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Abstract

In this study, free vibration analysis of spherical shell is carried out. The structural model is based
on a combination of thin shell theory and the classical finite element method. Free vibration equations
using the hybrid finite element formulation are derived and solved numerically. The results are validated
using numerical and theoretical data available in the literature. The analysis is accomplished  for
spherical shells of different boundary conditions and radius to thickness ratios. This proposed hybrid
finite element method can be used efficiently for design and analysis of spherical shells employed in high

speed aircraft structures.

1. Introduction

Shells of revolution, particularly spherical shells are one of the primary structural elements in high
speed aircraft. Their applications include the propellant tank or gas-deployed skirt of space crafts. Free
vibration of spherical shell has been investigated by numerous researchers experimentally and
analytically.

Kalnins [1,2], studying analytically free vibrations in shallow spherical shell, selected used two
auxiliary variables for the axial and circumferential displacements while considering the effect of
longitudinal, transverse and rotary inertia as well as transverse shear deformation on the non-asymmetric
vibration of shallow spherical shells. Navaratna [4], Webster [5], Greene et al. [7] used the classical finite
element method to study the free vibration of thin spherical shell. Cohen[3] using a method of iteration
like Stodola’s method determined the natural frequencies and mode shapes of spherical shell ~method.
Kraus [6] investigated the case of clamped spherical shell using a general theory which included the
effects of transverse shear stress and rotational inertia. Tessler and Spiridigliozzi [8] gave frequencies of
60° clamped spherical shell and hemispherical shell for radius to thickness from 10 to 100 and their
analysis was based upon shell theory. Narasimhan and Alwan [9] analyzed the axisymmetric free
vibration of clamped isotropic spherical shell cap. Thick shell analysis was given by Gautham and
Ganesan [10] for the analysis of a 60° clamped and simply supported spherical shells, the semi-analytical
method was used to reduce the dimension of the problem. The same authors [11] investigated the

analysis of a clamped isotropic hemispherical shell (¢, =90"). Sai Ram and Sridhar Babu [12] used the

classical finite elements method to study the free vibration of composite spherical shell cap with or
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without a cutout. Buchanan and Rich [13] investigated the case of 60° clamped and simply supported
spherical shells using classical finite elements method. Recently, Ventsel et al. [14] used a combined
formulation of the boundary elements method and finite elements method to study the free vibration of an
isotropic simply supported hemispherical shell with different circumferential mode numbers.

The objective of the present study is to develop a general hybrid finite element package for
predicting the dynamic behavior of isotropic spherical shells with boundary conditions which can be
varied as desired. The solution scheme is based on the hybrid finite element method. This method uses
displacements functions derived from the shell theory instead of polynomials in classical finite element
method. The element is a spherical frustum instead of the usual triangular or rectangular shell element.
This developed method demonstrated precise and fast convergence with few elements. On the other hand,
the present theory, because of its usage of shell classical theory for the displacement functions can easily
be adapted to take the hydrodynamic effects into account. Finally, again because of the use of shell

classical theory, we can obtain the high as well as the low frequencies with high accuracy.

2. Finite element formulation

In this study the structure is modeled using hybrid finite element method which is a combination
of spherical shell theory and classical finite element method. In this hybrid finite element method, the
displacement functions are found from exact solution of spherical shell theory rather approximated by
polynomial functions done in classical finite element method. In the spherical coordinate
system(R,0,¢) shown in Fig. 1, five out of the six equations of equilibrium derived in reference for

spherical shells under external load are written as follows :

ON ON

- “ +(N,~N,)cot$+0Q,=0
o¢ sing 060
ON

2+ _1 6N9+2N¢ecot¢+Q9=0
o¢p sing 06
an/ﬁ 1 6Qa

+ + tg—(N,+N,)=0
o¢ "sing op T OO (NyF No)
oM oM

- “+(M,~M,)cotg—RQ, =0
o¢p sing 06
oM

w , 1 8M9+2M¢gcot¢—RQ6=O



Fig.1. Geometry of spherical shell

Where Ny, No, Nyg are membrane stress resultants; My, Mg, My the bending stress resultants and Qy,
Qo the shear forces (Fig. 2). The sixth equation, which is an identity equation for spherical shells, is not

presented here.




