
Titre:
Title:

Learning Algorithm to Automate Fast Author Name Disambiguation

Auteur:
Author:

Banafsheh Mehri

Date: 2017

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Mehri, B. (2017). Learning Algorithm to Automate Fast Author Name
Disambiguation [Master's thesis, École Polytechnique de Montréal]. PolyPublie.
https://publications.polymtl.ca/2808/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/2808/

Directeurs de
recherche:

Advisors:
Yves Goussard, & Martin Trépanier

Programme:
Program:

Maîtrise recherche en génie industriel

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/2808/
https://publications.polymtl.ca/2808/

UNIVERSITÉ DE MONTRÉAL

LEARNING ALGORITHM TO AUTOMATE FAST AUTHOR NAME DISAMBIGUATION

BANAFSHEH MEHRI
DÉPARTEMENT DE MATHÉMATIQUES ET DE GÉNIE INDUSTRIEL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

MÉMOIRE PRÉSENTÉ EN VUE DE L’OBTENTION
DU DIPLÔME DE MAÎTRISE ÈS SCIENCES APPLIQUÉES

(GÉNIE INDUSTRIEL)
OCTOBRE 2017

c© Banafsheh Mehri, 2017.

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Ce mémoire intitulé :

LEARNING ALGORITHM TO AUTOMATE FAST AUTHOR NAME DISAMBIGUATION

présenté par : MEHRI Banafsheh
en vue de l’obtention du diplôme de : Maîtrise ès sciences appliquées
a été dûment accepté par le jury d’examen constitué de :

M. AGARD Bruno, Doctorat, président
M. GOUSSARD Yves, Doctorat, membre et directeur de recherche
M. TRÉPANIER Martin, Ph. D., membre et codirecteur de recherche
M. VOORONS Matthieu, Ph. D., membre

iii

ACKNOWLEDGMENTS

I would like to thank my adviser, Professor Yves Goussard for guiding and supporting me over
the course of my Master’s degree. He has set an example of excellence as a mentor and instructor.
A very special gratitude goes out to Dr. Matthieu Voorons for all of his guidance through out
my academic pathway; his discussions, ideas, and feedbacks have been absolutely invaluable. It
was a great opportunity to work with him. I also thank my co-adviser Professor Martin Trepanier
for his help and advice. I’d like to thank my fellow graduate students, technicians and those who
contributed to this research. I am very grateful to all of you.

I would like to thank Science-Metrix company for support and insight.

iv

RÉSUMÉ

La production scientifique mondiale représente une quantité massive d’enregistrements auxquels on
peut accéder via de nombreuses bases de données. En raison de la présence d’enregistrements am-
bigus, un processus de désambiguïsation efficace dans un délai raisonnable est nécessaire comme
étape essentielle pour extraire l’information correcte et générer des statistiques de publication.
Cependant, la tâche de désambiguïsation est exhaustive et complexe en raison des bases de données
volumineuses et des données manquantes. Actuellement, il n’existe pas de méthode automatique
complète capable de produire des résultats satisfaisants pour le processus de désambiguïsation.

Auparavant, une application efficace de désambiguïsation d’entité a été développée, qui est un al-
gorithme en cascade supervisé donnant des résultats prometteurs sur de grandes bases de données
bibliographiques. Bien que le travail existant produise des résultats de haute qualité dans un délai
de traitement raisonnable, il manque un choix efficace de métriques et la structure des classifica-
teurs est déterminée d’une manière heuristique par l’analyse des erreurs de précision et de rappel.
De toute évidence, une approche automatisée qui rend l’application flexible et réglable amélior-
erait directement la convivialité de l’application. Une telle approche permettrait de comprendre
l’importance de chaque classification d’attributs dans le processus de désambiguïsation et de sélec-
tionner celles qui sont les plus performantes. Dans cette recherche, nous proposons un algorithme
d’apprentissage pour automatiser le processus de désambiguïsation de cette application.

Pour atteindre nos objectifs, nous menons trois étapes majeures: premièrement, nous abordons
le problème d’évaluation des algorithmes de codage phonétique qui peuvent être utilisés dans le
blocking. Six algorithmes de codage phonétique couramment utilisés ont été sélectionnés et des
mesures d’évaluation quantitative spécifiques ont été développées afin d’évaluer leurs limites et
leurs avantages et de recruter le meilleur. Deuxièmement, nous testons différentes mesures de sim-
ilarité de chaîne de caractères et nous analysons les avantages et les inconvénients de chaque tech-
nique. En d’autres termes, notre deuxième objectif est de construire une méthode de désambiguï-
sation efficace en comparant plusieurs algorithmes basés sur les edits et les tokens pour améliorer
la méthode du blocking. Enfin, en utilisant les méthodes d’agrégation bootstrap (Bagging) et Ad-

aBoost, un algorithme a été développé qui utilise des techniques d’optimisation de particle swarm
et d’optimisation de set covers pour concevoir un cadre d’apprentissage qui permet l’ordre automa-
tique des weak classifiers et la détermination de leurs seuils. Des comparaisons de performance ont
été effectuées sur des données réelles extraites du Web of Science (WoS) et des bases de données
bibliographiques SCOPUS.

En résumé, ce travail nous permet de tirer des conclusions sur les qualités et les faiblesses de chaque

v

algorithme phonétique et mesure de similarité dans la perspective de notre application. Nous avons
montré que l’algorithme phonétique NYSIIS est un meilleur choix à utiliser dans l’étape de block-

ing de l’application de désambiguïsation. De plus, l’algorithme de Weighting Table-based surpas-
sait certains des algorithmes de similarité couramment utilisés en terme de efficacité de temps, tout
en produisant des résultats satisfaisants. En outre, nous avons proposé une méthode d’apprentissage
pour déterminer automatiquement la structure de l’algorithme de désambiguïsation.

vi

ABSTRACT

The worldwide scientific production represents a massive amount of records which can be accessed
via numerous databases. Because of the presence of ambiguous records, a time-efficient disam-
biguation process is required as an essential step of extracting correct information and generating
publication statistics. However, the disambiguation task is exhaustive and complex due to the large
volume databases and existing missing data. Currently there is no complete automatic method that
is able to produce satisfactory results for the disambiguation process.

Previously, an efficient entity disambiguation application was developed that is a supervised cas-
cade algorithm which gives promising results on large bibliographic databases. Although the ex-
isting work produces high-quality results within a reasonable processing time, it lacks an efficient
choice of metrics and the structure of the classifiers is determined in a heuristic manner by the anal-
ysis of precision and recall errors. Clearly, an automated approach that makes the application flex-
ible and adjustable would directly enhance the usability of the application. Such approach would
help to understand the importance of each feature classification in the disambiguation process and
select the most efficient ones. In this research, we propose a learning algorithm for automating
the disambiguation process of this application. In fact, the aim of this work is to help to employ
the most appropriate phonetic algorithm and similarity measures as well as introduce a desirable
automatic approach instead of a heuristic approach.

To achieve our goals, we conduct three major steps: First, we address the problem of evaluating
phonetic encoding algorithms that can be used in blocking. Six commonly used phonetic encod-
ing algorithm were selected and specific quantitative evaluation metrics were developed in order
to assess their limitations and advantages and recruit the best one. Second, we test different string
similarity measures and we analyze the advantages and disadvantages of each technique. In other
words, our second goal is to build an efficient disambiguation method by comparing several edit-
and token-based algorithms to improve the blocking method. Finally, using bootstrap aggregating
(Bagging) and AdaBoost methods, an algorithm has been developed that employs particle swarm
and set cover optimization techniques to design a learning framework that enables automatic or-
dering of the weak classifiers and determining their thresholds. Performance comparisons were
carried out on real data extracted from the web of science (WoS) and the SCOPUS bibliographic
databases.

In summary, this work allows us to draw conclusions about the qualities and weaknesses of each
phonetic algorithm and similarity measure in the perspective of our application. We have shown
that the NYSIIS phonetic algorithm is a better choice to use in blocking step of the disambiguation

vii

application. In addition, the Weighting Table-based algorithm outperforms some of the commonly
used similarity algorithms in terms of time-efficiency, while producing satisfactory results. More-
over, we proposed a learning method to determine the structure of the disambiguation algorithm
automatically.

viii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . iii

RÉSUMÉ . iv

ABSTRACT . vi

TABLE OF CONTENTS . viii

LIST OF TABLES . x

LIST OF FIGURES . xi

LIST OF ABBREVIATIONS . xii

LIST OF APPENDICES . xiii

CHAPTER 1 INTRODUCTION . 1
1.1 Concepts and Definitions . 2
1.2 Research Objectives . 7
1.3 Thesis Plan . 7

CHAPTER 2 LITERATURE REVIEW . 8
2.1 Name-based Disambiguation . 8

2.1.1 Blocking . 10
2.1.2 Phonetic Encoding Algorithms . 12
2.1.3 String Similarity Metrics . 12

2.2 Ensemble Learning . 14
2.2.1 Bootstrapping Aggregation (Bagging) . 14
2.2.2 Boosting . 15

2.3 Particle Swarm Optimization . 17
2.4 Set Cover Optimization . 19

CHAPTER 3 FAST AUTHOR NAME DISAMBIGUATION ALGORITHM 20
3.1 Overview . 20
3.2 Pre-processing . 21
3.3 Blocking . 22

ix

3.4 Classification Approach . 22
3.5 Cascade Structure Configuration . 27
3.6 Evaluation . 29

3.6.1 Datasets . 30
3.6.2 Results . 30
3.6.3 Summary of the Results . 31

CHAPTER 4 METHODOLOGY AND DESIGN . 33
4.1 Experimental Setup . 33

4.1.1 Step 1: Comparing Phonetic Encoding Algorithms 33
4.1.2 Step 2: Comparing String Similarity Metrics 38
4.1.3 Step 3: Training Methodology for the Cascade Classifier 48

CHAPTER 5 RESULTS . 57
5.1 Results of Comparative Study of Phonetic Distance Metrics 57
5.2 Results of Comparative Study of String Similarity Algorithms 58
5.3 Results of Automating Cascade Structure . 65

CHAPTER 6 CONCLUSION . 70
6.1 Summary of the Results . 70
6.2 Future Work . 71

REFERENCES . 73

APPENDICES . 82

x

LIST OF TABLES

Table 3.1 Characteristics of different types of weak classifiers 24
Table 3.2 Structure of the first disambiguation block - WoS subset (large size) 24
Table 3.3 Structure of the second disambiguation block - WoS subset (large size) . . . 25
Table 3.4 Structure of the first disambiguation block - SCOPUS subset (small size) . 26
Table 3.5 Structure of the second disambiguation block - SCOPUS subset (small size) 26
Table 3.6 Results of the manual cascade approach (WoS) (Voorons et al., 2017) . . . 30
Table 3.7 Results of the manual cascade approach (SCOPUS) (Voorons et al., 2017) . 31
Table 4.1 Weighting Table-Based algorithm parameters 39
Table 4.2 Parameters used in the learning process 50
Table 5.1 Results of evaluating phonetic algorithms using different metrics 57
Table 5.2 Structure of the first disambiguation block - WoS subset (large size) 65
Table 5.3 Structure of the second disambiguation block - WoS subset (large size) . . . 66
Table 5.4 Results of the automatic cascade approach (WoS) 66
Table 5.5 Structure of the first disambiguation block - SCOPUS subset (small size) . . 67
Table 5.6 Structure of the second disambiguation block - SCOPUS subset (small size) 68
Table 5.7 Results of the automatic cascade approach (SCOPUS) 69

xi

LIST OF FIGURES

Figure 2.1 Demonstration of the Bagging algorithm 15
Figure 2.2 Demonstration of the Boosting algorithm 16
Figure 2.3 Demonstration of the AdaBoost algorithm 16
Figure 2.4 Particle Swarm Optimization algorithm flow chart 18
Figure 3.1 Cascade approach (Voorons et al., 2017) 23
Figure 3.2 Process of entity aggregators and recursive aggregators (Voorons et al., 2017) 23
Figure 3.3 Detailed design of an aggregator (Voorons et al., 2017) 28
Figure 4.1 Methodology steps . 44
Figure 4.2 Previewing first few entries of a similarity matrix 45
Figure 4.3 Hierarchical agglomerative clustering tree plot 46
Figure 4.4 Overall Demonstration of the Proposed Framework 49
Figure 4.5 Training Methodology . 50
Figure 5.1 Intra-buckets average distances . 59
Figure 5.2 Intra-buckets average distances . 60
Figure 5.3 Results of computing the rand index for different similarity algorithms . . 61
Figure 5.4 Number of buckets per cutree height for the HAC algorithm 62
Figure 5.5 Number of buckets per cutree height for the HAC algorithm 63
Figure 5.6 Total execution time . 64

xii

LIST OF ABBREVIATIONS

AI Artificial Intelligence
ANN Artificial Neural Networks
BOW Bags of Words
CC Cascade/Compound Classifier
DBSCAN Density-Based Spatial Clustering of Applications with Noise
EA Entity Aggregator
FN False Negative
FP False Positive
GNU GNU’s Not Unix
GPL General Public License
HAC Hierarchical Agglomerative Clustering
HMM Hidden Markov Model
ILP Integer Linear Programming
IR Information Retrieval
ISI Institute for Scientific Information
MIP Mixed Integer Programming
MSCP Minimum Set Cover Problem
NED Named Entity Disambiguation
NEL Named Entity Linking
NLP Natural Language Processing
NSERC Natural Sciences and Engineering Research Council of Canada
PSO Particle Swarm Optimizer
RA Recursive Aggregator
RI Rand Index
SCO Set Cover Optimizer
SSB Sum of Squares Between clusters
SSE Sum of Squared Errors
SVM Support Vector Machines
TN True Negative
TP True Positive
WC Weak Classifier
WoS Web of Science

xiii

LIST OF APPENDICES

APPENDIX A CO-AUTHORSHIP . 82

APPENDIX B CASCADE CONFIGURATION XML FILE FOR WEB OF SCIENCE
DATASET (LARGE SIZE) . 83

1

CHAPTER 1 INTRODUCTION

Authors of scholarly documents often share names which makes it difficult to identify each author’s
work. Hence, a major problem for any scholarly document in scientific citations is to recognize the
person(s) who wrote it and to discover all the documents that belong to a given person. In the
context of bibliographic citations this problem is known as ”Author Name Ambiguity" and it is
made difficult by the several characteristics of bibliographic data such as 1) imperfect collection
and transcription of information; 2) occurrence of duplicate records and swapped fields 3) presence
of redundant information or data ambiguities (e.g., homonyms, author with multiple affiliations,
etc.), cultural specificities (e.g., change of name through marriage) and non-discriminating data.

Most of the time disambiguation process is done by hand, and such a process is often challenging
in terms of human capabilities. Computerized solutions, on the other hand, often produce accurate
results; however, they do not have the ability to overcome the problem in a time-efficient way, and
they are not appropriate in the domain of very large datasets.

In spite of many efforts from the research community to address the disambiguation problem, most
of the proposed disambiguation methods require many improvements, especially in terms of time-
efficiency. In fact, the time-consuming aspect of such methods is due to the computational load
they require to process the available information, especially in the bibliographic domain where we
are faced with large-scale data sets.

Beforehand, there have been many attempts that tried to facilitate the manual disambiguation task.
For instance, DBLife (DeRose et al., 2007) is a platform that extracts author information from
several resources and displays it in a standardized layout that is used for manual correction. Even
though it can extract lists of database researchers together with structured, related information
including publications that they have authored, it does not contain large-scale data integration due
to its heavy computational cost. Another project that addresses the author ambiguity problem is the
ResearcherID1 which is a website that asks authors to link their articles to their researcher ID. This
helps avoiding author misidentification, however, the web site is able to identify only those who
claim and showcase their publications by registering an online account.

Formerly, a supervised disambiguation method (Voorons et al., 2017) with the ability to process
real-size bibliographic databases and generate satisfactory results has been developed. This method
is tuned distinctly to the data to determine the relative importance and mutual effects of diverse
features such as co-author, journal name, title and affiliation. Despite having an efficient processing
time, hence outperforming any existing methods of this kind, it still lacks an approach to find the

1www.researcherid.com

2

best metrics and the learning method to stand upon an automated approach to determine the best
configuration for its classifiers; hence, it is ill-suited for complex databases with many features, and
unable to provide insights about each classifier’s impact and importance.

Thus, this research aims to conduct a comparative evaluation and analysis of metrics being used
in the aforementioned algorithm to help to choose the right ones in disambiguation process, and
afterwards, it also aims to develop a learning algorithm that constructs the ordering of the classifiers
and their respective thresholds. Consequently, it would make possible to adapt to any type of the
input file, and to cope with large and complex databases.

This research was conducted in collaboration with Science-Metrix, a Canadian company special-
ized in the measurement and evaluation of scientific and technological activities, as part of the
Natural Sciences and Engineering Research Council of Canada (NSERC) Grant #EGP 433987-12.

1.1 Concepts and Definitions

In this section, short summaries of essential concepts related to the research topic are presented:

Bibliographic Database

It is a database containing bibliographic records about scientific journals, books and conference
proceedings and it holds information such as authors information, keywords, titles, affiliation, and
references. Generally, bibliographic databases provide a comprehensive overview of the world’s
research output.

Well-known examples include PubMed 2 that is the world largest medical bibliographic database
on life sciences and biomedical information developed and maintained by the United States Na-
tional Library of Medicine (NLM). It became a free resource in 1997, covers all biomedical fields
and contains more than 20 million citations in 40+ languages. Another one is SCOPUS 3 that is the
largest abstract citation and database of peer-reviewed literature. It provides precise entry points
to literature in the fields of science, technology, medicine, social sciences and art and humanities.
It has information regarding abstracts and citations for 50+ million items and over 20 thousand
peer-reviewed journals. It supports creating alerts on getting informed about certain publications
or citations in other articles through its user interface, making it unique with a broad usage. An-
other one is the Web of Science (WoS) 4 core collection that is another famous interconnected
resource information that enables searching science related scholarly articles. It indexes citations

2https://www.ncbi.nlm.nih.gov/pubmed/
3https://www.scopus.com/home.uri
4https://www.webofknowledge.com

3

from thousands journals in the areas of science, social sciences and arts and humanities. The in-
dexing includes 12,000+ scholarly journals, including open-access, and over 160,000+ conference
proceedings.

Named Entity Disambiguation

In information extraction, a named entity is a real object such as person, location, organization,
etc that can be denoted with a proper name. Example of named entities could be authors in bibli-
ographic databases. With vast and enormous amount of data being represented in such databases,
which can be because of typographical errors and imperfect information, it is difficult to recog-
nize named entities in a manner that each unique item refers to its citations only. This raises the
problem of named entity disambiguation. Author name disambiguation is a type of named entity
disambiguation that applies to scholarly articles and the aim is to find all the publication records
of the same author and distinguish them from the others. In other words, it can be defined as par-
titioning of a collection of data records into clusters where all records belong to a unique entity.
Typical approaches of author name disambiguation rely on information about the authors such as
email addresses, their affiliations, co-authors and citation graphs that helps identifying them among
the all. Accordingly, this information can be used to implement a machine learning classifier that
decides whether two entities refer to the same author or not.

Blocking

It refers to partitioning a set of records in a dataset into blocks and then only comparing records
that belong to the same block. Blocking can reduce significantly the amount of time required to
perform pair-wise comparisons, making it a suitable component of disambiguation techniques. It
helps to create scalable frameworks of disambiguation by providing an effective way of comparing
entities in a large volume of data. Blocking uses a metric to distinguish between the records. This
metric is typically a similarity distance between string records or any type of encoder that generates
relevant information necessary to discriminate.

Bag Of Words (BOW)

In learning from text, one of the fundamental problems is that the length of the entity we are
learning from (the title of the document for example) can vary so much that it becomes impossible
to use them as an input feature. In order to overcome this problem, we can just consider the
significant words that make up the entity under study; regardless of order, grammar and number
of occurrences. BOW is a simplified modeling used widely in information retrieval (IR), natural

4

language processing (NLP) and image processing (by treating image features as words) and it is
used to extract and quantify features, perform object categorization, search, document classification
and topic modeling.

Supervised Learning Algorithms

Within the context of artificial intelligence (AI) and machine learning, a supervised learning method
is defined as a learning algorithm in which the training data is a combination of a set of examples of
input subjects and their desired outputs. For example, in image processing techniques, a supervised
learning for an AI system takes various labeled pictures in different categories, then after a specific
amount of observation and training, such system should be able to distinguish between them and
categorize unlabeled images. It is called supervised training because the information is available
to the learner beforehand, and it can use a direct measure of its results to improve its performance.
Unsupervised learning, on the other hand, refers to an algorithm that can learn to perform the
desired task from unlabeled data.

One of the goals of this research is to enhance the disambiguation method by implementing a
supervised learning algorithm that learns how to generate the best configuration of classifiers.

Weak Classifier (WC)

WCs refers to simple predictors implemented by using elementary classification features that per-
form slightly better than a random classifier. WCs make decisions based on simple rules avoiding
complex predictions. These rules can be implemented using thresholds on similarity measures
of single classification features (e.g. surname or forename) in disambiguation problems. Conse-
quently, such WCs are efficient in terms of computational cost. The classic example of a weak
classifier is a Decision Stump that is a one-level decision tree.

Cascade Classifier (CC)

A cascade classifier is composed of several weak classifiers, assembled in a parallel structure that
is followed by a decision operator. The structure of the CC and threshold values for the WCs are
determined using a supervised training method.

Phonetic Encoding Algorithm

The phonetic algorithm is a method of hashing words and names based on the way that they are
pronounced. There are many implementations based on several commonly used algorithms such as

5

Soundex, NYSIIS, Metaphone and Double Metaphone. An implementation of such algorithms is
called a phonetic encoder, which is a function that takes a word as an input and produces the output
of its pronunciation on codes. In fact, such algorithms allow comparisons of words by associating
two different words with similar pronunciation with the same code, thereby providing an option for
finding approximate rather than exact matches. In this research, phonetic encoding algorithms are
used in blocking method to reduce the number of record-pair comparisons to calculate.

String Similarity Metric

String similarity algorithms are used to measure distances between two strings. They are used
in many domains such as document clustering, consolidation of data, fraud detection, word-sense
disambiguation, natural language processing and information retrieval. In the context of the appli-
cation under study in this research, the decision of WCs is based on a threshold on the similarity
between features such as surname, forename, etc. Therefore, choosing a suitable string similarity
metric is critical for finding an appropriate compromise between speeding up the process, reduc-
ing sensitivity to thresholds and increasing the ability to cluster similar words (as well as avoiding
being too discriminative to separate highly similar ones).

Clustering

Clustering refers to an unsupervised learning process of classifying objects into groups where the
members of each group are as similar as possible to one another, and different groups are as dis-
similar as possible from one another. The difference between clustering and classification is that
classification is a supervised method for predicting the class of the data from pre-labeled classified
instances, whereas clustering is an unsupervised learning that tends to find ”natural" grouping of
data given un-labeled instances. Typically, a good clustering method should produce high quality
clusters in which the intra-cluster (within a cluster) similarity is high and the inter-cluster (between
clusters) similarity is low. The quality of a clustering result also depends on the similarity measure
used by the method. However, it is often very hard to define ”similar enough" or ”good enough",
and the answer is typically highly subjective. Therefore, the evaluation process for the similarity
measure that is used in clustering requires specific metrics that are defined based on the application
at hand.

There are many applications for clustering. For instance, in business it can be used to discover and
characterize customer segments for marketing purposes (Montani and Leonardi, 2014) whereas in
biology it can be used for classification of plants and animals given their features (Rhee and Mutwil,
2014). Clustering methods also applied to disambiguation problem (Nadimi and Mosakhani, 2015)
(Liu et al., 2015) (Caron and van Eck, 2014) and revealed successful results of their applications in

6

this domain.

Bootstrapping Aggregation (Bagging)

Bootstrapping is a meta-algorithm used to reduce variance and avoid over-fitting in a machine
learning algorithm, and its principle is to approximate the sampling distribution by simulating it
from a model of the data, and treating the simulated data just like the real data. In bootstrap
algorithms (Efron, 1979), we draw many independent bootstrap samples from a set of data points
X , then we evaluate the corresponding bootstrap replications

∗
X1,

∗
X2, . . .

∗
Xn, and we estimate the

standard error for the number of bootstrap samples used. Bootstrapping Aggregation (Bagging)
(Breiman, 1996) relies on the bootstrap technique, and it is a way of building ensemble learners by
using the same learning algorithm, but training each learner on a different set of data. We create
random subsets (bags) of data, each one containing N ′ Ă N data points, where N is the number of
training instances in the original data. We use each bag to train a different model, and we obtain an
ensemble of different models that can be combined through model averaging.

Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) is a stochastic optimization technique that was introduced by
Eberhart and Kennedy (Eberhart and Kennedy, 1995) and is inspired by the social behavior of bird
flocking or fish schooling. This type of algorithm tries to find a solution in a search space by
setting a collection of particles that move around this search space taking into the account their
own best past location and the best past location of the assembled swarm. It explores a multi-
dimensional search space in which all the particles locate the optima. Although it resembles an
evolutionary approach, this method does not use selection operator and all population members
survive to the end. The emergent behavior of particles will result in iterative amelioration of the
quality of problem solutions over time. We used the PSO to find the best set of values for classifiers
thresholds in disambiguation method.

Set Cover Optimization (SCO)

Given a universe of items U and a collection of a set of items S, minimum set cover problem (Gens
and Levner, 1980) tries to find the minimum number of sets that covers the whole universe. This
problem is a NP-hard problem (proven by (Karp, 1972)). An instance of such problem can be
viewed as a graph, with sets represented by vertices on the left, the universe represented by vertices
on the right, and the inclusion of elements in sets represented by edges. The objective, then is to
come across a minimum cardinality subset of left-vertices which covers all of the right-vertices.

7

We used SCO to figure out the minimum set of classifiers that minimizes the number of incorrectly
classified records and the processing time in order to find the best arrangement of the classifiers in
the disambiguation method.

1.2 Research Objectives

The aim of this research is to optimize a cascade disambiguation application. For this purpose first,
we conduct comparative evaluations of different metrics used in the disambiguation task such as
string similarity measures and phonetic encoding algorithms. Such evaluations enable the use of
most appropriate measures in the studied application. Second, we develop a learning algorithm that
can establish the best order and threshold values for the cascade structure of classifiers. All in all,
these optimization steps should increase adaptability, flexibility, and usability of such algorithm to
extend its utilization to different domains and data sets.

1.3 Thesis Plan

In Chapter 2, we explain a background literature review on most of the concepts related to this
research, and we provide information with regard to previous works. Chapter 3 describes the
existing algorithm, which is the subject of our research. We briefly explain the elements of the
algorithm in order to provide understanding of its limitations that are target topics of our research.
First an overview of the method is introduced. Second, we discuss the pre-processing, classification
approach and the algorithm structure, and finally, we discuss the evaluation process. Chapter 4
includes the design methodology and the steps of our research. Once the context and problem
are explained, we take a look at the method used to conduct our experiments. We focus on three
major elements (similarity metrics and phonetic encoding algorithms evaluation and development
of a learning algorithm to generate the best configuration of the classifiers) in order to optimize
the application at hand. Chapter 5 summarizes our results and findings, and finally, in Chapter 6 a
general discussion and conclusion about the achievements of this research are presented as well as
some directions for the possible future studies.

8

CHAPTER 2 LITERATURE REVIEW

This chapter reviews the literature and provides background information about the concepts and
methodologies concerned with this research. First, in Section 2.1 we define the problem of name-
based disambiguation in a bibliometric context and review related works that address this problem.
Then we explain the ensemble learning method in Section 2.2 and we review techniques and meth-
ods that are used within its context. Since our methodology consists of three separate optimization
steps, we provide background information about each of them in the following sections. Section
2.3 presents the definition of Particle Swarm Optimization algorithm and the variety of its applica-
tions and settings. Section 2.4 deals with the Set Cover problem and related works in literature that
attempted to solve this problem.

2.1 Name-based Disambiguation

Bibliometric research1 is an important methodology to evaluate the output and impact of scien-
tific activities of researchers and institutions. The presence of ambiguous names corresponding
to a large number of authors is a well-known major problem to bibliometric assessors and digi-
tal library users. Cultural aspects of naming conventions add more to the problem. For example,
Chinese names represent the highest level of ambiguity since many Chinese share a few family
names such as ”Wang" and ”Zhang" that can correspond to over a million of authors in many bib-
liographic databases. The disambiguation of bibliographic data seems inevitable to avoid reducing
the accuracy of bibliometric evaluations. Name-based disambiguation is a fundamental step in bib-
liometric analyzes and it aims to associate each author to its publication records in a bibliographic
database. Knowing individuals, in principle, is also crucial for establishing new resources such as
citation/collaboration networks and author profiles.

Some previous studies were conducted with the goal of developing time-efficient algorithms for
name-based disambiguation by using density-based classification algorithms (Huang et al., 2006),
probabilistic approaches (Torvik and Smalheiser, 2009) (Torvik et al., 2005), boosted-tree method
(Wang et al., 2012), hierarchical clustering (Cen et al., 2013) and decision trees (Treeratpituk and
Giles, 2009). Although techniques used to solve small-scale disambiguation problems are effective,
they mostly have a high computational cost, hence, they are inappropriate for processing large
databases (Mitra et al., 2005). In fact, when dealing with large-scale problems, methods proposed
in the literature are poorly efficient due to the size and variability of the data, or require auxiliary

1"A quantitative method to take into the account analysis of related publications in order to examine the knowledge
structure and development of research fields."

9

information that may not be available at any time, hence forcing them to require a long processing
time to produce the results.

Author name disambiguation is a particular case of name-based entity disambiguation, in which the
entities being disambiguated are the authors of scientific publications in bibliographic databases.
Such a problem can be defined as: partitioning of a collection of author information records into
clusters where all records belong to a unique author. It is divided into multiple parts or N-class
partitioning problem, in which a set of NR bibliographical records Ri(0 < i < NR − 1) has to be
associated to a set of NE authors E j(0 < j < NE − 1) based on predefined criteria.

Although author name disambiguation can be considered as a binary comparison problem, it cannot
be accomplished by performing a pair-wise comparison of all records (since the calculation time
is quadratic), especially when operating on very large datasets such as bibliographic databases.
Additionally, performance of pairwise classification may be hindered by the so-called violation of
transitivity phenomenon (Loomes et al., 1991) that can be explained as: E1 ∼ E2 and E1 ∼ E3
but E2  E3 where∼ is a similarity operator and E1, E2 and E3 are three entities to be classified.
At the beginning of the classification process, violations of transitivity are important because the
information collected by each author entity is very limited, and may be of low quality. Two similar
records can easily be seen as belonging to different authors, which results in over-segmentation
because of this lack of quality information. Several approaches have been developed (Torvik and
Smalheiser, 2009) (Culotta et al., 2007) to tackle this problem, but they appear not suited to disam-
biguation of large bibliographic databases due to the degree of the extra computations they require.

Moreover, author name disambiguation is faced with two major problems: bibliographic databases
that contain author records usually include a large volume of data, and the quality of the data is
low. Thus far, manual or semi-automatic disambiguation techniques were used (Balsmeier et al.,
2015) to overcome these problems; however, results of such methods are questionable for frequent
surnames, e.g. ”Smith" or ”Wang" because the information collected by each entity is limited. In
addition, the processing time of these methods for real-world, large databases is significantly high.
To solve these problems, some automatic methods have been developed by researchers that can be
divided into two categories according to whether or not they need supervised training in order to
specify the values of the tuning parameters.

There have been several approaches regarding unsupervised disambiguation that avoided any train-
ing method without using privileged information. For instance, (Cota et al., 2010) designed a
heuristic-based hierarchical method by combining similarity functions, without knowing a priori
the correct number of clusters. This method was successfully applied to large-scale datasets, but
its main drawback was a very high computational cost. In another research, (Sun et al., 2015)
developed an entity disambiguation algorithm using the artificial neural networks (ANNs). They

10

have shown that without using training data and by incorporating semantics of contexts, the qual-
ity of the disambiguation process can be significantly improved. Nonetheless, the method was
computationally intensive and hard to interpret and understand.

Supervised disambiguation methods, on the other hand, were developed based upon using sequen-
tial Bayesian classification and Support Vector Machines (SVM) (Han et al., 2004), K-spectral
clustering (Giles et al., 2005) and hidden Markov models (Tang et al., 2012). Although these tech-
niques can produce accurate results, all of them suffer from high computational costs and their
inability to generalize in the presence of small amounts of training data.

To cope with the problem of speed, there were some attempts to make the process of entity dis-
ambiguation more time-efficient; as an example, Blanco et al. built a probabilistic model that sig-
nificantly increases the speed of entity linking (linking free text to entities) in web search queries
(Blanco et al., 2015). One limitation of this model is the lack of scalability which makes it inap-
propriate in the domain of large datasets.

Another work (Nguyen et al., 2014) attempted to establish a scalable efficient method to perform
name-based entity disambiguation of unstructured data in the context of the web of data in a reason-
able time. The result of this research was a name entity disambiguation system that reconciles high
output quality with high-throughput usage at the Web scale, but it has a limit of the disambigua-
tion method being highly dependent on the domain-specific features. The method was developed
to perform well on specific domains (such as annotated news articles), but it was not possible to
extend its usage and generalize the disambiguation process to other types of data.

Another way of addressing the problem of speed is to employ a method called blocking that will be
explained in the following section.

2.1.1 Blocking

Blocking is a method used to speed up the disambiguation process (Christen, 2012). To perform
blocking, we partition a set of records of a dataset into groups (blocks) of similar surnames, and
then we only compare those records that were put together in the same block instead of comparing
all the records together. Basically, blocking tends to reduce the amount of time required by pair-
wise comparisons in applications such as disambiguation. This reduction of time comes with the
slight price of reducing the efficiency because of not considering all the possible solutions in all
records of the dataset. Nonetheless, this trade-off between speed and efficiency could be in favor of
the disambiguation application because it avoids the exhaustive search and has a minimal impact
on the results.

The blocking method has been successfully applied in the domain of name-based disambiguation.

11

For instance, Lee et al. (Lee et al., 2005) used a two-level blocking framework to solve the mixed
citation problem in bibliographic digital libraries with the significant reduction in computation
complexity to O(C |B|), with C being the number of blocks and |B| the average size of them. In
another work, (Huang et al., 2006) designed a method to solve the name-based disambiguation
problem with the help of a blocking module that can significantly reduce the cost of similarity
calculation.

There are several approaches that have been used in literature to implement blocking in author
name disambiguation method:

• Spelling-based: This approach suggests to group author name-based on their name spellings.
String similarity measures can be used in this approach to measure the similarity distance
between the names.

• Token-based: This approach is based on grouping authors that are, at least sharing one
common token into the same block e.g., ”Jack C. Watson" and ”Watson, Karen" will be
added to a similar block (Li et al., 2010). The main disadvantage of such approach is that
it can result in small-sized blocks if the author names have very rare spelling (non-English
words more probable) and if the authors’ name spellings are common (Chinese words), or
have several initials in the name, then the obtained blocks can have a large number of names.

• N-gram: It is similar to the previous token-based approach with the difference in granularity.
In fact, instead of finding common tokens in data, it aims to check the existence of common N
continuous characters from author names (N = 4 has proven to obtain good results (Gravano
et al., 2003)). This approach tends to put many authors on the same block because of its finer
granularity compared with previously mentioned approaches. For instance, suppose that we
have ”Jane C. Johnson" and ”L. Jane-Donc" in our data set that have the common 4-gram
”Jane" will be put on the same block.

• Sampling: This approach suggests to randomly draw a number of samples that are most
similar to a string (author name) and group them into the same block. One of the sampling
techniques which is fast and accurate is the sampling-based join approximation method pro-
posed by (Gravano et al., 2003). By choosing an appropriate randomization process, this
approach can be time-efficient and as a result, it can serve as a good blocking method in
disambiguation applications.

One key factor to the success of the application under study is the right choice of the encoder that
acts as a measure to filter records and assign them to the blocks. If the filtering criterion is too

12

aggressive, then similar words would end up being distinguished, and correct matches may be in-
correctly pruned away. On the other hand, if the blocking method uses a measure that is too lenient,
many numbers of inputs (including noisy data) will pass. As a consequence, the size of blocks and
the calculation time would increase and the quality of the results will decrease significantly.

2.1.2 Phonetic Encoding Algorithms

A phonetic encoder is a function which indexes a word based on its pronunciation. In fact, such
an algorithm allows similarity-based word set comparisons by associating two different words with
similar pronunciation with the same code. Phonetic algorithms have been used in a variety of
applications such as: normalizing short text messages in under-resourced language (Rafae et al.,
2015), finding reasonable variants of names (Pinto et al., 2012), ranking normalization pairs in
order to construct a dictionary of lexical variants (Han et al., 2012), and introducing protocols for
achieving privacy preserving record linkage (Karakasidis and Verykios, 2009).

Phonetic encoding takes a word as an input, then generates an encoded key, which should be the
same for all words that are pronounced similarly while preserving a reasonable amount of fuzziness.
These phonetic matching schemes have underlying rule-based mechanisms by which they partition
the consonants using phonetic similarity, and then they use a single key to encode each of these sets.
Consequently, strings that sound similar come out identical in their encoded forms. For example,
the RefinedSoundex algorithm groups a set of words: {Hairs, Hark, Hars, Hayers, Heers, Hiers}

into a single code as: "H093”.

As a particular optimization step in this research, we set out to evaluate several commonly used
phonetic algorithms to understand whether they can reduce the number of comparisons and save
time in the disambiguation process. The closest work to our research was done by Zobel and
Dart (Zobel and Dart, 1996), in which they performed a comparison of such algorithms. However,
the scope of their work was limited to a performance evaluation, whereas we have made a novel
contribution by conducting a range of quantitative analyses of the quality of each phonetic encoding
algorithm in terms of computation time, ability to assemble similar words under the same code, and
ability to give different codes to phonetically very dissimilar words. In addition, our experiments
were performed on a realistic dataset as opposed to a hand-edited dataset for (Zobel and Dart,
1996).

2.1.3 String Similarity Metrics

A string similarity metric is used to measure similarity/dissimilarity between two words for com-
parison or approximate string matching (also known as fuzzy string searching) (Baeza-Yates and

13

Navarro, 1996). Various applications utilize string similarity metrics to perform tasks such as clus-
tering or matching entity names (Cohen and Richman, 2002) (Branting, 2003), spelling error de-
tection and normalization of micro texts (Xue et al., 2011), extracting structured data from unstruc-
tured textual data in order to enrich product ads (Ristoski and Mika, 2016), ontology alignment
(Cheatham and Hitzler, 2013), as well as adaptation of such algorithms to perform data cleaning
operations such as duplicate detection (Bilenko and Mooney, 2003) (Martins, 2011). These algo-
rithms are used in Information Retrieval (IR) systems to develop applications that enable searching
for information in databases, documents or even Linked Data. Such applications are usually eval-
uated in terms of the ability to retrieve relevant and accurate information regarding a string query.
Hence, using an efficient similarity metric is critical in this context.

Although most of the existing works rely on optimizing result accuracy of such metrics, the trade-
off between speed of the measurement process (especially when operating on large datasets), the
sensitivity of metric with respect to the threshold and discriminatory power is mostly ignored in
the literature. With regards to performance, previous works such as (Mitra et al., 2002) attempted
to introduce a new feature similarity algorithm that establishes high performance then dealing with
real-life data sets. (Cohen et al., 2003) conducted a comparative study of the performance of several
algorithms in name-matching tasks. They have shown that a modified version of the Levenshtein

algorithm outperforms the others by obtaining better results, but they considered only the F1 score
as the evaluation metric, and also the computational cost was not considered.

Another work has revealed the importance of similarity measures and their impact in the semantic
web by developing a time-efficient approach for the discovery of links between knowledge bases
(KBs) on the Linked Data (Ngomo and Auer, 2011). Papadimitriou et al. (Papadimitriou et al.,
2010) discussed the possible effect of the sensitivity of similarity functions on web graphs that
would associate with the quality of search results in search engines. In fact, they have shown that
by having a similarity function that is more sensitive to changes in high-quality vertices in web
graphs, results of a search query can be significantly improved. Applications of these metrics tar-
get a broader range. Another study showed that choosing an efficient similarity measure can help
producing an ontology-based Question Answering (QA) system that supports query disambigua-
tion, knowledge fusion, and ranking mechanisms, to identify the most accurate answers to queries
(Lopez et al., 2012).

String similarity algorithms are a key component of disambiguation methods since they are used as
the distance measure between features (words or tokens).

14

2.2 Ensemble Learning

Ensemble learning is the process of combining several different models such as classifiers to create
a better model to solve a particular problem. It takes into account that many predictors can perform
better than a single one. An ensemble combines many predictors (often a weighted combination of
predictors) that might be either the same kind of learner or different types if we do not know what
kind of predictor could be best for a given problem. Simple ensembles are unweighted averages
of simple learners with the outcome defined as a majority vote. In a weighted situation, we might
think that some of the predictors are generally better than the others and we might want to give
them more weight than the others. Another possibility is to treat individual predictors as features
and combine them using entirely new predictors that take the output of the rest of the predictors
and produces better results.

Cascading is a particular case of ensemble learning based on the concatenation of several classifiers,
using all information collected from the output of a given classifier as additional information for
the next classifier in the cascade. Cascade classifiers are mostly employed in image processing for
object detection (Viola and Jones, 2001) and tracking (Okuma et al., 2004).

The cascade structure results in computational efficiency since the average number of elementary
features that have to be computed is limited by the early elimination of most records. Nevertheless,
accurate classification is obtained because all relevant features are used when a decision is made.
Cascade classifiers are trained with sample data, and once trained, they can be applied to new data.
Such methods were tested in previous studies and they have shown very high classification rates
in near real-time in domains such as: face detection (Degtyarev and Seredin, 2010), and semantic
web (Berendt et al., 2002).

Previous works show that the ensemble learning can be used to solve the disambiguation problem.
For instance, ensemble learning methods proved to improve the accuracy of word sense disam-
biguation (Pedersen, 2000) and entity linking (Chen and Ji, 2011). In another work, Speck et. al
performed an extensive evaluation of 15 different ensemble methods used to solve the named entity
recognition problem (Speck and Ngomo, 2014). Their study reveals that the ANNs and the Ad-

aBoost methods perform better than the other techniques (such as regression analysis or Bayesian
networks). However, only F1 score was used to carry out the evaluation process, and the time-
efficiency of such methods was ignored.

2.2.1 Bootstrapping Aggregation (Bagging)

The Bootstrapping Aggregation (Bagging) method was first developed by Breiman (Breiman, 1996),
and it is by definition: an ensemble technique that is capable of ”generating multiple versions of a

15

predictive model in parallel and use them to get an aggregated predictor".

The method tries to improve the quality of classification by combining classifications of randomly
generated training sets. Given a training set of size N , bagging generates new training sets, each of
size N ′ by sampling from the original training set and with replacement (some observations may
be repeated). Multiple M models on different samples (data splits) will be created until a certain
iteration number or an acceptance criterion is reached. Then, bagging will average their predictions
(in the case of regression) or uses a majority vote (in the case of classification) of these models to
predict new data. Figure 2.1 depicts the general idea of the Bagging method.

Figure 2.1 Demonstration of the Bagging algorithm

2.2.2 Boosting

Boosting is an ensemble learning technique in machine learning based on the idea of creating a
highly accurate prediction rule by combining many relatively weak and inaccurate rules. Each
individual predictor tends to be very simple and by combining many of these weak learners that are
not able to learn complex functions, we can convert them all into an overall much more complex
classifier. The training data is divided into several sample train sets and we use a learner algorithm
for each to build a separate classifier and by combining all together we achieve one strong classifier
(as shown in 2.2) at the final step that can be used to predict new incoming data with better accuracy
than each individual classifiers.

The main idea of this algorithm is to focus new learners on examples that others get wrong (that we
call them hard samples), and while training learners sequentially, focus later predictions on getting
those examples right. In the end, the whole set is combined and many weak learners are converted
into a complex predictor. Boosting methods were used for regression (including generalized re-

16

Figure 2.2 Demonstration of the Boosting algorithm

gression) (Bühlmann and Yu, 2003), for density estimation (Ridgeway, 2002) and for multivariate
analysis (Friedman et al., 2000).

The first realization of boosting that saw great success in the application was Adaptive Boosting or
AdaBoost (Freund et al., 1999) for short. AdaBoost is different than the Boosting in a sense that it
takes the misclassified data and adds them to the next sample of the training set (see Figure 2.3). It
also puts more weight on wrongly classified instances. Weighted error of each new classifier tends
to increase as a function of boosting iterations.

Figure 2.3 Demonstration of the AdaBoost algorithm

The AdaBoost method was used in many domains such as computer vision for text detection (Lee
et al., 2011) (Liu, 2010), face detection (Yang et al., 2010) and cascade classification when com-
bined with SVM (Cheng and Jhan, 2011).

Although AdaBoost provides good solutions to a variety of classification problems, it needs adapta-
tions to tackle the over-fitting problem. Over-fitting is a problem in machine learning that happens

17

when a model learns the random fluctuations and noise in the training data to the extent that it has
a negative impact on the performance of the model on new data. A common approach to avoid the
over-fitting when training a model is to use validation or cross-validation to compare the predictive
accuracy of test data (Rätsch et al., 1998).

2.3 Particle Swarm Optimization

Particle Swarm Optimization is a stochastic optimization method of continuous nonlinear func-
tions first introduced by Kennedy and Eberhart (Eberhart and Kennedy, 1995). Originally, this
method was inspired by social behavior of bird flocking, and it was developed to work on the social
adaptation of knowledge (Kennedy, 1997) with the aim of simulating the adaptive sharing of repre-
sentations among social collaborators. The algorithm represents a systematic approach to explore
a problem space using a population of individuals. The progress and success of these individuals
influence their searches and those of their peers. The main concept is to initialize with having a
population that we call swarm of candidate solutions to be called particles. The particles move in
a search space based on the knowledge about their own best-known position as well as the entire
swarm’s best-known position. Each particle’s movement is derived by two forces: one pulling it
with the random magnitude to the fittest location so far reached by the particle (Pbest), and an-
other one pulling it with the random magnitude to the best location obtained by any of the particle’s
neighbors in the swarm (Gbest). Figure 2.4 shows a flow chart of a typical standard PSO algorithm.

The velocity of each particle in the swarm is updated using the following standard equation (al-
though there exists variety of variants proposed in literature):

vi(t+ 1) = ωvi(t) + c1r1 [x̂i(t) - xi(t)] + c2r2[g(t) - xi(t)]

In above equation i is the index of each particle, therefore, vi(t) is the velocity of particle i at time
t and xi(t) is representing the position of particle at the same time. The parameters ω, c1 and c2 are
user-supplied coefficients with conditions as such: 0ď ω ď 1.2 , 0ď c1 ď 2 and 0ď c2 ď 2. Values
r1 and r2 are random values generated for each update of the velocity such that 0 ď r1 ď 1 and 0 ď
r2 ď 1. In addition, x̂i(t) is representing the best candidate solution for particle i at time t, and g(t)
is the swarm’s global best candidate solution.

Basically, each three terms of this equation have a certain role in PSO algorithm. ωvi(t) is called
inertia component and it is used to keep the particle moving in the same direction originally headed.
The value of ω is called inertial coefficient (usually between 0.8 and 1.2) and it can either dampen
the particle’s inertia or accelerate the particle in its original direction. The second term c1r1 [
x̂i(t) - xi(t)] is called cognitive component and it is presenting the particle’s memory, making it

18

Figure 2.4 Particle Swarm Optimization algorithm flow chart

to return to the regions of the search space that high individual fitness was observed. Finally, the
last term c2r2[g(t) - xi(t)] is called social component that guides the particle to move to the best
region the swarm has found so far. All the mentioned terms have a stochastic influence on the
velocity update. To avoid particles from moving too far beyond the search space, another values of
Maximum Momentum and Minimum Momentum are used.

When the velocity for each particle is computed, the position of each particle is updated by applying
the new velocity to the particle’s previous position:

xi(t+ 1) = xi(t) + vi(t+ 1)

Eventually, particles tend to move toward the optimized solution. The algorithm is repeated through
iteration numbers, and it will stop when reaching a stop condition, which can be either maximum
number of iterations or a cost-effective solution achievement.

PSO has been used in several areas including human motion tracking and pose estimation (John
et al., 2010), scheduling (Liu et al., 2010) Pandey et al. (2010), image processing (Broilo and
De Natale, 2010) and feature selection in classification (Xue et al., 2013).

