Ce résultat met en perspective le besoin d’acquérir une meilleure 

caractérisation des réservoirs et davantage d’informations sur le contrôle de leurs exutoires. Même 

si les volumes et les superficies simulés des réservoirs et des lacs ne sont pas considérés dans cette 

étude, leur intégration future au modèle pourrait faire bonifier la représentativité du bilan hydrique. 

De ce fait, alors que le lac Raymond est simulé comme un bassin complètement mélangé, une étude 

locale de son comportement hydrodynamique pourrait améliorer la précision des caractéristiques 

des eaux acheminées à la plage municipale de Val-Morin. Idéalement, des instruments de mesure 

positionnés à l’entrée du lac ainsi qu’à la plage tel que le ColiMinder permettraient une 

caractérisation optimale de l’influence de la rivière du Nord sur ledit lac. 

Par ailleurs, le BLVR s’apparente au bassin versant étudié par Proulx-McInnis et al. (2013) et situé 

dans la région de la Baie James. Cette aire d’étude se compose de plusieurs surfaces d’eau telles 

que des lacs et des marais ainsi qu’une domination par la forêt boréale. Les résultats de cette 

recherche ont démontré que les marais, les milieux humides et les tourbières présentent de grandes 

incertitudes quant à l’évaluation de l’évapotranspiration et du bilan hydrique ce qui reflète la 

complexité de l’écoulement de l’eau dans ce type région.  

De plus, le bilan hydrique obtenu suite aux simulations par SWAT a permis de distinguer l’apport 

des précipitations aux diverses partitions du bassin versant. Les distributions spatiales des résultats 

ont permis de corréler l’évapotranspiration à l’emplacement des grandes eaux de surfaces de même 

que le drainage souterrain aux différentes classes hydrologiques des sols. De ce fait, la présence de 

sols perméables et d’une grande proportion de la superficie occupée par la forêt confirment la 

proportion importante des écoulements souterrains tel qu’illustré à la figure 5.1. Également, le bilan 

hydrique présente un ruissellement de surface et un écoulement hypodermique non négligeable en 

période hivernale en raison des températures de gel. Le ruissellement est d’ailleurs dominant lors 

de crues printanières. Bref, le comportement hydrologique du bassin versant semble fidèle à ses 

caractéristiques physiques.  
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Figure 5.1 : Écoulement dominants dans un bassin versant en réponse aux précipitations, tiré de 

Anctil et al. (2012) 

Enfin, le pas de temps utilisé pour les simulations ont permis de caractériser le comportement 

hydrique du bassin sur une base journalière, mais également de manière mensuelle et saisonnière. 

Cependant, aucune variabilité horaire n’a été possible avec ce choix d’intervalle. L’intensité des 

précipitations et les hydrogrammes correspondants ont par conséquent été traités linéairement au 

sein d’une journée. Le paramétrage et la calibration du modèle sur un pas horaire auraient toutefois 

nécessité une quantité de données et de temps simulation considérablement supérieur. Même si une 

meilleure variabilité temporelle aurait été attribuée à ses résultats de simulation, les objectifs de 

cette étude ont tout de même été accessible avec un intervalle journalier.   

5.2 Matières en suspension 

Bien que les exportations de sédiments soient considérées dans cette étude, certaines limites 

s’appliquent quant à l’utilisation des simulations car celles-ci n’ont pas validées. Malgré la 

présence de plusieurs stations d’échantillonnage d’Abrinord, l’intervalle des observations n’a pas 

permis pas de calibrer et valider les concentrations de MES au sein du modèle en fonction de 

coefficients de corrélation. Il est à noter que le suivi de la qualité mensuelle de l’eau fait plutôt 

l’objet de ces échantillons. Également, la calibration des concentrations de MES sur une base 

mensuelle n’aurait pas été possible puisque les observations ne représentent pas l’ensemble des 

concentrations moyennes du mois de l’année où elles ont été collectées. 
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Ainsi, les résultats de MES obtenus par ce modèle ne peuvent pas être utilisés pour établir les taux 

d’érosion réels, mais bien pour évaluer le comportement global du bassin en ce qui a trait aux 

exportations sédimentaires. Néanmoins, il été possible de simuler des concentrations de MES ayant 

un flux proportionnel au débit et réagissant fidèlement au paramétrage du modèle. Une corrélation 

significative de l’érosion avec le ruissellement est également identifiée. Il est à souligner que la 

caractérisation des sols s’est avérée adéquate et que son utilisation future est ici jugée appropriée. 

Concrètement, le modèle d’érosion MUSLE s’avère efficace et facile d’utilisation dans SWAT. 

Un échantillonnage des concentrations de MES en rivière semble nécessaire suite à cette analyse. 

Pour ce faire, deux stations d’échantillonnage en continu pourraient être installées à l’entrée et à la 

sortie du lac Raymond afin d’analyser respectivement l’apport en sédiments de la rivière du Nord 

et son influence subséquente sur le lac. Le calage des MES dans le modèle serait par conséquent 

possible. Un ajustement optimal des coefficients d’érodabilité USLE_K des sols permettrait 

d’ailleurs d’acquérir une meilleure représentativité de l’érosion des sols. De plus, la remise en 

suspension de sédiments en rivière aurait une meilleure représentativité et les concentrations 

simulées d’E. coli en bénéficieraient conséquemment.  

Enfin, la simulation de l’érosion s’est avérée importante car l’exportation de sédiments est une 

partie intégrante du comportement bactériologique du bassin versant vis-à-vis la contamination 

fécale au sein du réseau hydrographique. 