Strain and displacements for three displacements in axialU,, radial /¥ and circumferential U, are related

as follows:
ou
1 — 4w
R\ 0¢
ou,
l(;—0+U¢COt¢+W)
g R sing 060
ou ou
& 1 ¢+ _1 £ _U,cotg)
{}_ 2¢, ~ R 0¢p sing 06
Tk [T 1 (U, Fw @)
K, R*\ 09 04’
2K oU 2
” LZ —‘1 = +U, cotg— _12 GVI:_Cot¢6_W
R (sing 00 sin” ¢ 060 ol
ou ouU 2
Lz . .1 ¢—Uecot¢+2#cot¢a—W—2;aW
R°\ 0p sing 00 sin ¢ 00  sing 0¢god

DisplacementsU , W and V' in the global cartesian coordinate system are related to displacementsU

W, and U, indicated in Fig 3. by:

U sing, —cosg, 0]|U,
Wi=|cosg sing 0| W 3)
vV 0 0 11U,

The stress vector{o} is expressed as function of strain {&} by

(o} =[P]{e) @

Where [P] is the elasticity matrix for an anisotropic shell given by

B, B, 0 B, B, 0
B, B, 0 B B 0
[P]:o 0O B, 0 0 0 )
B, B, 0 B B 0
B, B, 0 P, B 0
(0 0 B 0 0 B

Upon substitution of equations (2), (4) and (5) into equations (1), a system of equilibrium equations can

be obtained as a function of displacements:



L (U, WUy, P,)=0

L,(U,.W,U,,P,)= (6)

0
L,(U,.W.U,,P,)=0
These three linear partial differentials operatorsZ,, L, and L, are given in the Appendix, and F,are

elements of the elasticity matrix which, for an isotopic thin shell with thickness /4 is given by:

D vD 0 0 O 0
vD D 0 0 O 0
1-v)D
o o U2 o o
_ 2
[P]= %

0 0 0 K vK 0
0 0 0 vK K 0

(I-v)K

0 0 0 O 0 ~——

L 2
: : Ef . L
Where D = > is the membrane stiffness and K = ———— is the bending stiffness.
1-v 12(1-v?)

The element is a circumferential spherical frustum shown in Fig. 3. It has two nodal circles with four
degrees of freedom; axial, radial, circumferential and rotation at each node. This element type makes it
possible to use thin shell equations easily to find the exact solution of displacement functions rather than
an approximation with polynomial functions as done in classical finite element method. For motions

associated with the nth circumferential wave number we may write:

U,(4,0)] [cosn® 0 0 |lu, () u,, (9)
W(¢,6’) = 0 cosné 0 w, (¢) =[T] w, (¢) (8)
U,(9.9) 0 0 sinné | |u,, (4) uy, (¢)

The transversal displacement w, (¢) can be expressed as:

()= ©)
Where

w' = AP, (cos @)+ B0, (cosg) (10)



3. Spherical frustum element

Fig



And where P, (cos¢),0,, (cos¢) are the associated Legendre functions of the first and second kinds

respectively of order n and degree ..

The expression of the axial displacement uy, (¢) is:

n 2

u¢" =2E’ d¢ 2sm¢ v(g)

i=1

Where the coefficient £; is given by:

A +k(A+v)—(1-v)
o (1+k) (4 -14v)

The auxiliary function ¢/is given by the expression:

v ()= AR (cos$)+ B! (cosg)

Finally the circumferential displacement ug, (¢) can be expressed as:

3
uy,, ((15) =-n _1 Ew' +£d—l//
= sin ¢ 2dg¢

The degree u; is obtained from the expression

12
1 1
=l —4+A | —=
H; (4 J >

Where A is one the roots of the cubic equation:

A =hA+hA—h =0

Where
h =4
h=4+1+k)(1-v?)
h, =2(1+k)1-v?)
2
With k—121:—

(11)

(12)

(13)

(14)

(15)

(16)

(17)

The above equation has three roots with one root is real and two other are complex conjugate roots.

