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RESUME

L'objectif du projet de maitrise est d'etudier 1'utilisation de la Methode des

Lignes en coordonnees cylindriques pour la modelisation numerique des

cavites cylindriques et des guides d'onde cylindriques remplis de disques

dans les applications micro-ondes et acoustiques.

Les structures periodiques ont une caracteristique importante : 1'existence

des bandes passantes discretes separees par des bandes interdites. Les

structures periodiques sont utilisees dans plusieurs applications. Dans Ie

domaine des micro-ondes, par exemple on peut citer les accelerateurs

lineaires de particules, les tubes d'onde et les reseaux de filtres micro-ondes.

Les dielectriques artificiels et les grilles de diffraction sont des exemples de

structures periodiques. Ces structures, ainsi que les plaques ondulees sont

aussi utilisees comme outils pour guider les ondes de surface dans les

antennes. Dans 1'ingenierie acoustique, les structures periodiques sont

utilisees comme filtres acoustiques en guide d'onde ou silencieux afin de

reduire Ie niveau du bruit se propageant dans un tuyau ou rayonnant a

partir du sommet de la barriere d'autoroute.

La Methode des Lignes, une methode de difference finie semi-analytique,

est une des techniques les plus efficaces pour les applications dans Ie

domaine des frequences. L'idee de base de cette technique est de reduire un

systeme d'equations aux derivees partielles a des equations differentielles en

discretisant toutes sauf une des variables independantes. L'analyse de la

structure de guide d'onde cylindrique remplie de disques se fait en utilisant

la technique d'adaptation des modes pour les applications micro-ondes qui

est detaillee dans la litterature. On a choisi la // Methode des Lignes// dans ce
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projet car la procedure semi-anal^ique est plus rapide. Cette methode,

appliquee aux coordonnees cylindriques, a ete presentee dans ce memoire.

Les solutions des equations de Helmholtz a deux dimensions ont ete

obtenues en utilisant la Methode des Lignes apres la discretisation des

variables 9 ou z en appliquant la procedure de decouplage. Cette methode a

ete appliquee de la meme fa^on aux coordonnees cylindriques tri-

dimensionnelles afin de discretiser les directions angulaires et

longitudinales. Les conditions aux frontieres Dirichlet-Dirichlet, Neumann-

Neumann, ainsi que les conditions aux frontieres periodiques sont detaillees.

La validation initiate de la methode a ete realisee en modelisant les

resonateurs cylindriques inclus. Les Methodes des Lignes bi- et tri-

dimensionnelles sont utilisees afin d'obtenir des frequences de resonance

pour les modes TM et TE. Les resultats des simulations justifient les

resultats obtenus par voie analytique. On a analyse deux structures de

guides d'ondes cylindriques remples de disques presentees dans des articles

publies. On a utilise la Methode des Lignes bidimensionnelle cylindrique en

appliquant les conditions aux frontieres. Les resultats numeriques obtenus

ont ete valides par les specifications trouvees dans les articles mentionnes.

Des analyses de parametres du guide d'onde cylindrique periodique sont

aussi etudiees. Les resultats simules illustrent la dependance des

caracteristiques de dispersion a 1'egard des parametres geometriques tels

que Ie diametre du disque insere et la longueur une periode.

Au debut, la ]VIethode des Lignes a ete utilisee afin d'analyser des

structures acoustiques a cause de la ressemblance entre les champs

electromagnetiques et les champs acoustiques. Apres 1'etude d'un guide

d'onde circulaire de longueur infinie en utilisant la methode
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bidimensionnelle cylindrique appliquee a un problerae de propagation, un

guide d'onde de longueur finie a ete aussi etudie afin d'obtenir les frequences

de resonance par les Methodes des Lignes bi- et tridimensionnelles. Les

resultats obtenus sont en concordance avec les solutions analytiques. On a

obtenu des resultats nuraeriques pour un guide d onde circulaire rerapli de

disques ayant une syinetrie axiale en utilisant la Methode des Lignes

circulaire bidimensionnelle, resultats que sont en accord avec les valeurs

experimentales. Des etudes parametriques pour Ie guide d'onde cylindrique

acoustique periodique ont aussi ete realisees. Les resultats simules montrent

Ie rapport entre les caracteristiques de dispersion et les parametres

geonietriques.

La technique de la Decomposition des Matrices en Valeurs Singulieres a

ete utilisee dans c projet afin de resoudre les problemes numeriques relies

aux poles dans la fonction determinant. On a reussi a augmenter la precision

et la credibilite des resultats calcules en utilisant une seule decomposition de

valeur, on a aussi reraarque une diminution de la duree du temps de calcul.
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ABSTRACT

The objective of the present JVIaster's project is to investigate the use of the

Method of Lines in cylindrical coordinates for the numerical modeling of

cylindrical cavities and periodic disk-loaded cylindrical waveguide for both

microwave and acoustic applications.

Periodic structures have one important characteristic in common. That is

the existence of discrete passbands separated by stopbands. In microwave

domain, the periodic structures find application in a variety of devices such

as linear particle accelerators, traveling-wave tubes, and microwave filter

networks. Artificial dielectric media and diffraction gratings are examples of

periodic structures. Structures such as corrugated planes have also been

used as surface wave-guiding devices for antenna applications. In acoustical

engineering, periodic structures are designed for waveguide filters to lessen

the low-frequency noise diffracting from the top of highway barriers, or

silencers to reduce the level of noise propagating down a duct.

The Method of Lines, a semi-analytical finite difference method, is one of

the most efficient methods for frequency domain applications. The basic idea

of this method is to reduce a system of partial differential equations into

ordinary differential equations by discretizing all but one of the independent

variables. The analysis of the periodic disk-loaded cylindrical waveguide

structure using the mode-matching technique for microwave applications is

documented in the literature. The reason to select the Method of Lines in

this work is that the semi-analytical procedure saves considerable

computing memory and time. The Method of Lines procedure for cylindrical

coordinates has been presented in this thesis. Solutions for two-dimensional



Helraholtz equations have been obtained by a two- dimensional cylindrical

Method of Lines after discretizing the 9-variable or z-variable with the

decoupling procedure applied. Similarly, a three-dimensional cylindrical

M. ethod of Lines was utilized to discretize both the angular and longitudinal

space directions. Useful boundary conditions in this work such as Dirichlet-

Dirichlet, Neumann-Neumann, and periodic boundary conditions are also

illustrated in detail.

Initial validation of the method has been realized with the modeling of

electromagnetic enclosed cylindrical resonators. Both the two- and three-

dimensional cylindrical Method of Lines were used to obtain resonant

frequencies for TM and TE modes. Simulation results show good agreements

with results obtained by analytical solutions. Exanaples of periodic disk-

loaded cylindrical waveguide structures from two papers were analyzed by

using the two-dimensional cylindrical JVIethod of Lines with the periodic

boundary conditions performed. Numerical results were obtained, and found

to converge to the published results. Parameter analyses of the periodic

cylindrical waveguide were also studied. Simulated results illustrate the

dependence of dispersion characteristics on geometrical parameters, such as

the diaraeter of an inserted disk and the length of one period.

Due to the similarities between electromagnetic and acoustic fields, the

Method of Lines (MoL) is introduced to analyze acoustic structures for the

first time. After investigating an infinite long circular waveguide by two-

dimensional cylindrical niethod for a propagation problem, an enclosed

circular waveguide has also been studied to obtain the resonant frequencies

by using both the two and three-dimensional CMoL. Computed results show

good agreement with the analytic solutions. Numerical results for the
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periodic disk-loaded circular waveguide with axial symmetry were also

obtained by a two-dimensional CMoL, which give good agreement with the

experimental results. Parameter studies for the periodic acoustic cylindrical

waveguide were also performed. Simulated results show the relationship

between the dispersion characteristics and the geometrical parameters.

The matrix Singular Value Decomposition (SVD) technique was adopted in

this work in order to solve numerical problems related to the poles in the

determinant function. By using this technique, the accuracy and reliability

of computed results were improved, while the CPU time was significantly

reduced comparing with directly evaluating deterininant of the raatrix.
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CONDENSE EN FRAN^AIS

ANALYSE NUMERIQUE DES GUIDES D'ONDE CYLINDRIQUES

POUR APPLICATIONS AUX MICRO-ONDES ET A L'ACOUSTIQUE

EN UTILISANT LA METHODE DES LIGNES

L objectif de ce memoire est 1 investigation de 1'utilisation de la Methode

des Lignes en coordonnees cylindriques pour la modelisation numerique de

cavites cylindriques et de guide d'onde cylindrique charge de disques

periodiques pour des applications tant aux naicro-ondes qu'a 1'acoustique.

0.1 Introduction

Des cavites a raicro-ondes sont des composantes importantes dans des

systemes de telecommunications. Ces cavites, . completees par certains

elements de couplage, forment les elements essentiels des composants

micro-ondes corame des filtres et des inultiplexeurs. Une structure

periodique chargee de disques contenant des cavites multiples peut done etre

consideree comine une ligne de transmission infinie ou un guide d'onde

periodiquement charge d'eleraents reactifs (des elements de couplage). Ce

type de structure periodique soutient la propagation d'ondes lentes ( se

propageant plus lentement qu'a la vitesse de phase de la ligne dechargee) et

possede des bandes passantes et des bandes interdites semblables a celles

des filtres. II y a de nombreuses applications dans I'ingenierie micro-ondes

corame les accelerateurs lineaires, les tubes d'ondes progressives de haute

puissance (TWTs) et les reseaux de flltres micro-ondes. Les guides d'onde

cylindriques sont aussi utilises dans 1'ingenierie d'acoustique. Beaucoup de

conduits dans lesquels Ie son se propage ont des sections circulaires. Ainsi, il

est desirable d'analyser des modes transversaux dans ces guides d'onde
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cylindriques. De plus, des structures periodiques sont congues pour des

filtres de guides d'onde acoustiques ou des silencieux pour reduire Ie niveau

de bruit se propageant a travers un conduit ou rayonnant a partir du

sommet de barrieres d'autoroute.

La ]V[ethode de Lignes (MoL), une methode de differences finies semi-

analytique, est choisie afin d'analyser des structures periodiques, car elle est

1'une des methodes efficaces dans Ie domaine de frequences pour resoudre les

equations de Helmholtz. Comparee a d'autres methodes dans ce domaine,

comme la methode des differences finies (FD) ou la methode des elements

finis (FEM), elle exige mains de ressources informatiques. L'idee de base de

la MoL est de reduire un systeme d'equations differentielles partielles a des

equations differentielles ordinaires par la discretisation de toutes, sauf une

des variables independantes. En raison de la similitude entre les equations

regissantes les champs electromagnetiques et acoustiques, la MoL est aussi

appliquee aux structures periodiques acoustiques.

