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Abstract 

In this study, free vibration analysis of spherical shell is carried out. The structural model is based 

on a combination of thin shell theory and the classical finite element method. Free vibration equations 

using the hybrid finite element formulation are derived and solved numerically. The results are validated 

using numerical and theoretical data available in the literature. The analysis is accomplished   for 

spherical shells of different boundary conditions and radius to thickness ratios. This proposed hybrid 

finite element method can be used efficiently for design and analysis of spherical shells employed in high 

speed aircraft structures. 

 

1. Introduction 
Shells of revolution, particularly spherical shells are one of the primary structural elements in high 

speed aircraft. Their applications include the propellant tank or gas-deployed skirt of space crafts.  Free 

vibration of spherical shell has been investigated by numerous researchers experimentally and 

analytically. 

 Kalnins [1,2], studying analytically free vibrations in shallow spherical shell, selected used two 

auxiliary variables for the axial and circumferential displacements while considering the effect of 

longitudinal, transverse and rotary inertia as well as transverse shear deformation on the non-asymmetric 

vibration of shallow spherical shells. Navaratna [4], Webster [5], Greene et al. [7] used the classical finite 

element method    to study the free vibration of thin spherical shell. Cohen[3] using  a method of iteration 

like Stodola’s method determined the natural frequencies and mode shapes of spherical shell    method. 

Kraus [6]   investigated the case of clamped spherical shell using a general theory which included the 

effects of transverse shear stress and rotational inertia. Tessler and Spiridigliozzi [8] gave frequencies of 

60° clamped spherical shell and hemispherical shell for radius to thickness from 10 to 100 and their 

analysis was based upon shell theory. Narasimhan and Alwan [9] analyzed the axisymmetric free 

vibration of clamped isotropic spherical shell cap. Thick shell analysis was given by Gautham and 

Ganesan [10] for the analysis of a 60° clamped and simply supported spherical shells, the semi-analytical 

method was used to reduce the dimension of the problem.  The same authors [11] investigated the 

analysis of a clamped isotropic hemispherical shell (φ0  =90°). Sai Ram and Sridhar Babu [12] used the 

classical finite elements method to study the free vibration of composite spherical shell cap with or 
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without a cutout. Buchanan and Rich [13] investigated the case of 60° clamped and simply supported 

spherical shells using classical finite elements method. Recently, Ventsel et al. [14] used a combined 

formulation of the boundary elements method and finite elements method to study the free vibration of an 

isotropic simply supported hemispherical shell with different circumferential mode numbers. 

The objective of the present study is to develop a general hybrid finite element package for 

predicting the dynamic behavior of isotropic spherical shells with boundary conditions which can be 

varied as desired. The solution scheme is based on the hybrid finite element method. This method uses 

displacements functions derived from the shell theory instead of polynomials in classical finite element 

method. The element is a spherical frustum instead of the usual triangular or rectangular shell element. 

This developed method demonstrated precise and fast convergence with few elements. On the other hand, 

the present theory, because of its usage of shell classical theory for the displacement functions can easily 

be adapted to take the hydrodynamic effects into account.  Finally, again because of the use of shell 

classical theory, we can obtain the high as well as the low frequencies with high accuracy. 

 

2. Finite element formulation 
In this study the structure is modeled using hybrid finite element method which is a combination 

of spherical shell theory and classical finite element method. In this hybrid finite element method, the 

displacement functions are found from exact solution of spherical shell theory rather approximated by 

polynomial functions done in classical finite element method. In the spherical coordinate 

system(R,θ,φ) shown in Fig. 1, five out of the six equations of equilibrium derived in reference  for 

spherical shells under external load are written as follows :                             
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Where Nφ , Nθ, Nφθ are membrane stress resultants; Mφ , Mθ, Mφθ  the bending stress resultants and Qφ , 

Qθ  the shear forces (Fig. 2). The sixth equation, which is an identity equation for spherical shells, is not 

presented here. 
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Fig.1. Geometry of spherical shell 
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Fig.2. Stress resultants and stress couples  
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Strain and displacements for three displacements in axialUφ , radial W and circumferential Uθ  are related 

as follows:
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                          (2)                                                                                                                                                  

DisplacementsU , W  and V  in the global cartesian coordinate system are related to displacements iUφ , 

iW  and iUθ  indicated in Fig 3. by: 

                                                  
sin cos 0
cos sin 0

0 0 1

i i i

i i i

i

U U
W W
V U

φ

θ

φ φ
φ φ

−     
    =    
         

                                                          (3) 

 The stress vector{ }σ   is expressed as function of strain { }ε by  

                                                  { } [ ]{ }Pσ ε=                                                                                             (4) 

Where [ ]P  is the elasticity matrix for an anisotropic shell given by  

                                         [ ]

11 12 14 15

21 22 24 25

33

41 42 44 45

51 52 54 55

36 66

0 0
0 0

0 0 0 0 0
0 0
0 0

0 0 0 0

P P P P
P P P P

P
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P P P P
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P P

 
 
 
 

=  
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  

                                                              (5) 

Upon substitution of equations (2), (4) and (5) into equations (1), a system of equilibrium equations can 

be obtained as a function of displacements: 
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( )
( )
( )
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                                                                           (6) 

These three linear partial differentials operators 1L , 2L  and 3L  are given in the Appendix, and ijP are 

elements of the elasticity matrix which, for an isotopic thin shell with thickness h is given by: 

                                 [ ]
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2
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                                                 (7) 

Where 21
EtD
ν

=
−

 is the membrane stiffness and  
( )

3

212 1
EtK

ν
=

−
 is the bending stiffness. 

