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RÉSUMÉ 

L'analyse spectrométrique est une technique largement utilisée pour étudier les matériaux et les 

composés. Les spectromètres modernes dédiés à la recherche sont des instruments encombrants 

composés d’une source lumineuse, d’un élément de dispersion, de lentilles, d’un capteur 

photonique, de composants électromécaniques et de circuits électroniques de contrôle, de 

traitement de données et de mémoire. Les éléments de dispersion les plus couramment employés 

sont les prismes et les réseaux de diffraction ou d’interférence. Les éléments de dispersion sont 

irremplaçables dans les spectromètres modernes. 

 

Dans cette thèse, une nouvelle méthode pour la détection du spectre basée sur l’absorption des 

photons dans le Silicium, matériau de base employé dans les procédés de fabrication 

microélectronique, est proposée. Le spectromètre, nommé Wavelength Absorption Spectrometer 

(WAS), n’utilise aucun élément de dispersion. Les technologies de fabrication CMOS permettent 

d’implémenter sur la même puce, le détecteur et les composants de traitement de signal du 

spectromètre. 

 

La profondeur de pénétration de la lumière incidente dépend de la longueur d’onde pour un 

matériau semi-conducteur spécifique de sorte que l’information spectrale peut être obtenue en 

mesurant la concentration en excès de paires électron-trou photo générés en fonction de la 

profondeur. Le transport des charges en excès photo-générées dépend de la concentration des 

dopants, de la distribution des champs électrique et magnétique, du taux de génération et de 

recombinaison, de la vitesse de recombinaison de surface, de la durée de vie des charges, de la 

température et de la géométrie du dispositif.  

 

La thèse traite en détail le principe de détection proposé et présente les résultats expérimentaux 

d'un prototype WAS. Trois longueurs d’onde, 470 𝑛m, 530 𝑛m et 640 𝑛m, avec plusieurs 

irradiances, sont utilisées afin de vérifier le principe de détection utilisant un champ magnétique 

externe. Lorsque la concentration du transporteur est élevée, les résultats expérimentaux 

confirment l'analyse théorique que la longueur d'onde devient indiscernable, car le mécanisme de 

recombinaison Auger est dominant. Un modèle d'éléments finis confirme le principe de détection 
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des trous en excès en fonction de la profondeur où la trajectoire des trous en mouvement est 

déviée sous la force de Lorentz vers un ensemble de collecteurs. Afin de réaliser le spectromètre, 

une méthode de détection du spectre lumineux est développée, ce qui nécessite un ensemble 

d'équations linéaires où les coefficients de la matrice proviennent de la mesure de la densité de 

courant en fonction de l'irradiance pour différentes longueurs d'ondes et champs magnétiques. 

 

Différent du spectromètre traditionnel, la résolution de WAS dépend des courants détectables 

minimaux de trou. Le calcul théorique prédit que la résolution du WAS se situe au environ de 

219 selon le niveau de bruit provenant des jonctions de collecteurs.  

 

Afin de développer un spectromètre plus compact et peu coûteux, deux prototypes sont modélisés 

où le principe de détection ne requiert aucune génération de champ magnétique. Cependant, la 

faible résolution est un inconvénient principal de ces structures modifiées. 

 



vii 

 

ABSTRACT 

Spectrometry analysis is a widely used technique to investigate materials and structures. The 

current research-grade spectrometers are bulky equipment composed of a light source, a 

dispersing element, lenses, an optical sensor, electromechanical components and an electronic 

circuit. The commonly used dispersing elements mainly include a prism, diffraction grating, or an 

interference component. The dispersing elements are irreplaceable in modern spectrometers.  

 

In this thesis, a novel method of detecting the spectrum based on wavelength absorption 

phenomenon in silicon is proposed; it is called Wavelength Absorption Spectrometer (WAS). 

CMOS integrated circuit technology is highly mature and allows the detector and the signal 

processing component to be implemented on the same chip.  

 

The light incident depth depends on its wavelength for a specific semiconductor material, thus the 

wavelength spectral information is obtained by measuring the photo-generated electron-hole pairs 

as a function of depth. Under the electric and magnetic field, the photo-generated holes are 

collected by reverse-biased PN junctions. The excess carrier transportation depends on the doping 

concentration, the electric and magnetic field distribution, the generation-recombination rate, the 

surface recombination velocity, carriers' life time, the temperature, and the device geometry. All 

of these factors are discussed in the thesis.  

 

The thesis discusses the proposed detection principle in detail and presents experimental results 

of a WAS prototype. Three wavelengths, 470 𝑛m, 530 𝑛m and 640 𝑛m, with several irradiances, 

are used to test the prototype under a varying external magnetic field. When the carrier 

concentration is high, experimental results confirm the theoretical analysis that wavelength 

becomes indistinguishable because the Auger recombination mechanism is dominant. A finite 

element model confirms the excess holes’ detection principle as a function of depth where 

moving holes’ trajectory is deviated under the Lorentz force towards a set of collectors. In order 

to realize a spectrometer, a light spectrum detection method is developed, which requires a linear 

equation set where coefficients of the matrix come from the measurement of the current density 

as a function of the irradiance for different wavelengths and magnetic fields. 
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Different from the traditional spectrometer, the resolution of WAS depends on the minimal 

detectable current of excess holes. The theoretical calculation predicts that the resolution of the 

WAS could reach around 219 depending on the collectors’ junction shot noise.  

 

In order to develop a more compact spectrometer, two models are conceived where the detection 

principle does not rely on space-consuming magnets. However, the low resolution is the main 

disadvantage of these modified structures. 
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CHAPTER 1 INTRODUCTION 

1.1   General Background 

Spectrometry analysis is a widely used technique to investigate materials and structures. The 

current research-grade spectrometers are bulky equipment composed by a light source, a 

dispersing element, lenses, an optical sensor, electromechanical components and an electronic 

circuit [1]–[5]. The commonly used dispersing elements can be categorized in three main groups 

according to the mechanism involved in the extraction of spectral information from optical 

signals: spatial dispersion, interferometer, and resonance. The dispersing element determines the 

resolution of a spectrometer. A Charge-Coupled Device (CCD) [6], [7] or Active Pixel Sensor 

(APS) [8]–[16] detects the signals behind the dispersing elements.  

 

Solid-state physics have demonstrated that photons penetrating into semiconductor material 

interact with atoms, and generate electron-hole pairs. This process is called photon absorption. A 

measure of the intensity reduction of the photon flux is the absorption coefficient, and it is 

function of wavelengths. This characteristic has been employed to fabricate color sensors without 

filters [17], however, the filter-less optical spectrometer area is a virgin land to be discovered.  

 

Enlighted from this concept, a novel filter-less spectrum detection method is proposed in this 

thesis. The method enables compact and cost effective spectrometer solutions for a wide range of 

applications. Using silicon based fabrication processes has the main advantage of having a 

detector compatible with some advance bipolar or CMOS integrated circuit fabrication processes, 

meaning that the detector, signal conditioning circuits, and digital processing can be implemented 

on the same substrate.   

1.2   Objectives of the Project 

To realize the spectrometer based on the wavelength absorption principle, several objectives 

should be met.  

a) The photo-generated excess carriers’ concentration is a function of photon flux intensity, 

absorption depth, and absorption coefficient for a specific medium. The absorption 

coefficient is a function of the wavelength. Therefore, the wavelength information can be 
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obtained by measuring the photo-generated electron-hole concentration as a function of 

depth, at a constant photon flux intensity. For the first objective, we derive the expression 

of the functions from the continuity equation. 

b) To validate the theoretical analysis in step a), we tested a prototype with a magnetic field 

that enables to detect the carrier concentration along the depth. Finite element method 

simulations by COMSOLTM validate the Hall Effect as described in step a). 

c) The spectrometer is developed based on the proved principle. To realize a spectrometer, 

both wavelength and irradiance information are necessary. A spectrum detection method 

is developed to satisfy the requirement. 

d) Resolution is a measure of detection ability of a spectrometer, and it is defined as the ratio 

of wavelength and the resolving power which is the minimal wavelength difference that 

can be distinguished. We derive the ultimate resolution of the design. Our goal is to have 

a detection range covering 400 nm to 750 nm, with a resolution aiming at 100. 

1.3   Contributions of the Thesis 

By reaching the thesis objectives, the following main contributions will be achieved: 

a) The filter-less spectrum detection method is proposed [18] and developed theoretically. 

The effect of generation-recombination process, Hall Effect, Lorentz force, excess carrier 

life time, diffusion and drift current, surface recombination velocity, etc., are included in 

the calculations. 

b) Non-linear differential equations can’t be solved analytically, hence multi-physics finite 

element method software COMSOLTM is used to simulate the photo-generated carriers’ 

generation-recombination and transportation process. Combined with theoretical analysis 

and COMSOLTM simulations, the proposed idea has been validated with experimental 

results obtained from a colleague experimental work. 

c) The proposed detection principle relies on space-consuming magnets. New designs which 

eliminate the need of a magnetic field to realize a spectrometer will be discussed. 
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1.4   Structure of the thesis 

The thesis is composed of the following chapters: Chapter 1 introduces a brief background and 

general information about the project, main contributions, and the structure. Chapter 2 gives an 

overview of the art of spectrometry, and research status on filter-less color sensors. Chapter 3 

presents an article, A Novel CMOS Spectrometer without Dispersing Elements, submitted to 

SENSORS AND ACTUATORS A, which presents theoretical and experimental data, validating the 

feasibility of a spectrometer without any dispersing elements. Chapter 4 discusses the resolution 

of the proposed spectrometer. Chapter 5 calculates the continuity equations and the effect of 

important parameters, such as boundary conditions, surface recombination velocity, and carrier 

lifetime. Chapter 6 demonstrates the procedure to set up a Finite Element Method model, 

followed by the discussion on two improved compact spectrometer designs that eliminate the 

need of an external magnetic field. As a conclusion, Chapter 7 summarizes the contributions of 

the thesis, addresses the limitations, and provides suggestions for future researchers.  

 

All necessary information about the spectrometer, including MATLAB codes, VHDL codes, … 

etc., will be presented in the Appendix section. 
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CHAPTER 2 LITERATURE REVIEW 

2.1   Optical Absorption 

Optical absorption is a process where incident photons with energy larger than the band gap of a 

semiconductor material are absorbed, and generate electron-hole pairs which are called photo-

generated excess carriers.  

 

 

Figure 2-1 Absorption of photon flux in silicon. 

For a photon flux F(x) penetrating into silicon, as shown in Figure 2-1, a measure of the intensity 

reduction of photon flux is the absorption coefficient, α [19],  

𝑑

𝑑𝑥
𝐹(𝑥) = 𝛼𝐹(𝑥)                                                     (2.1) 

where x is the depth of penetration. The solution to Equation (2.1) is  

𝐹(𝑥) = 𝐹0𝑒−𝛼𝑥                                                        (2.2) 

where F0 is the photon flux at the surface (x=0).  

 
The absorption coefficient is a function of the wavelength and depends on semiconductor 

materials as well. For silicon, the relationship between the absorption coefficient and 

wavelengths is drawn in Figure 2-2. 
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Figure 2-2 Absorption coefficient vs wavelength in silicon.  

2.2 Generation and Recombination 

A photon with an energy, hv, which is larger than the band gap of silicon will excite an electron 

from the valence band to the conduction band and leave a hole in the valence band. This process 

is called generation. The typical band gap of silicon is 1.12eV, therefore, the minimum energy to 

generate electron-hole pair is 1.12eV, corresponding to the maximum photon wavelength of 

1.1µm. 