Ce memoire est organise en deux parties. Pour valider notre methode, la

Partie A contient 1'analyse des cham.ps electromagnetiques se propageant

dans des guides d'onde cylindriques periodiques comme indique dans la

Figure 1. 1. La partie B est 1'analyse des champs acoustiques dans des guides

d onde cylindriques periodiques semblables a ceux des micro-ondes. Chaque

partie est divisee en deux sujets comme illustre dans la Figure 1. 2. Les

sujets Al et Bl sont des problemes de resonateurs. II faut trouver les

frequences de resonance pour la cavite cylindrique fermee. Les sujets A2 et

B2 sont des problemes de propagation d'ondes - il faut trouver la constante

de propagation dans la bande passante. Ce memoire comporte sept

chapitres. Le premier chapitre est 1'introduction. Le deuxieme chapitre
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presente la methode cylindrique bi- et tridimensionnelle des lignes (CMoL)

appliquee aux equations d'Helmholtz on y montre Ie s conditions aux

frontieres pour les ondes electroinagnetiques et les ondes acoustiques,

respectivement. Les troisieme et quatrieme chapitres sont relies aux ondes

electromagnetiques. Dans Ie troisieme chapitre, nous avons resolu un

probleme aux «valeurs propres » pour un guide d'onde circulaire

electromagnetique tel que montre ci-joint. Le methode CMoL tant 2-D que 3-

D a ete utilisee afin d obtenir les frequences resonantes. Dans Ie quatrieme

chapitre, nous avons resolu un probleme de propagation pour un guide

d'onde circulaire charge de disques periodiques avec la S3maetrie axiale par la

2-D CMoL. Les cinquieme et sixieme chapitres sont consacres a 1'etude de

1'onde acoustique. Dans Ie cinquieme chapitre, nous avons examine un guide

donde circulaire infiniment long par la 2-D CMoL pour un problerae de

propagation. Nous avons aussi etudie un guide d'onde circulaire acoustique

ferme pour un probleme aux «valeurs propres » en utilisant la methode

CMoL 2-D et 3-D afin d'obtenir des frequences de resonance. Dans Ie sixieme

chapitre, nous avons exaniine un guide d'onde circulaire charge de disques

periodiques avec la symetrie axiale par la methode CMoL 2-D pour un

probleme de propagation. Les resultats obtenus sont en concordance avec les

resultats experimentaux. Les conclusions de ce memoire et des

recommandations pour Ie travail futur seront presentees dans Ie chapitre

final.

0.2 Methode de Lignes Cylindrique (CMoL)

On a propose la methode de lignes pour resoudre des equations

differentielles partielles deja dans les annees 60. L'application de cette

methode a ete proposee pour 1 utilisation dans Ie domaine micro-ondes dans
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les annees 80. La plupart des applications sont pour des structures

rectangulaires. II y a seulement quelques publications directement liees a

1'application de la MoL aux problemes electromagnetiques en coordonnees

cylindriques. De plus, autant que nous savons, la MoL n'a pas ete appliquee

pour analyser les structures acoustiques.

La Methode de Lignes en coordonnees cylindriques a ete presentee dans Ie

chapitre 2. Les solutions pour les equations d'Helmholtz bidimensionnelles

ont ete obtenues par la Methode cylindrique bidimensionnelle de Lignes

apres la discretisation de la variable 9 ou de la variable z en utilisant la

procedure de decomposition. On montre la solution semi-analytique de

1'equation 2-D d'Helmholtz, discretisee dans la direction Q, dans 1'equation

(2. 24) et on montre la solution pour la discretisation dans la direction z dans

1'equation (2. 42). De meme, la methode cylindrique tridimensionnelle de

lignes a ete utilisee pour discretiser tant les directions spatiales angulaires

que longitudinales. Pour resoudre 1'equation d'Helmholtz discretisee (2. 49),

Ie produit de Kronecker a ete presente. En appliquant la procedure de

decomposition. Ie systeme d'equations d'Helmholtz dans 1'equation (2. 54)

peut etre decompose dans un systenie d'equations differentielles ordinaires

independantes de type Bessel, la solution a ete ecrite dans 1'equation (2. 59).

Si la region de la solution contient 1'origine r = 0, Bk dans des equations

(2. 24) et (2. 42), et Bki dans 1'equation (2. 59) doivent etre nulles puisque les

fonctions de Bessel de 2e espece Ymk sont singuliers.

On presente dans Ie deuxieme chapitre 1'expression des operateurs de

difference finie [P]e, [P]z, les matrices de la transformation orthogonales [TJe,

[T]z et les valeurs propres [X], [5]. La condition laterale de frontiere [P]e est

une condition naturelle de frontiere, tandis que, pour [P]z, les conditions
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laterales de frontiere peuvent etre Dirichlet-Dirichlet, Neumann-Neumann

et de s conditions periodiques de frontiere.

En conclusion, les methodes cylindriques 2D et 3D de lignes sont

presentees et des conditions utiles de frontiere sont aussi detaillees.

0.3 Caracterisation du resonateur a inicro-ondes en utilisant CMoL

Un resonateur cylindrique est analyse dans Ie troisieme chapitre. II peut

etre considere comme un segment de la structure de guide d'onde cylindrique

periodique chargee de disques quand Ie diametre interieur des disques est

nul. Tant la methode CMoL 2D- que 3D sont utilisees pour obtenir les

frequences de resonance pour leg modes TM et TE. Les conditions laterales

aux frontieres pour [P] z sont obtenues en analysant les composants des

champs montres dans des equations (3. la) a (3. If). II devrait etre mentionne,

que pour les modes TM dans un resonateur cylindrique, 1'operateur [P]z est

derive de la condition de frontiere laterale N-N. En meme temps, pour les

modes TE, Ie [P]z est satisfait par la condition de frontiere D-D.

Les frequences de resonances, presentees dans les Tableaux 3-3a et 3-4b,

ont ete obtenues a partir de 1'equation (3. 1). On montre les resultats des

simulations en executant la methode CMoL 2-D et la 3D aux Figures 3. 2a,

3. 2b, 3. 3a, 3.3b, 3.4, et 3. 5, en remarquant une bonne concordance avec les

resultats attendus.
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0.4 Analyse d'un guide d'onde circulaire periodique micro-ondes

charge de disques

Au quatrieme chapitre, nous avons resolu un probleme de propagation

dans des guides d'onde cylindriques periodique charge de disques avec la

symetrie axiale en utilisant la methode CMoL 2-D. Les parametres

georaetriques des structures sont trouves dans les articles de Pruiksma et

al. [6] et [7]. Ces deux articles ont decrit 1'investigation des guides d'onde

cylindriques periodiques charges de disques pour les modes TM. Des

analyses de parametres sont aussi effectuees afin d'investiguer la

dependance des caracteristiques de dispersion des structures periodiques a

legard des parametres geometriques.

Pour resoudre notre probleme, la structure montree a la Figure 4. 1 est

divisee en deux regions uniformes (regions I et II). Des lignes de

discretisation pour une periode sont aussi montrees. On donne la matrice

difference [P]z la region correspondante I et la region II dans 1'equation

(4. 3a) et (4. 3b). Apres 1'application des procedures de decomposition, les

solutions sont ecrites dans les equations (4. 7a), (4. 7b) respectivement. En

combinant les conditions de frontieres, nous avons obtenu les equations aux

valeurs propres (4. 11). La solution non //nulle// existe seulement si 1

determinant de la matrice [JYM] dans 1'equation (4. 12) est egal a 0. Ainsi

nous pouvons rechercher les racines satisfaisant notre cas. On s'approche

d'habitude du probleme de resoudre des equations aux valeurs propres en

evaluant directement Ie determinant de la matrice. Cependant, en raison de

la presence de poles, il est difficile de detecter les zeros qui peuvent etre pres

de ceux-ci. On propose la technique de decomposition de valeur singuliere

(SVD) pour eliminer des poles. De plus, nous rencontrons aussi un probleme
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de debordement numerique en evaluant directement Ie determinant de la

matrice [JYM:] d'une grande taille. Dans ce travail, nous utilisons d'abord la

methode SVD pour diagonaliser la matrice [JYM:] a 1'aide de deux matrices

unitaires, [U] et [V] ([U] h [U]= [I] et [V]h [V] = [1]) et [U] h [JYM] [V] =diag

[Sl, S2, ..., Sn], OU Sl > S2 ... > Sn . Alors, Ie determinant de la matrice [JYM]
n

est egal a ]-J^ . Dans notre situation, nous choisissons la valeur du dernier
A=l

element Sn comme suggere par Xiao et d'autres en [13]. Dans Ie sous-

programme Matlab, Sn a deja la valeur la plus petite parmi tous les elements

diagonaux dans la matrice diag [si, 82, ..., sj. Ainsi, la decouverte des zeros

du determinant de la matrice [JYM], est equivalente a la decouverte des

points minimaux locaux de Sn.

Une structure periodique peut etre consideree comme une ligne de

transmission chargee de reactances connectees en serie ou parallele et

espacees a des intervalles reguliers. Selon la theorie de la petite ouverture

de Colin, une petite ouverture circulaire de rayon a dans Ie centre du mur

transversal dans un guide circulaire de rayon b, pour un mode TMoi est

equivalente a la susceptance capacitive shunt B = 0. 92&4 _,_ i,. i 23
-, ou \a, \=^a', Xgest

ae\A-^

la longueur d'onde guidee. Nous pouvons evaluer la bande passante et la

bande interdite en utilisant 1'equation de propagation de la structure

periodique infinie.

Des recherches numeriques ont ete executees pour les structures dans les

deux articles mentionnes ci-dessus. La Figure 4. 2 montre les

caracteristiques de dispersion de la structure chargee de disques pour Ie Gas

A, qui est mentionne en [7]. Un bon accord a ete obtenu entre les resultats de
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simulation de la methode CMoL 2-D et ceux des equations analytiques. La

deviation apparait pour Ie retard de phase pd plus grand que Tl/2. Pour Ie

meme retard de phase |3d, les differences relatives entre les frequences de la

methode CMoL 2-D et ceux d'equations analytiques sont petites et autour de

1 %. La Figure 4. 3 montre les caracteristiques de dispersion de la structure

chargee de disques pour Ie Gas B. Un bonne coincidence existe entre les

resultats de la simulation methode CMoL 2-D et ceux des equations

analytiques. II y a une difference entre les resultats de la methode CIVtoL 2-

D et ceux de la mesure experimentale. Notez que nous negligeons 1'epaisseur

des disques inseres. Pour plus d'exactitude on prend en consideration

lepaisseur de ces disques. De plus. Ie modele experimental presente des

imperfections.