The element is a circumferential spherical frustum shown in Fig. 3. It has two nodal circles with four 

degrees of freedom; axial, radial, circumferential and rotation at each node. This element type makes it 

possible to use thin shell equations easily to find the exact solution of displacement functions rather than 

an approximation with polynomial functions as done in classical finite element method.  For motions 

associated with the nth circumferential wave number we may write: 
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                                                   (8) 

 

  The transversal displacement ( )nw φ  can be expressed as: 

                                                 
3

1
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i

w wφ
=

= ∑                                                                                             (9) 
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                                                 ( ) ( )cos cos
i i

n n n
i i iw A P B Qµ µφ φ= +                                                              (10) 
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And where ( )cos
i

nPµ φ , ( )cos
i

nQµ φ  are the associated Legendre functions of the first and second kinds 

respectively of order n and degree iµ . 

The expression of the axial displacement uφn (φ) is: 

                                               ( ) ( )
23

1 2sin
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i

n i
i

dw nu E
dφ φ ψ φ
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Where the coefficient Ei   is given by: 
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+ − +                                                                       (12)                                               

The auxiliary function ψ is given by the expression: 

                                                   ( ) ( ) ( )4 1 4 1cos cosn nA P B Qψ φ φ φ= +
                                                         (13) 

Finally the circumferential displacement uθn (φ) can be expressed as: 

                                                   ( )
3
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i
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= − +∑                                                          (14) 

The degree iµ  is obtained from the expression 

                                                               
1 21 1
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                                                                    (15) 

Where iλ  is one the roots of the cubic equation: 
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2

212 Rk
h

=  

The above equation has three roots with one root is real and two other are complex conjugate roots. 

The Legendre functions 
1
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1 1 1

1 1, andn n nP Q Qµ µ µ
− −  are  a real functions  whereas 

i

nPµ  , 1 1, and
i i i

n n nP Q Qµ µ µ
− −

 
(i = 2, 3) are complex functions so  we can put:                                        
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Substituting   equations (18), (19) and (20) in equations (9), (11) and (14)    we have: 

 

( ) ( )1 1

2 2 2 2

2 2 2 2

1
1 1 1 1

1 1
2 3 2 2 3 3 3 2 2 3 2 3

1 1
3 2 3 2 2 3 2 2 3 3

cot

cot Re( ) cot Im( ) ( ) Re( ) ( ) Im( ) ( )

cot Re( ) cot Im( ) ( ) Re( ) ( ) Im( ) (

n n
n

n n n n

n n n n

u ne P e c P A

ne P ne P e c e c P e c e c P A A

ne P ne P e c e c P e c e c P i

φ µ µ

µ µ µ µ

µ µ µ µ

φ φ

φ φ

φ φ

−

− −

− −

= − +

 + − − + + + − + 
 + − − − + + 

( )1 1

2 2 2 2

2 2 2

2 3

2

1 4

1
1 1 1 1

1 1
2 3 2 2 3 3 3 2 2 3 2 3

1
3 2 3 2 2 3 2 2

)

2sin

cot

cot Re( ) cot Im( ) ( ) Re( ) ( ) Im( ) ( )

cot Re( ) cot Im( ) ( ) Re( ) (

n

n n

n n n n

n n n

A A

n P A

ne Q e c Q B

ne Q ne Q e c e c Q e c e c Q B B

ne Q ne Q e c e c Q e c

µ µ

µ µ µ µ

µ µ µ

φ

φ

φ φ

φ φ

−

− −

−

−

 
+ − 

 

+ − +

 + − − + + + − + 

+ − − − +
2

1
3 3 2 3

2

1 4

) Im( ) ( )

2sin

n

n

e c Q i B B

n Q B

µ

φ

− + − 
 

+ − 
 

 

 

 

 



10 
 

 

 

 

 

( )
1 2 2 1 2 21 2 3 2 3 1 2 3 2 3Re( )( ) Im( ) ( ) Re( )( ) Im( ) ( )n n n n n n

nw P A P A A P i A A Q B Q B B Q i B Bµ µ µ µ µ µφ = + + + − + + + + −                                                                                                                         

( )

( )( )

1

2 2 2 2 2 2

1

2 2 2

1 1

3 2 3 3 2 3

2
1

1 1 4

1 1

3

1
sin
1 1 1 1Re( ) Im( ) ( ) Re( ) Im( ) ( )

sin sin sin sin

cot 2 1
2 2

1
sin

1 1Re( ) Im( )
sin sin

n
n

n n n n

n n

n

n n

u ne P A

ne P ne P A A ne P ne P i A A

n nP n n P A

ne Q B

ne Q ne Q

θ µ

µ µ µ µ

µ

µ µ

φ
φ

φ φ φ φ

φ

φ

φ φ

−

= −

   
− + + + − −   

   
 

+ − + − + 
 

−


− +



( )( )

2 2 22 3 3 2 3

2
1

1 1 4

1 1( ) Re( ) Im( ) ( )
sin sin

cot 2 1
2 2

n n

n n

B B ne Q ne Q i B B

n nQ n n Q B

µ µφ φ

φ −

  
+ + − −   

  
 

+ − + − + 
 

 

In deriving the above relation we used the recursive relations: 

                                           1
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Using matrix formulation, the displacement functions can be expressed as follows: 
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The vector { }C  is given by the expression:  

                     { } ( ) ( ){ }1 2 3 2 3 4 1 2 3 2 3 4
TC A A A i A A A B B B i B B B= + − + −                             (24)                                  

The elements of matrix [ ]R  are given in the Appendix. 

