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Kinetics, Chemistry and Morphology of Syngas Photo-

Initiated Chemical Vapor Deposition 

Donya Farhanian, Gregory De Crescenzo, Jason R. Tavares* 

Department of Chemical Engineering, École Polytechnique de Montréal, P.O. Box 6079, Station 

Centre-Ville, Montreal, Quebec, H3C 3A7, Canada.  

KEYWORDS: photo-initiated chemical vapor deposition (PICVD), syngas, photo-polymerization, 

deposition rate, coating. 

ABSTRACT: Syngas is the product of gasification processes and is used for the production of 

petrochemicals. Little attention has been given to its use for the production of oligomeric thin films at 

ambient conditions. Herein, the nature of photo-initiated chemical vapor deposition of films made from 

syngas using high wavelength ultraviolet light is discussed, including an exploration into the 

oligomeric films’ structure, synthesis mechanism and growth kinetics. Specifically, X-ray 

photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry analyses provide 

insight into the chemical structure, illustrating the effect of photo-generated radicals in the formation of 

aliphatic, anhydride and cyclic structures. The films are covalently bonded to the substrate and 

chemically uniform. Electron and atomic force microscopy identify an island-like morphology for the 

deposit. These insights into to the mechanism and structure are linked to processing parameters through 

a study on the effect of residence time and treatment duration on deposition rate, determined through 

profilometry. 
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1. INTRODUCTION 

Surface modification techniques have gained a lot of interest due to their ability to tailor surface 

properties without altering the bulk of the material. Hybrid organic-inorganic coatings are of interest in 

various fields such as optics, environmental sciences, energy, mechanics, catalysis and sensors, because 

they can tailor surface wettability as well as the chemical specifications of materials.1-5 Several 

techniques such as chemical vapor deposition (including plasma enhanced and thermally activated), 

atomic layer deposition and sol-gel techniques have been used for thin film synthesis.2,6 Among these 

techniques, photo-initiated chemical vapor deposition (PICVD) has considerable superiority given its 

simple reactor design, ease of use and control, scalability, versatility, affordability and low 

environmental footprint. The solvent-free deposition nature, as well as the ability to work without any 

high vacuum or high temperatures make this process an attractive alternative to other gas phase surface 

modification approaches.7-10  

Most studies in this field use vacuum ultraviolet (VUV) lamps emitting at wavelengths shorter than 

200 nm as initiation sources.11-19 However, despite the ability of light at these wavelengths to cleave 

most chemical bonds due to their high energy photons (5-15 eV),20 light transmission becomes 

prohibitive (i.e. specialized reactor windows, such as MgF2 and LiF, or designs are compulsory.2,21) 

Given these limitations, UVC light (200-280 nm),22 which can be transmitted through affordable quartz 

windows and generated via commercially ubiquitous germicidal lamps, merits investigation. Its 

application to PICVD requires the selection of appropriate precursors containing chemical bonds 

reactive at the wavelength of the UV source.  

In general, precursor selection depends on (1) the modification technique, (2) the reactor type and (3) 

the required chemical and physical bulk properties corresponding to the application. In PICVD, 

precursors should either absorb UV or, in the case of precursor mixtures, react with the radical/excited 

species produced upon UV absorption of other monomers. Thus, absorption cross section, absorption 
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coefficient and ionization potential drive precursor selection.2,23 Window composition is one of the 

main features of reactor design. In PICVD processing with UVC lamps, there is no need for special 

materials and quartz windows are applicable. Many chemical compounds have been investigated for 

PICVD process such as methyl methacrylate, polyethyleneglycol diacrylate, trimethylolpropane 

tris(mercaptopropionate), ethylene, styrene, butadiene, etc.1,24-29 However, these need to be excited 

either in the presence of photoinitiators or photosensitizers, or with high energy UV lamps; this makes 

the process very expensive.  

To overcome these issues, we looked to Fischer-Tropsh synthesis. In this process, catalysts are used 

to combine the binary mixture of CO and H2, known as synthesis gas or syngas, into hydrocarbons. 

Catalysts deactivate during this process, due to the formation of lightly polymerized carbon species.30-34 

This surface fouling can be reimagined as surface engineering - this triggered us to consider syngas as 

an alternative reactive precursor in PICVD. Very few researchers have attempted to study the photo-

polymerization of syngas components,9,35 and most have focused on carbon monoxide photochemical 

reactions in the early Earth's atmosphere or with low wavelength VUV lamps.35-37 Previously, our 

group demonstrated that syngas PICVD could be used to deposit thin films with various functionalities 

on copper substrates9 and nanomaterials,38-41 but the deposition mechanism and kinetics remain elusive. 

Herein, we report on the photochemical reaction of CO and H2 molecules to bring new insights into the 

mechanism and structure of the deposited film, and relate these features to key processing parameters. 