5.3 E. coli  

5.3.1 Retour sur les hypothèses 

Certaines hypothèses ont été émises afin de caractériser et modéliser les sources de contamination 

fécale. Les résultats de simulation en sont d’ailleurs directement impactés. Une liste des principales 

hypothèses utilisées au sein du modèle qui ont permis la simulation des concentrations d’E. coli 

est présentée ci-dessous : 

a) La contamination de sources diffuses est simulée par la distribution uniforme et continue 

de fumier sur la surface du sol. Les caractéristiques propres à chacune des sources 

diffuses sont attribuées aux fumiers respectifs. 
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b) Les fosses septiques résidentielles sont identifiées aléatoirement au sein des zones 

urbaines non desservies par un réseau d’égouts municipaux selon un taux de défaillance 

de 30% 

c) La mobilité des E. coli est assurée par le transport de l’eau et des sédiments. Un 

coefficient détermine le partitionnement entre les bactéries en solution et celles attachées 

aux particules sédimentaires. 

d) La concentration d’E. coli et de MES des effluents municipaux et des débordements pas 

surverse sont constantes pour tous les volumes de débordement. 

e) Aucune croissance d’E. coli n’est possible. Seuls les coefficients de mortalité contrôlent 

le devenir d’E. coli selon des cinétiques de réaction d’ordre 1. 

f) L’influence de l’intensité et de la durée des précipitations est négligée. Seules les 

hauteurs de précipitations journalières contrôlent le ruissellement et le taux d’érosion.  

Toutes ces considérations ont un impact significatif sur les concentrations d’E. coli simulées en 

plus d’être associées à des incertitudes sur la caractérisation des sources de contamination. La 

représentativité des résultats est proportionnelle à l’inclusion ou l’exclusion des différents 

processus impliqués dans le transport et le devenir d’E. coli dans l’environnement. Cet essai en 

modélisation de sources de contamination fécale témoigne de la complexité des processus 

environnementaux qui en émergent. Des résultats de simulation acceptables ont tout de même été 

produit.  

5.3.2 Paramétrage 

Les résultats de simulations sont conséquents du paramétrage du modèle et des hypothèses émises 

à leur sujet. Alors que l’analyse de sensibilité a permis d’établir l’influence de différents paramètres 

régissant les concentrations d’E. coli en rivière, d’autres paramètres et processus ont également 

démontrés des impacts significatifs par leurs interactions au sein du modèle. L’analyse des résultats 

en fonction du paramétrage et des processus modélisés est ici présentée. 

D’une part, la caractérisation du lit de rivière quant à sa forme et à la présence de végétation, de 

roc ou de résidus quelconques se voit sensible à la remise en suspension de sédiments. Ce processus 

s’est avéré important dans la simulation des sources en temps sec. Par contre, des lits rivières 

uniformes ont été modélisés alors qu’ils peuvent être hétérogènes. Ceci s’impose alors comme une 

des limites à la modélisation des caractéristiques physiques du bassin versant.   



131 

 

De plus, le partitionnement des bactéries entre la phase soluble et la phase particulaire peut aussi 

être lié à des incertitudes dans la simulation de concentrations d’E. coli. Dans SWAT, les bactéries 

en solution sont transportées directement par le ruissellement tandis que celles attachées aux 

particules sédimentaires sont transportées par l’entremise de l’érosion. L’évaluation d’E. coli 

attachées aux particules sédimentaires s’est avérée sensible à l’ajustement du coefficient 

BACTKDQ. Ce paramètre nécessite alors une attention supplémentaire dans la simulation des 

concentrations d’E. coli impliquant le transport de sédiments. D’ailleurs, la corrélation entre le 

débit et le flux de MES démontre une proportionnalité entre l’érosion et le ruissellement. Il est 

aussi possible d’établir une influence du régime hydraulique en rivière sur la remise en suspension 

de sédiments par les débits simulés. Néanmoins, considérant qu’une intensité de pluie minimale 

est requise pour engendrer une érosion des sols et par conséquent le transport des bactéries 

attachées aux particules, ce sont les bactéries en solution qui permettent l’augmentation immédiate 

des concentrations en rivières durant les épisodes de pluie. 

La fraction des bactéries lessivées vers le sol depuis la végétation (WOF_P) présente aussi une 

sensibilité considérable sur les concentrations d’E. coli en rivières. Malgré que ce coefficient soit 

seulement valide pour les sources de contamination diffuse, son influence peut être reliée à la 

fraction importante de forêt au sein du bassin versant. Alors que la densité et la forme de végétation 

sont considérées uniforme au sein des forêts modélisées, une forte incertitude spatiale s’y impose 

puisque les forêts du BVLR comportent plusieurs variabilités telles que la présence de sentiers 

pédestres et de skis de fond.  

D’autre part, les concentrations initiales d’E. coli depuis les différentes sources de contamination 

se sont montrées peu sensibles aux prédictions d’E. coli en rivière. Ce sont plutôt les paramètres 

influençant le devenir de la bactérie dans les différentes partitions environnementales qui ont eu de 

plus grands impacts sur les concentrations simulées. Ainsi, les coefficients de mortalité au sol et 

dans le fumier démontrent une plus grande sensibilité que ceux en rivière et en réservoir. Ceci 

suggère que les contaminants provenant des sources diffuses sont davantage influencés par la durée 

entre les événements de pluies avant d’être lessivés que par leur temps de transport dans l’eau. 