Les Figures 4. 4 et 4. 5 montrent les caracteristiques de dispersion avec la

variation des parametres geometriques. Le retard de phase Rd diminue avec

1 augmentation du diametre interieur des disques inseres et augmente avec

1'augmentation de la longueur d'une periode pour Ie cas A.

Pour conclure, nous avons examine un guide d'onde circulaire periodique

charge de disques en symetrie axiale en utilisant la methode CM.oL 2-D. Des

resultats numeriques sont compares avec ceux obtenus des equations

analytiques trouvees dans Ie livre de Collin. Une bonne coincidence a ete

obtenue entre les deux methodes. La deviation existe toujours entre les

resultats de la methode CMoL 2-D et les donnees des mesures. Le besoin

dune analyse plus rigoureuse inclut 1'impact de 1'epaisseur de disques

inseres. On doit aussi considerer les imperfections du modele de lexan

construit a 1'echelle 1/8. On a effectue par la suite une etude parametrique
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pour evaluer les parametres importants dans 1'obtention d'un grand

dephasage.

0.5 CMoL applique aiix guides d'onde circulaires acoustiques

La CMoL est utilisee pour analyser en coordonnees cylindriques des

structures guides d onde acoustiques ayant la section transversale circulaire.

Les equations d'Helmholtz (tant la 2-D que la 3D) sont tirees des equations

d onde acoustiques. Pour un guide d'onde cylindrique de longueur infinie, la

methode de lignes cylindrique 2D CMoL (la 2-D CMoL) est utilisee afin

d analyser les caracteristiques de propagation. En discretisant la direction

spatiale angulaire seulement, 1'equation d'Helmholtz bidimensionnelle en

coordonnees cylindriques devient : un systeme d'equations differentielles

ordinaires qui peuvent etre resolues analytiquement dans la direction

radiale apres une transformation orthogonale. Pour un resonateur

acoustique, la CMoL 3D est utilisee pour discretiser les directions spatiales

angulaires et longitudinales simultanement. L'equation d'Helmholtz

resultante est un systeme d'equations differentielles unidimensionnelles

couplees. En appliquant la procedure de decomposition, chaque equation

differentielle peut alors etre resolue analytiquement dans la direction

radiale apres une transformation orthogonale.

Lapplication de CMoL aux structures acoustiques est evaluee pour Ie

guide d'onde circulaire infiniment long et la cavite cylindrique. On montre

les resultats numeriques pour ce guide d'onde dans des Figures 5. 1 a 5. 7 et

Ie Tableau 5-1. On montre les solutions analytiques de la cavite cylindrique

dans Ie Tableau 5-2. On montre des resultats des simulations en executant
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les programmes CMoL 2-D et 3D dans les Figures 5.9 et 5. 10. n les

comparant avec la solution analytique, on peut noter une bonne concordance

entre les resultats obtenus.

0.6 Les caracteristiques de dispersion d'une structure de guide

d'onde acoustique periodique chargee de disques

Dans Ie chapitre 6, en utilisant la CMoL 2-D, les caracteristiques de

dispersion ont ete obtenues pour un guide d'onde acoustique periodique.

Nous supposons que seulement des modes (0, n) se propagent dans la

structure. Le mode fondamental, note (0, 0), genere des modes superieurs

(0,n) au niveau des discontinuites. Les procedures sont semblables a celles

decrites dans Ie chapitre 4 sauf que :les conditions aux frontieres sont

differentes. La structure est aussi divisee en deux regions. Les equations aux

« valeurs propres » sont obtenues comme dans 1'equation (6. 19).

Les instruments utilises sont decrits dans la Figure 6.2. Comme montre. Ie

son se propage dans un guide d'onde cylindrique periodique pour atteindre

un microphone ou il atteint directement un autre microphone. L'onde

acoustique se propageant dans la structure periodique avec une vitesse

inferieure a celle qu'elle a en espace libre. Ainsi, il y a un retard de phase

entre les deux microphones. De plus, on retrouve des bandes passantes et

bandes interdites caracteristiques des structures periodiques. Dans la

Figure 6. 2, Ie diametre du guide d'onde cylindrique periodique est 254 mm,

tandis que Ie diametre des disques inseres est 25. 4 mm. La longueur d'une

periode est 12, 7 mm. En utilisant la CJVtoL 2-D les retards de phases dans

les bandes passantes pour la structure periodique sont obtenus et montres a

la Figure 6. 3. Comme inscrit dans Ie Tableau 6. 1, on trouve un total de six
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bandes passantes separees par des bandes interdites au-dessous 8kHz. On

montre Ie retard de phase des cinq bandes passantes PB-I, PB-II, PB-III, PB-

rV et PB-V dans les Figures 6. 4a, 6.4b, 6.4c, 6.4d et 6.4e. Le retard de phase

de la bande passante PB-VI n'est pas analyse ici car Ie rapport du

signaVbruit est trap petit pour les donnees experimentales. Les resultats

theoriques et experimentaux dans les bandes passantes PB-II, PB-III et PB-

V sont en concordance.

Afin d'illustrer la variation du retard de phase avec Ie changement des

parametres geometriques de la structure periodique, une analyse

parametrique est aussi developpee et montree sur les Figures 6. 5 et 6. 6.

0.7 Conclusion

Dans ce memoire, une etude numerique detaillee des cavites cylindriques

et des guides d'onde cylindriques periodique charges de disques pour des

applications tant aux micro-ondes qu'acoustiques a ete presentee en utilisant

la Methode de Lignes (M:oL) 2D et 3D. Les procedures de la Methode de

Lignes en coordonnees cylindriques ont ete decrites en detail. Des

resonateurs cylindriques a micro-ondes et acoustiques ont ete analyses en

utilisant tant la CMoL 2-D que la 3D. Des accords excellents ont ete obtenus

entre des resultats theoriques CMoL et ceux des expressions analytiques.

Quant aux structures cylindriques periodiques, en raison de la S3niietrie

axiale de la structure periodique et en raison de la symetrie axiale du depart

de 1'onde, seulement la CMoL 2-D a ete utilisee pour analyser les

caracteristiques de dispersion des guides d'onde periodiques charges de

disques. Ici, la source acoustique est une onde plane venant d'un haut-

parleur et la source electromagnetique est 1'evaluation de 1'onde TEM d'un
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connecteur coaxial. Les bandes passantes pour les applications tant micro-

ondes qu'acoustiques se retrouvent comme attendu. II y a une legere

difference entre les retards de phase theoriques et experimentaux. Une telle

deviation resulte en partie de 1'erreur numerique comme 1'execution de la

CMoL 2-D pour analyser la structure periodique. Une autre vient de 1'impact

de la discontinuite de 1'entree et la sortie. Finalement, des modes non axiaux

peuvent exister si les structures ne possedent pas la symetrie axiale stricte

ou Ie demarrage de la source cause une dependance de la variable angulaire.

Pour continuer Ie travail dans ce memoire, premierement, 1'analyse des

structures de guide d'onde cylindrique chargees de disque periodique dans

1'ingenierie micro-ondes peut etre etendue a 1'analyse des modes hybrides en

utilisant la CMoL 3D. Deuxiemement, dans I'ingenierie acoustique, la

section transversale circulaire peut ne pas avoir de symetrie axiale. Dans

cette circonstance, les modes se propageant dans la structure ne sont plus

les Mon, c'est-a-dire que la discretisation de la variable 9 est exigee. On a

besoin d'implanter CMoL 3D afin d'analyser de telles structures periodiques.

La MoL semi-analytique peut etre utilisee pour analyser les modes

acoustiques existant dans quelques substrats piezoelectriques ayant un

grillage periodique. Ces trois sujets sont les recommandations pour des

travaux a venir
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CHAPTER 1

INTRODUCTION

The purpose of this thesis is to investigate the use of Method of Lines [1]

(MoL) in the numerical modeling of cylindrical cavities and periodic disk-

loaded cylindrical waveguides for microwave and acoustic applications.

]V[icrowave cavities are important components in telecommunication

systems. These cavities, together with certain coupling elements, form the

fundamental building blocks of microwave components such as microwave

filters and multiplexers. A disk-loaded periodic structure consisting of

multiple caviti s can be regarded as an infinite transmission line or

waveguide periodically loaded with reactive elements (coupling elements).

This kind of periodic structure supports slow-wave propagation (slower than

the phase velocity of the unloaded line), and has passband and stopband

characteristics similar to those of filters. It has a lot of applications in

microwave engineering such as linear accelerators, high power traveling

wave tubes (TWTs), and microwave filter networks [2, 3,4]

The cylindrical waveguides are also used in acoustics engineering. Many

ducts in which sound propagates have circular cross-sections. Thus, it is

desirable to analyze cross modes in these cylindrical waveguides. Moreover,

the investigation of acoustic periodic disk-loaded waveguide is helpful for the

design of a new type of silencer which will be used to control the low-

frequency noise level over the top of highway barriers.



The Method of Lines (MoL), a semi-analytical finite difference method, is

chosen to analyze periodic structures, since it is one of the efficient methods

in frequency domain to solve Maxwell and Helmholtz equations. Compared

with other methods for computational electromagnetic such as finite

difference (FD) method or finite element method (FEM), it requires less

computational resources. The basic idea of the MoL is to reduce a system of

partial differential equations into ordinary differential equations by

discretizing all but one of the independent variables. Due to the similarity

between electromagnetic and acoustic fields, MoL is also applicable to

acoustic periodic structures.

There are two parts in this thesis. In order to validate our method. Part A

deals with electromagnetic field analysis of periodic cylindrical waveguides

as shown in Figure 1. 1. Part B is related to the acoustic field analysis of

similar periodic cylindrical waveguides as microwave ones.

Figure 1. 1 Periodic cylindrical waveguide



Each part is divided into two topics as illustrated in Figure 1. 2. Topics Al

and Bl are resonator problems. This is to calculate the resonant frequencies

for an enclosed cylindrical cavity. Topics A2 and B2 are wave propagation

problems. We find out the propagation constants over the passband.

