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Photo Initiated Chemical Vapour 
Deposition To Increase Polymer 
Hydrophobicity
Ariane Bérard , Gregory S. Patience , Gérald Chouinard  & Jason R. Tavares

Apple growers face new challenges to produce organic apples and now many cover orchards with 

high-density polyethylene (HDPE) nets to exclude insects, rather than spraying insecticides. 

However, rainwater- associated wetness favours the development of apple scabs, Venturia inaequalis, 

whose lesions accumulate on the leaves and fruit causing unsightly spots. Treating the nets with a 

superhydrophobic coating should reduce the amount of water that passes through the net. Here we 

treat HDPE and polyethylene terephthalate using photo-initiated chemical vapour deposition (PICVD). 

We placed polymer samples in a quartz tube and passed a mixture of H  and CO through it while a UVC 

water ingress was, surprisingly, higher than that for nets with a lower contact angle.

Consumer demand for organic apples continues to increase. Leaves, branches and fruits are susceptible to pest 
infection and diseases. Several insecticide-free solutions have been proposed1–3. Sauphenor et al.4,5 cover trees 
with polymer nets to exclude insects, as was already practiced in Canada, France and Australia5–7. Despite their 
advantages, exclusion nets do not prevent important diseases from affecting apple trees. In particular, a patho-
genic fungus, Venturia inaequalis, develops rapidly when fruit and foliage stay wet for prolonged periods. These 
infections, which also occur under nets because of their permeability, cause scab, a disease that generates dark 
spots on the fruit and reduces its commercial value8. Wind speed has an impact on drying time and propagation 
of infection9 and a large mesh size for exclusion nets is preferred to allow wind to pass through easily.

With a 160° contact angle and a low hysteresis of 10° 10, lotus leaves are the perfect example of pearling rain 
droplets. Micropapillae with branch-like nanostructures cover its surface and allows superhydrophobic behav-
iour11. To mimic lotus leaves, polymer exclusion nets should match these performance parameters. A high contact 
angle alone is insufficient for this application; the surface must also be non-adhesive. Droplets must trickle along 
the exclusion net (rather than pass through it), which is difficult when water adheres to the surface, as mentioned 
by Li et al.12.

Lee et al.13 presented static superhydrophobic behaviour for both water and oil droplets on 1 to 2 mm mesh 
size surfaces. They produced a polycyanoacrylate rectangular mesh with a 3D printer and studied the static 
behaviour – they placed droplets on the surface and measured the contact angle.

The Cassie-Baxter model explains this superhydrophobicity: the water droplets sit on air pockets, much like 
what happens on a lotus leaf ’s microstructure14. A physical or chemical surface modification can provide this 
behaviour.

Advantages of physical treatment include basic processing and commercial accessibility15,16. To modify sur-
faces physically, several approaches are available such as electrospinning17, laser and chemical etching18–21 meth-
ods. Solvent treatments can also be used to physically alter a surface, by depositing new groups on the surface 
and forming superhydrophobic microstructures. Silicon-based commercial formulations, such as Rustoleum 
NeverWet, Ultra Ever Dry and Waterbeader, work according to this principle. However, in agricultural applica-
tions residual solvents or degradation products may leach out and contaminate the fruit, thus they are seldom 
used17,22.
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Chemical modification is an alternative to this problem since the surface is functionalized. News groups are 
chemically bonded to the surface, which should prevent leaching. Available technologies included sol-gel15,23 and 
chemical vapour deposition (CVD)24. By opting for a gas-phase approach like CVD, it is possible to further pre-
vent residual solvent leaching. Further, CVD coatings typically exhibit high film durability25 and are readily scaled 
up26,27. The deposition can be initiated by heat (thermally activated/TACVD)28,29, by plasma (plasma enhanced / 
PECVD)30,31 or by light (photo-initiated/PICVD)32,33. Heat initiation is problematic with temperature-sensitive 
substrates such as polymers25,34, whereas plasma is plagued with scale-up issues due to specific operating require-
ments12,25,35–37. PICVD is an alternative with its low energy treatment and wide spectrum of possible varia-
tions24,35. Indeed, depending on the light source used, it can be operated at ambient temperature and pressure 
conditions, without the use of highly specialized equipment. This article focuses on reducing the permeability of 
high-density polyethylene (HDPE) and polyethylene terephthalate (PET) nets via PICVD and evaluating their 
behaviour under simulated field conditions.