D’ailleurs, l’influence des coefficients de mortalité sur les prédictions d’E. coli varie selon la 

température et par conséquent selon les journées et les saisons. Le paramètre d’ajustement des 

coefficients de mortalité selon la température (THBACT) a démontré la plus grande sensibilité au 

modèle. Peu importe la partition où se trouve la bactérie, les températures saisonnières ont donc un 
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impact considérable sur les concentrations simulées d’E. coli. Par conséquent, les incertitudes des 

données climatiques devront être minimisées dans le cadre modélisations futures. 

Également, les fractions du fumier contenant des colonies actives (BACT_SWF) ont eu une 

influence considérable sur les prédictions d’E. coli pour les sources diffuses terrestres. Même si 

ces sources ont eu moins d’impact sur les concentrations en rivière que les débordements par 

surverse, la caractérisation fidèle des sources de contamination s’est avérée substantielle dans la 

représentativité des résultats. 

5.3.3 Sources de contamination et incertitudes 

Nonobstant l’impact des caractéristiques environnementales des contaminants sur leur devenir, les 

plus hautes pointes de concentrations en rivière sont prédites à la suite de débordement par surverse. 

L’emplacement des ouvrages de surverse et les caractéristiques d’écoulement en rivière semblent 

ensuite dicté le devenir d’E. coli. Cependant, dès l’entrée en rivière d’un débordement, son volume 

a contrôlé les concentrations résultantes à l’intérieur de 24 heures. Une forte corrélation a d’ailleurs 

été identifiée entre ces volumes et les concentrations simulées. La dilution des débordements par 

l’eau de la rivière du Nord s’est alors avérée insuffisante pour réduire les concentrations d’E. coli. 

Par contre, de fortes incertitudes sont attribuées aux débordements en raison de leur caractérisation 

de faible qualité et des estimations nécessaires qui en sont conséquentes. Aucune variabilité intra-

journalière n’a été disponible à leur sujet. Un meilleur système d’enregistrement des surverses à la 

station d’épuration de Sainte-Agathe-des-Monts aurait été souhaité dans le cadre de modélisation 

de pathogène. 

Outre les pointes de concentrations lors de débordement par surverse, le transport de l’eau et de 

particules sédimentaires par le ruissellement sont ici ciblées comme vecteurs critiques de la 

contamination en rivière. Ce phénomène se traduit par l’imperméabilisation du sol, l’accumulation 

de sédiments entre les pluies et l’érodabilité des sols. De ce fait, les sources de contamination 

diffuse ont constitué un apport en E. coli non négligeable au réseau hydrographique du BVLR. 

Même si de multiples incertitudes leurs sont attribuées quant à leur caractérisation, leur 

modélisation par l’entremise d’épandage de fumier s’est avérée efficace.  
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Il est possible d’établir un ordre d’influence sur l’amplitude des concentrations d’E. coli en rivière 

pour chacune des sources de contamination simulées : Débordements par surverse > Fosses 

septiques > Sources en temps sec > Faune. 

Cependant, l’ordre d’influence des sources de contamination sur la médiane des concentrations 

d’E. coli produit annuellement s’inscrit autrement : Sources en temps sec > Débordements par 

surverse > Fosses septiques > Faune. 

Également, les faits suivants sont dressés vis-à-vis la modélisation des sources de contamination 

fécale : 

a) L’impact des sources diffuses terrestres sont associées au ruissellement et à l’exportation 

de sédiments. 

b) Les sources de contamination en temps sec constituent l’apport de base aux 

concentrations d’E. coli en rivière. 

c) L’impact de la source ponctuelle du rejet d’eaux usées est directement proportionnel aux 

volumes de débordement. 

d) Les volumes de débordement ne sont pas directement proportionnels au ruissellement. 

La complexité des événements provoquant un débordement par surverse nécessite 

d’approfondir les connaissances à leur sujet. Chaque réseau d’égouts municipaux a 

toutefois une réponse unique en termes de débordements. 

e) La proximité des zones urbaines au réseau hydrographique est propice à la 

contamination des eaux de surface. 

f) La distribution spatiale des exportations d’E. coli désigne la rivière du Nord comme 

principale véhicule de la contamination fécale au lac Raymond.  

Même si différentes sources de contamination sont simulées au sein du modèle, d’autres peuvent 

être omises ou non caractérisées puisqu’elles sont inconnues ou non identifiées. Il est important de 

considérer que de multiples processus interagissent et contrôlent le transport et le devenir d’E. coli 

au sein du bassin versant. Par conséquent, de nombreuses incertitudes s’imposent quant à la 

prédiction des concentrations de cette bactérie. La corrélation entre les concentrations d’E. coli 

simulées et celles mesurées témoignent de ces incertitudes. Aussi, l’influence du couvert de neige 

sur les concentrations d’E. coli s’est avérée plus ou moins mesurable. Un de ses impacts s’est 
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présenté par l’entremise des précipitations neigeuses causant une plus petite lame d’eau ruisselée 

et provoquant par conséquent la réduction des apports de contaminants depuis les sources diffuses. 

Les variabilités spatiales et temporelles des simulations par rapport aux observations s’imposent 

comme principale source d’incertitudes. De ce fait, le ColiMinder est représentatif d’un échantillon 

d’eau à la plage municipale alors que le modèle considère le lac comme un bassin uniforme 

complètement mélangé. Également, le pas de temps de simulation de 24 heures impose une 

discrimination temporelle entre les séries de données simulées et mesurées. Alors que le 

ColiMinder permet l’échantillonnage spécifique de l’eau à la plage municipale de Val-Morin, il est 

ici proposé qu’un autre instrument soit positionné à l’entrée du lac Raymond afin d’étudier la 

contamination provenant de la rivière du Nord. Ce choix se justifie également avec cette rivière qui 

est identifiée comme le véhicule principal de la contamination fécale au sein du BVLR. 