 

The recombination mechanism is the inverse process of the generation. When a free electron is 

captured by a positive ion, it combines with a hole. The SRH recombination mechanism is active 

where there are impurities or defects in the semiconductor material and the SRH lifetime is 

independent of excess carrier density. While Auger lifetime is independent of the impurity and 

defect densities, it is, however, a function of carrier concentration. In silicon, the Auger 

recombination mechanism dominates when either the doping density or the excess carrier 

concentration is very high, and the SRH recombination mechanism prevails at lower 

concentration [20].  

 

2.3 CCD and CMOS Detector 

Detectors are used to record the dispersed monochromatic beams and transform them into 

electrical signals. Two dominant optical sensor technologies are CCD (Charge-Coupled Device) 
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[6], [7] and APS (Active Pixel Sensor) [7]. There are several types of APS sensors, and the most 

widely used type in cell phone cameras, web cameras, and digital single-lens reflex cameras 

(DSLRs) is produced in CMOS (Complementary Metal-Oxide-Semiconductor) technology, 

hence, APS sensor is usually known as CMOS sensor.  

 

CMOS image sensors appeared in the 1960s, earlier than CCD sensors. However, CCD sensors 

were dominant in this field until the 2000s, because of their lower noise, lower dark current, 

smaller pixel size, 100% fill factor, electronic shutter without artifacts and higher sensitivity [9]. 

Coming into the new millennium, thanks to the CMOS process state-of-art, CMOS image sensors 

attracted lots of attention for potentially higher performance than CCD sensors because they can 

offer many advantages compared to CCD sensors, such as faster response, lower cost, lower 

power consumption, lower operation voltage, on-chip functionality [9][10], and most importantly, 

the compatibility with mature CMOS technologies. This allows CMOS sensors to enter 

production during a very short period with high quality and low cost.  

 

Both CCD and CMOS sensor have large detection bandwidth, covering the visible spectrum, 

therefore, they have no color selectivity. The color filters are employed on top of the sensor 

pixels to add color selectivity. 

2.4  Hall Effect 

 

Figure 2-3 The schematic figure of Hall Effect and Lorentz force in a semiconductor. 
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As illustrated in Figure 2-3, a positive carrier q is moving under the electric field E with the 

velocity v in the +x direction as the dashed line showed. After applying an external uniform 

magnetic field B along –z direction, the carrier will deviate towards to the +y direction as the 

solid curve indicated under the Lorenz force, which is expressed as: 

𝑭𝑚 = 𝑞𝒗 × 𝑩                                                            (2.3) 

Thus positive carriers accumulate on top face in silicon and will leave equal negative carriers on 

the bottom face. The separated charges generate an electric field EHall along the –y direction. EHall 

can be derived when the total force applied on the carrier along the y direction equals to 0: 

𝑭 = 𝑞[𝑬Hall + 𝒗 × 𝑩] = 0                                                 (2.4) 

𝑬Hall =  −𝒗 × 𝑩                                                        (2.5) 

 

2.5   State of the Art in Spectrometry 

The electromagnetic spectrum, usually known as the spectrum, is a scientific collective term for 

all electromagnetic radiation’s frequencies and their linked wavelengths. It covers from gamma 

radiation to Extremely Low Frequency (ELF) region. Correspondingly, there are many types of 

spectrometry to measure different spectrum regions, such as X-ray Diffraction Crystallography, 

Ultraviolet-Visible Spectrometry, Fluorescence Spectrometry, Nuclear Magnetic Resonance 

(NMR) Spectrometry, Optical Spectrometry, Infrared Spectrometry, etc. [2], [4], [23].  

 

The current research-grade optical spectrometers are bulky equipment composed of a light source, 

a dispersing element, lenses, an optical sensor, electromechanical components and electronic 

circuitry. The optical sensor and dispersing elements are the crucial components that determine 

the detection ability of a spectrometer.  

 

The commonly used dispersing elements can be categorized into three main groups according to 

the mechanism involved in the extraction of spectral information from optical signals: spatial 

dispersion, interferometry, and resonance. 
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The spatial dispersing element mainly includes prism and diffraction grating. The dispersion of 

the prism is known since the 17th century, and the light obeys the Snell’s law at every optical 

surface. Figure 2-4 shows how a prism disperses an incident light. 

 

Figure 2-4 Light is dispersed by a prism. 

The diffraction grating consists of a series of parallel grooves used to separate the incident light 

into monochrome component wavelengths with different scattering angles. Figure 2-5 shows how 

a diffraction grating disperses an incident white light. The zero order (central white) represents a 

direct transmission through the grating. The first-order and second-order rainbows represent the 

increasing wavelengths from purple to red due to wavelength related diffraction angles. The 

diffraction order is determined by the grooves’ period, and adjacent order of rainbows may 

overlap, especially for higher orders. By adjusting the grooves’ density, it is possible to 

concentrate the diffracted energy in a particular order for a given range of wavelength. 
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Figure 2-5 Diagram of reflective diffraction grating principle [24]. 

The interferometer utilizes the interference phenomenon to disperse an incident light and the 

typical instruments are the Fabry–Pérot interferometer and the Michelson interferometer. They 

could record the frequency domain spectrum by Fourier transform, so both of them are also 

known as Fourier transform spectrometers.  

 

As shown in Figure 2-6, a Michelson interferometer is composed of two mirrors M1, M2, a beam 

splitter M and a detector E. An incident beam produced by coherent light source is split at C by 

M and reflected by A and B, respectively, and both retuning beams are combined at C’ to 

generate an interference pattern due to the orientation of the mirrors, and the pattern is recorded 

by the detector E. The optical path difference caused by this process will result in interference. 

Figure 2-7 illustrates two possible interference fringes. M2’ is the image of mirror M2, S1’ and 

S2’ are virtual images of source S, respectively. The strictly perpendicular two mirrors M1 and 

M2 will make S1’ and S2’ are in line, and will generate fringes of equal inclination (Figure 2-7a), 

and a slight angle of two mirrors will result in fringes of equal thickness (Figure 2-7b). 
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Figure 2-6 Schematic diagram of Michelson interferometer principle [25]. 

 
 
 

 

Figure 2-7 Formation of fringes in a Michelson interferometer [26].  

S1’ and S2’ represent the mirror images. 
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2.6  Recent development on filter-less optical sensor 

Dispersing elements in a spectrometer are as crucial as color filter in a color sensor, and no one 

has ever tried to make a spectrometer without them. Giving that both spectrometer and color 

sensor are optical detection sensors, we present a short review on filter-less optical sensors.  

 

Standard commercial cameras use the Bayer filter pattern [27] adding color sensitivity to CCD 

and CMOS sensors.  However, filters reduce the pixel sensitivity due to the light reflection and 

scattering, and increase the production cost due to the post-processing filter deposition. 

 

Recently, efforts to make filter-less image sensors have been made. Foveon Incorporated [17][28] 

has proposed a sensor structure in which three p-n junctions are implanted at different depths as 

shown in Figure 2-8. The first junction (upper) that is close to the surface collects the carriers 

generated by all photons in the visible spectrum. The middle junction collects mainly the carriers 

generated by all photons except the shorter wavelength (blue), and the deepest one collects 

mainly carriers generated by all photons except the blue and green range of the visible spectrum. 

The three junctions act as color filters. The latest product based on this detection principle from 

Foveon Incorporated is a 14.1 megapixels image sensor [29].  

 

Figure 2-8 Diagram of the Foveon sensor. 

Another structure, called Transverse Field Detector (TFD), is proposed by Langfelder et al. in 

2009 [30]. They implanted several independent N+ collectors in p-type silicon, applying selective 

voltages between them to generate an electric field in order to collect the carriers at different 

depths by different collectors. Figure 2-9 gives the simulation result of an electric field of the 
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TFD structure. The node n1 collects the carriers above depth X1 which generated by all photons 

in the visible spectrum, and n2 collects carriers coming from X1 to X2 range where carriers are 

generated except by blue ones, and n3 collects the all the carriers below depth X2. The three 

collectors act as color filters. 

 
Figure 2-9 TFD simulation result. The streamlines show the electric field. The contact n1 collects the 

electrons to depth X1, contacts n2 collect electrons to depth X2, and collectors n3 collect other electrons 

generated in other region. [30] [Year 2009 of original publication]. 

 

Maruyama et al. proposed filter-less fluorescence sensor in 2006 [31], and an improved sensor 

based on the same principle was reported in 2011 [32] by Nakazawa and in 2017 by Tanaka [33]. 

The structure and principle are given in Figure 2-10 and Figure 2-11, respectively. The voltage of 

the load transistor VLN is set at 0.5V and n-type substrate VSUB is biased at 5V. RES is the 

reset signal. The photogate PG has a voltage VG on it, and VG controls the depth where photo-

generated carriers can be collected. 
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Figure 2-10 Schematic of sensor pixel and readout circuit [31]. Reprinted with permission from Elsevier. 

 
 

 

 
 

Figure 2-11 Operation of the filter-less fluorescence sensor [31]. Reprinted with permission from Elsevier. 
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Both VG and RES are set at 0V as in Figure 2-11(a), and RES is set at 5V to reset the floating 

diffusion (FD) output to 2.5V as shown in Figure 2-11(b). The similar readout operations are 

indicated in Figure 2-11(c) and (d) with different VG. VG in (d) is larger than in (c) to collect 

more electrons. The photon generated electrons are accumulated in FD well and the output signal 

is recorded in voltage after amplification. Because the excitation and fluorescent signals are 

simultaneous, the intensities could be solved with two VG values at least. Maruyama reported a 

linear relationship of incident intensity and detected intensity in a wide range of intensities for the 

fluorescence signal, while the excitation light remains unchanged. As illustrated in Figure 2-12, 

the author reproduced the excitation and fluorescent lights with 470nm and 530nm 

simultaneously, and kept the intensity of the excitation light constant, while varying it for 530nm. 

This relationship characterized the fluorescent wavelength.  

 

Figure 2-12 Output of the filter-less fluorescence sensor [31]. Reprinted with permission from Elsevier. 

 

The sensor could detect the wavelength based on the linear ratio of fluorescence-to-excitation 

light since the wavelength and the intensity of the excitation light are already known. 

2.7   Miniaturized spectrometer 

The current research-grade spectrometer is bulky because it contains components and some space 

is necessary for an optical path. Some efforts have been made to miniaturized spectrometers and 

a handful of new products have emerged on the market to provide compact spectrometry 

solutions ([6], [34]–[43]) Traditional spatial dispersion elements, such as lens and gratings, are 
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still employed. However, exquisite optical path designs allow the spectroscopic systems to be 

accommodated in small containers. 

2.8  Summary 

Current spectrometers employ dispersing elements to discriminate the spectrum of an incident 

light. The widely used dispersing elements in optical spectrometer, including prism, grating, and 

interferometer are introduced. So far, no effort has been made to fabricate an optical spectrometer 

without dispersing elements. 

 

Efforts made on the development of filter-less color sensor is a good starting point for the design 

of spectrometers without dispersing elements. The Foveon’s sensor and the TFD could detect 

three colors (red, green and blue.) It is a great result for color sensitivity but insufficient to 

distinguish the spectrum. Nakazawa’s design is able to detect up to three monochrome 

wavelengths simultaneously. However, it needs a calibration light signal every time which limits 

its applications. 