Methods
Experiments. Rain simulator. To demonstrate that a superhydrophobic net reduces water ingress during 
rainy days, we designed and built a rain simulator38 (see Supplementary Fig. S1). A peristaltic pump feeds water to 
a nozzle at a rate of 250 ml/h. Droplets with a diameter of 0.6 mm form at a needle placed at the end of the nozzle39.  
The droplets fall on a 1 mm by 0.6 mm exclusion net set at tilt angles ranging from 0° to 80°. The superhydropho-
bic coating (Rustoleum NeverWet) was applied following 2 steps. First, a base coat was sprayed approximately 
15 cm to 30 cm from the net. After 30 min, a topcoat was sprayed at the same distance. After an additional 30 min 
the test was initiated.

Photo initiated chemical vapour deposition (PICVD). Polymer samples are placed at various lengths along a 
25 mm ID quartz tube (see Supplementary Fig. S2). Argon (400 ml min−1) purged the tube for 2 min to scavenge 
residual oxygen. Brooks mass flow controllers metered the gases to the reactor (400 ml min−1). Two 30 W UVC 
lamps (253.7 nm, irradiance of 0.01 W cm−2, at 3.5 cm) illuminated the surface of the polymer samples. A pre-
cision valve controlled the pressure in the tube. The line was connected to a three-way valve leading to vacuum 
to test sub atmospheric pressures. For further details, see Dion et al.40. The factors tested to functionalize the 
polymer surfaces included time, pressure, H2/CO (syngas) ratio, photo initiator feed rate (H2O2) as well as sample 
position in the reactor (3 to 87 cm from the inlet). Ranges for each factor can be found in Supplementary Table S1.  
We tested both HDPE, which apple growers use to cover their trees, as well as PET. HDPE exclusion nets typically 
contain a UV protector (used to extend the life-span of the net itself), but that protector limits the reaction rate 
initiated by the UVC lamp. Therefore, PICVD assays were conducted with PET, which has superior UV resistance, 
and HDPE sheets without the UV protector package.

Materials
Samples included: Protek Net 80 g/m2 HDPE exclusion net (Dubois Agrinovation) with a 1 mm by 0.6 mm mesh 
size, which is optimal for apple tree applications; sheet extrusion HDPE (McMaster) for PICVD experiments cut, 
to 15 mm by 38 mm by 1.3 mm; and film PET (McMaster) for PICVD tests, cut to 15 mm by 38 mm by 0.3 mm. 
CO, H2 and argon were purchased from Air Liquide and hydrogen peroxide (50%) from Sigma-Aldrich.

All polymer samples were washed in a Fisher Scientific ultrasonic bath (model FS110H) in two steps. First, 
samples were submerged in water for 15 min, followed by an acetone bath. Samples were then dried in a vacuum 
desiccator for at least 2 h.

Characterization. Contact angle measurement. After each experiment, 5 contact angle measurements were 
taken per sample and the average value is reported. 2 µ L of distilled water is deposited on the untreated or treated 
surface to measure the sessile drop contact angle. FDS tensiometer OCA DataPhysics TBU 90E recorded all con-
tact angles after one minute from when the drop reaches the surface.

Fourier Transform Infrared Spectroscopy (FTIR). A Thermo Scientific Nicolet iS5 Spectrometer equipped with 
an ATR module measured the infrared absorbance as a function of wave number. The analysis range varied from 
400 cm−1 to 4000 cm−1 and the number of scans was set to 16 with a resolution of 4 cm−1.

Atomic Force Microscopy (AFM). Atomic force microscopy images were collected with a multiMode8 AFM, 
Bruker/Santa Barbara NanoScope V, using standard tapping mode with a Tespa-type needle, in air at room 
temperature. Intermittent contact imaging was performed at a scan rate of 1 Hz using etched silicon cantilevers 
(ACTA from AppNano) with a resonance frequency around 300 kHz (spring constant of ≈ 42 N/m and tip radius 
of < 10 nm). Images were taken with a 512 ×  512 pixel resolution over a 5 µ m ×  5 µ m square with medium tip 
oscillation damping (20–30%).

Results and Discussion
Hypothesis validation. Despite the Lee et al. work, it is not intuitive that a superhydrophobic surface can 
prevent water ingress through a net. To prove this concept, a rain simulator was built to simulate rain fall on real 
HDPE exclusion nets. Figures 1 and 2 show how a superhydrophobic net treated with a silicon-based coating can 
limit water ingress. The commercial treatment reduces the amount of water passing through the net by 70%, even 
in a horizontal position. The major problem with this solution is treatment longevity. After about 2 h the commer-
cial coating disappears. Moreover, the treated HDPE net loses its mechanical properties such as elasticity– the net 
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becomes visibly stiffer (Supplementary Video S1). This would be problematic when it becomes windy. Given that 
PICVD coatings are thinner than silicon-based treatments, the degradation rates should be reduced considerably.