Aussi, la campagne d’échantillonnage de 2015 a permis d’obtenir une bonne variabilité spatiale 

des observations de coliformes fécaux en amont du lac Raymond. Cependant, l’échantillonnage 

traditionnel utilisé pour ces observations témoigne d’une faible variabilité temporelle d’où le 

besoin de développer de nouvelles technologies tel que le ColiMinder afin d’obtenir une 

caractérisation en temps réel de la qualité de l’eau. Les résultats de l’exercice de modélisation 

présenté dans ce projet mettent en valeur le besoin d’acquérir un nombre suffisant d’observations 

nécessaires aux étapes de calibration et de validation d’un modèle. 

5.3.4 Moyens de mitigation 

Avec une meilleure compréhension du comportement hydrologique et bactériologique du BVLR, 

des moyens mitigation de la contamination fécale sont ici proposés. D’une part, l’identification des 

aspects ayant le plus grand impact sur les concentrations d’E. coli en rivière permet de cibler des 

actions prenant effet à la source. Ainsi, les zones urbaines constituent les endroits associés aux plus 

grands volumes de ruissellement par unité de surface en raison de l’imperméabilisation de leurs 

sols. Par conséquent, un lessivage des sols et une exportation de sédiments considérables y ont été 

simulés. Cet impact se traduit également par la saturation du réseau d’égouts de la municipalité de 

Sainte-Agathe-des-Monts causant leur débordement aux ouvrages de surverse. Alors que les zones 

urbaines et les zones routières occupent seulement 10% du bassin versant, celles étant à proximité 

du réseau hydrographique sont ciblées pour l’implantation de zones tampons telles que des bandes 
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riveraines. Bien la majorité des cours d’eau et des lacs en sont pourvus naturellement, 

l’identification des zones urbaines directement en contact avec une eau de surface serait prescrite.  

Également, des travaux d’entretien ont été finalisés en 2016 à la station d’épuration de Sainte-

Agathe-des-Monts. En parallèle, l’implantation de PGO en amont de la station afin de limiter le 

ruissellement et l’impact de la saturation du réseau d’égouts permettrait de réduire les 

débordements par surverses en assurant un contrôle préventif. Par exemple, les bassins de rétention 

ou les systèmes d’infiltration sont efficaces avec les sols bien drainés de classes hydrologiques A 

et B (MDDELCC, 2014b) lesquels sont en présence majoritaire au sein du BVLR. 

Dans le contexte local de la protection de l’environnement du lac Raymond, l’implantation de PGO 

à ses affluents tel que l’installation de trappes à sédiments permettrait de réduire les vitesses et de 

décanter les particules de plus grandes dimensions (MDDELCC, 2014a).  
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CHAPITRE 6 CONCLUSION 

6.1 Synthèse 

L’intégration spatiale des composantes du bassin versant du lac Raymond avec SWAT a été 

effectuée selon une division en 190 sous-bassins et en 2 493 URH. Dans un premier temps, la 

simulation des composantes hydrologiques a permis une reproduction satisfaisante du débit au sein 

du bassin versant grâce à une calibration selon les observations de la rivière du Nord disponibles à 

la station CEHQ 040122. Le comportement hydrique du BLVR a démontré un drainage des sols 

efficient, mais la modélisation des nombreux lacs nécessite des efforts supplémentaires afin 

d’obtenir une représentation fidèle de leur rôle individuel dans le bilan global du bassin.  

Par la suite, la modélisation de l’exportation des sédiments et des concentrations d’E. coli a été 

accomplie. Le manque d’observation s’est révélé critique pour la calibration de ces variables qui 

s’est tout de même conclue acceptable. En résumé, voici les différentes conclusions tirées de ce 

projet : 

a) Une représentation spatiale optimale des données climatiques est favorable au calage du 

débit. 

b) Les eaux de surfaces telles que les milieux humides et les lacs présentent une complexité 

notable face à leur caractérisation et à la simulation de leur comportement hydrologique.  

c) Le bilan hydrique présente une sensibilité accrue aux sols. La caractérisation détaillée et 

précise des sols s’avère importante. 

d) L’érosion des sols réagit davantage à l’érodabilité de ces derniers qu’à l’intensité du 

ruissellement. L’exportation des sédiments est par contre principalement influencée par 

le comportement hydrologique du bassin.  

e) Les débordements par surverse constituent la source de contamination causant les plus 

hautes concentrations d’E. coli en rivière. 

f) Les sources de contamination en temps sec constituent l’apport de base aux 

concentrations d’E. coli en rivière. 

g) L’impact des sources de contamination diffuse terrestre est proportionnel au 

ruissellement. 

h) La température joue un rôle critique dans le devenir d’E. coli par son influence sur les 

coefficients de mortalité.  
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i) L’absence de variabilité temporelle intra-journalière des données d’entrée s’imposent 

comme principale source d’incertitudes.  

j) La distribution spatiale des exportations d’E. coli désigne la rivière du Nord comme 

véhicule principal de la contamination fécale au lac Raymond.  

Malgré la présence soutenue d’incertitudes dans la caractérisation des composantes du modèle, 

l’étude du comportement du bassin a permis d’analyser l’influence des caractéristiques de ce 

dernier sur le transport et le devenir d’E. coli. Les conclusions tirées ont permis de mettre en 

évidence la complexité des processus environnementaux régissant le transport de contaminants à 

l’échelle d’un bassin versant ainsi que l’importance d’acquérir des observations pour la calibration 

d’un modèle. 

