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Nothing in life is to be feared.
It is only to be understood.

Marie Curie
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Resume

Les perations de la machine a papier et Ie papier produit sont grandement influ-

encees par les interactions de la partie humide. L'optimisation de la partie humide

est done un moyen peu couteux pour ameliorer les operations de la machine. Dans

un premier temps, la fermeture de la boucle de 1'eau blanche a montre 1'amelioration

qu'on pouvait apporter aux performances de la machine a papier. Pour continuer

d'augmenter la productivite de la machine, 11 a ete propose d'integrer les boucles de

controle de la partie humide avec celles de la partie seche.

Ce travail se propose d'etudier une strategic de commande integree. Pour ce faire,

une representation du precede est necessaire. Des modeles de type entree/sortie ont

ete batis a partir d'un algorithme de regression lineaire modifie. De ces modeles, la

matrice de gain relatif (RGA) et Ie nombre de conditionnement ont ete calcules. Ces

indices indiquent 1'importance des interactions dans Ie systeme multivariable. La

strategic de commande resultante est testee avec des simulations. Pour representer

la realite, deux modeles sont utilises. Un modele lineaire est utilise pour parametrer

les controleurs et un modele nonlineaire est utilise pour simuler Ie precede. Les

variables de la partie humide qui sont considerees dans ce travail sont: la consistance

totale et la consistance en cendre de la caisse d'arrivee, la consistance totale et la

consistance en cendre de 1'eau blanche, Ie debit de pate epaisse, Ie debit de charge,

Ie debit de bentonite, et Ie debit de (poly)acrylamide cationique. Les variables de la

partie seche qui sont etudiees sont Ie taux de cendre dans la feuille et Ie grammage.
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D'apres les indices de controle, la strategie integree trois-par-trois commande

la consistance totale de 1'eau blanche, Ie contenu en cendre et Ie grammage. Les

variables manipulees utilisees sont Ie debit de polymere, Ie debit de charge, et Ie

debit de pate 6paisse. Des controleurs de type PID et M.PC sont utilises pour

controler Ie systeme. La performance du MPC par rapport a celle du PID depend

de la qualite du modele utilise. Lorsque Ie modele reproduit fidelement Ie precede, la

performance du MPC est superieure a celle du PID. Lorsque Ie modele ne reproduit

pas Ie precede, la performance du MPC est similaire ou inferieure a celle du

Des etudes preliminaires out egalement ete faites pour augmenter Ie nombre de

variables controlees. Le but est d'inclure la consistance totale a la caisse d'arrivee

dans Ie controleur. De cette fagon, Ie grammage peut etre controle meme si une

casse survient sur la machine. Des essais out ete faits sur une machine a papier

pilote pour mesurer la performance de la boucle de commande de la consistance a la

caisse d'arrivee. Un controleur PI a ete en mesure de maintenir Ie point de consigne

et les echantillons pris montrent un grammage controle.
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Abstract

Wet-end operations greatly influence paper machine operations and the resulting

produced paper. Their optimisation provides an inexpensive way of increasing paper

machine productivity. White water consistency control has shown the potential

benejRts of improving wet-end operations. To further increase the productivity, it

was proposed to integrate wet-end control loops with dry-end control loops.

This work proposes to investigate an integrated strategy. To perform an analysis,

a representation of the process is needed. Input/output models are developed from a

modified linear regression algorithm. Relative gain array (RGA), condition number

and simulations are used to assess the amount of interactions in the multivariable

system. To test the resulting control strategy, simulations are done. To obtain a

more realistic setting, the control strategy tuning is done using linear models and

tested on a nonlinear model. Wet-end variables studied are the headbox ash and

total consistencies, white water ash and total consistency, thick stock flowrate, filler

flowrate, bentonite flowrate, and Cationic (Poly)AcrylAmide (CPAM) flowrate. The

dry-end variables studied are sheet ash content and basis weight.

Based on the control indices, the three-by-three iutegrated system controls white

water total consistency, ash content and basis weight by manipulating CPAM flow-

rate, filler flowrate and thick stock flowrate. PID controllers and model-based con-

trailers (MPC) are used to control the system. MPC controller performance is

strongly dependant on its model quality. When the models reproduce well the



plant, the MPC regulating performance is superior to the PID performance. When

the models do not reproduce well the plant, the MPC performances are similar to

or worst than the PID performance. A preliminary study has been done to aug-

ment the three-by-three system with headbox consistency. This would allow to keep

the control in the event of a sheet break. The tests consist in closing the headbox

consistency control on a pilot paper machine. Results show that a PI controller

maintains the headbox consistency setpoint. Measured samples show a basis weight

under control.



Xl

Condense

Le papier a progressivement pris une importance preponderante dans la vie de

tous les jours. En 1998, la consommation mondiale de papier et de ses derivees etait

de 28. 4 million de tonnes desquelles 20 % ont ete produites au Canada (CPPA 2000).

L'organisation de la nourriture et de 1'agriculture des Nations Unies estime qu'en

2010, la consommation mondiale de papier sera un tiers plus elevee. Malheureuse-

ment, Ie cout de production de 1'industrie canadienne est eleve. Chaque annee, la

competition mondiale entre producteurs de papier reduit la marge de profit des

entreprises canadiennes. Pour prevenir la fermeture d'usine, il est primordiale

d'augmenter la productivite des usines. L'optimisation des procedes est une dis-

cipline qui analyse les precedes pour determiner les conditions d'operation opti-

males. Ces conditions sont maintenues par la commande de precedes. Ensemble,

1'optimisation et la commande de procedes donnent une solution qui a un cout

d'investissement peu eleve et qui peut aider 1'industrie canadienne des pates et pa-

pier a trouver un avantage competitif.

La production de papier est une suite de precedes complexes. La complexite

est accrue par la variabilite de la matiere premiere. Des differentes etapes de la

production du papier, ce pro jet se concentre sur la partie humide de la machine a

papier. II y a plusieurs raisons qui incitent a etudier la partie humide. L'experience

des producteurs et des etudes en laboratoire ont demontre que plusieurs proprietes

du papier sont directement influencees par les conditions operatoires de la partie
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humide. II est generalement plus facile de corriger un probleme potentiel au bout

humide qu'au bout sec de la machine. De plus, les tendances au niveau de 1'operation

de la machine comme: 1'utilisation de pates mecaniques; 1'augmentation de la fer-

meture des circuits d'eau blanche; I'augmentation du pourcentage de charge dans

la feuille; 1'utilisation de pate recyclee qui contienne une proportion elevee de fines

et de contaminants; et, bien sur, 1'obligation de reduire les couts de production ont

augmente la pression sur la performance de la partie humide en reduisant son aire

d'operation. Son optimisation devient une necessite. De plus, la partie humide a un

efTet direct sur Ie grammage, une specification importante lors de la vente du papier.

Presentement,, Ie grammage est controle au bout sec de la machine. II y a done un

long delai entre la lecture et 1'action du controleur. La reduction de ce delai et de la

variabilite du grammage serait un resultat important de 1'optimisation de la partie

humide de la machine a papier.

Revue de la litterature

La theorie sur la chimie de la partie humide (Swerin &; Odberg 1997) est assez

avancee pour definir qualitativement la situation necessaire pour des conditions

d'operation optimale. Mais, elle ne peut donner des recommandations qui sont

pplicable a 1'optimis tion. Done, pour optimiser la partie humide, on doit trouver

les variables qui refletent la variabilite du procede. Les variables de la partie humide

peuvent etre divisee en deux groupes: variables d'entree et de sortie. Les variables

d'entree, qui expliquent la variabilite de la partie humide, peuvent etre sous-divisees

en deux autres group es:

1. Variables manipulees (parametres que Ie producteur controle);

2. Perturbations (parametres que Ie producteur ne peut controler).

Le groupe des variables de sortie peut aussi etre re-divise en deux:
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1. Consequences sur Ie precedes (facteurs qui afFectent Ie procede: retention,

drainage, productivite, etc. );

2. Consequences sur Ie produit (facteurs qui aflfectent Ie produit: formation, siz-

ing, uniformite, etc. ).

Le groupe des variables d'entree affectent Ie groupe des variables de sortie par

1'intermediaire des interactions moleculaires et colloidales, i. e., la chimie de la partie

humide. Une approche possible pour 1'optimisation est de reduire Ie plus possible la

variabilite du groupe d'entree, ce qui reduira la variabilite de la chimie de la partie

humide. Une premiere etape dans cette approche est de reduire la variabilite d'un

sous-systeme qui explique une bonne partie de 1'ensemble de la variabilite. II y a

plusieurs variables qui peuvent etre choisie comme sous-systeme: Ie taux de drainage,

la retention de premiere passe, la conductivite, Ie pH, la temperature, la formation,

etc. Par centre, toutes ces variables ne peuvent etre mesurees ou controlees. Lorsque

1'optimisation de la partie humide est devenu un sujet de recherche important, au

debut des annees 1990, la plupart des machines a papier controlait la temperature et

Ie pH. II n'y avait pas de capteurs fiables pour mesurer Ie drainage ou la formation.

Done, la retention de premiere passe (FPR), definie par 1'equation 1. 2, a ete proposee

comme premier sous-systeme a stabiliser parceque (Nazir & Carnegie-Jones 1991):

1. C'est une mesure de 1'efficacite de la section de formation

2. C'est une mesure de 1'efficacite des additifs de retention

3. C'est un indicateur de la retention d'autres additifs

4. C'est une mesure des phenomenes microscopiques et macroscopique presents.

Le FPR est sensible aux changements de la chimie du systeme et au niveau

de cisaillement.
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5. C'est une mesure de la proprete du systeme

6. C'est mesurable: grace aux capteurs de consistance, on peut calculer Ie FPR.

Plusieurs articles ont explique 1'efFet du controle de la retention, par Ie controle

de la consistance de 1'eau blanche, sur des machines pilotes et sur des machines

industrielles (voir Ie tableau 1. 5). Tous ces auteurs ont rapporte que Ie controle de

la retention aide la productivite et la stabilite de la machine a papier. Certains au-

teurs ont remarque une diminution dans la variabilite du grammage et de 1'epaisseur

de la feuille dans Ie sens machine (Nokelainen, Piirainen & Ramsey 1993, Noke-

lainen & Piirainen 1995, Yeager 1997, Olsson &: Renaud 2000). Plusieurs auteurs

avancent que Ie controle de la retention reduit la quantite de cassure sur la ma-

chine (Nokelainen et al. 1993, Nokelainen & Piirainen 1995, Rantala, Tarhonen &

Koivo 19946, Proulx, Morissette & Ruel 1999). D'autres ont rapportee une aug-

mentation de la vitesse de la machine a papier (Olsson & Renaud 2000, Lang,

Nokelainen, Rantala, Huhtelin, Tian fe Kuusisto 1999). De plus, une reduction

dans Ie cout du papier est rapporte due a une reduction de la quantite de vapeur

utilisee, une augmentation de la quantite de cendres dans la feuille, et a une optimi-

sation de la quantite de polymeres utilises (Yeager 1997). Le cout du traitement de

1'eau blanche diminue grace a une plus petite concentration de fines dans les rejets

(Kortelainen 1991). Plusieurs auteurs out rapporte un effet domino qui reduit la

variabilite d'autres variables du bout humide (consistance a la caisse d'arrivee, la

concentration en cendre, Ie grammage) lorsque la consistance de 1'eau blanche est

controlee. (Nokelainen et al. 1993, Proulx et al. 1999, Sopenlehto 1995, Proulx &

Renaud 2000).
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Integration de la commande des parties humide et seche

L'etape suivante, la plus logique, consiste a stabiliser plus d'un sous-systeme de la

partie humide, i. e., avoir plus d'une boucle de controle. Le but est de reduire les

variations du bout humide pour obtenir un papier qui rencontre Ie mieux possible

les besoins du consommateur. Une des premieres exigences du consommateur est

un grammage constant. La presente boucle de controle, ou Ie capteur de la partie

seche modifie 1'ouverture de la vanne du cuvier machine, peut seulement reduire

les longues variations. Un controle base dans la partie humide n'aurait pas ce long

delai. La strategic est, done, t'integrer les boucles de controle du bout sec a celles

du bout humide. Une strategic integree a ete proposee par (Rantala, Nokelainen

& Artama 1999). Cependant, cette strategic n'a pas ete installee au complet sur

une machine a papier. Ils ont identifie la consistance, les cendres, la conductivite,

Ie pH, la charge et la temperature comme des variables importantes qui expliquent

les variations de la partie humide. L'hypothese de leur strategie est que si les sous-

systemes importants sont controles, les plus importantes perturbations vont etre

eliminees (voir figure 1. 6).

Objectifs

Avant d'utiliser une strategic de commande, il est important de quantifier les interac-

tions entre les difFerentes variables. Plusieurs articles recents ont presente des strate-

gies de commande integrant plusieurs boucles (Rantala et al. 1999, Lang et al. 1999).

Les interactions entre les variables sont au mieux qualitativement definies. Par ex-

emple, dans la seule application MPC, les auteurs n'ont pas trouve une amelioration

de la performance lorsqu'ils ont inclus la consistance de 1'eau blanche dans Ie con-

troleur. Un controleur PI donnait d'aussi bons resultats. Une analyse des interac-

tions entre les variables permettrait de mieux comparer les strategies de commande
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existantes, et pourrait en proposer de nouvelles si cela s'averait necessaire. De plus,

une analyse des interactions entre les variables devrait aider a determiner Ie type de

controleur Ie plus approprie pour mieux controler Ie precede.

Les objectifs de ce projet sont:

. quantifier les interactions entre les variables manipulees et les variables con-

trolees.

Les variables analysees seront: la consistance en cendre et totale de la caisse

d'arrivee, la consistance en cendre et totale de 1'eau blanche, Ie contenu en

cendre de la feuille et Ie grammage.

. definir et tester une strategic de commande integrant la partie humide et seche

d'une machine a papier.

Les performances de different types de controleur (PID et MPC) seront egale-

ment etudiees.

Methodologie

Pour rencontrer les objectifs, il est necessaire de developper des modeles. Deux

methodes sont generalement utilisees pour batir des modeles: les bilans de matiere

et les equations entree/sortie. Dans ce travail, les deux types de modeles sont util-

ises mais seulement les modeles de type entree/sortie sont developpes. Les modeles

de type entree/sortie sont des equations qui representent les efFets de la variable

d'entree sur la variable de sortie. Plusieurs equations peuvent representer Ie meme

groupe de donnees. Dans ce travail, des equations lineaires (voir 2. 8) sont obtenus a

partir d'un algorithme de regression lineaire modifie (voir annexe B). Les modeles

sont calcules sur un groupe de donnees et valider sur un deuxieme groupe de don-

nees. Le modele representant Ie mieux les donnees est conserve comme Ie meilleur
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modele. De ces modeles, la matrice de gain relatif (RGA) et Ie nombre de condi-

tionnement sont calcules. Ces indices indiquent 1'importance des interactions dans

Ie systeme multivariable. La strategic de commande resultante est testee avec des

simulations. Lorsque des essais avec controleurs sur la machine etaient impossibles,

deux modeles sont utilises pour representer la realite. Un modele lineaire est utilise

pour parametrer les controleurs et un modele nonlineaire est utilise pour simuler Ie

precede.

Des donnees sent necessaires pour obtenir les modeles de type entree/sortie- Les

donnees ont ete obtenues de deux machines a papier pilote differentes, Des essais ont

ete effectues sur la machine a papier pilote de Paprican pour ameliorer la commande

de la consistance a la caisse d'arrivee. De ces donnees, quatre modeles sont construits

et analyses. Les variables manipulees sont la vanne du cuvier machine et la vitesse

de rotation de la pompe de melange. Les variables controlees sont la consistance a

la caisse d'arrivee et Ie debit a la caisse d'arrivee. D'autres essais ont ete effectues

sur la machine a papier pilote du Centre Specialise en Pate et Papier du Cegep de

Trois-Rivieres. Ces essais avaient pour but 1'etude des interactions entre les variables

de la partie humide et de la partie seche de la machine a papier. De ces donnees,

vingt-quatre modeles sont construits et analyses. Les variables etudiees sont: la

consistance en cendre et totale de la caisse d'amvee, la consistance totale et en

cendre de 1'eau blanche, Ie grammage, Ie contenu en cendre, Ie debit de pate epaisse,

Ie debit de charge, Ie debit de (poly)acrylamide cationique, Ie debit de bentonite et

Ie ratio des additifs de retention.

R.esultats et conclusions

Pour repondre aux objectifs de ce projet, les modeles entre les variables manipulees

et les variables controlees sont cruciaux. Consequemment, beaucoup de temps et
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d'efFort ont ete mis dans Ie developpement des modeles de type entree/sortie. La

qualite des modeles obtenus est depeudante de la qualite des donnees sur lesquelles

les modeles sont batis. Les donnees qui contiennent assez d'information sur la dy-

namique du precede permettent de d'obtenir de bons modeles. Pour ce faire, Ie

temps d'echantillonage des donnees doit etre assez rapide, plusieurs echelons doivent

etre faits sur Ie precede et Ie bruit ne doit pas empecher de voir la reaction du

precede.

Lorsque les modeles ont ete developpes, il est possible d'analyser les interactions

entre les differentes variables. D'apres les indices de controle, la strategic integree

trois-par-trois commande la consistance totale de 1'eau blanche, Ie contenu en cendre

et Ie grammage. Les variables manipules utilisees sont Ie debit de polymere, Ie debit

de charge, et Ie debit de pate epaisse.

Des controleurs de type PID et MPC sont utilises pour controler Ie systeme. Le

systeme est represente par un modele non-Iineaire basee sur des bilan de matieres.

La performance du MPC par rapport a celle du PID depend de la qualite du modele

utilise. Lorsque Ie modele reproduit fidelement Ie precede, la performance du MPC

est superieure a celle du PID. Lorsque Ie modele ne reproduit pas Ie procede, la

performance du MPC est similaire ou inferieure a celle du PID.

Des etudes preliminaires ont egalement ete faite pour augmenter Ie nombre de

variables controlees. Le but est d'inclure la consistance en cendre et totale a la

caisse d'arrivee dans Ie controleur. Ces variables sont les equivalents dans la partie

humide de la teneur en cendre et du grammage, les variables de la partie seche.

De cette fagon, Ie grammage peut etre controle meme si une casse survient sur la

machine. Pour ce faire, un predicteur basee sur les variables de la partie humide

est necesaire. Le predicteur donnerait une plage de valeurs acceptables pour les

consistance en cendre et totale. En mode d'operation normale, si les consistances de
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la caisse d arrivee sont a 1 interieur de la plage prescrite, Ie controleur optimiserait

les variables de la partie seche. Par centre, si les consistances sont a 1'exterieur de la

plage d'operation, Ie controleur ramenerait ces variables en priorite dans leur plage

de controle. Lors d'une casse, Ie controleur utiliserait seulement les variables de la

partie humide pour garder la machine sous controle. Naturellement, des simulations

sont necessaires pour confirmer Ie tout. Mais, avant d'etudier cette strategic integree,

il faut s'assurer que Ie grammage peut etre controle avec la consistance totale a la

caisse d'arrivee.

Des essais ont done ete faits sur une machine a papier pilote de Paprican pour

mesurer la performance de la boucle de commande de la consistance a la caisse

d'arrivee. Le controleur PI a ete en mesure de maintenir Ie point de consigne et les

echantillons pris montrent un grammage controle.
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Chapter 1

Problem Definition

The importance of paper and paper products in e eryday life does not need to be

emphasised. In 1998, the global consumption of paper and paper products was 28.4

million tons, 20 % of which had been produced in Canada (CPPA 2000). The United

Nations Food and Agriculture Organisation has forecasted that by 2010, the world

will use a thirty-three percent more paper and paperboard. As the competition

amongst the world papermakers becomes more fierce from year to year, Canada

must find ways to reduce its production costs. Only then will it be able to profit

significantly from this forecasted increase in global paper consumption. It is, there-

fore, essential to increase the productivity of every mill in order to prevent their

forced shutdown. Increased productivity is achieved through process optimisation.

Process optimisation is the discipline of driving processes to their peak efficiency

operating conditions. Through process optimisation, specific process control objec-

tives are developed. Together, process optimisation and control yield a solution with

relatively low capital investment thus helping the Canadian paper industry to gain

a much needed competitive edge.



1. 1 Process Description

Papermaking involves a series of complex processes. This project focuses on the

wet-end of paper machines. There are many incentives to study the wet-end and to

improve our comprehension of it. Experience has shown that many paper properties

are directly influenced by the wet-end operations. Furthermore, it is usually easier

to correct a potential problem in the wet-end rather than in the dry-end of the

paper machine. Also, papermaking trends such as: the use of mechanical pulps;

the increased white water closure; the increased percentage of fillers in paper; the

use of recycled pulp with a high content of fines and contaminants; and, of course,

cost management have increased the performance requirement of the wet-end and

reduced its operating area. Its optimisation becomes a necessity. Furthermore,

the wet-end has a direct effect on the basis weight and paper ash content, which

are significant properties of paper. Presently, basis weight and ash content are

controlled in the dry-end of the paper machine causing a long delay in the feedback

loop. Reducing this delay and tightening the variability of the controlled variables

would be a major benefit of wet-end optimisation.

To develop optimisation and control strategies for the wet-end of the paper

machine, an understanding of the chemical reactions and the interactions between

the different papermaking components is necessary. A review of wet-end chemistry

and of wet-end control strategies is presented in the following pages. Thereafter,

the specific objectives of this project are stated.

1. 2 Literature Review

Paper machine operations are usually divided into two parts: the dry-end and the

wet-end. In the dry-end, the sheet of paper is dried and rolled. In the wet-end, the



web is formed and pressed. To form the paper web, an aqueous cellulose wood fibre

suspension is sprayed over the moving wire of the paper machine. Although the two

principal components of the paper furnish are fibres and water, there are numerous

other components that interact with them. Wet-end chemistry involves studying

these interactions.

1. 2. 1 Understanding wet-end chemistry

Table 1. 1 presents the main paper furnish components. On a paper machine, water

usually constitutes 99 % percent of the slurry. Fillers are added to the paper furnish

to reduce cost and/or enhance certain properties (i. e., brightness, opacity, smooth-

ness, gloss, printability, etc. ). Often, fillers affect more than one paper property.

Electrolytes and surfactants are usually added to maintain the runnability of the

machine (i. e., defoamer, retention aids, etc. ). These components also affect the pa-

per properties. The electrolyte arid polyelectrolyte groups also include detrimental

substances. These are commonly defined as being dissolved or colloidal, anionic or

non-ionic materials, which adversely affect productivity and paper quality. It is im-

portant to remove detrimental substances from the paper machine system because

they can: accumulate in the white water system and eventually form deposit on the

machine; interfere with papermaking additives; and, increase the cost of the effluent

treatment. An efTective way of removing detrimental substances from the paper

machine system is to retain them on the paper web.

Fines are defined as the portion of the papermaking stock that will pass through

a 200-mesh screen (76 p,m diameter) excluding soluble and colloidal materials. Fines

can be divided in two groups: fibre fines and filler fines. Determining the surface

rea of the fines allows their interactions on the paper machine to be predicted. It

also explains their disproportionate importance in the final paper properties. Fibre



Table 1. 1; Main paper furnish components

water

fibres
fines
fillers

dissolved electrolytes
surfactants

dissolved polyelectrolytes

Source : Scott (1991)

fines exhibit two kinds of behaviour. The flexible fibre fines tend to become nega-

tively charged as do fibres, but swell more and absorb more water than fibres. The

rigid fibre fines act as fillers in the sheet. According to Scott (1986), the main effects

of fines on paper properties can be divided into two groups: direct, and selective

adsorption effects. In the direct effects group, fines: reduce sheet strength, reduce

drainage rate, reduce system cleanliness, decrease runnability, and improve sheet

optical properties. In the selective adsorption effects group, fines accumulate dis-

proportionate amounts of additives, especially cationic additives. This accumulation

affects paper properties because: fines retention dictates the additives effectiveness;

and, the distribution of fines through the z-direction of the web determines the two-

sidedness of the paper. Therefore, the key to maximise the positive effects of fines

and to reduce their negative effects is to retain them on the paper web. A mea-

sure of this is called the first-pass retention. First-pass retention (R) is defined as

the ratio of material that fornis the paper web with respect to the total amount of

material that was fed to the headbox (see 1. 1 and 1. 2). (1. 2) is usually used in the

literature, although (1. 1), being derived from a mass balance around the headbox,

is more accurate- Using the hypothesis that the flowrate going to the headbox is

approximately equal to the one entering the white water pit {FHB w Fww), (1. 2) is

obtained. To optimise retention, it is necessary to understand, at least partially, the



interactions between paper furnish components which lead to enhanced retention.

R

R

K

where

R

F

K

HB

ww

FHB^HB - FwwKww

FHB^HB
KHB - KWW

KHB
dry solid mass

slurry mass
x 100

(1. 1)

(1. 2)

(1. 3)

First-pass retention

Flowrate

Consistency

Headbox

White water

Retention mechanisms

Table 1. 2 presents the smallest dimensions of the main paper components. Paper

components are colloidal as they are very small particles with large surface areas.

The interactions between them will therefore be governed by the colloidal chemistry

Table 1. 2: Smallest dimensions of main paper furnish components
Component Smallest dimension

Fibre 10-20 ^m
Fine 1-2 p,m
Filler 0. 1-10 ^m

Source : Scott (1991)

According to colloidal chemistry, particle interactions are governed by the elec-

trostatic charges that accumulate at the surface. Fibres and fines become anionic



in water. They will therefore attract positively charged particles. The strength of

the particle interactions will depend on the charge density at the surface of each

particle. There is no direct way of measuring this charge. The measuring method

currently available utilises the zeta potential- Zeta potential is the electrical poten-

tial at the point where the two electrical layers surrounding the particle are touching

each other. In the first layer (Stern layer), the electrical field is strong and decreases

with increasing distance from the particle. In the second layer (Gouy-Chapman

layer), the electrical field is weaker and decreases to zero with increasing distance

but at a much slower rate. The zeta potential is, therefore, related to the surface

charge and to the strength of interactions between particles.

In papermaking, the different paper constituents must agglomerate to form a

paper web. The capacity of the furnish to flocculate will depend on the electrical

balance between attractive and repulsive forces and the collision frequency between

the different particles. Three different mechanisms are believed to influence the

formation of floes. They are: charge neutralisation, patch, and bridge models-

The charge neutralisation model works by reducing the electrical layers sur-

rounding the particle. To achieve this, cationic particles are added to the solution,

thereby reducing the repulsive forces between the particles. Figure 1. 1 (a) illustrates

this mechanism. The patch model works by creating positively charged patches

on the anionic surface of the particle. Low molecular weight cationic polymers are

added to the solution and adsorbed onto the anionic surface. This positive patch

can then form an electrostatic bond with another particle. Figure 1. 1 (b) illustrates

this mechanism. The bridge model works by creating bridges which are large enough

to overcome the electrical repulsive layers between particles. To achieve this, high

molecular weight cationic polymers are added to the solution. Polymers adsorb onto

the anionic surface. Since they are long polymers, they have a tail in the solution



that can adsorb onto another particle, thereby joining the two particles. Figure

1. 1 (c) illustrates this mechanism.

To attain an acceptable retention level on the paper machine, cationic additives

are essential. This is easy to deduce from the mechanisms of interactions between

particles. These mechanisms are derived from colloidal chemistry theory, and apply

to every colloidal system. Little attention has been given to the fact that this

solution is the pulp furnish of a paper machine. The main point to consider is that

the slurry will be submitted to shear forces. The following paragraphs explain the

interactions between the fines, the fibres and the high molecular weight polymeric

additives, the most popular retention aid, on the p per machine.

The kinetics of adsorption between polymers and fibres will be governed by the

collision frequency of the particles. Shear or diffusion can induce collisions- On a

paper machine, shear is the dominant process leading to collisions between polymers

and fibres. After a collision, adsorption occurs in a fraction of a second. Polymers

also adsorb onto fillers, but at a much slower rate. An important point to consider

in the adsorption of the polymer on the fibre surface is the stability of the link. The

link is affected by the redistribution of polymers and the polymer reconformation.

The redistribution of polymers is a mechanism where an adsorbed polyelectrolyte

desorbs and diffuses into the solution to be adsorbed onto another particle. This

mechanism is difFusion-limited and is very slow on the paper machine. The redis-

tribution of polymers can also be induced by shear. This is commonly refered to as

polymer transfer. In that case, a filler or a fine has already deposited itself onto a

surface of a fibre with adsorbed polymer and a floe has formed. When shear is ap-

plied to the suspension, the floe is destroyed. The adsorbed polymer is generally cut

in half. Part of the polymer stays on the fibre and the other part on the filler. The

final distribution of the polymer in the solution is governed by the charges available
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Figure 1. 1: Proposed retention mechanisms

Source a : Chung, Cantrell &; Lefevre (1993)

Source b and c : Scott (1992)



9

on the respective particles which can be roughly approximated by the surface areas

of the particles. This explained the importance of fines and fillers since their surface

areas are many times that of fibres. It is generally said that the fine surface area is

5 to 10 times that of the fibre.

Polymer conformation is a mechanism that explains the well-known fact that if

a retention aid is added much before of the headbox, its efficiency is significantly

reduced. This is due to fact that the polymer on the adsorbed surface flattens

out from a rather large extension in the solution to a small one. The extended

form is more efficient for flocculation. On a typical paper machine, 50 % of the

adsorbed polymer molecules will have reconformed in approximately 10 seconds.

The flocculation capacity of the system will be affected by both the redistribution

and the reconformation of the polymer.

Flocculation occurs when a filler collides with a fibre-polymer complex. The

filler is then adsorbed onto the polymer and a floe is formed. The collisions between

fillers and fibres are more numerous than the filler/filler collisions on the paper

machine but, nonetheless, there is some filler/filler flocculation happening. The

flocculation of fibre and filler is preferred since heterocoagulation gives better sheet

formation than homocoagulation (Boardman 1993). On the paper machine, polymer

adsorption and filler/fibre collisions are parallel processes.