The Legendre functions P, , f;Z’l,QZl andQZ;l are areal functions whereas P,

(=2, 3) are complex functions so we can put:

-1 -1
> By >0, and0,



P, =Re(B, )+iIm(P,)
= Re(lﬂ)—ilm(PL)
0, =Re(Q; )+iIm(Q; )
0, =Re(Q;, )—iIm(Q; )
n—1 n—1 . n—1
Pﬂ2 = Re(P#2 )+i Im(Pﬂ2 )
Py =Re(P, ) —ilm(P; ™)
Qn 1 Re(Qn 1)+lIm(Qn 1)
O, =Re(P, ) —ilm(Q;")

Setting
(n—w =D (n+m1)=c
(n—pt, =) (n+ 1) =, +ic,
(n—p, —1)(71—}-;13):02 —ic;
E =e¢

E, =e, —ie,

E, =e, +ie,
Substituting equations (18), (19) and (20) in equations (9), (11) and (14) we have:

U, (9)= (—neI cot¢P, +ec P, )A1
+| —ne, cotgpRe(P, ) — ne; cotpIm(P) ) + (e,c, +e;¢;) Re(F, N+ (e, —eycy) Im(P,; ')] (4, +4,)
+| ne cot¢Re(P” ) —ne, cot pIm(P;. ) = (esc, —e,c;)Re(Py ) + (eyc, +eyc;) Im(P,™ )}i(A2 —4;)

{ 2sing }
+( ne, cotgQ, +e,c,0," ')B1
+[ ~ne, cot gRe(Q), ) - ne, cot pTm(Q}, ) + (e,c, + excy Re(Q) ) + (exc, — e,c;) Im(Q)") | (B, + B)

+| ne c0t¢Re(Q ) —ne, cotpIm(Q, ) - (e;c, —ey¢;)Re(Q), N+ (e, +e,¢;) Im(Q, 1)}1(3 -B)

2s1n¢ }

(18)

(19)

(20)



w, (¢) =P, 4 +Re(B, )(4, + 4)+1m(P,))i(4, - 4,) + 0, B, +Re(Q,, )(B, + B;) +Im(Q,, )i(B, - B;)

|
=-neP' —A4
Uy (¢) ner, sing |

H

—| ne ;Re(Pf)+ne3,LIm(P") (4, +4,)+ ne3_LRe(P”)—ne #Im(P/f) i(4, - 4;)
: o sing sin ¢ * sing '

sin ¢

2
{—’%comg" +g(n—2)(n+l)l’l"_l}44

.
- nelQﬂl EBI

{ L Re(@ )+ ne,——Im(@" >}(Bz +Bs)+{ne3#Re<Q" )—ne ——Im(Q )}'(BQ ~B,)
2 Hy Sll’l¢ Hy Sln¢ Hy 2 H

1
sin ¢ sin ¢
{-éaowﬁq’ +§(n—2)(n+1)Qf“}B4

In deriving the above relation we used the recursive relations:

n

d; =—ncot ¢P;Z +(n—p,—(n+ ﬂi)P;:Tl

n

dQ/l[ _ t n 1 n—1
dg =—nco ¢Q,u, +(n —H )(n +/Lli)Q/_1‘.

Using matrix formulation, the displacement functions can be expressed as follows:

U,(4.6) ty, (¢)
w(4.6)  =[T]yw,(4)  =[T][R]{C}
Uy (¢>0) Upy (¢)

The vector {C} is given by the expression:
(CY' ={4 A,+4, i(4,-4) 4, B, B,+B, i(B,-B,) B}

The elements of matrix [R] are given in the Appendix.