We present in terms of (i) chemical groups, (ii) density of generated products, (iii) morphology and 

topography of the deposited thin film, as well as (iv) film growth with respect to the irradiation time 

(and conversely, reagent residence time). These findings allow us to derive a reaction mechanism for 

the deposition process and a scheme for the chemical structure of the film, as well as kinetics to explain 

the deposition rate of the oligomeric film. 
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2. EXPERIMENTAL  

2.1. Sample preparation:  

Substrates were type N, orientation 110 silicon wafers with silicon oxide on the top surface 

(University Wafer), cut into 1 cm × 1 cm coupons. Before experiments, the coupons were cleaned by 

soaking in isopropanol (Fisher, 99.9% purity) in an ultrasonic bath for 10 minutes, and dried with 

compressed air.  

2.2. Experimental methodology:  

Before mounting onto a sample holder, we masked one side of the silicon coupon with Kapton tape 

to serve as a reference (Kapton® Polyimide for soldering and splicing; 7648A73 McMaster-Carr). The 

sample was inserted into the PICVD reactor (Figure 1S), which consists of a 225 cm3 plug flow quartz 

tube reactor with standard 24/40 taper joints (Montreal Glassblowing Inc.), surrounded by 28 UVC 

mercury (germicidal) lamps mounted in a UV-cabinet (custom made by Daavlin Co.). The UVC lamps 

have a main emission peak at a wavelength of 253.7 nm (measured via Ocean Optics 

Spectrometer/USB4000-XR1-ES), with a light intensity of 0.012 W/cm2 at the reactor distance of 33 

cm (measured via ILT1700 Research Radiometer coupled with a SED240/QNDS2/ W254 nm sensor, 

International Light Technologies).  

Before experiments, the reactor was purged for 5 minutes with 0.4 L/min of argon (Air Liquide, 

99.99%). The prescribed amount of syngas (CO and H2, Air Liquide, 99.99%) was then fed to the 

reactor at an inlet pressure of 40 psi. The reactor was maintained at atmospheric pressure. The UV 

cabinet was then turned on and treatment duration time was set according to the experimental plan 

(Table 1S).  Experiments were initiated at room temperature (~22 °C). However, over the course of 

treatment (2h), the temperature increased to 48 0C because of the heat given off by the UV lamps. Each 

experiment was repeated 3 times to ensure reproducibility. 
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2.3. Characterization techniques:  

Elemental analysis of deposited films was done via a VG ESCALAB 3 MKII X-ray photoelectron 

spectroscope (XPS) equipped with a non-monochromatic Mg-Kα radiation source, operated at 300 W 

(15 kV, 20 mA).  Survey scans were conducted at an X-ray incident angle of 15° with a penetration 

depths of ∼10 nm. The pass energy was 100 eV for survey scans and 20 eV for high-resolution scans in 

1.00 eV and 0.05 eV increments, respectively. Pressure during analysis was kept under 5×10-9 Torr and 

the analyzed surface was 2 mm × 3 mm.  Samples were stored under vacuum overnight prior to 

analysis. The XPS spectra were acquired normal to the sample surface and analyzed via the Avantage 

XPS software package. The elemental distribution of the samples was determined based on the peak 

area comparison (C1s, O1s, etc.), normalized to their corresponding sensitivity factors, after removal of 

the scattered electrons background. In the case of high-resolution spectra, binding energies were 

referenced to the C1s peak at 285.0 eV to adjust for possible charging effects, and the Shirley method 

was applied for background noise subtraction. According to the data trend for each distribution of 

binding energy, the baseline was manually placed. Each curve is represented by its maximum BE in 

this discussion. Species elemental distribution is obtained via Gaussian/Lorentzian curve fitting on the 

original curve. The number of sub-curves and their corresponding species were obtained with full 

width at half maximum (FWHM) = 1.6, 1.8, 2.2 and  2.7 eV for C, O, Si and Fe respectively These are 

the most frequent FWHM that we observed with this machine for each elements and normally have 

been used for all samples. 

Static time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis was carried out with a 

ION-TOF SIMS IV (from ION-TOF GmbH, Germany) equipped with a 25 keV Bi3 liquid metal ion 

source as the primary ion beam source, in high current bunched mode. A bunching system gives pulse 

durations of 21.9 ns with a mass resolution M/∆M better than 8,000 around m/z 100 in positive and 

negative SIMS modes. Depth profiling (10 Ǻ maximum) was performed in non-interlaced mode, where 
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the analysis and sputtering occurred with a 50 µm × 50 µm analysis area confined within a 500 µm × 

500 µm sputter area, keeping the total dose below 5 × 1012 ions cm-2 (so called static conditions). 

Imaging of the samples was also performed in high mass resolution mode over an area of 500 µm × 

500 µm with an imaging pixel density of 128 pixels × 128 pixels. Three measurements at adjacent spots 

were performed on the samples and positive and negative ion spectra were compared to confirm 

uniformity. Ion spectra were internally calibrated using H+, H2
+, CH3

+, C2H2
+, C3H5

+ and H−, C−, CH−, 

C2H−, and C4H− peaks, respectively. 

Surface morphology of the deposited film was examined with a Hitachi ultrahigh-resolution cold 

field emission scanning electron microscope (Hitachi SU8230), equipped with an X-ray energy-

dispersive spectroscope (EDS) (Bruker® Quad detector-Bruker® 4SD Argus system) operated at an 

accelerating voltage of 1-2.5 kV. Samples were mounted on metal stubs using conductive double-sided 

carbon tape.  