Generally, PSO can be applied to any optimization problem that deals with maximizing/minimizing

19

an objective function. While all the gradient-based methods can do this, they require the problem
space to be convex, smooth, and continuous which is a big barrier when solving real world prob-
lems. By contrast, PSO can operate on rough spaces and still produce reasonable solution. In
addition, PSO has fewer parameters to adjust, when compared to its competitor genetic algorithms.
Hence, it became a source of attraction for many problems in many research domains. However,
the performance of the particle swarm optimizer depends on choosing the best settings for its pa-
rameters, hence, it requires guidelines for selecting the most efficient ones.

2.4 Set Cover Optimization

Suppose to have a set of n elements U = [e1, e2, . . . en] and a collection S = {S1, S2, . . . Sm}
of m non-empty subsets of U , where ∪mi=1Si = U and each Si is associated with a positive cost
c(Si) ≥ 0. The minimum set covering optimization problem (Gens and Levner, 1980) is to find a
subset A ⊆ S such that

∑
Si∈A c(Si) is minimized subject to ∪S∈AS = U .

The set cover is a NP-complete problem (no fast solution is known), thus we are looking for an
approximate solution rather than optimal one.

We consider the problem of ordering WCs in the disambiguation algorithm as a set cover problem
in which by using a cost function, we try to find a minimum set of WCs with less classification
error and more time efficiency.

To solve the minimum set cover problem, previous studies suggested several approximations and
heuristics algorithms (Akhter, 2015). For instance, (Emek and Rosén, 2016) studied the set cover
problem under the semi-streaming model and proposed an approximation algorithm that obtained
with a computational complexity of O(

?
n). In other efforts, Guanghui Lan et al. introduced Meta-

RaPS (meta-heuristic for randomized priority search) solution for this problem (Lan et al., 2007),
and Fabrizio Grandoni et al. proposed an algorithm based on the interleaving of standard greedy
algorithm with the ability to select the min-cost set which covers at least one uncovered element
(Grandoni et al., 2008).

20

CHAPTER 3 FAST AUTHOR NAME DISAMBIGUATION ALGORITHM

In this section, we describe an algorithm that has been used to run the disambiguation task. This
algorithm is provided as an application that generates results of disambiguated data given a bib-
liographic data set in a reasonable time-efficient manner (Voorons et al., 2017). Our research is
conducted over this application, for this reason, we explain its steps to provide background infor-
mation for our methodology.

3.1 Overview

The context of this application is to evaluate the scientific activity of individuals and institutions.
This type of assessment is beneficial to funding agencies and governments by enabling consider-
ations on the effectiveness of funding programs and planning research policies. For this purpose,
bibliographic databases, which are very enriched source of data can be used. Generally, such
databases hold very large amounts of information about researches and publications. However,
they face certain difficulties: First of all, the size of the bibliographic databases are too large that
slows down the process. In addition, there are many problems of ambiguities which have multiple
reasons: natural reasons and reasons related to compilation errors that can be summarized as:

• A single individual may have published under multiple names, that includes: a) orthographic
and spelling variants b) spelling errors, c) name changes over time as may occur with mar-
riage, religious conversion or gender re-assignment, and d) the use of pen names.

• Common names may comprise several thousand individuals (as an example, we could have
millions of Mr. ”Wang" since its a very common name in China).

• Meta-data are either not present or incomplete. As an example, some publishers and biblio-
graphic databases did not record authors’ first names, their geographical locations, or identi-
fying information such as their degrees or their positions.

• Duplicate records and swapped fields usually exist.

• A large percentage of scholarly articles are multi-authored, and in fact, represent multi-
disciplinary and multi-institutional efforts, which results in ambiguous data.

The accuracy of the results obtained by performing assessments using bibliographic databases relies
on a process in which each publication record must be associated with the correct individual and/or
institution. This process is called entity disambiguation.

21

In this section, we explain a new methodology for entity disambiguation that was used in appli-
cation under study. This proposed method was developed to address the problem of entity disam-
biguation while preserving the efficiency, versatility and handling the missing fields. This method
was inspired from the AdaBoost cascade classifiers (Viola and Jones, 2001), which has been used
successfully in image processing for object or face detection in large datasets. The internal struc-
ture of this cascade arrangement included the boolean "OR" operator instead of "AND", because
it was a better choice in terms of computational efficiency. This choice also enabled to handle
missing fields by either jump to the next classifier of the same step when the missing data was not
essential, or to exit from the comparison process if it was (e.g., missing surname) and thus create a
new author. The problem of transitivity violation was resolved by the use of an extra classification
stage aiming at result consolidation.

Additionally, unlike other approaches (e.g. artificial neural networks (ANN)), the structure of the
proposed method is easily understandable because it was inferred by the disambiguation techniques
used by bibliography experts. Nonetheless, the cascade structure of the proposed method was
selected by hand (using trials and errors) and it lacks an automated approach for determination.

In the following sections, we describe the elements of the aforementioned algorithm to provide a
general understanding of each stage it contains to run the disambiguation task:

3.2 Pre-processing

This stage included a set of standard automatic information retrieval routines that are commonly
applied in natural language processing (NLP) methods that helps to increase the effectiveness of
data processing:

• Select only the most relevant information fields based on predefined use-cases depending on
the entity to disambiguate.

• Remove duplicate records and redundant words.

• Filter “stop words” and non-discriminants words e.g., ”university" which is common to many
affiliations.

• Create bags of words (BOW) for the reference, address, and keyword fields.

• Replace keywords by identification numbers as processing integers are more efficient than
strings.

22

• Normalize fields by transforming information to the English alphabet, removing non-character
symbols and unnecessary numbers, standardizing regional or cultural specificities e.g., re-
moval of ”née" before woman maiden names.

• Store double Metaphone encoding of the surname in a new field to speed up the classification
algorithm by the use of a blocking method.

• Calculate statistics on the occurrences of each word of each field for later use during the
classification process.

This stage, in summary, significantly reduced the size of the dataset and increased the relevance of
the retained information.

3.3 Blocking

First, in order to reduce the number of pairwise comparisons, a blocking method based on the
surnames of the authors was used. Using a phonetic encoding algorithm, each author was compared
only to authors sharing the same phonetic code.

3.4 Classification Approach

The pre-processing stage helped to reduce the amount of memory and execution time by generating
smaller amounts of data. However, the data still contained noisy data and ambiguities, therefore,
the classification stage took place.

The global architecture of such classification approach was made of N cascade classifiers (CC)
that is depicted in Figure 3.1. In order to achieve high precision rate, the first disambiguation
block contained very strict rules and discriminative classification features such as Email Address or
Employee Identification Codes when available. Despite resulting in a set of very reliable authors,
this step produced over-segmentation. That is the reason why the second disambiguation block was
used to take care of unclassified records with more relaxed rules. Basically, this second block was
responsible to perform the remaining task of disambiguation on the rest of records that were not
classified with strict rules.

23

Figure 3.1 Cascade approach (Voorons et al., 2017)

As it is schematically shown in Figure 3.2, the disambiguation method included four aggregators.
In processing chain, an entity aggregator (EA) was put in place for aggregation of records into
author entities, followed by a recursive aggregator (RA), which addressed transitivity violation by
recursive aggregation of authors until no merge occurs. The cascade structure has a high impact on
the performance efficiency as the average number of elementary features to be computed is limited
due to the fact that most objects are eliminated early.

Moreover, the selection of the data and the formation of the EA and RA depend on the training.

Figure 3.2 Process of entity aggregators and recursive aggregators (Voorons et al., 2017)

24

Table 3.1 Characteristics of different types of weak classifiers

Type Operations Decision Advantages Disadvantages Usage

Set Theory
Equality, intersection or cardinality
of the intersection over two BOWs

Boolean or
Threshold-based

Simple and
fast to compute

Sensitive to non-discriminant
data and typographical errors

Keyword, Co-author
and reference BOWs

Similarity
distances

Measuring similarity using string
similarity algorithms Threshold-based

Robust to
typographical errors

Time consuming when
applied to BOWs, and
sensitive to the metric

Address BOWs

Specialized
Based on specific characteristics
of the data Threshold-based Time efficient

Problem of over-fitting regional
or uncommon particularities Surname and Forename

Each cascade classifier was made of multiple weak classifiers (WC). These WCs were designed
to make decisions based on simple rules (similarity measures of single classification features).
Three different types of weak classifiers have been used in this classification approach which is
summarized in Table 3.1.

Table 3.2 Structure of the first disambiguation block - WoS subset (large size)

Entity Aggregator (EA)
Classifier Classifier Type WC Field Blocking Hit Threshold
1 Set (contains any) E-mail True False N/A
2 Similarity distance Surname – – 0.85
3 Specialized (to forenames) Forename – – 0.85
4 Set (contains no) Article Ids True False –

Recursive Aggregator (RA)
Compound Classifier Classifier Type WC Field Blocking Hit Threshold
1 Similarity distance Surname – – 0.98
2 Specialized (to forenames) Forename – – 0.98
3 Set (contains no) Article Ids True False –
4 Set (% of intersection) Subfields False False 0.3

Set (contains any) BOW reference Ids False False –
Set (contains any) BOW co-authors False False –

5 Set (% of intersection) BOW co-authors False False 0.2
Set (% of intersection) BOW reference Ids False False 0.5

6 Set (contains any) BOW reference Ids & Article Id True False –
Set (contains any) Article Id & BOW reference Ids True False –

25

Table 3.3 Structure of the second disambiguation block - WoS subset (large size)

Entity Aggregator (EA)
Classifier Classifier Type WC Field Blocking Hit Threshold
1 Similarity distance Surname – – 0.95
2 Specialized (to forenames) Forename – – 0.95
3 Set (contains no) Articles Ids True False –
4 Set (contains any) BOW reference Ids False False –

Set (contains any) BOW keywords False False –
Set (contains any) BOW co-authors False False –
Set (% of intersection) BOW addresses False False 0.5

5 Set (% of intersection) Fields False False 0.7
Set (% of intersection) Journal Id False False 0.1
Set (% of intersection) Subfields False False 0.3
Set (% of intersection) BOW keywords False False 0.7

6 Set (% of intersection) BOW reference Ids True False 0.3
Specialized (naive Bayesian) BOW co-authors True False 0.3
Set (contains any) BOW reference Ids & Article Id True False –
Set (contains any) Article Id & BOW reference Ids True False –

Recursive Aggregator (RA)
Classifier Classifier Type WC Field Blocking Hit Threshold
1 Similarity distance Surname – – 0.95
2 Specialized (to forenames) Forename True False 0.95
3 Set (contains no) Article Ids True False –
4 Set (contains any) Fields False False –

Set (% of intersection) BOW address False False 0.8
Set (contains any) BOW co-authors False False –
Set (contains any) BOW reference Ids False False –

5 Set (% of intersection) BOW keywords False False 0.6
Set (% of intersection) Subfields False False 0.6
Set (% of intersection) Journal Id False False 0.4

6 Set (contains any) Article Id & BOW reference Ids True False –
Set (contains any) BOW reference Ids & Article Id True False –
Set (% of intersection) BOW reference Ids True False 0.4
Set (% of intersection) BOW co-authors True False 0.3

Table 3.2 and Table 3.3 provide information with regards to each cascade classifier that contains
multiple WCs when operating on the WoS dataset. Each WC operates on a certain field, and if
applicable, it has a threshold value (in a range between 0 and 1), by which it computes a decision.
For example, the surname classifier (similarity distance) addresses name inversions if one has sev-
eral, and the forename classifier (specialized to forenames) handles initials, diminutives and middle
names. In other cases, each WC is a simple classifier based on the thresholding of the overlap cardi-
nality of two sets of numbers (e.g. set contains no/any classifier or set percentage of intersection).
Set Contains Any is a simple classifier built on a boolean operator, which returns true if the two
feature sets overlap, and Set Contains No is another simple classifier built on a boolean operator,
which returns true if none of the features of each set is included in the other.

Table 3.4 and Table 3.5 show the cascade structure for the small-size SCOPUS dataset that has
been used in the evaluation process. The structure is very similar to the one used for WoS, however,
modifications were applied to thresholds and some WCs were rearranged in certain steps.

26

Table 3.4 Structure of the first disambiguation block - SCOPUS subset (small size)

Entity Aggregator (EA)
Classifier Classifier Type WC Field Blocking Hit Threshold
1 Set (contains any) E-mail True False N/A
2 Similarity distance Surname – – 0.85
3 Specialized (to forenames) Forename – – 0.85
4 Set (contains no) Article Ids True False –

Recursive Aggregator (RA)
Compound Classifier Classifier Type WC Field Blocking Hit Threshold
1 Similarity distance Surname – – 0.98
2 Specialized (to forenames) Forename – – 0.98
3 Set (contains no) Article Ids True False –
4 Set (% of intersection) Subfields False False 0.3

Set (contains any) BOW reference Ids False False –
Set (contains any) BOW co-authors False False –

5 Set (% of intersection) BOW co-authors False False 0.2
Set (% of intersection) BOW reference Ids False False 0.5

6 Set (contains any) BOW reference Ids & Article Id True False –
Set (contains any) Article Id & BOW reference Ids True False –

Table 3.5 Structure of the second disambiguation block - SCOPUS subset (small size)

Entity Aggregator (EA)
Classifier Classifier Type WC Field Blocking Hit Threshold
1 Similarity distance Surname – – 0.95
2 Specialized (to forenames) Forename – – 0.90
3 Set (contains no) Articles Ids True False –
4 Set (contains any) BOW reference Ids False False –

Set (contains any) BOW keywords False False –
Set (contains any) BOW co-authors False False –
Set (% of intersection) BOW addresses False False 0.55

5 Set (% of intersection) Fields False False 0.3
Set (% of intersection) Journal Id False False 0.1
Set (% of intersection) Subfields False False 0.2

6 Set (% of intersection) BOW keywords False False 0.33
Set (% of intersection) BOW reference Ids True False 0.33
Specialized (naive Bayesian) BOW co-authors True False 0.1
Set (contains any) BOW reference Ids & Article Id True False –
Set (% of intersection) BOW addresses False False 0.33

Recursive Aggregator (RA)
Classifier Classifier Type WC Field Blocking Hit Threshold
1 Similarity distance Surname – – 0.88
2 Specialized (to forenames) Forename True False 0.95
3 Set (contains no) Article Ids True False –
4 Set (contains any) Fields False False –

Set (contains any) BOW co-authors False False –
Set (contains any) BOW reference Ids False False –

5 Set (% of intersection) BOW keywords False False 0.2
Set (% of intersection) Subfields False False 0.1
Set (% of intersection) Journal Id False False 0.1
Set (% of intersection) BOW addresses False False 0.2

6 Set (contains any) Article Id & BOW reference Ids True False –
Set (contains any) BOW reference Ids & Article Id True False –
Set (% of intersection) BOW reference Ids True False 0.1
Set (% of intersection) BOW co-authors True False 0.1

27

As illustrated in Figure 3.1, each cascade classifier was followed by a decision operator Di. The
different types of decisions can be itemized as indicated below:

• PASS: The decision is true, meaning that the simple classifier judges that the distance be-
tween pairwise Entities or records is small enough to consider that the two entities or records
belong to one unique entity.

• HIT: The decision is true and leads to a perfect match, meaning that the comparison of pair-
wise Entities or records is performed on a key feature, which decides with high confidence
that the two Entities or records must belong to the same entity.

• BLOCK: The decision is false, meaning that the simple classifier judges that the distance
between pairwise Entities or records is big enough to consider that the two entities or records
belong to two separate entities.

• MISSING_BLOCK: The decision is false due to missing data, meaning that some data are
missing and so the comparison of pairwise Entities or records can not be performed, and it is
not possible to judge whether the two entities or records belong to one unique entity or not.

• MISSING_PASS: The decision is false due to missing data but this is not crippling, meaning
that we can not achieve the comparison of pairwise Entities or records and leave further
analysis to other simple classifiers.

Furthermore, as depicted in Figure 3.3, pairwise classification is performed in an agglomerative
manner: when a record is found to belong to an author, the record features are merged into the
corresponding author features, thereby increasing the knowledge available about the author will
increase the quality of results. In addition, objects that are not associated with any of the authors
of the existing database are added as new authors in the database.

3.5 Cascade Structure Configuration

In the application under study, a heuristic approach was used to find out the structure and the
thresholds. The objective was to achieve effectiveness, insensitivity to missing data, and to filter
out irrelevant records to increase processing efficiency. This structure was determined with trials
and errors, but this was a very difficult task since the structure and thresholds interact with each
other and cannot be specified separately or sequentially. Therefore, the structure was determined
mostly based on what disambiguation experts do manually and through extensive consultation that
was summarized under the form of guidelines:

28

Figure 3.3 Detailed design of an aggregator (Voorons et al., 2017)

1. Assess the discriminating power of the various fields

2. Emphasize on research domain information since authors rarely change their research do-
mains

3. Tend to use low computational complexity WCs in early steps

4. Pay attention to the frequency of missing data in some key fields by grouping the WCs
assigned to evaluate them in CC

5. Associate appropriate thresholds in accordance with the variability of some fields (such as
address that can vary in typography)

According to these guidelines, the configuration of the cascade structure is based on:

• Associating the first CC to highly discriminative fields such as surnames, forenames and
email addresses. However, it is followed by a control WC which prevents merging the two
authors if they share an article ID, therefore avoiding merging two homonyms authors.

• Keeping the structure of WCs simple but efficient in the early stages (in each aggregator, the
next stage aims to efficiently filter out homonyms that are not related based on their research
fields).

• Ensuring the overall efficiency of each aggregator by pushing intensive computations to the
last stages, since the last stages mostly include WCs based on the citation analysis measures

29

such as self-citing and bibliographic coupling1.

• Grouping the WCs that operate on frequently missing data (e.g, keywords, address, refer-
ences and co-authors) together to take the advantage of OR boolean decision operator.

• Setting thresholds heuristically depending on strictly enforced rules (corresponding to high-
value thresholds) and discriminating power and variability of the various fields. For example,
thresholds for Surname and Forename were set to 0.98 while it has been a lower value of 0.5
and 0.2 for BOW reference Ids and BOW co-authors respectively.

3.6 Evaluation

Beforehand, an experiment was performed on two datasets extracted from Web of Science2 and
SCOPUS3, in order to assess the quality of the results obtained by the discussed method in the
application under study. The indicators used to perform such evaluation included:

• Standard quantitative quality indicators:

– Precision rate: The ratio of the records assigned to an author that actually belong to
him.

– Recall rate: The ratio of the total number of database records associated with one
author that has been correctly assigned to him.

– F1 score: Product of the precision by the recall divided by their sum.

• Manual disambiguation results provided by experts (as the gold standard).

• A standard supervised reference method (Huang et al., 2006) combining Support Vector Ma-
chine (SVM) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN).
The reference method (SVM-DBSCAN) operates a blocking method based on author names;
then, using the SVM method enables to constructs clusters based on multiple pair-wise dis-
tances, and then using the DBSCAN algorithm addresses the transitivity violation problem.

1"Bibliographic coupling provides a similarity relationship between scientific artifacts. It happens when two docu-
ments reference a common third document in their bibliographies, therefore indicating that a probability exists that the
two documents are concerned with a related subject matter." (Weinberg, 1974)

2www.webofknowledge.com
3www.elsevier.com/solutions/scopus

30

3.6.1 Datasets

The dataset used for evaluation consists of large number of records of the WoS database which
were automatically disambiguated using author information from the Orcid 4 dataset. It has to
be mentioned that Orcid has a web site that provides a unique digital identifier to every researcher
registered on it. Author manually enter their bibliographic information on the Orcid web site, there-
fore, it ensures a high confidence in the quality of this dataset. Pairwise record comparisons were
performed based on the title, author names, page numbers, journal name, DOI and publication year
in order to extract records of the WoS using the Orcid dataset. This process resulted in generating
a fully disambiguated dataset of more than 2.89 million records corresponding to 132899 distinct
authors. This datasets dataset contained 111120 distinct surnames and forename initials, meaning
that 21779 authors had at least one homonym, which resulted in some very ambiguous cases (this
figure is conservative as it does not account for misspelled names, name variations and multi part
names).

Another dataset that has been used in the evaluation process was composed of 185,253 records
condensed from the SCOPUS database, holding the information that belonged to 2398 distinct
authors working in a variety of Canadian universities and companies.

In addition, in all experiments, a gold standard was created manually by bibliometric experts from
a private company and was used as a base-line to assess the quality of the results and to perform
the quantitative analysis.

3.6.2 Results

The results of the cascade approach and the SVM-DBSCAN methods on WoS subset (large size)
dataset are displayed in Table 3.6.

Table 3.6 Results of the manual cascade approach (WoS) (Voorons et al., 2017)

SVM-DBSCAN Manually configured
cascade approach

Precision (%) 99.47 99.23
Recall (%) 73.88 83.21
F1 Score 0.848 0.905
Processing time (s) 1,817,819 2,724

The results show that despite the size of the dataset, the general quality of the disambiguation can
be regarded as satisfactory with an advantage to the proposed approach that has a better recall rate.

4http://www.orcid.org

31

The better recall is undoubtedly linked to the recurring steps occurring in the recursive aggregators
(RA) of the method.

With regards to the processing time, it took about 45 minutes for the disambiguation of the whole
dataset with the proposed cascade approach, while it took about 21 days with SVM-DBSCAN.
The large difference in processing time can be explained by the fact that, in the cascade approach,
we have the pre-processing stage and the blocking stage which reduced the number of pair-wise
comparisons, thereby improving the time-efficiency of the application.

Furthermore, the cascade approach was tested on the SCOPUS database (small size) and the results
are shown in Table 3.7. The performance was assessed under three disambiguation strategies: strat-
egy C1 which favors precision over recall, strategy C2 which balances precision and recall while
strategy C3 favors recall over precision. The cascade structure was kept similar for all strategies,
whereas the thresholds were adjusted for each case.

It can be seen that C1 obtained a prefect precision as WC parameters were chosen as strict decision
rules. However, a low recall rate was obtained due to an increase in transitivity violations because
when classification rules are strict, records are more likely to be classified as unique authors. C3

produced the best recall rate and C2, as expected, appeared as a trade-off between C1 and C3.

Finally, regarding time efficiency, it can be underlined that the proposed method was more time-
efficient than the SVM-DBSCAN method since it performed the disambiguation of the dataset in
less than 30 seconds for the three strategies, as opposed to 30 minutes for SVM-DBSCAN. This
advantage is clearly of critical importance for disambiguation of large, real-world datasets.

Table 3.7 Results of the manual cascade approach (SCOPUS) (Voorons et al., 2017)

Manually configured
cascade approach

SVM-DBSCAN C1 C2 C3
Precision (%) 99.260 100.000 99.991 99.967
Recall (%) 96.893 88.578 95.883 97.436
F1 Score 0.980 0.939 0.978 0.986
Processing time (s) 1782 26 23 28

3.6.3 Summary of the Results

To conclude, the cascade structure of this algorithm resulted in a high computational efficiency
and helps to scale up to large datasets, whereas the accuracy of the results still depends on the
performance of WCs. Considering the fact that the blocking method is a crucial component of this
application, its influence was not addressed in the method of disambiguation. Hence, it must be

32

optimized by the choice of appropriate phonetic encoding algorithm metric. The other important
part of the application is the choice of string similarity metric as it takes place in many weak
classifiers. In particular, we are interested in choosing a similarity measure that compromises
between accuracy and speed. In addition, another drawback of the application under study is the
manual arrangement of WCs and their thresholds.

To tackle the problems mentioned above, we decided to dedicate our study to examine the appro-
priateness of the phonetic encoding algorithm and similarity distance measure in terms of their
impacts on the results, then develop a learning process to automatically adjust the arrangement of
WCs and their thresholds.

33

CHAPTER 4 METHODOLOGY AND DESIGN

4.1 Experimental Setup

The application under study is not yet optimized regarding the choice of appropriate phonetic en-
coding algorithms for the blocking method and string similarity measures for the classification
operators. Additionally, it lacks adaptability because of not being automated with regards to the
selection of the best ordering and thresholds of its classifiers.

To work on the problems mentioned above, three major steps have been taken:

• Comparing different phonetic encoding algorithms and choose the suitable one. The purpose
of this step is to optimize the blocking method, and the outcome is a set of recommendations
and guidelines to help choose the best one for our problem.

• Comparing different string similarity metrics and figure out which one fits best to our prob-
lem. The purpose of this step is to optimize the decision-making process inside the classifiers,
and the outcome is recommendations and guidelines to choose the best one that fits our prob-
lem.

• Develop a training methodology to automatically construct the configuration of classifiers.
The final product of this step is an automated framework with the ability to generate a cascade
structure along with the corresponding thresholds of the classifiers adaptable to every type
and format of input data that can also help identify the importance of each feature of the
classifiers in overall disambiguation process.