6.2 Recommandations 

Les recommandations suivantes sont émises pour toute utilisation du modèle SWAT généré par ce 

projet : 

a) Utiliser les données de RNCan pour les années 2014 et suivantes lorsqu’elles seront 

disponibles. 

b) L’implantation de pratiques de gestion optimale en milieu urbain pourrait réduire les 

apports des contaminants dans les eaux pluviales. 

c) Procéder à une série d’itérations supplémentaires pour une calibration optimale du 

modèle si des changements sont apportés au paramétrage.  

d) Prendre en considération que les résultats de simulation sont représentatifs du 

paramétrage du modèle et qu’ils doivent être analysés selon le comportement global du 

bassin versant. Dans un cadre de changements climatiques, la modification des 

précipitations et des températures pourrait affectée le comportement du bassin versant.  

6.3 Perspectives 

L’optimisation du modèle serait possible avec les améliorations suivantes : 

a) Un suivi d’autres indicateurs de contamination fécale humaine pourrait être effectuée tel 

que la carbamazépine, la caféine ou certains virus. 

b) Une caractérisation aux minutes des débordements par surverse permettrait d’analyser 

ces derniers et d’optimiser leur représentativité au sein du modèle. 
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c) Mesurer les concentrations en continu de MES sur la rivière du Nord à l’entrée et à la 

sortie du lac Raymond pour calibrer adéquatement l’exportation de sédiments. Ce 

processus s’avère important dans la prédiction d’E. coli à l’échelle d’un bassin versant. 

d) Considérer l’installation d’un autre ColiMinder à l’entrée du lac Raymond afin 

d’analyser l’apport bactériologique de la rivière du Nord au lac.  

e) Procéder à une étude locale du lac Raymond sur les flux entrants et sortants de MES et 

d’E. coli ainsi que sur son comportement hydrodynamique pour évaluer les panaches de 

contamination. 

f) Établir une meilleure caractérisation des débits sortants des réservoirs.  

g) Agrandir l’aire d’étude en aval du lac Raymond pour étudier l’impact des rejets d’eaux 

usées sur les prises d’eau potable des municipalités subséquentes. 
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ANNEXE A – LOCALISATION GÉNÉRALE 

 

Figure A.1 : Localisation générale de la zone de gestion intégrée de l’eau d’Abrinord
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ANNEXE B – LISTE DES LACS 

Tableau B.1 : Lacs du bassin versant du lac Raymond modélisés dans SWAT 

Nom Aire (ha) Nom Aire (ha) Nom Aire (ha) 

Lac de la 

Montagne Noire 281.2 Lac Wener 6.9 Lac Maurice 5.1 

Lac Boeuf 8.1 Lac Paquette 8.5 Lac des Sables 298.6 

Lac Godon2 3.5 Lac Nantel 41.2 

Lac de la Vieille-

Ménard 5.0 

Lac Dorion 21.9 Lac à Brissette 9.4 Lac à la Truite 51.0 

Lac Joseph 29.1 Lac Violon 27.1 Lac Casgrain 5.6 

Lac Gareau 4.1 Lac Brûlé 268.7 Lac Doré 8.6 

Lac Tyrol 6.6 L4 3.9 Lac Amigo 3.2 

Lacs Bazinet 3.6 Lac Drummond 50.3 Lac Bélair 9.0 

Lac à Simard 5.0 Lac Colibri 6.7 Lac Fleurquin 3.7 

Lac Cloutier 15.1 L5 5.3 Lac Fortier 3.7 

L1 8.6 L6 5.0 Lac Raymond 70.2 

L2 3.4 L7 3.3 Lac la Fourche 4.1 

L3 3.6 L8 3.6 Lac Dream 3.4 

Lac Cardin 61.3 Lac Gravel 10.7 Lac Alverna 4.0 

Lac des Arpents 23.4 Lac Éphrem 6.0 Lac Green Valley 3.9 

Papineau 82.4 Lac Giroux 11.7 Lac du Gore 24.7 

Lac Caisse 4.9 L9 4.1 Lac Canardi 4.0 

Lac Ludger 159.9 Lac Barbara 7.3 Lac Paquin 28.7 

Lac Magnan Nord 10.9 Lac Vaseux 16.3 Lac Merisier 9.6 

Lac Magnan Sud 4.9 Lac du Canard 6.1 Petit lac Merisier 3.1 

Lac Godon1 7.4 Lac de la Rouge 67.5 Lac à Charette 6.1 

Lac Davis 7.5 Lac à la Caille 9.4 

Petit lac des 

Sables 23.6 

Lac Robillard 3.6 Lac Cornu 138.9 Lac en Poudre 3.7 

Lac MacShane 17.0 Lac de la Poule 11.0 Lac Pearl 4.3 

Lac à Wellie-Huot 5.2 Lac de la Grise 20.8 Le Fer à Cheval 24.0 

Lac Brunet 3.7 Lac de la Brume 26.7 Lac Barker 5.0 

Lac Hague 11.3 Lac La Salle 27.0 Lac Jacquot 3.5 

Lac McLeod 4.7 Lac Lavallée 13.3 Lac Didi 12.3 

Lac Beausoleil 15.9 Lac la Sapiniere 3.7 Lac de la Borne 34.8 

Lac Leroux 20.5 Lac Manitou 411.7 Lac le Gros 13.3 

    L10 3.4 
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ANNEXE C – BATHYMÉTRIE DU LAC RAYMOND 

 

Figure C.1: Bathymétrie du lac Raymond 

Plage municipale/ 

ColiMinder 
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ANNEXE D – INFORMATIONS SUR LES DONNÉES TOPOGRAPHIQUES 
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ANNEXE E – INFORMATIONS DÉTAILLÉES SUR LES SOLS 