Topography was investigated via a Multi-Mode 3 Atomic Force Microscope (Bruker AS-130) 

(AFM) operated in tapping mode. Microfabricated V-shaped silicon cantilevers (Applied Nano Inc.) 

with a theoretical spring constant of 37 N/m, a resonance frequency of ~300 kHz and a silicon conical 

tip (radius = 6 nm) were used. Squares of 5 µm in size were scanned in air under constant applied force 

conditions at a 0.8-1 Hz scan rate. Nanoscope analysis software was used for image processing and 

data analysis; images with 512 × 512 pixel resolution were obtained. 

The film thicknesses were measured using stylus profilometry with a Veeco Dektak 150 surface 

profiler. In order to confirm the profilometry measurements, a few samples were measured by an ex 

situ M44 variable angle spectroscopic ellipsometer at angles of 65°, 70°, 75° in the wavelength range 

of 200-1000 nm. The applied optical model consisted of three components: the silicon substrate, the 

native SiO2 layer and the film bulk layer. The Cauchy function with Urbach tail was incorporated for 
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bulk components modulation. The model also took into account possible thickness inhomogeneity 

within the sampled area.  

3. RESULTS AND DISCUSSION 

3.1. Chemical characterization of deposited films 

High resolution X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass 

spectrometry (TOF-SIMS) analyses provided insight into the chemical composition of the deposited 

films. In order to gain information on the chemical bonding states and structure of the film, the XPS 

peaks for bare and coated silicon samples were deconvoluted (Figure 1). A summary of the high-

resolution spectral deconvolutions along with their possible structure assignment and At % is presented 

in Table 1. 

Table 1. XPS high-resolution spectral deconvolution peaks and their origins. 

 

 

Peak Name 

 

Centered 

Binding 

Energy  

[eV] 

 

Possible 

Structure 
(1)

 

Elemental atomic % 

Area 

Bare 

sample 

Coated 

sample
(2)

 

C1s A 285.0 *C–*C,* C–H,*C=*C, etc. 6.4 15.0 
C1s B 286.4 *C–O–*C,*C–O–Fe,  1.2 2.4 
C1s C 288.6 O–*C–O, O=*C–O,O=*C–O–Fe - 3.0 
C1s D 284.4 Si–*C - 1.9 
O1s A 530.0 Fe–*O - 36.7 
O1s B 531.6 Fe–*O–H, C=*O, Si–*O–H 64.1 8.6 
O1s C 532.5 C–*O–Fe, *O=C–*O–Fe - 6.4 
Si2p3/2 A 99.8 *Si–*Si, *Si–Fe - 1.1 
Si2p3/2 B 

Si2p3/2 B (1) 
Si2p3/2 B (2) 

101.9 
102.4 
103.9 

H3C–*Si(O)–CH3 
Si+2 Polycrystalline Si in Si-Ox 
Si+4 Polycrystalline Si in Si-Ox 

- 
4.5 
23.8 

2.0 
- 
- 

Fe2p3/2 A 710.7 *Fe–O, O=C–O–*Fe - 13.5 
Fe2p3/2 B 713.3 C–O–*Fe - 4.8 
Fe2p3/2 SU  718.0 C–O–*Fe, O=C–O–*Fe - 4.6 

 

        (1) *shows the elements correspond to that binding energy. 
        (2) Elemental atomic % correspond to the experiment #1 (Table 1S). 
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Bare silicon wafer coupons Coated silicon wafer coupons 

  

  

  

 
Figure 1. Deconvoluted XPS spectra of bare and coated silicon wafer coupons in experiment#1 

C1s A C1s A 

C1s B 

C1s C 
C1s D 

Si2p3/2 B (2) 

O1s A 

O1s C 

(a) 

(b’) (b) 

(c’) (c) 

(d) 
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(Table 1S) 

Before treatment, the silicon wafer surface was mainly composed of silicon, oxygen and contained a 

small amount of carbon, most likely due to contaminants42,43 (~7.6%, Table 1). These contaminants 

(Figure 1a’) exhibited a high-resolution Cls peak at binding energy BE  ≅  285.0 eV and 286.9, which 

were assigned to C–C and C–H bonds (such as –CH, –CH2, –CH3 and C2H2, C2H5,...) and C–O–C 

bonds, respectively. Silicon sub-oxides such as SiO (Si2+), Si2O3 (Si3+) and SiO2 (Si4+) were assigned to 

BE of 101.4-102.0, 102.1-102.7 and 103.5-104.1 eV within the Si2p peak, respectively.45,46 Thus, the 

broad distribution of Si2p spectra at 102.2–104.2 eV was attributed to the various Si–Ox species 

(Figure 1b’). The oxygen peak at BE ≅ 533.3 eV represented oxygen in the oxide form (Figure 1c’). 