The following sections explain in details our methodology for each step explained above.

4.1.1 Step 1: Comparing Phonetic Encoding Algorithms

Six commonly used phonetic algorithms were selected; since, to the best of our knowledge, quan-
titative performance evaluation and comparison of such algorithms has not been reported in the
literature, specific quantitative metrics were developed in order to rate different aspects. Com-
parisons between these phonetic encoding algorithms were performed on real data extracted from
SCOPUS, and we were able to draw conclusions about the qualities and weaknesses of each en-
coder in the perspective of an application as a blocking method for author names. This allows us to
point out trade-offs between these phonetic algorithms.

34

Selection of Phonetic Encoding Algorithms

We selected six commonly used phonetic encoding algorithms, which, for the sake of generality,
are suitable for working with English and foreign names. Source code and implementation of these
algorithms were taken from the Apache Commons Codec 1.

RefinedSoundex: This phonetic algorithm is a variant of Soundex (NAT, 2007), which was pro-
posed in the 1910s by Robert Russell. Soundex matches words to numerical indexes by partitioning
consonants in groups with ordinal numbers and compiling them to the resulting value. Soundex re-
serves the first letter, then it matches the subsequent letters to digits by certain rules. Vowels and
some consonants are ignored, and adjacent letters or letters separated by "H" or "W" that are in the
same group are treated as one letter. The result, however, is truncated to four characters. Refinded-
Soundex is an improved version of Soundex, optimized for spell checking. In this modified version
of Soundex, the letters are divided into more groups, and there are no special cases with "H" and
"W" since they are simply ignored by the algorithm. Another major difference is that the length of
the result is not truncated, so the code does not present a fixed length.

Caverphone2: It is the second generation of the Caverphone algorithm that was developed by
David Hood (Hood, 2002) as part a project to match the data in the old and new electoral lists in
New Zealand. It was mainly designed (by the Caversham Project at the University of Otago) to be
implemented on New Zealand pronunciations, but it works well with foreign names too. Generally,
this algorithm applies a series of replacement rules to strings (e.g. convert to lowercase, remove
anything not A-Z, replace all vowel at the word beginning with "A", etc.) until getting the first six
characters as the code.

Metaphone: This algorithm was developed (Philips, 1990) to index words by their English pro-
nunciation. The intention to implement this algorithm was to provide more accurate encoding,
therefore, it preserves more information since the letters are not divided into groups. The final code
is a set of characters. Metaphone allows specifying the maximum length of the code (up to 12
characters) so that it can be focused on the first few syllables or words of complex data rather than
the entire raw data. Thus, it maintains the control over the sensitivity of the phonetic similarity.
Metaphone codes are particularly useful in a situation where spelling discrepancies might occur in
words that sound the same.

1http://commons.apache.org

35

DoubleMetaphone: It is a phonetic encoder algorithm for indexing strings by their pronuncia-
tion. DoubleMetaphone is the second generation of Metaphone (Philips, 1990) with several design
improvements over the original Metaphone algorithm. This algorithm codes English words pho-
netically and reduces them to a combination of twelve consonant sounds. It has a large number of
different rules that consider the origin of words, focusing on Italian, Eastern European, Chinese and
others. This encoder was used as a measure in the blocking stage of the application under study.

ColognePhonetics: This algorithm assigns a sequence of digits to words, i.e. the phonetic code.
Similar-sounding words can be identified by having the same phonetic code. Generally, this algo-
rithm implements the "Kölner Phonetic" (Cologne Phonetic) algorithm proposed by Hans Joachim
Postel (Postel, 1969) and it was used as a search function based on phonetics. This algorithm is
related to Soundex but is optimized to match the German language. An important difference is that
unlike the Soundex code, the length of the codes generated by the ColognePhonetics is not limited,
and unlike the RefinedSoundex, it can adapt to the German alphabet special characters.

NYSIIS: It was first introduced in 1970 as part of the "New York State Identification and Intelli-
gence System" (Rajkovic and Jankovic, 2007). This algorithm works by transcoding the characters
of a string based on predefined rules, removing trailing vowels, collapsing all strings of repeated
characters, and keeping only the first 6 characters in final code. NYSIIS tends to produce better
results than Soundex because NYSIIS deals with some multi-character n-grams and supports rela-
tive vowel positioning, whereas Soundex does not. It obtains an accuracy increase of 2.7% over the
Soundex algorithm (Rajkovic and Jankovic, 2007). This algorithm was designed to be used with
American names as well as with phonemes that occur in European and Hispanic surnames.

Data Preparation

The data used for this comparative analysis was extracted from the SCOPUS 2 bibliographic
database. SCOPUS is a very large citation database of peer-reviewed literature, enabling the de-
velopment of smart tools to track, assess, analyze and visualize citations. The dataset holds in-
formation about citations for different types of publications of many authors. In order to perform
evaluations, we collected 185,253 records corresponding to 2398 distinct Canadian authors disam-
biguated manually, with a wide variety of origins (European, Asian, etc.). Author surnames were
used as input data in our experiments.

2www.scopus.com

36

Evaluation Metrics

We implemented and developed special metrics to assess each of the algorithms based on different
characteristics. Each metric addressed specific assessment criteria, and this enabled us to compare
these algorithms in the perspective of blocking in disambiguation algorithm.

We now present the proposed metrics:

• Number of buckets: This metric is used to determine which algorithm obtains an appropriate
number of buckets since we are interested in finding a compromise between quality of the
results and time efficiency. In particular, we would like to obtain large enough number of
buckets to contain all the variations to improve the accuracy of the results, and also we would
like to obtain buckets containing small enough number of names to avoid doing a lot of
comparisons.

• Cross-bucket distance: This metric evaluates by which proportion dissimilar words are placed
in different buckets. This metric should return large values of between-buckets distances if
the phonetic algorithm performs well. In other words, when applying the blocking method,
dissimilar words end up in separate buckets far away from each other. Since we do not have
any gold standard to compare our result, we used the Levenshtein distance (Levenshtein,
1966) as a reference indicator. We conducted several tests with other metrics as reference
indicator and because the results were similar, only experiments performed with the Leven-
shtein distance are reported here. This metric computes the distances between centroids of
the buckets created by each phonetic algorithm, then we report which proportion of distances
is greater than a threshold. The threshold was determined because our results showed that all
the distances below this thresholds were relatively similar for all algorithms, hence removing
them from the comparisons could reduce the calculation efforts.

• Intra-bucket distance: This metric is defined to evaluate to what proportion similar words
placed in the same bucket using each algorithm. To assess the performance of the algorithms
in this respect, we used the Levenshtein distance as a reference indicator (for the same rea-
son explained in the previous metric) and computed the normalized distances between all
the elements of each bucket. Finally, we report the proportion of those only with a value
less than a threshold. According to our results, we decided to remove the comparisons of
distances higher than this threshold, since the numbers were relatively similar for all types of
algorithms, therefore it could reduce the calculation efforts.

• Percentage of errors: This metric measures number of names inside a bucket that must be
replaced into another bucket (wrongly grouped ones). The lower error indicates better quality

37

of the phonetic algorithm.

Algorithm 1 Computing the number of errors per bucket
1: procedure COMPUTE ERROR(bucketA)
2: error = 0
3: for each name i in A do
4: for each name j in A do
5: dist1 = AVG(Levenshtein(i, j)) , i 6= j
6: end for
7: for each bucket B in AllBuckets do
8: for each name k in B do
9: dist2 = AVG(Levenshtein(i, k))

10: if dist2 < dist1 then
11: error++;
12: end if
13: end for
14: end for
15: end for
16: Return error
17: end procedure

Algorithm 1 shows the procedure used to compute the number of errors for each bucket.
First, for each and every bucket A1...N , we calculate the average distance of each name i ∈
Ai with all other names j ∈ Ai in the same bucket, and this value is stored in variable dist1.
Then, for all other buckets B1...N−1, we calculate the average distance between the name i
and all other names k ∈ B and save it in dist2. If dist2 is less than dist1 it means that the
name is misplaced because it is more similar to other names in another bucket. Hence, it
should be replaced, and the number of errors should be increased. Once we computed the
error for all the buckets, we report the percentage of the total number of errors divided by
data points.

• Number of comparisons: This metric is directly related to the application of phonetic encod-
ing for blocking, whose numerical efficiency depends on the total number of comparisons
between words. The number of comparisons is an arithmetic progression of the number of
elements in a bucket. This metric computes the total number of pairwise comparisons that a
disambiguation algorithm would have to perform if it was based on the blocking partitioning
generated by a phonetic algorithm. This provides an indication of its suitability for blocking.

• Execution time: Computation time is an important element when dealing with large datasets,
but clearly such a metric is machine- and implementation-dependent, hence the importance
of the other quantitative indicators. In order to make this metric more precise, the reported
values represent the average execution time of 100 runs, all performed in similar conditions.
The blocking procedure based on the various phonetic encoding algorithms was implemented
as a Java application. Since the different phonetic algorithms obtained a different number of
buckets, we had to normalize the scores with respect to the number of buckets.

38

4.1.2 Step 2: Comparing String Similarity Metrics

While the literature proposes compelling disclosure of comparative studies on the precision of such
algorithms, other characteristics such as speed, sensitivity to thresholds and desired discriminatory
power are rather neglected in most cases. The goal of this step is to compare several algorithms to
find one that adapts best to the situations where these attributes of the algorithm are unavoidably
valuable to improve the application under study. We discuss a new string similarity algorithm:
Weighting Table-Based that has been already developed specifically for the application under study
as a string similarity measure in classifiers. We evaluate the advantages and limitations of this
method by comparing it with several prominent well-known algorithms.

Selection of String Similarity Metrics

Gomaa and Fahmy (Gomaa and Fahmy, 2013) grouped string-based similarity measures in two cat-
egories: Character-based similarity measures, which consider distance as the difference between
characters of strings (thus useful in the case of typographical errors) and Term-based similarity

measures, which take into the account the distance between the two terms. That said, these types
of categorization are mostly addressing the problem of document clustering, however, our analysis
is related to the string-to-string comparison.

For this reason, we chose several well-known algorithms and grouped them in different categories
that will be explained in this section:

Weighting Table-Based (WTB) Algorithm

This algorithm is a string similarity measure that provides a quick comparison of letters of two
words which eventually helps to increase the speed of the disambiguation process. It computes
the similarity of two words converted to integer arrays corresponding to the indexes of the letters.
WTB is sensitive to detect changes in letters of strings and penalizes transformations (changing and
swapping letters) by assigning weights to them. Another type of weight is added considering only
the changes in first letters of the two strings. For instance, it adds up a weight for a change from the
letter "K" in "Katerine" when compared with the letter "C" of "Catherine", meaning that instead of
putting zero for the similarity of such two letters, it detects the change and put a non-zero value. It
also considers that the shift might have occurred in just more than N letters, equal to the defined
radius.

It also makes it possible to weight transformations between letters and digits such as "O" and
"0". The weighting of transformations allows a considerable flexibility and makes the algorithm
adaptable to different languages. Algorithm 2 presents the pseudo-code of this algorithm.

39

Algorithm 2 Weighting Table-Based string similarity algorithm
1: procedure SIMILARITY(string1, string2)
2: SETradius
3: SETcostShift
4: SETcostDiff
5: SETcostF irst
6: difference_Sizes = |string1.length− string2.length|
7: if (differenceSizes > this.maxDiff) then return 0
8: end if
9: ind1← getIndices(string1)

10: ind2← getIndices(string2)
11: WTB ← loadthetableofweights

12: penalty = costDiff×max(string1.length,string2.length)
min(string1.length,string2.length)

13: dist = 0
14: for i = 0→ min(string1.length, string2.length) do
15: distRadius = vector[4× radius+ 1]
16: if (i == 0) then
17: distRadius.add(WTB[ind2[i]][ind1[i]]× costF irst)
18: ElsedistRadius.add(WTB[ind2[i]][ind1[i]])
19: end if
20: for j = 0→ radius do
21: penaltyShift = costShift× |j − i|
22: distRadius.add(WTB[ind2[i]][ind1[i− j]] + penaltyShift)
23: distRadius.add(WTB[ind2[i]][ind1[i+ j]] + penaltyShift)
24: distRadius.add(WTB[ind1[i]][ind2[i− j]] + penaltyShift)
25: distRadius.add(WTB[ind1[i]][ind2[i+ j]] + penaltyShift)
26: end for
27: dist+ = min(distRadius)
28: end forreturn dist
29: end procedure

Table 4.1 Weighting Table-Based algorithm parameters

Parameter
name

Default
value Description

radius 2 Radius of the filter for the comparison of pairwise letters
costShift 0.4 Cost of swapping two letters
costDiff 0.4 Cost of the difference of size of two letters
costFirst 1.7 Cost of the difference of two first letters

The steps of the algorithm can be summarized as:

1. Initializing parameters, depicted in Table 4.1. The default values of these parameters were
determined manually by trials and errors.

2. Compute the difference between the size of the two strings and return zero if it is greater than
the radius.

3. Convert the two strings to indices of letters.

4. Construct similarity matrix of letters, which contains the cost of changing one letter to an-
other. For certain letters, we initialize the matrix values by specific weight values.

5. Compute a penalty related to the size difference of the two strings, replacing a letter by

40

another, the penalty related to the shift between letters, and an additional penalty on the first
letter.

6. Iterate through the letters of the shortest string and generate a vector storing all the distances
between pair letters within a radius.

7. Compute the distance between letters of the first index.

8. Iterate over all the indices in a radius and add up a penalty based on the number of shifts.

9. Perform the comparison of two letters within the radius in both strings.

10. Find the minimum distance within the radius and return it.

Parameters shown in Table 4.1 are determined manually based on simple assumptions:

• Mistakes on the first letter of a word rarely happens, therefore, the cost of such mistake is
determined to be high.

• Swapping letters in a radius greater than 2 characters is not likely to happen, that is the reason
why the radius size is set to 2.

• The inversion of letters is quite common as a mistake, therefore the cost is determined to be
low.

One future improvement of this algorithm would be automatic determination of these parameters.

Edit-based Similarity Measures

These measures are used to calculate the difference between strings as a weighted aggregate of the
number of additions, eliminations, substitutions and additionally transpositions needed to obtain
the second string from the first one. Weighting table-based and the following three algorithms
belong to this category:

Levenshtein: It is a commonly used similarity measure that describes the distance between two
strings by checking the base number of operations expected to change one string into the other,
where an operation is defined as an addition, cancellation, or substitution of a character, or a trans-
position of two nearby characters (Levenshtein, 1966). In other words, The Levenshtein distance
between two strings is the minimum number of edits needed to transform one string into the other,
with the permissible operations being: insertion, deletion, or substitution of a single character.

41

Therefore, the similarity between two words is (1− distance). Levenshtein is good for measuring
the similarity between words, and it has been used widely for spell checking since it detect the
variations in spelling.

Smith-Waterman: This algorithm aligns two strings (sequences of characters) by matches or
mismatches (substitutions), insertions, and deletions to find the segments that have similarities (de-
termining similar regions between two strings) (Smith and Waterman, 1981). The Smith-Waterman
algorithm compares segments of all possible lengths and optimizes similarity degree. More specif-
ically, this algorithm determines the sequence of operations needed to transform one string to an-
other, but attributes lower weights to transformations among similar-sounding characters and em-
ploys specialized logic for handling alignment gaps such as a "gap start" penalty corresponding to
the beginning of a string of unmatched characters, and a separate "gap continuation" penalty for its
continuation.

Jaro–Winkler: It is, basically, an extension of Jaro distance (Jaro, 1989). In theory, the Jaro dis-
tance is identifiable as the minimum number of single-character transpositions required to change
one string into the other, whereas the Jaro-Winkler distance utilizes a prefix that establishes more
favorable weights to strings that match from the beginning for a set prefix length. In other words,
Winkler modified this algorithm such that differences close to the start of the string have larger
impacts on the measure than differences observed at the end of the string.

Token-based Similarity Measures

They are a type of similarity functions that first try to tokenize strings as token3 sets, and then
compute the similarity based on the token sets. Usually, two similar strings are identifiable by
having a large overlap in the sets. Nonetheless, Token-based similarity measures suffer from a
limitation that they only consider the exact match of two tokens in a bag of words, hence ignoring
string fuzzy matches. In general, such measures are not quite efficient to calculate similarity when
typos and misspelling words are introduced. Three following algorithms are from this category:

Jaccard: This measure is mostly used in document similarity applications. The Jaccard index
refers to the ratio of the size of the intersection of two strings to the size of their union (Jaccard,
1912). In order to use this algorithm, a document, typically, must be presented as a bag of words
which is the list of unique words in it, then we can compute Jaccard index between them. The

3In natural language processing (NLP), a token is identified as a unit of processing. In most cases, it is just a string
of contiguous characters between two spaces, or between a space and punctuation marks. (Baeza-Yates et al., 1999)

42

Jaccard similarity measure between two strings A and B is calculated by first, converting them to
sets of n-grams (sequences of n characters, also called k-shingles), then it computes the similarity
as |A|+|B|−|A∪B||A∪B| where |A| and |B| represent the size of the two strings and |A ∪ B| is the size of
the union of the two strings.

Sorensen-Dice: This algorithm works by comparing the number of identical character pairs be-
tween the two strings (Sørensen, 1948). It is often called Sørensen index or Dice’s Coefficient. It
measures the similarity between two strings A and B by first, converting them to boolean sets of
k-shingles (sequences of k characters), then the similarity is computed as 2×C

(|A|+|B|) where |A| and
|B| represent the size of the two strings, and C is the number of identical character pairs (common
terms) between the two strings.

Cosine: This algorithm is a very famous similarity measure, extensively used in document simi-
larity in information retrieval domain (Baeza-Yates et al., 1999) and clustering (Larsen and Aone,
1999). Cosine similarity measure determines the cosine of the angle between two vectors. Once
the strings are transformed in vectors of occurrences of sequences of K characters, the similarity
between them will be the cosine of their respective vectors.

Hybrid Similarity Measures This type of similarity measures combines the benefits of edit-
based and token-based methods. When more control is needed over the similarity measure, hybrid
algorithms can be effective. Unlike edit-based measures, hybrid measures can be used for matching
an attribute value to its abbreviation or acronym. The following algorithm belongs to this category:

Monge-Elkan: This similarity measure computes the average of the similarity values between
the more similar token pairs in both strings. This algorithm was introduced by Monge and Elkan
(Monge et al., 1996) and it has been used in many name-matching and record linkage comparative
studies (Bilenko and Mooney, 2003) (Branting, 2003). This hybrid method maintains the properties
of the internal character-based measure, the ability to deal with misspellings, typos, OCR errors,
and deals successfully with missing or disordered tokens, and it can combine any token comparison
measure. Given two texts S1, S2 and their number of tokens |S1| and |S2| respectively, the Monge-
Elkan algorithm measures the average of the similarity values between pairs of more similar tokens
within texts S1 and S2. The main advantage of this algorithm is being recursive, which gives an
ability to handle sub-fields or sub-sub-fields, meaning that the algorithm is more likely to find a
match between a string and its corresponding incomplete string in several formats.

43

Data Preparation

In this step of our research, we used the WikEd Error Corpus (Grundkiewicz and Junczys-Dowmunt,
2014), which is a large and diversified data set extracted from the Wikipedia revision history. It is
a freely available corpus including 12 million sentences and a total of 14 million edits of various
types. Although there are many types of edits in this corpus, the scope of our research is limited
to correction of spelling errors. Because the data is too noisy and the variability of texts is high,
we had to perform an error selection process. This process included the following two steps of ex-
traction and cleansing. First, during the extraction, we implemented a program that crawls the raw
data and looks into the spelling errors that are presented inside the logs with the format: [-donload-

] [+download+]. Basically, this format indicates that the word between the two ’minuses’ was
misspelled and replaced with the word between the two ’pluses’.

Then, in the cleansing step, we filtered out texts consisting of stop words such as "and", "then",
"when" etc, and those including both numbers, digits and special characters. Even though this
refinement process reduced the size of our dataset, the remainder contained a very large number of
records. Since the average length of a word in most English documents4 is over 5, we eliminated
non-English words and those with less than five characters. Finally, a subset of 10,000 misspelled
words was assembled to perform the study. A gold standard was brought together by merging
the results of forming 777 groups of similar words by performing several manual adjustment and
verification processes. Each group was carefully edited by hand and repeatedly verified to ensure
having a reliable solution file. The biggest group contained 40 words and smallest one only 4
words.

Methodology Design

Since it is difficult to perform a direct comparison between selected similarity algorithms, we had to
proceed with an auxiliary step of clustering to conduct indirect comparison tests. The implication
of our evaluation is that a similarity algorithm outperforms the others if the cluster analysis shows
better results while using this particular algorithm. In this section, we discuss our methodology
regarding the implementation of different parts of the evaluation process.

We set out to perform a comparative analysis of selected string similarity algorithms by implement-
ing a program that generates clusters, which we call Buckets, and estimating the correctness of the
obtained results by comparing them to the gold standard. The operational methods are demon-
strated in Figure 4.1, and can be itemized as follows:

• Creating the similarity matrix: This corresponds to a similarity graph with data points for
4http://www.wolframalpha.com/input/?i=average+english+word+length

44

Figure 4.1 Methodology steps

nodes and edges whose weights are the similarity between data points represented by a value
between 0 and 1 computed using specific similarity algorithm. Figure 4.2 shows a screen shot
of a sample similarity matrix created using one of the similarity algorithms. The dimension
of all similarity matrices is 104 × 104. Each point represents the similarity value between
the words in corresponding row and column. We used a Java library called SimMetrics
(Chapman, 2009) that contains the implementations of string similarity algorithms in order
to develop an application that performs pair-wise comparisons to compute this matrix for all
of the algorithms. However, the Weighting Table-based method is not part of this library and
it was developed and implemented beforehand.

• Implementing K-Means clustering algorithm (MacQueen et al., 1967) to build clusters (that
we refer them as buckets) of similar words by using each similarity matrix for different sim-
ilarity algorithms. K-Means requires setting the parameter for the number of buckets, and
in our experiment, we set this number to the number of buckets in our gold standard. We
used Apache Spark machine learning library (Meng et al., 2016) to implement the K-Means
algorithm.

• Implementing Hierarchical Agglomerative Clustering (HAC) (Cios et al., 2012) to create
buckets with no a priori information about the number of clusters required.

HAC is a bottom-up clustering method which creates clusters that have sub-clusters repet-
itively. It starts with every single object (sample data) in a single cluster. Then, in each
successive iteration, it agglomerates (merges) the closest pair of clusters by satisfying some
similarity criteria, until all of the data is in one cluster. Use of different distance metrics

45

Figure 4.2 Previewing first few entries of a similarity matrix

(similarity algorithms in our problem) for measuring distances between clusters may gener-
ate different results. An HAC tree plot visually demonstrates the hierarchy within the final
cluster, where each merger is represented by a binary tree. Figure 4.3 shows a sample HAC
tree plot. It can be viewed that using the HAC, two very similar words are joined at a "node",
representing a "cluster". That cluster is joined to the next nearest word or sub-cluster, and
so on. At the end, very similar words tend to appear beside each other in the diagram. It is
possible to define the clusters by cutting branches off the dendrogram using a constant height
cutoff value (cutree height values) shown as vertical dotted lines in Figure 4.3. These cutree
height values are similar to the threshold values for the WCs in our training framework.

The overall process of HAC can be summarized as:

– Assign each object to a separate cluster.

– Evaluate all pair-wise distances between clusters.

– Construct a distance matrix using the distance values.

– Look for the pair of clusters with the shortest distance.

– Remove the pair from the matrix and merge them.

– Evaluate all distances from this new cluster to all other clusters, and update the matrix.

– Repeat until the distance matrix is reduced to a single element.

We used HAC algorithm to measure the sensitivity of the algorithms to thresholds. For
training purposes, an algorithm performs better if it is not too sensitive to the change in

46

Figure 4.3 Hierarchical agglomerative clustering tree plot

threshold. In fact, by observing the number of buckets created at each height level in HAC,
we can compare different algorithms and understand which one results in a dramatic change
to the number of clusters with regard to a change in the threshold. We used Apache Spark
machine learning library (Meng et al., 2016) to implement HAC algorithm.

Some metrics were used to evaluate the results of clustering methods. In the following section, we
explain such metrics and their purpose in details.