It is believed that once floes are formed, the retention aids increase the adhesion

of the filler particles to the fibre surfaces. The mechanism proposed to explain this

behaviour is shown schematically in Figure 1. 2. The polymer chain is folded between

the filler and the fibre. Under shear, the polymer chain can act as an elastic. A

shorter strand can break the bond (link A on Figure 1. 2) between one of its surfaces

(either the filler or the fibre). As long as the polymer is not stressed to the point

where all of its attachment points have been severed it will bond the two particles
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together. It is believed that retention aids could give sufficient adhesion to withstand

most of the shear levels on a paper machine (Swerin & Odberg 1997).

Fibre

A

Filler

Figure 1. 2: Schematic representation of adhesion of polymer to filler and fibre. A:
first link to break under paper machine shear.

Source : Swerin & Odberg (1997)

It is a well-known fact that the efficiency of cationic polymers as flocculants is

low in systems containing high amounts of dissolved anionic polymers (detrimental

substances). The reactions between cationic retention aids and anionic polymers

can seriously interfere with the flocculation of fillers to fibres since both processes

take place on approximately the same time seal .

Microparticle retention aid systems

The retention mechanisms described above involve only one additive: either a charge

neutraliser, a low molecular weight cationic polymer, or a high molecular weight

cationic polymer. Another widely used retention aid system is the dual microparticle

system. Some examples of microparticle retention aid systems are:

. cationic starch and anionic colloidal silica;

. polyacrylamide and anionic montmorillionite;

. polyacrylamide and colloidal silica.
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The main differences between microparticle retention aids and traditional one-

component retention aid are that:

. microparticle systems are reversible or at least partially reversible retention/

dewatering systems;

. microparticle systems often have a positive effect on both retention and drai-

nage in the wire section and on the dewatering in the press section of the paper

machine.

The microparticle system is said to be partly reversible because there is signifi-

cant reflocculation that takes place after the dispersion of a flocculated suspension.

This is explained by the flocculation mechanism in microparticle systems. The

mechanism is believed to be as follows:

. polymers are adsorbed onto the fibres and fillers; coarse floes are formed by

the bridging mechanism (see Figure 1. 3(a));

. the floes are destroyed under the paper machine shear (see Figurel. 3(b));

. microparticles are added; physical bridges (electrostatic interactions) are for-

med between microparticle and adsorbed polymers (see Figure 1. 3(c)).

This flocculation mechanism is therefore governed by both electrostatic interac-

tions (Figure 1. 4, link A) and interparticle bridging (Figure 1. 4, link B). Swerin &

Odberg (1997) suggested that initial polymeric floe breakage at the high shear level

creates a larger number of sites available for interaction with the microparticles.

To account for the increase in drainage experienced when microparticle systems are

used, they claimed that the stock reflocculates to smaller and denser floes.
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Figure 1. 3: Microparticle system floe formation.

Source : adapted from Swerin & Odberg (1997)



13

Cho, Gamier, Paradis & Perrier (20016) developed a model to predict filler

retention based on the collision efficiency and the surface coverage of the fibres and

fines. The model uses a dual-type retention system (cationic CPAM and bentonite).

The state of the polymer layer ( original adsorption or transferred) is also included

in the model.

Figure 1. 4: Microparticle system interaction mechanisms. A: electrostatic interac-
tions, B: polymer bridging mechanism

Source : Swerin &: Odberg (1997)

Retention and formation

Formation is a measure of the quality of the produced sheet of paper. It is therefore

very important to assess the effect of increasing the first-pass retention on the paper.

It has been shown that it is more difficult to produce a paper with good sheet

formation from a stock which exhibits a strong fibre flocculation. In other words,

the formation exhibits a close relationship with the degree of flocculation. The fibre

network strength is also an important parameter which influences the formation of

the paper. The effect of chemical flocculant on fibre network strength is attributed

to a combination of an increase in the number of active fibres constituting the

network (i. e., to an increase in the average number of contact points per fibre), and

an increase in the bonding strength in the fibre-fibre contact points. If the strength

of the network is higher, the jet-to-wire ratio must also be higher to obtain good

formation.
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It is generally recognised among papermakers that a high retention level is often

accompanied by an impaired formation. However, this is not necessarily true. One

probable explanation is that at strong filler retention levels (above 65-70 %), the

retention aid dosage induced a very strong fibre flocculation. One way to compensate

for this (i. e. decrease the degree of fibre flocculation) would be to increase the shear

during sheet forming. Possible ways to accomplish this are listed below:

. blade forming instead of roll forming (the retention aid system is not strong

enough to withstand the high shear force of blade forming);

. increasing the jet-to-wire speed difference (discharge ratio) in twin-wire form-

ing;

. increasing wire tension during blade forming (rearrange floes and break fibre

floes without major detachment of filler particles).

1. 2. 2 Optimising wet-end chemistry

As we have seen, wet-end chemistry is quite advanced in terms of defining particle

interactions. But as far as optimisation is concerned, its knowledge is not sufficient.

Wet-end chemistry qualitatively defines the desirable situation: small floes with a

bonding strength that is not too high. There is no recommendation for the desirable

size of the floe. Likewise, there is no recommendation for the value of the bonding

strength. Therefore, research for the wet-end optimisation began with monitoring

the variables that reflect its variability. The wet-end variables can be classified in

two groups: input and output variables. The input variables , which account for all

the wet-end variability, can be further divided into two groups:

1. Practical determinants (parameters that the papermaker controls),
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2. Disturbances (parameters that the papermaker cannot control)

The output group can also by divided into two groups:

1. Process consequences (process factors: retention, drainage, runnability, etc. ),

2. Product, consequences (product factors: formation, sizing, uniformity, etc.)

Practical Determinants
Pulp \ Filler
Additives

Machine Speed
pH

Refining

Disturbances

Brok
Machine breaks
Machine wear

Seasons

Molecular and

Colloidal
Interactions

Flocculation
Adsorption

Charge balances
Chemical Reaction

Microbiology

Process Consequences

Retention

Drainage
System

cleanliness

Runnability

Product Consequences
Formation
Uniformity
Strenght
Porosity
Defects

Figure 1. 5: Relation between microscopic interactions and macroscopic variables
Source : Nazir & Carnegie-Jones (1991)

Figure 1. 5 presents this classification. It can be seen that the input group af-

fects the output group through molecular and colloidal interactions, i.e, wet-end

chemistry. A possible optimisation route is to reduce as much as possible the input
variability which will in turn reduce wet-end chemistry variability. The first step in

wet-end optimisation is to concentrate on one subsystem that will explain most of

the wet-end variability and stabilise this key subsystem. There are many variables

which could be monitored to reduce wet-end variability: drainage rate, first-pass

retention, conductivity, pH, temperature, formation, etc. However, not all of these
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variables can be monitored or even controlled. When wet-end optimisation began
to be an active research area, most paper machines were already controlling the
temperature and the pH. There were no reliable sensors for on-line drainage or for-

mation. Therefore, Nazir & Carnegie-Jones (1991) proposed to monitor first-pass
retention because:

1. It is a direct measure of the efficiency of the wire sectio to retain paper
components.

2. It is a direct measure of the efficiency of the retention aid system.

3. It is an indicator of the retention of other additives.

4. It is a measure that connects the chemistry and the process variables. First-

pass retention is sensitive to changes in system chemistry and in the level of

hydrodynamic shear.

5. It is a measure of the system cleanliness.

6. It is measurable: consistency sensors make it possible to compute first-pass
retention.

Since then, many papers have reported the effect of different variables on reten-

tion. Their results are based on the analysis of data collected through an on-line

system after their mill installed a consistency sensor. Bernier & Begin (1994) con-
eluded that polymer dosage is affected by the basis weight of the paper, the filler

type, and the conductivity of the white water. They found that when basis weight

increased, the polymer dosage decreased. When the filler surface area was greater,

more polymer was needed. When the conductivity was low, less polymer and ben-

tonite were needed. Kortelainen (1991) observed that the retention level is mainly
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determined by the basis weight being produced and that the broke addition rate

has an important effect on filler retention. This author also mentioned that filler

retention is an indicator more sensitive to the wet-end operation then is total reten-

tion. Olsson & Renaud (2000) concluded that the dosage of retention aid affected

the basis weight and the runnability of the machine. Furthermore, they showed

that retention aid overdosing had a negative effect on the machine. Miyanishi, Ima-

mura &; Hata (1990) showed that the correlation of first-pass retention and sheet

formation depended on the degree of microturbulence created on the paper machine

wire. At low microturbulence, the first-pass retention could not be improved with-

out deteriorating the sheet formation. At high microturbulence, it was possible to

improve first-pass retention without impairing the formation up to 50%. The ef-

feet of zeta potential on the retention has been assessed by several authors (Chung
et al. 1993, Brouwer 1991). They concluded that for best performances of the reten-

tion system, the zeta potential should be slightly negative. Stitt (1998) stated that
care must be taken not to drive the system cationic as it causes: reduction in wet-

strength development; excess foam due to free-floating excess wet-strength resin;

inconsistent formation and retention; unrecoverable felt filling; and colour varia-

tion. Honig, Turnbull & Wheeler (1999) compared the effect of different retention

system on the sheet properties. They concluded that sheet properties were mainly

affected by the filler, retention, and drainage levels, but were essentially independent
of the retention aids at comparable retention and drainage. Cho, Gamier, Paradis

& Perrier (2001a) studied the dynamics of filler retention. They concluded that the

main factor which affected sheet ash content was first-pass retention of solids and

parameters related to the white water short circulation loop. Since the white water

network is fixed for a given machine, the first-pass retention becomes an important
tool for optimisation.



White water consistency control

Once the effect of retention aids on retention is quantified, a control system can be

put into action. In the beginning of the 1990s, a Finnish group began investigating

retention control. From their pilot plant tests, they were able to identify a model

and subsequently maintained retention at its nominal operating point. They also

investigated the effect of the controlled variable. From their results presented in

Table 1. 3, they concluded that controlling the white water consistency gave better

results than directly controlling the retention. This can easily be explained by (1. 1)

or (1. 2). These equations show that the retention is a ratio of two quantities. It is

possible that the two quantities vary simultaneously, thereby keeping the retention

constant. But the consistency of each does vary. Thereafter, retention control aims

at keeping the white water consistency constant by manipulating the retention aid

flowrate.

Table 1.3: Ability of different control methods to dampen the eifect of 20% dilution
in retention chemical strength

Monitored Variables

Controlled Total Total Consistency
Variable Retention in White Water

Total Retention 76 % response in 18 min 76 % response in 19 min
Ash Retention 83 % response in 13 min 85 % response in 18 min
White Water
Total Consistency ' 94 % response in 10 min 89 % response in 8 min

Source : Nokelainen et al. (1993)

The literature has reported many pilot plant trials and subsequent mill imple-

mentations where white water consistency control is used to stabilise the wet-end.

Many papers suggest an implementation procedure (Rantala et al. 1994&, Artama

& Nokelainen 1997, Proulx et al. 1999). It could be summarised in four steps. First,

retention aid chemical injection points are determined by chemical effectiveness and
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can be located anywhere between the machine chest and the headbox. The injec-

tion points are very important as they will determine the retention and drainage

behaviours. Second, a setpoint mechanism is devised and implemented. Third, the

loop is tuned based on a 'bump test' performed under normal operating conditions.

If the paper machine is producing many grades, a test must be performed for every

grade. The white water consistency sensor must sample fast enough to be represen-

tative of the system dynamics. Fourth, limits and alarms are installed. Whenever

there is a failure and it is possible, the control loop should switch to manual mode

and hold the last retention aid chemical flowrate. There should be:

. a limit on minimum and maximum retention aid dosage;

. an alarm on the white water consistency sensor reading range;

. an alarm on the retention aid pump;

. an alarm on the retention control system to detect any system malfunction.

Renaud, Svensson & Tomicic (1998) and Proulx & Renaud (2000) are the only

authors to offer some precision on the speed of sampling of the consistency sensor.

They suggest a sampling rate of every minute or so. This sampling rate is considered

suitable to control the retention chemical dosage. Table 1.4 shows the rational

behind this recommendation. It can be seen that white water consistency is a

relatively slow process, and a sampling rate of one minute is acceptable.

The determination of the setpoint of the consistency has posed some problems.

Most authors use the white water consistency that the machine used to have before

the control loop was installed as setpoint. Laurikkala, Vuoti, Huhtelin & Koivo

(1998) tried to install an automatic setpoint determination algorithm for grade

change. Their results were inconclusive. Proulx & Renaud (2000) implemented
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Table 1.4: Typical paper machine dynamics under feedback control
Typical dynamics r X w 3r Tc^ TT\
Headbox total head 1 sec 3 sec 20 sec

Consistency 5 sec 15 sec 1. 5 min
Basis weight 1 min 3 min 20 min
Moisture 2 min 6 min 40 min
White water 5 min 15 min 100 min

Legend: T : process time constant

A : closed loop time constant

Tc : period at cut-off frequency

Source : Proulx &: Renaud (2000)

a percent-applied calculation to automatically adjust the ratio between retention

aid dosage and production rate (the thick stock flowrate is used as production rate).

In their opinion, this ensures that the system will be responsive to grade and speed

changes. But, Kessler, Magee & VanPembrook (2000) disagree. In their imple-

mentation, the controller setpoint was initially calculated on production rate. This

caused more upsets because the polymer flowrate was reduced when basis weight was

lowered. As the lighter basis weight retained less fines, unnecessary oscillations were

produced. In the end, the controller setpoint was manually entered by operators.

Today, most mills use a dual retention system offering different possibilities for

the manipulated variable, and many authors have presented different solutions. One

approach is to manipulate the ratio of the two polymers (Tomney, Pruszynski, Arm-

strong & Hurley 1998, Rantala et al. 19946, Cho et al. 2001 a). Bernier & Begin

(1994) kept the flow of microparticles constant, using only the flow of flocculant

as the manipulated variable. Olsson & Renaud (2000) used a strategy where the

white water ash consistency controlled the amount of flocculant and the total white

water consistency controlled the amount of microparticles. Proulx et al. (1999) pro-

posed to use the flow of flocculant as a manipulated variable for the white water

consistency, and the flow of coagulant as a manipulated variable for the dewatering
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capability of the headbox furnish (this strategy uses a drainage sensor)
The controller used in most of these papers is a normal PI or PID. It was ini-

tially tuned with the 'bump test' model and then fine-tuned on-line. Only Rantala,
Tarhonen & Koivo (1993) reported a more complicated model: a MISO-ARX model

of the total and ash retention. The total retention was best-fitted with a recursive

least-square algorithm to a first-order process. The ash retention was best-fitted

to a second order process. The important inputs were: alum, retention polymers,

fillers, refining grade, and furnish. This more complicated model has been used to

tune a normal PID-controller and the fine tuning was done on-line. Rantala et al.

(19946) used an adaptative PID but they reported no benefit over a scalar PID. Lang

et al. (1999) installed a model predictive controller (MPC) on a paper machine. The

three-by-three MPC controlled the basis weight, paper ash and white water consis-

tency by manipulating, respectively, thick stock valve, filler flowrate, and retention

aid flowrate. They reported an improvement over the single loop strategy for the

basis weight and paper ash, but the white water loop performed just as well with a

normal PI.

All published papers claimed that retention control helps the runnability and the

stability of the paper machine. Various authors have reported a decrease in machine

direction basis weight and caliper variations (Nokelainen et al. 1993, Nokelainen &

Piirainen 1995, Yeager 1997, Olsson & Renaud 2000). Many authors claimed that re-

tention control reduces the number of web breaks on the paper machine (Nokelainen

et al. 1993, Rantala et al. 19946, Nokelainen & Piirainen 1995, Proulx et al. 1999).

Others reported an increase in paper machine speed (Lang et al. 1999, Olsson &

Renaud 2000). Also, Yeager (1997) reported reduction in paper cost due to a de-

crease in steam usage, an increase in ash content, and an optimisation of polymer

usage. The white water treatment cost also decreased due to a lower concentra-
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tion of fines in the effluent (Kortelainen 1991). Many authors reported a cascade

effect reducing the variability of many other wet-end variables (headbox consis-

tency, ash content, and basis weight) after having installed a white water consis-

tency loop (Nokelainen et al. 1993, Sopenlehto 1995, Proulx et al. 1999, Proulx &

Renaud 2000). Recently, combinations of white water control with cationic demand

control (stabilisation of the electrical charge of the furnish) have been implemented

(Berger 2000, Nokkelainen 2000, Patton & Lee 1993). Berger (2000) did not find

any direct relationship between anionic detrimental substance and retention level.

However, charge control allows the retention chemicals to better perform. Similarly,

Nokkelainen (2000) found that the loops cooperate and gave better results when

used together. They also showed that using only charge control does not stabilise

the paper machine as much as white water consistency control does.

Table 1. 5 presents a summary of the different retention control strategies that

have been reported in the literature. The first and second columns present the con-

trolled and the manipulated variables. The superscript in the first column informs

on the implementation conditions: a M stands for a mill implementation , and a p

stands for a pilot plant implementation. The third column reports the improve-

ment obtained on the controlled variable variability. For purpose of comparison,

the numbers are reported as percentage1. When no data is reported, the paper did

not present the situation without control. The fifth column gives the name of the

authors. The sixth column refers to the figure in Appendix A, where the control

strategy is illustrated. In the case when more than one number is reported, the

authors used different strategies on different paper machines.

improvement is calculated based on: 100 fl - ..yalue_withcclntroL, ^l
without control y
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Table 1. 5: Summary of papers reporting retention control

Monitored Variables

Controlled Manipulated
(flowrate)

Retention

HB Kp
Retention

HB Ash Kp
WWK

WWK

WWK

WWK

WWK
WWK

WWK

WWK

WW Filler KM
WWKM
WW K-"

WWK

Legend:

Retention aid

Thick Stock
Retention aid 1

Retention aid 2

Retention aid

Retention aid

Polymer

Retention aid

Flocculant

PAM

Reduction in the Reference

controlled variable

variations

(Piirto &
Koivo 1991 a)

(Rantala,
Tarhonen &

Koivo 1994 a)
33% (r)

81. 4 % (s. d.)

65% (c.o.v)

80% (r)

Cationic Polymer 50% (s. d.)
Polymer 84 % (s. d.)

50% (s. d.)

44 % (s. d.)

70 % (s. d.)PAM
nanoparticle

Ratio of retention 66% (r)

aids (Compozil)
ratio of Flocculant 87% (r)

(Piirto &
Koivo 19916)
(Nokelainen
et al. 1993)
(Bernier &
Begin 1994)
(Nokelainen &
Piirainen 1995)
(Yeager 1997)
(Renaud et al.
1998)
(Proulx et al.
1999)
(Olsson &
Renaud 2000)

(Rantala et al.
19946)

(Tomney et al.
1998)

and Coagulant
WW : white water, HB : headbox, K : consistency
M : results from a mill, p : results from a pilot plant
(s. d. ) : improvement based on standard deviation
(r) : improvement based on range of variation
(c. o.v): improvement based on coefficient of variation: 100(JS-d-)

Figure

A.l

A.3
A.2

A.4

A.4

A.4

A.4

A.4
A.4

A.4

A.4

A.6

A.5

A.5
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Table 1. 5: (continued)

Monitored Variables

Controlled Manipulated
(flowrate)

WW K Polymer

HB Ash Kp
HBKP
Production Rate

WWKM
HB Ash KM
Thick Stock KM
Thick Stock K

Thick Stock AshM
HB A h ConsM
Cationic demand
WWKM
HE Ash K or

Paper AshM
WWKM
Basis weightM
Legend:

Filler
Thick Stock
Thick Stock

Retention aid

Filler
Thick Stock
Thick Stock

Filler
Filler
Coagulant
Retention aid

Reduction in the

controlled variable

Variations

50% (r)

60% (r)

0%

83% (r)
33. 3 % (s. d.)

56 % (r)
50 % (r)
60 % (r)

Reference

(Rantala et al.
1993)

(Laurikkala
et al. 1998)

(Rantala et al.
1999)

(Lang
et al. 1999)

Filler 19 % (s. d.)
Retention aid 32 % (s. d.)
Thick Stock 12 % (s. d.)
WW : white water, HB : headbox, K : consistency
M : results from a mill, p : results from a pilot plant
(s. d. ) : improvement based on standard deviation
(r) : improvement based on range of variation
(c.o.v): improvement based on coefficient of variation: 100(s-d-)

Figure

A. 12

A.3

A.4
A.7
A.9
A.9

A. 10
A.8

A. ll

A. 13

Integrated wet-end control

From Table 1.5, it can be seen that some strategies combined many contr 1 loops

(see Figures A. 2, A. 6, A. 11, A. 12, and A. 13). The obvious goal is to reduce as much

as possible wet-end variations to obtain a paper product that meets the customer

requirement. One of the first requirements is a constant basis weight. With the

actual dry-end loop, where a basis weight sensor modified the thick stock valve
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opening, only long variations can be dampened. Wet-end based control does not

suffer from the long time delay of the dry-end based control. The strategy is then

to integrate wet-end and dry-end control loops (as shown in figures A. 12 and A. 13).

A more complete strategy has been proposed by Rantala et al. (1999), although

they did not implement it, as a whole, on a paper machine. They identified con-

sistency, ash, conductivity, pH, charge and temperature as important variables that

explain wet-end variations. The assumption of their strategy is that by keeping

those important variables under control, most process upsets will be eliminated.

Figure 1.6 shows this strategy, except for temperature control.

Machine
Chest

.. <c>

^Active only during
ireak times

(C>;
Rete on :

.
aid :

^T
D

Filler

 >
Coagu

Headbox

White water

-- c

J(_acid/caustlc

CT

CD

Figure 1. 6: An integrated wet-end control strategy
Source : Rantala et al. (1999)

A machine chest consistency value is given to a feed-forward controller that sets

the flow of material going to the headbox according to the setpoint given by the

basis weight controller. In this way, fast disturbances are prevented from reaching

the headbox. White water consistency is controlled with the flow of a retention aid

polymer. To avoid ash content variations during and after breaks, an alternate ash

controller is set up to take over during a break; it keeps the headbox ash constant

by adjusting the filler flow valve. During normal operation, the ash content is
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measured at the dry end and the signal is sent to a summation block. To prevent
high frequency disturbances, the machine chest ash content is also measured. This

value is sent to a feedforward controller and added to the dry-end ash signal. The
result adjusts the filler flow. The main pH control is done in the stock preparation.

Adding a pH metre in the short circulation white water loop stabilises the pH value

to its setpoint. The cationic demand of white water in the short circulation loop is
measured to adjust the flowrate of the coagulant.

The ultimate goal of integrated strategies is to control the wet-end chemistry

to such an extent that the paper machine is always operating at the peak level

of efficiency. Current scientific knowledge is far from achieving this, but research
continues in this field.

1. 3 Research Objectives

In implementing a control strategy, it is important to assess the interactions among
variables. Recent papers have presented advanced wet-end control strategies (Rantala
et al. 1999, Lang et al. 1999). The interactions among the manipulated and the con-

trolled variables are, at best, qualitatively defined. For example, in the only MPC
application (Lang et al. 1999), the authors have found that white water control did

not gain in term of performance over a traditional control. Interaction analysis will

allow better comparison between the existing strategies, and will propose new ones,

if necessary. Furthermore, it should help in determining which controller is best

suited for a particular application.

The objectives for this project are:

. to quantify the interactions among the wet-end manipulated variables and the

controlled variables.

The wet-end variables analyzed will be headbox ash and total consistencies,
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white water ash and total consistencies. The dry-end variables analyzed will
be sheet ash content and basis weight.

. to define and test an integrated control strategy.

The strategy must include variables from the wet-end and the dry-end. The
choice between traditional control (PID) and newer control theory (MPC) will
also be investigated. The advantages and the performances of each type of
controller are going to be studied.

Process models are needed to fulfil the objectives. Chapter 2 will explain which
models are going to be used and how they are going to be developed. With the
models, it will be possible to test on a paper machine the headbox consistency control
loop. This loop could be an inner loop of the basis weight control. Implementation

tests are necessary as literature results are inconclusive (Laurikkala et al. 1998).
Chapter 3 presents the results of these tests. In Chapter 4, an interaction analysis
to discriminate between potential integrated strategies is carried out. Simulation
results comparing different controllers are also shown. Finally, a discussion on the
implication of the results on wet-end chemistry optimisation is presented.
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Chapter 2

Model Identification

In order to analyze a process, we must first describe it. Most often, a process is

described through the use of a mathematical model. The model will be a simplified

version of the process, hopefully, capturing the behaviour under study. There are

two main categories of models: first-principles and input-output. First-prindples

models are based on mass and energy balances around the boundary of the process.

They are more general in nature and can efficiently describe category of processes,

i. e. all paper machines. They usually incorporate few parameters that contain

speciiic information about the process under study. Input-output models are based

on collected data from a particular process. Mathematical functions are then derived

from the data. hey are relatively easy to construct, can faithfully represent the

behaviour of the process; however they are process specific. It is also possible

to derive input-output models from first-principles models. However, in this text,

input-output models will always refer to mathematical functions derived strictly

from data. For this thesis, the two types of models will be used, but only input-

output models will be built in this project.
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2. 1 Input-Output Models

To be able to build input-output models, three items must be available:

1. A meaningful data set.

2. A set of candidate models.

3. A rule to select the best models.

The procedure is thoroughly explained by Ljung (1999). A summary relevant

to this project is as follows. For more details and mathematical proofs, the reader

is referred to Ljung's book. A meaningful data set simply means that the data is

informative enough to provide a model that is close to the true process. It also

encompasses the notion of uniqueness of model. To meet this criterion, the data

was collected during specially designed experiments where each inputs were, in turn,

excited. When such experiments were not available, the data was chosen in order to

have an excited input. The next two points on the identification list are explained

in more details in the following sections.

2. 1. 1 Linear transfer functions family models

A general representation of an input-output model is given in (2. 1). y represents

the output variable of interest and u represents input variables that affect y. This

representation assumes that the yk and Uk sequences are centred around their mean,

and the e sequence represents white noise. The subscript k represents discrete points

in time. Formally, one should write k^t with k= 1 : N. For simplicity, the A( will

be omitted and the length of the sequence will always be considered N

yk = G{q-l}uk+H{q-^ek (2. 1)
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where

Vk

Uk

 k output variable

input variable

noise, usually assumed white

The system identification task is to define the functions G{q~1) and H{q~~i).
Two types of models can be used to approximate these functions: nonparametric

and parametric. In this study, it was decided to concentrate on parametric mod-

els as imposing a model structure leads to fewer parameters. Furthermore, these
models are better suited for controller synthesis. However, this leaves the difficult

task of choosing a model structure. A very well-known approximation is to use a

rational function as in (2. 2). The parameters of the models can be solved by lin-
ear regression techniques (minimisation of the distance between the model and the

data, see Appendix B for more details). With the linear regression techniques and

statistical theory, the parameters can be shown to converge to the true model if the

set is large enough (as TV -> oo). The model's statistical properties are based on

the input spectrum, and on the independence of the input and noise sequences. In

most cases, it is very difficult to fulfill these requirements. But, as the inventor of

this technique concluded:

In conclusion, the principle that the sum of the squares of the dif-

ferences between the observed and the computed quantities must be

minimum may, in the following manner, be considered independently of

the calculus of probabilities. (Gauss 1809)

This family of models can also provide an error model. This can become useful if it

is seen as a process disturbance model. Furthermore, this family is general enough

to accurately describe many different types of linear processes. The processes under
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study are non-linear. They will be approximated in their operating regions as linear

models. At the validation stage, this assumption will be easily verified with the

agreement between the data and model predictions.

A(<?-l)y,

where

A(<7-1)

5(9-1)
C'(9-1)
D{q-^

F(q-1)

B(g -r

-TY^+
C'(9-1)

F{^rK 
' 

D(q-^
e&

1 + aig-1 + azg"2 + a^q-3 + ... + a^9-na

&i9-l + &2g-2 + &3?-3 + ... + bnbq~nb

1 + cig-1 + egg-2 + C3<7-3 + . .. + c^q-nc

1 + di^-l + o!29-2 + dsq~3 + ... + ^g-nd

1 + fiQ~1 + hq~2 + hq-3 + ... + fn fq-nf

(2. 2)

(2. 3)

(2. 4)

(2. 5)

(2. 6)

(2. 7)

Once the structure of the model has been chosen, the model builder must specify

the number of parameters (na, nb, nc, nd, nf) in each polynomial. Furthermore a

delay of time nk can exist between the input and output. In this case (2. 2) can be
rewritten as (2. 8)

A(g-l)yfc = q -nkB{q -1

^fc+
C{q-1)

Ck (2. 8)F{q-^ - ' D(q-^

Equation (2. 8) is very general and seldom used in practice: testing all of the

combinations for a given total number of parameters requires important computer

power. Instead a parametric model derived from (2. 8) is usually able to accurately

represent the process. Table 2. 1 lists such models. In the proceeding pages, when

referring to diflferent model, the abbreviation will be used. It will be followed, in

parenthesis, by the number of parameters used for each polynomial, in alphabetical
order.
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Table 2. 1: Common parametric models
Name of the model Abbreviation

OE(nb, nf)
ARX(na, nb)

ARMAX(na, nb, nc)

ARARX{na, nb, nd)

Output-Error Model
Autoregressive Model
with Exogeneous Input
Autoregressive
Moving Average Model
with Exogeneous Input
Autoregressive
Autoregressive Model
with Exogeneous Input
Autoregressive Autoregressive ARARMAX(na, nb, nc, nd)
Moving Average Model
with Exogeneous Input
Box-Jenkins Model B3{nb, nc,nd,nf)

2. 1. 2 Model comparison and validation

Polynomials
of (2. 8) used

B(^), F(q-^
-4(?-1), ^(g-1)

A(q-^ , B(g-i),
C{q-1)

A(<7-1) , B(g-i),
D(9-1)

A(9-1) , 5(g-i),
C(g-i), D{q-^}

B{q-^ C{q-^\
D{q-l\ F(g-1)

After having decided on a set of models, a method to choose the best one is necessary.
In order to do so, a definition of best model is needed. To avoid long philosophical
discussions, best will simply be defined as a model that fulfills its purpose. The

objective of this project is to build models that can represent well enough the pro-
cess such that a controller can be designed from them. The model needs not to

be the real process description although it would be preferable. One way of select-

ing models could be to draw a graph and visually pick the best one. However. a

more automatised way would be better. In the parameter estimation method, the

prediction error is minimised. It could easily be used to compare different models

estimated from the same data set and with the same total number of parameters

(na +nb+nc+nd+ nf). To select between models with different number of pa-
rameters, the prediction error needs to be corrected. Each model computed will be
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giving a Final Prediction Error (FPE) which is the prediction error corrected by the
number of parameters. (2. 9) presents the mathematical formulation (Ljung 1999,
p. 504).