In the finite element method, the vector C is eliminated in favor of displacements at elements nodes. At 

each finite element node, the three displacements (axial, transversal and circumferential) and the rotation 

are applied. The displacement of node i are defined by the vector: 

    (21) 
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The element in Fig. 3 with two nodal lines (i and j) and eight degrees of freedom will have the following 

nodal displacement vector: 
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The terms of matrix [ ]A  are obtained from the values of matrix [ ]R  and ndw
dx

 are given in the appendix. 

Now, pre-multiplying by [ ] 1A −  equation (26) one obtains the matrix of the constant Ci as a function of 

the degree of freedom: 

                                                                 { } [ ] 1 i

j
C A

δ
δ

−  
=  

                                                                        (28)
 

Finally, one substitutes the vector { }C into equation and obtains the displacement functions as follows: 

                                          

( )
( )
( )

[ ][ ][ ] [ ]1
,
,
,

i i

j j

U
W T R A N
U

φ

θ

φ θ
δ δ

φ θ
δ δ

φ θ

−

 
     = =     
    

                                                                        (29) 

The strain vector { }ε  can be determined from the displacement functions , ,U U Wφ θ and the deformation 

–displacement as: 

                 { } [ ] [ ]
[ ] [ ] [ ]{ } [ ] [ ]

[ ] [ ] [ ][ ] [ ]10 0
0 0

i i

j j

T T
Q C Q A B

T T
δ δ

ε
δ δ

−       
= = =      

      
                                          (30) 

Where matrix [ ]Q  is given in the appendix. 

This relation can be used to find the stress vector, equation (4), in terms of the nodal degrees of freedom 

vector: 
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                                                         { } [ ][ ] i

j
P B

δ
σ

δ
 

=  
 

                                                                           (31) 

Based on the finite element formulation, the local stiffness and mass matrices are: 

                                                          

[ ] [ ] [ ][ ]

[ ] [ ] [ ]

T

loc
A

T

loc
A

k B P B dA

m h N N dAρ

=

=

∫∫

∫∫
                                                             (32)

 Where ρ the density and h is the thickness of shell. 

The surface element of the shell wall is 2 sindA R d dφ φ θ= . After integrating overθ , the preceding 

equations become 

                       

[ ] [ ] [ ][ ] [ ]1 2 1 1 1sin
j

i

T TT

loc
k A R Q P Q d A A G A

φ

φ

π φ φ− − − −
 

       = =         
 

∫

                            [ ] [ ] [ ] [ ]1 2 1 1 1sin
j

i

T TT

loc
m h A R R R d A h A S A

φ

φ

ρ π φ φ ρ− − − −
 

       = =         
 

∫
                             (33)

 

In the global system the element stiffness and mass matrices are  

                                                 

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

1 1

1 1

TT

TT

k LG A G A LG

m h LG A S A LGρ

− −

− −

   =    

   =                                                         (34)

 

Where  

                           

[ ]

sin cos 0 0 0 0 0 0
cos sin 0 0 0 0 0 0

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 sin cos 0 0
0 0 0 0 cos sin 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

i i

i i

j j

j j

LG

φ φ
φ φ

φ φ
φ φ

− 
 
 
 
 
 =  −
 
 
 
 
                                                 (35)

 

From these equations, one can assemble the mass and stiffness matrix for each element to obtain the mass 

and stiffness matrices for the whole shell: [ ]M and [ ]K . Each elementary matrix is 8x8, therefore the 

final dimensions of [ ]M and [ ]K  will be 4(N+1) where N is the number of elements of the shell. 
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φ0  

 
3. Numerical results  

In order to test the efficiency and the accuracy of our model, we used the theory developed in this 

paper to calculate the natural frequencies and modes of uniform thin elastic spherical shell, which were 

both non-shallow(φ0  <30) and shallow, of various dimensions and under different boundary conditions. 

These cases have already been investigated by other authors using others methods. For purposes of 

comparisons among the natural frequencies obtained, it is eminently practical at this stage to introduce 

the non-dimensional natural frequency: 

                                                              
1
2

R
E
ρω  Ω =  

 
                                                                            (36) 

Where: 

 ω  is the natural angular frequency.  

R   is the radius of the reference surface. 

ρ  is the density.  

E  is the modulus of elasticity. 

 
 

 
 

 
 

 
 

 
 

 
                                                                  Fig.4. Definition of angle φ0  
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3.1 Case 1: clamped spherical shell with φ0  =10° 

Narassihan and Alwar [9] investigated the case of an axisymmetric clamped spherical shell.  The 

analysis is based on the application of the Chebyshev-Galerkin spectral method for the evaluation of free 

vibration frequencies and mode shapes. Sai Ram and Sreedhar Babu [12] analyzed the same case with the 

classical finite element method using 80 elements.  Each element is an eight noded degenerated 

isoparametric shell element with nine degrees of freedom at each node. With our model and using 6 finite 

elements, the natural were computed, the results are shown in table 1. 

 

Mode Present Sai Ram and Sreedhar babu[12] Narassihan and Alwar [9] 

1 1.4861 1.4577 1.4588 

2 2.2498 2.2931 2.2999 

3 4.4779 4.5773 4.5461 

Table 1: Normalized natural frequencies for 10° clamped spherical shell with 200R
h

=  

 

3.2 Case 2: clamped spherical shell with φ0  =30°  

This case was investigated analytically by Kalnins [1] using classical theory and transverse 

vibration theory. With our theory, we used 8 finite elements to study the spherical shell with the results 

shown in table 2. The frequencies we obtained with our model are very comparable to Kalinin’s values. 

The maxim displacement values were: 

                                 ( )
max

max

3.61
W
Uφ

=
                                      ( )

max

max

1.54W
Uθ

=  

It was observed that at lowest natural frequency, motion of the spherical shell is mainly dominated by its 

radial component. 