Evaluation Metrics

We developed several quantitative metrics to assess clustering results, hence realizing indirect com-
parison tests between the similarity algorithms:

• Average intra-bucket distances: This metric computes the total distances between words
(corresponding to each similarity metric) in each bucket divided by the number of words in
the same bucket in a range between 0 and 1 (lowest and highest similarity between words,
respectively). If a string similarity algorithm performs well, majority of the buckets it obtains
should contain words with a very low distance between them. By plotting the frequency of
the average distances for all the buckets, we can visualize the distribution of the distances
inside buckets, hence it gives an insight about the peculiarity of the results obtained by each
string similarity algorithm. We expect to see high frequency of the low average distance
values for the algorithms that outperform the others.

This metric gives an indication of coherence and the internal functioning of each similarity
metric. However a good value for this metric does not guarantee the quality of the buckets,

47

therefore, we also calculate the Rand Index measure.

• Rand Index (RI): As an external evaluation criterion, the Rand Index (Rand, 1971) measures
the similarity between two clusterings by considering all pairs of samples and counting pairs
that are placed in the same or separate clusters in the predicted and true clusterings. In other
words, this metric makes a comparison between the assignments of each pair of words in
buckets in the gold standard and the computed clustering of each string similarity algorithm.

The mathematical definition of rand index is as follows:

RI = TP+TN
TP+FP+FN+TN

where:

– TP is the two words of a same class that are in the same bucket

– TN is two words of two different classes are in different buckets

– FP is two words of two different classes are in the same bucket

– FN is two words of a same class are in two different buckets

The rand index has a value between 0 and 1, where 0 indicates that the computed clustering
and the gold standard do not agree on any pair of points and 1 means that the two clusterings
are exactly the same.

• Number of buckets per threshold: Using this metric helps understand the sensitivity of each
algorithm with respect to changes in thresholds. This metric was calculated by measuring the
total number of buckets obtained when cutting the dendrogram of the HAC algorithm using
different cutree height (threshold) values. An efficient metric is expected to avoid being
too sensitive to the threshold, meaning that it should not generate a considerable different
number of buckets when the threshold is changed insignificantly. When applied to a learning
method, this characteristic of the similarity algorithm has a direct impact because it makes
the learning method heavily dependent on the threshold.

• Total execution time: The overall time that it takes to generate buckets is calculated in mil-
liseconds. This metric shows the efficiency of string similarity algorithm in terms of com-
putational cost. Lower execution time makes the algorithm more adopting and applicable in
a variety of domains with high interest in speed. Our experiments were conducted 30 times
and the average amount was reported.

48

4.1.3 Step 3: Training Methodology for the Cascade Classifier

One of the problems of the existing method is that there is no automated approach for determining
the structure and the parameter values of the classifiers. Although some guidelines were taken
into account (refer to Section 3.5) to design the most efficient ordering and threshold values such as
assigning a high threshold value to fields with low variability, a need for a proper learning algorithm
is essential to automate the disambiguation process.

Therefore, within the context of this project, we have developed an automated cascade method for
the disambiguation task which includes four aggregators. The classifiers of the first aggregator was
determined in advance. These classifiers were operating on very high discriminating and reliable
features (e.g. Email addresses that are unique for authors) in order to filter out a large number
of records early. The rest of the aggregators were automatically adjusted and configured by the
learning algorithm.

The benefits of automating the whole disambiguation process are to make the classification flexible
and adjustable when applied to different databases with various data fields, hence being practically
efficient regardless of the database types.

In the following sections, we give a general description of the framework, then we explain practical
steps toward its implementation.

Training Framework

To determine WCs and the threshold values assigned to each WC, we introduced a training frame-
work. Figure 4.4 illustrates the supervised training framework used to automate the process of
configuration embodied in the overall disambiguation process. The whole process contains follow-
ing steps:

• Read data from the input data set

• Pre-process the input and generate the pre-processed data

• Carry out the training methodology

– Initialize the training process by creating a solution matrix and initialize the parameters
used in the learning process

– Run the learning algorithm by using the particle swarm and the set cover optimizers.

– Construct the configuration file (that holds the arrangement and thresholds of the WCs)
and output in an XML format.

49

• Perform the disambiguation process

• Create clusters of entities (authors) based on the results generated by the disambiguator

• Compare the clustering results with the gold standard

Figure 4.4 Overall Demonstration of the Proposed Framework

As mentioned above, the training methodology contains three procedures: initialization, learning

and construction. In this section we describe each of these procedures in details (as depicted in
Figure 4.5):

1. Initialization: In this procedure, a matrix of distances between records for each weak clas-
sifier is created. The rows correspond to each pair of the data and the columns are for the
different classifiers. The outcome of this step is a solution matrix containing each pair-wise
comparison, the indexes of the false and true solution values of the comparisons and the pro-
cessing time spent by each classifier while making a decision. The solution created in this
step will be used to train our learner models by comparing the results of the classifiers and
calculating the rate of correctly classified and wrongly classified records for each classifier.

This step also includes the initialization of parameters used in the training process. Table 4.2
shows these parameters.

50

Figure 4.5 Training Methodology

Table 4.2 Parameters used in the learning process

Name Type Default Value Description
AUTOMATE boolean true Run the training method
AUTOMATE_VERBOSE boolean true Generated structure will be displayed in details
SAMPLE_BLOCK int 1000 Block of scientists to put in train set
NB_CC_MAX int 6 Maximum number of classifiers to consider
ALPHA double 10 Penalization weight
BETA double 2 Penalization scaling factor
PSO_PARTICLES int 250 Number of particles
PSO_ITERATIONS int 5000 Number of iterations
PSO_COST double 0.001 Stop criteria for the PSO objective function
PSO_V1 float 1.0f Control the weight of the best position achieved by a particle
PSO_V2 float 1.0f Control the weight of the best position achieved by all particles
PSO_mom_MIN float 0.0001f Minimum value allowed for the momentum
PSO_mom_MAX float 0.0001f Maximum value allowed for the momentum
PSO_FUN Function FUNC2 Objective function

These values are related to the datasets we used in this research (WoS and SCOPUS), which
were determined by trials and errors.

2. Learning: The second procedure is an algorithm depicted in Algorithm 3 with the purpose of
building many learning models of classifiers (illustrated in Figure 4.5) and use an ensemble
learning technique to generate the best classifier structure and its thresholds among all the
possibilities.

Two important learning steps of this algorithm are: 1) find the best set of thresholds for
the weak classifiers and 2) select the most efficient classifier arrangement. Overall, using
an error-driven optimization technique, the learning method performs the two learning steps

51

iteratively until an acceptance criterion is reached 5.

The algorithm contains two optimization methods with their own associated cost functions.
It starts with iteratively taking random samples of the input data and split the set of sample
records in such a way as to include 70% for the training set and 30% for the test set. The
training method initializes WCs with random values of thresholds, then it optimizes those
values by applying the PSO method. Next step is to use the SCO method to determine the
best arrangement of such classifiers that are speedy while obtaining satisfactory result.

At each optimization process, the learning algorithm puts more weights (α) to wrongly clas-
sified records (False Negative rate) of each step to penalize the classifiers with higher error
rate. The penalization weight is scaled by the factor of β to increase the pressure of minimiz-
ing the number of errors through the end of the process.

Inspired by the AdaBoost model, the poorly classified records are added to the next step at the
end of each iteration. The process of the optimization continues in a loop until the algorithm
obtains the best-anticipated results (95% confidence level, with only 5% error on the test set)
or a certain number of iterations is reached.

The results of each learning model is a classification step that contains an efficient number
of weak classifiers with optimized threshold values. For the purpose of aggregating learning
models’ results, an evaluation function was used in the construction procedure in order to
compare the classification steps and choose the best one in terms of time efficiency at each
and all learning iterations.

The overall process represents a training method with the focus on minimizing wrong outputs
i.e. FP and FN, and continuously updating the structure of the classifiers to an optimized
version. In the following sections, we explain in details the optimization methods used in the
training process:

• Determining the Thresholds of the Classifiers: Using the particle swarm optimization
(PSO) technique, our learner model creates a swarm of particles that correspond to
threshold values (scaled between zero and one). Then, at each step, the N most different
and best particles were selected based on an objective function. The optimization is
repeated until an objective function is satisfied or a maximum number of iterations is
reached.

To determine the best evaluation function that achieves the most efficient classification
results, different objective functions were put in place and tested in our PSO method:

5This will stop the algorithm before it falls into the trap of over-fitting.

52

Algorithm 3 Learning Algorithm
1: procedure TRAIN(trainset, classifiers, block_size)
2: data← pickBlocks(block_size); . Read input data
3: SETNB_SAMPLES; . Number of samples
4: SET structure.Agg1 . . . 4; . Initialize empty aggregators
5: SET structure.Agg1← StrictClassifiers() . Perform strict classification with first aggregator
6: SET optimizerThresholds; . Particle Swarm Optimizer (PSO)
7: SET optimizerStructure; . Set Cover Optimizer (SCO)
8: SET Error; . Boosting error rate
9: SET NB_CC_MAX; . Maximum number of desired classifiers

10: for i = 1→ structure.Agg.size do
11: for j = 1→ NB_CC_MAX do
12: SET step; . Initialize a step
13: SET samplesIndicesErrors; . Store error indexes
14: SET α; . Penalization weight
15: SET β; . Scaling factor for penalization weights
16: do
17: samples← 70% of sample . Create the train set
18: samples.addAll(samplesIndicesErrors); . Add errors to train set
19: ds← extractDistances(samples); . Extract distances for train data
20: ss← extractSolutions(samples); . Extract solutions for train data
21: sts← extractTrueSolutions(samples); . Extract true solution indexes for train data
22: thresholds← optimizerThresholds.optimize(α); . Optimize thresholds with PSO
23: updateThresholds(thresholds); . Update thresholds
24: crs← evaluateClassifier(); . Initialize base step evaluations
25: crs2← evaluateClassifier(); . Initialize next step evaluations
26: structureIndices← optimizerStructure.optimize(α) . Optimize orderings with SCO
27: SET totalT ime; . Total time of classifiers in step
28: SET stepTmp; . Temporary step
29: for indStructure ∈ structureIndices do . Build temporary step
30: stepTmp.addClassifier(classifiers.get(indStructure), crs.get(indStructure)); . Save the weak classifier
31: totalT ime+ = this.time.get(indStructure); . Compute total time
32: samplesIndicesErrors.addAll(crs.get(indStructure).getFalseNegativeSet()); . Save hard sample indexes
33: samplesIndicesErrors.addAll(crs.get(indStructure).getFalsePositiveSet()); . Save hard sample indexes
34: end for
35: stepTmp.buildStepResult(); . Build results of temporary steps
36: stepTmp.stepResult.setProcessingT ime(totalT ime); . Store processing time
37: step.buildStepResult(); . Build step results
38: step← compareSteps([first], [second], step); . Compare newly created step with previous one
39: for AbstractClassifier CL ∈ step.stepClassifiers do . Store classifiers for the best step
40: if CL.Classifier /∈ duplicates then . Avoid duplicate classifiers
41: CL.get(i).addWeakClassifier(j, CL); . Store classifier in final structure
42: duplicates.add(CL.getClassifierType()); . Store the history to avoid duplicates
43: end if
44: end for
45: test_set← 30% of sample; . Create the test set
46: ERROR_TH = 5% of test_set.size() . Boosting error threshold equals to 5% of test samples size
47: ds_test = extractDistances(test_set); . Extract distances for test data
48: ss_test = extractSolutions(test_set); . Extract distances for test data
49: crs3← evaluateClassifier(); . Test new structure on test set
50: SET FN . Number of False Negatives
51: SET FP . Number of False Positives
52: for index ∈ crs3.keySet() do . Compute results accuracy of test
53: FN+ = crs3.get(index).getFalseNegativesCount(); . Compute False Negatives
54: FP+ = crs3.get(index).getFalsePositivesCount(); . Compute False Positives
55: end for
56: Error = (FN + FP); . Compute error on test samples
57: α← α× β . Scaling penalization for hard samples
58: while (Error > ERROR_TH) . Error-driven optimization
59: end for
60: end for
61: end procedure

53

– FUNC 1: The first function is based on the sigmoid function. Using this method
of evaluation, we penalize classifiers with a higher weight if their results show an
increase in FP, therefore, the overall process steers the method toward obtaining
lower FP. Below equation shows the calculation method for this objective function:

Cost = (FN
FN+TP) + (FP

FP+TP + 1
L

)× α× β

where FP and FN are number of misclassified errors, TP is number of correctly
classified records, α is penalization weight, β is penalization scaling factor and L
is size of data.
The aim of this objective function is to minimize the cost such that the associated
classifier generates lower FP rates.

– FUNC 2: It is a customized function very similar to the accuracy calculated from
the precision and recall, with the focus on minimizing False Negative (FN) rates as
the iterations proceed:

Cost = (FP+FN×α×β
TP+TN+FP+FN×α×β)

– FUNC 3: We have also tested the classical accuracy statistical measure in our
objective function which represents the proportion of true results. In this case also
a penalty was applied to the FN:

Cost = (TP+TN
TP+TN+FP+FN×α×β)

The value of the parameter α (used to add weights to classifiers with wrong results) and
β (the scaling factor to increase α) were determined manually by conducting a certain
number of tests using above objective functions. However, results obtained by using
FUNC 2 are interesting despite an optimal search for the right value of the parameters.

• Determining the Orderings of the Classifiers: In order to determine the most effi-
cient arrangement of the weak classifiers in each step, we used the set cover optimizer
(SCO) based on the integer linear programming (ILP). In fact, the problem was to find a
minimum number of weak classifiers, with efficient processing time while having max-
imum number of correctly classified records (TP) and minimum number of errors (FN)
in their results.

We formulate the linear programming to solve as such:

Minimize:
∑N
Ci=1

tCi
× (1 + α×β×FNCi

TPCi
)

Where Ci is the classifier i, and α is the penalization weight, β is the scaling factor for

54

α, FNCi
and TPCi

are the number of wrongly classified records and correctly classified
records of the classifier i, respectively (computed by comparing the result of each clas-
sifier with the solution discussed in the initialization step), tCi

is the processing time of
the classifier i, and N is the total number of classifiers,

Subject to: ∀r ∈ STP : ∑N
Ci=1

Cir ≥ 1

Where STP is the set of TPs captured for each step, r is a record in S, and Cir indicates
the index of the classifier that classified record r correctly and Cir = 1 shows the pres-
ence of the classifier, whereas Cir = 0 shows the absence of the classifier.

The aim is to find the minimal number of weak classifiers that covers the set of true
positive. In fact, among all the WCs, we seek to choose those that will allow to have
only true positive results with more efficient processing time.

At first, we have all the WCs that cover the TPs space including a few number of FNs
(note that we want to discover all possibilities). Then, the optimizer tries to reduce the
number of FNs by putting more weights on classifiers that produced more FNs in their
results. Thereby, the final result of this optimization process is a minimal set of selected
time-efficient weak classifiers with a maximum number of correctly classified records.

To figure out the impact of choosing the different solver implementations on the ef-
ficiency of the SCO, we decided to try out three different solvers and find the most
appropriate one to our problem:

– LPSOLVE: It is a free (GNU6 licensed software) linear integer programming
solver based on the revised simplex and the Branch-and-bound methods for the
integers 7.

– GLPK: It is a free (GNU) package that is intended for solving large-scale linear
programming (LP), Mixed Integer Programming (MIP), and other problems 8.

– CPLEX: It is a program introduced by the IBM company, that builds a specific
small LP model and then solves it 9.

Through several experiments, we concluded that the most efficient results (in terms of
both speed and accuracy) were obtained with "LPSOLVE" implementation package.

6"Free software license, which guarantees end users the freedom to run, study, share and modify the software"
7http://scpsolver.org
8http://www.gnu.org/software/glpk/
9http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

55

Therefore, it was chosen for our further experiments.

3. Construction: The result of each learner model is a classification step, holding the best set
of weak classifiers. A comparison between this step and the previous step (the result of the
previous learner model) was done to evaluate at each learning iteration the most efficient step
with respect to the quality of the results and time efficiency. The scoring function below is
used to rank the steps and choose the one with the higher score:

Score(Si=1...K) = 1
tSi
×(FP+FN)

Where Si is the step number i, tSi
is the total processing time of the classifiers in this step, and

FP and FN represent the total number of wrongly classified records of all the weak classifiers
in this step, and K is the number of steps.

It has to be mentioned that in an ideal case, when FP and FN are both equal to zero, we
compare the two steps with regards to the processing time and we choose the one that is
faster.

Once the proper step is chosen, the construction process adds this step to the corresponding
aggregator. When the algorithm reaches to a maximum number of iterations, an XML file is
generated that holds the information about the cascade classification structure. The result of
this process can be used to perform the disambiguation task.

Data Preparation

The first bibliographic database that was used in this step of disambiguation method is Web of
Science (WoS) which covers a large amount of citation indexes. This database is indexing over
33,000+ scholarly journals and over 160,000+ conference proceedings (as of August 2017), and
it has been published and managed by Clarivate Analytics, formerly Thomson Reuters; ISI (Insti-
tute for Scientific Information). We used an extraction of this databases containing 2.89 million
records corresponding to 132899 distinct authors. The second bibliographic database was a subset
of SCOPUS which is a citation database of peer-reviewed literature: scientific journals, books and
conference proceedings. Worldwide, SCOPUS is used by more than 3,000 academic, government
and corporate institutions (as in August 2017). The data we used in our training method is a subset
of this dataset and it holds 185,253 records including the information belonged to 2398 unique
authors.

56

Evaluation Metrics

The training methodology was put in a test by operating on two datasets including a subset of
WoS (large size) and a subset of SCOPUS (small size) under the different set of parameters. For
the SCOPUS- and WoS-based datasets, comparison with the disambiguation results provided by
(Voorons et al., 2017) was done. Final results, then compared to the gold standards, and to un-
derstand the quality of such results, quantitative metrics such as machine learning performance
measures were used. These metrics include: Precision, Recall and F1 Score (typically used in doc-
ument retrieval). These quality measures first defined by Perry, Kent, and Berry in 1955 and within
the context of disambiguation application, they can be summarized as:

• Precision: The ratio of the records assigned to an author that actually belong to him.

• Recall: The ratio of the total number of database records associated with one author that has
been correctly assigned to him.

• F1 Score: It is a product of the precision by the recall divided by their sum. Basically, it
can represent a more realistic measure of the classifier’s performance since it takes into the
account both precision and recall rates.

Once the training method generated the arrangement and thresholds of the classifiers, they have
been used to perform the disambiguation task. Then, results (clusters of disambiguated data) were
compared with a ground truth solution and in a form of a confusion matrix, values were reported for
each of our metrics. The purpose of this evaluation was to state the quality of the disambiguation
process and determine the overall efficiency of the automatically generated cascade structure.

57

CHAPTER 5 RESULTS

This chapter summarizes our findings and presents our results.

5.1 Results of Comparative Study of Phonetic Distance Metrics

This section presents and discusses the results of our experiments regarding the comparison of pho-
netic encoding metrics in the disambiguation application. The goal of this step is to evaluate several
phonetic algorithms to find the most suitable one for a blocking method used in the disambiguation
process. Table 5.1 summarizes the results of each metric used for testing the phonetic algorithms.

Table 5.1 Results of evaluating phonetic algorithms using different metrics

Algorithm Number of
buckets

Intra-bucket
normalized
distance <0.2

Cross-bucket
distance >0.8

Percentage
of errors

Number of
comparisons

Average
execution
time (ms)

RefinedSoundex 1845 41% 25% 0.43% 1840 3901
Cavephone2 1434 25% 28% 0.34% 5476 68715
Metaphone 1602 24% 31% 0.24% 3564 3992
DoubleMetaphone 1412 19% 19% 0.27% 4836 5143
ColognePhonetics 1388 24% 27% 0.28% 5260 3458
NYSIIS 1762 35% 29% 0.22% 2818 6221

We first examined the performance of the algorithms with respect to the total number of buckets
(Table 5.1, second column). A large number of buckets would indicate that the phonetic algorithm
is not successful at detecting similar names, whereas a small number of buckets will result in low
accuracy by putting many dissimilar words together in a bucket. A phonetic encoding algorithm
should ideally generate a lot of low populated buckets rather than few highly populated buckets,
while also grouping very similar names together. In a fair and sensible way, all algorithms cannot
be compared using only the number of buckets metric, for this reason we needed to use other
indicators, such as the inter- and cross-bucket similarity distances.

Ideally, a metric should yield small intra-bucket distances and large cross-bucket distances. There-
fore, the quality of a given metric can be assessed through the proportion of records whose intra-
bucket distance (to the centroid) lies below a small threshold, and through the proportion of records
whose average cross-bucket distance is greater that a large threshold. Here, the small and large
threshold values were set to 0.2 and 0.8 on the scale of zero to one, and the two indicators (propor-
tions) were considered together through their sum.

In this respect, Table 5.1 shows the results of these two metrics. Phonetic encoding algorithms
can be put into three groups: RefineSoundex and NYSIIS have a total around 65%, whereas, Caver-

58

phone2, Metaphone and ColognePhonetics can be grouped together by having a total between 50
and 55% and, finally, DoubleMetaphone has a total below 40%. In the first group, RefineSoundex

has a low computation volume very likely due to a low number of comparisons, but a high percent-
age of errors, that will translate into poor recall (because of the large number of buckets) when used
for blocking in disambiguation tasks. Conversely, NYSIIS seems to have a balanced performance.
In the second group, Caverphone2 stands out by an excessive volume of computation, and the other
two methods appear quite similar. Finally, DoubleMetaphone seems to have a lower performance
with only 38% total average distances for between and inside buckets.

Additional information can be drawn from the total number of comparisons performed by the al-
gorithm. Recall that the number of comparisons within a bucket is a quadratic function of the
number of elements. With an appropriate encoder, the number of large buckets should be small.
In this respect, algorithms yielding large buckets, (Metaphone and to a lesser extent Caverphone2

and DoubleMetaphone) may not be well suited for blocking. In addition, a very large number
of comparisons can be attributed to a few very large buckets, which is clearly inappropriate for
blocking.

With these elements in mind, the two algorithms that stand out are RefinedSoundex and NYSIIS,
as they both provide a low number of comparisons, a limited number of large buckets and appro-
priate performance in terms of intra- and cross-bucket distances. However, NYSIIS exhibits better
performance, at the expense of a higher computational cost. The RefinedSoundex algorithm is less
interesting than the NYSIIS because it alway generates a lower Recall rate, and the calculation cost
is not a major problem since the phonetic codes for blocking are generated only once in the whole
process of the disambiguation.

Currently, the application under study uses DoubleMetaphone, and our results suggest that it would
be advantageous to change for either NYSIIS or RefinedSoundex.

5.2 Results of Comparative Study of String Similarity Algorithms

In this section, we discuss the study on the efficiency of the Weighting Table-Based (WTB) string
similarity algorithm in comparison with broadly used ones. We report the outcome of experimental
analyzes in the direction of specified characteristics that make an algorithm effective while oper-
ating on expansive datasets such as bibliographic databases. Our experiments were done using a
virtual machine set up on an Intel Xeon 2.6 GHz computer with 28 Gig of RAM.

For all the buckets produced by each algorithm, we computed the normalized distances between
the elements of each bucket i.e. the total distances between words in each bucket divided by the
number of words in the same bucket. Figure 5.1 and 5.2 depict the distribution of these computed

59

values. As an example, Figure 5.2(b) shows that most of the buckets (approximately 250 out of
777) generated by the WTB algorithm contained word with the average distances between 0.3 and
0.4 to each other.

Overall, the figures indicate that the Jaro-Winkler, Weighting Table-Based, and Levenshtein have
better results compared to others respectively, since the distribution of inside buckets average dis-
tance values are biased toward the minimum values (left side of the histograms). On the one hand,
the rest of algorithms show tendency toward an average distance of 0.4 to 0.7 between words in
buckets.

a) Cosine b) Sorensen-Dice

c) Jaccard d) Jaro–Winkler

Figure 5.1 Intra-buckets average distances

As an example, take the histogram of distances generated by the Sorensen-Dice algorithm in Figure
5.1; it can be seen that the number of distances is higher in the middle range which means that

60

a) Levenshtein b) Weighting Table-Based

c) Monge-Elkan d) Smith-Waterman

Figure 5.2 Intra-buckets average distances

compared to WTB, it put together more dissimilar words. Undoubtedly, Jaro-Winkler was the best
by creating buckets with distances almost less than 0.4 which shows that this algorithm obtained
more buckets with less dissimilar words. In contrast, Jaccard has been poorly performed since this
algorithm created buckets with higher average distances (more than 0.6) inside buckets (see Figure
5.1-c).