FPE

where

C?M

N

Vk,e

dw i W
N~ . '. V^ /..

~^M_^J Z^^Vk- Vk,0,
N" ^' fc=l

total number of estimated parameters

length of data set

estimated output value

(2. 9)

The FPE is calculated with the data from which the model was built. To assess

the quality of the model, it is important to see how the model can reproduce an
entire new output sequence from its input sequence. Therefore, every data set will be

separated into two parts: an identification sequence and a validation sequence. The

models will be compared with this validation sequence in which the reproduction
of the output data will be attempted. Again, visual agreement can be used to

select the model. But, (2. 10) is preferred (Ljung 1999, p. 500). It yields a measure
of the output variation that is explained by the model. However, using numerical
procedures can lead to a rather complicated model that explains the noise instead

of the process. Therefore, the best model will always be graphed to visually verify
over-fitting of noise. An other useful way of verifying overfit is to ensure that the
model's poles and zero do not cancel.

12' ' ) (2. 10)^EfeLilz/fcl'

Both the FPE and fit {R2) do not rely on any statistical feature of the models.

The above analysis is valid even if the linear regression did not give the true model.

R2(%)==10ofl -^Efc=li2/fc

1 '^.
^k=l
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The linear regression method guarantees that the model is the correct model if: the

data set is large; the input sequence and the noise are independent; and, the noise is

white. The verification of these assumptions is a good way of selecting between the

models. White noise is defined as a sequence of uncorrelated identically distributed

random variables with zero mean. Therefore for each model, the residuals sequence

will be calculated (2. 11). Then, the auto-correlation and the cross-correlation with

the input sequence will be calculated. A model that better follows the linear re-

gression assumptions will be favoured. When the linear regression assumptions are

fulfilled, parameters standard deviation becomes available. These standard devi-

ations could be used to compare models. I choose not to use this information as

it was not always available. But, when available, the parameter statistical range

was verified not to contain zero. If the range contains zero, the parameter can be

eliminated. Therefore, a model with a parameter value equal to zero is not chosen.

Lastly, the residuals are used to build another model. The model error model can

give useful information about the dynamics that are not explained by the model.

More importantly, it can assess if any dynamics were left out. The error model will

be estimated as a Finite Impulse model (using polynomial -B(g-l) with nb = 69 of

2. 8). The model quality will be assessed by looking at its fit (J?2) on the residuals.

£k, e =Vk- Vk,e (2. 11)

In case of equivalent models, the simplest model will always be kept. Higher

order models are more troublesome to use in simulation and control design. It is

important to remind oneself that the quality of the resulting model will be dependant

on the input quality: did the input affect the output, did the input excite the system

enough to force it to show its properties, and is the input informative enough to

validate and invalidate the candidate models? Finally, it is important to stress that

model selection is a subjective matter.
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Figure 2. 1: Identification data for the cooked example

2. 1. 3 Cooked example

In order to test the above method and assess its effectiveness, an example was

computed. An arbitrary stable process with 3 poles and 1 zero was chosen (2. 12).

An output signal was generated by submitting the system to a pseudo-random binary

sequence (PRBS) of 50 steps (-1 or 1), spread equally over 2000 seconds at a sampling

rate of 0.5 second. Noise was added in the form of random number between -0.01

to 0. 01. Figure 2. 1 shows the identification data. The first part of the signal is used

for identification and the second part for validation. In this example, the data is

already centred around zero. When this is not the case, the mean is removed.

y__ 0. 4(0. 5s + l)e-5s
u 3s3+4s2+5s+l ^'J

Due to a priori knowledge of the process and to reduce simulation time, the max-

imum number of parameters allowed for a model was 10. A total of 1002 different

models were calculated corresponding to the different combinations of models pre-

sented in Table 2. 1. Figure 2. 2 presents the FPE (the bar plot) and the fit (the line



36

23456789 10
Number of parameters in Ihe model (excluding nk)

Figure 2. 2: Candidate model

plot) of the best models for each different total number of parameters. The model

retained for comparison is the best model amongst the ones with the same number

of parameters (smallest FPE, greatest fit). Inside the bar, from top to bottom are

the respective values of na, nb, nc, nd, nf, nk.

From Figure 2. 2, we can see that all the models represent quite well the data.

However, there is not much improvement after adding the sixth parameter. There-

fore, the following analysis will try to discriminate between the models with 4, 5

and 6 parameters. Table 2. 2 presents the models and their parameter values.

The pole-zero map calculated by Matlab System Identification Toolbox is ana-

lyzed to make sure that no pole-zero cancellation occurred. In the present case, mod-

els OE(1, 3) and OE(1, 5) do not have zero. The remaining one does not have a pole-

zero cancellation. The auto-correlation of the residuals and the cross-correlation

between the residuals and the inputs are computed. For the three model structures,

the correlations showed white noise within a 99 % confidence interval. An impulse

error model was then computed. As expected, the error-model fit was very low (re-



Table 2. 2: Models retained from the preliminary analysis
Model Name Model

OE(1, 3) 0.01132 -n
l-2.249r?-l+1.823g-2-0.5462g-3

37

OE(2, 3) -0. 001075 -104-0. 013 -u
l-2.228g-l+1.797g-2-0.5389(7-3'u -t- e

0. 009345 -u
'''J> y ~~ l-2. 661g-l+3. 02g-2-1. 909?-3+0. 7l66g-4-0. 14389-5'u+e

spectively 2. 7999, 2. 4067, and 2. 4458 %). Since these models are almost equivalent,

the simplest one is chosen. Comparing this estimate with the real process, we can

see that the delay and the pole were correctly estimated. The estimated model has

2 zeros compared with 1 for the real process. But, since the zero is in the left half

plane, its influence is small and difficult to correctly pick by the identification proce-

dure. Figure 2. 3 presents the simulation of the chosen model against the validation

data. Such a good agreement is expected as the model set contains the true process.

2. 2 First-Principle Model: Paper Machine

To be able to build first-principle models, the following definitions must be available:

1. Model objectives.

2. System boundaries.

3. Knowledge of the inner-working of the process.

Usually, item 3 is never complete. The engineering practise is to impose some

assumptions on the model. The resulting model is valid inside those assumptions. To
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Figure 2. 3: Simulated model (black line) against the Validation Data (grey line)

develop a model for the paper machine, its operations can be divided in three parts:
formation section and press section (wet-end) and drying section (dry-end). Defining
and testing control strategies between the wet-end and the dry-end is the purpose

of this model. The control strategies must include wet-end chemistry knowledge
to be representative of today's paper machine operations. Most wet-end chemistry
interactions occur at the formation section. This section must be included in the

model. The press and drying sections mainly remove water. To keep the generality

of the desired model, only the very important features of the paper machine must

be included. Furthermore, a simple model is preferred as it can always be expanded

at a later time. Cho et al. (2001 a) developed such a model which is presented below

2. 2. 1 Mass balances

The model focuses on the section of the short circulation of white water, he selected

system is the paper machine with a simplified flow sheet. The approach system (ma-

chine chest, screen, cleaners ... ) is neglected. The recycling tanks (pulper, savealls,
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couch pit, ... ) are also neglected except for the white water wire pit. The press and
drying sections are also neglected. In this model, the sheet leaves as wet web. Ash

content and basis weight are then calculated. The resulting flowsheet is presented
in Figure 2. 4. Performing mass balances around each block determines the model.

In the following equations, the exponent l, represents fibres, fines or fillers as each

equation is written for each component. The headbox level is assumed constant.

Then, the headbox operations are modelled with 2. 13 and 2. 14. The mass flowrate

of bentonite and C-PAM are negligible compared to the other flowrates, and are not
included in the model.

Fa = Fg+Fi+Fg
dCk

VHB^ = F^ci+Fs^+^Ci-F,Ci
(2. 13)

(2. 14)

Since the wire exact operations are unknown, a model parameter is introduced

to overcome this difficulty. The parameter chosen to model the wire is R\ first-pass

retention (2. 15). This parameter also represents wet-end chemistry as it is affected

by: the type and dosage of retention aids, pH, cationic demand, conductivity and
refining degree (Cho et al. 2001 a)

F,Ci _ F^ - F, C\Rl= (2. 15)FzCi F^

The wire pit operations are modelled using (2. 16). Its volume V^,p is assumed
constant and its concentration is assumed to be uniform.

K,. dq
vwp~dt~ = F,Ci - F^Ct - FeCt5'-/5

dC,
vw^ = F2ci

- ^ - JRt) - F5^ - Fe^ (2. 16)
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Figure 2.4: Block diagram of the modelled wet-end
Source : Cho et al. (2001 a)

To customise this model to a certain machine, it is necessary to have the volume

of its wire pit and the values of Rl. In order to do so, the R parameters is fitted

to 2. 17 using the mass flowrates of variables affecting the retention. Therefore to

compute it, the different mass flowrates must be available. Also, the consistencies

(fiber, fine, fillers) of the white water must be known to evaluate R. Retention

values are computed assuming Fs w F^, therefore, using (1. 2).

Rl=^ (M^)l+^b, (M^er)3+fa, (M^mer)k+ta, (M^er)\2. 17)
3=0 k=0 ;=0

2. 2. 2 Case study: CSPP paper machine

The model was tested on the pilot paper machine of the Centre Specialise en Pates

et Papier(CSPP) of Cegep de Trois-Rivieres (Figure 2. 5). This is a fourdrinier-

type machine, 76 cm wide, with an opened headbox. Its operating speed is 40

m/min. The pulp used consisted of hardwood bleached Kraft pulp (70 %) and
softwood bleached Kraft pulp (30 %). The fines contents was 5. 6 %. The filler type

used was precipitated calcium carbonate (PCC). CPAM and bentonite were used

as retention additives. Step changes were equentially applied on CPAM dosage,
bentonite dosage, filler initial concentration, and pulp flow.
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Figure 2.5: Pilot Paper machine at the CSPP

The model was built in Matlab Simulink. Figure 2. 6 presents the model response

to step change in CPAM dosage- This figure also compares the model response to

the data. The model ash content is calculated with 2.18. The data ash content was

measured on-line with an ACCURAY 1190-ABB sensor. We can see that the model

is able to follow the dynamics quite well. Figure 2. 7 presents the sensor and model

ash content to change in initial filler concentration (PCC). Again, the model shows

good agreement with the data. The model is particularly good in modelling the

static non-linearities. In conclusion, this model can be used to discriminate between

candidate control strategies.

-ifiller

Ash Content (%)= 100^,, ^ ^3;_ ",,,,ibre i ^ifines , nfiller
'3 ~^ L/3 -t- <-/3

(2. 18)
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Figure 2. 6: Effect of CPAM dosage on sheet ash content. The grey line represents
the data and the black line, the model.

Source : Cho et al. (2001 a)
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Figure 2. 7. Effect on filler initial concentration on sheet ash content. The grey line
represents the data and the black line, the model.

Source : Cho et al. (2001 a)
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Chapter 3

Case Study of Headbox Consistency
Control

In the literature review (1. 2. 2), we have seen that most of the possible combinations

between controlled variables and manipulated variables have been tested on paper

machines, and have shown to give good results. It will be possible to compare

simulation results with literature knowledge. But, in the only reported attempt

to control headbox consistency (Laurikkala et al. 1998), the authors stated that

no benefits are gained over traditional dry-end control. However, it is a well-known

fact that paper machine basis weight control suffers from the long delay between the

wet and dry ends of the machine. Rantala et al. (1999) have proposed to integrate

wet-end and dry-end loops to improve basis weight control. Feedforward control

of machine chest consistency combined with the basis weight setpoint fixed the

opening of the machine chest valve (or fiow). This combination prevents consistency

disturbances to reach the headbox because the feedforward controller compensates

for them. The machine used for this case study does not have a consistency sensor

on the machine chest. Even if previous results are inconclusive, we propose to

cascade the basis weight control loop with a headbox consistency loop- We will

then be able to compare any combinations of input and output variables with paper
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machine results. The objective is to use the basis weight measure as a set point

for the consistency loop. The inner controller will keep the consistency stable by

manipulating the thick stock flow valve. Before implementing this strategy, the
inner loop performance must be determined.

This chapter addresses the problem of implementing a headbox consistency con-

trol on Paprican Pilot Paper Machine, Pointe-Claire, Canada. There is another

incentive for closing this loop on the pilot paper machine: many trials do not need

dry paper, and running only the wet-end is cost efTective. But to reproduce indus-

try conditions, the basis weight of the sheet must be kept constant. To this aim,

step tests were made to obtain a simplified model of the important variables affect-

ing headbox consistency. First estimates of PI controller parameters were obtained

and fine tuned on-line. The controller was tested with step changes and intentional

disturbances. It was able to maintain the headbox consistency at its setpoint.

3. 1 Experimental

3. 1. 1 Pilot paper machine

Paprican's pilot paper machine is a twin-wire type with three roll presses followed

by a shoe press. The second press is necessary to transfer the sheet, all of the

others are optional. Its operational speed is 1000 m/min (max: 2500 m/min). The
sheet is 20 inches wide at the headbox and between 12 and 14 inches wide at the

wet-sampler. With all chests full, the machine can continuously produce paper

at 1000 m/min for 3h30. The normal basis weight is between 45-50 g/m2. The

minimum and maximum produced on this machine is 18 and 86 g/m2 respectively.

Figure 3. 1 shows a schematic diagram of the pilot machine approach system (level

control is not shown). The consistency and the level are controlled for every stock

tanks, pulpers, and couch pit. The machine chest level and consistency are not
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Figure 3. 1: Schematic of the approach system of Paprican's pilot plant.

controlled. For every test run (except when sampling), the machine was running on

full recycle. The machine is equipped with two KajaaniRMi sensors located on the

headbox recirculation and on the first white water tray. Every sensor is connected to

a Toshiba MCS-1200 distributed control system. Over 100 points are archived with

PI version 3. 2 of OSI Software. For this study, over 30 points of interest (consistency,

flowrates, valve positions, etc. ) were collected at an interval of 1 sec in PI software

(see Table 3. 1).
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Table 3. 1: Sensors
Sensor Number

KV 761 576
KW 761 577
KV__761 578
KTSP 761 575
KT 761 575
KW 761 601
KV 761 602
KV 761 603
KTSP 761 600
KT 761 600
FT 761 110
SY 761 055
KV 761 055
KTSP 761 055
HB TOT CONSIS
FTSP 761 055
FT 761 055
FT 770 Oil
PT 770 001
KT 710 060
KV 761 255
KTSP 761 255
KT 761 255
KV 761 552
KV 761 553
KW 761 551
KTSP 761 550
KT 761 550
WW TOT CONSIS
KV 761 155
KTSP 761 155
KV 761 205
KTSP 761 205
KT 761 205

values archived for the headbox consistency analysis
Description Unit

Couch Pit Consistency CV #1 %
Couch Pit Consistency CV #2 %
Couch Pit Consistency CV #3 %
Couch Pit Consistency SP %
Couch Pit Consistency Transmitter %
D.E. Pulper Consistency CV#1 %
D.E. Pulper Consistency CV#2 %
D.E. Pulper Consistency CV#3 %
D.E. Pulper Consistency SP %
D.E. Pulper Consistency Transmitter %
Fan Pump #1 Feed FLOW L/MIN
Fan Pump #1 Speed Control %
HB Feed #1 Consistency CV %
HB Feed #1 Consistency SP %
HB Feed #1 Consistency Transmitter %
HB Feed #1 Flow SP L/MIN
HE Feed #1 Flow Transmitter L/MIN
HB to Rich WW SILO L/MIN
HB Pressure Transmitter psi
Lean WW Silo Consistency Transmitter %
Main Stock Chest Consistency CV %
Main Stock Chest Consistency SP %
Main Stock Chest Consistency Transmitter %
Pressbroke Pulper Consistency CV#1 %
Pressbroke Pulper Consistency CV#2 %
Pressbroke Pulper Consistency CV#3 %
Pressbroke Pulper Consistency SP %
Pressbroke Pulper Consistency Transmitter %
Rich WW Silo Consistency Transmitter %
Stock Tank#l Consistency CV %
Stock Tank#l Consistency SP %
Stock Tank#2 Consistency CV %
Stock Tank#2 Consistency SP %
Stock Tank#2 Consistency Transmitter %
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3. 1. 2 Open loop tests

To better design control strategies, it is important to understand the interactions

between the controlled variables and the manipulated variables. Papermaking, being

a multivariable process, headbox consistency is bound to be dependent on many

variables. The key is to isolate the most important variables and to assess their

interactions. Evidently, the effect of the thick stock valve must be quantified.

For machine runnability, the machine total flow must be constant. This is con-

trolled by maintaining a stable headbox pressure, which through Bernouilli's equa-

tion, mass balance, and geometry consideration (equations 3. 1 to 3. 4) calculated the

required headbox flow.

^+^+gZ, = ^+^+gZ,

Vl =
A^VZ

Al
Zg-Zi = L^sm0

2
V2

where

1-1
/Pl-P2

p

1/2

- gL^ sin 0

P pressure

p density of pulp furnish

v speed

Z elevation from reference point

A cross-sectional area

L width of headbox

0 headbox angle from horizontal plan

1 location of the headbox pressure sensor

(3. 1)

(3. 2)

(3. 3)

(3. 4)
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2 headbox lip opening

This calculated flow is sent as setpoint to a flow controller which compares it with

the sensor value, installed before the headbox, and manipulates the fanpump velocity

accordingly. Changing the fanpump velocity effectively changes the dilution rate of

the thick stock, modifying the headbox consistency. Therefore, a second objective

of the modelling task is to assess the importance of the fanpump velocity on the

headbox consistency. Thirdly, an alternate strategy would be to include a machine

chest flow controller. To do this, a model between the thick stock valve and the

machine chest flow is needed. The matrix G of models constructed is detailed in

Table 3. 2.

Table 3. 2: Definition of models built for analyzing headbox consistency interactions
Thick stock Fanpump Machine chest

valve velocity flowrate

Headbox consistency
yi
Headbox flowrate

V2
Machine chest flowrate

U3

Ul

9u

921

£?31

U2

9u

92-2

U3

5fl3

523

The models are constructed according to the method described in section 2. 1.

With the headbox pressure/flow loops opened, the machine chest valve and fanpump

velocity are varied. To simplify, the fanpump velocity is expressed in percentage of

its scale ( 0 %: fanpump closed and 100 %: 1800 rpm ). The data was collected with

the paper machine running a thermomechanical pulp with no filler and no additives

(the ash content was smaller than 0. 5%). The pulp pH was around 6 and it was not

controlled on the paper machine. The RMi consistency sensors were calibrated prior

to the runs with the same pulp. Some tests were conducted before the installation
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of the consistency sensors. The data retrieved from these runs (relation between

variables ^2, Z/3, '"i, uz, ̂ 3) were also used in the model building process. Appendix

C presents the identification data with the detailed calculations of the model building
procedure.

3. 1. 3 Models

Two types of models are kept from the identification procedure: the best one and

the FOPDT model (or equivalently OE(1, 1)). This enables one to design the PI

controller with a simple model and to test it on more elaborate models. Table

3. 3 presents the G matrix with the OE(1, 1) models and Table 3.4 presents the G

matrix of the more complicated models. These models also include disturbance

transfer functions that are presented in Table 3. 5. The models are presented in

their discrete form. The sampling time was 1 second. The tables also show the

percentage of fit (see (2. 10)) of the model on the validation data. The models built

are all linear models. With the data, it is possible to estimate the range where the

linearity is respected. For each model, this range is also presented in Tables 3. 3 and

3. 4. Using only the identification and validation data in the linear range, the fit

(J?2) of the models is computed and presented in the tables. From the tables, we

can see that using the machine chest flowrate (^3) as the manipulated variable gives

a larger linear range. The non-linearities of the valve are restricted to the model

between the valve and the flowrate.

With the models, the steady-state gain matrix is computed (3. 5). Using the

machine chest valve (-ui) and the headbox flowrate (^2) as manipulated variables, a

two by two system is obtained. The RGA (Relative Gain Array) of this system is

given in (3. 6). The RGA indicates that the two loops have little interactions. If the

machine chest valve is replaced by the machine chest filowrate ̂ 3 as a manipulated
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Table 3. 3: Matrix of Output-Error(l, l) models

Headbox

Consistency

yi (%)
fit % (J?2)
linear range

linear fit % (R2)
Headbox Flowrate

y'2 (L/min)

fit % (R2)
linear range

linear fit % {R2)
Machine Chest
FIowrate

Us (L/min)

fit % (R2)
linear range

linear fit % (R2)

Thick Stock
Valve

Ul (%)

0. 0007003g-45
1-0. 97949-z

65.0
60 < -ui < 70

0.89 ̂  yi < 0. 93
80.4

-0. 3553 -15
l-0. 942g-1

57.8
61 < ui < 69

3460 < y2 < 3540

57.8

1. 918 -6
l-0. 9579g-1

85.0
60 < ui < 70

750 < us < 1250
82.5

Fan pump
velocity
^ (%)

-0. 0004126g-35
l-0. 9808g-l

52.4
38.2 < U2 < 42.2

0.895 < yi < 0.905
68.1

23.37 -5
l-0.7948g-1

83.0
37. 1 < us ^ 47.1
2800 <:y2 < 4000

91.7

Machine Chest
Flowrate

ug (L/min)

1.891 xlO-5-27
1-0.97099-1

86.7
416 <us< 1316
0. 51 ̂ yi< 1. 11

87.9

-0.2279 -10
1+0.7997?-1

53.7
200 ̂ U3< 1200
3450 ^y2 < 3600

67.1

variable, the RGA is given by (3. 7). In this configuration, the system also has little

interactions.

Ul -Us US

K= 0. 0325 -0. 0213 0. 0007 y^

-6. 1125 111. 9076 -0. 1272 y^

(3. 5)

A12=
1. 0371 -0. 0371

-0.0371 1.0371
(3. 6)



A32=
1. 0376 -0. 0376

-0. 0376 1. 0376
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(3. 7)

The RGA analysis tends to show that no problem should occur in controlling

this system. The condition number of each system was also computed. Since this

measure is sensitive to scaling (Skogestad & Postlethwaite 1996), the gain matrix was

scaled using (3. 8). The maximum values used are the sensor or actuator maximum

values. For the valve and fanpump, it is 100. For the headbox consistency, it is 1.5

%. For the headbox flowrate, it is 9000 L/min. For the machine chest flowrate, it

is 2100 L/min. After scaling, the input and output ranges are from 0 to 1. The

condition number of each scaled matrices is presented in (3. 10) and (3. 11). Both

control configurations show small condition numbers. Both configurations should

be as easy to control.

K

where

K

D.
DH

K

-12'7(K12) = 7

7(K32) = 7

D, rKD,

scaled matrix

output scaling = y^^

input scaling = Umax

unsealed matrix

2. 1691 -1.4223

-0. 0679 1. 2434

0. 9369 -1. 4223

-0.0297 1.2434

=2. 83

=3. 69

(3. 8)

(3-9)

(3. 10)

(3. 11)
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Headbox

Consistency

2/i (%)
fit % {R2)
linear range

linear fit % (R2)
Headbox Flowrate

y-2 (L/min)

fit % (R2)
linear range

linear fit % (R2)
Machine Chest

Flowrate

U3 (L/min)

fit % [R2)
linear range

linear fit % (R2)

Table 3.4: Matrix of elaborate models

Thick Stock Fan pump
Valve velocity
^ (%) u, (%)

511

71.0
60 < u,i ^ 70

0.89 < 'yi < 0.93
79.7

521

58.2
61< ui < 69

3460 <, y2 < 3540

58.2

1. 167 -7
l-0.9751g-1

82.4
60 < ui ^ 70

750 < us ^ 1250
82.6

9n

g\3

921

923

5.511xl0-5 -37
1-0. 9247?-1 -0. 9946g-2+0. 9209g

1.352x 10-5 -31
l-1. 98g-l+1. 571g-2-0. 5714g-3

, -3

-0.2806 -15
l-1. 499g-l+0. 5446g-2

53.8
38. 2 ^ ua < 42.2

0-895 <yi< 0.905
69.1

15.7 -5
l-1. 181(7-l+0. 3225i?-2

85.5
37. 1 < U2 ^ 47.1
2800'< ya < 4000

92.1

Machine Chest
Flowrate

U3 (L/min)

9l3

88.7
416 ̂ us< 1316
0. 51 ̂ yi< 1. 11

88.7

923

56.1
200 ̂ U3< 1200
3450 ̂  ?/2 ̂  3600

70.5

-0. 1564 -16
l-1. 899g-l+0. 83689-2+0. 1949g-3+0. 2531g-4-0. 6451g-s-|-0. 321g-6-0. 1227g-7+0. 0913g-

-0.1449g-:lo+0.1369g-11
l-2. 002g-l+1. 465g-2-0. 4001g-3
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Table 3. 5: Matrix of disturbance models

d\ dy, da

Headbox Consistency

y. W [-^ly ^ ^

Headbox Flowrate

yz (L/min) 921d 5'22d 923d

Machine Chest Flowrate

U3 (L/min) 1-0. 6634 -1
(l-0.9796g-l)(l-0. 9751g-1)

1-0. 9455 -1
l-1.912g-l+0.9082(7-2-0.02705g-3+0.03174g-4

1-0.8916 -1 1
l+0.2054g-I-0.3766g-2-0.5045g-3-0.2986g-4 l-1.98g-I+1.571g-2-0.5714g-3

1-0. 05429-1
l-1. 398g-l+0. 4226g-2

1-0. 9814 -1

(l-0.9991g-I)(l-1.181g-l+0.3225g-2)
1-0.9603 -1

(l-0. 2335g-l-0. 4518g-2-0. 3088g-3)(l-2. 002g-I+1. 465g-2-0. 4001g-3)

9l3d

92U

^22d =
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3. 1. 4 Controller synthesis

PID controllers are available with the DCS interface. Because of the noisy nature of

the process, PI controllers are used. The tuning method chosen is the lambda tuning

method for its convenient use and well-connected relation with the process. The

discrete time domain transfer functions are transformed into the Laplace domain.

The resulting controller values are used in discrete simulation. This practice is

acceptable since the sampling time used is fast enough to show the process dynamics

(Seborg, Edgar & Mellichamp 1989).

The principle of lambda tuning determines a closed loop reference trajectory and

finds the controller parameters that yield this trajectory. For a FOPDT reference

trajectory (3. 12) with a truncated Taylor series replacing the delay e~es w 1- Qs

and FOPDT model (3. 13) , the PI controller (3. 14) parameters expressions are given

by (3. 15) and (3. 16)

9ref =

9model ==

As+1
K^e-83
ToS+ 1Ip

^(1+
T̂i

9c

Ti = TIp

K. =
Tn

(3. 12)

(3. 13)

(3. 14)
(3. 15)

(3. 16)^(A+0)

Unless stated otherwise, all PI controllers used in simulations and in trials are

tuned with the lambda rule. However, some fine tuning is generally required. Figure

3. 2 (a) presents the basic feedback control strategy. Figure 3. 2 (b) presents a more

complicated strategy where the flow is cascade controlled. A one way decoupled

strategy was also tested (Figure 3. 2 (c)). A static decoupler was installed on the
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machine. It was tuned using the ratio of the estimated process gain (-^u). During

the tests, it was noticed that the machine chest valve was not very precise and fast.

To improve its performance, a cascade mid-ranging strategy was implemented 3. 2(d).

Table 3.6 presents the simple and more elaborated models between the machine chest

flowrate (^3) and the smaller precision valve (^4). The small precision valve is tuned

according to the above algorithm. The big valve is tuned to react very slowly since

the main control is achieved using the small valve (Luyben 1990).

Table 3. 6: Models between us and small valve u^
OE(1,1) Model Elaborate Model

U3

linear range

linear fit % {R2)

0. 3843-3
l-0. 8483g

79.3

77.2

-1^4
0. 06637 -2

l-2.671g-l+2.908g-2-l,5289-3+0.3207g-4'u4
1-1.589 -1+0.3489 -2+0.07989 -3+0.1608 -4

l-3. 063g-l+3. 301,7-2-1. 413g-34-0. 1747g-<' "-4

83.2
0 < U4 < 100

900 < -us ^ 1100
77.5

3. 1. 5 Simulation

To simulate the different strategies, equations between the controlled variables and

the reference trajectories are necessary. For convenience, matrix notation is used.

The process is defined by (3. 17) or (3. 18). The superscripts 12 or 32 refer to the

input used: stands for machine chest valve, 2 stands for fanpump rpm, and 3

stands for machine chest flowrate. The transfer functions for each matrix entry are

given in Table 3. 4. To obtain the closed loop transfer function, the manipulated

variables vector is replaced in (3. 19) by the different controller expressions. All of

the simulations are done using scaled process transfer functions. The scaling used
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Figure 3. 2: Different control strategies implemented on the pilot paper machine
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is described in (3. 8).