A. ELECTROMAGNETIC FIELD

Al. Resonant frequency

A2. Periodic structiire

B. ACOUSTIC FIELD

Bl. Resonant frequency

B2. Periodic structur

Figure 1.2 Construction of this thesis

1.1 Review of the literature

For a periodic disk-loaded cylindrical waveguide, the electromagnetic field

analysis was first qualitatively and quantitatively discussed in Chu and

Hansen's paper [5]. Based on the equations described in that paper [5],

Qureshi [6] studied the characteristics of a cylindrical disk-loaded slow-wave

structure by theoretical, experimental, and computational techniques. ]Vtore

recently, Pruiksma et al. [7] presented an anal^ical description of

electromagnetic field in a periodically disk-loaded circular waveguide by

using the mode-matching technique. In this thesis, the method of lines

(MoL) is chosen to analyze such periodic cylindrical waveguides. Its semi-

analytical procedure saves a lot of computing time compared to other

numerical methods such as finite element method, finite difference method,

and mode matching technique.



The MoL was firstly proposed by Schulz and Pregla [8] to analyze planar

waveguides. The extension to planar periodic structures was investigated by

Worm and Pregla [9], while Diestel and Worm have developed a nonuniform

procedure [10]. Pascher and Pregla [11] introduced the use of the Kronecker

product of matrices for two-dimensional discretization and a fast algorithm

for the solution of the characteristic equation for the periodic structures.

K.WU et aZ. [12, 13] presented a novel technique based on the Method of Lines

algorithm for various complicated planar structures.

For the disk-loaded cylindrical waveguides, the method of lines should be

developed in cylindrical coordinates. Thorbun, Agostron, and Tripathi [14]

discretized the r-variables in Helmholtz equations with circular lines and

successfully solved the remaining equations along the 9-direction. However,

they did not elaborate on how to solve the problem at r= 0 (center of the

coordinate system), which represents a singular point. Xiao et al. [15]

suggested discretizing the 9-variable by radial straight lines. The

transformation matrices [T], the finite difference operator [P], and the

eigenvalues [?i], are different from those in a rectangular coordinates system.

Matrix singular value decomposition (SVD) [16] was suggested to solve the

numerical convergence problems. In this thesis, we extend Xiao et aZ. [15]'s

method to analyze periodic microwave and acoustic waveguides.

1.2 Organization of thesis

Based on the above discussion, this work is centred on numerical analysis

of cylindrical waveguide for acoustic and microwave problems by method of

lines. The thesis consists of seven chapters. The first chapter is the



introduction. The second chapter presents two- and three- dimensional

cylindrical method of lines (CMoL) applied to Helmholtz equations and

illustrates the boundary conditions for electromagnetic wave and acoustic

wave, respectively.

The third and fourth chapters are related to electromagnetic waves. In

third chapter, we solve an eigenvalue problem for an enclosed

electromagnetic circular waveguide. Both 2D- and 3D- CMoL are used to

obtain resonant frequencies. In the fourth chapter, we solve a propagation

problem for a periodic disk-loaded circular waveguide with axial symmetry

by 2D CMoL.

The fifth and sixth chapters are related to acoustic waves. In the fifth

chapter, we investigate an infinite long circular waveguide by 2D CMoL for a

propagation problem, and then we study an enclosed acoustic circular

waveguide for an eigenvalue problem by both 2D- and 3D- CMoL to obtain

resonant frequencies. In the sixth chapter, we investigate a periodic disk-

loaded circular waveguide with axial S5mimetry by 2D CMoL for a

propagation problem. A good agreement is observed by comparing the

numerical results with the experimental results.

The conclusions of this thesis and recommendation for future work are

presented in the final chapter.



CHAPTER 2

CYLIDRICAL METHOD OF LINES (CMoL)

This chapter generally presents the cylindrical method of lines (CMoL)

applied to solve Helmholtz equation in a circular coordinates system. The

lateral boundary conditions are also illustrated for the applications of CMoL

in the following chapters.

2.1 Introduction

The method of lines was used to solve partial differential equations back in

the 60's. The application of this method to the microwave was first proposed

in the 80's. Most of the applications were related to structures in rectangular

coordinates. There are only several papers [14, 15, 17] in connection with the

application ofMoL to electromagnetic problems in cylindrical coordinates. As

far as we know, the MoL has not been applied to analyze the acoustic

structures yet.

In this work, the CMoL is selected to analyze a periodic cylindrical

waveguide as shown in Figure 1. 1 for both electromagnetic and acoustic

problems. The basic idea of our method is to reduce a system of partial

differential equations to ordinary differential equations by discretizing all

but one of the independent variables in Helmholtz equation. Besides

analyses of the periodic cylindrical waveguides in this thesis, the CMoL is

also used to investigate two geometries related to periodic structures. One is

an infinite long cylindrical waveguide as the inner diameter of disks in a
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periodic structure is equal to the outer diameter of disks. The other is an

enclosed cylindrical resonator as the inner diameter of disks equals to zero.

2.2 2D and 3D Helmholtz equations in the cylindrical coordinates

For a general problem, a 3D Helmholtz equation in the cylindrical

coordinates is required which can be described by the scalar

potential ̂ (r, 0, z) as follows,

l-3-f, 3<^'^+±32^^)^VM^)^^(^, z)=0~rSr[r 
' 

3r' /j+^" '302 "/+ 
' ' 

3z2 
'"+k^r^)={

(2. 1)

where the dependence e}w has been assumed and yfcg =<y/c = In f I c .

For some special cases such as an infiinite long cylindrical waveguide and a

circular waveguide with axis symmetry, the above 3D Helmholtz equation

degenerates into a 2D Helmholtz equation. The scalar potential ̂ (r, 0, z)

evolves into \i/(r, 6}e~jpt or y(r, z).

For an infinite long circular cylindrical waveguide, by assuming the

dependence as ei(w'~pt}, the scalar potential ̂ (r, 0, z) can be written

asy{r, 0)e~j/sz, and y{r, ff) satisfies the Helinhotz equation in polar

coordinates with r and 9

^^yy^-^^-o
(2. 2)



For a circular waveguide with axis of symmetry, by assuniing the

dependence as e]wt, the scalar potential ̂ (r, 0, z) can be revised as y/(r, z)

with modes independent on 6. The potential ^(r, z) satisfies the Helmhotz

equation in variables r and z as follows,

^( ^{r. ^yv{r^ _
7^1r 3r

1+
3z2

+koy(r, z)=0 (2. 3)

Here, in the case of considering a microwave problem, the scalar potential

^ is referred to electric potential ye or magnetic potential y/h. The

electromagnetic field can be calculated by

and

£'=VxVx( i//euz)/j(t)£-Vx( yhuz)

H=Vx( ̂f'M;)+VxVx( \{fhuz)l jd)^

(2. 4)

(2. 5)

In acoustics, the scalar potential \|/ is referred to the velocity potential and

is related to all the acoustic parameters. From the velocity potential,

acoustic pressure P and particle velocity u can be derived by the following

equations

P=-jpo)y (2.6)

and u=Vy (2. 7)

where p is the density of the medium.



2.3 Seini-analytical solution of 2D Helnaholtz equation

-Discretizing in the 9-direction

As mentioned in section 2. 2, by assuming the dependence as e]^'~pz), the

scalar potential y{r, ff) satisfies the Helmhotz equation in polar coordinates r

and 6

^[rat0 )1^a^<fe-^<r. ^° (2. 2)

The domain of calculation is discretized along the angular direction by an

ensemble of straight lines along the r-direction, which is shown in Figure

2. 1.

6m-l
9m I 92

Oi

Figure 2. 1 Discretion along angular direction

The uniformly discretized 9-variable reads then

y,, =y, +(k-l)hg=27Tk/Ng and k= 1, 2,..., N9

where he = 271/Ne

(2. 8)

(2. 9)

with N9 being the number of discretization lines, and he being the angular

spacing between the lines.
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Using the central finite differences

9^y
a^ li-4-0.5

^. ",-!y-+»te2)
he

(2. 10)

(he = 27i/Ne ), the above equation can be written in matrix form

hn =[^L^ (2. 11)
\k+Q.5

where iff =

v{rA}
¥(r, e^)

^(r'^. -l)
^^)

(2. 12)

and [D]e=

-1 1 0
0 -1 1
00-1

0 0
0 0
0 0

(2. 13)

000
1 0 0

-1 1
0 -1

Here ^ is a vector with N9 elements, and [D] 9 is a NexNe bi-diagonal matrix.

It should be noted that in cylindrical coordinates, the field components

satisfy the periodic condition without any phase delay because any physical

characteristic repeats itself after rotating 360°. This periodic condition is

usually called a natural boundary condition. The operator [D] 9 used here is

applied to this condition, namely

¥{r. Ok) = W^r. 27T + 0, ) or ^, = ^ +t (2. 14)
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The central finite difference scheme is used again to calculate the second

order partial differential operator from the first order one as

h
'yv
0W-

=h-\h. 9^~
30l'te^j..

9^

=h.
B0

. +0.5

-h^\
ne^0\

i-0.5 (2. 15)
h.

=(-[D], )[D],y
=-[P\¥

where [P]e = [D] 9 [D]et =[D]et [D]e (2. 16)

2-10... 00 -1
-1 2 -I... 0 0 0

and [P]e = (2. 17)

0 0 0... -1 2 -I
-1 0 0... 0 -1 2

Here [D]g is the transpose matrix of [D]e. By introducing equation (2. 17) into

equation (2. 2), a set of ordinary differential equations is obtained,

d C.. dV~}. , _2.. 2^ [P]e¥ .-
--I r- \+ktr'W --.°- =y

dr\ dr ) ^
(2. 18)

and r =
h^yw ^ 32^

+

1236>4 360 30f
+ °(»') (2. 19)

where y is the error terms introduced by the finite difference operation, and

k^ = A:g2 - /?2 . The next task is to find an orthogonal matrix [T] to transform

the variables in order to decouple the above equation and find an analytical
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solution for it in radial direction. The matrix [P]e can be factorized by an

orthogonal matrix [T] as

[T]t[P]e[T]=diag{^i^2,... ^k,..., ^N9}= Me (2. 20)

where

Tij={cosaij+sinaij}/(Ne)l/2, Xk=2-2cosAk (2. 21)

and ay=ijhe, Ak=khe, he=27i/Ne, and i, j, k=l, 2,.. ., N9 (2. 22)

Assuming that ̂  = [r]^ , the set of coupled Helmholtz equations in equation

(2. 18) can be decoupled into a set of independent ordinary differential

equations of Bessel forms:

^f,^
rdr \ dr

^1+1^2-//LI=0 (2. 23)

where ^ =2sin(A^/2)/^, (p=[(pi, (p2,... , (pk,..., (pNe], and k=l, 2,...,Ne. (pk is the

transformed potential function, and can be written as a superposition of

Bessel and Neumann function ofuk-order

^ =A,J^r)+B^{k, r) (2. 24)

where Ak and Bk are constants. J|js:(kcr) is the first kind of Bessel function of

order ^ and Y^k(kcr) is the second kind of Bessel function (Neumann

function) of order |^k.
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2.4 Semi-analytical solution of 2D Helmholtz equation

-Discretizing in the z-direction

As mentioned in section 2.2, by assuming the dependence as e}M and no 6

dependence, the scalar potential ^-(r, z) satisfies the Helmhotz equation in

polar coordinates r and z

^^)y^^^,^
r9r[ 9r J 3z'

(2. 3)

The domain of calculation is discretized along the longitudinal direction by

an ensemble of parallel lines along the z-direction, which is shown in Figure
2. 2.

z=0 z=L

Figure 2. 2 Discretion along z-direction

The uniformly discretized z-variable reads then

y/^=yf^+{k- l)h, and k= 1,2, .. , Nz (2. 25)
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with Nz the number of discretization lines, and hz being the longitudinal

spacing between the lines.