 

At the same time, people have been working on miniaturization of a spectrometer. The efforts 

mainly focus on minimizing the volume of dispersing element and the optical path in order to 

reduce space requirement. One of the benefits of removing dispersing elements is that the 

required space is reduced so that more compact spectrometers can be fabricated 

 

 

.  
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CHAPTER 3 A NOVEL CMOS SPECTROMETER BASED ON 

WAVELENGTH ABSORPTIOION 

3.1 Abstract 

This article reports on a novel spectrometer without dispersing elements fabricated in standard 

CMOS technology. The spectrum detection principle is based on the wavelength absorption 

mechanism in silicon. A finite element model confirms the excess holes’ detection principle as a 

function of depth where moving holes’ trajectory is deviated under the Lorentz force towards a 

set of collectors. In the case of high excess carrier concentration, experimental results confirm the 

theoretical analysis that wavelength becomes indistinguishable because the Auger recombination 

mechanism is dominant, which should be avoided to realize a spectrometer. For the low excess 

carrier concentration case, the concentration profile is determined by the incident irradiance and 

the wavelength and can be additive since the Shockley-Reed-Hall recombination mechanism 

prevails, where the excess carrier life time is constant, and hence suitable for wavelength 

discrimination. In order to realize a spectrometer, a light spectrum detection method is developed, 

which requires a linear equation set where coefficients of the matrix coming from the 

measurement of the current density as a function of the irradiance for different wavelengths and 

magnetic fields. The proposed miniature and integrated spectrometer with a pixel array can be 

used as a spectral imager. 
 

   

3.2 Introduction 

Spectroscopy analysis is a powerful tool to investigate materials and structures. The current 

research-grade spectrometers are bulky equipment composed of a dispersing element, lenses, 

photo-detectors, electromechanical components and electronic circuits. The commonly used 

dispersing elements can be categorized into three main groups according to the mechanism 

involved in the extraction of spectral information from optical signals: spatial dispersion, 

interferometer, and resonance [1]. The latter group encompasses spectrometers using materials 

having properties of absorption, transmission, and reflection that are dependent on the 

wavelength. Recently a lot of interest has emerged in employing new structures and new 
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materials such as photonic crystals, metamaterials [44], [45] and quantum dots [1] as the 

detecting component of a spectrometer. In that respect, a color image sensors design to exploit 

the wavelength dependent absorption properties of silicon has been developed where the three 

primary colors employed in digital imaging, blue, green and red are extracted without thin film 

filtering. Recently, efforts have been made to miniaturized spectrometers and a handful of new 

products have emerged on the market to provide compact spectrometry solutions[34]–[37]. 

Traditional spatial dispersion elements, such as lens and gratings, are still employed. However, 

exquisite optical path designs allow the spectroscopic systems to be accommodated in small 

containers. 

 

In this paper, we propose a new method of detecting the spectral content of luminous signals by 

exploiting the absorption properties of semiconductors. The method enables compact and cost 

effective spectrometer solution for a wide range of applications. Using silicon has the main 

advantage of having a detector compatible with some advance bipolar or CMOS integrated circuit 

fabrication processes, meaning that on the same substrate, the detector, signal conditioning 

circuits and digital processing can be implemented. The proposed principle employs the Lorentz 

force applied to moving charged particles in the presence of a magnetic field in order to relate 

wavelengths to the depth of photo-generated carriers. The paper is divided as follows: in Section 

3.3, an overview of the underlying physics of carrier generation in semiconductor is described, 

followed by a description of the carrier concentration profiling method using the Lorentz force; in 

Section 3.4, a wavelength detection method is developed and also verified experimentally. It 

relies on a linear system of equations where the coefficients have been obtained from electrical 

measurement as a function of the optical irradiance for different wavelengths and magnetic fields. 

Finally, concluding remarks are presented. 

 

3.3 Detection Principle  

A monochrome light beam generates a unique excess carrier distribution along the incident depth 

due to the absorption coefficient. Hence, the wavelength information can be obtained by 

measuring the photo-generated carrier concentration as a function of depth, and the proposed 

spectrometer is named the Wavelength Absorption Spectrometer (WAS). 
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Figure 3-1 The schematic figure of the WAS prototype. 

Figure 3-1 illustrates the schematic diagram of a WAS pixel. An N-well region is made in a P-

type silicon substrate. Three P+ electrodes (red in Figure 3-1) are heavily doped regions and 

forms PN junctions with the N-well. The junctions are reversed biased to collect holes only. A 

uniform electric field along the +x direction is produced by the voltage difference between the 

two N+ contacts. Light penetrates into silicon through a window area and the oxide layer. Other 

regions are covered by metal to block the illumination. The light-generated electron-hole pairs 

are separated by the electric field, and electrons move along the -x direction and holes move 

along the +x direction. In this first WAS prototype, an external uniform magnetic field is applied 

along the -z direction, thus, the holes’ current flows towards the three P+ electrodes due to the 

Lorenz force. For a specific electric and magnetic field combination, the angle of deflection of 

holes’ current density is constant, so that the electrodes could collect holes from a specific depth. 

Holes are collected by the middle P+ electrode and form the hole current Im, while the left and the 

right P+ electrodes collect holes above and below that specific depth, and form current Is and Id, 

respectively. As a result, excess holes’ concentration profile along the depth (-y direction) could 

be achieved by varying the magnetic field, hence, the current density angle of deflection. 
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In the theoretical analysis, we firstly derive the equation giving the photo-generated excess holes’ 

concentration distribution along the –y direction, and secondly, the excess holes’ transportation 

mechanism from the window area to the P+ collectors is validated with a finite element model 

implemented in the software tool COMSOLTM [46] and experimental result. 

 

3.3.1  The excess holes’ generation and recombination 

The steady-state continuity equation describes the carrier behavior under the constant incident 

illumination [47]. Considering the holes’ concentration variation along the depth under the 

window area, the equation becomes 

D𝑝
d2δ𝑝(|y|)

dy2 − 
δ𝑝(|y|)

τ𝑝
+ g𝑝 = 0                                                           (3.1) 

 

where δ𝑃 is the excess holes’ concentration, D𝑝, the diffusion coefficient [48], and, |𝑦|, the depth 

from the surface (y=0). For an illumination irradiance, P, at a specific wavelength, λ , the 

generation rate, g𝑝, is defined as [20] 

 

g𝑝 =  
P𝜆

ℎ𝑐
αλ(1 − Re)e−αλ|𝑦|                                                       (3.2) 

 

where αλ is the absorption coefficient, Re is the reflectivity at the Si/SiO2 interface, h is Plank 

constant, and c is the speed of light.  

 

The hole recombination lifetime, τ𝑃, is not constant and is determined by the Auger and the 

Shockley-Read-Hall (SRH) recombination mechanisms 

 

1/τ𝑝 = 1/τAuger +  1/τSRH .                                                  (3.3) 

 

The SRH recombination mechanism is active where there are impurities or defects in the 

semiconductor material while Auger lifetime is independent of the impurity and defect densities. 
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In silicon, the Auger recombination mechanism dominates when either the doping density or the 

excess carrier concentration is very high, and the SRH recombination mechanism prevails at 

lower concentration [20]. Auger lifetime is a function of carrier concentration, while SRH 

lifetime is independent of excess carrier density. 

 

At high concentration in N-type silicon as in the scenario of Figure 3-1, the Auger recombination 

mechanism dominates and the hole lifetime becomes 

 

τ𝑝 = τAuger = 1/[C𝑛(𝑛0
2 + 2𝑛0𝛿𝑃 + 𝛿𝑃

2) + C𝑝(𝑝0
2 + 2𝑝0𝛿𝑃 + 𝛿𝑃

2)]               (3.4) 

 

where Cp and Cn are the Auger recombination coefficients for holes and electrons respectively 

[11]. For holes’ excess concentration 𝛿𝑃 of 1020 cm-3, which is much larger than the equilibrium 

concentration of electrons, 𝑛0, and holes, 𝑝0, Equation (3.4) becomes 

 

τ𝑝 = τAuger = 1/[𝛿𝑃
2(C𝑛 + C𝑝)]                                             (3.5) 

 

and the lifetime decreases rapidly to reach approximately 1 ns [20]. In these conditions, the 

recombination term in Equation (3.1) is dominant and the continuity equation becomes 

 

D𝑝
d2δ𝑝(|y|)

dy2 − 
δ𝑝(|y|)

τ𝑝
= 0.                                     (3.6) 

 

Consider the boundary conditions δ𝑝(0) =  g𝑝(0), where δ𝑝(0) is the surface excess hole density 

and δ𝑝(∞) =  0, the analytical solution of Equation 3-6 is: 

 

1

δ𝑝(y)
=  

|𝑦|

√2D𝑝 (C𝑛+C𝑝)⁄
+  

ℎ𝑐

P𝜆αλ(1−Re)
 .                                           (3.7) 

 

and reveals that the slope of the reciprocal of photo-generated holes’ concentration versus depth 

is wavelength-independent at high carrier concentration condition. A high incident illumination 
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induces a high carrier concentration, and Equation (3.7) indicates that high illumination must be 

avoided for the spectrometer application. 

 

At lower photo-generated carrier concentrations, for example, when the concentration can be 

compared to the equilibrium concentration, both Auger and SRH recombination mechanisms play 

roles, and g𝑝  can’t be ignored in Equation (3.1). g𝑝  is wavelength-dependent, therefore, the 

carrier concentration distribution along depth provide the spectrum information of the incident 

light. However, given the relationship of 𝜏𝑃  and g𝑝 , Equation (3.1) is a non-linear non-

homogenous differential equation that doesn’t have an analytical solution. The effort to reveal the 

relationship of carrier concentration vs. depth by experiments is reported in Part 3.3.3. 

 

3.3.2 The excess holes’ transportation under magnetic field 

Analysis of the holes’ current density traveling from the volume under the window area up to the 

collectors and submitted to perpendicular electric and magnetic fields requires coupled equations 

involving drift and diffusion current densities. Adding to that the geometrical effect of adjacent 

collectors, makes the derivation of an analytical solution extremely complicated and most likely 

not representative of the structure. Instead, a Finite Element Method (FEM) model implemented 

with the multi-physics software tool COMSOLTM is employed to validate the holes’ 

transportation.  

 

Excess electrons and holes are separated and form current densities under the electric and 

magnetic field. The hole’s current density obeys the equation [49] 

 

𝑱𝑝 (𝑩) =  𝑱𝑝 (0) +  𝜇𝑃(𝑱𝒑 (𝑩) × 𝑩)                                       (3.8) 

 
where 𝑱𝑝 (0) is the hole current density without magnetic field, B, and it includes drift and 

diffusion components. Drift current density is a function of electric field and is expressed as 

𝐽𝑝_𝑑𝑟𝑖𝑓𝑡 (0)  =  𝑞𝜇𝑃𝛿𝑃𝐸𝑥, where q is the elementary charge. Diffusion current density is mainly 

due to the concentration difference between the illuminated and the shaded area in the substrate. 
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From the diffusion equation [47], the average diffusion current density is 𝐽𝑝_𝑑𝑖𝑓𝑓 (0)  =

 𝑞𝐷𝑝𝛿𝑃(1 − 𝑒−𝐿 𝐿𝑝⁄ )/𝐿 where Lp is the hole diffusion length which is related to the lifetime and L 

is the horizontal distance from the middle-point of the window area to the middle P+ collector, as 

shown in Figure 3-2 (a). Calculation shows that the drift current density is about three orders of 

magnitude larger than the diffusion, therefore, the diffusion current density component is 

negligible and hole concentration is mainly determined by drift.  