21

(22)

(23)

(24)

In the finite element method, the vector C is eliminated in favor of displacements at elements nodes. At

each finite element node, the three displacements (axial, transversal and circumferential) and the rotation

are applied. The displacement of node i are defined by the vector:
10



, 4 aw Y , !
5’ = g : - ll9n
o} {u“’” e (dxj " } (25)

The element in Fig. 3 with two nodal lines (i and ;) and eight degrees of freedom will have the following

nodal displacement vector:

2 dw, ) awY

M R AT

5 a9 dg (26)
With
dw

d_¢1 =(-ncotgP] +¢,Py") 4, +[ ~ncotgRe(P) )+, Re(Pr ) —c, Im(P) | (4, + 4)

[ ot gIm(])+ ¢, Re(P2 ) s P2 i, - A+ (ot 603 ) B
+ [—n cot¢g Re(QZ2 )+¢, Re(QZ;l) -c Im(QZZ‘l )] (B,+B,)

+[ -ncotgIm(Q], )+, Re(Q ) +¢, Im(Q; ) |i(B, - B,) 27)

The terms of matrix [A] are obtained from the values of matrix [R] and d;}” are given in the appendix.
X

Now, pre-multiplying by [A]fl equation (26) one obtains the matrix of the constant C; as a function of

the degree of freedom:

0,

CRORM

J

(28)

Finally, one substitutes the vector {C } into equation and obtains the displacement functions as follows:

U, ($.0)
v 00) - [rRL |-
U, (¢, ‘9) ! ! (29)
The strain vector {8} can be determined from the displacement functions U 5o UgsW and the deformation
—displacement as:
T] [o T] [o e S,
- frferei-{g) e (s -5}

Where matrix [Q] is given in the appendix.

This relation can be used to find the stress vector, equation (4), in terms of the nodal degrees of freedom

vector:

11



o} -1l | o

Based on the finite element formulation, the local stiffness and mass matrices are:
lnc = J.J‘ [P [B

[m]loc =P hJ.J- N]dA

(32)
Where p the density and / is the thickness of shell.
The surface element of the shell wall is d4 = R’ sin pdpd @ . After integrating over &, the preceding
equations become
41, L7 [ floT (Plelonass [ - el
T Y T T
[m),. =ph[ 4] | 2R [[R] [R]singdg |[ 4™ |= ph[ 4™ ] [S][ 4]
" (33)
In the global system the element stiffness and mass matrices are
[k]=[L6] [4"] [6][4"][26]
— T —
[m]=ph[LG] [47] [S][ 47 ][LG] 34)
Where
[sing, —cosg 0 0 0 0 0 0]
cosgp sing 0 0 O 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
[LG]= _
0 0 0 0 sing, —cosg, 0 0
0 0 0 0 cosg, sing, 0 O
0 0 0 0 O 0 1 0
. 0 0 0 0 O 0 0 1] (35)

From these equations, one can assemble the mass and stiffness matrix for each element to obtain the mass

and stiffness matrices for the whole shell: [M ] and [K ] . Each elementary matrix is 8x8, therefore the

final dimensions of [M ] and [K ] will be 4(N+1) where N is the number of elements of the shell.

12



3. Numerical results

In order to test the efficiency and the accuracy of our model, we used the theory developed in this
paper to calculate the natural frequencies and modes of uniform thin elastic spherical shell, which were
both non-shallow( ¢, <30) and shallow, of various dimensions and under different boundary conditions.
These cases have already been investigated by other authors using others methods. For purposes of

comparisons among the natural frequencies obtained, it is eminently practical at this stage to introduce

the non-dimensional natural frequency:

a-oi(2) =

N | =

Where:
@ is the natural angular frequency.
R 1is the radius of the reference surface.

p is the density.

E is the modulus of elasticity.