High-resolution spectral deconvolution of Si2p and O shows that the atomic percentage of oxygen, and 

silicon did not match. Indeed, in terms of stoichiometry, the Si/O ratio should be ½, but the amount of 

oxygen was determined to be higher (for 28.3 At % Si, the corresponding atomic percentage for oxygen 

should be 56.6% (Table 1). The observed higher oxygen amount (+7.5%, Table 1) was attributed to 

surface hydroxyl groups (Si-OH).45,47  

After PICVD treatment, the C1s peak increased significantly, and the Si2p peak was attenuated, 

which was in agreement with survey results (Figures 2S and 3S). The C1s spectrum (Figure 1a) 

showed a group of overlapping peaks with BE from 282 to 292 eV, attributed to four significantly 

different surface carbon phases (identified as A, B, C and D). The dominant Phase A peak (C1s A, BE 

≅ 285.0 eV) was attributed to aliphatic carbon (e.g. –CH, –CH2, –CH3), as well as polymerized CnHm 

chains (e.g. C≡C, C=C, C–C). Phase B (C1s B, BE ≅ 286.4 eV) contained C=CO–C and C–O–C, 

though it also could be assigned to C–O–Fe. Phase C (C1s C, BE ≅ 288.6 eV) could correspond to 

O=C–C, O–C–C, and also O=C–O–Fe.6 This range of BE (286.0–289.0 eV) is generally attributed to 

carbonates. Phase D (C1s D, BE ≅ 284.4 eV) was designated as a carbidic carbon layer, in the form of 

Si–C bonds. This means that the organic films we deposited had bonded with the silicon substrate 

Page 9 of 34

ACS Paragon Plus Environment

Langmuir

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



  

10 

 

covalently. Since there is no C1s peak on the untreated sample at BE ≤ 284.4 (Figure 1a’), this 

covalent bond was formed during the PICVD process, which was confirmed by the Si2p spectrum: in 

Figure 1c, the attenuation of the doublet Si2p3/2 and Si2p1/2 in Si-Ox (102-104 eV) was observed 

after the organic grafting. In grafted silicon samples, the Si2p spectrum consisted of two main peaks 

and their doublet (A, B) located at BE ≅ 99.7 eV, and BE ≅ 101.8 eV. The first peak and its 

corresponding doublet exhibited the characteristic of Si2p3/2 with BE ≅ 99.7–99.9 eV and Si2p1/2 

with BE ≅ 100.2–100.7 eV. This corresponded to elemental silicon in the form of Si–Si or even Fe–Si 

bond in the structure of the deposited film.46,48 The second peak was more alike to the binding energy 

in organic silicon ~102 eV (Si2p3/2 and Si2p1/2 of 101.7 eV and 102.4 eV respectively).46 Based on 

the elemental atomic percentage (Table 1), we propose the H3C–Si(–O)–CH3 structure for this peak. 

Other researchers have shown that such covalent bonding is possible through plasma polymerization 

under low pressure conditions.49 Here, we demonstrate the formation of a strong covalent bond under 

gentler, atmospheric PICVD processing conditions.  

Using Gaussian fitting and literature reports,46,50 the O1s spectrum (Figure 1b) can be divided into 

three peak areas: A, B and C.  A (BE ≅ 530 eV) is attributed to oxide species. B (BE ≅ 531.6 eV) is 

assigned to hydroxyl groups such as H–O–Fe, H–O–Si, –O=C, and C–O–O agents in ether and alcohol. 

C (BE ≅ 532.5 eV) corresponds to C–O–Fe, O=C–O–Fe species. 

Peaks in the BE range of 705 to 740 eV have been attributed to iron.46 In syngas PICVD, Fe can 

come from carbon monoxide cylinders, in the form of iron pentacarbonyl (Fe(CO)5). This compound is 

generated in small concentrations over extended periods in CO cylinders51,52 and happens to be photo-

active in the UVC range.53 The peak deconvolution of the Fe2p spectrum (Figure 1d) showed two 

main phases. Phase A was composed of Fe2p3/2 (BE ≅  710.2 eV) and Fe2p1/2 (BE ≅ 724.5 eV); 

these were assigned to iron oxide, either in the free state or in chemical bonds with the organic film 

(e.g. O–Fe, and O=C–O–Fe), with satellite peaks at BE ≅ 718.3 eV (Fe2p3/2 satellite) and BE ≅ 732.5 
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eV (Fe2p1/2 satellite). Based on the literature,46,54-57 for iron sub-oxides such as FeO (Fe2+), Fe2O3 

(Fe3+) and Fe3O4 (Fe8/3+), binding energy of Fe2p3/2 spectra are 709.1-710.7, 710.6-711.5 and 707.90-

710.7 eV, respectively. Thus, the binding energies in phase A corresponded to either Fe3+ in Fe2O3 or 

Fe8/3+ in Fe3O4. Phase B corresponded to the Fe2p3/2 and Fe2p1/2 peaks located at BE ≅ 713.4 and 

726.3 eV, which can be assigned to Fe–O–C and Fe–(OH)3. This indicates that Fe(CO)5 is fully 

decomposed and converted to iron oxide which had been incorporated in the chemical structure of 

deposited film. 