Tableau E.1: Caractéristiques des sols de la couche 1 

Item  1 2 3 4 5 6 7 8 9 

Code CanSis ALL GDO IVR LKF MEM MOI SFU BSG SNG 

Nombre de couches 3 3 4 4 2 4 4 4 4 

Groupe hydrologique B A A C D A A A B 

Profondeur totale 1180 1060 1040 1250 3480 1200 1230 1280 1280 

Profondeur de la couche 180 150 150 80 1000 150 150 100 50 

Densité apparente en g/cm3 1.35 1.4 1.3 1.2 0.2 1.4 1.35 1.4 1.4 

Réserve utile en eau (mm H2O/mm sol) 0.14 0.08 0.05 0.11 0.5 0.07 0.17 0.05 0.13 

Conductivité hydraulique (mm/h) 32.5 100 31 50 2.5 32.5 32.5 32.5 32.5 

Pourcentage de matière organique (%) 6.8 2.8 2.58 13.4 45.4 14.3 7.5 2.9 1.4 

Pourcentage d'argile (%) 41 4 3 4 0 5 3 3 6 

Pourcentage de limon (%) 37 18 7 36 0 19 43 6 44 

Pourcentage de sable (%) 22 78 90 60 0 76 54 91 50 

Pourcentage de fragments rocheux (%) 0 0 0 0 0 0 0 0 0 

Coefficient d'érodabilité USLE 0.125 0.116 0.068 0.144 0 0.121 0.147 0.064 0.160 

 

Tableau E.2 : Caractéristiques des sols de la couche 2 

Item  1 2 3 4 5 6 7 8 9 

Code CanSis ALL GDO IVR LKF MEM MOI SFU BSG SNG 

Nombre de couches 3 3 4 4 2 4 4 4 4 

Groupe hydrologique B A A C D A A A B 

Profondeur totale 1180 1060 1040 1250 3480 1200 1230 1280 1280 

Profondeur de la couche 430 460 300 250 3480 200 230 280 280 

Densité apparente en g/cm3 1.5 1.5 1.5 1.45 1.35 1.45 1.45 1.5 1.45 

Réserve utile en eau (mm H2O/mm sol) 0.2 0.06 0.04 0.12 0.14 0.06 0.14 0.05 0.16 

Conductivité hydraulique (mm/h) 32.5 100 38.5 50 32.5 100 100 100 10 

Pourcentage de matière organique (%) 0.7 0.6 1.03 4.4 0.6 0.9 3.2 4.4 4.4 

Pourcentage d'argile (%) 77 3 0 5 48 3 3 2 2 

Pourcentage de limon (%) 16 16 9 33 40 14 45 3 48 

Pourcentage de sable (%) 7 81 91 62 12 83 52 95 50 

Pourcentage de fragments rocheux (%) 0 0 0 0 0 0 0 0 0 

Coefficient d'érodabilité USLE 0.153 0.137 0.088 0.142 0.192 0.120 0.147 0.057 0.148 
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Tableau E.3 : Caractéristiques des sols de la couche 3 

Item  1 2 3 4 5 6 7 8 9 

Code CanSis ALL GDO IVR LKF MEM MOI SFU BSG SNG 

Nombre de couches 3 3 4 4 2 4 4 4 4 

Groupe hydrologique B A A C D A A A B 

Profondeur totale 1180 1060 1040 1250 3480 1200 1230 1280 1280 

Profondeur de la couche 1180 1060 580 690 0 483 580 580 530 

Densité apparente en g/cm3 1.5 1.5 1.5 1.6 0 1.5 1.45 1.5 1.6 

Réserve utile en eau (mm H2O/mm 

sol) 0.21 0.06 0.04 0.09 0 0.07 0.12 0.04 0.11 

Conductivité hydraulique (mm/h) 32.5 100 32.5 50 0 100 100 32.5 10 

Pourcentage de matière organique (%) 0.4 0.3 0.6 0.9 0 2 1.7 0.9 0.6 

Pourcentage d'argile (%) 74 3 1 5 0 4 1 4 4 

Pourcentage de limon (%) 20 13 3 26 0 14 40 6 40 

Pourcentage de sable (%) 6 84 96 69 0 82 59 96 56 

Pourcentage de fragments rocheux (%) 0 0 0 0 0 0 0 0 0 

Coefficient d'érodabilité USLE 0.180 0.121 0.079 0.171 0 0.100 0.155 0.071 0.190 

 

Tableau E.4 : Caractéristiques des sols de la couche 4 

Item  1 2 3 4 5 6 7 8 9 

Code CanSis ALL GDO IVR LKF MEM MOI SFU BSG SNG 

Nombre de couches 3 3 4 4 2 4 4 4 4 

Groupe hydrologique B A A C D A A A B 

Profondeur totale 1180 1060 1040 1250 3480 1200 1230 1280 1280 

Profondeur de la couche 0 0 1040 1250 0 1200 1230 1280 1280 

Densité apparente en g/cm3 0 0 1.6 1.8 0 1.55 1.6 1.6 1.8 

Réserve utile en eau (mm H2O/mm sol) 0 0 0.04 0.09 0 0.04 0.04 0.04 0.07 

Conductivité hydraulique (mm/h) 0 0 32.5 2.5 0 32.5 32.5 32.5 2.5 

Pourcentage de matière organique (%) 0 0 0.3 0.1 0 0.3 0.6 0.4 0.2 

Pourcentage d'argile (%) 0 0 1 3 0 1 2 4 1 

Pourcentage de limon (%) 0 0 2 31 0 7 1 4 23 

Pourcentage de sable (%) 0 0 97 66 0 92 97 92 76 

Pourcentage de fragments rocheux (%) 0 0 0 0 0 0 0 0 0 

Coefficient d'érodabilité USLE 0 0 0.079 0.190 0 0.090 0.063 0.075 0.170 
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ANNEXE F – PRISES D’EAU POTABLE SUR LA RIVIÈRE-DU-NORD 