Using the central finite differences

3^
3z

=v-". -vf-^(k2)
\k+0.5

h.
(2. 26)

the above equation can be written in matrix form

9^
3z

=[D\¥ (2. 27)
k+0.5

where iff =

¥{r, z,}
y{r, ^}

^(r'^z-l)
¥{r, z^)

(2. 28)

Here ^ is a vector with Nz elements, and [D]z is a NzXNz matrix. The first

order difference operator [D]z and hz depend on the lateral boundary

conditions. In this thesis, there are three kinds of boundary conditions of

interest in the z-direction: Dirichlet-Dirichlet (D-D), Neumann-Neumann (N-

N), and periodic boundary conditions.

For D-D boundary condition, we have

h.
N, +1

(2. 29a)

^(r, z)|^o=^^)|^L=0 (2.29b)
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For N-N boundary condition, we have

h^

^V[r, z)\
3z ;=0

^y[r, z)
9z

=0
i=L

and for periodic boundary condition, we have

h^

(2. 30a)

(2. 30b)

(2. 31a)

, JPLll/{r, z)=e'p'\if(r, z+L) (2. 31b)

The central finite difference scheme is again used to calculate the second

order partial differential operator from the first order one as

, yy
^ 3_23z2

=h^-\h. a^-
3zl"z 3z

h
3^

=h,
3z

-h. 9(y

i+0.5 3z i-0.5 (2. 32)

h^

=(-[Dl)[D\¥
=[P\W

^ere[P\=-[D]M=-lD ]M (2. 33)
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-2 1

1 -2 1 ... ... ...

and [P]z = " " '" '" .. for D-D (2. 34a)

1 -2 1

1 -2

-1 1

1 -2 1 ... ... ...

for N-N (2. 34b)

1 -2 1

1 -1

-2 1 ... ... ... elpL

1 -2 1 ... ... ...

for periodic boundary condition

1 -2 1
e-jf!L ... ... ... 1 -2

(2. 34c)

Here [£>]'; is the transpose matrix of [D]z. By introducing equation (2. 34) into

equation (2. 3), a set of ordinary differential equations are obtained,

^fr ^1+M?+*.^ =0 (2. 36)
rdr{^ dr ) hz

The next task is to find an orthogonal matrix [T] to transform the

variables in order to decouple the above equation and also to find its

analytical solution in radial direction. The matrix [P]z can be factorized by

an orthogonal matrix [T] as
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[T]t[P], [T]=diag{5i, 52,..., 8k,.., §Nz} (2. 36)

The orthogonal matrix [T] and the eigenvalues [S] are written as in the

following forms according to different lateral boundary conditions.

For D-D boundary condition,

2 _. 7nn.TZ-
Ln = T-^sin-

N, +l"~~ N, +l

, 2 ^
^ =-4sin-
^k '^ 2(^+1)

and m, n, k =l, 2, ---, N,

For N-N boundary condition,

(2. 37a)

(2. 37b)

imn

2 _(m-0. 5)(n-l)
/-cosv -"_/v- ~/ ; n>l
1^"" ^

n-1

(2. 38a)

8, = -4sin2|

and m, n, k =1, 2, ---, N,

(k-l)7S~
27V,

(2. 38b)

For periodic boundary condition,

= IJ-ejm£t
}mk=^e' (2. 39a)
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^=-4sin2f-^

2a{k-l)-/3L
with ^="-^ '-

(2. 39b)

(2. 39c)

where m, n, k=l, 2, ---, N^, ^ is the propagation constant in z-direction and L is

the length of one period.

Assuming that y/=[T]y, the set of coupled Helmholtz equations in

equation (2. 35) can be decoupled into a set of independent ordinary

differential equations ofBessel forms:

d { ̂ d(p^\ ^ ^2
r^\+xl<P, =Q

rdr \ dr

where ^2=^2+-

(2. 40)

(2. 41)

Here k=l, 2,..., Nz. (pk is the transformed potential function, and can be

written as a superposition of Bessel and Neumann function of 0-order

<Pk=A, J^r)+B, Y, (Xkr) (2. 42)

where Ak and Bk are constants. 7p(^r) is the first kind ofBessel function of

zero order and Yo(^^r) is the second kind of Bessel function (Neumann

function) of zero order
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2. 5 Semi-analytical solution of 3D Helmholtz equation

-Discretizing in the 9- and z- directions

As mentioned in section 2. 2, by assuming the dependence as e]c" , the scalar

potential y/(r, 0, z) satisfies the Helmhotz equation in coordinates r, 6 and z

i_^^a^0, z)^3M^z)^M^. )^^^^^o
737|r'3r"j+ '3z2 '-/+ '3^2--/+^o^^^)-^ (2. 1)

The domain of calculation is now discretized in 6- and z-directions by a

number of straight lines along the r-directions. The 9-variables are

discretized uniformly by using radial lines at if/^ = \ff^ + (fc - \)hg,

k=\, 1, ---, Ng, with he being the angular spacing between the lines. The z-

variable is discretized uniformly by using radial lines at

^=^i+C-lX' ;. =1,2,..., ^ (2. 43)

with hz being the spacing between the lines in z-direction.

The first order finite difference operator is approximated by the central

finite differences as

3(^1
30

=¥k--¥k and ^
k+0.5

h. 30 i+0.5

¥^-V.
h^

where the vector l|/ is in matrix form as

^=H=

v^ii
¥n

Wki

^12
^22

^2

^1,
^2;

Vki

v^i^
^2/V,

¥w.

(2.44)

(2. 45)

v /Vgl ¥ W»2 ^^ y^.
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or its derivatives

h.. -99 =[D],V h. 3y/~

\k+0.5 ; 30
=rM (2. 46)

(+0.5

Using the central finite difference scheme again to calculate the second

order partial differential operator from the first order one }delds

h. '. yv
302

-(-[D], )[D], y=-[p]^

h^ =^(-MN. =r(K)
3z2 !..

(2. 47)

(2. 48)

where [P]g =[D]g[£)]^ =[D]^[D]^ , and an orthogonal matrix [TJe can be found

in section 2. 3. [P\ = -[D\[D][, and an orthogonal matrix [T]z can be found in

section 2.4. Substituting equations (2. 47) and (2. 48) into equation (2. 1), the

3D Helmholtz equation will be as follows:

^f^-M^, EM, ^ .0
dr r2h]

(2. 49)

In order to solve equation (2. 49), the Kronecker product [4] is introduced

here. If A and B are mxn and pxq matrices, respectively, the Kronecker

product is an mp x nq matrix defined by

a,, B ... a^B
A®B= . (2. 50)

^B - a^B
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At first, matrix^" in equation (2. 49) is replaced by a vector y/

¥=[V\N^)xl
=kl ^21 . -. ^, 1 ^12 ^22 ... ^2 -.. .. ^ ^, ... ^/vj'

(2. 51)

Secondly, matrices [P]e and [P]z in equation(2. 49) are replaced by

matrices [p]g and [P\, respectively

K^[^L=^®[PL (2. 52a)

K^[^L=K®^ (2. 52b)

where Iz and Ie are identity matrices of a dimension of Nz and N9,

respectively. The second order partial differential operators then become as

follows,

and

^-^
h^[P\V

(2. 53a)

(2. 53b)

Thus, the equation (2. 49) is evolved into

13 r^ 3r) [PL.-,, [H^, ,^
r9r[' 3r j r2^,2 ^+-^-r+^^=o (2. 54)

By defining the transformed quantities as \jf =f^ , where an orthogonal

matrix T =T^®Tg, the above equation (2. 54) becomes

iAf4(^)1 - ^k
r3r['3rv'y/J r2hl

p) + £L (fy) + k^ (fy) = 0 (2. 55)
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Multiplying T'from the left side of equation (2. 55) and the set ofHelmholtz

equations in equation (2. 54) can be decoupled into a set of independent

ordinary differential equations ofBessel form

S^ 2.4f^1.
rdr[ dr j to/+?l-^T \y=-Q (2. 56)

or

^f,^4z2 - l,... =o.^:|r^-|+|z"-7^1^'=u?

where ^.=
It

k2 ^s4 ,', 2 _ /l-6f 
K-^-zh^' ^k~hf

(2. 57)

(2. 58)

where (pki (k=l, 2, 3,..., Ne; i=l, 2, 3,... Nz) is called the transformed potential

function. In every uniform region, a solution of equation (2. 56) or (2. 57) may

be written as a superposition ofBessel functions ofuk-order,

^, =A,, J^(^, r)+5,, y^(^, r) (2. 59)

It should be noticed that when the region of the solution contains the

origin r=0, Bk in equations (2. 24) and (2. 42), as well as Bki in equation

(2. 59) must be zero since Y is singular. Once equations (2. 23), (2. 40) and

(2. 57) are solved in every uniform region, the potentials y/ can be obtained

by y/~ = [r]^ or y =fy
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2.6 Conclusion

In this chapter, semi-anal. ytical solutions of 2D and 3D Helmholtz

equations have been presented by implementing cylindrical IVtethod of Lines.