 
In the scenario of Figure 3-1, 𝑱𝑝 (𝑩) has x and y components while 𝑱𝑝 (0) has only a component 

along x and B exists along z, Bz. Thus, 

 

𝐽𝑝 (0) = 𝑞𝜇𝑃𝛿𝑃𝐸𝑥 +
𝑞𝐷𝑝𝛿𝑃

𝐿
(1 − 𝑒−𝐿 𝐿𝑝⁄ ) ≅ 𝑞𝜇𝑃𝛿𝑃𝐸𝑥 ,                                (3.9) 

𝐽𝑝𝑥 (𝐵) =  𝐽𝑝 (0) −  𝜇𝑃𝐽𝑝𝑦 (𝐵)𝐵𝑧,                                                              (3.10) 

 

𝐽𝑝𝑦 (𝐵) =  𝜇𝑃𝐽𝑝𝑥 (𝐵)𝐵𝑧 =  𝜎𝑝𝐸𝑦 =  𝑞𝜇𝑃𝛿𝑃𝐸𝑦,                                          (3.11) 

𝑡𝑎𝑛𝜃 =  
𝐽𝑝𝑦 (𝐵)

𝐽𝑝𝑥 (𝐵)
=  𝜇𝑝𝐵                                                                               (3.12) 

where, 𝐸𝑦 is the Hall electric field, 𝜃 is the Hall angle. Since there is no electron current density 

in y direction at equilibrium, 

 

𝐽𝑛𝑦 (𝐵) =  𝑞𝜇𝑛(𝐸𝑦 −  𝜇𝑛𝐵𝑧𝐸𝑥) = 0,                                                        (3.13) 

 
and combining Equations (3.9) to (3.11), the excess hole concentration 𝛿𝑃 is obtained 
 

𝛿𝑃 = 𝐽𝑝𝑦 (𝐵) (𝑞𝜇𝑝
2𝐵𝐸 − (𝜇𝑝𝐵)

3
𝑞𝜇𝑛𝐸)⁄                                                  (3.14) 

 
where 𝐽𝑝𝑦 (𝐵) can be deduced by measuring the current, Im, of the middle collector .  
 

Figure 3-2 shows the simulated holes’ concentration profile and holes’ current density in a pixel 

of WAS under electric field and a magnetic field varying from 0T to 3T. The magnetic field is 

pointing inward in a direction perpendicular to the paper. As shown in Figure 3-2, the middle P+ 
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collector collects holes coming from a certain depth in the window area. At B=0T in (a), the 

current density presented by black lines is parallel to the surface in the window area and then 

slightly bends when reaching the collectors’ region. While increasing the magnetic field, holes 

move up under the Lorenz force, and the Hall angle increases, allowing the collection of holes 

generated deeper in the N-well, as shown by the current density lines in (b), (c) and (d) for 1, 2 

and 3 T respectively. Hence, by sweeping the magnetic field, it is possible to measure the excess 

holes’ concentration along the depth. 
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  Figure 3-2  (a)

Figure 3-2 (b)
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Figure 3-2 (c)

Figure 3-2 (d) 

Figure 3-2 COMSOLTM modeled results of a pixel at magnetic flux density, B= (a) 0T, (b) 1T, (c) 2T, and 

(d) 3T. The red area represents the high concentration region, and the low concentration region is in blue. 

The black lines illustrate the electric field orientation, and the blue lines represent the electric potential. 
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3.3.3 Experiment details and data analysis 

In this section, important experiment details including the pixel array architecture of the WAS are 

presented, and experimental results validate the behavior of the proposed sensor. 

 

 
Figure 3-3 Architecture of the pixel array of the WAS prototype. 
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As illustrated in  Figure 3-3, the WAS is composed of an array of 20x20 pixels along with pass 

transistors in order to direct the collected currents row-wise and column-wise down to three 

common outputs to each Is, Im and Id pixel collector. Benefits of disposing of the proposed 

spectrometer in an array include the increase of the dynamic range and the capability of using the 

array as a micro spectral imaging sensor. 

 

Each pixel is composed of three NMOS transistors, as shown in the red circle. They link the 

collectors to the vertical buses, t when the row selector signals, R0 to R19, are applied to their 

gates. The logic inverter allows the use of the same signal to establish an electric field in the pixel, 

and activate the row selection transistors. When R0 is set to 0V and other rows are 5V, an electric 

field is generated in the pixels of the first row, oriented towards the N+ contact of the row R0. 

The NMOS transistors on the row are turned ON through a logic inverter, such as only pixels in 

the row ‘0’ are activated. In addition, column selector transistors are selected by the column 

control signal to connect one pixel at a time to the output bus. To allow the measurement of small 

currents and reduce the noise bandwidth, each line of the output bus is connected to an off-chip 

integrating transimpedance amplifier, as shown in Figure 3-4.  

 

Figure 3-5 shows the printed circuit board, on which the pixel array is bounded. The pixel array 

is fabricated in 0.5 μm CMOS technology. It is placed at the center between two electromagnetic 

poles, as shown in Figure 3-6. The control board contains all the components of the reading 

circuit. It is connected to the sensor board by a flexible flat cable. To eliminate the mechanical 

forces acting on the pixel array and thus to avoid disturbing the optical alignment, all the 

conductors are made of copper only, which is a diamagnetic material. 
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Figure 3-4 Schematic figure of an integrating transimpedance amplifier. The switch S is used to reset the 

capacitor after a pre-determine integration time. 

 
 
 

Figure 3-5 The sensor board hosting the pixel array chip. 
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Figure 3-6 Experimental setup uses to test the WAS prototype. 
 

The spectrometer is placed in an adjustable electromagnetic field and is illuminated by a light 

source at different irradiances and wavelength. The intensity of the magnetic field between the 

two poles depends strongly on the distance between them and the diameter of their external faces. 

The objective is, therefore, to have the part of the sensor board hosting the chip as slim as 

possible in order to obtain a wide range of magnetic field values between the two poles.  

 

Figure 3-7 gives the experimental relationship of the reciprocal of detected excess holes’ 

concentration versus depth. The concentration 𝛿𝑃  is derived from  𝐽𝑝𝑦 (𝐵) =  𝑉𝐶/𝑡𝐴  and 

Equation 3-14, 

 𝛿𝑃 = 𝑉𝐶/[𝑡𝐴 (𝑞𝜇𝑝
2𝐵𝐸 +

𝑞𝐷𝑝

𝐿
(1 − 𝑒−𝐿 𝐿𝑝⁄ )𝜇𝑝𝐵 − (𝜇𝑝𝐵)

3
𝑞𝜇𝑛𝐸)]                     (3.15) 

 

where C is the capacitor (10pF) of the integrating transimpedance amplifier as seen in Figure 3-4, 

t is the integration time, A is the surface area of a P+ collector, and V is the amplifier output 

voltage difference obtained with and without illumination. The subtraction is performed during 
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data processing in order to remove the effect of the dark current on the P+ collector. The depth 

value |𝑦| as introduced in Equation 1 is derived based on the Hall Angle 𝜃 which is function of 

the magnetic field Bz, 

|𝑦| = 𝐿 𝑡𝑎𝑛𝜃                                                                  (3.16) 

Figure 3-7, chromatic illumination results at 470 𝑛m, 530 𝑛m, and 640 𝑛m, are represented in 

blue, green and red, respectively. The chromatic illuminations have been obtained from a halogen 

lamp with 70 nm bandwidth color filters. Excess holes’ concentration is calculated according to 

Equation (3.15) from the measured voltages under three incident illumination irradiances 

(200W/cm2, 400W/cm2, and 800W/cm2). As seen on the graph, as the irradiance increases, 

the 1/𝛿𝑃vs |y| relationships becomes more linear with slope values converging toward a constant 

as predicted by Equation (3.7) at high excess holes’ concentrations where the Auger 

recombination mechanism is dominant. For each irradiance, the concentration generated by the 

470 nm wavelength photons exhibits higher values due to the fact that penetration depth 

decreases for high energy (shorter wavelength) photons. That trend is also confirmed by 

concentrations produced by green photons (530 nm) being larger than the one of the red photons 

(640 nm).  
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Figure 3-7 The reciprocal of detected excess holes concentration variation obtained by sweeping the 

magnetic field for several illumination irradiances. 

3.4 Application as a spectrometer 

In order to use the WAS as a spectrometer, the substrate must be in the SRH recombination 

regime where it is independent of the excess carrier concentration. We assume that photo-

generated holes coming from different wavelength are additive, hence a linear system of equation 

can relate the irradiance of the light signal spread over a given spectrum to the collector currents. 

Through a calibration procedure, a system of linear equation can be built. Figure 3-8 illustrates 

the experimental curves of current density of the middle P+ collector as a function of the 

irradiance for three wavelengths, 𝜆=470 𝑛m , 590 𝑛m and 660 𝑛m, for two constant magnetic 

fields, 2.8 T and 1.0 T. The graph depicts quasi-linear relationships of current densities as a 

function of irradiances.  
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Figure 3-8 Measured current density as a quasi-linear function of the irradiance of 470 𝑛m (blue), 590 𝑛m 

(orange) and 660 𝑛m (red), at B=2.81T (round) and 1.01T (triangle). 

For an illumination composed of n discrete wavelengths, the current density J, can be expressed 

as 

𝐽 = 𝑚𝜆1𝐼𝜆1 + 𝑚𝜆2𝐼𝜆2 + ⋯ 𝑚𝜆𝑛𝐼𝜆𝑛 + 𝑛𝐽0                                     (3.17) 

 

where terms 𝐼𝜆𝑥 are the irradiance of the wavelength, 𝜆𝑥, 𝑚𝜆𝑥 are the slopes of the current density 

versus irradiance relationship for 𝜆𝑥 and J0 is the current density collected in the dark. Equation 

(3.17) represents a linear equation with n unknown 𝐼𝜆𝑥 . Terms, 𝑚𝜆𝑥  have been measured 

previously from n chromatic filters having non-overlapping band pass and a center wavelength, 

𝜆𝑥. In order to solve Equation (3.17), we need a set of n equations. Given that the slopes of the J 

vs 𝐼𝜆𝑥  relationships vary not only with respect to the wavelength but also with respect to the 

magnetic field, it is then possible to obtain the following solvable system of equations,  
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𝐽𝐵1 = 𝑚𝐵1,𝜆1𝐼𝜆1 + 𝑚𝐵1,𝜆2𝐼𝜆2 + ⋯ 𝑚𝐵1,𝜆𝑛𝐼𝜆𝑛 + 𝑛𝐽𝐵1,0 

𝐽𝐵2 = 𝑚𝐵2,𝜆1𝐼𝜆1 + 𝑚𝐵2,𝜆2𝐼𝜆2 + ⋯ 𝑚𝐵2,𝜆𝑛𝐼𝜆𝑛 + 𝑛𝐽𝐵2,0                          (3.18)    

⋯ 

𝐽𝐵𝑛 = 𝑚𝐵𝑛,𝜆1𝐼𝜆1 + 𝑚𝐵𝑛,𝜆2𝐼𝜆2 + ⋯ 𝑚𝐵𝑛,𝜆𝑛𝐼𝜆𝑛 + 𝑛𝐽𝐵𝑛,0 

 

where the suffix Bx indicates different magnetic field values. Hence, Equation (3.18) can be 

written in a matrix form, 

 

       𝐽𝐵 = 𝑀𝐵𝜆𝐼𝜆 + 𝐽𝐵,0                                                           (3.19)    

 
where JB and JB,0 are the n×1 vector representing the measured current densities with and without 

illumination respectively, 𝑀𝐵𝜆 is the n×n matrix of the JBx vs 𝐼𝜆𝑥 slopes and 𝐼𝜆 is the n×1 vector 

of the irradiances. Therefore, the solution can be found from 

 

     𝐼𝜆 =  (𝐽𝐵 − 𝐽𝐵,0)𝑀𝐵𝜆
−1.                                                     (3.20)    

  
Coefficients of matrix 𝑀𝐵𝜆 are obtained from the slopes of calibration curves as the ones shown 

in Figure 3-8. 