^12^ 9n 9i2
^21 ^22

(3. 17)

32^ 5n 512
923 922

(3. 18)

y\

V2

5rii 9u ui

U2ff21 ^22

y = Gu

(3. 19)

Feedback Control

For feedback control, the u expression is given by (3. 20) Substituting into (3. 19)

and solving for y yields (3. 21). The symbols g^i and gc2 represent the controller

transfer functions. 5'ci controls the headbox consistency and g^ controls the headbox

flowrate.

Ul

U2

9ci 0

0 9c2
'eedbacku - Gf-dback.

y = (l-G12G{'

Cascade control

y? - yi

Vs! - 2/2

eedback\ (-il2 f-^ feedback ̂ ^sp

(3. 20)

(3. 21)

For cascade control, the u expression is given by (3. 22). Substituting into (3. 19)

and solving for y yields (3. 24). The Gmscade matrbc has an additional term 5^

(3. 23). This term is the closed loop equation relating the master controller output
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to the machine chest fiowrate. The symbols gci, g^ and g^y, represent the controller

transfer functions, gci controls the headbox consistency, gc2 controls the headbox

flowrate, and g^s controls the machine chest flowrate.

Us

U2

9UCL9^ 0

gc2

y? - yi
, sp

Z/2' 2/2

u

^"1_
9CL

G cascade

9C3931

1 + ffc3531

y =- ( \ 32 r~f cascaded

*^c )
-1[32 {-^cascade}"t ̂  32/-i cascade ̂^sp

(3. 22)

(3. 23)

(3. 24)

One-way decoupled control

For decoupled control, the u expression is given by (3. 25). Substituting into (3. 19)

and solving for y yields (3. 26). The G^ecoupled matrix has an additional term D^g^.

The decoupler informs the headbox consistency loop of fanpump changes happening

in the headbox flowrate loop. The symbols gci and gc2 represent the controller

transfer functions, ^ci controls the headbox consistency and g^ controls the headbox

flowrate.

ui gci Du9c2 y? - y\

U2 0 pc2

u = Gdecoup'ede

y? - V2

= (I-G12 ̂ -~i decoupled \ -1
12 f-^ decoupled^ ^sp

(3. 25)

(3. 26)

Mid-ranging control

For mid-ranging control, the basic strategy is the cascade with additional small valve

and controller. The additional valve is controlling the machine chest flowrate. The
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machine chest valve has a new controller that ensures a predefined opening of the

valve. This way, the bulk of the flow is passing through the machine chest valve

but the control is done with the small valve. The u expression is given by (3. 27).

Substituting into (3. 19) and solving for y yields (3. 30). The Gmid matrix has an

additional term g^ (3. 28). This is the closed loop trajectory between the machine

chest flowrate and its setpoint. The definition of g^^ is given in Table 3. 6. The u has

a new term as compared with the previous expressions. The G^ matrix gives the

transfer function between the machine chest valve setpoint and the machine chest

flowrate (3. 29). The symbols gcz represents the controller transfer functions. <7ci

controls the headbox consistency, (?c2 controls the headbox flowrate, g^y, controls the

valve, and ̂ c4 controls the machine chest flowrate.

U3

U2

9uciL9ci 0 ?/r 2/i

yy - V2
+

9UCL

0

lslp
ul

u =

,U4_
9c"L

7'ul-
SCL

y =

0 9c2

Gmide+G^u[p
(^34 - 93l9c3) 9c4

1 + (534 - 93l9c3) ffc4
93l9c3

1 + (ff34 - ff3l5c3) 5rc4

(l - G32Gmld)-l [G32G^dysp + G32G^uy

(3. 27)

(3. 28)

(3. 29)

(3. 30)

Figures 3. 3 and 3. 4 present the response to setpoint changes in headbox con-

sistency and flowrate. Since only a static decoupler is used and the system steady

state interactions are small, there are no advantages to using this strategy. In simu-

lation, the cascade strategy performs better in rejecting disturbances. The setpoint

change is slower than with feedback or decoupled strategies but servo-behaviour of

the system is less important than the regulatory. The mid-ranging strategy can

outperform the cascade strategy if the master controller is tuned more aggressively
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Figure 3. 3: Comparison of the response to a setpoint change in headbox consistency
of the different control strategies. Solid black line: feedback strategy, dotted black
line: cascade strategy, dash grey line: decoupled strategy, solid grey line: mid-
ranging strategy.

This is easily done in simulation but more risky on the real process. Since the

lambda parameter was not allowed to be smaller than the dominant time constant,

the performance of the mid-ranging strategy is equivalent to the cascade one.

3. 2 Results

Figure 3. 5 presents the headbox consistency with and without control. We can

see that the controller ensures smaller variations. Furthermore, the average value

of the headbox consistency is the setpoint. But, we do not achieve the industry

standard of 1 % variation around the setpoint. Contrary to the simulation, but not

surprisingly, all of the strategies tested yielded similar results. The noise prevented

from detecting the small variations between the different strategies. Unless otherwise

stated, all figures present the normal feedback strategy (Figure 3. 2(a))
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Figure 3. 5: Headbox consistency without and with control
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Figure 3. 6: Headbox consistency setpoint changes. Black line: machine data, grey
line: setpoint, dash line: simulation

3. 2. 1 Setpoint changes

To test the loop performance, various setpoint changes were applied. Figure 3.6

presents a typical response. As predicted with the model, the system needs approx-

imately 4 minutes to reach the new setpoint. This response time is quite acceptable

considering the small frequency of setpoint changes during papermaking. During

normal operation, headbox consistency setpoint changes will occur only during grade
changes.

3. 2. 2 Provoked disturbances

To test more realistically the control loop, disturbances were provoked by changing

the headbox recirculation flowrate and by changing the machine speed- Figure 3.7

presents the results of the disturbances on the headbox consistency. At time 0.7

hour, the headbox recirculation flowrate was reduced from 270 to 0. No effect

can be seen on the headbox consistency. At time 0.9 hour, the machine speed was
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Figure 3. 7: Effect of known disturbances on the headbox consistency control loop

increased from 950 m/min to 1000 m/min. This disturbance was seen on the headbox

consistency. It took approximately thirty minutes to correct it. This performance

needs improvement, but a speed variation of this amplitude during normal operation

is rare. It is worth noting that the controller was able to handle such a variation

and that smaller (and more realistic) speed variations will be corrected rapidly and
in a similar manner.

3. 2. 3 Periodicity propagation

A closer look at Figures 3. 5, 3. 6, and 3. 7 shows periodicity in the headbox consistency

signal. It is important to know where the oscillations originated and what their

influences on the resulting basis weight were. Three possible causes are:

1. Press Broke Pulper Propagation

Looking at Figure 3. 1, we can see that the machine chest level and consis-

tency are not controlled. On can imagine that perturbations at the press
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broke pulper will affect the machine chest, he actual press broke level con-

trol results in a varying flow of pulp toward the machine chest. The press

broke level control diverts the necessary amount back into the pulper to main-

tain its setpoint. The remaining goes to the machine chest. The level in the

press broke varies accordingly with the dilution flowrate added by the press

broke consistency controller. This controller is tuned very aggressively in or-

der to react rapidly to sheet breaks. But, during our trials, the paper machine

was running on full recycle (i. e., no paper was produced), leading to a very

oscillatory press broke pulper consistency. This, in turn, leads to an oscilla-

tory machine chest level. The level affects the machine chest pump, which in

turn affects the pressure in the line between the machine chest valve and the

fanpump. The result is that for a same valve opening, different flowrates are

obtained and, thus, different headbox consistency.

2. Headbox flowrate and consistency loops interactions. The headbox fiowrate

controller is badly tuned and creates oscillations in the machine flow. This

propagates to the headbox consisteucy.

3 Headbox consistency controller tuning.

The chosen tuning leads to imaginary poles and to sustained oscillations in its

controlled variable.

The purpose of this section is to discriminate between the above possibilities

and identify the most probable one. Possibility 1 and 2 are going to be investigated

using auto-covariance analysis. For the third hypothesis, the closed loop poles are

going to be computed using the estimated models.
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Figure 3. 8: Autocorrelogram of the press broke pulper consistency. An example of
the periodicity estimation.

Press Broke Pulper Oscillations

To test this hypothesis, the auto-covariance of each signal in the propagation chain

(press broke control valve and consistency; machine chest level, pressure, and control

valve; headbox consistency) is computed. Then, the periodicity of the signal can

be easily verified (Nobleza fe Roche 1988). The period is estimated by taking the

average time between two consecutive minimum or maximum peaks in the sine

wave. Figure 3.8 gives an example with the points used to compute the period.

Table 3. 7 presents the estimated period of each signal for every different run where

the headbox controller was tested. The first column indicates the chronological

run number, and which controller was activated: pap stands for Press Broke Pulper

consistency controller, and HB stands for HeadBox consistency controller. The couch

pit consistency controller was always on. The level control in both chests was also

active. When - is marked, no period could be estimated.

From Table 3.7, a number of conclusions may be drawn. When there are con-
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Runs Couch Pit Press Broke
Table 3. 7: Estimated period of different signals of the approach system

Machine Chest Headbox
Level P CV K

(s) (s) (s) (s)
cv
(s)

K

(s)
cv
(s)

K

(s)

2 HB
^ HB
6 HB
3 PBP
11 PBP
1 HB PBP
7 HB PBP
9 HB PBP
^0 HB PBP
^ HB PBP

245
160

220
130

310 230

300 355
250

430
310

405
450
460
310

120

310
280
520
310
280
410
540
460
310

310 475

305 215
315

500
320 N/A

600N/A
420
520
490 N/A

685 415

N/A -

285
340
215
280

730
520
430
610
475
400

sistency variations at the couch pit, they are propagated to the press broke pulper.

For all except run 12, the couch pit consistency period is similar to its control valve

period. This hints that the controller was overly agressive. But, for more than half

the runs, there is no period in both the couch pit consistency and control valve.

Therefore, for most papermaking conditions, this loop is correctly tuned. When the

press broke consistency controller is active, its controlled and manipulated variables

exhibit a similar period (for all but run 1). This definitely suggest an aggressive

controller. Runs 3 and 11 show that the periodicity propagates to the machine chest.

When the period is slow enough, the machine chest is able to dampen the signal

(run 3). When the Headbox and Press Broke controllers are active, the damping

effect of the machine chest is greatly reduced (runs 1, 7, 9, 10, and 12). Headbox

control seems to enhance to periodicity propagation but does not seem to be its

cause. For all runs except run 7, the machine chest control valve does not exhibit a

period. If the headbox controller is responsible, its manipulated variable should also
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exhibit a period. There are four runs without the Press Broke controller and which

exhibit periodic signals (run 8, 2, 4, and 6). Very likely, there is another cause for

the periodicity signal, but this analysis was unable to identify it. However, the press

broke consistency control is partly responsible for the generation of the periodicity
propagation.

To verify the second hypothesis, the headbox flowrate autocorrelation signal was

also computed for each different run. The signals were not periodic. Furthermore,

during identification runs (see C. 1. 1), the headbox consistency signal was periodic.

During these runs, the headbox flowrate controller was inactive. These observations

infer that, the interactions between the two loops are not responsible for the headbox

periodic signal.

Lastly, the poles of the headbox consistency closed-loop characteristic equation

are computed. All the poles are inside the unit circle. However, some poles have

imaginary parts. The resulting control loop can show some amplitude decreasing

oscillating responses but not a sustained oscillating controlled signal. Of course,

this conclusion is based on the identified model. But, as shown in Figure 3. 6,

the controlled model is able to reproduce the signal reasonably well. Of all the

hypotheses analyzed, the most probable one is the press broke consistency controller

propagation. However, this controller is not the only cause of periodicity generation,

and more thorough tests are required.

3. 2. 4 Basis weight

The aim of this control loop is to maintain the basis weight at a fixed point. This is

achieved through maintaining a desired setpoint for the headbox consistency. The

preceding results show that the controller can guarantee the mean of the headbox

consistency signal to be the setpoint. Even if to date, the headbox control is not
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Figure 3.9: Basis weight of samples

perfect, it is important to verify that the final objective can be reached. Wet samples

were collected at the wet-sampler, dried and weighted. The samples are measured at

a 0. 12 second interval- The control strategy used during that run is the mid-ranging

one (see Figure 3. 2 (d)). Figure 3. 9 shows the basis weight of the collected samples.

The actual standard deviation is 0. 44 ̂ /m2 for an average basis weight of 47. 3 g/m2.

Out of the 50 samples, 42 are in range of ± 1% of the sample mean value. This

is slightly worst than industry performance. Improving the control should bring all

samples in the ± 1 % interval. To be able to cascade the headbox consistency loop

with a basis weight loop, a basis weight predictor is required. The predictor would

calculate the setpoint or a setpoint range of the inner loop.

3. 3 Conclusion

This chapter showed the implementation of a headbox consistency control loop.

From identification runs, models between headbox consistency and flowrate were
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constructed. The resulting two by two multivariable system was slightly interact-

ing. Different strategies were tested in simulation and on the paper machine. All

of the strategies performed similarly. On the paper machine, the headbox consis-

tency signal is periodic. With auto-correlation analysis, part of this periodicity is

attributed to the press broke pulper consistency controller. Based on this analysis,

this controller tuning must be revised. However, the basis weight of the samples

collected were within industry standards. This headbox consistency control is able

to maintain its setpoint, and consequently, to maintain a stable basis weight. Future

work involves cascading this loop with the dry-end one, developing a basis weight

predictor useful when the machine is running only the wet-end, and studying the

periodicity propagation along the recycled loops in the machine flowsheet.
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Chapter 4

Control Strategies

In the previous chapter, a control strategy only based in the wet-end was developed.

The main advantage of such a strategy is its independence from the rest of the paper

machine. This strategy will keep the headbox consistency (and the basis weight)

constant even if no paper is produced by the machine. But, most of the time,

the paper machine is producing paper. Therefore, the objective of this chapter is

to develop an integrated control strategy for the wet-end and dry-end of a paper

machine. Based on the experiments presented in the previous chapter and on the

literature review, any combinations of input variables with output variables are

possible. But, the question remains: which pairing is best and what are the potential

benefit. Using input-output models built from the plant data, the first question is

addressed. Then, using input-output models and the model presented in section

2. 2, controllers are designed and tested. The results of simulations carried out using
these controllers address the second question.

4. 1 Models

The CSPP paper machine (see section 2. 2. 2 for more detail ) is used for data col-

lection. Steps were applied to each manipulated variable. Variables were varied
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one at a time. The initial paper machine conditions are: a machine chest flowrate

of 80 L/min (basis weight control loop open), PCC concentration on pulp of 20

% (which correspond to a filler flowrate of 3. 7 L/min), bentonite dosage of 1 kg/ton

(which correspond to a flowrate of 0. 6 L/min at a concentration of 3 g/L), and

CPAM dosage of 0. 35 kg/ton (which correspond to a flowrate of 0.4 L/min at a

concentration of 1. 5 g/L). Appendix D presents the data and a detailed procedure

to obtained the models presented in Table 4. 1. Many models also have a disturbance

transfer functions. This part of the models is presented in Appendix D. The manip-

ulated and controlled variables are chosen in function of the nonlinear model, which

is used for control strategy validation. Six output variables are studied: headbox

consistency (?/i), headbox ash consistency (1/3), white water consistency (1/4), white

water ash consistency (^5), sheet ash content (?/g) and basis weight (^9). Five input

variables are considered: thick stock flowrate (^3), bentonite flowrate (1*5), CPAM

flowrate {ug), ratio of bentonite to CPAM (uy), and fresh filler flowrate (ug) 1

It is a well-known fact that the paper machine process is nonlinear. Every

input-output data used in this chapter confirm this fact. Often, the nonlinearity

is static and affects only the gain. And, in most of the models, the static offset is

small enough to allow a linear model to approximate the whole data set. In two

specific cases, approximate models were not enough. The first case, the gain and

the dynamics of the filler flowrate acting on headbox ash and total consistency are

a function of the direction of the step. Unfortunately, only one step up and one

step down is available. The slower dynamics for the step down could be attributed

to an unobserved change in the machine conditions or more generally to unknown

disturbances. With no repetitions, it is impossible to distinguish between these

possibilities. In Table 4. 1, the two models are presented. For the control analysis,

lThe variables are numbered sequentially. The subscript numbers meaning is kept from the
previous chapter.
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Figure 4. 1: Identification data for the model between headbox consistency and
CPAM

the worst-case model (smallest gain, slower dynamics) is used. The second case,

the sign of the gain of the models having the ratio of bentonite to CPAM as a

manipulated variable is a function of ratio range. In this case also, two models

are computed. The two models will be kept for the control analysis as not all the

variables are sensitive enough to see the second range effects. There are 8 cases

were the noise prevents the eflFect of the manipulated variables from being observed.

Figure 4. 1 presents an example. The missing models are: headbox consistency

(?/i) and bentonite (1(5), CPAM (ug), ratio (1^7); headbox ash consistency (7/3) and
bentonite (1(5), CPAM (us), ratio (uy); sheet ash content (yg) and high ratio range

(uyHigh range); and basis weight (yo) and the high ratio range (u7High range).
The accuracy of the input-output models is strongly dependant on the input

data used. In this case, the data contained a high noise ratio and high scarcity.

Furthermore, the sampling period was somewhat high to correctly estimate wet-

end dynamics. A sampling period of 12 seconds is used in the wet-end. This is



73

the smallest possible period available from the data acquisition system. A sampling

period of 10 seconds is used in the dry-end. Again, this is the smallest period allowed

by the system.

Table 4. 1: Models for the CSPP paper machine

HBK

yi
R2%
linear

range

R2%
linear

range
HB
Ash K
V3
R^%
linear

range

R^%
linear

range
WWK

V4
R2%
linear

range

R2%
linear

range

MC flowrate

L/min
V-3

513
63.7

70 < U3 < 90

0. 5 < i/i < 0.7

533
63.7

70 < ua < 90

17 < y3 < 23

943
67.9

70 < us < 90

0. 02 <VA< 0. 03

Bentonite

flowrate

L/min
Us

945
71.1

0 < us < 2.9

0.015 < 1/4 < 0. 04

CPAM
flowrate

L/min
UG

Ratio

U7

546

61.3
0. 4 ^ us < 0. 92

0.01 ^ y4 ^ 0.03

947L
66.9

0< U7L < 3

0. 01 <yt< 0. 04

ff47J?
63.7

3 < "7ff < 7

0. 01 < 1/4 < 0. 03

Filler
flowrate

L/min
U8

918U

55.4
4. 55 $ us ^ 5.42

0. 58 < s/i < 0.7

9l8D
55.1

5.42 > -ug > 3. 68

0. 73 ̂  yi > 0. 53

93SU
55.4

4. 55 < us < 5. 42

18 $ t/3 < 22

538D
55.2

5. 42 ^ us > 3. 68

22 ̂  i/3 > 16

548

65.9
3. 68 <ua ̂  5.42

0.025 < t/4 < 0.04
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Table 4. 1: (continued)

ww
Ash K
2/5
R2%
linear

range

R2%
linear

range
Ash

ys
R2%
linear

range

BW
2/9
R2%
linear

range

MC flowrate

L/min
U3

553

63.7
70 $ us $ 90

45 $ j/5 < 65

983

24.4
70 < us < 80

16. 5 $ 1/8 < 17

ff93
80.9

70 ̂  us ^ 80

61 < i/9 < 67

Bentonite

flowrate

L/min
U5

S'55

79.9
0 < us < 2.9

30 $ ys $ 84

985

39.1
0 < U5 < 2.9

14. 5 <y&< 16.5

CPAM
flowrate

L/min
U6

556
61.6

0.4 < U6 < 0. 92

40 < 1/5 < 60

986

18.1
0. 23 < U6 ^ 0. 58

15 < 3/8 < 17

995 596

29.5 17.1
0 $ U5 ^ 2.9 0.23 < ue < 0.58

58. 5 < yg < 64 58 ̂  1/9 ̂  63

Ratio

-U7

957L

67.3
0< U7L < 3

28 < 2/5 ^ 82

957H
52.2

3< "7W ^ 7

28 < t/5 < 60

ff87£

52.3
0 < U7Z, <3

14. 5 < 2/8 < 16.5

997L
46.7

0 < -U7L ^ 3

56 < </9 < 64

Filler
flowrate

L/min
us

558

69.7
3. 68 $ us ^ 5. 42

50 < ys ^ 90

81.8
3. 68 $ ug < 5.42

16 ^ 1/8 ^ 22

598
62.8

3. 68 < ug ^ 5.42

58^ yg < 68

913

9isu

9lSD

5^33

93SU

0. 0004126

1 - 0. 94729-1
0. 05074

1 - 0. 613g-1
0. 0006832g-2
1 - 0.9709$-1

0. 01962g-3
1 - 0.08171g-1 - 0. 8303g-2

1. 53
1 - 0. 6256g-1

(4. 1)

(4. 2)

(4. 3)

(4. 4)

(4. 5)
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93%D =

543 =

545 =

946 =

9^L =

94.7H =

fi'48 =

.953 =

555 =

956 =

9-,-IL =

gc,7H =

ff58 =

983 =

^85 =

9S6 =

9S7L =

988 =

0. 02139?-2
1 - 0. 9709g-1
2. 332 x 10-5g-8 - 2. 345 xlO-5^-9

1 - 1. 928g-1 + 0. 9278g-2
-0.0005081^-5

1 - 1. 6q-1 + 0. 5466g-2 + OAU6q-3 - 0. 2722q-4
-0. 003667g-6
1 - 0.8233?-1
-0. 001382g-6
1 - 0. 742g-1

0. 00058759-6 + 0. 0001927g-7
1 - 0. 07693$-1 - 0. 62749-2

0. 001241g-10
1 - 0. 84g-1

0. 03159g-9 - 0. 03172g-10
1 - 2. 315g-1 + 1. 674g-2 - 0. 3594g-3

-4. 89g-7 + 2. 828g-8 + 1. 934g-9
1 - l. OOlg-1 - 0. 3781g-2 + 0. 39g-3

-7. 646g-6
1 - 0. 8292g-1

-2. 049g-6 - 3. 235g-7
1 - 0 1273g-1 - 0. 4106g-2

0. 8728g-4
1 + 0. 03019g-1 - 1. 233g-2 - 0.1282q-3 + OA87q-4

1. 736g-10
1 - 0. 8989$-1

0. 04882^-15
l-0. 1336g-1
0. 3953g-10 - 0. 3794g-n
1 - 1.451g-1 + 0. 4889g-2

1. 241g-10
1 - 0.2243g-1
0. 04055g-16

1 - 0. 9415g-1
0. 26499-15

l-0. 9112g-1

(4. 6)

(4. 7)

(4. 8)

(4. 9)

(4. 10)

(4. 11)

(4. 12)

(4. 13)

(4. 14)

(4. 15)

(4. 16)

(4. 17)

(4. 18)

(4. 19)

(4. 20)

(4. 21)

(4. 22)

(4. 23)
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593

^95

996

997L

99S

0.06467g-17
1 - 0. 8643g-1

0. 6558g-10
1 - 0. 3733g-1
3. 125g-8 - 2. 642g-9

1 - 0. 9244g-1
0. 2415g-14

1 - 0. 9898?-1
-1. 32g-4 + 1. 379g-5

1 - 0. 9697^-1

(4. 24)

(4. 25)

(4. 26)

(4. 27)

(4. 28)

4. 2 Interactions Analysis

4. 2. 1 Scaling

As explained in a preceding section (section 3. 1. 3), various control indices are sen-

sible to the scaling of the system. Furthermore, it is easier to understand the

interaction between the different variables when they are on the same scale, namely

varying from 0 to 1. To obtain such a system, the input variables and the out-

put variable need to be scaled. The input variables are simply divided by their

maximum allowed value. Equation (4. 29) presents the scaling matrix used and its

relation to the unsealed manipulated vector. The maximum values for the flowrate

variable is the maximum allowed by the pump. The maximum value for the filler

flowrate pump is 5 L/min. However during the experiment, part of the filler was

feed directly in the machine chest. With that method, the added amount of filler

is illimitable. During the experiments, the PCC concentration on pulp was varied

from 20 to 30 %. Using a value of 40 % seems reasonable to do the scaling with

respect to the type of paper produced (fine paper). The maximum value offlowrate

can now be deduced. For the ratio, its maximum value is oo, which is of little use in

scaling. Papermachine normal ratio based on dosage is approximately 10. During
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the experiments, the maximum dosage ratio used was 14. To allow for experimental
variance, a maximum dosage ratio of 20 is used for scaling. Transformed to flowrate
ratio, the maximum is then 10.

us 140 00 0 0

UQ 03000

ue - 00200

U7 0 00 10 0

ug . , 00007

-1

U3

U5

UQ

U7

us

(4. 29)

The output scaling requires more insight into the process. Two types of scaling
are possible: based on the maximum expected change in reference value and based

on the maximum expected control error (Skogestad & Postlethwaite 1996) . The
principal aim of this controller is to reject disturbances. Therefore, a scaling based
on the maximum expected control error is used. An educated guess is made to

find this maximum. The machine normal operating range is subtracted from the

machine normal setpoint range. The biggest absolute value is used as the maximum

expected control error. Equation (4. 30) presents the scaling matrix used and the

relation between the scaled and unsealed vectors.

-1

2/i 100000

Vz 0250 0 0 0

Z/4 000. 5 0 0 0

?/5 00 0 600 0

Vs 00 0 025 0

Z/9 00 0 0 0100

2/i

V3

i/4

?/5

2/8

(4. 30)
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4. 2. 2 Variables selection

From the identification procedure, five input variables and six output variables are

obtained. To implement a control strategy, controlled and manipulated variables

need to be chosen. Without preselection, there is 30 possible combinations. The

majority of them do not have any physical meaning. Of the five possible manipulated

variables, only 3 are independent: the machine chest flowrate (^3), a retention aid

flowrate (^5 or ug or ̂ 7) and the filler flowrate (ug). Therefore, the feedback control

system will be a 3x 3 system. According to the goal of the strategy, wet-end and

dry-end variables need to be included. Of the six possible controlled variables, two
(ash content (ys) and basis weight (?/g)) are in the dry-end and need to be controlled.

Physically, these two should be paired with the machine chest flowrate (^3) and the

filler flowrate (ug). In the four remaining output variables, headbox total (yi) and
ash (1/3) consistencies are not affected by the retention aid flowrate (u^ or UQ or

uv). Therefore, the choices left to be made are: white water total (^4) or ash (^5)

consistencies as the remaining controlled variable; and bentonite flowrate (^5) or

CPAM flowrate (us) or Ratio of bentonite to CPAM (uy) as remaining manipulated
variables.

To discriminate between the possibilities, the steady-state RGA is calculated. We

are looking for a RGA with the least interactions (pairing element nearest to one).
Another useful measure is the condition number of the steady-state gain matrix.

This value should be minimum. This indicates an easier control problem as the

multivariable plant directionality is smallest. This is seen in the maximum singular

value (a) and minimum singular value (a) which represent the biggest and smallest

gain of the plant respectively. For au easy control, it is desired to have the plant

gain similar in all input directions. The following pages present the RGA (A), the

condition number (7), the maximum (a) and the minimum (a) singular values for the
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possible control strategies. To easily identify the control strategy under study, the

A and K have preceding and proceeding superscripts. The preceding superscripts

identify the controlled variables. The first superscript is the first row of the matrix,

the second superscript is the second row and so on. The proceeding superscripts

identify the manipulated variables. The first superscript is the first column of the

matrix, the second superscript is the second column and so on. For example, if

489K358 is the strategy under study, the controlled variables are y^ (white water
consistency), ys (ash content), and yg (basis weight), and the manipulated variables

are ̂ 3 (machine chest flowrate), Ug (bentonite flowrate), and Ug (filler flowrate). The

matrix element on the second row, third column (^23) is the gain between yy, (ash

content) and Us (filler flowrate).

V4, Vs, Vs controlled variables with Us , Ur,, ug manipulated variables

Matrix (4. 31) presents the RGA for this possibility. (4. 32) shows the condition
number.

0. 1120. 125

A358 = -0. 111 0. 114

0. 124 -0. 109

(4. 31)

7 (489K358) = 7
0. 15 -0. 0342 0. 109

0.316 0.0505 0.836

0. 667 0. 0314 0. 137

=23.2 (4. 32)

a (489K358) = 0. 0439 a (^K358) == 1. 02
V4:, Vs, Vs controlled variables with U3 , UQ , Us manipulated variables

Matrix (4. 33) presents the RGA for this possibility. (4. 34) shows the condition
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number.

489 A 368A3ys -

0.219 ITTTTm 0.0804

-0.13 0. 109

0. 19 -0. 102

(4. 33)

0. 15 -0.083 0. 109

7(489K368)=7 0. 316 0. 128 0. 836
0. 667 0. 128 0. 137

-8.96 (4. 34)

a (489K368) = 0. 114 a ^K36S) = 1. 03
Z/4 ; i/8 > V9 controlled variables with u^ , 117^ , ug manipulated variables

Matrix (4. 35) presents the RGA for this possibility. (4. 36) shows the condition

number.

0 ffl 0

489A378= -0. 0838 0 rm^I (4. 35)

0 -0. 0838

0. 15 0. 0528 0. 109

7 (489K378) = 7 0. 316 0 0.836 = 19.6
0.667 0 0. 137

(4. 36)

a (489K378)= 0. 0517 a(489K378)=1. 01
Z/4 , 2/8 > 2/9 controlled variables with us , ̂ 7^,, ztg manipulated variables

Matrix (4. 37) presents the RGA for this possibility. (4. 38) shows the condition

number.