 

Figure F.1 : Carte de localisation des prises d’eau potable alimentant les réseaux de distribution 

municipaux et privés pour lesquelles les coordonnées géographiques sont disponibles 
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ANNEXE G – DÉBORDEMENTS PAR SURVERSE 

Tableau G.1 : Débordements par surverse 2015-2016, Régulateur Brissette 

Date Pluie (mm) Nombre Durée (h) Volume (m³) 

2015-10-05 0 1 1.0 3.80E+01 

2015-10-08 3.4 1 0.1 7.00E+00 

2015-10-09 2.2 1 2.6 2.18E+02 

2015-10-13 8.6 1 2.1 3.88E+02 

2015-10-15 10 1 4.5 1.82E+03 

2015-10-16 0 1 2.3 7.72E+02 

2015-10-22 0 1 3.0 1.69E+03 

2015-10-24 24 1 1.9 1.08E+03 

2015-10-25 0 1 6.3 6.84E+03 

2015-10-28 62 1 9.2 1.23E+04 

2015-10-29 2 1 20.0 4.86E+03 

2015-10-30 0 1 0.5 2.50E+01 

2016-01-10 18 1 6.6 3.41E+04 

2016-01-11 0 1 19.1 9.88E+04 

2016-01-12 8 1 1.2 6.10E+03 

2016-03-09 8.2 1 8.6 4.44E+04 

2016-03-10 1.2 1 6.9 3.58E+04 

2016-03-11 0 1 4.1 2.11E+04 

2016-03-12 0 1 1.5 7.80E+03 

2016-03-13 0 1 0.1 4.00E+02 

2016-03-28 29.4 1 6.3 3.24E+04 

2016-03-31 21 1 11.0 5.70E+04 

2014-04-01 0 1 24.0 1.24E+05 

2014-04-02 0 1 0.9 4.80E+03 

2016-06-06 30.2 1 3.5 1.50E+03 

2016-06-28 9.2 1 3.3 1.60E+03 

2016-06-29 16.4 1 3.4 1.50E+03 

2016-07-25 23.6 1 1.7 6.39E+03 

2016-08-04 5.6 1 0.3 1.13E+03 

2016-08-12 17 1 0.3 2.07E+04 

2016-08-14 34.6 2 1.4 7.16E+03 

2016-08-16 25 2 3.4 1.92E+04 

2016-08-21 1.2 1 0.6 1.77E+03 

2016-09-17 17 1 1.3 3.90E+03 

2016-09-18 2 1 0.9 5.60E+03 

2016-12-01 25 1 4.1 1.30E+03 
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Tableau G.2 : Débordements par surverse 2015-2016, Station amont pré-traitement 

Date Pluie (mm) Nombre Durée (h) Volume (m³) 

2015-04-21 6 1 1 1.00E+02 

2015-04-22 7.8 1 1 5.00E+01 

2015-04-23 0.8 1 1 5.00E+01 

2015-04-25 0 1 1 5.00E+01 

2015-06-08 16 1 1 3.23E+01 

2015-06-09 9.6 1 1 5.00E+01 

2015-06-11 0 1 1 5.00E+01 

2015-06-12 6.8 1 1 5.00E+01 

2015-06-13 0 1 1 5.00E+01 

2015-06-17 0 1 1 5.00E+01 

2015-06-19 0 1 1 5.00E+01 

2015-06-24 0 1 1 5.68E+01 

2015-06-27 4.3 1 1 5.00E+01 

2015-07-02 1 1 1 4.05E+01 

2015-07-08 0 1 1 5.00E+01 

2015-07-18 8.6 1 1 5.00E+01 

2015-07-22 0 1 1 5.00E+01 

2015-07-28 0 1 1 5.00E+01 

2015-08-01 1.5 1 1 5.00E+01 

2015-08-11 25 1 1 8.94E+01 

2015-08-12 0 1 1 4.56E+01 

2015-08-15 1.2 1 1 5.00E+01 

2015-08-20 14.8 1 1 5.00E+01 

2015-08-21 0.2 1 1 5.00E+01 

2015-09-07 11.4 1 1 9.20E+01 

2015-09-08 0 1 2 1.42E+02 

2015-09-10 0 1 1 2.00E+00 

2015-09-13 25 1 1 7.00E+00 

2015-09-30 0 5 1 1.63E+02 

2015-10-25 0 2 1 3.40E+01 

2015-10-26 0 2 1 9.00E+00 

2015-10-29 2 1 2 1.85E+02 

2015-10-30 0 1 1 3.80E+01 

2015-10-31 1.2 1 1 2.10E+01 

2016-01-07 0 1 0.1 3.60E+01 

2016-01-09 8 1 0.1 3.60E+01 

2016-01-10 18 1 0.1 3.60E+01 

2016-01-11 0 1 0.1 3.60E+01 

2016-01-28 6.6 1 0.1 3.60E+01 

2016-02-02 10 1 0.1 3.60E+01 

2016-06-02 5.8 1 0.5 1.01E+02 
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Tableau G.2 : Débordements par surverse 2015-2016, Station amont pré-traitement (Suite) 

Date Pluie (mm) Nombre Durée (h) Volume (m³) 