  

3.5 Conclusion 

A novel spectrum detection method is proposed, and the mechanism is discussed in this article. 

The detection principle is based on the wavelength absorption in silicon where the photon-

generated excess holes’ concentration is a function of depth, wavelength, and irradiance. Variable 

magnetic field enables the measurement of the excess carrier concentration profile as a function 

of depth. Experimental results of collected current densities as a function of irradiances for 

different magnetic fields have validated the detection principle that relies on the additive property 

of photo-generated carriers when the device is in the SRH recombination regime. Those quasi-

linear relationships are employed to determine the coefficients of a matrix used to solve 
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algebraically a set of linear equations linking the measured current densities to the wavelength 

spectrum of the incident light. The small footprint of the WAS and its compatibility with standard 

CMOS fabrication processes allow for the design of an array which enables applications in the 

field of spectral imaging. Future work will be focusing on improving the current density vs. 

magnetic field linearity on a wider dynamic range by modifying the pixel geometry and 

implementing the WAS in smaller feature size CMOS processes. 
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CHAPTER 4 RESOLUTION ANALYSIS 

4.1 Definition of Resolution  

The resolution is a crucial parameter for a spectrometer. It is necessary to calculate the resolution 

of the WAS to understand its ability, limitation, and the ways to improve it. No magnetic field is 

considered to simplify the analysis. 

 

The spectrometer resolution is defined as:  

R =
λ

∆λ
                                                                      (4.1) 

where ∆λ is called the resolving power, which is the minimal wavelength difference that can be 

distinguished.  

 

4.2 The resolution of the WAS 

The WAS doesn’t detect the wavelength directly, instead, it detects the hole current. Thus, its 

resolving power is limited by the minimum detectable current. The ∆δ is defined as the minimal 

detected carrier concentration variation, which is determined by the shot noise [50]:  

𝑖𝑛
2 = 2𝑞𝐼𝐷𝐶∆𝑓                                                             (4.2) 

∆𝛿 = √𝑖𝑛
2 (𝑞)⁄                                                             (4.3) 

𝐼𝐷𝐶 is the detected current, the experimental value is approximately 10-12A. ∆𝑓, 10 MHz, is the 

bandwidth of the oscilloscope employed to measure the current for the prototype WAS. The 

black line in Figure 4-1 represents the ∆δ.  

 

For the WAS prototype, without the magnetic field, the difference in excess holes’ concentration 

of two wavelengths is expressed as: 

∆𝛿′ =  |∫ 𝛼1I1e−𝛼1ydy
y2

y1
− ∫ 𝛼2I2e−𝛼2ydy

y2

y1
|                              (4.4) 
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where y1 and y2 are the vertical boundaries of the region where the carriers are collected. As 

shown in Figure 4-1, ∆𝛿′ is calculated for various wavelengths, 450 𝑛m (blue curve), 550 𝑛m 

(green curve), 650 𝑛m (cyan curve), and 750 𝑛m (red curve), respectively.  

 

Figure 4-1 The calculated resolving power vs. wavelength by MATLAB, at the same incident power. The 

red curve and the cyan curve are almost coincident. 

When ∆𝛿 = ∆𝛿′ , the abscissa of the intersection is the resolving power. In Figure 4-1, the 

resolving power is within a range of 3 𝑛m to 19 𝑛m over the range (450 𝑛m to 750 𝑛m). 
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Figure 4-2 The calculated resolution vs wavelength at the same incident power. 

Figure 4-2 gives the resolution of the WAS over the range 400 𝑛m to 800 𝑛 m. The best 

resolution reaches 219 at the 438 𝑛m, and the smallest resolution is around 10 at 475 𝑛m. The 

non-linear resolution-wavelength relationship indicates that the resolution of the WAS is 

determined by mainly two factors: the absorption coefficient and geometry. The 400  𝑛m to 

800 𝑛m range is divided into four zones, and the resolution in each zone will be discussed, 

respectively. Zone 1: 400 𝑛m to 438 𝑛m; Zone 2: 438 𝑛m to 475 𝑛m; Zone 3: 475 𝑛m to 525 𝑛m; 

Zone 4: 525 𝑛m to 800 𝑛m. As shown in Figure 4-2.  

 

Zone 1 & 2: From Figure 2-2, it is clear that, wavelengths in Zone 1 and Zone 2 have much 

higher absorption coefficient and therefore generates carriers closer to the surface which form a 

larger current Im. In addition, this range has a big slope 𝑑𝛼
𝑑𝜆⁄  , which induces a bigger 

difference of carrier concentration generated by the adjacent wavelengths and explains the higher 

resolution.  
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Zone 1: For the reasons stated above, should have higher resolution than Zone 2. However, the 

resolution drops with the wavelength becoming shorter. This is the same effect as observed in 

Figure 4-3 where carriers closer to the surface are collected by the left P+ electrode and have less 

contribution to the current Im.  

 

 

Figure 4-3 The three P+ electrodes collect holes coming from different depths. 

 

 

Figure 4-4 Photo-Generated hole carrier concentration along the depth. The dash lines show the 

boundaries of the holes concentration integration. 
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Zone 4: As seen in Figure 2-2, the 475 𝑛m is an inflection point, after which the 𝑑𝛼
𝑑𝜆⁄  becomes 

smaller. This will decrease the resolution, as shown in Figure 4-2. In this region, the resolution is 

in the vicinity of 30 for a maximum of 50.  

 

Zone 3: This is a special range because the absorption coefficient is still high but the resolution is 

very low. The Equation 4-4 indicates that the low resolution is determined by the small difference 

of the generated carrier concentration. Actually, the concentration is an integration result between 

0.8 𝜇m and 1 𝜇m, not from a single depth, as shown in the Figure 4-4. The integration range is 

limited by the designed geometry, as shown in Figure 4-3. A different geometry will bring a 

different integration range. Figure 4-4 gives the concentration variation with the depth for several 

wavelengths (from 475 𝑛m to 525 𝑛m). It is clear that the integration results of these wavelengths 

are similar due to actual position of the depth integration limits (from 0.8 𝜇m to 1 𝜇m). It 

explains why the WAS prototype has smallest resolution in Zone 3.  

 

For the current WAS prototype, the best theoretical resolution occurs in Zones 1 and 2. The Zone 

4 has a stable resolution, and Zone 3 should be avoided for high accuracy application.  

 

To expand the best detection spectrum region, the geometry and structure modification is 

necessary. The possible improvements may include: a smaller depth for the left P+ electrode, 

more P+ electrodes, and a larger distance between the electrodes. 

 

4.3 Conclusion 

The study on resolution of the Wavelength Absorption Spectrometer (WAS) based on 

experimental data and a finite element model proved its functionality. The theoretical calculation 

predicts that the resolution of the WAS could reach around 219 depending on the collectors’ 

junction shot noise. The structure requires further development for better performance. 
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CHAPTER 5 SOLUTION OF CONTINUITY EQUATION 

In previous chapters, we analyzed the photo-generated excess carriers’ generation, recombination 

and transportation under an electric and magnetic field. In this chapter, we pay attention to the 

effect of some parameters of the continuity equation in order to get a full view of the mechanisms 

of generation and recombination. All discussions are related to the one dimensional photo-

generated excess holes without electrical and magnetic field.  

 

The photo-generated excess holes’ concentration is described by the continuity equation. 

D𝑝
d2δ𝑝(|y|)

dy2 − 
δ𝑝(|y|)

τ𝑝
+ g𝑝 = 0                                                          (5.1) 

Where τ𝑝 is the holes’ lifetime, δ𝑃 is the excess holes’ concentration, D𝑝, the diffusion coefficient 

[48], and, |𝑦|, the depth from the surface (y=0). For an illumination irradiance, P, at a specific 

wavelength, λ, the generation rate, g𝑝, is defined as [20] 

g𝑝 =  
P𝜆

ℎ𝑐
αλ(1 − Re)e−αλ|𝑦|                                                      (5.2) 

where αλ is the absorption coefficient and Re is the reflectivity at the Si/SiO2 interface. 

 

5.1  Boundary conditions 

Different boundary conditions result in different solutions to Equation (5.1).  For the WAS 

prototype, there are four possible boundary conditions. All of them are discussed in this chapter. 

 

Photons generate excess carriers in N-well and P-substrate regions. However, only the N-well 

region is of interest since the collected holes come mainly from the N-well. The reversed-biased 

PN junction prevents the abundant holes in the P-substrate to be collected.  
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Figure 5-1 Schematic figure of N-well region with boundaries. 

 

As shown in Figure 5-1, N-well region has two boundaries: interface with SiO2 and interface with 

P-substrate. The interface between N-well and SiO2 has two possible boundary conditions: 

𝛿𝑝
′ (0) =  

𝑆

𝐷𝑝
δ𝑝(0) and δ𝑝(0) =  g𝑝(0). S is the surface recombination velocity. For a typical 

Si/SiO2 interface, the value of S varies from 1 to 100 cm/s [51], and will be discussed later. The 

condition δ𝑝(0) =  g𝑝(0) is an ideal situation that is used in Equation 3-7 to derive the analytical 

solution to the continuity equation under the assumption of high excess carriers’ concentration. 

The condition 𝛿𝑝
′ (0) =  

𝑆

𝐷𝑝
δ𝑝(0)  is more accurate and is employed in this chapter. At the 

junction between the N-well and the P-substrate, δ𝑝(𝑦0) =  0 , where y0 is the depth of the 

junction. Another boundary condition is δ𝑝(∞) =  0 that means no carrier is generated at the 

infinite depth.  

 

Therefore, we have two boundary condition cases to Equation (5.1).  

 

Case 1.  

 𝛿𝑝
′ (0) =  

𝑆

𝐷𝑝
δ𝑝(0),  δ𝑝(𝑦0) =  0                                                (5.3) 

 

Case 2. 



42 

 

𝛿𝑝
′ (0) =   

𝑆

𝐷𝑝
g𝑝(0),   δ𝑝(∞) =  0                                              (5.4) 

 

 

Figure 5-2 Excess holes’ concentration vs depth for two boundary condition cases. 

 

Figure 5-2 gives the excess holes’ concentration variation along penetrated depth for two cases of 

boundary conditions. Red and green curves represent Case 1 and Case 2 respectively. 

Concentration in Case 1 drops faster than Case 2 due to its convergence to 0 in a smaller range.  

 

This is a one-dimensional theoretical calculation along y-direction without an electric and a 

magnetic field. However, in the presence of an electric field, the condition δ𝑝(𝑦0) =  0 is not 

valid anymore because there is holes’ current along the PN junction.  

 

5.2 Surface recombination velocity 

Surface recombination velocity is a term to specify the recombination rate on a surface, usually 

varying between 1 to 100 cm/s for silicon [51]. Figure 5-3 demonstrates the effect of surface 

recombination velocity on excess carriers’ concentration, where S=1 (blue), 10 (green), and 100 

(red), respectively. Higher S will result in higher recombination and lower carriers’ concentration 



43 

 

as expected. The small difference observed on surface concentrations (y=0) illustrates that S 

doesn’t have a significant influence on carrier concentration, therefore, we choose S=1 cm/s for 

all calculations in this thesis. 

 

 

Figure 5-3 Carriers’ concentration vs depth for several S values. 