Results of the rand index metric (as discussed in section 4.1.2) are shown in Figure 5.3 in descend-
ing order. The most remarkable feature of this diagram is that the five algorithms of Jaro-Winkler,
Levenshtein, Weighting Table-based, Monge-Elkan and Smith-Waterman depict a similar good per-
formance.

61

On the contrary, Sorensen-Dice, Cosine and Jaccard have lower rand index values compared to the
rest of the algorithms, which represents their low efficiency. The Jaccard algorithm has the lowest
rand index among all others, which shows that this algorithm is ill-suited for our application.

Furthermore, we observed that the Weighting Table-based algorithm is amongst the best, and it
slightly outperforms the hybrid algorithm of Monge-Elkan, and it displays relatively good perfor-
mance when compared to the rest of the algorithms.

Figure 5.3 Results of computing the rand index for different similarity algorithms

In order to further investigate the efficiency of the algorithms, we inspected the buckets cre-
ated by each algorithm and found out that for instance some very similar misspelled words like:
"achievedto", "chievment" and ”unachieved" were put together in one bucket when we applied the
WTB algorithm, whereas all other algorithms distinguished them by putting into separate buckets.
Such performance of the WTB algorithm is useful for the disambiguation method as it undertakes
the problem of misspelled or incomplete names.

Sorensen-Dice placed the two words "substration" and "altrations" in one bucket, despite being very
different. Whilst WTB separated them and grouped "substration" with more similar words such as
"subtraction", "sebtraction", etc. In the same case for Jaro-Winkler, "subtraction" and "sebtraction"
were put together, nonetheless, words like "opulations" and "relutions" were also put in the same
bucket despite their dissimilarities. Moreover, although the Levenshtein algorithm produced errors
close to the WTB, it considered the mentioned words as not similar because of not having first and

62

last similar characters, which makes the discriminatory power of this algorithm questionable in the
course of the disambiguation problem where typos are frequent.

When the first letters of the two strings are completely different, Levenshtein algorithm distin-
guishes them by reporting a lower similarity value, whereas the WTB method detects the shift in
letters and returns a higher value. As another example, WTB algorithm computes the similarity
between the words "chmith" and "shmith" as: "0.9325", while the Levenshtein algorithm return
the value of "0.833333313"; because of having two different letters of "c" and "s" at the begin-
ning of each word. The WTB method also included some errors in its results. As an example,
this method put the the word "waybright" with not much similar words such as "maybridge" and
"unabridge" in the same bucket, whereas Levenshtein and Jaro-Winkler methods separated them
and put "waybright" with more similar words like "albright" and "abright" in the same bucket.

K-means is extremely sensitive to the number of clusters and requires to set this parameter before-
hand, whereas the hierarchical agglomerative clustering (HAC) creates sub-clusters by which we
can compare similarity metrics at certain levels of determination.

Figure 5.4 Number of buckets per cutree height for the HAC algorithm

HAC produces a hierarchical clustering tree in which clusters correspond to branches of the tree. In
an effort to perform cluster identification (tree cutting or branch pruning), we pick a point (cutree
height) and cut branches. This allows to measure the number of clusters produced at that level and
perform analyses concerning the sensitivity of the similarity algorithm to a change in the threshold.
Figure 5.4 shows the number of buckets created by each algorithm per height. It can be seen that
the WTB is less sensitive because it produces continuous good results through the shift in threshold
during the hierarchical clustering process.

63

Figure 5.5 Number of buckets per cutree height for the HAC algorithm

We produced another HAC tree plot1 in Figure 5.5 with a zoom into the previous one and put a
horizontal line representing the number of clusters we used in the K-Means algorithm. The purpose
of this second plot is to show the variation in number of buckets produced by each similarity
algorithm with respect to the number of buckets determined in our previous analysis. In order to
assess the quality of the algorithms, we must look at the shape of the curve close to the red line
(number of buckets in K-Means algorithms as well as the gold standard). A good algorithm is the
one with a moderate slope (not steep slope) when approaching the red line.

We can distinguish the algorithms in three groups with reference to their results depicted in Fig-
ure 5.5. In the first one Jaro-Winkler, WTB and Levenshtein have fairly similar results. These
algorithms show a trend of gradual increase in number of buckets they generated with respect to
reducing the height. This characteristic matches well to our problem since we are seeking an algo-
rithm with lower sensitivity to the distance threshold.

The second group contained the Smith-Waterman and the Monge-Elkan with to some extent lower
sensitivity to the changes in height than the remaining algorithms. Nonetheless, both algorithms
are not good candidates for our problem since still they disclose high sensitivity to the threshold.
The remaining algorithms of Cosine, Sorensend-Dice and Jaccard can be grouped together with
significant difference from the rest of the algorithms. The most remarkable feature is that the
Jaccard algorithm has a rapid change in number of buckets over the change in height which proves
its eminent sensitivity concerning the threshold variation.

When using similarity measures in order to compare large volumes of data, many orders of mag-
nitude faster algorithm can surpass quality limitations and improve application scalability. More

1Horizontal line is the number of clusters determined for the K-Means algorithm based on the gold standard

64

specifically, since the disambiguation task often deals with heavy computations, we can argue that
this measure is as important as accuracy when performing the disambiguation. In cascade classifi-
cation used to obtain disambiguation results on large amount of data, each classifier should produce
a decision as fast as possible in order to speed up the overall process. The comparison results in
terms of speed shown in Figure 5.6 indicate that our algorithm enables fast string similarity mea-
sure, thereby making it a better choice for very large data sets and real-time applications such as:
spelling correction in search engines, genome data analysis, matching DNA sequences, browser
fingerprint analysis and specially entity disambiguation.

Figure 5.6 Total execution time

The closest competitor of WTB is Levenshtein, with the significant difference of practically twice
the amount of total time to produce results. The slowest algorithm is Smith-Waterman with about
three times the completion time compared to WTB. Since the application under study was devel-
oped in a collaboration with an industrial partner, there are limited resources available, therefore,
any effort to reduce the computational cost and make the application speedy can have a large pos-
itive impact. In conclusion, our results depict that the Levenshtein, Jaro-Winkler, and WTB seem
to be better choices among all, but the WTB is more suitable for the processing of large volumes
of data due to its computational efficiency.

65

5.3 Results of Automating Cascade Structure

In this section, we present the results of the learning framework that is designed to automatically
construct the cascade structure of our disambiguation application. The developed training method-
ology was tested on both WoS and SCOPUS datasets. For the WoS subset (large size), running
with default parameters (explained in table 4.2 in the previous chapter), we were able to obtain the
structure demonstrated in tables 5.2 and 5.3. These two tables show the configuration of the two
blocks of the disambiguation method including entity aggregators and recursive aggregators. The
training method used 160,000+ randomly selected records from the pre-processed data to perform
the training process and create the configuration.

Table 5.2 Structure of the first disambiguation block - WoS subset (large size)

Entity Aggregator (EA)
Classifier Classifier Type WC Field Blocking Hit Threshold
1 Set (contains any) E-mail True False –
2 Similarity distance Surname – – 0.850000
3 Specialized (to forenames) Forename – – 0.850000
4 Set (contains no) Article Id True False –
Recursive Aggregator (RA)
Compound Classifier Classifier Type WC Field Blocking Hit Threshold
1 Similarity distance Surname – – 0.979175
2 Specialized (to forenames) Forename – – 0.969512
3 Set (contains no) Article Id True False –

Set (contains any) Fields False False –
Set (% of intersection) BOW reference Ids False False –

4 Set (contains any) BOW keywords False False –
Set (% of intersection) SubFields False False 0.446204
Set (% of intersection) Fields True False 0.300201
Set (% of intersection) BOW keywords True False 0.581463
Set (% of intersection) BOW reference Ids True False 0.251489
Set (contains any) Article Id & BOW reference Ids True False –

5 Set (% of intersection) BOW Affiliations True False 0.730993
Specialized (naive Bayesian) BOW addresses True False 0.300000

6 Set (contains any) Article Id & BOW reference Ids True False –
Set (contains any) BOW co-authors False False –

66

Table 5.3 Structure of the second disambiguation block - WoS subset (large size)

Entity Aggregator (EA)
Classifier Classifier Type WC Field Blocking Hit Threshold
1 Similarity distance Surname – – 0.999999
2 Specialized (to forenames) Forename – – 0.955555
3 Specialize (naive Bayesian) BOW co-authors False False –

Set (% of intersection) Fields True False 0.872208
Set (contains no) Article Id True False –
Set (% of intersection) BOW keywords True False 0.781460
Set (% of intersection) BOW Address True False 0.730993
Set (% of intersection) BOW Affiliation False False 0.669699

4 Set (% of intersection) BOW keywords False False –
Set (contains any) BOW co-authors False False –

5 Set (% of intersection) Subfields True False 0.326542
Set (% of intersection) BOW keywords False False 0.654803
Set (contains any) BOW reference Ids & Article Id True False –
Set (contains any) Article Id & BOW reference Ids True False –

Recursive Aggregator (RA)
Classifier Classifier Type WC Field Blocking Hit Threshold
1 Specialized (to forenames) Forename – – 0.999999
2 Set (contains any) Fields True False 0.884204

Set (% of intersection) BOW keywords False False 0.172180
Set (% of intersection) BOW Affiliations True False 0.741823
Set (contains any) BOW reference Ids True False –

3 Set (contains no) Article Id True False –
Set (contains any) Fields False False –

4 Set (% of intersection) Subfields False False –
Set (% of intersection) Journal Id False False 0.299081
Set (contains any) BOW reference Ids False False –

5 Set (% of intersection) Subfields False False 0.713096
Specialized (naive Bayesian) BOW co-authors True False 0.126721
Set (contains any) Article Id False False –

6 Set (contains any) BOW reference Ids True False –
Set (contains any) Article Id & BOW reference Ids True False –
Set (contains any) BOW co-authors False False –

Table 5.4 Results of the automatic cascade approach (WoS)

Automatically configured
cascade approach

SVM-DBSCAN Manually configured
cascade approach FUNC 1 FUNC 2 FUNC 3

Precision (%) 99.47 99.23 95.41 98.17 92.68
Recall (%) 73.88 83.21 80.65 81.33 74.23
F1 Score 0.848 0.905 0.874 0.889 0.824
Processing time (s) 1,817,819 2,724 4,601 4,982 4,214

Finally, we assessed the suggested training methodology by comparing the results of the disam-
biguation with the gold standard at hand and using standard quantitative metrics (explained in
Chapter 4). Table 5.4 summarizes the results of disambiguation process on WoS dataset using the
training method to configure the structure and thresholds of the classifiers when applying three dif-
ferent objective functions to the particle swarm optimizer. The first objective function considers the

67

length of data while penalizing FP rates. The second one is mostly focused on strictly penalizing
FN rates and the last one is a typical accuracy statistical measure.

It can be seen that the training method with an objective function (FUNC 2), which is focused on
minimizing False Negative (FN) rates (as explained in chapter 4) obtains the best results compared
to other objective functions, with the precision rate very similar to cascade approach with manually
determined arrangements and thresholds.

To evaluate the proposed method using a different dataset, we ran another experiment on the second
dataset SCOPUS which contained a smaller amount of records. The parameters of the learning
algorithm (as shown in Table 4.2) were chosen the same as what we used for the WoS dataset,
except the block size was reduced since the amount of data in SCOPUS was not as large as the
WoS. From the SCOPUS, our training method used 50,000+ randomly selected records from the
pre-processed data to perform the training process.

Results obtained for the second dataset SCOPUS (small size) are shown in Table 5.5 and 5.6.
The results of the training methodology on this dataset (SCOPUS small size) are relatively close
to the ones used in the previous experiment (WoS large size) as the method was able to put the
computationally efficient classifiers such as similarity distance between Surname and Forename
features in early steps of the aggregators. In addition, for the second block of the disambiguation,
only five steps were determined which is shorter than the manual configuration and would translate
into an increase in time-efficiency of the overall process.

Table 5.5 Structure of the first disambiguation block - SCOPUS subset (small size)

Entity Aggregator (EA)
Classifier Classifier Type WC Field Blocking Hit Threshold
1 Set (contains any) E-mail True False –
2 Similarity distance Surname – – 0.850000
3 Specialized (to forenames) Forename – – 0.850000
4 Set (contains no) Article Id True False –
Recursive Aggregator (RA)
Compound Classifier Classifier Type WC Field Blocking Hit Threshold
1 Similarity distance Surname – – 0.834452
2 Specialized (to forenames) Forename – – 0.999999
3 Set (contains no) Article Id True False –

Set (% of intersection) Fields True False 0.297863
4 Set (% of intersection) BOW Address True False 0.747846

Set (contains any) Article Id & BOW reference Ids True False –
Specialized (naive Bayesian) BOW addresses True False 0.300000

5 Set (contains any) BOW keywords False False –
Set (% of intersection) BOW Affiliations True False 0.601132
Set (contains any) BOW co-authors False False –
Set (% of intersection) BOW keywords True False 0.410362

6 Set (contains any) Article Id & BOW reference Ids True False –

68

Table 5.6 Structure of the second disambiguation block - SCOPUS subset (small size)

Entity Aggregator (EA)
Classifier Classifier Type WC Field Blocking Hit Threshold
1 Similarity distance Surname – – 0.899999
2 Specialized (to forenames) Forename – – 0.900000
3 Specialized (naive Bayesian) BOW addresses True False 0.300000

Set (% of intersection) BOW keywords True False 0.423138
Set (contains any) Fields True False 0.936692
Set (contains no) Article Id True False –

4 Set (% of intersection) BOW Affiliation False False 0.747846
Set (% of intersection) Journal Id False False 0.244160

5 Set (contains any) Fields False False –
Set (% of intersection) Subfields True False 0.296438
Set (contains any) BOW reference Ids & Article Id True False –
Set (contains any) Article Id & BOW reference Ids True False –

Recursive Aggregator (RA)
Classifier Classifier Type WC Field Blocking Hit Threshold
1 Specialized (to forenames) Forename – – 0.988655
2 Set (contains no) Article Id True False –

Set (contains any) Fields True False 0.802608
Set (% of intersection) Subfields False False –
Set (contains any) BOW reference Ids True False –
Set (% of intersection) BOW keywords False False 0.209317

3 Set (contains no) Article Id True False –
Set (contains any) Fields False False –

4 Set (% of intersection) Journal Id False False 0.199687
Set (contains any) BOW reference Ids False False –

5 Set (contains any) Article Id False False –
Set (% of intersection) Subfields False False 0.202357
Set (contains any) BOW reference Ids False False –
Specialized (naive Bayesian) BOW co-authors True False 0.227499
Set (contains any) Article Id & BOW reference Ids True False –
Set (% of intersection) BOW reference Ids True False 0.183102

Results of running the training method on the SCOPUS dataset are depicted in Table 5.7. We
compared the global precison and recall obtained by our training method with the best strategy of
manually configured disambiguation C3 in (Voorons et al., 2017) (refer to the Table 3.7). As ob-
served in the previous results, objective function (FUNC 2) outperforms the other ones by achieving
better precision and recall rates.

It has to be mentioned that the difference between the results of manually configured structure and
the automated one is due to the determination of the parameters of the training method that have
been selected by trials and errors, and it can be optimized as a future work.

69

Table 5.7 Results of the automatic cascade approach (SCOPUS)

Automatically configured
cascade approach

SVM-DBSCAN Manually configured
cascade approach (C3) FUNC 1 FUNC 2 FUNC 3

Precision (%) 99.260 99.967 89.41 92.54 88.26
Recall (%) 96.893 97.436 85.51 88.71 73.26
F1 Score 0.980 0.986 0.874 0.905 0.800
Processing time (s) 1782 28 32 35 33

In both aggregators in each block of the results obtained with the two datasets, classifiers such as
Surname and Forename appeared in early stages. This indicates that the training method is able to
choose computationally efficient classifiers and make them appear sooner than the others in each
step of the disambiguation. This makes the results of our training methodology analogous to the
guidelines that were used to manually design the cascade structure of the application under study.
This also shows an advantage of this methodology to make the application adjustable to many
types of fields and run the disambiguation process on various types of record entities represented
in various types of bibliographic databases.

The disambiguation configuration generated by the learning algorithm created a smaller structure
with adjusted thresholds when operating on both selected datasets. The algorithm was able to
produce less steps compared to the one used in (Voorons et al., 2017) with close results. This major
difference may help to significantly reduce the processing time, which contributes to the overall
objective of the cascade approach.

In summary, the training method was successfully applied with satisfactory results obtained on a
very large dataset. The training process itself took about three days for the WoS dataset and 4 hours
for the SCOPUS dataset to complete. The structure and thresholds determined by the algorithm are
efficient enough to produce satisfactory results. The method was able to automatically adapt to
different datasets since it uses the pre-processing stage results to train itself and it does not require
changes in code, nor does it require the manipulation in the configuration of the disambiguation
application. Final results of this step are put into an XML file that is included in Appendix B in the
case of obtaining results for the WoS dataset.

It has to be mentioned that the objective of our research was not to find the best set of parameters
for the optimization method but rather to automate the process of creating an efficient cascade
structure. The impact of the algorithm parameters on the final results can be the subject of a future
study.

70

CHAPTER 6 CONCLUSION

6.1 Summary of the Results

Analysis of the of scientific publications is a difficult task due to the presence of ambiguous infor-
mation, the large size of the bibliographic databases and the noise. To achieve high quality results
in a reasonable time, an efficient disambiguation application was developed. This application con-
tains a method that does not rely on specific input information and its cascade structure yields a
high computational efficiency even if some important features are missing in the input. The algo-
rithm steps used in this method enables to scale sufficiently to large-scale bibliographic datasets.
This research aimed to optimize such application in regards to several characteristics of its method.

One important element of the application under study is the use of a blocking method that reduced
the burden of pair-wise comparisons significantly. This blocking method was applied by choosing
a phonetic encoding algorithm, however, the impact of this choice on the quality of the results
and speed efficiency of the algorithm was not studied. One of the goals of our research was to
provide quantitative analysis and comparison between several commonly used phonetic encoding
algorithms in order to provide guidelines for using them. As indicated by the experimental results,
there is no single best phonetic algorithm available, and each one has advantages and disadvantages.
The level of accuracy, efficiency, speed and computation cost must be considered when selecting
an encoding algorithm. However, the most noticeable result is that the Caverphone2 is slower than
the others making it not a suitable choice for blocking in disambiguation algorithm.

Additionally, NYSIIS seems to be a very good compromise by having acceptable between/inside
buckets distances, not many errors, not many comparisons and not having buckets with too many
elements. The NYSIIS phonetic algorithm, nevertheless, suffers from relatively high amount of
calculation time, but it is negligible compared to the computation time of the comparisons between
records. Following this work, the disambiguation process uses the NYSIIS for the blocking method
rather than the DoubleMetaphone.

On the other hand, the application utilizes many weak classifiers assembled in a cascade structure
that function based on a string similarity metric to make a decision whether to link the entities
or not. On that premise, the influence of the performance of such metric on the quality of the
results and the speed efficiency of the algorithm was not taken into consideration. Clearly, results
accuracy of the decisions made by weak classifiers operators can improve the overall effectiveness
of the method itself. Therefore, first we introduced a new string similarity measure with the focus
on improving the speed of calculations required to make a decision, then we performed a series of

71

comparisons between this newly introduced metric and several commonly used metrics in order to
evaluate their performances and choose the best one suitable for the application at hand.

Our results suggest that the Weighting Table-Based has less computational cost with appropriate
rate of accuracy. When operating on large datasets, this algorithm has special character of time-
efficient, which can be of an interest in applications with inevitable need of high processing speed
such as disambiguation.

Additionally, although the application under study was successfully applied to different datasets
with promising results, the capability of adapting it to specific characteristics and information con-
tent that may be found in different datasets introduced another challenge for our research. There-
fore, the final step of our research was to increase the usability and adaptability of the application
and make it flexible to various types of input datasets.

For this purpose, we developed a training methodology that can automatically generate a structure
for WCs along with their value of thresholds irrespective of features presented to the application
as the input. Our experiments based on a subset of the large-size Web of Science (WoS) and
small-size SCOPUS bibliographic databases showed that the proposed method is able to identify
the most important fields and their impact on the disambiguation process when operating on the
existing disambiguation method.

Our training methodology used pre-processed data to train a model that generates the orderings
and thresholds of the WCs, and obtains satisfactory results when cross-validated with the reference
dataset and it is adjustable to any kind of bibliometric database regardless of the size and type of
fields (no manipulation or specific information is required to run disambiguation when using our
methodology). The proposed solution can make the application easily adaptable to other scenarios
such as disambiguation of other entities.

It has to be mentioned that one limitation of our work is that the training process is time-consuming
due to the fact that it performs an exhaustive pair-wise comparison of records in order to obtain
results.

6.2 Future Work

Future work could include improving the application in regards to different aspects such as:

• To improve the Weighting Table-based metric and make it adjustable by determining its tun-
ing parameters with the help of an automatic learning process.

• To test our training algorithm on different author name databases (e.g. Asian name databases).

72

• To improve the performance of the PSO optimizer using parameter optimization methods
such as population-based adaptive optimization technique (Meissner et al., 2006).

• Choosing a set of optimal hyper-parameters for the training algorithm.

73

REFERENCES

F. Akhter, “A heuristic approach for minimum set cover problem,” International Journal of Ad-

vanced Research in Artificial Intelligence (IJARAI), vol. 1, no. 4, pp. 40–45, 2015.

R. Baeza-Yates and G. Navarro, “A faster algorithm for approximate string matching,” in Combi-

natorial Pattern Matching. Springer, 1996, pp. 1–23.

R. Baeza-Yates, B. Ribeiro-Neto et al., Modern information retrieval. ACM press New York,
1999, vol. 463.

B. Balsmeier, A. Chavosh, G.-C. Li, G. Fierro, K. Johnson, A. Kaulagi, D. O’Reagan, B. Yeh, and
L. Fleming, “Automated disambiguation of us patent grants and applications,” 2015.

B. Berendt, A. Hotho, and G. Stumme, “Towards semantic web mining,” in International Semantic

Web Conference. Springer, 2002, pp. 264–278.

M. Bilenko and R. J. Mooney, “Adaptive duplicate detection using learnable string similarity
measures,” in Proceedings of the ninth ACM SIGKDD international conference on Knowledge

discovery and data mining. ACM, 2003, pp. 39–48.

R. Blanco, G. Ottaviano, and E. Meij, “Fast and space-efficient entity linking for queries,” in Pro-

ceedings of the Eighth ACM International Conference on Web Search and Data Mining. ACM,
2015, pp. 179–188.

L. K. Branting, “A comparative evaluation of name-matching algorithms,” in Proceedings of the

9th international conference on Artificial intelligence and law. ACM, 2003, pp. 224–232.

L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, pp. 123–140, 1996.

M. Broilo and F. G. De Natale, “A stochastic approach to image retrieval using relevance feedback
and particle swarm optimization,” IEEE Transactions on Multimedia, vol. 12, no. 4, pp. 267–277,
2010.

P. Bühlmann and B. Yu, “Boosting with the l 2 loss: regression and classification,” Journal of the

American Statistical Association, vol. 98, no. 462, pp. 324–339, 2003.

E. Caron and N. J. van Eck, “Large scale author name disambiguation using rule-based scoring
and clustering,” in 19th International Conference on Science and Technology Indicators. Context

counts: Pathways to master big data and little data. CWTS-Leiden University Leiden, 2014, pp.
79–86.

74

L. Cen, E. C. Dragut, L. Si, and M. Ouzzani, “Author disambiguation by hierarchical agglomer-
ative clustering with adaptive stopping criterion,” in Proceedings of the 36th International ACM

SIGIR conference on Research and development in information retrieval. ACM, 2013, pp. 741–
744.

S. Chapman, “Simmetrics,” URL http://sourceforge.net/projects/simmetrics/ SimMetrics is a Sim-

ilarity Metric Library, eg from edit distance’s (Levenshtein, Gotoh, Jaro etc) to other metrics,(eg

Soundex, Chapman). Work provided by UK Sheffield University funded by (AKT) an IRC spon-

sored by EPSRC, grant number GR N, vol. 15764, 2009.

M. Cheatham and P. Hitzler, “String similarity metrics for ontology alignment,” in International

Semantic Web Conference. Springer, 2013, pp. 294–309.

Z. Chen and H. Ji, “Collaborative ranking: A case study on entity linking,” in Proceedings of the

Conference on Empirical Methods in Natural Language Processing. Association for Computa-
tional Linguistics, 2011, pp. 771–781.