A complementary characterization of chemical bonds between the silicon wafer and the carbon film 

was then performed by TOF-SIMS analysis. The latter provided more chemical information on the 

deposited film and further supported our XPS results (Figure 2).  

  (a) 

 
(b) 

 
Figure 2. TOF-SIMS spectra for coated coupons in experiment #1 (Table 1S): (a) Positive ion and (b) 

negative ion.  
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TOF-SIMS results can be divided into three main categories:  

(1) Hydrocarbons: Both in the acquired positive and negative spectra, the expected CnHm fragments 

of light polymer-like species were detected. Positive ion spectra suggested that a great number of 

C2H2
+, C2H3

+, C2H5
+, C3H3

+, C3H7
+, C4H9

+, C5H9
+, C6H5

+, C6H6
+, C7H7

+, C8H7
+, C8H13

+, C9H7
+, C9H15

+, 

C10H8
+, C11H9

+, up to C12H8
+ ions at m/z = 26, 27, 29, 39, 43, 57, 69, 77, 78, 91, 103, 109, 115, 123, 

128, 141, and 152, respectively, were generated by the PICVD treatment. These fragments could be 

either linear or cyclical. Similar observations have been made in the negative iron spectrum at m/z = 

24, 37, 48, 49, 51, 60, 61, 64, 65, 72, 78, 83, and 96 corresponding to C2
-, C3H-, C4

-, C4H-, C4H3
-, C5

-, 

C5H-, C5H4
-, C5H5

-, C6
-, C6H6

-, C7
-, and C8

- ions, respectively. Moreover, some fragments with O in 

CnHmOy formula like COOH-, C3H3O2
-, C5H5O-, C6H5O-, and C7H6O- were detected at m/z = 44, 71, 81, 

93, and 106, respectively. These species were related to the carboxylic acid, anhydride and ketone 

(Figure 4S). 

(2) Iron: The spectrum obtained from the positive ions was dominated by peaks representing iron 

ions. The strongest peaks at m/z = 56 corresponded to Fe+; whereas, the other peaks at m/z = 57, 68, 

69, 70, 71, 72, 73, 80, 84, 85, 86, 89, 96, 101, 112, 124, 128, 132, and 136 in the positive ion spectrum 

corresponded to different species in the form Fe+, FeH+, and FexOyHmCn
+, e.g.,  FeH+, CFe+, FeCH+, 

CH2Fe+, FeCH3
+, FeO+, FeOH+, C2Fe+, COFe+, FeCOH+, CH2OFe+, FeCOH3

+, C2OFe+, FeCOOH+, 

Fe2
+, CFe2

+, Fe2O+, C5OFe+, and C2Fe2
+, respectively. Despite these peaks, there was no peak related to 

the Fe(CO)5 in the negative/positive ion spectra of TOF-SIMS confirming our XPS results indicating 

this compound was fully decomposed. Several combinations of iron oxide species (e.g. Fe2O2
+, Fe3O+, 

Fe3O2
+, Fe4O2

+) were also found at m/z ranging from 148 to 503.  These fragments were also observed 

in the negative ion mode, as well as fragments in the form of FeOH−, FexOyHmCn
− and OH− species.  

(3) Silicon: The relevant negative and positive ions spectra for silicon showed the presence of Si+, 

SiC+, SiHO+, SiOCH3
+, SiOC2H6

+ (m/z = 28, 44, 45, 59, 74, respectively) and their relevant negative 
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ions such as SiCO-, SiC2O-, SiC2OH-( at m/z = 56, 68, 69, respectively). These results corroborated the 

suspected structure obtained from XPS.  

In addition, to confirm the chemical structure of the thin film, TOF-SIMS helped us to investigate the 

abundance and homogeneity of deposited chemical moieties. Thus, ion imaging was carried out on a 

deposited film (experiment #1, Table 1S) to identify the ion fragments in the film and their micro-scale 

spatial distribution (Figure 3). We have applied a pixel-by-pixel normalization with respect to the total 

ion counts. Integrated mass spectrum at each pixel (Figure 3a) for all images has been performed. This 

removed any effect of preferential sputtering and secondary ion yield effects due to topography. 

Figure 3b-d show the spatial distribution of some light hydrocarbons. C2H2
+, C2H5

+, C3H3
+, … 

C12H8
+ were observed with dominant distribution of C2 > C3 > C4 aliphatic branches. The maximum 

number of carbon in the polymer reached C12. Also, aromatic structures were detected in the deposited 

film, most likely phenol, which is in agreements with previous results.9 Results from these images and 

TOF-SIMS ion spectra showed formation of acid anhydride, aldehyde, ketones, carboxylic, and 

hydroxyl groups as well.  

Figure 3e-h are representative of the spatial distribution of Si ions at the interface between the 

deposited film and substrate. The SiC distribution images corroborated the formation of covalent bonds 

between the oligomeric film and the substrate, previously identified by XPS. Moreover, the structures 

of these covalent bonds are mainly in the form of SiOCH3 and SiO(CH3)2 at the silicon wafer/deposited 

film interface. Considering the presence of SiHO+ but not SiO2 in the sample, the interface consisted 

mainly of SiOH groups. 