 

5.3 Carriers lifetime 

The hole recombination lifetime, τ𝑃, is not constant and is determined by the Auger and the 

Shockley-Read-Hall (SRH) recombination mechanisms [20], [52], [53] 

1/τ𝑝 = 1/τAuger +  1/τSRH ,                                                     (5.5) 

where the Auger lifetime is [20] 

τAuger = 1/[C𝑛(𝑛0
2 + 2𝑛0𝛿𝑃 + 𝛿𝑃

2) + C𝑝(𝑝0
2 + 2𝑝0𝛿𝑃 + 𝛿𝑃

2)],                        (5.6) 

and the Shockley-Read-Hall lifetime is [20] 

τSRH = [𝜏𝑝−𝑆𝑅𝐻(𝑛0 + 𝑛1 + 𝛿𝑛) + 𝜏𝑛−𝑆𝑅𝐻(𝑝0 + 𝑝1 + 𝛿𝑝)]/(𝑝0 + 𝑛0 + 𝛿𝑝)               (5.7)     
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where Cp and Cn are the Auger recombination coefficients for holes and electrons respectively,  

n0 and p0 are the equilibrium carrier densities, 𝛿𝑛 and 𝛿𝑝 are the excess carriers’ densities, for 

electrons and holes respectively, 𝑛1, 𝑝1, 𝜏𝑝−𝑆𝑅𝐻, 𝜏𝑛−𝑆𝑅𝐻 are defined as 

 

𝑛1 = 𝑛𝑖 exp (
𝐸𝑇−𝐸𝑖

𝑘𝑇
) , 𝑝1 = 𝑛𝑖  exp (−

𝐸𝑇−𝐸𝑖

𝑘𝑇
)                                        (5.8)     

𝜏𝑝−𝑆𝑅𝐻 = 1/𝜎𝑝𝑣𝑡ℎ𝑁𝑇 ,  𝜏𝑛−𝑆𝑅𝐻 = 1/𝜎𝑛𝑣𝑡ℎ𝑁𝑇                                     (5.9)     
 

NT is the impurity density, Ei is the intrinsic energy level, ET is traps energy level in the band gap, 

capture cross sections for electrons and holes are 𝜎𝑛 and 𝜎𝑝, respectively and vth is the thermal 

velocity. 

 

Low-level (ll) injection means that the excess minority carrier density is low compared to the 

equilibrium majority carrier density, ∆𝑛 ≪ 𝑝0, and on the other hand, high-level (hl) injection 

means that  ∆𝑛 ≫ 𝑝0. For low level (ll), 

τSRH(𝑙𝑙) ≈ [𝜏𝑝−𝑆𝑅𝐻𝑛1 + 𝜏𝑛−𝑆𝑅𝐻𝑝1]/𝑝0 ≈ 𝜏𝑛−𝑆𝑅𝐻                                       (5.10)     

and for high-level (hl), 

τSRH(ℎ𝑙) ≈ 𝜏𝑝−𝑆𝑅𝐻 + 𝜏𝑛−𝑆𝑅𝐻                                                        (5.11)     

 

The Auger lifetime is a function of holes’ concentration (Equation (5.6)) and the SRH lifetime is 

determined by the impurity and defect densities (Equation (5.10) and (5.11)), which means the 

SRH lifetime is constant for one sensor.  

 

From experimental data, holes’ concentration in an equilibrium state in the WAS is around 1012 ~ 

1016 cm-3. This is considered as low concentration range and the SRH recombination mechanism 

is dominant. In this condition, it is reasonable to use a constant lifetime in theoretical calculations. 

A small range near the surface has a large concentration and the lifetime is mainly determined by 

Auger recombination. In the next section, we discuss on the effect of lifetime on the holes’ 

concentration.  
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5.3.1 Constant Lifetime 

When the SRH recombination mechanism is dominant, the carrier lifetime is constant. The 

minority carriers’ lifetime in silicon varies from 0.1 ns to 100 ns depending on the doping 

concentration as reported [54]–[56]. Figure 5-4 shows the carrier concentration with five 

lifetimes: t = 1µs (a), 100ns (b), 10ns (c), 1ns (d), and 0.1 ns (e), respectively, with the boundary 

condition Equation (5.4). Shorter lifetime means higher recombination rate and reduces the holes’ 

concentration. Lifetime has a significant effect on the value of concentration but slightly affects 

the shape of the curves.  
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Figure 5-4 (a)

Figure 5-4 (b)
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 Figure 5-4  (c)

   Figure 5-4 (d) 
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  Figure 5-4 (e) 

Figure 5-4 Carriers’ concentration vs depth for several lifetimes, 

t = 1µs (a), 100ns (b), 10ns (c), 1ns (d), and 0.1ns (e). Three wavelengths, 450nm (blue), 550nm (green), 

and 700nm (red), are employed with same incident power. 

 

Compared Figure 5-4 with the modeled result in Figure 5-5, the hole lifetime in the WAS should 

be around 0.1 ns, or even shorter.  
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Figure 5-5 Concentration vs depth in the range of 0 µm to 3 µm, from COMSOLTM, 450nm (blue), 550nm 

(green), and 700nm (red). 

 

5.3.2 Variable Lifetime 

Auger recombination lifetime is a function of holes’ concentration, and also determines the 

concentration until an equilibrium state, thus we use iteration method to solve the Equation (5.1). 

When the concentration drops to a low level, the lifetime becomes SRH lifetime.  

 

An estimated lifetime (1 ns) as an initial value is used to calculate the concentration, then use the 

concentration to derive a new lifetime, and repeat the process until it reaches convergence. Figure 

5-6 gives the concentrations for three wavelengths, 450nm (blue), 550nm (green), and 700nm 

(red). The returned lifetime by iteration method is 1 µs for all wavelengths, which indicates the 

recombination mechanism is SRH recombination and this is verified by the holes’ concentration, 

near 1012 cm-3. However, since the lifetime reduces to SRH lifetime in all range, the high 

concentration area near the surface (small depth) is not calculated correctly. As a comparison, 
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Figure 5-5 gives the modeled concentration by COMSOLTM. The iteration method gives larger 

lifetime and higher carrier concentration. 

 

Figure 5-6 Carriers’ concentration vs depth by iteration method for three wavelengths, 450nm (blue), 

550nm (green), and 700nm (red). 

 

5.4 Conclusion 

In this chapter, we focus on the continuity equation and analyze the photo-generated excess 

carriers’ concentration profile along the depth (one-dimension) at equilibrium state after 

generation-recombination process without the electric and magnetic field. Boundary conditions, 

surface recombination velocity and carriers’ lifetime are discussed separately to explore their 

effect on the concentration profile. The surface recombination velocity doesn’t have much effect 

while surface recombination velocity and carriers’ lifetime impact more. Carriers’ lifetime is a 

function of densities of impurities and carriers, and it will affect the carriers’ concentration as 

well.  
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CHAPTER 6 FINITE ELEMENT METHOD MODELING 

Finite element method (FEM), also known as Finite Element Analysis (FEA), is a numerical 

method to solve differential equations with boundary conditions in engineering and mathematical 

physics, usually employed in the fields of electromagnetics, mechanical structures, heat transfer, 

fluid flow,…etc. [1][2]. The method divides the problem into many smaller and simpler parts 

called finite elements, and transforms the differential equation into a system of algebraic 

equations.  

 

COMSOLTM is a multi-physics finite element method software [46]. The project WAS belonging 

to a multi-physics problem, thus in this thesis, all FEM models are simulated by COMSOLTM, on 

two versions, v3.5a and v5.1. Version 5.1 has the Semiconductor module providing parameter 

settings including semiconductor materials, doping, diffusion, electric field, electrical contacts, 

generation, and recombination. Version 3.5a doesn’t have the Semiconductor module, therefore, 

we use Electrostatics and Convection and Diffusion modules to simulate electric field and 

carriers’ transportation, respectively. However, the v3.5a offers a better flexibility to define the 

electrical parameters in order to simulate Hall Effect in a 2D model, while the v5.1 doesn’t.  

 

6.1 Model Setup 

In this part, a short demonstration is given to show the procedure to establish a COMSOLTM 

model. A few key points which are not mentioned in the official guides will be emphasized. The 

v3.5a is an old version, and only few users are still working on it. Therefore, we use the v5.1 to 

introduce the procedure. The electrical parameter setting for Hall Effect will be explained on 

v3.5a. 

 

For the WAS modeling, we start from a Model Wizard, choose 2D for Space Dimension and 

Semiconductor Module for Physics Interface. Then we create a geometry of the WAS, as shown 

in Figure 6-1.  
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Figure 6-1 Geometry of the WAS model. 

Figure 6-1 gives the complete geometry of the WAS. P-substrate, N-well region, Window area, 

three P+ collectors are marked. The notches on the top boundary model the effect of SiO2, the 

insulation layer widely use in a CMOS fabrication process, hence the top boundary is set to 

‘Insulator’. Most corners are modified in arc in order to ease convergence. Convergence means 

that the error of the numerical solution matches the equation within a pre-defined relative error 

tolerance, usually less than 10-6.  

 

The next step is to define the parameters of the WAS, mainly including Materials, Boundary 

conditions (insulation, zero charge, continuity, contact), Domains (uniform doping, analytical 

doping, generation, SRH recombination, Auger recombination), and self-defined functions if 

necessary under Definitions tab, as shown in Figure 6-2.  
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Figure 6-2 Semiconductor module setting. 

Before solving the problem, a crucial step is to create a mesh, to break down the whole structure 

into infinite elements. The mesh size and shape have a significant effect on convergence. 

COMSOLTM offers two mesh shapes, triangular and quadrilateral shape, and the former is 

commonly used. Large size may result in failure in convergence, while small size may take too 

much time to solve. A suggestion is to use the default mesh at first, then modify it for a better 

performance. Figure 6-3 illustrates the mesh for the WAS. A normal size is applied to all 

domains, and extremely fine size is used on all boundaries and interface between N-well and P-

substrate. Small size in boundaries and discontinuity region helps to obtain convergence faster. 
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Figure 6-3 The mesh for the WAS. 

COMSOLTM provides several Study modes, including stationary, time dependent, 

eigenfrequency, frequency domain, …etc. The time-independent continuity equation aims to find 

a solution to describe an equilibrium state. Therefore, the stationary study mode is the primary 

option.  

 

COMSOLTM also offers a useful function to sweep variable called the Auxiliary Sweep, as shown 

in red circle in Figure 6-4. In our project, the incident wavelength sweeps from 380 nm to 1000 

nm. If more than two variables need to be swept, COMSOLTM provides two sweep modes. The 

first mode is called All Combinations, which will solve for all combinations of variables, as its 

name indicates. The second mode is Specified Combinations, and it requires that each list of 

values have equal length. The first value in the first list only combines with the first value in the 

second list, and so on. Thus the total amount of combinations in this mode equals to the length of 

each list.  
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Figure 6-4 Stationary study mode and Auxiliary sweep function. 

Now we present a short review on v3.5a. Since this version doesn’t provide the Semiconductor 

module, we use two type modules, Electrostatics and Convection and Diffusion modules, for 

electric field simulation and electron and holes transportation respectively, as seen in Figure 6-5. 

The Electrostatics (init) module gives the initial value of electric field as the first solution step, 

then other three modules, Electrostatics (es), Convection and Diffusion (cde) for electrons, 

Convection and Diffusion (cdh) for holes, are coupled to solve the semiconductor model.  
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Figure 6-5 Modules in v3.5a for a semiconductor device simulation. 