0. 194 -0. 214

489A378= -0. 301 0. 0507 (4. 37)
0. 281 -0. 0362



81

^(489K378)=7
0. 15 -0. 107 0. 109

0. 316 0. 277 0. 836 = 18.7

0. 667 2.37 0. 137

(4. 38)

a(489K378)=0. 134 a(489K378)=2.5

V5, Vs, VQ controlled variables with Us , UQ , Us manipulated variables

Matrix (4. 39) presents the RGA for this possibility. (4. 40) shows the condition
number.

0. 192 RTTmi 0. 107

A358- -0. 103 0. 0834

0. 215 -0. 127

7
^589

4. 41 -0.606 2

K 5 ) =7 0. 316 0. 0505 0. 836
0. 667 0. 0314 0. 137

=36.2

(4. 39)

(4. 40)

a (589K358) = 4. 96<7(589K358)-0. 137
Vs, Vs, VQ controlled variables with u^ , UQ , us manipulated variables

Matrix (4. 41) presents the RGA for this possibility. (4. 42) shows the condition
number.

0. 314 lO. til.^l 0. 0722

589A368= -o. 116 0. 0751 rm^i

0. 311 -0. 113

4. 41 -1.49 2

7(589K368)=7 0. 316 0. 128 0. 836
0. 667 0. 128 0. 137

(4. 41)

14.7 (4. 42)
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<7(589K368)=0. 35 a(589K368)=5. 13
Vs , Vs , Vs controlled variables with Us, U7H , Ug manipulated variables

Matrix (4. 43) presents the RGA for this possibility. (4. 44) shows the condition

number

0 ffl

589A378= -0. 0838 0

0

rm^i o -o.0838

4. 41 0.934 2

7 (589K378) = 7 0. 316 0 0. 836 = 34.1
0.667 0 0. 137

(4. 43)

(4. 44)

a(589K378)=0. 147 a(589K378)=5. 01
Vs , Vs , Vs controlled variables with Us , ^77,, -ug manipulated variables

Matrix (4. 45) presents the RGA for this possibility. (4. 46) shows the condition

number.

[DEI 0. 117 -0. 134

589A378= -0. 188 0. 0242

0. 17 tO. ^91 -0. 0296

f4. 45)

4. 41 -1.91 2

7 (589K378) = 7 0. 316 0. 277 0. 836 = 8. 12
0.667 2.37 0. 137

(4. 46)

a (589K378) = 0. 644 a (589K378) = 5. 23
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The steady-state RGAs are similar with respect to the controlled variables. They
give the same pairing for the same potential manipulated variables. The condition

number is also similar. This is not surprising as the white water total consistency

(?/4) is mainly composed of fines and fillers. However, condition numbers are slightly

better for white water ash consistency while the RGA are similar. But, as only

fine papers contain fillers, the strategy will be more general if white water total

consistency is used. For the manipulated variables, the result is clear if the ratio

of the bentonite to CPAM is in the high range (3 to 7). Then, the pairing is:

white water consistency with retention aid chemical flowrate, ash content with filler

flowrate, and basis weight with machine chest flowrate. This pairing is what is

physically expected. The retention aid that gives smallest condition number is

flowrate of CPAM. This confirms a very popular strategy of Table 1. 5. The normal

operating ratio of paper machines is in the high range. During the trial, a lower

range (0 to 3) was tested. The RGA in this case gives a different pairing: white

water consistency with machine chest flowrate, ash content with filler flowrate, and

basis weight with ratio of chemicals. From a physical standpoint, this pairing does

not make much sense. Nonetheless, an interesting conclusion can be drawn. From

the gain matrix, we see that the ratio has an important effect on basis weight. This is

due to the effect of the chemical on the retention level of the machine. This suggests

that the normal paper machine operations overdose retention chemicals thereby

reducing their incremental effect. On the other hand, the high ratio range has more

forgiveness for error. Since the low ratio range is not normally used in mills, the

chosen control strategy is: white water total consistency with CPAM flowrate, ash

content with filler flowrate, and basis weight with machine chest flowrate. Based on

the RGA, the system is slightly interacting since the diagonal element are all near



84

one. Thi is based on the steady state gain of the model. To make sure, the RGA

was computed over a range of frequencies.

Figure 4. 2 presents the RGA in the frequency range of 10~4 to 10-1 Hz. The

steady state analysis is valid up to 30 seconds. At this point, the RGA values peaks

in opposite direction. According to theory, a reverse pairing would be better for the

dynamic responses. But, in this case, one can not conclude because the accuracy

of the models is questionable. The sampling periods are 12 seconds for the wet-end

measurement and 10 seconds for the dry-end measurement. This sampling allows us

to draw conclusion for the steady state but not for higher frequencies. The same can

be conclude from Figure 4. 3. Figure 4. 3 presents the largest and smallest singular

values in the frequency range of 10-4 to 10 Hz. As the frequency raises, the lower

and singular values are closer to each other. This would suggest an easier control,

but again, model accuracy is questionable.

4. 3 Controller Types and Tuning

Once the models have been obtained, and the manipulated and controlled variables

have been chosen, the controller can be designed. Two types of controllers have been

tested on the nonlinear first principal paper machine model of Cho et al. (2001 a).

The following subsection explains each type of controller and its tuning.

4. 3. 1 Standard controllers

To judge controller performance, one must compare them with the standard industry

controllers: PI and PID. According to two (as in the PI case) or three (as in the PID

case) tuning parameters and the difference between the setpoint and the controlled

variable, the manipulated variable is calculated (4. 47). To improve the performance

of PID controllers, a filter (4. 48) or a lead-lag element (4. 49) can be added. This
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(a) WW K (b) Ash

(c) BW

Figure 4. 2: RGA over the frequency range. The solid lines are associated with
CPAM flowrate input, the dashed with the Filler flowrate input and the dotted
with the MC flowrate input.
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Figure 4. 3: Singular values over the frequency range.
The solid line is associated with the maximum singular value and the dashed line
with the minimum.

give rise to extra tuning parameters. To ease the tuning of such controllers, direct

synthesis or lambda tuning method is used (Ogunnaike & Ray 1994).

u = Kc[l+-+TDs}e
r i s

u = K^l+^-+r^s}(_ _\
TIS " / \TFS+I.

U = K^(l+^-+TDs} (
TIS
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(4. 47)

(4. 48)

(4. 49)

(4. 50)

This type of controllers have been tuned by Kolko (2001). The nonlinear model is

used to generate data around a steady state. Then, the data are best-fitted to linear

transfer functions. Next, the models are used to obtain the controller's parameters.

Table 4. 2 presents the resulting controller type for each loop of the three by three
system.

Kolko (2001) also studied the traditional control approach to multivariable sys-
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Table 4. 2: Traditional controller types obtained by direct synthesis method
Manipulated variable Controller type
Controlled variable

CPAM flowrate
White water total consistency PID + first-order filter
Filler flowrate

Sheet ash content PID + first-order filter + lead/lag element
Machine chest flowrate

Basis weight PID + first-order filter + lead/lag element
Source : Kolko (2001)

terns. Steady-state decouplers between the interacting loops were tested on the

nonlinear model. The decouplers are tuned with the steady-state gain of the linear

models. For example, if a decoupler is installed between loop 1 and loop 2, its value
is calculated as in (4. 51)

D

where

D

ku

hi

^12
fell

Decoupler gain

gain of loop 2 on loop 1

gain of the model of loop 1

(4. 51)

4. 3. 2 MPC controller

Model predictive control (MFC) has been used in the petroleum industry since the

late 70's. The reported very good results have spread the application of MPC to

all kinds of chemical process industries (Refining, Chemicals, Pulp and Paper, Gas,

Air Separation, Food Processing, Furnaces, etc. ) (Qin & Badgwell 1996). For the
wet-end of paper machines, Lang et al. (1999) reported using a MPC to control

basis weight, sheet ash content, and white water consistency. Due to the lack of
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mathematical proof (although this an active research area) regarding the stability
and robustness of MPC controllers, it is difficult to measure the benefits of these

types of controllers over classical control. The most common alternative used is

brute-force simulation. This section presents a short overview of the MPC algorithm
and gives the simulation results. The next section compares the MPC results with
those of the traditional control methods.

MPC algorithm

A general consensus exists on the differences between model based control and clas-

steal control. A process model is a part of a MPC controller. The control objective
function solves an open-loop optimisation problem over a fixed horizon. The hori

zon moves forward at each time step (receding horizon). The constraints are easily
incorporated in the objective function. The primary and most important drawback

of MFC technology is the need of a dynamic model. Obtaining a model is time
consuming and expensive. The improvement of the MPC must be significant to
justify the model building phase.

Figure 4. 4 presents a typical MPC calculation. The starting model is obtained

by calculating step response coefficients from the transfer function identified previ-
ously. At each MPC calculation, the process model update is the point at which
the feedback enters the loop. The model prediction is compared with the measured

value and the difference is added to the future model estimates (4. 52 - 4. 53).

bk = y^ - yk

Vk+j = Muk+j + &fe

where

y^ measured value

Vk model estimated value

(4. 52)

(4. 53)



M matrix of step coefficients

Once the model is updated, the sequence of future input moves is calculated from

the objective function (4. 54) subjected to the input and output constraints (4. 55,
4. 56 and 4. 57)

A...S,,_, g 11^ (^1^ - r^) 112 + E 11^ (Au.^

^min -^ Uf; <; U^ax

-I/

|AuA. | < Au.max

Vmin ̂  Vk+l\k ^ ?/maa;

(4. 54)

(4. 55)

(4. 56)

(4. 57)

where

m

p

py

r

r"

control horizon

prediction horizon

output weighting matrix

reference values, possibly time-varying

input weighting matrix

The input and output weighting matrices are used to penalise certain outputs or

inputs at certain time intervals. Those matrices can be used as tuning parameters.

The constraints allow the specification of minimum and maximum values of the

inputs and the outputs. Also, for the inputs, it is possible to specify the maximum

rate of change. When constraints are used, the objective function must be solved



90

Read manipulated, disturbances, and controlled
values from process

Update process model (feedback)

Optimisation

Output manipulated values to process

Figure 4.4: Calculation flowsheet of MFC algorithm
Source: adapted from Qin & Badgwell (1996)

using quadratic programming and the resulting control law is nonlinear. This is

why the stability and robustness of the closed loop system is difficult to analyze

analytically. Although m input moves are calculated, only the first one is applied

to the plant. At the next sampling interval, the optimisation is repeated with the

horizon moved one step forward. This version of the MPC algorithm is known as

Dynamic Matrix Control (DMC) (Garcia, Prett & Morari 1989).

To tune this controller, there are four available parameters: p, the prediction

horizon; m, the number of control moves; Tu, the input weighting; and Ft/ the

output weighting. The prediction horizon relates to the closed-loop time constant.

Since the system can not react faster than the time delay, the prediction horizon

must be at least equal and preferably greater than the time delay of the system.

The number of control moves specifies to the controller how many input moves

it can make to bring the system to the reference value. In general, increasing m

leads to a more aggressive response. A rule of thumb used in tuning is to start

the simulation with m = 1. The input weighting matrix is often used to detune

the controller. Increasing it always has the effect of making the control action less

aggressive (Morari & Ricker 1998). The output weighting matrix is used to raise

the more importance of some of the controlled variables. It is especially useful if
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the system is over-determined and it is unable to meet all of the controlled variable

setpoints.

MPC simulation results

The above MFC algorithm is implemented in Matlab through the function cmpc and
nlcmpc of the MPC Toolbox. The combination of these functions with the Simulink

nonlinear model of the paper machine simulates the response of controlled variables

to various possible disturbances.

The MPC controller is tuned using simulations on the linear models. The guide-

line used through all the tuning simulations was to give away performance if ro-

bustness was improved. When the responses are acceptable, the same controller is

tested on the nonlinear model. Fine tuning was done to improve the performance.

At first, the constraints were the paper machine ones but they were modified in

order to respect the validity region of the retention model. Table 4. 3 presents the

hard constraints on the manipulated variables. No constraint was imposed on the

controlled variables. Table 4. 4 presents the final controller parameters used in the

simulations. Comparing the linear simulation tuning and the nonlinear ones, the

number of control moves stayed the same. The prediction horizon was increased

from 350 to 400 seconds. The major change occurs on the input weighting matrix.

During the linear tuning, no weights were used. On the nonlinear model, using no

weight lead to a very oscillatory behaviour. This can be explained by Figure 4. 5.

The nonlinear model does not reproduce well the pilot plant data. It is believed

that the problem lies within the retention model and work is ongoing to solve it.

However, when the MPC controller attempts to control this plant, its model gains

are wrong. If there is no cost to move the manipulated variables, oscillation results.

The aim of the controller is to reject perturbations. Therefore, five different
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Figure 4. 5: Responses of the different models to step changes in machine chest
flowrate.

Step amplitude of-10 L/min at t=812 s and step amplitude of 20 L/min at t-4304
s.

Black line: nonlinear model. Dotted line: Input-Output model. Grey line: data.
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Table 4. 3: Hard constraints imposed on the manipulated variables
Variable minimum maximum rate of change
CPAM flowrate 01 oo
Filler flowrate 1 5
Machine chest flowrate 20 100

00

00

Table 4. 4: MPC tuning parameter values
Parameter Value

Control interval 10 s

Prediction horizon (P) 40
Control moves (M) 1
Manipulated variable weights

CPAM flowrate 20
Filler flowrate 15

Machine chest flowrate 15

Controlled variable weights
White water consistency 1
Ash Content 1

Basis weight 1

perturbations were tested. The perturbations were chosen as to represent possible

situations on the paper machine. The first two perturbations were affecting the

machine chest consistency. In the first case, a step change of 0. 1 g/L was applied.
In the second case, the consistency of the machine chest was a sine wave with an

amplitude of 0. 1 g/L and a period of 30 seconds. Then, changes in the strength

of the retention chemical CPAM was tested. A step of 10 g/L was applied. Step

change in filler flowrate was also tested. Lastly, a perturbation on the retention of

the machine was tested. The fines fraction of the machine chest total consistency

was step changed. Fines are difficult to retain and adding more fines ask for more

chemicals, thereby modifying the retention on the machine. Figure 4. 6 presents

the response of the controlled and manipulated variables to a step change in filler

concentration. The results of the other tests will be given in Table 4. 6. For all
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Figure 4. 6: Response of controlled and manipulated variables to a step change in
filler concentration. Step occurs at t=3000s from 100 g/L to 110 g/L. Black line:
manipulated or controlled variables. Grey line: setpoint

the tests, the controller performs well for the basis weight controlled variable. The

perturbations are rejected at a slower rate for the ash content. For all but filler

flowrate perturbation, the controller is not able to bring the white water consistency

back to its setpoint in less than 6000 s (lh40). The results correlates well with

the linear models accuracies over the nonlinear model. These results stress the

importance of good models for the MFC controller. Without them, the performance

can be rather poor. The next section gives the results for different types of controllers

applied on the nonlinear model.

4.4 Controller Comparison

To evaluate the performance of MPC controllers it is necessary to simulate them.

Likewise, to compare the MPC controller against other type of controllers, sim-
ulations are useful. During this project, the nonlinear model was controlled with
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different type of controllers: traditional controllers by Kolko (2001) MP controller

based on linearised models of the nonlinear model by El Ghali (2001), and MFC

controller based on input/ouput data by this author. MPC tuning parameters used

by El Ghali (2001) are shown in Table 4. 5. Table 4. 6 presents the comparison be-

tween the different controllers. The compared characteristics are: the settling times

and the maximum amplitudes of each controlled variables. The settling time was

recorded when 96 % of the perturbation was rejected. The maximum amplitude

is based on the difference between the maximum value and the setpoint divide by

the setpoint. The first column gives the results of traditional PID controllers (see
Table 4. 2). The second column gives the results for the same traditional controllers

augmented with steady-state decouplers. The third column gives the first MFC

implementation where the MPC models are linearised around a steady state of the

nonlinear model. The last column gives the second MPC implementation where the

MPC models are developed from input/output data from the pilot paper machine.

Table 4. 5: MPC tuning parameter values for MPC 1 implementation
Parameter Value

Control interval 2 s

Prediction horizon (P) 85
Control moves (M) 1
Manipulated variable weights

CPAM flowrate 55
Filler flowrate 4.5
Machine chest flowrate 1. 75

Controlled variable weights
White water consistency 25
Ash Content 0. 16

Basis weight 0.1

Source : El Ghali (2001)



Table 4, 6; Performance of different type of controllers to different perturbations

Step on machine chest consistency
(amplitude = +0.1 %
WW K Settling time (s)
WW K maximum amplitude (%)
Ash Settling time (s)
Ash maximum amplitude (%)
BW Settling time (s)
BW maximum amplitude (%)
Sine on machine chest consistency
(amplitude = 0. 1 % period = 30 s)
WW K maximum amplitude (%)
Ash maximum amplitude (%)
BW maximum amplitude (%)
Step on CPAM concentration
(amplitude = +0.1 g/L)
WW K Settling time (s)
WW K maximum amplitude (%)
Ash Settling time (s)
Ash maximum amplitude (%)
BW Settling time (s)
BW maximum amplitude (%)

Conventional
Controller

(Kolko 2001)

>2000
2. 73

>2000
7. 60
1700
8.47

0,7
3.6
3.2

2250
4.9

3000
1.4

1750
0. 29

Conventional
Controller

with decouplers
(Kolko 2001)

750
2. 73
1050
8. 40
1000
8.47

1.4
4.0
3.7

750
4.9
750
1.4
900
0. 29

MFC 1

(El Ghali 2001)

457
0. 98
533
4. 82
564
3. 37

1.3
3.7
3.3

176
4.8
311
2.8
633
0. 55

MFC 2

>6000
5.2

2150
2.9

1510
3.1

2.6
0.6
1.0

>6000
4.9

6600
0. 77
2270
0. 27

^



Table 4. 6: (continued)

Step on filler concentration
(amplitude = +10 g/L)
WW K Settling time (s)
WW K maximum amplitude (%)
Ash Settling time (s)
Ash maximum amplitude (%)
BW Settling time (s)
BW maximum amplitude (%)
Step on machine chest fine fraction
(amplitude = + 2 %)
WW K Settling time (s)
WW K maximum amplitude (%)
Ash Settling time (s)
Ash maximum amplitude (%)
BW Settling time (s)
BW maximum amplitude (%)

Conventional
Controller

(Kolko 2001)

2700
5.9

2000
9.2

2700
1.3

2300
15.9
3500
1.4

3000
0. 93

Conventional
Controller

with decouplers
(Kolko 2001)

750
5.9
600
9.2
900
1.3

750
15.9
1000
1.2
950
0. 93

MPC 1

(El Ghali 2001)

222
5.3
319
9.8
486
1.5

173
7.2
993
1.3
700
925

MFC 2

5200
13.2
1620
7.0

1900
2.6

>6000
0. 71

>6000
0. 03
2010
0. 03

CO
-0
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Table 4. 6 shows the necessity and benefit of having a reliable linear model of

the process. The third column shows better performance for all kind of pertur-

bations. When the model and the plant are different, the MPC performance is

comparable to conventional controllers. When conventional strategy is augmented

with steady-state decouplers, it outperformed the MPC 2 implementation. How-

ever, the maximum amplitude achieved by the MPC 2 is almost always smaller than

the decoupling strategy. MPC can be viewed as a dynamic decoupling algorithm.

Dynamic decoupling performs better than steady-state decoupling. Traditional dy-

namic decoupling yields complicated equations, hence it is rarely used. MPC better

performance are not really due to its dynamic decoupling feature but to the in-

corporation of our process knowledge (model, constraints) into the computation of

manipulated moves. When our process realisation is partly false, the MPC con-

trailer performance suffers. To recommend an MPC installation, the gains of the

MPC controller have to be weighted, against the cost of developing and maintaining

the models. Model maintenance is an important issue as processes change over time

and MPC performance is directly related to the accuracy of its models.

In this chapter, an integrated control strategy for the CSPP pilot paper ma-

chine was developed. Based on paper machine data, input/output models were

constructed. The output variables studied included: headbox total and ash con-

sistencies, white water total and ash consistencies, sheet ash content, and basis

weight. The input variables considered were: machine chest flowrate, bentonite

flowrate, CPAM flowrate, ratio of bentonite to CPAM, and filler flowrate. From

the models, different steady-state relative gain arrays corresponding to different po-

tential control strategies were computed. Also, the condition number of the plant

was examined. From these control indexes, the best strategy turned out to be the

most widely used in mills: white water total consistency with CPAM flowrate, ash
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content with filler flowrate, and basis weight with machine chest flowrate. This

strategy was simulated on a nonlinear model developed by Byoung-Uk Cho as part

of his PhD thesis. Different controllers were tested. Namely, PID controllers and

MPC controllers. MPC outperformed PID controllers when its models are closed to

the real process.
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Chapter 5

Conclusions

One objective of this project is to quantify the interactions among the wet-end

manipulated variables and the controlled variables. Doing this, it is postulated

that the control gain of multivariate strategy could be estimated. Another project

objective was to test an MFC integrated strategy and to assess its advantages over

traditional PID control.

To satisfy the project objectives, models between the manipulated variables and

the controlled variables were developed. Considerable efforts have been put into the

model building phase. The models developed are of the input/output types. They

have been obtained using a linear regression algorithm where the distance between

the model predicted value and the data is minimised. The final model quality in

term of accurately representing the process is dependant on the quality of the data

it is based upon. Good data will contain enough dynamic information to show the

underlying process. Concretely, this means a fast sampling rate (in the order of

10 times faster than the process time constant), many moves on the manipulated

variables (sufficient input excitation), and a high signal-to-noise ratio.

Once the models have been obtained, it was possible to analyze the interaction

between the different variables. The tool used to study the interactions is the rela-
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tive gain array (RGA) and imulations. The variables under study were: headbox

total and ash consistencies, white water total and ash consistency, sheet ash content,

and basis weight for the controlled variables; and machine chest flowrate, bentonite

flowrate, CPAM flowrate, ratio of bentonite to CPAM flowrate, and filler flowrate.

Data have been collected using the pilot paper machine of Cegep de Trois-Rivieres.

Based on the RGA analysis, the less interacting combination of variables is white wa-

ter consistency, sheet ash content, and basis weight combined with CPAM flowrate,

filler flowrate, and machine chest flowrate. Of these three controlled variables, the

one most affected by all manipulating variables is white water consistency. There-

fore, this variable would gain from a multivariable type of controller where all the

input moves are taken into account. This contradicts the literature results. Possible

explanations could be related to the quality of the models on which this conclusion

is based. Another cause could be the different layout of the paper machine used

giving raise to different interactions between the manipulated variables. Some other

concern is the quality of the model used in the literature MPC application.

During the course of this project, many simulations where performed to test

the MFC. In one scenario, the MPC models where obtained from the input/output
data. The resulting controller was then tested on a nonlinear model. The nonlinear

model was based on mass balances around the headbox, wire, and wire pit. To

model the unknown retention mechanism, a fitted function based on machine chest

mass flowrate, filler mass fiowrate, CPAM dosage and bentonite dosage was added

to the model. In this case, the input/output models did not reproduce well the

nonlinear model behaviour. The resulting controller performances were similar or

poorer than a traditional PID strategy. The most difficult controlled variable to

keep at its setpoint in spite of perturbations was the white water consistency, the
variable most affected by the interactions of the manipulated variables. In the second
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scenario, the MPC models were obtained by linearising the nonlinear model around

a steady state. In this case, the MPC models did reproduce well the nonlinear model

behaviour. This controller responses outperformed the traditional PID strategy and

even outperformed the traditional approach to multivariable system: PID controller

augmented with steady-state decouplers. Based on simulations, MPC controllers

can give good control performance but their performance is tied to the accuracy of
the model used.

Until now, the control strategy developed in this project did not address a very

common paper machine problem: sheet break. In an integrated strategy, this prob-

lem becomes even more serious as the loss of the controlled variable can adversely
affect the controller performance. To counteract this, the wet-end equivalent vari-

ables to the dry-end variables should be included in the MFC controller. The dry-end

sheet ash content is a function of headbox ash consistency. Similarly, the dry-end

basis weight is a function of headbox total consistency. To add these two wet-end

variable into the MPC controller, a predictor need to be develop. This predictor

would output a range for each wet-end variable. In normal operation, if the wet-end

variables were within the predictor specified range, the controller would optimise

basis weight, ash content, and white water consistency as normal. In normal opera-

tion, if the wet-end variables were outside the specified range, the controller would

first move them into their range and then, move the other variables. In sheet break

operation, the controller would use only the wet-end variables and associated pre-

dictors to keep the machine under control. Naturally, simulations are needed to

confirm all this. This would be an interesting follow-up project to this one. But,
before one can address this problem, it is necessary to test if the headbox total

consistency can effectively control the basis weight of a paper machine.

Headbox consistency control loop of the Paprican pilot paper machine was closed.
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The controller used was a conventional PI implemented on a Toshiba DOS. Open-

loop runs were performed to collect data, and build input/output models. The

headbox system was multivariable and had two interacting variables: headbox con-

sistency and headbox flowrate. From the models, a relative gain array analysis was

performed. The system showed slight interactions, mainly on the headbox consis-

tency variable. Their is a dynamic decoupling already built in the system. Since

the headbox flowrate time constant is approximately ten time faster than the head-

box consistency time constant, the headbox flowrate is, in efTect, decoupled from

the headbox consistency. Various control strategies were tested: feedback, feedback

augmented of steady-state decoupler, cascade, and cascade with a fast and a slow

control valves. All the strategies were tested on the paper machine. No difference

were observed since for all strategies the noise marked the performance gain pre-

dieted by simulations. Still, the controller was able to keep the headbox consistency

at its setpoint. Wet samples taken from the machine and successively dried showed

that the controller was able to keep the basis weight constant. The next step is to
develop a predictor.

Analysis of the consistency signals with auto-correlation revealed a periodic com-

ponent in the signal. Part of this component was traced back to the press broke

pulper controller. This controller was tuned very aggressively to react fast when

a sheet break occurs. However, during our trial, the system was running in full

recycle, i. e. producing no paper. Therefore the controller injected a periodic com-

ponent in the system. This emphasise the importance of seeing the paper machine

processes (approach system, wet-end, dry-end, recycle system) as a whole. It is

also demonstrating that the overall paper machine performance is dependant on all

the sub-processes. Since incorporating a whole process into one controller is a fe -

ture of model predictive control, adding more paper machine variables into a MPC
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controller is an interesting future research avenue.
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Appendix A

Schematics of different wet-end

control strategies reported in the
literature

The following figures represent the different control startegies reported in the liter-

ature and explained in section 1. 2.2, Table 1. .
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Figure A. l: Retention control Figure A-2: Retention and h^dbox ash
control
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Appendix B

Linear Regression Algorithm

The one-step ahead prediction for the model described in (2. 1) can be computed

using B. l.

yk\k-i = H-\q-l)G(q-l)uk + [l - H-l{q-1)] y, (B. l)

For parametric models, we can stress the fact that there are unknown parameters

by rewriting (2. 1) as (B. 2) where 0 is the vector of unknown parameters.

Vk=G{q-\e}uk+H{q-\e)ek (B. 2)

The one step ahead prediction becomes:

y^ = H-\q-\e)G{q-\6}uk + [l - ^-1(9-1, 0)] Vk (B. 3)

For the general parametric model used (2. 2), the one step ahead prediction is

then: (with G(g-l, 0) - ^;^ and H{g-\e) = ^-^ )

Vk\e =
D{q-^B{q -1^

(7(g-i)F(g ,
-n^+

A[q-^D{q-^
C{Q-1) Vk (B. 4)

We can now find the prediction error by substituting B. 4 into B. 5.
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£k,0 = Vk- Vk,e

D(g-1)
£fc, e =

C{q -1^ A[q-^yk - B{q -1

F{q-^
Uk \

(B. 5)

(B. 6)

Defining temporary variables (wk, e and Vk,e) we can build a regressor ^ (B. 9)
for the estimate 0 (B. 10). Formally, B. 9 is a pseudo-regressor because it is partly
constructed using the current model.

Wk,0

Vk,e

t^kft

.Uk

6 =

B^\
w^uk
A(9- )?/fe - Wkfi

[-Vk-1, -Vk-2, . . . -Vk-na,

Uk-l, Uk-2, .. . , Uk-nb,

-Wk-i, e, -Wk- , e, . -., -Wk-nf, e,

£k-l, 8, £k-2, Q, . . . ,  k-nc, 6i

iT
-Vk-\, e, -Vk-2,8, . . - , -Vk-nd,e\

[a-t a^ ... Onahb^ ... bnb /I /2 - - . fn f Cl Ca

By multiplying ̂ k,e with 0 we obtain:

(B. 7)

(B. 8)

(B. 9)

Cncd^d^ . dnd}T (B. 10)

^k,66 = -O-lVk-l - 02?/fc-2 - - - - Cina.Vk-na

+6l-Ufc-i + biUk-2 + . .. + bnbUk-nb

-flWk-1,0 - f-2Wk-2, 9 - .. -- fn fWk-nfft

+Ci£fc_i, 0 + C2£fc-2, 0 + . .. + Cnc£fe-nc,0

-d\Vk-\ft - d2Vk-2,0 - .. - dndVk-nd.Q



-(aig-1 + 029-2 + ... + anaq~na)yk

+(&ig-l + &29-2 +... + bnbq~nb)uk

-(/i9-l + /29-2 + ... + fnfq-nf)wk

+(Cig-l + C29-2 + . . . + Cncg" )£k
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-(dig-1 + d^q-2 +... + ^g-"d)^

Using the definition of A(g-1), B(q-1}, F(g-1), C(g-1), £>(9-1) given in equa-

tions 2. 3 through 2.7, the above expression reduces to-

^ = (l-A(^-l))^+B(g-l)ufc+(l-F(g-l))w,

+(C(g-l)-l)£, +(l-D(g-1))^

Substituting for e/;(B. 6), we obtain:

<,0 = (l-A(g-l))^+B(g-l)ufc

+(l-F(g-l))wfe+(l

Substituting for ̂ (B. 8), we obtain:

P(g-1)'
C{^, Vk

<^ = . ^y}. ^^
+-(^-^')-

Finally, replacing Wfc(B. 7), we obtain:

<^ - (l--A(g-l)D(g-^)^^P(^)B(g-i)^
lyt+C^)F(^)ntC{q-1)

Vk\e (B. ll)
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With (B. 11), a series of equations can be formed (N being the total number of
data in the sample) :

?/1 = ^^+£1

?/2 = ^^+£2

VN = ^Jf,e0 + SN

or equivalently:

^N = ~^N,e6 + Eyy (B. 12)

where Y, E are [A^x 1] vectors and ̂ , a [A^x (na +nb+nf+nc+ nd)] matrix,
is defined in (B. 13).