The solution of 3D Helmholtz equation was derived by discretizing the

potential i//(r, 0, z) in the 9 and z directions, in the meantime the Kronecker

product was introduced. For the infinite long cylindrical waveguide or the

circular waveguide with axis symmetry, the 3D Helmholtz equation was

evolved into the 2D Helmholtz equations. The solutions of 2D Helmholtz

equations have been obtained by discretizing the 9-variable or z-variable

with the decoupling procedure applied. From the third chapter to the sixth

chapter, these solutions will be used to solve electromagnetic and acoustic

wave problems.
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CHAPTER 3

CHARATERIZATION OF MICROWAVE

RESONATORS USING CMoL

In this chapter, we present an eigenvalue problem for an enclosed

electromagnetic circular waveguide. Based on the method illustrated in

Chapter Two, both 2D- and 3D- CMoL are used to obtain the resonant

frequencies.

3. 1 Introduction

A cylindrical resonator as shown in Figure. 3. 1 is analyzed in this chapter.

Such a cylindrical resonator can be regarded as one segment of a periodic

structure as shown in Figure 1. 1. The periodic structure is composed of

multiple segments with coupling between neighbor ones.

z-axis

r=b

Figure 3. 1 A cylindrical resonator
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Two cases are analyzed in the following. Case A is from Pruiksma et al.

[7]?s paper, and Case B is from Wallett et al. [6]'s paper. Both of these two

papers describe the investigation of periodic disk-loaded cylindrical

waveguids for TM modes. The geometrical parameters are listed in Table 3-

1, and are used to validate our 2D and 3D CMoL programs for both TE and

TM modes.

Table 3-1 Main parameters for microwave cylindrical resonators

Outer radius b

Length d

Mode of interest

Frequency of interest

Case A

39 mm

33.33 mm

TMon mode

2.944-3.040 GHz

Case B

0. 15 inch

0. 17 inch

TMoi mode

14. 50-16. 00 GHz

3.2 Solution of 3D Helmholtz equation by 3D CMoL

Based on the method in Chapter Two, a program of 3D CMoL for

microwave cylindrical resonators is developed for both TE and TM modes.

Here, both the angular and longitudinal variables 9 and z have been

discretized.

The finite difference operator [p]g, the orthogonal transformation

matrix [T]g, and the eigenvalues [2] are the same for both TE and TM modes,

which can be found in Chapter Two, section 2. 3.
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The lateral boundary conditions in the z-direction can be obtained by

analyzing the field components. From equations (2. 4), (2. 5) in Chapter Two,

we can write the six field components in cylindrical coordinates as follows,

^ _ 

1 fl 3V^3^
J8-j6)e[r309z)' 3r

^=J_faVl1-l3^
r JO)E\ 3r3z I r 36>

1 fi af^a^'1, i ay
JQ)£^ 3r|' 3r 302

(3. la)

(3. 1b)

(3. 1c)

H 1 f 13V "I 3^
JCOI.IQ [ r 369z j 3r

^_ i fay^ia^
r jajUy [ 9r9z j r 9r

H^=-
1

7'ft^o
li-f,^
r 3r I 3r

(3. 1d)

(3. 1e)

(3. 1f)

We know that on an electric wall the tangential component of electric field

E and the normal component of magnetic field H are zeros, that is, nxE=0

and n*H=0. In Figure 3. 1, for the electric walls located at the top and

bottom planes z=0 and d, we have the tangential components of electric field

Ee=Er=0, and the normal component of magnetic field H^=f) . Since the TM

modes may be derived from electric potential y/e, from equations (3. la) and

(3. 1b), we obtain the boundary conditions for electric potential \i/e as follows,



3^
Qz

=0
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(3. 2)
lz=0,d

Similarly, the TE modes may be derived from magnetic potential yh. Thus,

from equations (3. la) and (3. 1b), we obtain the boundary conditions for

magnetic potential y as follows

V'
z=0,d

=0 (3. 3)

That is to say, for TM modes, the finite difference operator [P\ along the z-

direction may be derived from N-N lateral boundary condition. While, for the

TE modes, the matrix [P\ is satisfied with the D-D boundary condition. The

expressions of [p],, the transformation matrix [T\, and the eigenvalues [S]

can be found according to these two boundary conditions.

By means of the Kronecker product, the final solution of 3D Helmholtz

equation for the cylindrical resonator is now written as,

or

where

v=Ty

k]=^[^(z, ^)][Aj

T=T, ®Tg

2.

^k= ~s with [^=/, ®[/lL

S 2

Z»= ̂ o2+^- - with[4=[4®7,

(3. 4a)

(3. 4b)

(3. 5)

(3. 6)

(3. 7)
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For TM modes, since [P]z belong to N-N case, the expressions of the

transformation matrix Tz and the eigenvalues [5]z can be found in equations

(2. 38a) and (2. 38b) in Chapter Two. For TE modes, since [P]z belongs to D-D

case, the expressions of the transformation matrix Tz and the eigenvalues

[5]z can be found in equations (2. 37a) and (2. 37b).

In Figure 3. 1, for the electric walls located at the circumference of r=b, the

boundary conditions are E, = Eg =0 and H, =0. Thus, for TM modes, we

have

¥e
r=b

=0 (3. 8)

Combining the above equation with equation (3. 4b), we obtain

^[^(Z^)]k, ]=0 (3. 9)
The nontrivial solution requires the zero determinant of the matrix

[Jft^b)\:

drt f^te.A)] =0 (3. 10)

Similarly, for TE modes, at the circumference of r=b, we have

a^A|
3r

=0
r=b

From equation (3. 4b), we get

fd[Jft^r)\\
dr [Aj-0

Since xj'^ {x} = nJ ̂ {x} - xj^ {x} [4] , we can obtain

r=6

(3. 11)

(3. 12)



^[J^r)\
dr =|^^(z,, &)-z,,^. (z,, &)

r=b
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(3. 13)

The nonzero solution of equation (3. 12) exists only if the determinant of the

matrix [Z] equals to zero. That is,

det{[z]}=0 (3. 14)

The resonant frequencies for TM and TE modes can be obtained by solving

the equations (3. 10) and (3. 14), which will be shown in the numerical

verification.

3.3 Solution of 2D Helmholtz equation by 2D CMoL

The individual TE and TM modes [18] can be identified by means of the

three integers m, n, and k, which are defined as follows:

m = number of full-period variations ofEr with respect to 9

n = number of half-period variations ofEe with respect to r

k = number of half-period variations of Er with respect to z

Therefore, if we are only interested in TEonk or TM onk modes, 2D CMoL is

used to obtain the resonant frequencies. In such situation, electromagnetic

fields are independent of the variable 6.

Based on the method described in Chapter Two, a program of 2D CMoL for

microwave cylindrical resonators is developed for both TEonk and T]VEonk

modes. Here, only the longitudinal variable has been discretized. The

solution can be written as

W=T^ (3. 15a)
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where

k]=^k(z^)]k]

Z. ^o2^
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(3. 15b)

(3. 15c)

k = 1,2, ---, N^, Tz and 5k are the orthogonal matrix and the eigenvalues of [p]^.

The values of the matrix [P\ for TE and TM modes, respectively, are the

same as those described in the above section. Appl^ng the boundary

conditions at r = &, for TMonk modes, we have

^{[J, (^b)]}=0 (3. 16)
and for TEonk modes, we have

det{b^i(z^)]}=0 (3. 17)
The resonant frequencies can be obtained by solving the above two

equations.

3.4 SVD Technique

In equations (3. 10), (3. 14), (3. 16) and (3. 17), numerical solutions require the

zero determinant of a matrix [Z]. We can search the roots by directly

evaluating the determinant of the matrix [Z]. However, in some cases, the

presence of poles makes it difficult to detect the zeros as the zeros near the

poles as discussed by Labay et aZ. [16]. Thus, it was suggested to use the

singular value decomposition technique (SVD) to eliminate poles. Moreover,

there are lower and upper limits for the internal representation of a double

real number in computer memory. The numerical overflow problem may

occur when directly evaluating the determinant of a matrix [Z] with a large

size.
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In this thesis, SVD method is first used to diagonalize the matrix [Z] by

two unitary matrices, [U] and [V] ([U]h[U]=[V]h[V]=[I] and

[U]h[Z][V]=diag[si, S2,..., Sn], where si > 82 > ... > Sn. The absolute value of the

determinant of the matrix [Z] equals to n s^. Here, instead of calculating
k=l

T\s^, we just pick the last element Sn as suggested by Xiao et al. [15]. In
i:=l

Matlab subroutine, the diagonal element Sk is already in the decreasing

order. Thus, the finding of the zero determinant of the matrix [Z], is

equivalent to the finding of the local minimum points ofsn.

3.5 Nxunerical verification

In order to validate the MoL algorithm derived in this chapter, both 2D

CMoL and 3D CMoL programs are performed to obtain the resonant

frequencies. First, we calculate some resonant frequencies for both TE and

TM modes from analytical solutions. Then, we investigate the convergences

of resonant frequencies for both 2D and 3D CMoL.

3. 5. 1 Expected resonant frequencies froni analytical solutions

The resonant frequencies of TE and TM modes are given by the expression

[17]

f'b1 =34. 825^
'z^Y. r^Y

71 +l^ (3. 18)

Here, f is in GHz, both b and d in inches. As illustrated in section 3. 3, the

integers m, n, and k are referred to the numbers of variations electric field

components with respect to 9, r and z, respectively.
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The values of ̂ mn [18] are listed in Table 3-2. There are two columns of

values in Table 3-2. The values of the second column are for TE modes and

the fourth column values are for TM modes. It should be noted that the

dominant TM mode is TMoik and the electric field component Er is

independent of 9. However, the lower order TE mode is TEiik and the electric

field component Er varies one period along 9-direction. Moreover, for the

higher order TE modes such as TEoik, the electric field component Er is

independent of 9.