Figure 3i-l represent some of the iron fragments in the deposited film. Most of the iron in the film 

was in the form of iron oxide (especially Fe+) and iron hydroxyl (FeOH). Moreover, some iron was in 

the form of COFe+, C3OFe+, C5OFe+, etc. while the ion spectra detected Fe bonding to carbon (FeC+ 

and CH2Fe+, etc.). 
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(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

    
(i) (j) (k) (l) 

    

Figure 3. A series of positive ion spatially maps showing a 250 µm × 250 µm area of the coated 

surface normalized pixel by pixel with respect to the total counts images (a) (experiment #1-Table 

1S). (a) total counts, (b) C12H8
+, (c) C6H5

+, (d) C2H5
+, (e) SiC+, (f) SiHO+ , (g) SiOCH3

+, (h) 

SiOC2H6
+, (i) Fe+, (j) FeO+, (k) C5OFe+, (l) FeOH+.  

 

3.2. Proposed mechanism  

Based on the in-depth characterization of the chemical structure of the deposited films, we can shed a 

light on their growth mechanism. Based on the chemical characterization, C, O, H, Fe, Si are the 

elements existing in the samples. Si and partial O are from the substrate, while the other elements C, H, 
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Fe and partial O are mainly coming from the reactive species. Figure 4a shows the chemical structure 

of  the  outmost  layer  of  the  silicon  wafer  substrate,  which  mainly  consists  of  SiO2 and SiOH, and 

chemisorbed water. Since the reaction depends on the UV lamps, the absorption cross sections of the 

participating reactive species are investigated. 

Hydrogen  (H2)  has  an  ionization  potential  of  15.42  eV  and  a  dissociation  energy  of  4.52  eV.
37,58 

Thus, photons at wavelengths below 80.4 nm and 274.3 nm are capable of ionizing and dissociating H2, 

provided they can be absorbed. However, H2 does not absorb light above 110.8 nm.
37 Given that the 

UVC lamps used in this study emit at 253.7 nm (secondary peak at 185 nm), there will be no energy 

absorption.  In  other  words,  hydrogen  cannot  participate  in  the  reaction,  unless  excited  by  other 

molecules and radicals.  

Carbon monoxide has an ionization potential of 14.01 eV59 and a dissociation energy of 11.14 eV.58 

This corresponds to a potential for ionization and dissociation at wavelengths below 88.5 nm and 112.3 

nm,  respectively.  CO  can  absorb  light  at  wavelengths  shorter  than  200  nm,37 which means that the 

secondary  emission  peak  at  185  nm  can  transmit  6.7 eV  of  energy  to  the  molecule.  While  this  is 

insufficient for ionization or full dissociation, it is enough to dissociate a constituent π bond (3.7 eV) in 

CO or cause CO to activate through vibrational excitation.35  

Iron  pentacarbonyl  (Fe(CO)5)  fed  concurrently  with  the  CO  gas,
51,52 has an ionization potential of 

8.35 eV and dissociation energy of 0.37 eV,60,61 corresponding to wavelengths of 148.5 nm and 3350.5 

nm,  respectively.  Fe(CO)5 has strong absorption at 253.7 nm wavelength. It is  therefore  able  to 

dissociate, resulting in the formation of extra radicals.53,62  

Thus, the main reactive components following UV irradiation are vibrationally excited CO (CO*), or 

CO radicals (CO•) with dissociated π bonds and CO• stemming from Fe(CO)5 dissociation. Based on 

these postulations, two colliding CO* molecules will form a highly unstable unit. Once excess energy 

has been dissipated via collisions of the nascent cluster with H2 molecules, lightly polymerized carbon 
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species (mostly consisting of aliphatic chains with C2>C3>C4) will be formed.35,36,63 Iron pentacarbonyl 

can also play a catalytic role for isomerization of olefins and can increase the formation of alcohols on 

the film instead of carboxylic groups.64  

Based on the previously identified chemical bonds, as well as the existing Fisher-Tropsch 

literature,35,36,53,64 we present a series of possible chemical reactions. Initiation mechanisms are based 

on the absorption cross section, while propagation and termination are based on the structure we 

obtained and known syngas chemical reactions:  

 

 

 

Initiation 

  

  

  

  

  

  

  

 

 

 

Propagation 

  

  

 (9) 

 (10) 

  

  

  
 

 

 

 

Termination 

  

  

  

  

 
Paraffins (18) 

 
Olefins (19) 

 
Water-gas shift (20) 

 

Reaction (7) is endothermic (16.4 kcal mol-1), which makes this reaction most likely irreversible. It 

needs 20 kcal mol-1 activation energy, provided mostly through exothermic reactions (such as (4), 

which gives off 17 kcal mol-1).35 On the other hand, for most free-radical polymeric chain reactions, 
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vibrational excitation is key to provide the driving force for propagation step. As such, reaction (13) 

must maintain this driving force by transferring vibrational energy to CO, otherwise the reaction would 

move towards termination.35 These pathways are based on observations by Roussel and Back, who had 

conducted research on the photochemistry of CO/H2 mixtures irradiated with light at 193.3 nm (similar 

to the secondary emission peak of our Hg lamps).  