 

Mode Present theory Kalnins [1] 

1 1.169 1.168 

2 2.224 2.589 

3 3.303 3.230 

4                         4.200 4.288 

5                         4.923 4.683 

Table 2: Normalized natural frequencies for 30° clamped spherical shell with 20R
h

=  
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3.3 Case 3:  spherical shell φ0  =60° under the three boundary conditions: clamped, simply upported 

and free 
The free axisymmetric vibration of the spherical shell in this case was studied by Kalnins [2], 

Cohen [3], Navaratna [4], Webster [5], Greene et al [7], Tessler and Spiridigliozzi     [8], Gautham and 

Ganesan [10] and Buchanan and Rich [13]. In the present investigation, the shell was investigated with 

10 elements; the results are given respectively for clamped, simply supported and free shells in tables 3, 4 

and 5. 

The natural modes corresponding to the lowest shell natural frequencies under the two boundary 

conditions are illustrated in figures 5 and 6. They reveal that at the lowest natural frequency, spherical 

shell motion is radial. 

It is easy to see that all displacementsUφ , W  and Uθ  are all zero at the top (φ = 0 ) of the spherical shell. 

 

 

Mode Kalnins[2]  Navaratna [4] 
Webster 

[5] 

Tessler and 

Spiridigliozzi 

[8] 

Gautham 

and Ganesan 

[ 10] 

Buchanan 

and Rich  

[13] 

Present 

theory 

1 1.006 1.008 1.007 1.000 1.001 1.001 1.031 

2 1.391 1.395 1.391 1.368 1.373 1.370 1.496 

3 - 1.702 1.700 1.673 1.678 1.675 1.760 

4 - 2.126 2.095 - - 2.094 2.089 

5 2.375 2.387 2.386 2.260 - 2.256 2.276 

6 3.486 3.506 3.851 3.213 - 3.209 3.311 

7 3.991 3.996 4.062 3.965 - 3.964 3.775 

8 - 4.159 4.151 - - 4.060 4.073 

9 4.947 5.001 5.962 4.442 - 4.427 4.826 

10 - 6.037 6.208 5.773 - 5.740 5.777 

                 Table 3: Normalized natural frequencies for 60° clamped spherical shell with 20R
h

=  
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Table 4: Normalized natural frequencies for  60° simply supported spherical shell with 20R
h

=

              Fig.5. Displacements versus φ coordinate for  clamped spherical shell φ0 =60

Mode Kalnins  [2]
Navaratna 

[4]

Greene et 

al [7]

Cohen

[3]

Gautham 

and 

Ganesan 

[ 10]

Buchanan 

and Rich  

[13]

Present

Theory

1 0.962 0.963 0.974 0.959 - 0.956 0.981

2 1.334 1.338 1.338 1.325 1.315 1.308 1.412

3 - 1.653 1.652 1.646 1.639 1.612 1.646

4 2.128 2.131 2.162 - - 2.044 2.038

5 - 2.141 - - - 2.059 2.115

6 3.176 3.185 - - - 2.965 2.934

7 3.988 3.933 - - - 3.837 3.871

8 - 4.159 - - - 4.000 4.017

9 4.575 4.601 - - - 4.148 4.138

10 - 6.031 - - - 5.608 5.773
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Table 5: Normalized natural frequencies for 60° free spherical shell with 20R
h

=

Fig.5. Displacements versus φ coordinate for  simply supported  spherical shell φ0 =60

Mode Kalnins [2] Navaratna [4] Webster [5] Present theory

1 0.931 0.932 0.931 0.938

2 1.088 1.094 1.089 1.062

3 1.533 1.544 1.535 1.426

4 2.348 2.363 2.360 2.425

5 2.544 2.548 2.551 2.725

6 - 2.982 2.985 2.944

7 3.497 3.519 4.023 4.264

8 - 4.971 4.950 4.973

9 4.951 4.980 5.548 5.793

10 5.230 5.543 6.224 6.605
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3.4 Case 4: Spherical shell with φ0  =90°  

Kraus [6]   investigated the case of simply supported spherical shell using a general theory which 

included the effects of transverse shear stress and rotational inertia. For cases both with and without these 

effects, he determined the natural frequencies for the shell motion that was independent of θ  for 

circumferential mode number n = 0. Tessler and Spiridigliozzi [8], Gautham and Ganesan [11] analyzed 

the case of clamped hemispherical shell.  Ventsel et al. [14] studied the case of simply supported 

spherical shell using the boundary elements method for various circumferential mode 

numbers ( )n n n= = =0 1 2, , .   With our model and using 12 finite elements, the natural frequencies were 

computed for clamped and simply supported shells.  The results are shown respectively in table 7 and 

table 8. The maximum displacements values are: 

( )max
0.3381Uφ =                                     max 0.2317W =                          ( )max 0.0854Uθ =               

The result is that at the lowest natural frequency, the motion of spherical shell is predominately by the 

axial displacement. 

 

Mode 
Tessler and 

Spiridigliozzi [8] 

Gautham and 

Ganesan [11] 

Present 

theory 

1 0.8481 0.8439 0.8327 

2 1.2328 1.2317 1.1919 

3 1.5902 1.5808 1.5041 

4 1.9435 1.9267 1.9161 

 

              
Table 7 : Normalized natural frequencies for 90° clamped spherical shell with 10R

h
=
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                 Table 8: Normalized natural frequencies for 90° simply supported spherical shell 
 
 
 
4. Conclusion  

The purpose of the investigation described in this paper is to determine the natural frequencies 

and shape modes of free vibrations of spherical shell.  The modal is based on hybrid approach combining 

the classical finite element method and the classical shell theory. This theoretical approach is much more 

precise than usual finite element methods because the displacement functions are derived from exact 

solutions of equilibrium equations for spherical shells. The mass and stiffness matrices are determined by 

numerical integration.  