Table 3-2 Values of%mn

TE-mode

llk

21k

Oik

31k

41k

12k

51k

22k

02k

Xnm

1. 841

3. 054

3.832

4.201

5. 318

5. 332

6. 415

6. 706

7.016

TM-mode

Oik

llk

21k

02k

31k

12k

41k

22k

03k

Xmn

2.405

3. 832

5. 136

5. 520

6.380

7. 016

7. 588

8.417

8.654

3.5. 1. 1 Case A (b=39 mm=1. 535 inch and d=33.33 mm=1. 312 inch)

Part of resonant frequencies of case A for the first four TE and the first

four TM modes (k=0 and 1) are listed in Table 3-3a and 3-3b. These values

are derived from equation (3. 18).
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Table 3-3a Resonant frequencies of case A for TE mode

K 1

TEiik 5. 031

TE2ik 5.848

TEoik 6.498

TEsik 6. 831

Table 3-3b Resonant frequencies of case A for TM mode

K 0 1

TMoik 2.943 5.375

TMiik 4.689 6.498

TM2ik 6.285 7.729

TMo2k 6.755 8. 116

3.5. 1.2 Case B (b=7. 62 mm=0. 3 inch and d=4.32 mm=0. 17 inch)

Part of resonant frequencies of case B for the first four TE and the first

four TM modes (k=0 and 1) are listed in Table 3-4a and 3-4b. These values

are obtained from equation (3. 18).
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Table 3-4a Resonant frequencies of case B for TE mode

K 1

TEiik 36. 577

TE2ik 39. 632

TEoik 42. 199

TEsik 43.554

Table 3-4b Resonant frequencies of case B for TM mode

k

TMoik

TMiik

TM2ik

TMosk

0

15.059

23. 994

32. 159

34.563

1

37. 839

42. 199

47. 320

48.986

3.5.2 Resonant frequencies from. 2D and 3D CMoL solutions

By performing 2D and 3D CMoL programs, resonant frequencies are

obtained from numerical simulations. Root searching is first illustrated by

four examples. Then, the convergences of both 2D and 3D CMoL are

investigated.

3.5.2. 1 Roots searching

In this section, four examples as shown in Figs. 3. 2a, 3. 2b, 3. 3a and 3. 3b

are used to illustrate roots searching for both 2D and 3D CMoL programs.
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In both Figures. 3. 2a and 3. 2b, the resonant frequency of TEoii mode is

obtained for Case A by using 2D CMoL. In Figure 3. 2a, the determinant of

the matrix [Z] is used to find the numerical solution, while in Figure 3. 2b,

the SVD method is implemented and only the least singular value is used for

roots searching. In both Figures. 3. 2a and 3. 2b, Nz is set to be 40.

Figure 3. 2a shows that the real and imaginary parts of determinant values

with solid and dashdot curves, respectively. The imaginary part of the

determinant values is multiplied by a factor of 1015 for visibility of variation.

As illustrated in Figure 3. 2a, there are two zero-crossing points near

frequency of 6. 426 GHz for the two curves. These two points merge together

as expected. This zero-crossing point referring to 6.426 GHz is just the

numerical solution of 2D CMoL by calculating the determinant of the

coefficient matrix.

For comparison. Figure 3. 2b shows the least singular values. As mentioned

above, here SVD techniques are implemented to search the roots. There is

one local minimum point near frequency of 6. 426 GHz. This point is just the

numerical solution of2D CMoL by using SVD technique.
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real(det)

-2

^. ^ / imag(det)x10
. ** . A^ .

, 15:

-6

-8

-10
6.4

I

I :
I 6.426 GHz

6.42 6.44 6.46 6.48 6.5
Freq (GHz)

6.52 6.54 6.56

Figure 3. 2a Resonant frequency ofTEoii mode for Case A by using

2D C]VtoL and by calculating the determinant
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6.5

Figure 3.2b Resonant frequency ofTEoii mode for Case A

by using 2D CMoL and by using the least singular element

In both Figures. 3. 3a and 3. 3b, the resonant frequency of TMiii mode is

obtained for Case A by using 3D CMoL. In Figure 3. 3a, the determinant of

the matrix [Z] is used to find the numerical solution, while in Figure 3. 3b,

the SVD method is implemented and only the least singular value is used for

roots searching. In both Figures 3.3a and 3.3b, Nz is set to 7 and Ne is set to

16
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Figure 3. 3a shows that the real and imaginary parts of determinant values

with solid and dashdot curves, respectively. As illustrated in Figure 3. 3a,

there are two zero-crossing points near frequency of 6. 467 GHz for the two

curves. These two points merge together as expected. This zero-crossing

point referring to 6. 467 GHz is just the numerical solution of 3D CMoL by

calculating the determinant of the coefficient matrix.

x IG'

-1 . .. .. real. part

-2

§

-g

-3

-4

\

\ .

imaginary part

-5

-6

6.4664 6. 4666 6. 4668 6.467
Freq (GHz)

6. 4672 6.4674

Figure 3. 3a Resonant frequency ofTMiii mode for Case A

by using 3D CMoL and by calculating the determinant

6. 4676
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For comparison. Figure 3. 3b shows the least singular values. As mentioned

above, here SVD technique are implemented to search the roots. There is one

local minimum point near frequency of 6. 467 GHz. This point is just the

numerical solution of 3D CMoL by using SVD technique.

0. 05

0. 045

0. 04

0. 035

®

I 0. 03
w

g 0. 025
<0

0.02

0. 015

0. 01

0. 005

°6.4
:6. 7 z

6.45 6.5 6. 55
Freq (GHz)

6.6 6. 65 6.7

Figure 3. 3b Resonant frequency ofTJVtiii mode for Case A

by using 3D CMoL and by using the least singular element
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3.5.2.2 Convergence of2D and 3D CMoL

After illustrating the root searching in the previous section, we investigate

the convergence of 2D and 3D CMoL in this section. Two examples are used

to demonstrate the convergence of our method.

In Figure 3. 4, resonant frequencies ofTMoii mode and TEoii mode for case

A are obtained by using 2D CMoL. The resonant frequencies of TM and TE

modes for case A are converged to the anal^ical values 5. 374 and 6. 498

GHz, respectively. For this special case, the resonant frequency converges
more quickly for TM mode than for TE mode.
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Figure 3. 4 Convergence of2D CMoL

In Figure 3. 5, resonant frequencies ofTMiii mode and TEiii mode for case

B are obtained by using 3D CMoL. The resonant frequencies of TM and TE

modes for case B are converged to the analytical values 42. 20 and 36. 58

GHz, respectively. For this special case, the resonant frequency converges

more quickly for TM mode than for TE mode.
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Figure 3.5 Convergence of 3D CMoL

3.6 Conclusion

In this chapter, we present an eigenvalue problem for an enclosed

electromagnetic circular waveguide. Both 2D- and 3D- CMoL are used to

obtain resonant frequencies. Numerical results converge for both 2D and 3D

CMoL. Good agreement is obtained between simulated results and those

from analytical equations. Convergence of 2D and 3D CMoL are also studied.

The resonant frequency converges more quickly for TM mode than for TE

mode.



43

CHAPTER 4

ANALYSIS OF MICROWAVE PERIODIC DISK-LOADED

CICULAR WAVEGUIDE

In the previous chapter, we have solved an eigenvalue probleni for an

enclosed electromagnetic circular waveguide. Both 2D- and 3D- CMoL are

used to obtain resonant frequencies. In this chapter, we will solve a

propagation problem for a periodic disk-loaded circular waveguide with axial

S3Tnmetry by using 2D CMoL.

4. 1 Introduction

Two cases, which are used to analyze circular resonators in section 3. 1, are

analyzed in this chapter. As mentioned in the previous chapter, Case A is

from Pruiksma et al. [7]'s paper, and Case B is from Wallett et al. [6]'s paper.

Both of these two papers investigated periodic structures with TM modes.

The geometrical parameters are listed in Table 3-1. For Case B, there are

ten periods cascaded together. For Case A, a sufficiently good number of

periods is assumed. Because both of the two structures are of axial

symmetry, only the transverse magnetic field TMon modes are of interest.

Thus, 2D CMoL is used to investigate the propagation characteristics of

periodic disk-loaded cylindrical waveguides.

4.2 Method of analysis

The basic idea of MoL is to reduce a system of partial differential

equations into ordinary differential equations by discretizing all but one of
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the independent variables in Helmholtz equation. For TMon modes,

electromagnetic fields are independent of variable 9. 3D Helmholtz equation

has degenerated into 2D Helmholtz equation. Here, z variable is discretized

while r variable leaves for analytical solutions. For proper selected outer

diameter of cylindrical waveguides and for proper operating frequency

range, only TMoi mode is the propagating mode. Other TMon modes

represent attenuating modes.

For a periodic structure with axial symmetry, by assuming the dependence

as ejlot, the scalar potential y{r, z) satisfies the 2D Helmhotz equation with

variables r and z as below

Ly^+w+k^=o

Here, for TM modes, the scalar potential y(r, z) is referred to electric

potential l)/e. By discretizing along the z-direction, a set of ordinary

differential equations is obtained,

d ( ̂ dy7\ , [P], (y . ^_
r^- \+l^f-+k^ =0

rdr[' dr J 
' 

h2, 
' 'l0' (4. 2)

where iff =

¥{r, z,)

¥(r, ^)

^(r^. v.-i)
y(r, z^)

and [P]z is a Nz x Nz matrix.
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In order to solve our problem, a periodic disk-loaded cylindrical waveguide

as shown in Figure 4. 1 is divided into two uniform regions (regions I and II).

Discretization lines for one period are also illustrated in Figure 4. 1. Here, |3

is the propagation constant in the z-direction and L is the period length, b

and a are the radii of outer and inner circles, respectively.

one eriod region II

r- -

V^e }PL region I

~!--

_.4

^e- I 2a 2b

Tr

^1 ^2 ^-1 ^/V,

Figure 4. 1 Discretization lines for a periodic cylindrical structure

The inatrix [P]z has different expressions for region I and region II. From

Chapter Three, the lateral boundary conditions for region II belong to N-N

case. Thus, the matrix [P]z for region II is written as

-1 1

1 -2 1 ... ... ...

K - ." ." ... ... ... . ".. (4. 3a)
1 -2 1

1 -1
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Corresponding to the periodic boundary conditions for region I, the matrix

[p]^ can be derived from Floquet's theorem as follows,

[p][=

-2 1 ... ... ... e]

1 -2 1 ... ... .

, -]PL

1 -2 1

1 -2

(4. 3b)

The next step is to find an orthogonal matrix [Tz] to transform the

variables so as to decouple the above equation and to find an analytical

solution for it in the radial direction. The matrix [P]z can be factorized by an

orthogonal matrix [Tz] as

[T t[P]z[Tz]=diag{5i, 52,..., 5k,..., §Nz}=[6] (4. 4)

where the respective matrices [Tz] and [5] for regions I and II can be found in

Chapter Two. These matrices correspond to different boundary conditions.

Assumed that y/r=[T]y , the set of coupled Helmholtz equations in equation

(4. 2) can be decoupled into a set of independent ordinary differential

equations ofBessel forms:

d ( .. d(Pk\ . .. 2.
^|rTj+^t=o

and .
2 =k2 +^jL.

-k -n-o T7T
h2.