^N,0=

^,e
^

 .e
(B. 13)

N̂,9

The next step is to find 0 that minimise the error vector. Formally, we can write:

0 = arg min E^E/v (B. 14)

Replacing the error expression in B. 14 by (B. 12), we obtained B. 16. This ex-

pression is known as a pseudo-Iinear regression. To solve this, we need to esti-

mate the gradient. In Matlab, this is done using a Gauss-Newton iterative method

(Ljung 1999, p327-328). Because of the iterative nature of the method, the solution

found is dependent on the initial condition. The minimisation routine can certainly
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find a local minimum. In the model building context, a local minimum can be ac-

ceptable if the validation procedure is satisfied. The representation seeked is the

best one and not the true one (Although it would be better to have the real model

but this leads to the theological question: Is there such a thing as a true model?).

E^-EAT
QE^EN

9e

= (Y^ - ^^, ^)T (Y^ - ^fN, e0)

== 2(YN-^N, e0)T a{YN-^N.eO)
90

(B. 15)

(B. 16)

(B. 17)

The special case of (B. 16) is the linear regression where the regressor does not

depend on 0 (for example, in the case of ARX model). The estimate 6 becomes a

quadratic function and a minimum can be guaranteed as in (B. 18) and B. 19

C?T" = -2(Y. -^)T^=0
90

ff = (^^)-1(^^
(B. l )

(B. 19)

This algorithm is implemented in Matlab through the pern function of the System

Identification Toolbox. It was used to compute all of the models used in this project.
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Appendix C

Identification Data and Models of

Paprican Pilot Paper Machine

Before controlling the headbox consistency, models are necessary to test the control

strategies. This appendix gives the detailed procedure and the design decisions made

to obtain the models used in chapter 3. The model building procedure is explained

in chapter 2.

Every model is presented in the same way. First, a figure presents the identifi-

cation data. The identification figure consists of two parts. The first part, drawn

with a solid line, represents the estimation data. The second part, drawn with a

dash line, represents the validation data. Parametric models with a total number

of parameters ranging from 2 to 15 are calculated and compared. Fourteen models

are selected and presented on another figure. After a detailed analysis, the selected

model is plotted against the validation data.

C. l Headbox consistency models (z/i)

From a simple mass balance around the headbox, one can readily identify two po-
tential manipulated variables: the thick stock flowrate and the white water diluti n

rate. Physically, the manipulated variables could be : the thick stock valve position
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Figure C. l: Identification data for the model between y-^ and -ui

and the fanpump rpm. Another potential variable is the thick stock flowrate. In

the latter case, a cascade strategy is necessary. The next few pages explain the

model building procedure between these manipulated variables and the headbox

consistency.

C. 1. 1 Machine chest valve (u^)

Figure C. l presents the identification data. Figure C. 2 presents the FPE (bar plot)

and the fit (line plot) of the selected models. Inside the bar, from top to bottom are

the respective values of na, nb, nc, nd, nf, and nk.

From the preliminary analysis, models 6, 9 and 11 are chosen to undergo a

deeper analysis. Those models were selected because, respectively: a good FPE

/fit combination for the number of parameter, the best FPE / fit combination and,

the best fit. The models are presented in Table C. l. A pole/zero analysis reveals

that models BJ(3, 2, 1, 3) and BJ(4, 3, 1, 3) do have a cancelation. It is interesting to

note, that the two models have poles very close to the unit circle. The residuals
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Figure C. 2: Candidate models between yi and u-^

analysis shows a periodic auto-correlation of the error signal for all models. No

cross-correlation between the error and input signals is detected. The BJ(1, 1, 1, 3)

is kept since the added parameters in the other models only'try to model the valve

non-linearity. The linearity range of this model is± 5 % in valve opening and ±

0. 2 % consistency. The nominal values are 65 % for the valve and 0. 91 % for the

consistency. The OE(1, 1) model was also computed to serve for PI tuning. This

model has an important auto-correlation between its residuals. There is significant

cross-correlation between the residuals and the input. The important features of

both models (equations C. l and C. 2) are described in Table C. 2 and are graphed

with the validation data in Figure G.3.

0. 00070039-45
?/l=l-0. 9794g-ul+e

5. 511xl0-5g-37 l-0. 0376g-1
2/1 = 1 - 0. 9247g-1 - 0. 9946g-2 + 0. 9209g-3 ul 1 - 0. 9978g-1'

(C. l)

(C. 2)
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Table C. l: Preliminary models between y-^ and Ui
Model Name Model

BJ(1, 1, 1, 3)

BJ(3, 2, 1, 3)

BJ(4, 3, 1, 3) y^

5. 511xl0-5 -37
1-1

y-

5. 511xl0-i:' -.
-0. 9247g-l-0. 9946g-2+0. 9209g-3'u

1-0.0376 -1
1-0.9978 -2

-0.0001283 -35+0.0003547 -36-0.0002229 -37
l-2. 524g-l+2, 06g---0.5364g-3 u

1-0. 04277 -l-d. 05077(7-2
-I e

-2.227xl0-5 -34-5.102xl0-5 -35+0.0002512 -36-0.0001749
l-2. 57g-:l+2. 153g-2_-0. 5827g-3

1-0.03976 -1-0.04641-2-0.04475 -3
1-0. 9979 -1 e

37

u

Table C. 2: Characteristics of the chosen models between z/i and u^
Model Name Equation FPE Fit Model Error Linear

Number (%) Model Fit (%) Fit (%)
OE(1, 1) (C. l) 6. 62x 10-4 65. 0 4. 06 80.4
BJ(1, 1, 1,3) (C. 2) 4. 22x 10-6 71. 0 -25. 8 79.7

C. 1. 2 Fanpump rpm (^2)

The identification data is presented in Figure C. 4. The fanpump rpm is expressed

as a percentage of its scale. Figure C. 5 presents the FPE (bar plot) and the fit (line

plot) of the selected models. Inside the bar, from top to bottom are the respective

values ofna, nb, nc, nd, nf, nk.

From the preliminary analysis, model 7 and 13 are chosen to undergo a deeper

analysis. Those models were selected because, respectively: the best FPE / fit

combination and, the best fit. Those models are presented in Table C. 3. A pole/zero

analysis shows no cancellation for the models under study. It is interesting to note,

that the two models have poles very close to the unit circle. The residuals analysis

shows some auto-correlation of the error signal and no cross-correlation between the

error and input signals for both models. The impulse model of the error model is
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Figure C. 3: Simulation of chosen models between yi and HI against validation data.
OE(1, 1) model : dotted line, best model . black line, validation data : grey line
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Figure C. 4: Identification data for the model between ?/i and ̂ 2
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Figure C. 5; Candidate models between y-^ and ug

similar for the two models. There is no significant advantages to chose the more

complicated model. Therefore, the ARMAX(4, 2, 1) is kept. The model can be

considered linear over the whole data set. The linearity range of this model is ± 2

% in fanpump and ± 0. 05 % consistency. The nominal values are 40. 2 % for the

fanpump and 0. 90 % for the consistency. The OE( 1, 1) model was also computed

to serve for PI tuning. This model has an important auto-correlation between its

residuals. The model error fit is small. The important features of both models

(equations C. 3 and C. 4) are described in Table C. 4 and graphed with the validation
data in Figure C.6.

-0.0004126g-35
m= 1- 0. 9808g-^ u2 + e (c-3)

(1 - 1. 912g-1 + 0.90829-2 - 0.02705g-3 + 0.03174g-4)^ = (0. 0003028g-lfC. 4)

-0. 000325l9-20)u2

+ (1 - 0. 9455g-l)e
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Table C. 3: Preliminary models between yi and u-i
ModelModel Name

ARMAX(4, 2, 1) (1 - 1. 912g-1 + 0.9082q-2 - 0. 02705g-3 + 0. 03174^-4),/
(0. 0003028g-19 - 0. 0003251g-20)u

+(l-0. 94559-l)e

BJ(1, 1, 1, 10) -5. 564xl0-5 -2S
l-2. 213g-l+1. 547g-2+0. 129g-3-0. 312g-4

-0.3528g-5-0.1433g-6+0.1776g-7+1.155g-8-1.825g-9+0.8409g-lo'u
1-0.0174 -I-
1-0.9885 -le

Table C. 4: Characteristics of the chosen models between yi and u^
Model Name Equation FPE Fit Model Error Linear

Number (%) Model Fit (%) Fit (%)
OE(1, 1) (C. 3) 6. 21x 10-5 52. 4 -1. 6 68.1
ARMAX(4, 2, 1) (C. 4) 1. 64x 10-6 53. 8 -565 69.1

C. 1. 3 Machine chest Howrate (^3)

Figure C. 7 presents the identification data. Figure C. 8 presents the FPE (bar plot)

and the fit (line plot) of the selected models. Inside the bar, from top to bottom are

the respective values of na, nb, nc, nd, nf, and nk.

From the preliminary analysis, models 6, 9 and 15 are chosen to undergo a deeper

analysis. Those models were selected because, respectively: a good, a better and

the best FPE /fit combination. The models are presented in Table C. 5. A pole/zero

analysis reveals that model ARMAX(2, 3, 1) does have a cancelation. The analysis

of the residuals shows a periodic auto-correlation of the error signal for all models.

No cross-correlation between the error and input signals is detected. The ARAR-

MAX (3, 1, 1,4) is kept since adding more parameters yields a very small improvement.

The whole data set can be considered linear. Then, the linearity range is -600 to 300

L/min for the flowrate and -0. 4 to 0. 2% for the consistency. The nominal values are
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Figure C. 6: Simulation of chosen models between yi and u^ against validation data.
OE(1, 1) model : dotted line, best model : black line, validation data : grey line
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Figure C. 7: Identification data for the model between yi and Uy
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Figure C. 8: Candidate models between y-^ and u^

1016 L/min for the flowrate and 0. 91 % for the consistency. The OE(1, 1) model was

also computed to serve for PI tuning. This model has an important auto-correlation

between its residuals. There is significant cross-correlation between the residuals

and the input. The important features of both models (C. 5 and C. 6) are described

in Table C. 6 and are graphed with the validation data in Figure C. 9.

1. 891xl0-5g-27
yl= 1- 0. 9709, -^ u3 + e (C. 5)

2/1 =
1. 352x10-5g-31

1 - 1. 98g-1 + 1. 571g-2 - 0. 5714g-3 3
1 - 0. 8916g-1

1 + 0. 20549-1 - 0. 3766g-2 - 0. 5045g-3 - 0. 2986g-4
1

1 - 1. 98q-1 + 1.571q-2 - 0. 57Uq-3e

(C. 6)
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Table C. 5: Preliminary models between y-^ and ̂ 3
Model Name

ARMAX(2, 3, 1)

ARARMAX(3, 1, 1,4)

BJ(3, 1, 9, 2)

Model

(1 - 1. 953g-1 + 0. 9532g-2)y =
(-0 000191g-19 + 0. 0004084g-20 - 0. 0002172g-21)u

+(1 - 0. 952^-l)e

(1 - 1.98q-1 + 1. 571g-2 - 0. 57Uq-3)y =
(1. 352xl0-5g-31)u

1-0. 8916 -'+
1+0.2054 -1-0.3766 -2-0.5045 -3-0.2986 -4 e

-9.679xl0-5 -19+9.701xl0-5-20+3.257e-005 -21
l-0.04788g-l-0.9044g-2 u

1-0. 2838 -1
l-1.121g-l+0.1547g-2-0.01565g-3+0.01124<7-4

-0.01121 .-54-0.01528^-6-0.08721 -7-0.477, ;-s+0.5344 -s e

Table C. 6: Characteristics of the chosen models between yi and 1^3

Model Name Equation FPE Fit Model Error Linear

Number (%) Model Fit (%) Fit (%)
OE(1, 1) (C. 5) 4. 48x 10-4 86. 7 -599 87.9
BJ(1, 1, 1,3) (C. 6) 3. 88xl0-6 88. 7 -8293 88.7

C. 2 Headbox flowrate models (y^)

The headbox consistency is the primary output variable of interest. From a sim-

pie mass balance around the headbox, it is evident that the consistency will be

influenced by the headbox flowrate. For machine stability, this variable is already

controlled. Then, building models between headbox flowrate and the manipulated

variables will defined a multivariable 2 by 2 system.

C. 2. 1 JVtachine chest valve (^i)

The identification data is presented in Figure C. 10. Figure C. 11 presents the FPE

(bar plot) and the fit (line plot) of the selected models. Inside the bar, from top to
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Figure C. 9: Simulation of chosen models between y-^ and Us against validation data.
OE(1, 1) model : dotted line, best model : black line, validation data : grey line

bottom are the respective values of na, nb, nc, nd, nf, nk.

From the preliminary analysis, model 6 and 14 are chosen to undergo a deeper

analysis. These models were selected because, respectively: a good FPE / fit com-

bination for the number of parameters and, the best fit. The models are presented

in Table C. 7. Both models do not have a zero. The residuals analysis shows some

auto-correlation of the error signal for both models. Model BJ(1, 1, 2, 2) shows cross-

correlation between the error and input signals. However its impulse error model

fit is negative. Therefore, it is chosen. The linearity range of this model is ± 4 %

in valve opening and ± 40 L/min flowrate (this is equivalent to the validation set).

The nominal values are 65 % for the valve and 3500 L/min for the flowrate. The

OE(1, 1) model was also computed to serve for PI tuning. This model has an im-

portant auto-correlation between its residuals and cross-correlation with the input

sequence. The important features of both models (C. 7 and C. 8) are described in

Table C. 8 and are graphed with the validation data in Figure C. 12. The difference
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for both models is very small and the simplest model represents the data as well as

the complicated model. The elaborate model is only kept to be consistent with the
other models.

Table C. 7: Preliminary models between 7/2 and ui
Model Name Model

BJ(1, 1, 2, 2) -0. 2806 -15 ,,, 1-0. 0542 -1
1-1. 499 -1+0. 5446 -2'u -rl-1. 39S -1+0. 4226 -2e

ARARMAX(7, 1, 4, 2) (1 - 2. 236?-1 + 1. 385g-2 + 0. 3668<7-3 - 0. 395g-4
-0. 3696g-5 + 0.4235g-6 - 0. 1538g-7)y =

t-15^" _i_l-2. 205g-l+1.356 -2+0.2581 -3-0.4052 -4
)U +- -"- ^-^ -l+o.'2394 -2 """^ e

-0. 3553g-15
2/2 = 1-0. 942^ul + e (C. 7)

-0. 2806g-15 , 1-0. 0542?-1
2/2 = 1 - 1.499g-1 +0.5446g-2ul + 1 - 1. 398g-1 + 0. 4226g-2e (C. 8)

Table C. 8: Characteristics of the chosen models between y^ and Ui
Model Name Equation FPE Fit Model Error Linear

Number (%) Model Fit (%) Fit (%)
OE(1, 1) (0. 7) 78. 9 57. 8 1. 4 57.8
BJ(1, 1, 2, 2) (C. 8) 2. 56 58. 2 -10. 5 58.2

C. 2. 2 Fanpump rpm (^2)

The identification data is presented in Figure C. 13. The fanpump rpm is expressed

as a percentage of its scale. Figure C. 14 presents the FPE (bar plot) and the fit (line

plot) of the selected models. Inside the bar, from top to bottom are the respective
values of na, nb, nc, nd, nf, and nk.
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Figure C. 12: Simulation of chosen models between ya and u^ against validation data.
OE(1, 1) model : dash line, best model : black line, validation data : grey line
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Figure C. 14: Candidate Models between y^ and ̂ 2

From the preliminary analysis, model 5 and 10 are chosen to undergo a deeper

analysis. These models were selected because, respectively: the best fit, and the

best FPE / fit combination. Those models are presented in Table C. 9. The

first model, ARARMAX(2, 1, 1, 1), do not have a zero. The second model, ARAR-

MAX(4, 4, 1, 1), has 5 distinct poles and 3 distinct zeros. The residuals analysis shows

auto-correlation of the error signal and cross-correlation between the error and input

signals for both models. The impulse model of the error model presents a similar fit

for both models. (8. 5 % against 6. 9 %). There is no striking advantages to choosing

the more complicated model. Therefore, the ARARMAX(2, 1, 1, 1) is kept. Two ex-

tra data sets are available to estimate the linearity range. The linearity range of this

model is ± 5 %in fanpump rpm and ± 700 of L/min flowrate. The nominal values

are 42. 1 % for the fanpump and 700 L/min for the flowrate. The OE(1, 1) model was
also computed to serve for PI tuning. This model has an important auto-correlation

between its residuals and cross-correlation with the input sequence. Furthermore,

the model error fit is 70 %. The important features of both models (C. 9 and C. 10)
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Figure C. 15: Simulation of chosen models between y^ and Ug against validation data.
OE(1, 1) model : dotted line, best model : black line, validation data : grey line

are described in Table C. 10 and are graphed with the validation data in Figure C. 15.

Table C. 9: Preliminary models between y-s, and us
Model Name Model

ARARMAX(2, 1, 1, 1) (l-1. 181g-l+0. 3225^-2)y
,-5)y+ 1-°'9814 -1,

1-0. 9991 -1

ARARMAX(4, 4, 1, 1) (1 - 1.054g-1 + 0. 2273g-2 - 0. 1395g-3 + 0. 113q-4)y
(5. 318g-4 + 11. 369-5 + 1.439g-6 - 1.671q-7~)u

1-0. 9781 -1
1-0.9986 -1

23. 37g-5
?/2=l-0. 7948,-^2+e (C. 9)

(1 - l. lSlg-1 + 0. 3225g-2)^ = (15.78q-5)u, + ^ ̂  ̂ ^91^e (c-lo)
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Table C. 10: Characteristics of the chosen models between 7/2 and ug
Model Name Equation FPE Fit Model Error Linear

Number (%) Model Fit (%) Fit (%)
OE(1, 1) (C. 9) 46. 21 83. 0 70. 0 91.7
ARARMAX(2, 1, 1, 1) (C. 10) 5. 31 85. 5 8. 5 92.1
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Figure C. 16: Identification data for the model between y^ and uy,

C. 2. 3 Machine chest fiowrate (^3)

The identification data is presented in Figure C. 16. Figure C. 17 presents the FPE

(bar plot) and the fit (line plot) of the selected models. Inside the bar, from top to

bottom are the respective values of na, nb, nc, nd, nf, and nk.

From the preliminary analysis, model 9, 12, and 15 are chosen to undergo a

deeper analysis. These models were selected because, respectively: a good FPE/fit

combination, the best FPE/fit combination, and the best fit. The models are pre-

sented in Table C. ll. None of the models have a pole/zero cancellation. The residu-

als analysis shows some auto-correlation of the error signal and no cross-correlation

between the error and input signals for all models. The impulse model of the error
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Figure C. 17: Candidate models between y^ and us

model presents a similar fit. The ARARMAX(5, 1, 3, 6) model has the best fit on the

validation data but not on the identification data. There is no major advantages

to chose the more complicated model. Therefore, the ARARMAX(3, 2, 1, 3) is kept.

The linearity range of this model is the whole data set. The nominal values are 1000

L/min for the machine chest flowrate and 3500 L/min for the headbox flowrate. The

OE(1, 1) model was also computed to serve for PI tuning. This model has an impor-

tant auto-correlation between its residuals and has cross-correlation with the input

sequence. The important features of both models (C. ll and C. 12) are described in

Table C. 12 and are graphed with the validation data in Figure C. 18. As can be seen

from the graph, the extra parameters of model ARARMAX(3, 2, 1,3) do not greatly

improve the fit. The complicated model is retained only to test control strategies
on a different model.

-0. 2279g-10
?/2=l+0. 7997, -u3+e (C. ll)
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Model Name

ARARMAX(3, 2, 1, 3)

ARARMAX(2, 3, 3,4)

Table C. 11: Preliminary models between y^ and uy,
Model

(1 - 2.0Q2q-1 + 1.465g-2 - 0.4001g-3)y =
(-0. 1449g-l° + 0. 1369?-n)u

1-0. 9603 -1
1-0.2335 -1-0.4518 -2-0.3088 -3e

(1 - 1. 406g-1 + 0. 5511g-2)?/ =
(-0. 141g-10 + 0. 01173g-u + 0. 1102q-12)u

1+0. 1989 -1-0. 5496 -2-0. 503S -3
14-0.3023 -1-0.6331 -2-0.6898 -3+0.02942 -4 e

ARARMAX(5, 1, 3, 6) (1 - 0. 3549g-1 - 0. 5595?-2 + 0. 08452g-3 + 0. 4561g
+0.005741g-5)y = (-0. 09551g-lo)u

1-2. 104 -1+1. 746 -2-0. 632 -3

-4

1-3.044 -1+4.244 -2-3.709 -3+2.169 -4-0.9018 -s+0.2417 -e e

(l - 2. 002g-1 + 1. 465g-2 - 0. 4001g-3) yg = -0. 1449g-10 + 0. ,
-11, (C. 12)-1369g-llu3

1 - 0. 9603g-1
1 - 0. 2335g-1 - 0. 4518g-2 - 0. 3088g-3e

Table C. 12: Characteristics of the chosen models between y-^ and u^
Model Name Equation FPE Fit Model Error Linear

Number (%) Model Fit (%) Fit (%)
OE(1, 1) (C. ll) 52. 6 53. 7 -83 67.1
ARARMAX(3, 2, 1,3) (C. 12) 2. 34 56. 1 -631 70.5

C. 3 Machine chest flowrate models (^3)

When a cascade strategy is used, the manipulated variable for headbox consistency
and flowrate changes from machine chest valve to machine chest flowrate. It is

necessary to have a model between the machine chest flowrate and valve. This

model is built in the following section After some tests, the low precision of the
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Figure C. 18: Simulation of chosen models between y^ and Uy, against validation data.
OE(1, 1) model : dotted line, best model : black line, validation data : grey line

control valve demands an improvement. Hence, a mid-ranging strategy was put in

place where the bulk of the flow passes through the machine valve and the small

adjustments are made with the small machine chest valve (^4).

C.3. 1 Machine chest valve (ui)

The identification data is presented in Figure C. 19. Figure C. 20 presents the FPE

(bar plot) and the fit (line plot) of the selected models. Inside the bar, from top to

bottom are the respective values of na, nb, nc, nd, nf, and nk.

From the preliminary analysis, models 4, 7 and 9 are chosen to undergo a deeper

analysis. These models were selected because, respectively: a very good FPE /

fit combination, the best fit, and the best FPE /fit combination. The models are

presented in Table C. 13. A pole zero analysis shows that model ARMAX(4, 2, 1)

zero cancels one of its poles. It is therefore eliminated. The residuals analysis

shows some cross-correlation between the error and input signals for both remaining



141

400

200

0

E -sao

-^ao

-600

-800
0

5

0

S" -5

-10

1000 20BO 00 4000 5000 6000 7000 800B 9000
s

MC Val»e

-15

0 1000 8000 3000 4000 5000 6000 70BO 8000 9000

Figure C. 19: Identification data for the model between uy and -Ui

2 3 4 5 6 78 9101112131415
Number of parameters in the model (excluding nk)
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models. The impulse model of the error model is similar for the two models. There

is no significant advantages to choosing the more complicated model. Therefore, the
ARARMAX(1, 1, 1, 1) is kept. The linearity range of this model is ± 5 % in valve

opening and ± 250 L/min of flowrate. The nominal values are 65 % for the valve

and 1000 L/min for the flowrate. The OE(1, 1) model was also computed to serve for

PI tuning. This model has an important auto-correlation between its residuals. The

model error fit is small. The important features of both models (C. 13 and C, 14) are
described in Table C. 14 and are graphed with the validation data in Figure C. 21.

Table C. 13: Preliminary models between ^3 and Ui
Model Name Model

ARARMAX(1, 1, 1, 1) (1 - 0. 9751g-l)y = (1.167q-7)u
1-0. 9796 -1

ARMAX(4, 2, 1)

ARARMAX(1, 6, 1, 1)

(1 - 2. 062g-1 + 1. 007?-2 + 0. 1991g-3 - 0. 1443g-4)y =
(1. 309g-7-1. 303g-8)u

+(1 - 0. 9204g-l)e

{1 - 0.9569q-l)y =
(0. 7863g-6 - 0. 05256?-7 + 0. 4809g-8

+0.4287(?-9 - 0. 032549-10 + 0.3995q-ll)u
1-0.6957 -1
1-0.9932 -1

Note: ua is denoted y in this table.

1. 918g-6
U3=l-0. 9579, -iul+e (C. 13)

(1 - 0. 9751g-l)u3 = (1. 167g-7)ui+^^
1 - 0. 6634g

-9796g, -x (C. 14)
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Figure C. 21: Simulation of chosen models between ^3 and ui against validation
data. OE(1, 1) model : dotted line, &es( model : black line, validation data : grey
line

Table C. 14: Characteristics of the chosen models between u^ and ui
Model Name Equation FPE Fit Model Error Linear

Number (%) Model Fit (%) Fit (%)
OE(1, 1) C. 13 803 85. 0 1. 9 82.5
ARARMAX(1, 1, 1, 1) C. 14 0. 69 82. 4 -4. 0 82.6

C. 3. 2 Small machine chest valve (^4)

The identification data is presented in Figure 0. 22. Figure C. 23 presents the FPE

(bar plot) and the fit (line plot) of the selected models. Inside the bar, from top to
bottom are the respective values of na, nb, nc, nd, nf, and nk.

From the preliminary analysis, model 4, 8, and 13 are chosen to undergo a
deeper analysis. These models were selected because, respectively: a fit equivalent

to model 8, the lowest FPE, and the best FPE / fiit combination. Those models

are presented in Table C. 15. A pole-zero cancelation analysis eliminates the AR-

MAX(3, 4, 1) model. For the two remaining models, the residuals analysis yields sim-
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ilar results but the BJ(1, 4, 4, 4) has residuals with less cross-correlation. The impulse

model of the residual (model error model) gives a fit of 24. 5 % for the ARARX(1, 1, 2)
model. The BJ(1, 4, 4,4) error model fit is 7 %. Therefore, the BJ(1,4, 4,4) model is

chosen as the best model. The linearity range of this model is taken as the whole

range of the valve since only one step in each direction is available. The OE(1, 1)

model was also computed to serve for PI tuning. This model has an important
cross-correlation between its residuals. Furthermore, the model error fit is 18 %.

The important features of both models (C. 15 and C. 16) are described in Table C. 16

and are graphed with the validation data in Figure C. 24.

Table C. 15: Preliminary models between 1(3 and u^
Model Name Model

ARARX(1, 1, 2) (1 - Q.8982q-l)y =
(0. 2594$-4)u

1

1-0.6333-1+0.1033 -2

ARMAX(3, 4, 1) (1 - 2. 372g-1 + 1.863g-2 - OA897q-3)y =
(0. 03052g-2 + 0.08241g-3 - 0. 01005g-4 - 0. 1006g-5)u

+(l-0. 9517g-l)e

BJ(1,4, 4, 4) 0.06637 -2
l-2.671g-:l+2.908^-2-l.528g-3+0.3207g-4

1-1.589 -r+0.3489 -2+0.07989'-3+0.1608'-4
1-3.063 -14-3.301 -2-1.413 -3+0.1747 -4 e

Note: us is denoted y in this table.

0. 3843g-3
"3=l-0.8483^u4+e (C. 15)

Us =
0. 066379-2

1 - 2. 671g-1 + 2. 908g-2 - 1. 528^-3 + 0. 3207^ -4 U4

+
1 - 1. 5899-1 + 0. 3489g-2 + 0. 07989g-3 + 0. 1608q-

1 - 3. 063g-1 + 3. 301g-2 - lA13q-3 + 0. 1747g-4

,-4

(0. 16)
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Figure C. 24: Simulation of chosen models between u^ and u^ against validation
data. OE(1, 1) model : dotted line, best model : black line, validation da.ta : grey
line

Table C. 16: Characteristics of the chosen models between ^3 and ̂ 4
Model Name Equation FPE Fit Model Error Linear

Number (%) Model Fit (%) Fit (%)
OE(1, 1) (C. 15) 109. 04 79. 3 18. 7 77.2
BJ(1, 4, 4, 4) (C. 16) 5. 00 83. 2 7. 3 77.5
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Appendix D

Identification Data and Models of

CSPP Pilot Paper Machine

To devise and test different control strategies models between potential output

variables and potential input variables are necessary. This appendix presents in

detail the procedure and the design decisions made to obtain the models used in

chapter 4. The model building procedure is explained in chapter 2. The sampling

period for the wet-end variables is 12 seconds and for the dry-end variables is 10

seconds.

Every model is presented in the same manner. First, a figure presents the iden-

tification data. The identification figure has two set of data . The first set, drawn

with a solid line, represents the estimation data. The second set, drawn with a

dotted line, represents the validation data. Second, parametric models with a total

number of parameters ranging from 2 to 15 are calculated and compared. Fourteen

best models are selected and presented on a following figure. Lastly, after a detailed

analysis, the selected model is plotted against the validation data. This last graph

is made with Matlab System Identification Toolbox function compare. The compare

function handles the initialisation of the model in such a way as to yield the best fit

value. As a side effect, the first few points on the graph do not behave as expected
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from a linear model. Since this does not affect the resulting model, this feature of
the compare function was not disabled.