The results obtained for spherical shells with different angles and different boundary conditions 

are compared with results available in the literature.  Very good agreement was found. This approach 

resulted in a very precise element that leads to fast convergence and less numerical difficulties from the 

computational point of view. Because of its use of classical shell theory for the displacement functions, 

the presented method may easily be adapted to take fluid-structure effects into account. A paper under 

preparation on the effect fluid on vibrations of shells confirms this approach . For the same reason, we 

can obtain the high as well as low frequencies with very good accuracy. 

Mode  
Kraus [6] 

10R
h

=  

Kraus [6] 

50R
h

=  

Ventsel et 

al.[14] 

200R
h

=  

Present 

theory 

50R
h

=  

1 0.8060 0.7548 0.7441 0.7579 

2 1.2054 0.9432 0.9281 0.9034 

3 1.6179 1.0152 0.9693 0.9499 

4 1.9051 1.1082 - 1.1089 

5 2.7205 1.2523 - 1.2759 

6 2.9301 1.4576 - 1.4723 

7 4.0274 1.6558 - 1.6237 

8 5.5142 1.7636 - 1.7634 
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+ − − + + − −     ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂      

∂ ∂∂ ∂
+ + − + ∂ ∂ ∂ ∂ ∂ 

( )
2 2 2

66
3

1 cot( )
sin( )

cot( ) cot( )1 2 1 2cot( ) 2 3cot cot( ) 2
sin( ) sin( ) sin( ) sin( ) sin( ) sin( )sin( )

UU
U

U UP U UW W W WU U
R

ϕθ
θ

ϕ ϕθ θ
θ θ

φ
θ φ φ θ

φ φφ φ φ
φ θ φ φ θ φ θ φ φ θ φ φ θ φ θ φ φ θφ

 ∂  ∂
+ −  ∂ ∂   

 ∂ ∂   ∂ ∂∂ ∂ ∂ ∂ ∂
+ + − + − + + − + −   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   


 
 
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( )1 1

1
1 1 1(1,1) cot n nR e n P e c Pµ µφ −= − +      

2 2 2 2

1 1
2 3 2 2 3 3 3 2 2 3(1, 2) cot Re( ) cot Im( ) ( ) Re( ) ( ) Im( )n n n nR ne P ne P e c e c P e c e c Pµ µ µ µφ φ − −= − − + + + −  

2 2 2 2

1 1
3 2 3 2 2 3 2 2 3 3(1,3) cot Re( ) cot Im( ) ( ) Re( ) ( ) Im( )n n n nR ne P ne P e c e c P e c e c Pµ µ µ µφ φ − −= − − − + +  

2

1(1, 4)
2sin

nnR P
φ

= −  

( )1 1

1
1 1 1(1,5) cot n nR e n Q e c Qµ µφ −= − +      

2 2 2 2

1 1
2 3 2 2 3 3 3 2 2 3(1,6) cot Re( ) cot Im( ) ( ) Re( ) ( ) Im( )n n n nR ne Q ne Q e c e c Q e c e c Qµ µ µ µφ φ − −= − − + + + −  

2 2 2 2

1 1
3 2 3 2 2 3 2 2 3 3(1,7) cot Re( ) cot Im( ) ( ) Re( ) ( ) Im( )n n n nR ne Q ne Q e c e c Q e c e c Qµ µ µ µφ φ − −= − − − + +

2

1(1,8)
2sin

nnR Q
φ

= −  

1
(2,1) nR Pµ=  

2
(2, 2) Re( )nR Pµ=  

( )
2

2,3 Im( )nR Pµ=  

( )2,4 0R =  

1
(2,5) nR Qµ=  

2
(2,6) Re( )nR Qµ=  

( )
2

2,7 Im( )nR Qµ=  

( )2,8 0R =  

( )
11

13,1
sin

nR ne Pµφ
= −  

2 2 23
1 1(3,2) Re( ) Im( )

sin sin
n nR ne P ne Pµ µφ φ

= − −  

2 2 23
1 1(3,3) Re( ) Im( )

sin sin
n nR ne P ne Pµ µφ φ

= −  

( )( )
2

1
1 1(3, 4) cot 2 1

2 2
n nn nR P n n Pφ −= − + − +

 

( )
11

13,5
sin

nR ne Qµφ
= −  
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2 2 23
1 1(3,6) Re( ) Im( )

sin sin
n nR ne Q ne Qµ µφ φ

= − −  

2 2 23
1 1(3,7) Re( ) Im( )

sin sin
n nR ne Q ne Qµ µφ φ

= −  

( )( )
2

1
1 1(3,8) cot 2 1

2 2
n nn nR Q n n Qφ −= − + − +

 

(1, ) (1, )A j R j= ,  (2, ) (2, )A j R j= ,  (3, ) ( )ndwA j j
dφ

= ,   (4, ) (3, )A j R j=  with iφ φ= (5, ) (1, )A j R j= , 

(6, ) (2, )A j R j=  ;  (7, ) ( )ndwA j j
dφ

= ,  (8, ) (3, )A j R j=  with jφ φ=  

j=1,…,8 
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( )

( )

( ) ( )

1 1

2

2

2

2 11
1 1 1 12

2
2 2 3 3 2 2

2
3 2 2 3 3 2

1
2 2 3 3 3 2 2 3

1 1(1,1) ( cot ) 1 cot
sin

1 1(1, 2) ( cot ) 1 Re( )
sin

1 1( cot ) Im( )
sin

1 1cot Re( ) cot

n n

n

n

n

eQ e c ne n P c P
R r

Q e c e c ne n P
R

e c e c ne n P
R

e c e c P e c e c
R R

µ µ

µ

µ

µ

φ φ
φ

φ
φ

φ
φ

φ φ

−

−

 
= + + + − 

 
 