Experimental Design. An experimental design was conducted and related to statistical models to gain a 
better understanding of the effect of operating conditions as a function of the substrate selected. These models 
were employed to target the optimal conditions for the highest contact angle. The contact angle results following 
an experimental design using multiple approaches are presented in Supplementary Table S2. Initially, the con-
tact angle on HDPE without a treatment is 96° ±  3° and for PET it is 85° ±  3°. A combination of 3 experimental 
plans was developed to account for quadratic effects. We designed a fractional factorial design (FFD) of resolu-
tion V to account for linear affects. Resolution V allows having fewer experiments with greater precision41. The 
central composite design (CCD) is complementary to the FFD, as it takes into account quadratic effects42. The 
Box-Benhken plan added experiments to identify additional quadratic effects43. Finally, midpoint experiments 
fixed the model in space44. Contact angle results presented are the average from 5 measurements per sample. 
When a value is aberrant according to Chauvenet’s criterion, it is deleted45.

Model Equation. Dion et al.40 presented a statistical model for the PICVD treatment of copper with a sim-
ilar experimental design. The major contributing factors to the model were position and syngas ratio. We tested 
five factors– pressure, time, position, H2/CO ratio and H2O2 and developed a regression model based on the 
Marquardt-Levenberg algorithm to identify a model that maximizes the multiple R2 (SigmaPlot® ). Interactions 
between each variable and the possibility of second-order effects were verified. Only the significant variables and 
interactions were kept in the model (equation (1) for HDPE and equation (2) for PET). Parameter values can be 
found as Supplementary Tables S3 and S4. In each model, an aberrant point was deleted according to a large devi-
ation from the quartile46 and we normalized the factors (supplementary information). The fact that a value has 
been removed from the model leads to the conclusion that these models are an approximation of the behaviour 

Figure 1. Water fraction passing through an HDPE exclusion net as a function of tilt angle. Error bars 
represent the standard deviation (n =  5).

Figure 2. Rain test on HDPE exclusion net at a tilt angle of 0°. (A) Untreated HDPE, (B) Treated with silicon 
superhydrophobic coating.
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after the surface modification. Despite the high value of the regression coefficients (R2), the models are accurate 
only inside the range studied (Fig. 3).

θ = + ⋅ + ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅
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Comparison of the two models. The two models seem very complex, evidenced by a large number of 
different factors that influence the reaction. Moreover, the parameters are different, indicating that the reaction 
depends on the substrate. The majority of experiments for HDPE led to hydrophobic behaviour, explaining the 
mass of data points between 100 and 120. For PET, the variance is slightly higher and the results are distributed 
over all contact angles values.

Position (Po) appears to be a key factor in the surface modification process, having an individual effect on 
the reaction, as well as many interactions with others factors. Most of these interactions are linear, except for 
one quadratic effect in the PET model. Pressure (Pr), H2/CO ratio (r) and hydrogen peroxide (H2O2) must be 
combined with other factors to influence the reaction. In both models, the interaction between the five factors 
cannot be omitted.

First approach to kinetic modelling. Position is the most significant factor in the PICVD reaction and must 
be analyzed in depth. To more clearly illustrate its interaction with treatment time (and infer reaction kinetics),  
samples were placed in the reactor for 3 min, the contact angle measurement was recorded and the samples were 
returned to the reactor for treatment for an additional time increment and so on. Figure 4 present the contact 
angle as a function of time for HDPE. Supplementary Fig. S3 shows similar figure for PET. For each experiment, 
the ratio H2/CO was 0.12 with 1 ml/h peroxide injected at 10 kPa relative pressure.

We can express the evolution in contact angle as a function of time as a sum of two reactions, the first one 
decreasing the contact angle (k1) and the second one increasing it (k2). Assuming first order reactions, we obtain:

θ θ= − + Δ − −
θ

k t k texp( ) (1 exp( )) (3)0 1 2

where θ 0 is the initial contact angle and Δ θ is the coefficient of variation of the contact angle. The fit parameters 
are tabulated in Table 1.