W.-C. Cheng and D.-M. Jhan, “A cascade classifier using adaboost algorithm and support vector
machine for pedestrian detection,” in Systems, Man, and Cybernetics (SMC), 2011 IEEE Interna-

tional Conference on. IEEE, 2011, pp. 1430–1435.

P. Christen, “A survey of indexing techniques for scalable record linkage and deduplication,” IEEE

transactions on knowledge and data engineering, vol. 24, no. 9, pp. 1537–1555, 2012.

K. J. Cios, W. Pedrycz, and R. W. Swiniarski, Data mining methods for knowledge discovery.
Springer Science & Business Media, 2012, vol. 458.

W. Cohen, P. Ravikumar, and S. Fienberg, “A comparison of string metrics for matching names
and records,” in Kdd workshop on data cleaning and object consolidation, vol. 3, 2003, pp. 73–78.

W. W. Cohen and J. Richman, “Learning to match and cluster large high-dimensional data sets
for data integration,” in Proceedings of the eighth ACM SIGKDD international conference on

Knowledge discovery and data mining. ACM, 2002, pp. 475–480.

R. G. Cota, A. A. Ferreira, C. Nascimento, M. A. Gonçalves, and A. H. Laender, “An unsupervised
heuristic-based hierarchical method for name disambiguation in bibliographic citations,” Journal

of the American Society for Information Science and Technology, vol. 61, no. 9, pp. 1853–1870,
2010.

A. Culotta, P. Kanani, R. Hall, M. Wick, and A. McCallum, “Author disambiguation using error-
driven machine learning with a ranking loss function,” in Sixth International Workshop on Infor-

mation Integration on the Web (IIWeb-07), Vancouver, Canada, 2007.

75

N. Degtyarev and O. Seredin, “Comparative testing of face detection algorithms,” in International

Conference on Image and Signal Processing. Springer, 2010, pp. 200–209.

P. DeRose, W. Shen, F. Chen, Y. Lee, D. Burdick, A. Doan, and R. Ramakrishnan, “Dblife: A
community information management platform for the database research community,” in CIDR,
2007, pp. 169–172.

R. Eberhart and J. Kennedy, “Particle swarm optimization, proceeding of ieee international con-
ference on neural network,” Perth, Australia, pp. 1942–1948, 1995.

B. Efron, “Bootstrap methods: another look at the jackknife annals of statistics 7: 1–26,” View

Article PubMed/NCBI Google Scholar, 1979.

Y. Emek and A. Rosén, “Semi-streaming set cover,” ACM Transactions on Algorithms (TALG),
vol. 13, no. 1, p. 6, 2016.

Y. Freund, R. Schapire, and N. Abe, “A short introduction to boosting,” Journal-Japanese Society

For Artificial Intelligence, vol. 14, no. 771-780, p. 1612, 1999.

J. Friedman, T. Hastie, R. Tibshirani et al., “Additive logistic regression: a statistical view of
boosting (with discussion and a rejoinder by the authors),” The annals of statistics, vol. 28, no. 2,
pp. 337–407, 2000.

G. Gens and E. Levner, “Complexity of approximation algorithms for combinatorial problems: a
survey,” ACM SIGACT News, vol. 12, no. 3, pp. 52–65, 1980.

C. L. Giles, H. Zha, and H. Han, “Name disambiguation in author citations using a k-way spectral
clustering method,” in Digital Libraries, 2005. JCDL’05. Proceedings of the 5th ACM/IEEE-CS

Joint Conference on. IEEE, 2005, pp. 334–343.

W. H. Gomaa and A. A. Fahmy, “A survey of text similarity approaches,” International Journal

of Computer Applications, vol. 68, no. 13, 2013.

F. Grandoni, A. Gupta, S. Leonardi, P. Miettinen, P. Sankowski, and M. Singh, “Set covering with
our eyes closed,” in Foundations of Computer Science, 2008. FOCS’08. IEEE 49th Annual IEEE

Symposium on. IEEE, 2008, pp. 347–356.

L. Gravano, P. G. Ipeirotis, N. Koudas, and D. Srivastava, “Text joins for data cleansing and
integration in an rdbms,” in Data Engineering, 2003. Proceedings. 19th International Conference

on. IEEE, 2003, pp. 729–731.

76

R. Grundkiewicz and M. Junczys-Dowmunt, “The wiked error corpus: A corpus of corrective
wikipedia edits and its application to grammatical error correction,” in International Conference

on Natural Language Processing. Springer, 2014, pp. 478–490.

B. Han, P. Cook, and T. Baldwin, “Automatically constructing a normalisation dictionary for mi-
croblogs,” in Proceedings of the 2012 joint conference on empirical methods in natural language

processing and computational natural language learning. Association for Computational Lin-
guistics, 2012, pp. 421–432.

H. Han, L. Giles, H. Zha, C. Li, and K. Tsioutsiouliklis, “Two supervised learning approaches
for name disambiguation in author citations,” in Digital Libraries, 2004. Proceedings of the 2004

joint ACM/IEEE conference on. IEEE, 2004, pp. 296–305.

D. Hood, “Caverphone: Phonetic matching algorithm,” Technical Paper CTP060902, University

of Otago, New Zealand, 2002.

J. Huang, S. Ertekin, and C. L. Giles, “Efficient name disambiguation for large-scale databases,”
in European Conference on Principles of Data Mining and Knowledge Discovery. Springer,
2006, pp. 536–544.

P. Jaccard, “The distribution of the flora in the alpine zone.” New phytologist, vol. 11, no. 2, pp.
37–50, 1912.

M. A. Jaro, “Advances in record-linkage methodology as applied to matching the 1985 census of
tampa, florida,” Journal of the American Statistical Association, vol. 84, no. 406, pp. 414–420,
1989.

V. John, E. Trucco, and S. Ivekovic, “Markerless human articulated tracking using hierarchical
particle swarm optimisation,” Image and Vision Computing, vol. 28, no. 11, pp. 1530–1547, 2010.

A. Karakasidis and V. S. Verykios, “Privacy preserving record linkage using phonetic codes,” in
Informatics, 2009. BCI’09. Fourth Balkan Conference in. IEEE, 2009, pp. 101–106.

R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of computer computa-

tions. Springer, 1972, pp. 85–103.

J. Kennedy, “The particle swarm: social adaptation of knowledge,” in Evolutionary Computation,

1997., IEEE International Conference on. IEEE, 1997, pp. 303–308.

G. Lan, G. W. DePuy, and G. E. Whitehouse, “An effective and simple heuristic for the set cover-
ing problem,” European journal of operational research, vol. 176, no. 3, pp. 1387–1403, 2007.

77

B. Larsen and C. Aone, “Fast and effective text mining using linear-time document clustering,”
in Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and

data mining. ACM, 1999, pp. 16–22.

D. Lee, B.-W. On, J. Kang, and S. Park, “Effective and scalable solutions for mixed and split
citation problems in digital libraries,” in Proceedings of the 2nd international workshop on Infor-

mation quality in information systems. ACM, 2005, pp. 69–76.

J.-J. Lee, P.-H. Lee, S.-W. Lee, A. Yuille, and C. Koch, “Adaboost for text detection in natu-
ral scene,” in Document Analysis and Recognition (ICDAR), 2011 International Conference on.
IEEE, 2011, pp. 429–434.

V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and reversals,” in
Soviet physics doklady, vol. 10, no. 8, 1966, pp. 707–710.

L. Li, B. Roth, and C. Sporleder, “Topic models for word sense disambiguation and token-based
idiom detection,” in Proceedings of the 48th Annual Meeting of the Association for Computational

Linguistics. Association for Computational Linguistics, 2010, pp. 1138–1147.

H. Liu, A. Abraham, and A. E. Hassanien, “Scheduling jobs on computational grids using a fuzzy
particle swarm optimization algorithm,” Future Generation Computer Systems, vol. 26, no. 8, pp.
1336–1343, 2010.

M. Liu, “Fingerprint classification based on adaboost learning from singularity features,” Pattern

Recognition, vol. 43, no. 3, pp. 1062–1070, 2010.

Y. Liu, W. Li, Z. Huang, and Q. Fang, “A fast method based on multiple clustering for name
disambiguation in bibliographic citations,” Journal of the Association for Information Science

and Technology, vol. 66, no. 3, pp. 634–644, 2015.

G. Loomes, C. Starmer, and R. Sugden, “Observing violations of transitivity by experimental
methods,” Econometrica: Journal of the Econometric Society, pp. 425–439, 1991.

V. Lopez, M. Fernández, E. Motta, and N. Stieler, “Poweraqua: Supporting users in querying and
exploring the semantic web,” Semantic Web, vol. 3, no. 3, pp. 249–265, 2012.

J. MacQueen et al., “Some methods for classification and analysis of multivariate observations,”
in Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol. 1.
Oakland, CA, USA., 1967, pp. 281–297.

B. Martins, “A supervised machine learning approach for duplicate detection over gazetteer
records,” in International Conference on GeoSpatial Sematics. Springer, 2011, pp. 34–51.

78

M. Meissner, M. Schmuker, and G. Schneider, “Optimized particle swarm optimization (opso)
and its application to artificial neural network training,” BMC bioinformatics, vol. 7, no. 1, p. 125,
2006.

X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai,
M. Amde, S. Owen et al., “Mllib: Machine learning in apache spark,” Journal of Machine Learn-

ing Research, vol. 17, no. 34, pp. 1–7, 2016.

P. Mitra, C. Murthy, and S. K. Pal, “Unsupervised feature selection using feature similarity,” IEEE

transactions on pattern analysis and machine intelligence, vol. 24, no. 3, pp. 301–312, 2002.

P. Mitra, J. Kang, D. Lee, and B.-w. On, “Comparative study of name disambiguation problem
using a scalable blocking-based framework,” in Digital Libraries, 2005. JCDL’05. Proceedings

of the 5th ACM/IEEE-CS Joint Conference on. IEEE, 2005, pp. 344–353.

A. E. Monge, C. Elkan et al., “The field matching problem: Algorithms and applications.” in
KDD, 1996, pp. 267–270.

S. Montani and G. Leonardi, “Retrieval and clustering for supporting business process adjustment
and analysis,” Information Systems, vol. 40, pp. 128–141, 2014.

M. H. Nadimi and M. Mosakhani, “A more accurate clustering method by using co-author social
networks for author name disambiguation,” Journal of Computing and Security, vol. 1, no. 4,
2015.

“The soundex indexing system,” NAT, National Archives and Records Administration, 2007, may
2007.

A.-C. N. Ngomo and S. Auer, “Limes-a time-efficient approach for large-scale link discovery on
the web of data,” integration, vol. 15, no. 3, 2011.

D. B. Nguyen, J. Hoffart, M. Theobald, and G. Weikum, “Aida-light: High-throughput named-
entity disambiguation.” in LDOW. Citeseer, 2014.

K. Okuma, A. Taleghani, N. d. Freitas, J. J. Little, and D. G. Lowe, “A boosted particle filter:
Multitarget detection and tracking,” Computer Vision-ECCV 2004, pp. 28–39, 2004.

S. Pandey, L. Wu, S. M. Guru, and R. Buyya, “A particle swarm optimization-based heuristic for
scheduling workflow applications in cloud computing environments,” in Advanced information

networking and applications (AINA), 2010 24th IEEE international conference on. IEEE, 2010,
pp. 400–407.

79

P. Papadimitriou, A. Dasdan, and H. Garcia-Molina, “Web graph similarity for anomaly detec-
tion,” Journal of Internet Services and Applications, vol. 1, no. 1, pp. 19–30, 2010.

T. Pedersen, “A simple approach to building ensembles of naive bayesian classifiers for word
sense disambiguation,” in Proceedings of the 1st North American chapter of the Association for

Computational Linguistics conference. Association for Computational Linguistics, 2000, pp.
63–69.

L. Philips, “Hanging on the metaphone,” Computer Language, vol. 7, no. 12 (December), 1990.

D. Pinto, D. Vilariño, Y. Alemán, H. Gómez, N. Loya, and H. Jiménez-Salazar, “The soundex
phonetic algorithm revisited for sms text representation,” in International Conference on Text,

Speech and Dialogue. Springer, 2012, pp. 47–55.

H. J. Postel, “Die kölner phonetik. ein verfahren zur identifizierung von personennamen auf der
grundlage der gestaltanalyse,” IBM-Nachrichten, vol. 19, pp. 925–931, 1969.

A. Rafae, A. Qayyum, M. M. Uddin, A. Karim, H. Sajjad, and F. Kamiran, “An unsupervised
method for discovering lexical variations in roman urdu informal text.” in EMNLP, 2015, pp.
823–828.

P. Rajkovic and D. Jankovic, “Adaptation and application of daitch-mokotoff soundex algorithm
on serbian names,” in XVII Conference on Applied Mathematics, vol. 12, 2007.

W. M. Rand, “Objective criteria for the evaluation of clustering methods,” Journal of the American

Statistical association, vol. 66, no. 336, pp. 846–850, 1971.

G. Rätsch, T. Onoda, and K. R. Müller, “An improvement of adaboost to avoid overfitting,” in
Proc. of the Int. Conf. on Neural Information Processing. Citeseer, 1998.

S. Y. Rhee and M. Mutwil, “Towards revealing the functions of all genes in plants,” Trends in

plant science, vol. 19, no. 4, pp. 212–221, 2014.

G. Ridgeway, “Looking for lumps: Boosting and bagging for density estimation,” Computational

Statistics & Data Analysis, vol. 38, no. 4, pp. 379–392, 2002.

P. Ristoski and P. Mika, “Enriching product ads with metadata from html annotations,” in Inter-

national Semantic Web Conference. Springer, 2016, pp. 151–167.

T. F. Smith and M. S. Waterman, “Identification of common molecular subsequences,” Journal of

molecular biology, vol. 147, no. 1, pp. 195–197, 1981.

80

T. Sørensen, “A method of establishing groups of equal amplitude in plant sociology based on
similarity of species and its application to analyses of the vegetation on danish commons,” Biol.

Skr., vol. 5, pp. 1–34, 1948.

R. Speck and A.-C. N. Ngomo, “Ensemble learning for named entity recognition,” in International

Semantic Web Conference. Springer, 2014, pp. 519–534.

Y. Sun, L. Lin, D. Tang, N. Yang, Z. Ji, and X. Wang, “Modeling mention, context and entity with
neural networks for entity disambiguation.” in IJCAI, 2015, pp. 1333–1339.

J. Tang, A. C. Fong, B. Wang, and J. Zhang, “A unified probabilistic framework for name dis-
ambiguation in digital library,” IEEE Transactions on Knowledge and Data Engineering, vol. 24,
no. 6, pp. 975–987, 2012.

V. I. Torvik and N. R. Smalheiser, “Author name disambiguation in medline,” ACM Transactions

on Knowledge Discovery from Data (TKDD), vol. 3, no. 3, p. 11, 2009.

V. I. Torvik, M. Weeber, D. R. Swanson, and N. R. Smalheiser, “A probabilistic similarity metric
for medline records: A model for author name disambiguation,” Journal of the American Society

for information science and technology, vol. 56, no. 2, pp. 140–158, 2005.

P. Treeratpituk and C. L. Giles, “Disambiguating authors in academic publications using random
forests,” in Proceedings of the 9th ACM/IEEE-CS joint conference on Digital libraries. ACM,
2009, pp. 39–48.

P. Viola and M. Jones, “Robust real-time object detection,” International Journal of Computer

Vision, vol. 4, no. 34–47, 2001.

M. Voorons, Y. Goussard, and E. Archambault, “A new cascaded approach for fast author name
disambiguation,” Manuscript in preparation, 2017.

J. Wang, K. Berzins, D. Hicks, J. Melkers, F. Xiao, and D. Pinheiro, “A boosted-trees method for
name disambiguation,” Scientometrics, vol. 93, no. 2, pp. 391–411, 2012.

B. H. Weinberg, “Bibliographic coupling: A review,” Information Storage and Retrieval, vol. 10,
no. 5-6, pp. 189–196, 1974.

B. Xue, M. Zhang, and W. N. Browne, “Particle swarm optimization for feature selection in
classification: A multi-objective approach,” IEEE transactions on cybernetics, vol. 43, no. 6, pp.
1656–1671, 2013.

81

Z. Xue, D. Yin, B. D. Davison, and B. Davison, “Normalizing microtext.” Analyzing Microtext,
vol. 11, p. 05, 2011.

M. Yang, J. Crenshaw, B. Augustine, R. Mareachen, and Y. Wu, “Adaboost-based face detection
for embedded systems,” Computer Vision and Image Understanding, vol. 114, no. 11, pp. 1116–
1125, 2010.

J. Zobel and P. Dart, “Phonetic string matching: Lessons from information retrieval,” in Proceed-

ings of the 19th annual international ACM SIGIR conference on Research and development in

information retrieval. ACM, 1996, pp. 166–172.

82

APPENDIX A CO-AUTHORSHIP

The results of this study have been submitted as follows:

• Banafsheh Mehri, Matthieu Voorons, Yves Goussard “A Comparison of Phonetic Encodings
for Authors’ Names Blocking”, Conference on Empirical Methods in Natural Language Pro-

cessing, 2017

My contribution: Methodology, analysis, and paper writing.

• Banafsheh Mehri, Matthieu Voorons, Yves Goussard, Martin Trépanier “Weighting Table
Based: A Fast String Similarity Measure”, The 16th International Semantic Web Confer-

ence, 2017

My contribution: Analysis, evaluation and paper writing.

83

APPENDIX B CASCADE CONFIGURATION XML FILE FOR WEB OF SCIENCE
DATASET (LARGE SIZE)

Listing B.1 XML configuration file generated by training algorithm for WoS subset (large size)
< list >

<desambiguation. classification . ScientistAggregator >
<aggregatorType> Scientists aggregator</aggregatorType>
<cc class ="desambiguation. classification . CascadeClassification ">

< classifiers serialization ="custom">
< unserializable parents />
<com.google.common.collect.TreeMultimap>

<default />
<com.google.common.collect.NaturalOrdering />
<com.google.common.collect.Ordering_ ArbitraryOrdering >

<uids class ="com.google.common.collect.MapMaker$ComputingMapAdapter"
↪→ resolvesto="com.google.common.collect.ComputingConcurrentHashMap$ComputingSerializationProxy"
↪→ serialization="custom">

< unserializable parents />
<com.google.common.collect.MapMakerInternalMap_ AbstractSerializationProxy >

<default>
<concurrencyLevel>4</concurrencyLevel>
<expireAfterAccessNanos>0</expireAfterAccessNanos>
<expireAfterWriteNanos>0</expireAfterWriteNanos>
<maximumSize>1</maximumSize>
<keyEquivalence class ="com.google.common.base.Equivalence$Identity" />
<keyStrength class ="com.google.common.collect.MapMakerInternalMap$Strength">WEAK</keyStrength>
<removalListener

↪→ class ="com.google.common.collect.GenericMapMaker$NullListener">INSTANCE</removalListener>
<valueEquivalence class ="com.google.common.base.Equivalence$Equals"/>
<valueStrength class ="com.google.common.collect.MapMakerInternalMap$Strength">STRONG</valueStrength>

</default>
</com.google.common.collect.MapMakerInternalMap_ AbstractSerializationProxy >
<com.google.common.collect.ComputingConcurrentHashMap_ComputingSerializationProxy>

<default>
<computingFunction class="com.google.common.collect.Ordering$ ArbitraryOrdering $1">

<counter>
<value>0</value>

</counter>
<outer class reference =" ../../../../.. " />

</computingFunction>
</default>
<int>0</int>
<null />

</com.google.common.collect.ComputingConcurrentHashMap_ComputingSerializationProxy>
</uids>

</com.google.common.collect.Ordering_ ArbitraryOrdering >
<int>4</int>
<int>1</int>
<int>1</int>

84

<desambiguation. classification . SetContainsAnyClassifier >
< classifierType >Bag contains any classifier </ classifierType >
<classifierName>AG 111 Email classifier </ classifierName >
<blocking>true</blocking>
<hit> false </ hit >
< field1 class =" utils .SMField">EMAIL</field1>
< field2 class =" utils .SMField">EMAIL</field2>
<mix>false</mix>
<converter class =" utils . converter . StringConverterFactory $1"/>

</desambiguation. classification . SetContainsAnyClassifier >
<int>2</int>
<int>1</int>
<desambiguation. classification . SurnameClassifier >

< classifierType > Classificateur sur les noms</ classifierType >
<classifierName>AG 121 Noms </ classifierName >
<blocking>true</blocking>
<hit> false </ hit >
<threshold>0.85</ threshold >
<metric class ="desambiguation. classification . metric .WeightingTableMetric">

<maxDiff>2</maxDiff>
< costShift >0.4</ costShift >
<costDiff>0.4</ costDiff >
< costFirst >1.7</ costFirst >

</metric>
< field class =" utils .SMField">SURNAME</field>

</desambiguation. classification . SurnameClassifier >
<int>3</int>
<int>1</int>
<desambiguation. classification . ForenameClassifier >

< classifierType >Forename classifier </ classifierType >
<classifierName>AG 131 forename </ classifierName >
<blocking>false</blocking>
<hit> false </ hit >
<threshold>0.85</ threshold >
<metric class ="desambiguation. classification . metric .WeightingTableMetric"

↪→ reference =" ../../ desambiguation. classification . SurnameClassifier / metric" />
< field class =" utils .SMField">FORNAME</field>

</desambiguation. classification . ForenameClassifier >
<int>4</int>
<int>1</int>
<desambiguation. classification . SetContainsNoClassifier >

< classifierType >Bag contains no classifier </ classifierType >
<classifierName>AG 141 ID ID anti classifier </ classifierName >
<blocking>true</blocking>
<hit> false </ hit >
< field1 class =" utils .SMField">ID</field1>
< field2 class =" utils .SMField">ID</field2>
<mix>false</mix>
<converter class =" utils . converter . StringConverterFactory $1"/>

</desambiguation. classification . SetContainsNoClassifier >
</com.google.common.collect.TreeMultimap>

</ classifiers >
</cc>
<comparators>

<desambiguation. classification .comparator.RecordComparator>

85

< fieldToTest class =" utils .SMField">EMAIL</fieldToTest>
<operators>

< string >==</string>
</ operators >
<valuesToTest>

< string ></ string >
</valuesToTest>

</desambiguation. classification .comparator.RecordComparator>
</comparators>

</desambiguation. classification . ScientistAggregator >
<desambiguation. classification .RecurrentAggregator2>

<aggregatorType>Recurrent aggregator</aggregatorType>
<cc class ="desambiguation. classification . CascadeClassification ">

< classifiers serialization ="custom">
< unserializable parents />
<com.google.common.collect.TreeMultimap>

<default />
<com.google.common.collect.NaturalOrdering

↪→ reference =" ../../../../../ desambiguation. classification . ScientistAggregator " />
<com.google.common.collect.Ordering_ ArbitraryOrdering

↪→ reference =" ../../../../../ desambiguation. classification . ScientistAggregator " />
<int>6</int>
<int>1</int>
<int>1</int>
<desambiguation. classification . SurnameClassifier >

< classifierType > Classificateur sur les noms</ classifierType >
<classifierName>AG 211 Noms </ classifierName >
<blocking>true</blocking>
<hit> false </ hit >
<threshold>0.979175</threshold>
<metric class ="desambiguation. classification . metric .WeightingTableMetric"

↪→ reference =" ../../../../../../ desambiguation. classification . ScientistAggregator " />
< field class =" utils .SMField">SURNAME</field>

</desambiguation. classification . SurnameClassifier >
<int>2</int>
<int>1</int>
<desambiguation. classification . ForenameClassifier >

< classifierType >Forename classifier </ classifierType >
<classifierName>AG 221 forename </ classifierName >
<blocking>false</blocking>
<hit> false </ hit >
<threshold>0.969512</threshold>
<metric class ="desambiguation. classification . metric .WeightingTableMetric"

↪→ reference =" ../../../../../../ desambiguation. classification . ScientistAggregator " />
< field class =" utils .SMField">FORNAME</field>

</desambiguation. classification . ForenameClassifier >
<int>3</int>
<int>3</int>
<desambiguation. classification . SetContainsNoClassifier >

< classifierType >Bag contains no classifier </ classifierType >
<classifierName>AG 231 ID ID anti classifier </ classifierName >
<blocking>true</blocking>
<hit> false </ hit >
< field1 class =" utils .SMField">ID</field1>
< field2 class =" utils .SMField">ID</field2>