= + + + + 
 

 
+ − + + 

 

− + − −

( )

( )

( ) ( )

2

2

2

2 2

1

2
3 2 2 3 3 2

2
2 2 3 3 2 2

1 1
3 2 2 3 2 2 3 3

2 2

1

Im( )

1 1(1,3) ( cot ) Re( )
sin

1 1( cot ) 1 Im( )
sin

1 1cot Re( ) cot Im( )

1(1,4) ( 1) cot ( 2)(
2 sin 2

n

n

n

n n

n

P

Q e c e c ne n P
R

e c e c ne n P
R

e c e c P e c e c P
R R

n nQ n P n
R R

µ

µ

µ

µ µ

φ
φ

φ
φ

φ φ

φ
φ

−

− −

 
= − − + + 

 
 

+ + + + + 
 

+ − − +

= + − −

( )

( )

( )

1 1

2

2

2

1
1

2 11
1 1 1 12

2
2 2 3 3 2 2

2
3 2 2 3 3 2

1
2 2 3 3

11)
sin

1 1(1,5) ( cot ) 1 cot
sin

1 1(1,6) ( cot ) 1 Re( )
sin

1 1( cot ) Im( )
sin

1 1cot Re( )

n

n n

n

n

n

n P

eQ e c ne n Q c Q
R r

Q e c e c ne n Q
R

e c e c ne n Q
R

e c e c Q
R

µ µ

µ

µ

µ

φ

φ φ
φ

φ
φ

φ
φ

φ

−

−

−

+

 
= + + + − 

 
 

= + + + + 
 
 

+ − + + 
 

− + − ( )

( )

( )

( ) ( )

2

2

2

2 2

1
3 2 2 3

2
3 2 2 3 3 2

2
2 2 3 3 2 2

1 1
3 2 2 3 2 2 3 3

2

cot Im( )

1 1(1,7) ( cot ) Re( )
sin

1 1( cot ) 1 Im( )
sin

1 1cot Re( ) cot Im( )

1(1,8) ( 1) cot
2 sin

n

n

n

n n

e c e c Q
R

Q e c e c ne n Q
R

e c e c ne n Q
R

e c e c Q e c e c Q
R R

nQ n
R

µ

µ

µ

µ µ

φ

φ
φ

φ
φ

φ φ

φ
φ

−

− −

−

 
= − − + + 

 
 

+ + + + + 
 

+ − − +

= +
2

1
1 1

1( 2)( 1)
2 sin

n nnQ n n Q
R φ

−− − +
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1 1

2 2

2 2

2 11
1 12

2 23
2 2 2

1 1
2 2 3 3 3 2 2 3

3
2

1 1(2,1) 1 ( cot ) cot
sin

1 1 1(2,2) 1 ( cot ) Re( ) ( cot ) Im( )
sin sin

1 1( )cot Re( ) ( ) cot Im( )

1(2,3) (
sin

n n

n n

n n

eQ ne n P c P
R r

neQ ne n P n P
R R

e c e c P e c e c P
R R

neQ n
R

µ µ

µ µ

µ µ

φ φ
φ

φ φ
φ φ

φ φ

−

− −

 
= − + + 

 
 

= − + − + 
 

+ + + −

=

( ) ( )

2 2

2 2

1

2 2
2 2

1 1
3 2 2 3 2 2 3 3

2 2
1

1 1

2
1 2

1 1cot ) Re( ) 1 ( cot ) Im( )
sin

1 1( )cot Re( ) ( ) cot Im( )

1 1(2,4) 1 cot ( 2) 1
2 sin 2 sin

1 1(2,5) 1 ( cot )
sin

n n

n n

n n

n

P ne n P
R

e c e c P e c e c P
R R

n nQ n P n n P
R R

eQ ne n Q
R

µ µ

µ µ

µ

φ φ
φ φ

φ φ

φ
φ φ

φ
φ

− −

−

 
+ + − + 

 

− − + +

= − + + − +

 
= − + + 

  1

2 2

2 2

2

11
1

2 23
2 2 2

1 1
2 2 3 3 3 2 2 3

2 23
22 2

cot

1 1 1(2,6) 1 ( cot ) Re( ) ( cot ) Im( )
sin sin

1 1( )cot Re( ) ( ) cot Im( )

1 1 1(2,7) ( cot ) Re( ) 1 ( cot )
sin sin

n

n n

n n

n

c Q
r

neQ ne n Q n Q
R R

e c e c Q e c e c Q
R R

neQ n Q ne n
R R

µ

µ µ

µ µ

µ

φ

φ φ
φ φ

φ φ

φ φ
φ φ

−

− −

 
= − + − + 

 

+ + + −


= + + − +



( ) ( )

2

2 2

1 1
3 2 2 3 2 2 3 3

2 2
1

1 1

Im( )

1 1( )cot Re( ) ( ) cot Im( )

1 1(2,8) 1 cot ( 2) 1
2 sin 2 sin

n

n n

n n

Q

e c e c Q e c e c Q
R R

n nQ n Q n n Q
R R

µ

µ µφ φ

φ
φ φ

− −

−


 