Despite somewhat low R2 values (attributed to data variation), this preliminary kinetic modelling highlights 
the two different reactions that occur in PICVD. First, k2 is always higher than k1 which indicates that the reaction 
leading to a contact angle increase is the fastest. On the other hand, the decreasing reaction’s pre-exponential 
factor, θ 0 is higher, implying that it will become dominant over time. As position in the reactor increases, the 
coefficients k1 and k2 stabilize – in other words, the difference in contact angle will be minimal if the samples are 
further inserted from the gas inlet. For the two polymers, the k1 and k2 coefficients are similar, hence the same 
measured increase in contact angle (approximately 20°). The coefficient of variation of the contact angle (Δ θ 0) is 
identical for all substrates and positions, and represents the maximum variation attainable. Moreover, there are 
diminishing returns on treatment: the contact angle will not change significantly after a certain treatment time. A 

Figure 3. Predicted contact angle as a function of experimental contact angle (HDPE model R2 = 82%, PET 
model R2 = 87%). 
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significant decrease in contact angle is observable at position Po =  20 cm for each polymer after 1 hour. The high 
variability between the model presented and these data points can be explained by hydrophobic recovery. Indeed, 
surfaces treated to become hydrophilic tend to return to their native contact angle values within hours or days47. 
Therefore, the hydrophilic contact angle values reported do not represent their steady state values. After 5 months, 
hydrophilic-treated surfaces return to the native contact angle of the substrate, while hydrophobic-treated sur-
faces retain their behaviour (constant contact angle). A model based on the concentration of the reagents as a 
function of time and reactor position be needed to gain greater understanding of the reaction kinetics.

Extreme values. The experimental plan allowed for a mapping of the various surface properties that can 
be obtained on HDPE and PET following PICVD treatment. Table 2 and Fig. 5 highlight the extreme values  
(i.e. most hydrophobic and most hydrophilic behaviour) that could be obtained by PICVD.

Many experimental conditions can yield hydrophilic surfaces on both polymers, but this effect is unstable 
because of hydrophobic recovery47. Moreover, while the typical target for superhydrophobicity is a contact angle 
higher than 150°, the more moderate increase in hydrophobicity achievable by PICVD does affect water ingress 
(see section “exclusion net experiments”).

Fourier Transform Infrared Spectroscopy (FTIR). HDPE is a linear molecule with only C-H groups. 
After hydrophobic PICVD treatment, new functional groups appear (see Fig. 6). Indeed, C-O links are present 
after treatment, evidenced by new peaks around 1100 cm−1, which can be attributed to alcohol, or ether groups. 
Moreover, C= O bonds are identified around 1600 cm−1, in the form of ketone or aldehydes. The combination of 
peaks ca. 1100 cm−1 and 1600 cm−1 are a strong indication of carboxylic functionality48,49.

Despite the measured contact angle difference, no visible differences can be measured by FTIR for PET, likely 
due to the presence of oxygen atoms in its molecular structure before any treatment. A more surface-sensitive 

Figure 4. Contact angle as a function of time for three different positions (HDPE model). 

Position [cm] θ 0 [°] Δ θ 0[°] k1 [min−1] k2 [min−1] R2 (%)

HDPE

20 100 41.6 0.011 0.071 74

45 100 41.6 0.003 0.026 79

70 100 41.6 0.003 0.024 60

PET

20 85 41.6 0.011 0.071 60

45 85 41.6 0.002 0.041 72

70 85 41.6 0.002 0.024 80

Table 1.  Parameters for kinetic modelling (equation (3)).

HDPE PET

Contact angle [θ HDPE] (°) Standard deviation (°) Contact angle [θ PET] (°) Standard deviation (°)

Hydrophobic treated 124 ± 3 112 ± 3

Hydrophilic treated 14 ± 2 13 ± 1

Table 2.  Highest and lowest contact angle values obtained for PET and HDPE.
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analysis technique such as X-ray Photoelectron Spectroscopy (XPS) would be needed to probe the functional 
groups imparted by PICVD.

Atomic Force Microscope (AFM). It is somewhat counter-intuitive that contact angles increase with the 
addition of oxygen-containing functional groups. However, roughness plays a significant role in hydrophobicity. 
This can be measured through AFM (see Fig. 7). While both polymers are initially quite flat, PICVD treatment 
leads to the appearance of several “islands”. This radical change in roughness increases the formation of air pock-
ets below the water droplets, thus leading to the observed hydrophobic behaviour50,51. For PET, the AFM images 
provide conclusive evidence of surface modification, despite the absence of change in the FTIR spectra. PET 
roughness increased after PICVD treatment, while this change was more moderate for HDPE. Quantitative char-
acterisation for both polymers is presented in supplementary Table S5.