D. l Headbox consistency models (z/i)

As seen from the models of chapter 3, headbox consistency is influenced by the
machine chest flowrate. On this machine, the headbox is open and the total flow is

not controlled. Therefore, the effects of the fanpump velocity on headbox consistency
are not of concern. The pulp used in this trial contains filler. Therefore, filler is

added to keep the sheet ash content to its setpoint. The headbox consistency will
be affected by the fresh filler flowrate. The effect of retention additives (C-PAM
and Bentonite) are negligible because the quantity added is small. Consistency is
a measure of solid material in water. At the headbox, this quantity does not vary
much with varying additive flowrate. The noisy data did confirm this. The effect

of retention additive on headbox consistencies (total and ash) is assumed to be zero.
The next few pages explain the model building procedure between machine chest

and filler and headbox consistency.

D. 1. 1 Machine chest flowrate (^3)

The identification data is presented in Figure D. l. Figure D. 2 presents the FPE

(bar plot) and the fit (line plot) of the selected models. Inside the bar, from top to
bottom are the respective values of na, nb, nc, nd, nf, and nk.

From the preliminary analysis, models 5, 7 and 10 are chosen to undergo a
deeper analysis. These models were selected because, respectively: a good FPE /fit
combination for the number of parameter, a better FPE /fit combination, and the
best FPE / fit combination. However a pole/zero analysis reveals a cancellation

for every model. Therefore, models 2, 3, and 4 are going to be analyzed. Those
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models are presented in Table D. l. They do not have pole/zero cancellation. The

residuals analysis shows auto-correlation of the error signal for every models except
BJ(1, 1, 1, 1). No cross-correlation between the error and input signals is detected

for every models. The model error model fit is highest (28 %) for the BJ(1, 1, 1, 1).
The two OE models are equivalent and the simplest one is kept (D. l). The linearity
range of this model is ± 10 % in machine flowrate and ± 0. 1 % consistency (the
whole data set). The nominal values are 80 L/min for the flowrate and 0. 60 % for
the consistency.

Table D. l: Preliminary models between ^ and Us
Model Name Model

OE(1, 1)

OE(2, 1)

BJ(1, 1, 1, 1)

0^0004126^.
1-0. 9472 -1

_ 0.001058-0.0006856 -1
y = --"^^":, "u u + g

0. 0003598 _" ^1-0. 3096 -\
1-0.9544 -1 "' ' 1-0.9032 -l

0. 0004126
yl = l-OM72^u3+e (D. l)

Table D. 2: Characteristics of the chosen model between y^ and u^
Model Name Equation FPE Fit Model Error Linear

Number (%) Model Fit (%) Fit (%)
OE(1, 1) (D. l) 4. 85x 10-4 55. 1 15. 3 63.7

D. 1. 2 Fresh filler flowrate (ug)

The identification data is presented in Figure D. 4. For this model, only two steps are
available. A quick glance at the data shows a static non-linearity. For the same step
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Figure D.3: Simulation of chosen model between yi and ̂ 3 against validation data.
best model : black line, validation data : grey line

size, the gain in one direction is twice the gain in the other direction. Furthermore.

the dynamics are slower for the step down. To get somewhat representative models,

two models are identified. Figure D.4(a) presents the data for a step up. Figure
D. 4(b) presents the data for a step down. Figure D. 5(a) presents the FPE (bar plot)
and the fit (line plot) of the selected models for the step up and Figure D.5(b) for
the step down. Inside the bar, from top to bottom are the respective values of na,
nb, nc, nd, nf, and nk.

From the preliminary analysis of Figure D. 5 (a), model 2 and 11 are chosen to

undergo a deeper analysis. These models were selected because, respectively: a good
FPE /fit combination for the number of parameter, and the best fit. The models are

presented in Table D. 3. A pole zero analysis reveals that model ARMAX(2, 3, 6) has
a cancellation. The residuals analysis shows auto-correlation of the error signal for
model OE(1, 1). No cross-correlation between the error and input signals is detected.

The simpler model, OE(1, 1) is kept (D. 2). The linear range is 4. 55 to 5. 42 L/min
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Figure D. 5: Candidate models between yi and ug
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in filler flowrate and 0. 58 to 0. 70 % in headbox consistency.

From the preliminary analysis of Figure D. 5 (b), model 2 and 7 are chosen to

undergo a deeper analysis. These models were selected because, respectively: a

good FPE /fit combination for the number of parameter, and a better FPE / fit
combination. The models are presented in Table D.4. A pole zero analysis reveals

that model OE(3, 4) has a cancellation. The residuals analysis shows auto-correlation

of the error signal for model OE(1, 1). No cross-correlation between the error and

input signals is detected. The simpler model, OE(1, 1) is kept (D. 3). The linear range

is 5. 42 to 3. 68 L/min in filler flowrate and 0. 73 to 0. 53 % in headbox consistency.
Table D.5 summarises some of the models characteristics, igure D. 6 compares the
model response with the validation data.

Table D. 3: Preliminary models between y-^ and ug for the step up
Model Name Model

OE(1, 1)

ARMAX(2, 3,6)

0.05074
= l-0.-'6l3g-1 Iu

+e

(1 - 2. 029g-1 + 1.08g-2)y =
(0. 051029-2 - 0. 08261g-3 + 0. 03809g-4)u

+(l-1. 297g-l+0. 2537g-2-
0. 06951g-3 + 0. 1724g-4 - 0. 1385?-5 + 0. 2351g-6)e

Table D. 4: Preliminary models between yi and Ug for the step down

Model Name Model

OE(1, 1)

OE(3, 4) y=

^ 0.0006832 -2,
l-0.9709g-1

+e

-0. 001499 -9+0. 00303 -10-0. 001531 -]
l-3. 582g-l+4. 758g-2-2. 768g-3+0. 5923g

+e

-11
u
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Figure D. 6: Simulation of chosen models between ?/i and -Ug against validation
data.

best model : black line, validation data : grey line

0. 05074
1/1 =1-0. 613^ U8(stepup)+e (D. 2)

0. 0006832g-2
yl = 1 - 0. 9709g-^8(step Down) + e (D. 3)

Table D.5: Characteristics of the chosen models between y^ and uy,
Model Name Equation FPE Fit Model Error Linear

Number (%) Model Fit (%) Fit (%)
OE(1, 1) StepUp (D. 2) 8. 50x 10-4 55. 4 no fit 55.4
OE(1, 1) step Down (D. 3) 6. 84xl0-4 55. 1 no fit 55.1

D. 2 Headbox ash consistency models (^3)

This output variable should be more sensitive to filler flowrate. This section builds

models to study the interaction of this output variable with the input variables.
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HB Ash Consistency

Figure D.7: Identification data for the model between 7/3 and u^

D. 2. 1 Machine chest flowrate (^3)

The identification data is presented in Figure D. 7. Figure D. 8 presents the FPE

(bar plot) and the fit (line plot) of the selected models. Inside the bar, from top to
bottom are the respective values of na, nb, nc, nd, nf, and nk.

From the preliminary analysis, model 5, 8 and 10 are chosen to undergo a deeper
analysis. These models were selected because, respectively: a good FPE /fit combi-
nation for the number of parameter, the best FPE / fit combination, and the best fit.

The models are presented in Table D.6. Models OE(3, 2) and ARMAX(2, 2, 4) have
a zero that is cancelled by a pole. The remaining model shows no auto-correlation

of its error signal and no cross-correlation between the error and input signals. It
is therefore chosen (D. 4). The whole data set is assumed to be linear. Then, the

range is ± 10 % in machine flowrate and -2 to 4 % in ash consistency. The nominal
values are 80 L/min for the flowrate and 18. 9 % for the ash consistency. Table
D. 7 summarises some of the model characteristics. Figure D. 9 compares the model
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Figure D.8: Candidate models between ̂ 3 and ̂ 3

response with the validation data.

Table D.6: Preliminary models between y^ and uy,
Model Name Model

OE(3, 2)

ARMAX(2, 2, 4)

BJ(1, 2, 5, 2)

y=_ 0.01332 -4-0.01743 -5+0.004048 -6
1-1.966 -1+0.9654 -2 u +e

(l-1. 97g-l+0. 97g-2)y=
(0. 008115 - 0. 008123g-l)u

+(1 - 1.4929-1 + 0. 3718?-2 - 0. 03438g-3 + 0. 1521g-4)e

0.01962 -3

y == l-0. 08171g-1-0. 8303?- u
1-1.85 -1+0.8483 -2'

1-2.357 -J+1.663 -2-0.1455 -3-0.2517 -4+0.09064 -5 e

0. 01962q-3
= l-0.08171g-l-0. 8303?-2u3 (D. 4)

. -21 - 1.85q-1 + 0.8483g-
1 - 2. 357g-1 + 1. 663^-2 - 0. 1455g-3 - 0. 2517g-4 + 0. 09064g-5<
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Figure D. 9: Simulation of chosen model between 2/3 and us against validation data.
best model : black line, validation data : grey line

Table D. 7: Characteristics of the chosen model between y^, and ̂ 3
Model Name Equation FPE Fit Model Error Liu ar

Number (%) Model Fit (%) Fit (%)
BJ(1, 2, 5, 2) (D. 4) 0. 16 70. 0 3. 68 62.4

D. 2. 2 Fresh filler flowrate (ug)

The identification data is presented in Figure D. 10. For this model, only two steps

are available. A quick glance at the data shows non-linearity. For the same step
size, the gain in one direction is twice the gain in the other direction. Furthermore,

the dynamics are slower for the step down. To get somewhat representative models,
two models are identified. Figure D. 10(a) presents the data for the step up. Figure

D. 10(b) presents the data for the step down. Figure D. 11 (a) presents the FPE (bar
plot) and the fit (line plot) of the selected models for the step up and Figure D. ll(b)
for the step down. Inside the bar, from top to bottom are the respective values of
na, nb, nc, nd, nf, and nk.
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From the preliminary analysis of Figure D. ll(a), model 2 and 6 are chosen to

undergo a deeper analysis. These models were selected because of good FPE /fit

combination. The models are presented in Table D.8. A pole zero analysis reveals

that model OE(4, 2) has a cancellation. The residuals analysis shows auto-correlation

of the error signal for model OE(1, 1). No cross-correlation between the error and

input signals is detected. The simpler model, OE(1, 1) is kept (D. 5). The linear

range is 4. 55 to 5. 42 L/min in filler flowrate and 18 to 22 % in headbox consistency.

From the preliminary analysis of Figure D. 11 (b), model 2 and 5 are chosen to

undergo a deeper analysis. These models were selected because of good FPE /fit

combination for the number of parameters. The models are presented in Table D.9.

Both models do not have pole / zero cancellation. The residuals analysis shows

auto-correlation of the error signal for both models. No cross-correlation between

the error and input signals is detected. The small improvement gained by adding

more parameters is not justified. Therefore, the simpler model, OE(1, 1), is kept

(D. 6). The linear range is 5. 42 to 3. 68 % in filler flowrate and 22 to 16 % in

headbox consistency. Table D. 10 summarises some of the models characteristics.

Figure D. 12 compares the model response with the validation data.

Table D.8: Preliminary models between ys and u& for the step up
Model Name Model

OE(1, 1)

OE(4, 2)

1. 53

y = 1-0. 6256 -lu +e

_ 2.643 -3-5.122g-4+2.221 -5+0.2699 -6
-1 1 09 -2 u1-2.017 1.02

y3 =l-0.6256g-iu8(stepup)+e (D. 5)

0. 02139g-2
y3 = 

1-0. 97099-1 
u8(stepDown)+e (D. 6)
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Table D. 9: Preliminary models between ̂ 3 and Us for the step down
Model Name Model

-°-021_39. -2.
1-0.9709 -iOE(1, 1)

_ -0.03088 -10-0.07556 -n+0.1081 -I
''"/ y - 1-1.975 -1+0.9786 -2

1000 1500 2000 2500 500 1000 15&0 2000 2500

(a) Step Up (b) Step Down

Figure D. 12: Simulation of chosen models between ys and ug against validatation
data. best model : black line, validation data : grey line

D. 3 White water consistency models (^4)

Today, retention control on a machine uses white water consistency as controlled

variable. This section builds models to study the effect of the input variables on the

white water consistency.

D. 3. 1 Machine chest flowrate (^3)

The identification data is presented in Figure D. 13. Figure D. 14 presents the FPE

(bar plot) and the fit (line plot) of the selected models. Inside the bar, from top to
bottom are the respective values of na, nb, nc, nd, nf, and nk.
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Figure D. 14: Candidate models between ^4 and us



162

Table D. 10: Characteristics of the chosen models between yy, and ug
Model Name Equation FPE Fit Model Error Linear

Number (%) Model Fit (%) Fit (%)
OE(l, l)stepUp (D. 5) 0. 82 55. 6 -28. 9 55.6
OE(l, l)stepDown (D. 6) 0. 66 55. 2 no fit 55.2

From the preliminary analysis, model 7 and 9 are chosen to undergo a deeper
analysis. These models were selected because, respectively: the best fit and a good
fit. These models are presented in Table D. ll. Both models almost have a pole/zero
cancellation, oth models show no auto-correlation of their error signal and no cross-

correlation between the error and input signals. The simplest one is chosen (D. 7).
The whole data set is assumed to be linear. Then, the range is ± 10 % in machine

flowrate and -0. 002 to 0. 005 % in white water consistency. The nominal values are

80 L/min for the flowrate and 0. 026 % for the consistency. Table D. 12 summarises

some of the model characteristics. Figure D. 15 compares the model response with
the validation data.

Table D. 11: Preliminary models between 2/4 and ̂ 3
Model Name Model

BJ(2, 1, 2, 2) _ 2. 3326-005 -s-2.345e-005 -9
l-1. 928g-l+0. 9278g-2 u

1-0.8486 -1+
1-1.358 0. 3902 -2;e

ARARMAX(2, 2, 4, 1) (1 - 1. 929g-1 + 0.9286q-2)y =
(2. 319e - 005$-8 - 2. 335e - 005q-9}u

.

1-0.3847 -1-1.265 -2+0.39ll -3+0.2517 -4
1+1.003 -1 ' e

2. 332 xl0-5g-8-2. 345 xl0-5g-9^ , 1 - 0. 8486g-1
1 - 1. 928(7-1 + 0. 92789-2 - U3+l- l. 358g-i + 0. 3902q-^ e (D-7)
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Figure D. 15: Simulation of chosen model between 7/4 and Uy, against validation
data.

best model : black line, validation data : grey line

Table D. 12: Characteristics of the chosen model between y^ and ^3
Model Name Equation FPE Fit Model Error Linear

Number (%) Model Fit (%) Fit (%)
BJ(2, 1, 2, 2) (D. 7) 6. 67x 10-7 36. 2 12. 41 67.9

D. 3. 2 Bentonite flowrate (^5)

The identification data is presented in Figure D. 16. Figure D. 17 presents the FPE

(bar plot) and the fit (line plot) of the selected models. Inside the bar, from top to

bottom are the respective values of na, nb, nc, nd, nf, and nk.

From the preliminary analysis, only model 10 represents somewhat the data

(D. 8). This is due to the gain non-linearity of the data (there is a factor of 3). But

because the dynamics are similar, a linear model with an average gain is able to

represent the data set. The chosen model does not have a pole/zero cancellation.

The model shows some auto-correlation of its residuals and no cross-correlation
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Figure D. 17: Candidate models between ?/4 and UQ
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Figure D. 18: Simulation of chosen model between ^4 and UQ against validation
data.

best model : black line, validation data : grey line

between the residuals and the input signal. The whole data set is assumed to be

linear. Then, the range are 0 to 2. 9 L/min for the bentonite flow and 0. 015 to

0. 04 % for the white water consistency. Table D. 13 summarises some of the model

characteristics. Figure D. 18 compares the model response with the validation data.

?/4 =

+

, U5
-0. 0005081g-5

1 - 1.6q-1 + 0. 5466g-2 + 0.4146g-3 - 0. 2722g-4 5
1 - 0. 5677g-1 - 0. 2048g-2 - 0. 05867g-3 - 0. 1873g-4

1 - l.Olg-1 '

(D. 8)

Table D. 13: Characteristics of the chosen model between y^ and UQ
Model Name Equation FPE Fit Model Error Linear

Number (%) Model Fit (%) Fit (%)
BJ(1, 4, 1, 4) (D. 8) 6. 6x 10-7 54. 4 - 71.1
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Figure D. 19: Identification data for the model between ̂ 4 and ug

D. 3. 3 C-PAM flowrate (ug)

The identification data is presented in Figure D. 19. Figure D. 20 presents the FPE

(bar plot) and the fit (line plot) of the selected models. Inside the bar, from top to
bottom are the respective values of na, nb, nc, nd, nf, and nk.

From the preliminary analysis, models 5, 8 and 10 are chosen to undergo a
deeper analysis. These models were selected because they present good FPE / fit
combinations. The models are presented in Table D. 14. Model ARARMAX(2, 5, 2, 1)
has a pole/zero cancellation. The remaining models show no auto-correlation of their

residuals and no cross-correlation between the residual and the input signal. The
simplest one, BJ(1, 1, 2, 1), is chosen (D. 9). The whole data set is assumed to be
linear. Then, the range is 0.404 - 0. 924 L/min in CPAM and 0. 01-0. 03 % in white

water consistency. Table D. 15 summarises some of the model characteristics. Figure
D. 21 compares the model response with the validation data.
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Figure D. 20: Candidate models between ^4 and ug

-0. 003667g-6
?/4=1-0. 82339-1 U6+

1 - 0. 9526g-1
l-1. 57g-l+0. 5704g-2' (D. 9)

D. 3. 4 Ratio of bentonite to C-PAM {uj)

The identification data is presented in Figure D. 22. A quick glance at the data

shows a gain sign reversal. the range of a ratio of 0 to 3, the gain is negative. In
the range of a ratio of 3 to 7, the gain is positive. Two models are identified, one
for each range. Figure D.22(a) presents the data for the low range (ratio of 0 to 3).
Figure D. 22(b) presents the data for the high range (ratio of 3 to 7). Figure D. 23(a)
presents the FPE (bar plot) and the fit (line plot) of the selected models for the low

range and Figure D. 23(b) for the high range. Inside the bar, from top to bottom
are the respective values of na, nb, nc, nd, nf, and nk.

From the preliminary analysis of Figure D. 23 (a), model 5 and 10 are chosen

to undergo a deeper analysis. These models were selected because, respectively: a
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Figure D. 21: Simulation of chosen model between y^ and ug against validation
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Figure D. 22: Identification data for the models between y^ and ̂ 7
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Model Name

BJ(1, 1, 2, 1)

Table D. 14: Preliminary models between y^ and itg
Model

BJ(4, 1, 2, 1)

ARARMAX(2, 5, 2, 1)

^ -0.003667 -6,
l-0.8233g-1

1-0.9526 -1
'1-1. 57 -1+0. 5704 -2e

_ -0. 003505 -6+0. 002294 -7-0. 007566 -s+0. 00613 -9
1-0.876<7-1 - u

1-0.9537 -1
1-1. 571 -1+0-5713 -2C

(1 - 1. 871g-1 + 0. 8711g-2) y =

(-0.00363g-6 + 0. 005872g-7 - 0.009665g-8 + 0. 01346g-9 - 0.006034g-lc>) U
+ 1-1.808 -1+0.8138 -2

1-0.4962

Table D. 15: Characteristics of the chosen model between ^4 and Ug
Model Name Equation FPE Fit Model Error Linear

Number (%) Model Fit (%) Fit (%)
BJ(1, 1, 2, 1) (D. 9) 6. 25x 10-7 42. 2 6. 6 61.3

good FPE /fit combination for the number of parameter, and the best fit. The

models are presented in Table D. 16. A pole / zero analysis reveals no cancellation.

The residuals analysis shows auto-correlation of the error signal for both model.

No cross-correlation between the error and input signals is detected. Graphing both
models with the validation data shows that model BJ(3, 1, 2, 4) oscillates. This model

does noise fitting. Therefore, BJ(1, 1, 2, 1) is chosen (D. 10). The linear range is a ratio
of bentonite to CPAM from 0 to 3 and 0. 013 to 0. 04 % in white water consistency.

From the preliminary analysis of Figure D.23(b), model 12 and 15 are chosen

to undergo a deeper analysis. These models were selected because, respectively: a
good FPE /fit combination for the number of parameter, and the best fit. The

models are presented in Table D. 17. A pole / zero analysis reveals no cancellation.

The residuals analysis shows auto-correlation of the error signal for both models.

No cross-correlation between the error and input signals is detected. The simpler
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Figure D.23: Candidate models between ̂ 4 and 1(7

model is kept (D. 11). The linear range is a ratio of bentonite to CPAM from 3 to

7 and 0. 014 to 0. 03 % in white water consistency. Table D. 18 summarises some

of the models characteristics. Figure D. 24 compares the model-response with the

validation data.

Table D. 16: Preliminary models between 1/4 and uy for the low range
Model Name Model

BJ(1, 1, 2, 1) _ -0. 001382 -6,
l-0.742g-1

1-0. 9849 -1
1-1.513 -1+0.5141 -2'

-0.0008444 -6-0.002543 -7-0.001739 -8
'-, ^^^1 y - l+0.9236g-l-0.6782g-2-0,4541g-3+0.1745g-4

l-0. 9802g-1l-0. 9802g-
1-1.484, -.1+0.484'-2

-0.001382g-6 , 1 - 0. 9849g-1
y4 = 

1- 0. 742g'-i U7(LOW ranse) + 
1 - 1. 513g-i + 0:5141,-^ (D. 10)

?/4 =
0. 0005875g-6 + 0. 00019279
1-0. 7693g-1 - 0. 6274g-

-7

-2 Uy (High range) (D. ll)
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Table D. 17: Preliminary models between y^ and ̂ 7 for the high range
Model Name Model

BJ(2, 3, 5, 2)

BJ(1, 3, 4, 7)

_ 0.0005875g-6+0.0001927 -7.
l-0.07693g-l-0.62749-2

1-1. 63 -1+1. 512 -2-0. 8941 -3
1-2.105 -I+2.306 -2-1.677 -3+0.4446 -4+0.03049 -5e

y=
0. 0004644 -6

l-0.3976g-l-1.0859-2+0.3925g-3+0.5542g-4-;0.1548g-5.-0.0474g-6-0.08557(7-7u
1-2. 719 -1+2. 725 -2-1. 009 -3

1-3.194 -1+4.007 -2-2.29 -3-|-0.4761 -4.e

1 - 1. 63g-1 + 1. 512?-2 - 0. 8941g-3
1 - 2. 105g-1 + 2. 306?-2 - 1. 677g-3 + 0. 4446?-4 + 0. 03049g-5'

Table D. 18: Characteristics of the chosen models between y^ and uy
Model Name Equation FPE Fit Model Error Linear

Number (%) Model Fit (%) Fit (%)
BJ(1, 1, 2, l)Low range (D. 10) 6. 14xl0-7 47. 26 43. 7 66.9
BJ(2, 3, 5, 2)High range (D. ll) 6. 51 X 10-7 48. 2 -106 63.7

D. 3. 5 Fresh filler flowrate (ug)

The identification data is presented in Figure D. 2 5. Figure D. 26 presents the FPE

(bar plot) and the fit (line plot) of the selected models. Inside the bar, from top to

bottom are the respective values of na, nb, nc, nd, nf, and nk.

From the preliminary analysis, models 2, 6 and 8 are chosen to undergo a deeper

analysis. These models were selected because they present good FPE / fit combina-

tions. The models are presented in Table D. 19. Models BJ(2, 1, 1, 2) and BJ(2, 2, 2, 2)

have pole/zero cancellations. The remaining model ARX(1, 1) shows some auto-

correlation of its residuals and no cross-correlation between the residuals and the

input signal. It is therefore chosen (D. 12). The whole data set is assumed to be

linear. Then, the range is ± 0. 87 L/min in filler flowrate and ±0. 007 % in white
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Figure D. 24: Simulation of chosen models between ̂ 4 and u,7 against validation
data.

best model : black line, validation data : grey line

0. 015

0.01

0.005
s

0

-0.005

-0.01

WW Consistency

2000 3000 4000

PCC Flowrate

5000 6000

1000 2DOO 3000 4000 5000 6000

Figure D. 25: Identification data for the model between y^ and ug
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Figure D.26: Candidate models between y^ and Kg

water consistency. The nominal values are 4. 55 L/min for the filler flowrate and

0. 033 % for the white water consistency. Table D.20 summarises some of the model

characteristics. Figure D. 27 compares the model response with the validation data.

Table D. 19: Preliminary models between ^4 and Us
Model Name Model

ARX(1, 1)

BJ(2, 1, 1, 2)

BJ(2, 2, 2, 2)

^0.001241-"^^ 1
1-0. 84 -l u "T- 1-0. 84 -l

_ 0.0006879 -s-0. 0006924 -9.
l-1.907g-l+0.9_064g-2 u

- 1

+\~
1-0. 7048 -1

_ 0.0009738 -10-0. 0009783 -"
l-1.858g-l+0.8573g-2 u

1-0. 4806 -1-0. 05399 -2
1-1.078 -1+0.2161 -2

0.001241g-10 1
y^ l-0. 84g-iu8+l-0. 84g-ie1 (D. 12)
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Figure D. 27: Simulation of chosen model between y^ and ug against validation
data.

best model : black line, validation data : grey line

Table D. 20: Characteristics of the chosen model between y^ and Ug
Model Name Equation FPE Fit Model Error Linear

Number (%) Model Fit (%) Fit (%)
ARX(1, 1) (D. 12) 5. 79x 10-7 65. 9 - 70.8

D.4 White water ash consistency models (^5)

An alternative controlled variable for a retention control strategy is white water ash

consistency. This section builds models to study the effect of the input variables on

the white water ash consistency.

D. 4. 1 Machine chest flowrate (1^3)

The identification data is presented in Figure D. 28. Figure D. 29 presents the FPE

(bar plot) and the fit (line plot) of the selected models. Inside the bar, from top to
bottom are the respective values of na, nb, nc, nd, nf, and nk.
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From the preliminary analysis, models 7 and 8 are chosen to undergo a deeper

analysis. These models were selected because, respectively: a good fit and the

best fit. The models are presented in Table D. 21. Both models have almost a

pole/zero cancellation. Both models show no auto-correlation of their error signal

and no cross-correlation between the error and input signals. Even if there is almost

a pole/zero cancellation, model ARMAX(3, 2, 2) is chosen because using a model
with lesser parameters gives a much smaller fit. The whole data set is assumed

to be linear. Then, the range is± 10 % in machine flowrate and ±10 % in ash

consistency. The nominal values are 80 L/min for the flowrate and 54. 6 % for the

ash consistency. Table D.22 summarises some of the model characteristics. Figure

D. 30 compares the model response with the validation data.

Table D. 21: Preliminary models between y^ and u^
Model Name Model

ARMAX(3, 2, 2) (1 - 2. 315g-1 + 1. 674g-2 - 0. 3594g-3)y =
(0. 03159?-9 - 0. 03172g-lo)u
+(1 - 1. 814g-1 + 0. 8122g-2)e

BJ(2, 1, 2, 3) 0. 06313 -6-0. 06342 -7
l-1. 366g-l-0. 1789g72+0. 5451g-3 u

1-0. 8124 -1
1-1.344 -1+0. 3825 -2 e

2/5 =
0. 03159^-9 - 0.03172g-10

2. 315?-1 + 1. 674^-2 - 0. 3594g-3
l-1. 814g-l+0. 8122g-2

"3

+1 - 2. 315g-1 + 1.674g-2 - 0.3594g-3e

(D. 13)

D.4. 2 Bentonite flowrate (^5)

The identification data is presented in Figure . 31. Figure D. 32 presents the FPE

(bar plot) and the fit (line plot) of the selected models. Inside the bar, from top to
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Figure D. 30: Simulation of chosen model between ̂ 5 and 1(3 against validation
data.

best model : black line, validation data : grey line

Table D. 22: Characteristics of the chosen model between y^, and u^
Model Name Equation FPE Fit Model Error Linear

Number (%) Model Fit (%) Fit (%)
ARMAX(3, 2, 2) (D. 13) 3. 07 30. 7 20. 1 63.7

bottom are the respective values of na, nb, nc, nd, nf, and nk.

From the preliminary analysis, model 6 and 10 are chosen to undergo a deeper

analysis. These models were selected because, respectively: a good FPE/fit and the

best fit. These models are presented in Table D. 23. Model OE(3, 3) has a pole/zero

cancellation and auto-correlation of its error signal. Both models do not have cross-

correlation between the error and input signals. Model BJ (3, 2, 2, 3) almost have a

pole/zero cancellation and no auto-correlation of its error signal. It is therefore

chosen. From the first step, the process gain is evaluated at 13 %/(L/min). From

the second step, the process gain is evaluated at 34 %/(L/min). Since the model

precision is not very high, the whole data set is assumed linear. Then, the range is 0
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Figure D.33: Simulation of chosen model between 2/5 and u^ against validation
data.

best model : black line, validation data : grey line

to 2. 9 L/min of bentonite and 30 to 84 % in ash consistency. Table D.24 summarises

some of the model characteristics. Figure D.33 compares the model response with
the validation data.