− − + +

= − + + − +
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1 1

2 2

2 2

1
1 1 1

2 3

1 1
2 2 3 3 3 2 2 3

3

2 1 2 1(3,1) ( 1) cot
sin sin

2 1 2 1(3, 2) ( 1) cot Re( ) ( 1) cot Im( )
sin sin

2 1 2 1( ) Re( ) ( ) Im( )
sin sin

2 1(3,3) ( 1) cot Re
sin

n n

n n

n n

n nQ e n P e c P
R R
n nQ e n P e n P

R R
n ne c e c P e c e c P

R R
nQ e n

R

µ µ

µ µ

µ µ

φ
φ φ

φ φ
φ φ

φ φ

φ
φ

−

− −

= + −

= + + +

− + − −

= − +

( ) ( ) ( )( )

2 2

2 2

1

2

1 1
3 2 2 3 2 2 3 3

2 1
1 12

1 1

2 1( ) ( 1) cot Im( )
sin

2 1 2 1( ) Re( ) ( ) Im( )
sin sin

1(3, 4) 1 2 cot 2 1 cot
2 sin
2 1 2 1(3,5) ( 1) cot

sin sin

n n

n n

n n

n

nP e n P
R

n ne c e c P e c e c P
R R

n nQ n n n P n n P
R R
n nQ e n Q c Q

R R

µ µ

µ µ

µ µ

φ
φ

φ φ

φ φ
φ

φ
φ φ

− −

−

+ +

+ − − +

  
= + − + + − − +  

  

= + −
1

2 2

2 2

2 2

1

2 3

1 1
2 2 3 3 3 2 2 3

3 2

3 2

2 1 2 1(3,6) ( 1) cot Re( ) ( 1) cot Im( )
sin sin

2 1 2 1( ) Re( ) ( ) Im( )
sin sin

2 1 2 1(3,7) ( 1) cot Re( ) ( 1) cot Im( )
sin sin

2 (

n

n n

n n

n n

n nQ e n Q e n Q
R R

n ne c e c Q e c e c Q
R R
n nQ e n Q e n Q

R R
n e c e

R

µ µ

µ µ

µ µ

φ φ
φ φ

φ φ

φ φ
φ φ

−

− −

= + + +

− + − −

= − + + +

+ −

( ) ( ) ( )( )

2 2

1 1
2 3 2 2 3 3

2 1
1 12

1 2 1) Re( ) ( ) Im( )
sin sin

1(3,8) 1 2 cot 2 1 cot
2 sin

n n

n n

nc Q e c e c Q
R

n nQ n n n Q n n Q
R R

µ µφ φ

φ φ
φ

− −

−

− +

  
= + − + + − − +  

  
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( ) ( )

( ) ( ) ( )

( ) ( )

( )

1 1

2

2

2 11
1 1 1 12 2 2

2
2 2 3 3 22 2

2
3 2 2 3 32 2

2 2 3 32

11 1(4,1) 1 1 cot cot
sin

1 1(4, 2) 1 1 cot Re
sin

1 11 cot Im
sin

1 1 cot

n n

n

n

eQ e c n e n P c P
R R

Q e c e c n e n P
R

e c e c ne n P
R

e c e c
R

µ µ

µ

µ

φ φ
φ

φ
φ

φ
φ

−   −
= − + − + −  

  
  

= − + + − +  
  

  
+ − − + +  

  

− − +   ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2

2

2

2

1 1
3 2 2 32

2
3 2 2 3 32 2

2
2 2 3 3 22 2

1
3 2 2 3 2 2 3 32 2

1Re 1 cot Im

1 1(4,3) 1 cot Re
sin

1 11 1 cot Im
sin

1 11 cot Re 1 c

n n

n

n

n

P e c e c P
R

Q e c e c ne n P
R

e c e c n e n P
R

e c e c P e c e c
R R

µ µ

µ

µ

µ

φ φ

φ
φ

φ
φ

φ

− −

−

− − −  

  
= − − − + +  

  
  

+ − + + − +  
  

+ − − − − +       ( )

( )

( ) ( )

( ) ( ) ( )

2

1 1

2

1

2 2
1

1 12 2

2 11
1 1 1 12 2 2

2
2 2 3 3 22 2

3 22

ot Im

1 1(4, 4) 1 cot ( 2)( 1)
2 sin 2 sin

11 1(4,5) 1 1 cot cot
sin

1 1(4,6) 1 1 cot Re
sin

1

n

n n

n n

n

P

n nQ n P n n P
R R

eQ e c n e n Q c Q
R R

Q e c e c n e n Q
R

e c
R

µ

µ µ

µ

φ

φ
φ φ

φ φ
φ

φ
φ

−

−

−

= + − − +

   −
= − + − + −  

  
  

= − + + − +  
  

+ ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

2

2 2

2

2
2 3 3 2

1 1
2 2 3 3 3 2 2 32 2

2
3 2 2 3 32 2

2
2 2 3 3 22 2

11 cot Im
sin

1 11 cot Re 1 cot Im

1 1(4,7) 1 cot Re
sin

1 11 1 cot
sin

n

n n

n

e c ne n Q

e c e c Q e c e c Q
R R

Q e c e c ne n Q
R

e c e c n e n
R

µ

µ µ

µ

φ
φ

φ φ

φ
φ

φ
φ

− −

  
− − + +  

  

− − + − − −      

  
= − − − + +  

  

 
+ − + + − +

 
( )

( ) ( ) ( ) ( )

( )

2

2 2

1 1
3 2 2 3 2 2 3 32 2

2 2
1

1 12 2

Im

1 11 cot Re 1 cot Im

1 1(4,8) 1 cot ( 2)( 1)
2 sin 2 sin

n

n n

n n

Q

e c e c Q e c e c Q
R R

n nQ n Q n n Q
R R

µ

µ µφ φ

φ
φ φ

− −

−

 
 
 