Fig.4. Definition of angle ¢,

13



3.1 Case 1: clamped spherical shell with ¢, =10’

Narassihan and Alwar [9] investigated the case of an axisymmetric clamped spherical shell. The
analysis is based on the application of the Chebyshev-Galerkin spectral method for the evaluation of free
vibration frequencies and mode shapes. Sai Ram and Sreedhar Babu [12] analyzed the same case with the
classical finite element method using 80 elements. FEach element is an eight noded degenerated
isoparametric shell element with nine degrees of freedom at each node. With our model and using 6 finite

elements, the natural were computed, the results are shown in table 1.

Mode Present Sai Ram and Sreedhar babu[12] | Narassihan and Alwar [9]
1 1.4861 1.4577 1.4588
2 2.2498 2.2931 2.2999
3 4.4779 4.5773 4.5461

Table 1: Normalized natural frequencies for 10° clamped spherical shell with % =200

3.2 Case 2: clamped spherical shell with ¢, =30’

This case was investigated analytically by Kalnins [1] using classical theory and transverse
vibration theory. With our theory, we used 8 finite elements to study the spherical shell with the results
shown in table 2. The frequencies we obtained with our model are very comparable to Kalinin’s values.

The maxim displacement values were:

Wmax _ Wmax —
wi Ol

It was observed that at lowest natural frequency, motion of the spherical shell is mainly dominated by its

radial component.

Mode Present theory Kalnins [1]
1 1.169 1.168
2 2.224 2.589
3 3.303 3.230
4 4.200 4.288
5 4.923 4.683

Table 2: Normalized natural frequencies for 30° clamped spherical shell with % =20

14



3.3 Case 3: spherical shell ¢, =60" under the three boundary conditions: clamped, simply upported

and free

The free axisymmetric vibration of the spherical shell in this case was studied by Kalnins [2],
Cohen [3], Navaratna [4], Webster [5], Greene et al [7], Tessler and Spiridigliozzi  [8], Gautham and
Ganesan [10] and Buchanan and Rich [13]. In the present investigation, the shell was investigated with
10 elements; the results are given respectively for clamped, simply supported and free shells in tables 3, 4
and 5.
The natural modes corresponding to the lowest shell natural frequencies under the two boundary
conditions are illustrated in figures 5 and 6. They reveal that at the lowest natural frequency, spherical

shell motion is radial.

It is easy to see that all displacements U ;, W and U, are all zero at the top (¢ = 0) of the spherical shell.

Tessler and Gautham Buchanan
Webster Present
Mode | Kalnins[2] | Navaratna [4] Spiridigliozzi | and Ganesan | and Rich
[5] theory
[8] [ 10] [13]
1 1.006 1.008 1.007 1.000 1.001 1.001 1.031
2 1.391 1.395 1.391 1.368 1.373 1.370 1.496
3 - 1.702 1.700 1.673 1.678 1.675 1.760
4 - 2.126 2.095 - - 2.094 2.089
5 2.375 2.387 2.386 2.260 - 2.256 2.276
6 3.486 3.506 3.851 3.213 - 3.209 3.311
7 3.991 3.996 4.062 3.965 - 3.964 3.775
8 - 4.159 4.151 - - 4.060 4.073
9 4.947 5.001 5.962 4.442 - 4.427 4.826
10 - 6.037 6.208 5.773 - 5.740 5.777

Table 3: Normalized natural frequencies for 60° clamped spherical shell with % =20

15




Gautham
Buchanan
. Navaratna | Greene et | Cohen and . Present
Mode | Kalnins [2] and Rich
[4] al [7] [3] Ganesan [13] Theory
[ 10]
1 0.962 0.963 0.974 0.959 - 0.956 0.981
2 1.334 1.338 1.338 1.325 1.315 1.308 1.412
3 - 1.653 1.652 1.646 1.639 1.612 1.646
4 2.128 2.131 2.162 - - 2.044 2.038
5 - 2.141 - - - 2.059 2.115
6 3.176 3.185 - - - 2.965 2.934
7 3.988 3.933 - - - 3.837 3.871
8 - 4.159 - - - 4.000 4.017
9 4.575 4.601 - - - 4.148 4.138
10 - 6.031 - - - 5.608 5.773