This proposed series of reactions leads to the formation of light paraffins, olefins and iron oxide on 

the surface of the Si substrate (with water as an expelled by-product) (Figure 4b). Most reactive 

species are bonded to iron and also can react with either hydroxyl groups on the Si surface or directly 

with Si to bond covalently. XPS and TOF-SIMS results indicate that the film is composed of aliphatic 

branches and aromatic structure (most likely phenol, given the presence of C6H5O- at m/z = 93, 

supported by previous analyses9), as well as acid anhydride, ketones, carboxylic, and hydroxyl 

moieties. 

 
Figure 4. Schematic of (a) bare silicon wafer (b) deposited oligomeric film on silicon wafer. 

 

(a) (b) 
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Chemical characterization results showed uniform distribution of chemical bonds in the deposited 

film. These observations triggered us to explore if we have same uniformity in the morphology and 

texture of the deposited film. 

3.3. Surface morphology and topography 

The electron micrographs of a coated silicon substrate (Figure 5b, 5c) reveal the formation of a 

textured, particle-like morphology with many micro patterns and trenches along the deposited film. 

This surface morphology is corroborated by AFM (Figure 5d), showing that the features have a trench 

size on the order of 40 nm. Such island-like deposition is consistent with previous investigations on 

PICVD.9 This textured morphology is observed even for very low film thickness (treatment duration t 

= 30min). The trenches are filled in as treatment duration increases, leading to a more uniform film (see 

Supplementary Figure 5S profilometry results). 

This kind of trench morphology of film formation is common especially in the case of transient 

metals,65 and can be explained in our case by the involvement of iron and iron oxide in the deposition 

reaction. Film deposition in this case follows the Volmer–Weber (VW) growth mode (3D morphology, 

island growth) and allows us to gain information on the surface tension of the film through Bauer’s 

criterion (γfilm >> γsubstrate, γsubstrate = 44.16 mJ/m2, Figure 5e).66 Control of the film morphology (and 

therefore macroscopic properties such as wettability) is the focus of on-going work, namely through the 

action of treatment pressure. 

Through energy-dispersive X-ray spectroscopy (EDS), SEM measurements allowed us to further 

confirm the uniform elemental distribution and composition of the films (Figure 6S). Bare silicon 

substrates show mainly Si and O, with some C (Figure 6Sa) – C attributable to contamination,42,43 

while the coated sample (Figure 6Sb) exhibits an increase in the C peak and the presence of an Fe peak 

in the deposited film.  The mapping analyses of bare and coated samples in Figures 6Sc-f confirm the 
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formation of a film (clear contrast with the reference area covered with Kapton tape during treatment). 

As we move further to the right-hand side, the amounts of Fe and C increase. 

The film also exhibits stability to solvent attacks, resisting immersion for 1 hour in chloroform 

(Table 2S), in agreement with previous work showing stability with respect to solvents. 9 

 

  (a) (b) 

 
   (c) (d) 

 
(e) 

 
 

Figure 5. (a) Coated silicon coupon, (b) and (c) FESEM images of deposited film, (d) 3D AFM 

image of deposited thin film in experiment #1, (e) Bauer’s thermodynamic film growth study with 

respect to surface tensions. 

 

Si wafer covered with Kapton tape 

Deposited film 

Si wafer covered with Kapton tape 

Deposited film 

γfilm >> γsubstrate γfilm ≤ γsubstrate             
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3.4. Processing parameters 

In an effort to control the thickness of the films deposited through syngas PICVD, we conducted a 

series of experiments focusing on two main parameters (i) residence time and (ii) treatment duration of 

experiments. 

The time during which the interactions between the UV light and the gas precursors occur, resulting 

in the production of reactive species, depends on the gas residence time (τ). It can be calculated from 

Equation 1, in which V stands for the reactor volume and Q for the gas precursors volumetric flow rate. 

For a constant reactor volume, decreasing the flow rate leads to longer precursor residence time and 

saves consumption of gas precursors, which can be important from an operational point of view. 

 

Equation 1 

 

Using a constant gas feed pressure (40 psi), a volumetric precursor ratio (CO/H2) of 1 and a total gas 

flow rate varying from 0.4 to 1 L/min for a 120 min treatment duration, we varied the reactor residence 

times from 0.6 to 0.2 min (Table 1S). Film thickness (assessed through profilometry) and elemental 

distribution (determined from XPS measurements) are given as a function of residence time in Figures 

6a and 2S. 

As deduced from Figure 6a, the film thickness increased with residence time. Linear regression (R2 

= 0.95) indicates accumulation at a rate of approximately 165 nm of film per minute of residence time 

(note that τ = 0 corresponds to an untreated, bare substrate), though the shape of the curve more closely 

resembles a sigmoid (indicating diminishing returns at longer residence times). The bare substrate was 

composed primarily of Si and O, along with some C attributable to contaminants42,43 (Figure 2S). For 

coated substrates (τ = 0.2 – 0.6 min), the C atomic percentage increased to a uniform value of 

approximately 30%, while Si decreases significantly, indicating that the substrate was masked. The 
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elemental distribution did not vary as a function of τ, indicating that film composition and thickness 

were independent. Also, despite XPS’ shallow probing depth (∼10 nm), Si remained visible on the 

thicker films which is explained by the morphology of the film (see section 3.3).  