+ − − − − +      

= + − − +
 



28 
 

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

2 2

2 2

12 1
1 12 2 2

2 23
22 2 2 2

1 1
2 2 3 3 3 2 2 32 2

3
2

11(5,1) 1 cot cot
sin

1 1(5, 2) 1 cot Re cot Im
sin sin

1 11 cot Re 1 cot Im

(5,3)

n n

n n

n n

enQ e n P c P
R R

nenQ e n P n P
R R

e c e c P e c e c P
R R
neQ
R

µ µ

µ µ

µ µ

φ φ
φ

φ φ
φ φ

φ φ

−

− −

− 
= − + + 

 
   

= − + − +   
   

+ − + + − −      

= ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )( )

( )

2 2

2 2

2 2
22 2 2

1 1
3 2 2 3 2 2 3 32 2

1
1 12 2

2
12 2

1 1cot Re 1 cot Im
sin sin

1 11 cot Re 1 cot Im

1 1(5, 4) 1 cot 2 1
2 sin 2 sin

1(5,5) 1 cot
sin

n n

n n

n n

nn P e n P
R

e c e c P e c e c P
R R

n nQ n P n n P
R R

nQ e n
R

µ µ

µ µ

φ φ
φ φ

φ φ

φ
φ φ

φ
φ

− −

−

   
+ + − +   

   

− − − + − +      

= − + + − +

 
= − +

 

( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( )

1 1

2 2

2 2

2

1 1
12

2 23
22 2 2 2

1 1
2 2 3 3 3 2 2 32 2

23
2 2 2

1
cot

1 1(5,6) 1 cot Re cot Im
sin sin

1 11 cot Re 1 cot Im

1(5,7) cot Re 1
sin

n n

n n

n n

n

e
Q c Q

R

nenQ e n Q n Q
R R

e c e c Q e c e c Q
R R
ne nQ n Q e
R R

µ µ

µ µ

µ µ

µ

φ

φ φ
φ φ

φ φ

φ
φ

−

− −

−
+

   
= − + − +   

   

+ − + + − −      

 
= + + − 

 
( ) ( )

( ) ( ) ( ) ( )

( ) ( )( )

2

2 2

2
2 2

1 1
3 2 2 3 2 2 3 32 2

1
1 12 2

1cot Im
sin

1 11 cot Re 1 cot Im

1 1(5,8) 1 cot 2 1
2 sin 2 sin

n

n n

n n

n Q

e c e c Q e c e c Q
R R

n nQ n Q n n Q
R R

µ

µ µ

φ
φ

φ φ

φ
φ φ

− −

−

 
+ 

 

− − − + − +      

= − + + − +
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( )( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

2 2

2 2

1
1 1 12 2

2 32 2

1 1
2 2 3 3 3 2 2 32 2

32

2 1 2 1(6,1) 1 1 cot 1
sin sin

2 ( 1) 1 2 ( 1) 1(6, 2) 1 cot Re cot Im
sin sin

2 1 2 11 Re 1 Im
sin sin

2 ( 1)(6,3)

n n

n n

n n

n nQ n e P e c P
R R

n n n nQ e P e P
R R

n ne c e c P e c e c P
R R

n nQ e
R

µ µ

µ µ

µ µ

φ
φ φ

φ φ
φ φ

φ φ

−

− −

= + − + −

+ +
= − +

− − + − − −      

+
= − ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )( )

( )( )

2 2

2 2
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1 1
3 2 2 3 2 2 3 32 2

2 1
1 12 2 2
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1 2 ( 1) 1cot Re 1 cot Im
sin sin

2 1 2 11 Re 1 Im
sin sin

1(6, 4) 1 2 cot 2 1 cot
2 sin
2 1(6,5) 1 1 co

sin

n n

n n

n n

n nP e P
R

n ne c e c P e c e c P
R R

n nQ n n n P n n P
R R
nQ n e

R

µ µ

µ µ

φ φ
φ φ

φ φ

φ φ
φ

φ

− −

−

+
+ −

+ − − − − +      

  
= + − + + − − +  

  

= + − ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( )

1 1

2 2

2 2

2

1
1 12

2 32 2

1 1
2 2 3 3 3 2 2 32 2

32 2

2 1t 1
sin

2 ( 1) 1 2 ( 1) 1(6,6) 1 cot Re cot Im
sin sin

2 1 2 11 Re 1 Im
sin sin

2 ( 1) 1 2 ( 1)(6,7) cot Re
sin

n n

n n

n n

n

nQ e c Q
R

n n n nQ e Q e Q
R R

n ne c e c Q e c e c Q
R R

n n n nQ e Q
R R

µ µ

µ µ

µ µ

µ

φ
φ

φ φ
φ φ

φ φ

φ
φ

−

− −

+ −

+ +
= − +

− − + − − −      

+ +
= − + ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )( )

2

2 2

2

1 1
3 2 2 3 2 2 3 32 2

2 1
1 12 2 2

11 cot Im
sin

2 1 2 11 Re 1 Im
sin sin

1(6,8) 1 2 cot 2 1 cot
2 sin

n

n n

n n

e Q

n ne c e c Q e c e c Q
R R

n nQ n n n Q n n Q
R R

µ

µ µ

φ
φ

φ φ

φ φ
φ

− −

−

−

+ − − − − +      

  
= + − + + − − +  

    
 

In deriving the above relation we used the recursive relations: 

( )( ) ( )( )

( )( ) ( )( )

2
2 1

2 2

2
2 1

2 2

11 cot cot 1
sin

11 cot cot 1
sin

n
n n

n
n n

d P
n n n n P n n P

d

d Q
n n n n Q n n Q

d

µ
µ µ

µ
µ µ

µ µ φ φ µ µ
φ φ

µ µ φ φ µ µ
φ φ

−

−

  
= − − + + + − − − +  

  
  

= − − + + + − − − +  
    
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