Exclusion net experiments. The contact angle reached a maximum of 124° by PICVD on HDPE (without 
any UV protection package). Because the HDPE exclusion nets contain a UV protector, they could not be treated 
in the PICVD reactor. However, applying the commercial single step “Rustoleum NeverWet for Outdoor Fabric 
Treatment” formulation could simulate this hydrophobic effect. We used this product instead of the original 
NeverWet product because the contact angle on the exclusion nets reached 120°. After applying the coating in a 

Figure 5. Extreme contact angle values. (A) Untreated HDPE (B) Hydrophilic treated HDPE: Pr =  − 10 kPa 
relative pressure, t =  60 min, r =  ½, Po =  20 cm and H2O2 =  1 mL/h (C) Hydrophobic treated HDPE: Pr =  10 kPa 
relative pressure, t =  30 min, r =  ½, Po =  20 cm and H2O2 =  0 mL/h (D) Untreated PET (E) Hydrophilic treated 
PET: Pr =  0 kPa relative pressure, t =  75 min, r =  2.06, Po =  20 cm and H2O2 =  1 mL/h. (F) Hydrophobic treated 
PET: Pr =  10 kPa relative pressure, t =  120 min, r =  0.12 and Po =  70 cm.

Figure 6. FTIR absorbance for untreated and hydrophobic treated HDPE. Experimental conditions for 
treated sample: pressure =  10 kPa relative pressure, ratio H2/CO =  0.5, time =  30 min, position =  reactor inlet 
with no hydrogen peroxide.
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single step and drying for 24 h, rain tests were conducted (see Supplementary Fig. S1). The results for this “less” 
hydrophobic treatment are nearly identical to that of the superhydrophobic treatment (see Fig. 8). Although the 
HDPE nets could not be directly treated by PICVD, this simulated behaviour demonstrates that, if the UV pro-
tector issue can be curtailed, a 120° contact angle should be sufficient to prevent water ingress on exclusion nets, 
at least under conditions similar to those of our rain simulator.

The results for superhydrophobic and hydrophobic treatment are statistically indistinguishable above 20°: the 
error bars overlap and the average water fraction that penetrates is within 5%. At 10°, the superphydrophobic 
surface allows more water to pass through the net (p <  0.05). On the superhydrophobic treated nets, the droplets 
bounce many times on the surface. This may increase the chance that smaller droplets form during rebound and 
these pass through the holes. So, a hydrophobic surface with a contact angle of 120° is good enough to minimize 
water passing through the studied exclusion nets.

Figure 7. AFM Images (A) Untreated HDPE 3D (5 µ m ×  5 µ m) (B) Treated HDPE 3D (5 µ m ×  5 µ m)  
Experimental conditions for treated sample: pressure =  10 kPa relative pressure, ratio H2/CO =  0.5, 
time =  30 min., position =  20 cm with no hydrogen peroxide (C) Untreated PET 3D (5 µ m ×  5 µ m) (D) Treated 
PET 3D (5 µ m ×  5 µ m). Experimental conditions for treated sample: pressure =  10 kPa relative pressure, ratio 
H2/CO =  0.12, time =  120 min, position =  70 cm with no hydrogen peroxide.

Figure 8. Water fraction passing through an HDPE exclusion net (mesh size 1.0 × 0.60 mm) as a function 
of tilt angle without treatment and with a simulated hydrophobic treatment. Error bars represent the 
standard deviation.
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Conclusions
High contact angle exclusion nets for organic apple application are an alternative to minimize fungicides that are 
otherwise needed to control apple scabs. The PICVD reaction renders polymer surfaces hydrophobic, which is 
desirable to minimize rainwater ingress to the trees, but also hydrophilic depending on the treatment conditions. 
To optimize the hydrophobicity, we derived a mathematical relationship for each polymer based on an experi-
mental design. We measured the contact angle as a function of exposure time and fit the data to a differential 
equation. FTIR and AFM confirmed that the surface was chemically modified. Rain test results showed that 
a superhydrophobic or a hydrophobic coating minimized water ingress through a ProtekNet 80g (mesh size 
1.0 ×  0.60 mm). A more precise study on surface degradation with time, sun, humidity and wind is required to 
establish the suitability of this technology for commercialization.
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