2016-06-05 31.6 1 1.0 0.00E+00 

2016-06-07 5.2 1 1.0 1.50E+01 

2016-06-27 10.2 1 31.0 1.40E+01 

2016-06-28 9.2 1 5.0 1.00E+01 

2016-07-07 5.8 1 0.0 2.00E+00 

2016-07-15 24.4 1 0.1 3.20E+01 

2016-07-16 0 1 0.0 1.20E+02 

2016-07-18 5 1 0.1 9.00E+00 

2016-07-26 23.6 1 0.1 4.50E+01 

2016-08-04 5.6 1 0.1 1.60E+01 

2016-09-18 17 1 0.2 1.60E+01 

 

Tableau G.3 : Débordements par surverse 2015-2016, Station poste de relèvement 

Date Pluie (mm) Nombre Durée (h) Volume (m³) 

2016-05-05 0 1 6 7.20E+02 

2016-06-09 0.6 1 5 8.64E+02 

2016-06-23 0 1 213 2.00E+01 

2016-06-27 8 1 33 1.31E+02 

2016-06-28 12 1 47 9.20E+01 

2016-06-29 42 1 163 2.70E+01 

2016-07-26 28 1 12 3.60E+02 
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Tableau G.4 : Débordements par surverse 2015-2016, Poste de pompage Rivière du Nord 

Date Pluie (mm) Nombre Durée (h) Volume (m³) 

2015-04-10 15.6 1 0.28 5.10E+02 

2015-04-11 0 1 0.28 5.10E+02 

2015-04-12 0 1 0.28 5.10E+02 

2015-04-13 4 1 0.68 1.23E+03 

2015-04-14 0 1 0.68 1.23E+03 

2015-04-15 0 1 0.68 1.23E+03 

2015-04-16 0 1 0.68 1.23E+03 

2015-04-21 6 1 3.35 6.03E+03 

2015-04-22 7.8 1 3.35 6.03E+03 

2015-04-23 0.8 1 3.35 6.03E+03 

2015-06-22 4 1 0.69 1.25E+03 

2015-06-23 27.2 1 0.69 1.25E+03 

2015-06-24 0 1 0.69 1.25E+03 

2015-06-25 0 1 0.69 1.25E+03 

2015-06-26 0 1 0.58 1.04E+03 

2015-06-27 4.3 1 0.58 1.04E+03 

2015-06-28 13.2 1 0.58 1.04E+03 

2015-06-29 0.4 1 0.58 1.04E+03 

2015-09-14 0.4 1 0.36 6.42E+02 

2015-09-15 0 1 0.36 6.42E+02 

2015-09-16 0 1 0.36 6.42E+02 

2015-09-17 0 1 0.36 6.42E+02 

2015-09-18 0 1 0.36 6.42E+02 

2015-09-28 4.2 1 0.23 4.20E+02 

2015-09-29 16.1 1 0.23 4.20E+02 

2015-09-30 0 1 0.23 4.20E+02 

2015-10-01 0 1 0.23 4.20E+02 

2015-10-27 0 1 1 1.80E+03 

2015-10-28 62 1 1 1.80E+03 

2015-10-29 2 1 1 1.80E+03 

2016-02-01 11.2 1 1 4.32E+03 

2016-04-01 21 1 1 4.32E+03 

2016-04-05 0 1 1 4.32E+03 

2016-04-22 4 1 1 4.32E+03 

2016-04-25 0 1 1 4.32E+03 

2016-06-28 9.2 1 0.92 4.70E+03 

2016-06-29 16.4 1 0.33 1.31E+04 

2016-06-30 0 1 4.55 9.49E+02 

2016-08-06 0 1 12.25 3.53E+02 

2016-08-07 0 1 24 1.80E+02 

2016-08-08 0 1 16.08 2.69E+02 

2016-09-19 3 1 0.45 9.60E+03 
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ANNEXE H – INSTALLATION DU COLIMINDER 

 

Figure H.1: Installation du Coliminder
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ANNEXE I – PARAMÉTRAGE OPTIMAL DU DÉBIT 

Tableau I.1 : Paramètres optimaux suite à la calibration du débit 

Paramètres 
Méthode 

itérative 

RNCan 

1988-2013 

Climat Canada 

1995-2016 

CN2.mgt     Multiplier 0.45 0.40 

ALPHA_BF.gw     Remplacer 0.23 0.54 

GW_DELAY.gw     Remplacer 230 378 

GWQMN.gw     Remplacer 990 584 

GW_REVAP.gw Remplacer 0.02 0.16 

RCHRG_DP.gw Remplacer 0.41 0.19 

REVAPMIN.gw Remplacer 625 550 

CH_N2.rte     Remplacer 0.055 0.065 

CH_K2.rte Remplacer 300 240 

SFTMP.bsn Remplacer -0.7 -1.0 

SMTMP.bsn Remplacer -1.0 -1.0 

TIMP.bsn Remplacer 0.26 0.56 

ESCO.bsn Remplacer 0.23 0.40 

SURLAG.bsn Remplacer 5.3 2.1 

EPCO.bsn Remplacer 0.54 0.40 

EVRCH.bsn Remplacer 0.37 0.31 

SLSUBBSN.hru Multiplier 0.28 0.42 

HRU_SLP.hru Multiplier 0.39 -0.05 

OV_N.hru Multiplier 0.17 0.27 

CH_K1.sub Remplacer 45 50 

CH_N1.sub Remplacer 0.040 0.035 

RES_K.res Remplacer 0.07 1.30 

RES_RR.res Remplacer 40 50 

PND_K.pnd Remplacer 0.40 0.30 

 