COMSOLTM doesn’t have a module to simulate Hall Effect. In v5.1, there is no option to add a 

magnetic field on a 2D model. In v3.5a, in the domain setting of Convection and Diffusion 

module, we can define mobility to induce the Hall Effect. 

 

Mobility, µ, is a measure of the speed of an electron or a hole moving in a metal or a 

semiconductor, under an electric field [59].  Without a magnetic field, the hole velocity v is 

expressed as: 

𝑣𝑥 =  𝜇𝑝𝐸𝑥 , 𝑣𝑦 =  𝜇𝑝𝐸𝑦                                                             (6.1) 

where 𝜇𝑝 is the hole mobility,  𝐸𝑥 and 𝐸𝑦 are the electric field in x and y direction (as shown in 

Figure 6-1). With magnetic field, holes are moving under the Lorentz force, and the current 

density 𝑱𝑝 (𝑩) obeys the equation: 

𝑱𝑝 (𝑩) =  𝑱𝑝 (0) +  𝜇𝑃(𝑱𝒑 (𝑩) × 𝑩)                                              (6.2) 

where 𝑱𝑝 (0) is the hole current density without the magnetic field,  𝑱𝑝 (0) = 𝑞𝜇𝑝𝛿𝑝𝑬 + 𝑞𝐷𝑝∇𝛿𝑝. 

When B is perpendicular to E, and the diffusion current density 𝑞𝐷𝑝∇𝛿𝑝  is negligible, then, 

Equation (6.2) becomes:  
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𝑱𝑝 (𝑩) =  
𝑞𝜇𝑝𝛿𝑝

1+𝜇𝑝
2𝐵2

[𝑬 + 𝜇𝑝(𝑩 × 𝑬)]                                           (6.3) 

In terms of B = (0, 0, -Bz), E = (Ex, Ey, 0), and 𝑱𝑝 = 𝑞𝛿𝑝𝒗, the hole velocity becomes [49]: 

𝑣𝑥 =  
𝜇𝑝

1+𝜇𝑝
2𝐵𝑧

2  (−𝐸𝑥 + 𝜇𝑛𝐵𝑧𝐸𝑦)                                          (6.4 (a)) 

𝑣𝑦 =  
−𝜇𝑝

1+𝜇𝑝
2𝐵𝑧

2  (𝐸𝑦 + 𝜇𝑛𝐵𝑧𝐸𝑥)                                             (6.4 (b)) 

The modified velocities setting containing the Hall Effect are marked in red circle in Figure 6-6. 

 

Figure 6-6 Mobility definition for the Hall Effect. 

 

6.2 Improved Models 

The WAS prototype contains three collectors, as shown in Figure 3-1. The middle P+ collector 

collects holes, and a current is formed, which is used to make a spectrometer based on the 

equation: 

        𝐽𝐵 = 𝑀𝐵𝜆𝐼𝜆 + 𝐽𝐵,0                                                              (6.5)    
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𝑀𝐵𝜆 is the n×n matrix of the JB vs 𝐼𝜆 slopes for n magnetic fields and n wavelengths, and 𝐼𝜆 is the 

n×1 vector of the irradiances. For a 10×10 matrix, measurements of 10 irradiances for each of the 

10 magnetic fields are required, thus a total of 100 slope values are achieved for calibration. 

Moreover, the generation of a magnetic field requires extra space. Eliminating the external 

magnet is necessary to realize a compact spectrometer or a spectral imager.  

 

In this part, two improved models are proposed, as initial exploration on compact WAS without 

magnetic field. To obey the spectrometer principle, a few minor changes are made, in Section 

6.2.1, more collectors are implanted to collect more data at once, and in Section 6.2.2, the depth 

of the left collector is changed to produce different current.  

 

6.2.1 More P+ collectors 

The first WAS prototype uses three collectors, and now more collectors are added as seen in 

Figure 6-7. As the same principle as of the first WAS, the collector 1 collects holes near the 

surface, collector 7 collects holes from deep range, and collector 2 to 6 collects holes from 

specific depths, respectively. Compared with the first prototype, the new structure can obtain five 

current points for an irradiance. For instance, with the new structure of pixel array shown in 

Figure 6-8, on a 20×20 pixel array, first four rows collect current from the collector 2, the next 

four rows use the collector 3, and so on, to end with the last four rows employing the collector 6.  
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Figure 6-7 A sensor pixel with seven P+ collectors. 

 

 

Figure 6-8 The new pixel array with the structure of Figure 6-7. 

 

Figure 6-9 and Figure 6-10 give the simulation results of the current obtained from different 

collector vs incident wavelengths and incident irradiances respectively. As seen in Figure 6-10,  
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the slope of the relationship is different for each collectors, making this novel structure ideal for a 

spectrometer application.  

 

 

Figure 6-9 Current vs wavelength for several collectors. 
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Figure 6-10 Current vs irradiance for several collectors. 

 

The different collectors replace the need of a varying magnetic field on the structure presented in 

Chapter 3. Hence, Equation (3.19) can be written as: 

        𝐽𝑖 = 𝑀𝑖𝜆𝐼𝜆 + 𝐽𝑖,0                                                                 (6.6)    

i represents the collector number, 𝑀𝑖𝜆 is the i×i matrix of the current density vs irradiance slopes 

and 𝐼𝜆  is the i×1 vector of the irradiances. The matrix size is determined by the number of 

collectors. On the structure in Figure 6-7, i varies from 2 to 6, and the matrix size becomes 5×5.  

 

A disadvantage of this structure is the low resolution due to the small number of collectors. A 

large number of collectors will produce a higher resolution, however, it will also reduce the 

response because the far collectors (such as collector 5 and 6 in Figure 6-9) have smaller and 

similar currents. On the other hand, the calibration procedure to obtain coefficients of the matrix  

𝑀𝑖𝜆 is simplified. 
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6.2.2 The various depths of P1 collector 

A similar idea to the previous design is proposed in this section. Multiple depths of a collector 

instead of multiple collectors are proposed in order to replace the effect of magnetic field. 

 

As seen in Chapter 3, the P+ collectors shaped the electrical field around the collectors, and then 

determines the holes’ current on the middle P+ collector. The left collector absorbs holes near the 

surface, and the range is determined by its depth. Changing the depth affects the holes’ current 

collected by the middle collector. Figure 6-11 illustrates the several depths of the left collector, 

and Figure 6-12 provides the simulated current in the middle collector vs incident irradiances. 

The collector with large depth as seen in Figure 6-11 (c) results in smaller current because deeper 

left collector absorbs more holes, while small depth collector in Figure 6-11 (a) blocks fewer 

holes thus the current in the middle collector becomes larger. 

 

 

Figure 6-11 (a) The depth of left collector = 0.2 µm 
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Figure 6-11 (b) The depth of left collector = 0.4 µm 

 

 

Figure 6-11 (c) The depth of left collector = 0.6 µm 

Figure 6-11  COMSOLTM modeled results for several depths of the left collectors. 
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Figure 6-12 COMSOLTM modeled current in the middle collector for different depths of the left collector. 

 

Similar idea as section 6.2.1, a pixel array with five depths of the left collector can achieve five 

data at one measurement. Thus the Equation (3.19) becomes: 

        𝐽𝑑 = 𝑀𝑑𝜆𝐼𝜆 + 𝐽𝑑,0                                                               (6.7)    

where, d, represents the variation depth of the left collector, 𝑀𝑑𝜆 is the d×d matrix of the current 

density vs irradiance slope and 𝐼𝜆  is the d×1 vector of the irradiances. The matrix size is 

determined by the number of depths. For the structure in Figure 6-11, d varies from 2 to 6, and 

the matrix becomes 5×5. This design has the same advantages and disadvantages as the previous 

one except that it could not be fabricated in a standard CMOS process given the lack of doping 

profile options. 

 

6.3 Conclusion 

In this chapter, we introduce the COMSOL model setup procedure on version 5.1, and then give 

simulation technique details of the Hall Effect on version 3.5a. In order to develop a compact 
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spectrometer, two attempts are made to eliminate the need of space-consuming magnets. 

However, the low resolution is the main disadvantage of these modified pixel versions.  
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CHAPTER 7 CONCLUSION AND FUTURE WORK 

7.1 Summary  

This thesis proposes a novel micro-spectrometer without dispersing elements fabricated in 

standard CMOS technology. The spectrum detection principle is based on the wavelength 

absorption mechanism in silicon. Experimental results confirm the theoretical analysis proving 

that wavelength becomes indistinguishable at high concentration (>1016 cm-3) since the Auger 

recombination mechanism is dominant. However, wavelength information can be obtained at low 

concentration when Shockley-Read-Hall (SRH) recombination mechanism prevails. A Finite 

Element Method model confirms the excess holes’ detection principle as a function of depth 

where moving holes’ trajectory is deviated under the Lorentz force towards a set of collectors. 

The developed light spectrum detection method require a linear equation set where coefficients of 

the matrix come from the measurement of the current density as a function of the irradiance for 

different wavelengths and magnetic fields. 

 

Different from the traditional spectrometer, the resolution of the WAS depends on the minimal 

detectable current of excess holes. The theoretical calculation predicts that the resolution of the 

WAS could reach around 219 depending on the collectors’ junction shot noise.  

 

The continuity equation and the photo-generated excess carriers’ concentration profile along 

depth (one-dimension) at equilibrium state are discussed in details. Boundary conditions, surface 

recombination velocity and carriers’ lifetime are considered separately in order to explore their 

effects on the concentration profile. It was found that the surface recombination velocity doesn’t 

have much effect while boundary conditions and carriers’ lifetime have more impact.  

 

In order to develop a compact spectrometer, two models are conceived where the detection 

principle does not rely on space-consuming magnets. However, the low resolution is the main 

disadvantage of these modified structures. 
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7.2 Contributions 

The following main contributions have been achieved: 

a) We have proposed the concept of spectrometry without dispersing element using a magnetic 

field. A monochrome light beam generates a unique excess carrier distribution along the 

incident depth due to the absorption coefficient. Hence, the wavelength information can be 

obtained by measuring the photo-generated carrier concentration as a function of depth 

under the Lorentz force. 

b) We have validated the detection principle from solid-state physics analysis, finite element 

method model, and experimental results. Wavelength information could be obtained at low 

concentration when Shockley-Read-Hall (SRH) recombination mechanism prevails, while 

wavelength becomes indistinguishable at high concentration when the Auger recombination 

mechanism is dominant. 

c) We have proposed two novel structures which eliminate the need of a magnetic field to 

obtain the coefficient matrix of the spectrometer. 

 

7.3 Suggestions for future work 

There are two suggestions for future work: 

a) The resolution has reached the objective in a part range of the visible spectrum. More 

improvements on collectors’ positions and the pixel geometry should be studied to increase 

the resolution in other spectrum range. Several groups of collectors, various positions of 

window area, and different N-well setting may have potential contributions. 