Table D. 23: Preliminary models between ^5 and ug
Model Name Model

OE(3, 3)

BJ(3, 2, 2, 3)

--5'546 -7+10'57 -8-5.026 -^
- 1-2.386 -1+1.815 -2-0.4288 -3

-4.E , -7_-4. 89<?-7+2. 828 -8+1. 934 -9
1-1.001?-1 -0.3781g-2+Q.39g-3

1-1. 266 -:1+0. 2583 -2
1-1. 733 -1+0. 733 -2

Z/5 =
-4. 89g-7 + 2. 828g-8 + 1. 934g-9 , 1 - 1. 266g-1 + 0. 2583g-2,

1 - l. OOlg-1 - 0. 3781g-2 + 0. 39g-3u5 + 1 - 1. 733g-1 + 0. 733g-2 &-14)



Table D. 24: Characteristics of the chosen model between yr, and u^

Model Name Equation FPE Fit Model Error Linear

Number (%) Model Fit (%) Fit (%)
BJ(3, 2, 2, 3) (D. 14) 3. 36 72. 3 no fit 79.9

0.6
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WW Ash Consistency

1000 2000 3000 4000 5000 6000 7000 8000
5

CPAM Flowrate
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Figure D. 34: Identification data for the model between y^, and Ug

D.4. 3 C-PAM flowrate (ue)

The identification data is presented in Figure D.34. Figure D.35 presents the FPE

(bar plot) and the fit (line plot) of the selected models. Inside the bar, from top to

bottom are the respective values of na, nb, nc, nd, nf, and nk.

From the preliminary analysis, models 5, 6 and 9 are chosen to undergo a deeper

analysis. These models were selected because they present good FPE / fit combi-

nations. The models are presented in Table D.25. Model ARARMAX(1, 4, 2,2) has
a pole/zero cancellation. The remaining models show no auto-correlation of their

residuals and no cross-correlation between the residuals and the input signal. The

model error model fit is smaller for model BJ(1, 2, 2, 1). Therefore, it is chosen (D. 15).

The whole data set is assumed to be linear. Then, the range is 0. 404 - 0. 924 L/min
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Figure D. 35: Candidate models between y^ and Ug

in CPAM and 40 - 60 % in white water ash consistency. Table D. 26 summarises

some of the model characteristics. Figure D.36 compares the model response with

the validation data.

Table D.25: Preliminary models between y^ and UQ
Model Name Model

BJ(1, 1, 2, 1)

BJ(1, 2, 2, 1)

ARARMAX(1, 4, 2, 2)

-7.636_-6^
- l-0. 8287g-1

1-0.9501 -1
1-1. 593 -1 0. 594 -2

-7. 646 -6
l-0, 8292g-l

1-0. 9676 -1+0. 01126 -2
y ==: l-0.8292g-lu

~*~ T-i. 601 -l+aeoi2 -2 e

(1 - 0. 8948g-1)?/ =
(-7 799g-6 + 5. 1829-7 - 16. 45g-8 + U. 08g-9)u

1-1. 811 -1+0. 8134 -2
1-1.55 -1+0.5488 -2

-7M6q-6 , 1 - 0.9676g-1 + 0. 01126g-2
y5 = 

1 - 0. 8292g-lu6 1 - 1.601g-1 + 0. 6012g-2 ' (D. 15)
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Figure D. 36: Simulation of chosen model between yr, and -ug against validation
data.

best model : black line, validation data : grey line

Table D. 26: Characteristics of the chosen model between y^, and Kg
Model Name Equation FPE Fit Model Error Linear

Number (%) Model Fit (%) Fit (%)
BJ(1, 2, 2, 1) (D. 15) 2. 92 42. 9 8. 1 61.6

D.4. 4 Ratio of bentonite to C-PAM (^7)

The identification data is presented in Figure D.37. A quick glance at the data

shows a gain sign reversal. In the range of a ratio of 0 to 3, the gain is negative. In

the range of a ratio of 3 to 7, the gain is positive. Two models are identified, one

for each range . Figure D. 37 (a) presents the data for the low range (ratio of 0 to
3). Figure D. 37(b) presents the data for the high range (ratio of 3 to 7). Figure
D. 38(a) presents the FPE (bar plot) and the fit (line plot) of the selected models

for the low range and Figure D.38(b) for the high range. Inside the bar, from top
to bottom are the respective values of na, nb, nc, nd, nf, and nk.
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From the preliminary analysis of Figure D.38(a), model 7 and 11 are chosen

to undergo a deeper analysis. These models were selected because of good FPE /
fit combination for the number of parameters. The models are presented in Table

D. 27. A pole / zero analysis reveals no cancellation. The residuals analysis shows
auto-correlation of the error signal for both models. There is also cross-correlation

between the error and input signals. Graphing both model against the validation

data, model BJ(1, 1, 2, 7) shows overfitting of noise. Therefore, BJ(2, 1, 2, 2) is chosen
(D. 16). The linear range is a ratio of bentonite to CPAM from 0 to 3 and 28 to 82

% in white water ash consistency.

From the preliminary analysis of Figure D.38(b), model 9 and 11 are chosen

to undergo a deeper analysis. These models were selected because good FPE /fit
combination for the number of parameters. The models are presented in Table

D. 28. A pole / zero analysis reveals a cancellation for model BJ(4, 3, 2, 2). The
residuals analysis shows auto-correlation of the error signal for both models. No

cross-correlation between the error and input signals is detected. The simpler model

is kept (D. 17). The linear range is a ratio of bentonite to CPAM from 3 to 7 and 28

to 60 % in white water ash consistency. Table D. 29 summarises some of the models

characteristics. Figure D.39 compares the model response with the validation data.

Table D. 27: Preliminary models between y^, and ̂ 7 for the low range
Model Name Model

BJ(2, 1, 2, 2)

BJ(1, 1, 2,7) y=

-2.049 -6-3.235 -7
l-0.1273g-l-0.4106g-2

1-0.9856 -1
1-1. 526 -1+0. 5266 -2 e

-2. 012 -6
l-1.459g-l+0.8991g-2-0.5837g-3+1.051g-4-1.388g-5+0.9414g-6-o.2856g-7u

1-0.9802 -1
1-1.488 -1+0. 4893 -2 e

y5=
-2. 049g-6 - 3. 235g -7 1 - 0. 9856g -1

1 - 0. 12739-1 - 0. 4106g-^7(LOW range) + 1 - l. 526,-i + 05266g-e (D-16)
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Table D.28: Preliminary models between y^ and uy for the high range
Model Name Model

BJ(1, 1, 3, 4)

BJ(4, 3, 2, 2)

^0. 8728 -4
l+0. 03019g-l-1. 233g-2-0. 1282g-3+0. 487g-4

i-i.bi -1
1-1.525 -1+0.5177 -2 :0.007515 -3

_ 0. 7896 -7+2.33 -8-0.03758 -9-1.439 -10.
l+0. 0885g-l-0, 7936g-2

1-1. 006 -l+0. 002574g-2-0. 005936 -3
1-1. 539 -1+0. 54 -2 e

ys =

+

0. 8728g-4
1 + 0. 030199-1 - 1. 233?-2 - 0. 1282g-3 + 0. 487g-4u7(High range)

1 - l.Olq-1
1 - 1. 525g-1 + 0. 5177g-2 + 0.007515g-3

(D. 17)

Table D. 29: Characteristics of the chosen models between ^5 and ̂ 7
Model Name Equation FPE Fit Model Error Linear

Number (%) Model Fit (%) Fit (%)
J(l, l, 2, l)Low range (D. 16) 2. 83 47. 9 48. 1 67.3

BJ(l, l, 3, 4)High range (D. 17) 3. 06 26. 0 -49 52.2

D.4. 5 Fresh filler flowrate {us)

The identification data is presented in Figure D.40. Figure D.41 presents the FPE

(bar plot) and the fit (line plot) of the selected models. Inside the bar, from top to

bottom are the respective values of na, nb, nc, nd, nf, and nk.

From the preliminary analysis, model 6 and 11 are chosen to undergo a deeper

analysis. These models were selected because, respectively: the best fit and the best

FPE / fit combination. But, both models have a pole/zero cancellation. As a second

choice, models 2, 3, and 4 are analyzed. The models are presented in Table D.30.

All models show some auto-correlation of their error signal and no cross-correlation
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Figure D. 39: Simulation of chosen models between yr, and ^7 against validation
data.

best model : black line, validation data : grey line
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Figure D.40; Identification data for the model between ys and ug
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Figure D.41: Candidate models between 7/5 and -Ug

between the error and input signals. The simplest one is chosen. The whole data set

is assumed to be linear. Then, the range is ± 0. 87 L/min in filler flowrate and ±20

% in ash consistency. The nominal values are 4. 55 L/min for the filler and 69. 5 %

for the ash consistency. Table D.31 summarises some of the model characteristics.

Figure D.42 compares the model response with the validation data.

Table D.30: Preliminary models between y^ and Ug
Model Name Model

ARX(1, 1)

ARMAX(1, I, 1)

(1 - 0. 8266g-1)?/ = (2. 915g-lo)u +e

(l-0. 8653g-l)?/=
(2. 308g-lo)u

+(1 - 0. 2382^-l)e

ARMAX(1, 1, 1) y=^£°-. u+ ^ 1-0.6869
.-0.4125 -ll-0. 8989g-l e
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Figure D 42: Simulation of chosen model between y^ and ug against validation
data.

best model : black line, validation data : grey line

1.736g-l° , l-0. 6869g-1
2/5 = 1 - 0.8989q-lus (1 - 0.4125g-1) (1 - 0. 8989g-1)' (D. 18)

Table D.31: Characteristics of the chosen models between y^, and Uy,
Model Name Equation FPE Fit Model Error Linear

Number (%) Model Fit (%) Fit (%)
ARARMAX(1, 1, 1, 1) 11 (D. 18) 2. 59 69. 7 no fit 72.8

D. 5 Ash Content models (ys)

To integrate wet-end and dry-end strategies, some dry-end variables are needed. Ash

content was chosen because of its importance on paper quality. Models between ash

content and wet-end input variables are built in this section.
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Figure D. 43: Identification data for the model between y^ and Uy,

D. 5. 1 Machine chest flowrate (^3)

The identification data is presented in Figure D.43. Due to sheet breaks, only one

step is available to compute the model. The same data is used for the identification

and validation set. Figure D.44 presents the FPE (bar plot) and the fit (line plot)

of the selected models. Inside the bar, from top to bottom are the respective values

of na, nb, nc, nd, nf, and nk. We can see that all models poorly reproduce the

data. Since the signal to noise ratio is high, this result is not surprising.

From the preliminary analysis, models 2 and 7 are chosen to undergo a deeper

analysis. Even if models with a higher number of parameters have a better FPE

and fit, they only model the noise behaviour by adding poles on the unit circle- The

selected models are presented in Table D. 32. The models show no auto-correlation of

their residuals and no cross-correlation between the residuals and the input. Model

OE(2, 5) has poles on the unit circle and is therefore trying to model noise behaviour.

Therefore, the simpler model is kept (D. 19). The whole data set is assumed to be
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Figure D. 44: Candidate models between yg and ^3

linear. Then, the range is 0 to -10 L/min in machine flowrate and 0 to -0. 5 % in

ash content. The nominal values are 80 L/min for the flowrate and 17 % for the

ash content. Table D.33 summarises some of the model characteristics. Figure D.45

compares the model response with the validation data.

Table D. 32: Preliminary models between yg and ^3
Model Name Model

OE(1, 1)

OE(2, 5)

0. 04882 -15
1-0. 1336 -1

0. 05814 -I5+0. 07083 -16
1+1.357 -1 0. 8886 -2+0. 2375 -3-0. 5137 -4-0. 6836 -5U

0. 048829-15
ys == l-0. 1336g-^3+e (D. 19)
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Figure D.45: Simulation of chosen model between ys and 1^3 against validation
data.

best model : black line, validation data : grey line

Table D.33: Characteristics of the chosen model between ys and u^
Model Name Equation FPE Fit Model Error Linear

Number (%) Model Fit (%) Fit (%)
OE(1, 1) (D. 19) 0. 067 24. 4 no fit 24.4

D. 5. 2 Bentonite flowrate (^5)

The identification data is presented in Figure D.46. Figure D.47 presents the FPE

(bar plot) and the fit (line plot) of the selected models. Inside the bar, from top to

bottom are the respective values of na, nb, nc, nd, n/, and nk.

From the preliminary analysis, models 8 and 10 are chosen to undergo a deeper

analysis. These models were selected because they present good FPE / fit com-

binations. The selected models are presented in Table D.34. Both models show

auto-correlation of the residuals and no cross-correlation between the residuals and

the input. They have no pole / zero cancellation. Their model error model fit are

similar. Therefore, the simpler model is kept (D. 20). The whole data set is assumed
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Figure D. 47: Candidate models between ys and UQ



193

to be linear. Then, the range is 0 to 2. 9 L/min of bentonite and 14. 5 to 16. 5 % of

sheet ash content. Table D. 35 summarises some of the model characteristics. Figure

D. 48 compares the model response with the validation data.

0. 3953^-10 - 0. 37949-"
7/8 = 1 - lA51q-1 + OA889g-2u5

+
1 - 1. 1279-1 + 0. 14749-2 - 0. 02953g .-3

1 - l.OOlg,-1

(D. 20)

Table D.34: Preliminary models between yg and UQ
Model Name Model

BJ(2, 3, 1, 2)

BJ(2, 3, 3, 2)

+

_ 0. 3953 -10-0. 3794 -"
l-1. 451g-l+0;4889g-

1-1. 127 -1+0. 1474 -2-0. 02953 -3
1-1. 001 -1 '

_ 0.4316 -10-0. 4147 -"
= l-1.408g-l+0. 4483g-2 u

1-0. 187 -1+0. 1756 -2-1. 016 -3
1-0. 1285 -1+0. 0483 -2-09164 -3e

Table D. 35: Characteristics of the chosen model between y^, and u^,
Model Name Equation FPE Fit Model Error Linear

Number (%) Model Fit (%) Fit (%)
BJ(2, 3, 1, 2) (D. 20) 0. 061 33. 8 - 39.1

D.5. 3 C-PAM flowrate (^)

The identification data is presented in Figure D.49. Figure D. 50 presents the FPE

(bar plot) and the fit (line plot) of the selected models. Inside the bar, from top to

bottom are the respective values of na, nb, nc, nd, nf, and nk. The ash content

signal is noisy. The resulting models have poor fit values.
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Figure D.50: Candidate models between yg and UQ

From the preliminary analysis, models 2, 5 and 6 are chosen to undergo a deeper

analysis. These models were selected because they present good FPE / fit combi-

nations. Furthermore, higher order models try to model the noise with poles on. the

unit circle. The selected models are presented in Table D.36. Models ARMAX(1, 3, 1)

and ARMAX(1, 4, 1) have a pole/zero cancellation. The remaining n-iodel shows some

auto-correlation of its residuals and no cross-correlation between the residuals and

the input. Therefore, this model is kept (D. 21). The whole data set is assumed to

be linear. Then, the range is 0. 231 to 0. 578 L/min of C-PAM and 15 to 17 % of

sheet ash content. Table D. 37 summarises some of the model characteristics. Figure

D.51 compares the model response with the validation data.

-10

y& =
1. 241g-

1 - 0. 2243?-^6+l-0. 2243g-ie (D. 21)
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Table D. 36: Preliminary models between z/g and -ug
Model Name Model

ARX(1, 1)

ARMAX(1, 3, 1)

. 1-2419-1° . 7/. ̂  1
1-0.2243 -1 "' ' 1-0.2243 -1

(l-1. 017g-l)y=
(0. 29119-15 + 0. 4191g-16 - 0. 7201g-17)u

+(l-1. 01g-l)e

ARMAX(1, 4, 1) (1 - 1.025q-l)y =
(-1. 202g-16 + 0. 2433g-17 + 4. 6199-18 - 3. 684g-19)u

+(1 - 1. 01g-l)e

Table D.37: Characteristics of the chosen model between ys and -Ug
Model Name Equation FPE Fit Model Error Linear

Number (%) Model Fit (%) Fit (%)
ARX(1, 1) (D. 21) 0. 10 24. 9 - 18.1

D. 5. 4 Ratio of bentonite to C-PAM (uy)

The identification data is presented in Figure D.52. Figure D.53 presents the FPE

(bar plot) and the fit (line plot) of the selected models. Inside the bar, from top to

bottom are the respective values of na, n&, nc, nd, nf, and n&.

From the preliminary analysis, model 2 is chosen (D. 22). From Figure D. 53, we

can see that adding parameters improves the model for the estimation data (the

FPE decreases as the number of parameters increases), but worsens the fit on the

validation data. The chosen model shows no auto-correlation of its residuals and

no cross-correlation between the residuals and the input. The whole data set is

assumed to be linear. The linear ranges are a ratio of bentonite to CPAM from 0

to 3 and 14. 5 to 16. 5 % in sheet ash content. Table D.38 summarises some of the

model characteristics. Figure D. 54 compares the model response with the validation

data.
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Figure D. 51: Simulation of chosen model between yg and Ug against validation
data.

best model : black line, validation data : grey line
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Figure D. 52: Identification data for the model between ys and uy
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Figure D.53: Candidate models between yg and u-j
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0. 04055g-16
y8 = 

l-0. 9415^'7+e (D. 22)

Table D. 38: Characteristics of the chosen model between yy, and ^
Model Name Equation FPE Fit Model Error Linear

Number (%) Model Fit (%) Fit (%)
OE(1, 1) (D. 22) 0. 068 48. 6 12. 7 52.3

D. 5. 5 Fresh filler flowrate (u§)

The identification data is presented in Figure D. 55. Figure D. 56 presents the FPE

(bar plot) and the fit (line plot) of the selected models. Inside the bar, from top to

bottom are the respective values of na, nb, nc, nd, nf, and nk.

From the preliminary analysis, model 2 is chosen. Since all models give a similar

fit on both the estimation and validation data, the simpler model is kept. Nonethe-

less, the standard procedure was performed. Models OE(1, 1) shows auto-correlation
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Figure D. 54: Simulation of chosen model between y% and uy against validation
data.

best model : black line, validation data : grey line
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Figure D. 55: Identification data for the model between y% and Ug
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Figure D. 56: Candidate models between ys and ug

of the residuals and no cross-correlation between the residuals and the input. More

complicated models (for example model with 11 parameters) did also show auto-

correlation. With this data, there is no justification for a more complicated model.

The whole data set is assumed to be linear. Then, the range is ± 0. 87 L/min in filler

fiowrate and ± 3 % in ash content. The nominal values are 4. 55 L/min for the filler

flowrate and 18. 9 % for the ash content. Table D.39 summarises some of the model

characteristics. Figure D.57 compares the model response with the validation data.

0. 2649g-15
y8 = 

l-0. 9112g-i"8+e (D. 23)

Table D. 39: Characteristics of the chosen model between yg and ug
Model Name Equation FPE Fit Model Error Linear

Number (%) Model Fit (%) Fit (%)
OE(1, 1) (D. 23) 0.068 77. 8 - 81.8
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Figure D.57; Simulation of chosen model between t/g and Us against validation
data.

best model : black line, validation data : grey line

D. 6 Basis weight models (yg)

Basis weight is a very important controlled variable in the paper production. It is

also a very important selling and cost property of paper. Those models goals are to

study the effect of wet-end variables on the basis weight.

D. 6. 1 Machine chest flowrate (^3)

The identification data is presented in Figure D. 58. Due to sheet breaks, only one

step is available to compute the model. The same data is used for the identification

and validation set. Figure D.59 presents the FPE (bar plot) and the fit (line plot)

of the selected models. Inside the bar, from top to bottom are the respective values

of na, nb, nc, nd, nf, and nk.

From the preliminary analysis, models 2, 4 and 7 are chosen to undergo a deeper

analysis. Even if models with a higher number of parameters have better FPE and
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Figure D. 59: Candidate models between yg and 1(3
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fit, they only model the noise behaviour by adding poles on the unit circle. The

selected models are presented in Table D.40. The models shows no auto-correlation

of the residuals and no cross-correlation between the residuals and the input. The

model error model fit is similar for the three models. Therefore, the simpler one

is kept (D. 24). The whole data set is assumed to be linear. Then, the range is 0

to 10 L/min in machine flowrate and 0 to 6 g/m2 in basis weight. The nominal

values are 80 L/min for the flowrate and 61. 2 g/m2 for the basis weight. Table D. 41

summarises some of the model characteristics. Figure D. 60 compares the model

response with the validation data.

Table D. 40: Preliminary models between yg and ^3
Model Name Model

OE(1, 1)

ARARMAX(1, 1, 1, 1)

OE(1, 6) y=

0. 06467 ̂ -17
1-0.8643-1

_ -0.0173?-23 " _,_ 1-0.6833 -1
1-0.7243 -1 "' ' 1-0.8631 -1

0.003853 -30
l-1. 493g-l+0. 33439-2-0. 513g-3+0. 3625g-4+0. 9552g-5-0. 6436g-6u

+e

V9 =
-170. 06467g-

1 - 0.8643g -i'u3+e (D. 24)

Table D.41: Characteristics of the chosen model between yg and -03
Model Name Equation FPE Fit Model Error Linear

Number (%) Model Fit (%) Fit (%)
OE(1, 1) (D. 24) 0. 29 80. 9 6. 96 80.9
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Figure D.60: Simulation of chosen model between yg and uy against validation
data.

best model : black line, validation data : grey line

D.6. 2 Bentonite flowrate (^5)

The identification data is presented in Figure D. 61. Figure D. 62 presents the FPE

(bar plot) and the fit (line plot) of the selected models. Inside the bar, from top to

bottom are the respective values of na, nb, nc, nd, nf, nk.

From the preliminary analysis, models 2, 9 and 12 are chosen to undergo a

deeper analysis. These models were selected because they present good FPE /

fit combinations. Model 2 is selected for its simplicity. The selected models are

presented in Table D.42. All the models show auto-correlation of the residuals and

no cross-correlation between the residuals and the input. Models ARMAX(1, 4, 4)

and OE(6, 4, 1, 1) have a pole/zero cancellation. Therefore, the simpler model is kept

(D. 25) even if the fit value is very low. There are two reasons for this: a steady-state

offset and the noise of the basis weight signal. The whole data set is assumed to

be linear. Then, the range is 0 to 2. 9 L/min of bentonite and 58. 5 to 64 g/m1 of
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Figure D 62: Candidate models between y^ and u^



206

basis weight. Table D.43 summarises some of the model characteristics. Figure D. 63

compares the model response with the validation data.

Table D.42: Preliminary models between y^ and u^,
Model Name Model

ARX(1, 1)

ARMAX(1, 4, 4)

BJ(6, 4, 1, 1)

= . 0'6551:1_0. u + , ^^ _,e
- 1-0.3733 -I " ' 1-0.3733 -1

(1 - 0. 9878g-l)y =
(0. 2387g-10 + 0. 2482g-u + 0. 003178g-12 - 0. 4792g-13)u
+(1 - 0. 6935g-1 - 0. 3591g-2 + 0. 3843g-3 - 0. 3478<?-4)e

-0. 4394 -9+0. 4362 -:10+0. 7383 -"-0. 3252 -12-0. 46l4 -13+0. 09064 -14
1-0.974 7g-1 ' --- u

1-0. 5922 -1-0. 3064 -2+0. 3886 -3-0. 2995 -4
1- 1

-10

V9 =
0.6558g-

1 - 0.3733^

1

r-iu5+l-0. 3733g-le (D. 25)

Table D.43: Characteristics of the chosen model between yg and u^
Model Name Equation FPE Fit Model Error Linear

Number (%) Model Fit (%) Fit (%)
ARX(1, 1) (D. 25) 0. 24 7. 2 - 24.8

D.6. 3 C-PAM flowrate (ug)

The identification data is presented in Figure D.64. Figure D.65 presents the FPE

(bar plot) and the fit (line plot) of the selected models. Inside the bar, from top to

bottom are the respective values of na, nb, nc, nd, nf, and nk. The basis weight

signal is noisy. The resulting models have poor fit values.

From the preliminary analysis, models 8 and 10 are chosen to undergo a deeper

analysis. These models were selected because they present good FPE / fit combi-

nations. Furthermore, higher order models only try to model the noise with poles
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Figure D.63: Simulation of chosen model between yg and UQ against validation

data.

best model : black line, validation data : grey line
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Figure D.64: Identification data for the model between y^ and ug
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Figure D.65: Candidate models between yg and Ug

on the unit circle. The selected models are presented in Table D.44. Model OE(2, 6)

has a pole/zero cancellation. The remaining model shows no auto-correlation of its

residuals and no cross-correlation between the residuals and the input. Therefore,

this model is kept (D. 26). The whole data set is assumed to be linear. Then, the

range isO. 231 to 0. 578 L/min of C-PAM and 58 to 63 g/m2 of basis weight. Ta-

ble D.45 summarises some of the model characteristics. Figure D. 66 compares the

model response with the validation data.

Table D.44: Preliminary models between yg and UQ
Model Name Model

OE(2, 6)

ARARMAX(1, 2, 4, 3)

3.57 -9-3.501 -10
1-0.09272 -1-0.77 -2-0.007593 -3-0.9328 -4-0.03187 -5+0.8477 -6

_ 3. 125-8-2. 642 -9 .
l-0_9244g-1

l-0.1755g-l-1.121g-2-0.5279 -3+0.8168 -4
l-0.9244g-l l+0.606g-1-0.6031 -2-0.885 -3

Z/9 =
3. 125g-8 - 2. 642g-9

1 - 0. 92449 -1 UG (D. 26)
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Figure D. 66: Simulation of chosen model between 7/9 and Ug against validation
data.

best model : black line, validation data : grey line

1 - 0. 1755g-1 - 1. 121g-2 - 0. 5279g-3 + 0. 8168g-4
(1 - 0. 9244g:l) (1 +.0. 606g-1 - 0. 6031g-2 - 0. 885g-3)e

Table D.45: Characteristics of the chosen model between yg and ug
Model Name Equation FPE Fit Model Error Linear

Number (%) Model Fit (%) Fit (%)
ARARMAX(1, 2, 4, 3) (D. 26) 0. 29 20. 9 - 17.1

D. 6. 4 Ratio of bentonite to C-PAM (^7)

The identification data is presented in Figure D. 67. Figure D. 68 presents the FPE

(bar plot) and the fit (line plot) of the selected models. Inside the bar, from top to

bottom are the respective values of na, nb, nc, nd, nf, and nk.

From the preliminary analysis, models 2, 5 and 9 are chosen to undergo a deeper

analysis. These models were selected because they present good FPE / fit combi-

nations. Model 2 is selected for its simplicity. The selected models are presented
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Figure D. 67: Identification data for the model between y^ and ̂ 7
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Figure D.68: Candidate models between ?/g and 1(7
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in Table D. 46. Model BJ(2, 1, 4, 2) has poles on the unit circle that simulate noise.

Model BJ(1, 1, 2, 1) has poles outside the unit circle. Since this process is known to

be stable, this model is rejected. Model OE(1, 1) shows no auto-correlation of the

residuals and no cross-correlation between the residuals and the input. Therefore,

it is kept (D. 27). The linear ranges are a ratio of bentonite to CPAM from 0 to

3 and 56 to 64 c?/m2 in basis weight. Table D.47 summarises some of the model

characteristics. Figure D. 69 compares the model response with the validation data.

Table D. 46: Preliminary models between y^ and u-7
Model Name Model

OE(1, 1)

BJ(1, 1, 2, 1)

BJ(2, 1, 4, 2)

y = i_o. 9898 -lu ~^~e

0. 01097 -"
l-0. 9701g-1

~*~ 1+0. 5109-1-0. 2188 -2e

_ 0.09091 -15-0.03415 -16
l-1.981g-l+0. 9881g-2 u

1-1:001 -1
1-1.221 -1+0.5219 -2-0.3355 -3+0.2701 -4 e

0. 2415g-14
y9 = 

l-0. 9898g-u7+e

Table D.47: Characteristics of the chosen model between ?/g and Uy
Model Name Equation FPE Fit Model Error Linear

Number (%) Model Fit (%) Fit (%)
OE(1, 1) (D. 27) 0. 24 34. 3 -0. 08 46.7

(D. 27)

D.6. 5 Fresh filler flowrate (ug)

The identification data is presented in Figure D.70. Figure D.71 presents the FPE

(bar plot) and the fit (line plot) of the selected models. Inside the bar, from top to
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Figure D. 69: Simulation of chosen model between ^9 and Uj against validation
data.

best model : black line, validation data : grey line

bottom are the respective values of na, nb, nc, nd, nf, and nk.

From the preliminary analysis, model 6 and 9 are chosen to undergo a deeper
analysis. These models were selected because, respectively: a good fit / FPE for
the number of parameters and the best fit. These models are presented in Table

D.48. Both models do not have a pole/zero cancellation. Both models show some

auto-correlation of their error signal and no cross-correlation between the error and

input signals. The simplest one is chosen (D. 28). The whole data set is assumed

to be linear. Then, the range is ± 0.87 L/rain in filler flowrate and ±5 g/m2 in
basis weight. The nominal values are 4. 55 L/min for the filler and 62. 9 g/m2 for
the basis weight. Table D.49 summarises some of the model characteristics. Figure
D. 72 compares the model response with the validation data.

-1.32g-4+1.379g-5 , 1 - 0.8902^-1
y9 = 

l-0. 9697g-i us+1 - 1.132q-l+0.1363g-2e (D. 28)
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Figure D.70: Identification data for the model between yg and ug
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Figure D. 71: Candidate models between yg and -ug



Table D. 48: Preliminary models between VQ and Ug
Model Name Model
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BJ(2, 1, 2, 1)

BJ(2, 2, 4, 1)

. = -1'32:4+1.-37?-%
1-0.96979-1

1-0. 8902 -1
1-1.132 -1+0.1363 -2'

_ -0.8511 -lc)+0.9704 -"
l-0,9695g-1 u

1-1.989-1-1-0.9897 -2
1-2.171 -1+1.25 -2+0.003706 -3-0.08157 -4 e

Table D.49: Characteristics of the chosen model between yg and Us
Model Name Equation FPE Fit Model Error Linear

Number (%) Model Fit (%) Fit (%)
BJ(2, 1, 2, 1) (D. 28) 0. 297 62. 8 no fit 54.7

Figure D 72: Simulation of chosen model between ?/g and us against validation
data.

best model : black line, validation data : grey line
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