Table 4: Normalized natural frequencies for 60° simply supported spherical shell with % =20

0,4

0,2 ~

0,1 ~

0,1 -

0,2 : \ /

0,3

0,4

Fig.5. Displacements versus ¢ coordinate for clamped spherical shell ¢, =60
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Mode Kalnins [2] Navaratna [4] Webster [5] Present theory
1 0.931 0.932 0.931 0.938
2 1.088 1.094 1.089 1.062
3 1.533 1.544 1.535 1.426
4 2.348 2.363 2.360 2.425
5 2.544 2.548 2.551 2.725
6 - 2.982 2.985 2.944
7 3.497 3.519 4.023 4.264
8 - 4.971 4.950 4.973
9 4.951 4.980 5.548 5.793
10 5.230 5.543 6.224 6.605

Table 5: Normalized natural frequencies for 60° free spherical shell with % =20

0,4

-0,1 ~

-0,2

0,3

0,4

Fig.5. Displacements versus ¢ coordinate for simply supported spherical shell ¢, =60
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3.4 Case 4: Spherical shell with ¢, =90’

Kraus [6] investigated the case of simply supported spherical shell using a general theory which
included the effects of transverse shear stress and rotational inertia. For cases both with and without these
effects, he determined the natural frequencies for the shell motion that was independent of @ for
circumferential mode numbern = 0. Tessler and Spiridigliozzi [8], Gautham and Ganesan [11] analyzed
the case of clamped hemispherical shell. Ventsel et al. [14] studied the case of simply supported
spherical shell using the boundary elements method for various circumferential mode

numbers (n =0, n=1n= 2). With our model and using 12 finite elements, the natural frequencies were

computed for clamped and simply supported shells. The results are shown respectively in table 7 and

table 8. The maximum displacements values are:

(U,). =03381 W, =0.2317 (U,)_ =0.0854

The result is that at the lowest natural frequency, the motion of spherical shell is predominately by the

axial displacement.

Tessler and Gautham and Present
Mode
Spiridigliozzi [ 8] Ganesan [11] theory
1 0.8481 0.8439 0.8327
2 1.2328 1.2317 1.1919
3 1.5902 1.5808 1.5041
4 1.9435 1.9267 1.9161

Table 7 : Normalized natural frequencies for 90° clamped spherical shell with % =10

18



Ventsel et Present
Kraus [6] Kraus [6]
al.[14] theory
Mode R 10 R 50

o ho R 200 R_s0

h h
1 0.8060 0.7548 0.7441 0.7579
2 1.2054 0.9432 0.9281 0.9034
3 1.6179 1.0152 0.9693 0.9499
4 1.9051 1.1082 - 1.1089
5 2.7205 1.2523 - 1.2759
6 2.9301 1.4576 - 1.4723
7 4.0274 1.6558 - 1.6237
8 5.5142 1.7636 - 1.7634

Table 8: Normalized natural frequencies for 90° simply supported spherical shell

4. Conclusion
The purpose of the investigation described in this paper is to determine the natural frequencies

and shape modes of free vibrations of spherical shell. The modal is based on hybrid approach combining
the classical finite element method and the classical shell theory. This theoretical approach is much more
precise than usual finite element methods because the displacement functions are derived from exact
solutions of equilibrium equations for spherical shells. The mass and stiffness matrices are determined by
numerical integration.

The results obtained for spherical shells with different angles and different boundary conditions
are compared with results available in the literature. Very good agreement was found. This approach
resulted in a very precise element that leads to fast convergence and less numerical difficulties from the
computational point of view. Because of its use of classical shell theory for the displacement functions,
the presented method may easily be adapted to take fluid-structure effects into account. A paper under
preparation on the effect fluid on vibrations of shells confirms this approach . For the same reason, we

can obtain the high as well as low frequencies with very good accuracy.
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