In order to increase the thickness of the deposited films while decreasing precursor consumption (i.e. 

at longer residence time), we increased the treatment duration. Figure 6b shows the effect of treatment 

duration (30 to 180 min treatment duration, at a fixed residence time of τ = 0.6 min) on film thickness. 

Full thickness profiles are available in Supplementary Figure 5S. As expected, film thickness increased 

linearly with treatment duration,18,44 at a rate of 0.7 nm/min for τ = 0.6 min.  

(a) (b) 

 
Figure 6. (a) Profilometry film growth results vs. residence time (experiments # 1 to # 4, Table 1S; 

error bars indicate the 95% confidence interval (95%CI)); (b) Variation of film thickness as a function 

of treatment duration (Data correspond to experiments # 5 to # 8, Table 1S; error bars indicate the 

95%CI). 

 

As already noted for residence time experiments, the amount of Si significantly decreased in the 

treated samples compared to the bare one. Furthermore, the Si At % decreased with increasing 

deposition time until 120 min, where it reached a plateau (Figure 3S). This would warrant that by 
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increasing the treatment duration, trenches are masked in the deposited film and a more uniform film is 

achieved, which is confirmed by profilometry analyses (Supplementary results, Figure 5S).  

These findings are important in two respects: first, both the residence time and treatment duration 

affect the film growth and thickness. Second, lower treatment duration or residence times lead to a less 

homogeneous film texture (Si visible at low t and low τ). Finally, combining longer residence time and 

varying treatment duration allows for control over the thickness of the film while limiting gas precursor 

consumption. After 60 min of treatment, there is no statistically significant evolution in the elemental 

composition of the film (Figure 3S). We suspect that, before 60 min, the observed difference is 

attributed to the fact that the substrate is not completely covered (trenches in the film). 

These treatment duration experiments also provide insight into the reaction mechanism. As described 

in the experimental section, temperature increases as a function of time during treatment, because of 

heat given off by the UVC lamps. The fact that the deposition rate does not decrease as a function of 

time (and therefore increasing temperature, and correspondingly decreased reagent adsorption) may 

indicate that the overall reaction mechanism is kinetically limited. However, there is also evidence to 

suggest that mass transport may be limiting the overall mechanism, given that one key reagent (iron 

pentacarbonyl) is present at very low concentrations. On-going work is focusing on decoupling time 

and temperature to better assess this phenomenon. 

We have shown that film composition is independent of residence time and treatment duration, at a 

fixed precursor ratio. Given the insights gained from the reaction mechanism, there is reason to believe 

that varying the precursor ratio may alter the composition and/or growth of the organic film. To 

investigate this, the gas ratio (CO/H2) was varied from 0.3 to 3, while the residence time and treatment 

duration were kept constant at 0.3 min and 2h respectively (Table 1S). Figures 7S and 8S show that 

the variation of gas ratio does not a significant effect both in terms of film growth and chemical 

composition. The absence of a measurable chemical change after changing the precursor ratio is 
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intriguing, as our previous work had indicated changes in macro-level properties (wettability) as a 

function of ratio.9 To confirm, we tested three samples with CO/H2 ratio = 0.3, 1 and 3 (minimum, 

middle, and maximum) with TOF-SIMS. Three spots were analyzed on each sample and their spectra 

were compared to ensure they were representative the whole sample (Figures 9S and 10S); these 

corroborate the high resolution XPS results. Based on these findings, we can conclude that any 

wettability change previously observed is not likely to be a result of a chemical change, but rather a 

morphology change on the surface. 

4. CONCLUSIONS 

Through this work, we have gained insight into the growth mechanism of a novel deposition 

approach (syngas PICVD) and proposed a reaction scheme. Both XPS and TOF-SIMS reveal the 

formation of covalently bonded oligomeric film with aliphatic branches and aromatic structure (most 

likely phenol), as well as acid anhydride, ketones, carboxylic, and hydroxyl moieties. Moreover, we 

have shown that film thickness can be controlled through treatment duration (as expected), but also 

through residence time (a feature specific to atmospheric pressure deposition processes). This gives us 

an ability to control thickness while minimizing precursor consumption. Interestingly, altering the 

precursor gas ratio does not affect the final composition of the film. However, equal parts seem best 

suited to provide a slightly thicker film. 

Despite these significant findings, a number of potential challenges still exist and are the focus of on-

going work, including: (i) the control over Fe contaminants and their role in dictating the reaction 

regime, (ii) understanding the effect of operating pressure, (iii) relating macroscopic surface properties 

(wettability) to the observed microstructure, and (v) enhancing functional moieties through additives 

(H2O2, NH3, etc.). Overall, the development of syngas PICVD shows promise for application in the 

coatings industry.  
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