86

<mix>false</mix>
<converter class =" utils . converter . StringConverterFactory $1"/>

</desambiguation. classification . SetContainsNoClassifier >
<desambiguation. classification . BagContainsAnyClassifier>

< classifierType >Any ref</ classifierType >
<classifierName>Any ref</ classifierName >
<blocking>false</blocking>
<hit> false </ hit >
< field1 class =" utils .SMField">BOW_REFERENCES</field1>
< field2 class =" utils .SMField">BOW_REFERENCES</field2>
<mix>false</mix>
<converter class =" utils . converter . StringConverterFactory $1"/>

</desambiguation. classification . BagContainsAnyClassifier>
<desambiguation. classification . BagContainsAnyClassifier>

< classifierType >Any field</ classifierType >
<classifierName>Any field</ classifierName >
<blocking>false</blocking>
<hit> false </ hit >
< field1 class =" utils . ScientistField ">FIELDS</field1>
< field2 class =" utils . ScientistField ">FIELDS</field2>
<mix>false</mix>

</desambiguation. classification . BagContainsAnyClassifier>
<int>4</int>
<int>6</int>
<desambiguation. classification . BagCountClassifier >

< classifierType >Bag counter classifier </ classifierType >
<classifierName>AG 243 Fields classifier </ classifierName >
<blocking>false</blocking>
<hit> false </ hit >
<threshold>0.300201</threshold>
< field1 class =" utils . ScientistField ">FIELDS</field1>
< field2 class =" utils . ScientistField ">FIELDS</field2>
<mix>false</mix>

</desambiguation. classification . BagCountClassifier >
<desambiguation. classification . SetContainsAnyClassifier >

< classifierType >Bag contains classifier </ classifierType >
<classifierName>AG 246 ID References classifier </ classifierName >
<blocking>true</blocking>
<hit> false </ hit >
< field1 class =" utils .SMField">ID</field1>
< field2 class =" utils .SMField">BOW_REFERENCES</field2>
<mix>false</mix>
<converter class =" utils . converter . StringConverterFactory $1"/>

</desambiguation. classification . SetContainsAnyClassifier >
<desambiguation. classification . BagCountClassifier >

< classifierType >Bag counter classifier </ classifierType >
<classifierName>AG 244 Keywords classifier </ classifierName >
<blocking>false</blocking>
<hit> false </ hit >
<threshold>0.581463</threshold>
< field1 class =" utils .SMField">BOW_KEYWORD</field1>
< field2 class =" utils .SMField">BOW_KEYWORD</field2>
<mix>false</mix>
<converter class =" utils . converter . StringConverterFactory $3"/>

</desambiguation. classification . BagCountClassifier >

87

<desambiguation. classification . BagCountClassifier >
< classifierType >Bag contains classifier </ classifierType >
<classifierName>AG 245 References classifier </ classifierName >
<blocking>false</blocking>
<hit> false </ hit >
<threshold>0.251489</threshold>
< field1 class =" utils .SMField">BOW_REFERENCES</field1>
< field2 class =" utils .SMField">BOW_REFERENCES</field2>
<mix>false</mix>
<converter class =" utils . converter . StringConverterFactory $1"/>

</desambiguation. classification . BagCountClassifier >
<desambiguation. classification . BagContainsAnyClassifier>

< classifierType >Bag contains classifier </ classifierType >
<classifierName>AG 241 Keywords classifier </ classifierName >
<blocking>false</blocking>
<hit> false </ hit >
< field1 class =" utils .SMField">BOW_KEYWORD</field1>
< field2 class =" utils .SMField">BOW_KEYWORD</field2>
<mix>false</mix>
<converter class =" utils . converter . StringConverterFactory $3"/>

</desambiguation. classification . BagContainsAnyClassifier>
<desambiguation. classification . BagCountClassifier >

< classifierType >Bag counter classifier </ classifierType >
<classifierName>AG 242 Subfields classifier </ classifierName >
<blocking>false</blocking>
<hit> false </ hit >
<threshold>0.446204</threshold>
< field1 class =" utils . ScientistField ">SUBFIELDS</field1>
< field2 class =" utils . ScientistField ">SUBFIELDS</field2>
<mix>false</mix>

</desambiguation. classification . BagCountClassifier >
<int>5</int>
<int>3</int>
<desambiguation. classification . BagCountClassifier >

< classifierType >Bag count classifier </ classifierType >
<classifierName>AG 251 Affiliation classifier </ classifierName >
<blocking>true</blocking>
<hit> false </ hit >
<threshold>0.730993</threshold>
< field1 class =" utils . ScientistField ">AFFILIATION_BOW</field1>
< field2 class =" utils . ScientistField ">AFFILIATION_BOW</field2>
<mix>false</mix>

</desambiguation. classification . BagCountClassifier >
<desambiguation. classification . NaiveBayesianClassifier >

< classifierType >Naive Bayesian classifier </ classifierType >
<classifierName>Addresses classifier </ classifierName >
<blocking>true</blocking>
<hit> false </ hit >
<threshold>0.3</ threshold >
< field >BOW_ADDRESS</field>
<statsFilename>/code/ java / dis / data /run2/ processed_data /stats_BOW_KEYWORD.csv</statsFilename>
<converter class =" utils . converter . StringConverterFactory $1"/>

</desambiguation. classification . NaiveBayesianClassifier >
<desambiguation. classification . NaiveBayesianClassifier >

< classifierType >Naive Bayesian classifier </ classifierType >

88

<classifierName>Addresses classifier </ classifierName >
<blocking>true</blocking>
<hit> false </ hit >
<threshold>0.126721</threshold>
< field >COAUTHORS</field>
<statsFilename>/code/ java / dis / data /run2/ processed_data /stats_FULL_NAME.csv</statsFilename>
<converter class =" utils . converter . StringConverterFactory $1"/>

</desambiguation. classification . NaiveBayesianClassifier >
<int>6</int>
<int>2</int>
<desambiguation. classification . SetContainsAnyClassifier >

< classifierType >Bag contains classifier </ classifierType >
<classifierName>AG 261 ID References classifier </ classifierName >
<blocking>true</blocking>
<hit> false </ hit >
< field1 class =" utils .SMField">ID</field1>
< field2 class =" utils .SMField">BOW_REFERENCES</field2>
<mix>false</mix>
<converter class =" utils . converter . StringConverterFactory $1"/>

</desambiguation. classification . SetContainsAnyClassifier >
<desambiguation. classification . BagContainsAnyClassifier>

< classifierType >Bag contains classifier </ classifierType >
<classifierName>AG 262 Co authors classifier </ classifierName >
<blocking>false</blocking>
<hit> false </ hit >
< field1 class =" utils .SMField">COAUTHORS</field1>
< field2 class =" utils .SMField">COAUTHORS</field2>
<mix>false</mix>
<converter class =" utils . converter . StringConverterFactory $1"/>

</desambiguation. classification . BagContainsAnyClassifier>
</com.google.common.collect.TreeMultimap>

</ classifiers >
</cc>

</desambiguation. classification .RecurrentAggregator2>
<desambiguation. classification . ScientistAggregator >

<aggregatorType> Scientists aggregator</aggregatorType>
<cc class ="desambiguation. classification . CascadeClassification ">

< classifiers serialization ="custom">
< unserializable parents />
<com.google.common.collect.TreeMultimap>

<default />
<com.google.common.collect.NaturalOrdering

↪→ reference =" ../../../../../ desambiguation. classification . ScientistAggregator " />
<com.google.common.collect.Ordering_ ArbitraryOrdering

↪→ reference =" ../../../../../ desambiguation. classification . ScientistAggregator " />
<int>5</int>
<int>1</int>
<int>1</int>
<desambiguation. classification . SurnameClassifier >

< classifierType > Classificateur sur les noms</ classifierType >
<classifierName>AG 311 Noms </ classifierName >
<blocking>true</blocking>
<hit> false </ hit >
<threshold>0.999999</threshold>

89

<metric class ="desambiguation. classification . metric .WeightingTableMetric"
↪→ reference =" ../../../../../../ desambiguation. classification . ScientistAggregator " />

< field class =" utils .SMField">SURNAME</field>
</desambiguation. classification . SurnameClassifier >
<int>2</int>
<int>1</int>
<desambiguation. classification . FornameClassifier >

< classifierType >Forename classifier </ classifierType >
<classifierName>AG 321 forename </ classifierName >
<blocking>false</blocking>
<hit> false </ hit >
<threshold>0.955555</threshold>
<metric class ="desambiguation. classification . metric .WeightingTableMetric"

↪→ reference =" ../../../../../../ desambiguation. classification . ScientistAggregator " />
< field class =" utils .SMField">FORNAME</field>

</desambiguation. classification . FornameClassifier >
<int>3</int>
<int>5</int>
<desambiguation. classification . BagCountClassifier >

< classifierType >Bag counter classifier </ classifierType >
<classifierName>AG 334 Keywords classifier </ classifierName >
<blocking>true</blocking>
<hit> false </ hit >
<threshold>0.78146</threshold>
< field1 class =" utils .SMField">BOW_KEYWORD</field1>
< field2 class =" utils .SMField">BOW_KEYWORD</field2>
<mix>false</mix>
<converter class =" utils . converter . StringConverterFactory $3"/>

</desambiguation. classification . BagCountClassifier >
<desambiguation. classification . SetContainsAnyClassifier >

< classifierType >Bag contains classifier </ classifierType >
<classifierName>AG 333 ID References classifier </ classifierName >
<blocking>true</blocking>
<hit> false </ hit >
< field1 class =" utils .SMField">ID</field1>
< field2 class =" utils .SMField">BOW_REFERENCES</field2>
<mix>false</mix>
<converter class =" utils . converter . StringConverterFactory $1"/>

</desambiguation. classification . SetContainsAnyClassifier >
<desambiguation. classification . BagCountClassifier >

< classifierType >Bag counter classifier </ classifierType >
<classifierName>AG 332 Fields classifier </ classifierName >
<blocking>false</blocking>
<hit> false </ hit >
<threshold>0.872208</threshold>
< field1 class =" utils . ScientistField ">FIELDS</field1>
< field2 class =" utils . ScientistField ">FIELDS</field2>
<mix>false</mix>

</desambiguation. classification . BagCountClassifier >
<desambiguation. classification . BagContainsAnyClassifier>

< classifierType >Bag contains classifier </ classifierType >
<classifierName>AG 331 Co authors classifier </ classifierName >
<blocking>false</blocking>
<hit> false </ hit >
< field1 class =" utils .SMField">COAUTHORS</field1>

90

< field2 class =" utils .SMField">COAUTHORS</field2>
<mix>false</mix>
<converter class =" utils . converter . StringConverterFactory $1"/>

</desambiguation. classification . BagContainsAnyClassifier>
<desambiguation. classification . BagCountClassifier >

< classifierType >Bag count classifier </ classifierType >
<classifierName>AG 335 Affiliation classifier </ classifierName >
<blocking>true</blocking>
<hit> false </ hit >
<threshold>0.669699</threshold>
< field1 class =" utils . ScientistField ">AFFILIATION_BOW</field1>
< field2 class =" utils . ScientistField ">AFFILIATION_BOW</field2>
<mix>false</mix>

</desambiguation. classification . BagCountClassifier >
<int>4</int>
<int>2</int>
<desambiguation. classification . BagContainsAnyClassifier>

< classifierType >Bag contains classifier </ classifierType >
<classifierName>AG 341 Keywords classifier </ classifierName >
<blocking>false</blocking>
<hit> false </ hit >
< field1 class =" utils .SMField">BOW_KEYWORD</field1>
< field2 class =" utils .SMField">BOW_KEYWORD</field2>
<mix>false</mix>
<converter class =" utils . converter . StringConverterFactory $3"/>

</desambiguation. classification . BagContainsAnyClassifier>
<desambiguation. classification . BagContainsAnyClassifier>

< classifierType >Bag contains classifier </ classifierType >
<classifierName>AG 342 Co authors classifier </ classifierName >
<blocking>false</blocking>
<hit> false </ hit >
< field1 class =" utils .SMField">COAUTHORS</field1>
< field2 class =" utils .SMField">COAUTHORS</field2>
<mix>false</mix>
<converter class =" utils . converter . StringConverterFactory $1"/>

</desambiguation. classification . BagContainsAnyClassifier>
<int>5</int>
<int>4</int>
<desambiguation. classification . BagCountClassifier >

< classifierType >Bag counter classifier </ classifierType >
<classifierName>AG 351 Subfields classifier </ classifierName >
<blocking>false</blocking>
<hit> false </ hit >
<threshold>0.326542</threshold>
< field1 class =" utils . ScientistField ">SUBFIELDS</field1>
< field2 class =" utils . ScientistField ">SUBFIELDS</field2>
<mix>false</mix>

</desambiguation. classification . BagCountClassifier >
<desambiguation. classification . BagCountClassifier >

< classifierType >Bag counter classifier </ classifierType >
<classifierName>AG 352 Keywords classifier </ classifierName >
<blocking>false</blocking>
<hit> false </ hit >
<threshold>0.654803</threshold>
< field1 class =" utils .SMField">BOW_KEYWORD</field1>

91

< field2 class =" utils .SMField">BOW_KEYWORD</field2>
<mix>false</mix>
<converter class =" utils . converter . StringConverterFactory $3"/>

</desambiguation. classification . BagCountClassifier >
<desambiguation. classification . SetContainsAnyClassifier >

< classifierType >Bag contains classifier </ classifierType >
<classifierName>AG 353 References ID classifier </ classifierName >
<blocking>true</blocking>
<hit> false </ hit >
< field1 class =" utils .SMField">BOW_REFERENCES</field1>
< field2 class =" utils .SMField">ID</field2>
<mix>false</mix>
<converter class =" utils . converter . StringConverterFactory $1"/>

</desambiguation. classification . SetContainsAnyClassifier >
<desambiguation. classification . SetContainsAnyClassifier >

< classifierType >Bag contains classifier </ classifierType >
<classifierName>AG 354 ID References classifier </ classifierName >
<blocking>true</blocking>
<hit> false </ hit >
< field1 class =" utils .SMField">ID</field1>
< field2 class =" utils .SMField">BOW_REFERENCES</field2>
<mix>false</mix>
<converter class =" utils . converter . StringConverterFactory $1"/>

</desambiguation. classification . SetContainsAnyClassifier >
</com.google.common.collect.TreeMultimap>

</ classifiers >
</cc>
<comparators>

<desambiguation. classification .comparator.RecordComparator>
< fieldToTest class =" utils .SMField">EMAIL</fieldToTest>
<operators>

< string >!=</ string >
</ operators >
<valuesToTest>

< string ></ string >
</valuesToTest>

</desambiguation. classification .comparator.RecordComparator>
</comparators>

</desambiguation. classification . ScientistAggregator >
<desambiguation. classification .RecurrentAggregator2>

<aggregatorType>Recurrent aggregator</aggregatorType>
<cc class ="desambiguation. classification . CascadeClassification ">

< classifiers serialization ="custom">
< unserializable parents />
<com.google.common.collect.TreeMultimap>

<default />
<com.google.common.collect.NaturalOrdering

↪→ reference =" ../../../../../ desambiguation. classification . ScientistAggregator " />
<com.google.common.collect.Ordering_ ArbitraryOrdering

↪→ reference =" ../../../../../ desambiguation. classification . ScientistAggregator " />
<int>6</int>
<int>1</int>
<int>1</int>
<desambiguation. classification . SurnameClassifier >

< classifierType > Classificateur sur les noms</ classifierType >

92

<classifierName>AG 411 Noms </ classifierName >
<blocking>true</blocking>
<hit> false </ hit >
<threshold>0.999999</threshold>
<metric class ="desambiguation. classification . metric .WeightingTableMetric"

↪→ reference =" ../../../../../../ desambiguation. classification . ScientistAggregator " />
< field class =" utils .SMField">SURNAME</field>

</desambiguation. classification . SurnameClassifier >
<int>2</int>
<int>4</int>
<desambiguation. classification . SetContainsAnyClassifier >

< classifierType >Bag contains classifier </ classifierType >
<classifierName>AG 424 ID References classifier </ classifierName >
<blocking>true</blocking>
<hit> false </ hit >
< field1 class =" utils .SMField">ID</field1>
< field2 class =" utils .SMField">BOW_REFERENCES</field2>
<mix>false</mix>
<converter class =" utils . converter . StringConverterFactory $1"/>

</desambiguation. classification . SetContainsAnyClassifier >
<desambiguation. classification . BagCountClassifier >

< classifierType >Bag counter classifier </ classifierType >
<classifierName>AG 422 Keywords classifier </ classifierName >
<blocking>false</blocking>
<hit> false </ hit >
<threshold>0.17218</threshold>
< field1 class =" utils .SMField">BOW_KEYWORD</field1>
< field2 class =" utils .SMField">BOW_KEYWORD</field2>
<mix>false</mix>
<converter class =" utils . converter . StringConverterFactory $3"/>

</desambiguation. classification . BagCountClassifier >
<desambiguation. classification . BagCountClassifier >

< classifierType >Bag counter classifier </ classifierType >
<classifierName>AG 421 Fields classifier </ classifierName >
<blocking>false</blocking>
<hit> false </ hit >
<threshold>0.884204</threshold>
< field1 class =" utils . ScientistField ">FIELDS</field1>
< field2 class =" utils . ScientistField ">FIELDS</field2>
<mix>false</mix>

</desambiguation. classification . BagCountClassifier >
<desambiguation. classification . BagCountClassifier >

< classifierType >Bag count classifier </ classifierType >
<classifierName>AG 423 Affiliation classifier </ classifierName >
<blocking>true</blocking>
<hit> false </ hit >
<threshold>0.741823</threshold>
< field1 class =" utils . ScientistField ">AFFILIATION_BOW</field1>
< field2 class =" utils . ScientistField ">AFFILIATION_BOW</field2>
<mix>false</mix>

</desambiguation. classification . BagCountClassifier >
<int>3</int>
<int>2</int>
<desambiguation. classification . BagContainsAnyClassifier>

< classifierType >Bag contains classifier </ classifierType >

93

<classifierName>AG 432 References classifier </ classifierName >
<blocking>false</blocking>
<hit> false </ hit >
< field1 class =" utils . ScientistField ">FIELDS</field1>
< field2 class =" utils . ScientistField ">FIELDS</field2>
<mix>false</mix>

</desambiguation. classification . BagContainsAnyClassifier>
<desambiguation. classification . SetContainsNoClassifier >

< classifierType >Bag contains no classifier </ classifierType >
<classifierName>AG 431 ID ID anti classifier </ classifierName >
<blocking>true</blocking>
<hit> false </ hit >
< field1 class =" utils .SMField">ID</field1>
< field2 class =" utils .SMField">ID</field2>
<mix>false</mix>
<converter class =" utils . converter . StringConverterFactory $1"/>

</desambiguation. classification . SetContainsNoClassifier >
<int>4</int>
<int>3</int>
<desambiguation. classification . BagContainsAnyClassifier>

< classifierType >Bag contains classifier </ classifierType >
<classifierName>AG 443 References classifier </ classifierName >
<blocking>false</blocking>
<hit> false </ hit >
< field1 class =" utils .SMField">BOW_REFERENCES</field1>
< field2 class =" utils .SMField">BOW_REFERENCES</field2>
<mix>false</mix>
<converter class =" utils . converter . StringConverterFactory $1"/>

</desambiguation. classification . BagContainsAnyClassifier>
<desambiguation. classification . BagContainsAnyClassifier>

< classifierType >Bag contains classifier </ classifierType >
<classifierName>AG 441 References classifier </ classifierName >
<blocking>false</blocking>
<hit> false </ hit >
< field1 class =" utils . ScientistField ">SUBFIELDS</field1>
< field2 class =" utils . ScientistField ">SUBFIELDS</field2>
<mix>false</mix>

</desambiguation. classification . BagContainsAnyClassifier>
<desambiguation. classification . BagCountClassifier >

< classifierType >Bag counter classifier </ classifierType >
<classifierName>AG 442 Source ID classifier </ classifierName >
<blocking>false</blocking>
<hit> false </ hit >
<threshold>0.299081</threshold>
< field1 class =" utils . ScientistField ">SOURCE_ID</field1>
< field2 class =" utils . ScientistField ">SOURCE_ID</field2>
<mix>false</mix>

</desambiguation. classification . BagCountClassifier >
<int>5</int>
<int>2</int>
<desambiguation. classification . BagContainsAnyClassifier>

< classifierType >Bag counter classifier </ classifierType >
<classifierName>AG 452 Source ID classifier </ classifierName >
<blocking>false</blocking>
<hit> false </ hit >

94

< field1 class =" utils .SMField">ID</field1>
< field2 class =" utils .SMField">ID</field2>
<mix>false</mix>
<converter class =" utils . converter . StringConverterFactory $1"/>

</desambiguation. classification . BagContainsAnyClassifier>
<desambiguation. classification . BagCountClassifier >

< classifierType >Bag counter classifier </ classifierType >
<classifierName>AG 451 Subfields classifier </ classifierName >
<blocking>false</blocking>
<hit> false </ hit >
<threshold>0.713096</threshold>
< field1 class =" utils . ScientistField ">SUBFIELDS</field1>
< field2 class =" utils . ScientistField ">SUBFIELDS</field2>
<mix>false</mix>

</desambiguation. classification . BagCountClassifier >
<int>6</int>
<int>3</int>
<desambiguation. classification . BagContainsAnyClassifier>

< classifierType >Bag contains classifier </ classifierType >
<classifierName>AG 463 Co authors classifier </ classifierName >
<blocking>false</blocking>
<hit> false </ hit >
< field1 class =" utils .SMField">COAUTHORS</field1>
< field2 class =" utils .SMField">COAUTHORS</field2>
<mix>false</mix>
<converter class =" utils . converter . StringConverterFactory $1"/>

</desambiguation. classification . BagContainsAnyClassifier>
<desambiguation. classification . SetContainsAnyClassifier >

< classifierType >Bag count classifier </ classifierType >
<classifierName>AG 461 References classifier </ classifierName >
<blocking>true</blocking>
<hit> false </ hit >
< field1 class =" utils .SMField">BOW_REFERENCES</field1>
< field2 class =" utils .SMField">BOW_REFERENCES</field2>
<mix>false</mix>
<converter class =" utils . converter . StringConverterFactory $1"/>

</desambiguation. classification . SetContainsAnyClassifier >
<desambiguation. classification . SetContainsAnyClassifier >

< classifierType >Bag average classifier </ classifierType >
<classifierName>AG 462 ID References classifier </ classifierName >
<blocking>true</blocking>
<hit> false </ hit >
< field1 class =" utils .SMField">ID</field1>
< field2 class =" utils .SMField">BOW_REFERENCES</field2>
<mix>false</mix>
<converter class =" utils . converter . StringConverterFactory $1"/>

</desambiguation. classification . SetContainsAnyClassifier >
</com.google.common.collect.TreeMultimap>

</ classifiers >
</cc>

</desambiguation. classification .RecurrentAggregator2>
</ list >

	ACKNOWLEDGMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	LIST OF APPENDICES
	1 INTRODUCTION
	1.1 Concepts and Definitions
	1.2 Research Objectives
	1.3 Thesis Plan

	2 LITERATURE REVIEW
	2.1 Name-based Disambiguation
	2.1.1 Blocking
	2.1.2 Phonetic Encoding Algorithms
	2.1.3 String Similarity Metrics

	2.2 Ensemble Learning
	2.2.1 Bootstrapping Aggregation (Bagging)
	2.2.2 Boosting

	2.3 Particle Swarm Optimization
	2.4 Set Cover Optimization

	3 FAST AUTHOR NAME DISAMBIGUATION ALGORITHM
	3.1 Overview
	3.2 Pre-processing
	3.3 Blocking
	3.4 Classification Approach
	3.5 Cascade Structure Configuration
	3.6 Evaluation
	3.6.1 Datasets
	3.6.2 Results
	3.6.3 Summary of the Results

	4 METHODOLOGY AND DESIGN
	4.1 Experimental Setup
	4.1.1 Step 1: Comparing Phonetic Encoding Algorithms
	4.1.2 Step 2: Comparing String Similarity Metrics
	4.1.3 Step 3: Training Methodology for the Cascade Classifier

	5 RESULTS
	5.1 Results of Comparative Study of Phonetic Distance Metrics
	5.2 Results of Comparative Study of String Similarity Algorithms
	5.3 Results of Automating Cascade Structure

	6 CONCLUSION
	6.1 Summary of the Results
	6.2 Future Work

	REFERENCES
	APPENDICES