 

b) The prototype WAS employs an external space-consuming magnetic field. Two improved 

models aiming to compact spectrometer without magnets have been proposed. However, they 

cannot achieve same-level resolution as the prototype WAS. Implanting more collectors is 

not an effective solution, and it will reduce the response as well. This is a challenge to explore 

a relationship between measured current and a physical quantity instead of the magnetic field 

to complete the calibration matrix. 
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APPENDIX A – VHDL CODE 

VHDL code of selecting signals 

-- GRM, Polytechnique de Montreal 

-- Author: Kai Zhang 

 

-- Create Date:  2014/02/12 

-- Target Device: Actel A40MX04PL84 

 

 

------------------------------------------------ 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

------------------------------------------------------- 

Entity FPGA42MX is  

port ( 

      clk, scan_mode, row_sel, reset: IN STD_LOGIC; 

      clk_pixel: out std_logic; 

   Csync, Rsync: out std_logic; 

   Column: out std_logic_vector(19 downto 0); 

   Row: out std_logic_vector(19 downto 0)    

   ); 

end FPGA42MX; 
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------------------------------------------------------------ 

Architecture Code of FPGA42MX is 

 

-- internal signals between three blocks 

signal clk_col: std_logic := '0';--initial values for simulation 

signal clk_row: std_logic := '0';--initial values for simulation 

 

-- internal signals in freq_divider 1 

signal countQ: std_logic_vector(3 downto 0) := "0000";  

 

-- internal signals in col 

signal countC: std_logic_vector(4 downto 0) := "00000";  

 

-- internal signals in freq_divider 2 and row 

signal countQ2: std_logic_vector(3 downto 0) := "0000"; 

signal countR: std_logic_vector(4 downto 0) := "00000"; 

 

begin 

------------------------------------------------------------------ 

proc_freq_divider1: -- ten times divider 

process (reset, clk)   

begin 

 if (reset='1') then  --reset all 

  clk_col <= '0'; 
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  countQ <= "0000"; 

     

 else 

  if(clk'event and clk = '1') then    

  --ten times divider 

   if(countQ /= 4) then 

   countQ <= countQ + 1; 

   else 

   clk_col <= not clk_col; 

   CountQ <= (others =>'0'); 

   end if; 

  end if; 

 end if; 

  

end process proc_freq_divider1; 

 

------------------------------------------------------------------ 

proc_freq_divider2: -- 20 times divider of clk_col 

process (reset, clk_col)   

begin 

 if (reset='1') then  --reset all 

  clk_row <= '0'; 

  countQ2 <= "0000"; 
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 else 

  if(clk_col'event and clk_col = '1') then   

  -- 20 times frequency divider of clk_col 

   if(countQ2 /= 9) then 

    CountQ2 <= CountQ2 + 1; 

   else 

    clk_row <= not clk_row; 

    CountQ2 <= (others =>'0'); 

   end if; 

  end if; 

 end if;  

end process proc_freq_divider2; 

----------------------------------------------- 

proc_col_auto_scan: 

process (reset, clk_col) 

begin 

 if (reset='1') then    -- reset 

  Csync <= '0';  

  countC <= "00000"; 

  Column <= "00000000000000000000";   

 elsif (rising_edge(clk_col)) then 

  Csync <= '1'; 

  countC <= countC+1; 

    if(countC="10100") then 
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    countC <= "00000"; 

    end if; 

    case countC is 

    

   when "00001" => Column <= "00000000000000000001"; 

   when "00010" => Column <= "00000000000000000010"; 

   when "00011" => Column <= "00000000000000000100"; 

   when "00100" => Column <= "00000000000000001000"; 

   when "00101" => Column <= "00000000000000010000"; 

 

   when "00110" => Column <= "00000000000000100000"; 

   when "00111" => Column <= "00000000000001000000"; 

   when "01000" => Column <= "00000000000010000000"; 

   when "01001" => Column <=  "00000000000100000000"; 

   when "01010" => Column <= "00000000001000000000"; 

 

   when "01011" => Column <= "00000000010000000000"; 

   when "01100" => Column <= "00000000100000000000"; 

   when "01101" => Column <= "00000001000000000000"; 

   when "01110" => Column <= "00000010000000000000"; 

   when "01111" => Column <= "00000100000000000000"; 

 

   when "10000" => Column <= "00001000000000000000"; 

   when "10001" => Column <= "00010000000000000000"; 
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   when "10010" => Column <= "00100000000000000000"; 

   when "10011" => Column <= "01000000000000000000"; 

   when "10100" => Column <= "10000000000000000000"; 

      

   when others => Column <= "00000000000000000000"; 

   end case; 

 end if;   

end process proc_col_auto_scan; 

----------------------------------------------------------------------- 

proc_freq_divider2_row_sel:  -- row scan auto/manual 

process (reset, row_sel, clk_row, scan_mode) 

begin 

 if (reset='1') then    -- reset 

  Rsync <= '0';  

  countR <= "00000"; 

  Row <= "11111111111111111111";  

 elsif(clk_row='1' and clk_row'event) then -- auto scan 

   if (scan_mode ='1') then -- row circle auto 

   countR <= countR+1; 

   Rsync <= '1'; 

   if(countR="10100") then 

     countR <= "00000"; 

    end if; 

   case countR is 
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   when "00001" => Row <= "11111111111111111110"; 

   when "00010" => Row <= "11111111111111111101"; 

   when "00011" => Row <= "11111111111111111011"; 

   when "00100" => Row <= "11111111111111110111"; 

   when "00101" => Row <= "11111111111111101111"; 

    

   when "00110" => Row <= "11111111111111011111"; 

   when "00111" => Row <= "11111111111110111111"; 

   when "01000" => Row <= "11111111111101111111"; 

   when "01001" => Row <= "11111111111011111111"; 

   when "01010" => Row <= "11111111110111111111"; 

    

   when "01011" => Row <= "11111111101111111111"; 

   when "01100" => Row <= "11111111011111111111"; 

   when "01101" => Row <= "11111110111111111111"; 

   when "01110" => Row <= "11111101111111111111"; 

   when "01111" => Row <= "11111011111111111111"; 

    

   when "10000" => Row <= "11110111111111111111"; 

   when "10001" => Row <= "11101111111111111111"; 

   when "10010" => Row <= "11011111111111111111"; 

   when "10011" => Row <= "10111111111111111111"; 

   when "10100" => Row <= "01111111111111111111"; 
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   when others => Row <= "11111111111111111111"; 

   end case;   -- row output, circle mode 

     

   elsif(scan_mode='0' and row_sel='1') then 

   countR <= countR+1; 

   Rsync <= '1'; 

   if(countR="10100") then 

     countR <= "00000"; 

    end if; 

   case countR is 

   when "00001" => Row <= "11111111111111111110"; 

   when "00010" => Row <= "11111111111111111101"; 

   when "00011" => Row <= "11111111111111111011"; 

   when "00100" => Row <= "11111111111111110111"; 

   when "00101" => Row <= "11111111111111101111"; 

    

   when "00110" => Row <= "11111111111111011111"; 

   when "00111" => Row <= "11111111111110111111"; 

   when "01000" => Row <= "11111111111101111111"; 

   when "01001" => Row <= "11111111111011111111"; 

   when "01010" => Row <= "11111111110111111111"; 

    

   when "01011" => Row <= "11111111101111111111"; 

   when "01100" => Row <= "11111111011111111111"; 
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   when "01101" => Row <= "11111110111111111111"; 

   when "01110" => Row <= "11111101111111111111"; 

   when "01111" => Row <= "11111011111111111111"; 

    

   when "10000" => Row <= "11110111111111111111"; 

   when "10001" => Row <= "11101111111111111111"; 

   when "10010" => Row <= "11011111111111111111"; 

   when "10011" => Row <= "10111111111111111111"; 

   when "10100" => Row <= "01111111111111111111"; 

    

   when others => Row <= "11111111111111111111"; 

   end case;   -- row output, circle mode 

   end if;  

 end if; 

  

end process proc_freq_divider2_row_sel; 

-------------------------------------------------- 

clk_pixel <= clk; 

-------------------------------------------------- 

end Code; 
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APPENDIX B – RESOLUTION CALCULATION CODE 

Resolution calculation code by MATLAB.  

-------------------------------------------------- 

% to calculate the resolution of the spectrometer 

% R= excess holes/delta excess holes 

% calculate the R, the target wavelength is  

% the middle wavelength for each delta_lambda 

 

clf; 

close all; 

clear; 

format short eng; % display 5 digits and 3 index 

 

q = 1.6e-19; % unit C. electron  

Power=4; %unit W/m^2; 

h= 6.63*10^(-34); %unit J*s 

c=3*10^8; %unit m/s 

color=['b','c','g','r','y','m','r','k','b','c','g','y','m','r','k']; 

i=1; 

delta_w_max = -80; 

step = -1; 

delta_holes = sqrt(2*q*5e-12*10e6)/(q*200*3.41e-8);  

i_noise = sqrt(2*q*5e-12*10e6); % noise current 

resolution = zeros(1000,3); % to save the data of delta_holes vs delta_w 
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del_w = zeros(delta_w_max/step,1); % record the delta_w 

del_hole = zeros(delta_w_max/step,1); % record the delta_holes 

del_hole_2 = zeros(delta_w_max/step,1); % record the delta_holes_2 

alpha = zeros(1000,2); % to record the absorption coeff. 

k=0; % to record the resolution vs wave.  

%% 

for w=400:1:800; % set the zero point of wavelength   NEED INPUT ** 

     

    y = 0.9e-4; % 1/alpha_approx(w); % cm 

    y1=y-0.1*10^(-4); % upper boundary 

    y2=y+0.1*10^(-4); % lower boundary 

    j=1; % used when save data to Cross 

    a1=alpha_approx(w);  % input nm, output cm 

    alpha(i,1) = w; 

    alpha(i,2) = a1; 

    I1 = 1e-13*Power*w/(h*c); % unit 1/cm2s 

    f1=@(y) (a1*I1*exp(-a1*abs(y)));  % unit 1/cm3s 

    holes1 = integral(f1,y1,y2); % excess holes unit 1/cm2s 

     

    for delta_w = step:step:delta_w_max; % scan parameter 

         

        del_w(j) = delta_w; 

        w2= w+delta_w;  

        a2=alpha_approx(w2); 
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        I2 = 1e-13*Power*w2/(h*c); % unit 1/cm2s 

        f2=@(y) (a2*I2*exp(-a2*abs(y)));  % unit 1/cm3s 

        holes2 = integral(f2,y1,y2); % excess holes unit 1/cm2s 

        del_hole(j) = abs(holes1-holes2); 

        figure(1); 

        plot(delta_w,(abs(holes1-holes2)),'r*','markersize',1);  

        plot(delta_w,(delta_holes),'k.','markersize',4); 

        hold on; 

        if j>1 

            if del_hole(j)>delta_holes &&  del_hole(j-1)<delta_holes 

              % slope = (del_hole(j)-del_hole(j-1))/step;  

              % A = del_hole(j)-del_hole(j-1)-slope*delta_w; % intersection 

               delta_w_cross = delta_w-step;  % position x value. not accurate, very close 

              % delta_w_cross = (delta_holes-A)/slope  % position x value 

               k=k+1; 

               resolution(k,1)=w; 

               resolution(k,2)=delta_w_cross;  

               figure(2); 

                plot(w,abs(delta_w_cross),'r*','markersize',6); 

                hold on; 

               figure(3); 

                plot(w,abs(w/delta_w_cross),'r*','markersize',6); 

                hold on; 

            else 
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            end 

        else  

        end 

        j=j+1; 

    end 

    i=i+1; 

end 

figure(1); 

xlabel('Resolving Power (nm)','fontsize',12); 

ylabel('hole-delta-concentration (1/cm^3)','fontsize',12); 

title('Resolving Power in the visible range','fontsize',12); 

figure(2); 

xlabel('Wavelength (nm)','fontsize',12); 

ylabel('Resolving Power (nm)','fontsize',12); 

title('Resolving Power vs. Wavelength','fontsize',12); 

figure(3); 

xlabel('Wavelength (nm)','fontsize',12); 

ylabel('Resolution','fontsize',12); 

title('Resolution vs. Wavelength','fontsize',12); 

 

 

 

 