(4. 5)

(4. 6)

where k=l, 2,..., Nz. (pk is the transformed potential function, and can be

written as a superposition of Bessel and Neumann function of 0-order

< = ^Jofcrj+^Fofcr ) (region II) (4. 7a)

and <Pi=C, J^r) (region I) (4. 7b)
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where Ak, Bk and Ck are constants. Jo{Xkr} is the flrst kind ofBessel function

of zero order and Y^^r) is the second kind of Bessel function (Neumann

function) of zero order. For region II, both the terms of Bessel and Neumann

functions exist. For region I, only the term of Bessel function is kept, because

the term of Neumann function becomes infinity at the center r = 0.

The electric potential in regions I and II can be expressed as below:

¥I=h]v1 (4. 8a)

and yn =[TH]p!I (4. 8b)

At the interface between region I and region II, from the continuity

conditions for the electric and magnetic fields, we have

(4. 9a)¥! =yJ-n

and

3r/
3r

3^ff
3r

r=a

where a is the radius of aperture.

At the cylindrical circumference, we have

w
r=b

=0

(4. 9b)

(4. 10)

since the characteristic of electric wall. Here b is the radius of cylindrical

waveguide.

Combining equation (4. 10) with equations (4. 9a) and (4. 9b), we have
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[JYM] B =0 (4. 11)

c

where

J^a) Y^'a) [r//]-l[r;l/o(^a)

^^Zl'r)
[JYM]= 3r

SY, (^r)
3r

J^l'b) Y, (^b)

\TI']~^TI aj°(^r)
3r (4. 12)

0

The problem of solving equation (4. 11) can be approached by directly

evaluating the determinant of the matrix [JYM]. Nonzero solution exists

only if the determinant of the matrix [JYM] equals to 0. But because the

presence of poles makes it difficult to detect the zeros as the zeros near the

poles as discussed by Labay et a?. [14], and because there are lower and

upper limits for the value of a double real number, SVD technique is used to

find the solution in the following.

Similarly as performed in Section 3.4, SVD technique is first used to

diagonalize the matrix [JYM] by two unitary matrices, [U] and FV1

([U]h[U]=[V]hm=[I]) and [U]h[JYM][V]=diag[si, S2,..., sJ, where si > 32 > ... >

Sn. Then, we just pick the last element Sn and find the local minimum point.
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4.3 Estiinations of passband and stopband

A periodic structure can be regarded as a transmission line loaded with

reactances connected in series or parallel, and spaced at regular intervals.

Harvey [18] reviewed the properties of periodic and guiding structures.

Various types of surface-wave structures including cylindrical dielectric rods

and corrugated surfaces were described. Based on wave analysis of periodic

structures [3] [4], analytical expressions are possibly obtained if the

equivalent series reactance X or shunt susceptance B for the waveguide

discontinuity can be accurately modeled. For electromagnetic field analysis,

there are many papers published in this topic. Clarricoats and Slinn [19]

investigated the waveguide problems by mode-matching methods. Mcdonald

[20] [21] presented polynomial expressions for the electric polarizabilities of

small apertures. Iskander and Hamid [22] improved the single and

multiaperture waveguide coupling theory. Eastham and Chang [23]

presented closed-form solutions of circular and rectangular apertures in the

transverse plane of a circular waveguide. Based on these contributions,

approximate passband and stopband are obtained.

For TMoi mode, small apertures inside a cylindrical waveguide are

modeled as shunted capacitances. The normalized susceptance B [3] can be

expressed as below:

0.92&4
(4. 13)B=

\a K

where \a^\=-a
'" 3 (4. 14)



50

As described in [4], the propagation equation of infinite periodic structures

can be written as

cosh{Yd)=cosh(ad)cos{/3d)+jsmh{ad)sm{ftd)=cos(kd)-B-sm(kd) (4. 15)

where y =a+ jft , 'k is the propagation constant of unloaded structure, The

above equation is used to estimate the passband and stopband, since the

right-hand side of equation (4. 13) is purely real, we must have either ec = 0

or ft =Q. If a=Q , f3 ̂ Q. This case corresponds to a nonattenuating,

propagating wave on the periodic structure, and defines the passband of the

structure. Then equation (4. 15) reduces to

cos{^d)=cos(kd)--sm(kd) (4. 16)

which can be solved for |3 if the magnitude of the right-hand side is less than

or equal to unity. If a^O, ^d=0, 7T. In this case the wave does not

propagate, but is attenuated along the structure; this is the stopband of the

structure. Because the structure is lossless, power is not dissipated, but is

reflected back to the input of the structure. The magnitude of equation (4. 15)

reduces to

cosh(ori)= B .cos{kd)--^sm{kd} >1 (4. 17)

which has only one solution (a > 0) for positively traveling waves: a < 0

applies for negatively traveling wave. If cos(kd}-(B/2)sm{kd)<-l, equation

(4. 17) is obtained from equation (4. 15) by letting pd=7i.

4.4 Numerical results

Based on the analysis in Section 4. 2, numerical root searching has been

performed for both of the two cases A and B as mentioned in Section 4. 1.
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Here, analytical passband has been estimated for both cases A and B by

using equation (4. 16). These analytical results are compared with other ones

from literature and with our simulation data, which are obtained by using

2D CMoL. Two special groups of numerical simulations for case A are also

performed to investigate the dependence of phase delay Rd on the

geometrical parameters.

As mentioned in Chapter Three, Case A is from Pruiksma et al. [7]'s paper,

and Case B is from Wallett and Qureshi [6]'s paper. Both of these two papers

investigated periodic structures with TM modes. Here, due to the axial

symmetry, 2D CMoL method has been chosen to investigate the dispersion

characteristics of the disk-loaded structure. SVD technique has been

performed in our analysis. Instead of detecting zeros of the determinant of

the matrix [JYM] in equation (4. 12), we just pick the value of the last

element Sn as suggested by Xiao et al. [13]. In JVIatlab subroutine, the last

element Sn is already the lowest value among all the diagonal elements in

matrix diag[si, S2,..., Sn]. Thus, the algorithm now searches the minima of the

last element in the diagonal matrix.

Figure 4. 2 shows the dispersion characteristics of the disk-loaded structure

for Case A. Here, the curves with symbols of "A", "o" and "*" represent the

numerical results from Pruiksma et aZ. [7], those from 2D CMoL method, and

those from anal.Ttical equations in Collin's books [3,4]. A good agreement has

been achieved between the simulation results from 2D CMoL method and

those from analytical equations. Deviation appears for phase delay pd above

Tl/2. For the same phase delay pd, the relative differences between the

frequencies from 2D CMoL and those from analytical equations are around

1%. [( fMoL-fCoUm)/fCollmX 100%].
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Figure 4.2 Dispersion characteristics of the disk-loaded structure for Case A

(b==39mm, a^lOmm and d-33.33mm)



53

Figure 4. 3 shows the dispersion characteristics of the disk-loaded structure

for Case B. Here, the curves with symbols of "A", "+", "o" and "*" represent the

theoretical and experimental results from Wallett and Qureshi[6], those

from 2D CMoL method, and those from analytical equations in Collin's books

[3, 4]. A good agreement has been achieved between the simulation results

from 2D CMoL method and those from anal.Ttical equations. There is

difference between the results from 2D CMoL method and those from the

experimental measurement. It should be noted that we neglect the thickness

of the inserted disk. More accuracy needs considerino- the impact of the

thickness of these disks.

In order to investigate the dependence of dispersion characteristics on the

geometrical parameters, two special groups of numerical simulations for

Case A have also been performed. Only one parameter varies in each group.

In group one, the inner diameter of inserted disks changes from 2. 5, 5 to 10

mm, while in group two, the length of one period varies from 16, 33 to 66

mm.

Figure 4. 4 shows the dispersion characteristics of the frequency points

with variation of the inner diameter of the inserted disks. The dash-dotted,

dashed and solid curves represent the periodic structures with the values of

inner diameter of inserted disks 2.5, 5 and 10 mm, respectively. As shown in

Figure 4. 4, the phase delayed decreases with the increase of the inner

diameter of the inserted disks.

The dispersion characteristics of the frequency points with the change of the

length of one period for case A are shown in Figure 4. 5. The dash-dotted,
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solid and dashed curves represent the geometry size with the length of one

period 16, 33 and 66 mm, respectively. As shown in Figure 4. 5, the phase

delay y?rf increases with the increase of the length of one period for Case A.
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I
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0.1 0.2 0.3 0. 4 0. 5 0. 6 0.7
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Figure 4. 3 Dispersion characteristics of the disk-loaded structure for Case B

(b=0. 15", a^O. 09375", t=0. 01" and d=0. 17")
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Figure 4. 4 Variation of phase delay

with the change of the inner diameter of the inserted disks for Case A
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4.5 Conclusion

In this chapter, we have investigated a periodic disk-loaded circular

waveguide of axial symmetry by using 2D CMoL. Numerical results are

compared with those obtained from anal^ical equations in Collin's books,

and a good agreement has been achieved between these two methods.

Deviation still exists between the results from 2D CMoL and the

measurement data. More rigorous analysis need include the impact of the

thickness of inserted disks. Parametric analysis has also been developed in

order to investigate the dependence of dispersion characteristics on the

geometrical parameters.
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CHAPTER 5

CMoL APPLIED TO ACOUSTIC CIRCULAR WAVEGmDE

The method of lines (MoL) can be used to analyze the acoustic waveguide

structures with circular cross section in cylindrical coordinates. Both 2D and

3D cylindrical method of lines (CMoL) are extended to acoustic structures in

this chapter. Some numerical results are obtained to demonstrate the

usefulness of this approach.

5. 1 Introduction

Many ducts in which sound propagates have circular cross-sections. Thus

it is desirable to analyze cross-modes in cylindrical or circular ducts. The

problem of wave propagation in a circular duct has received considerable

theoretical and experimental attention over many years [26-30]. This

chapter will present the application of CMoL to acoustic cylindrical

waveguide and resonator. The Helmholtz equations (both 2D and 3D) are

derived in details from acoustic wave equation. For an infinite long
cylindrical waveguide, the cylindrical 2D method of lines (2D MoL) is used to

analyze the propagation characteristics. By discretizing the angular space

direction only, the two-dimensional Helmholtz equation in cylindrical

coordinates becomes a set of ordinary differential equations, which can be

solved analytically in the radial direction after an orthogonal

transformation. For an acoustic resonator, the cylindrical 3D method of lines

(MoL) is utilized to discretize the angular and longitudinal space directions

simultaneously. The resulting Helmholtz equation is a set of coupled one-

dimensional differential equations. Applying the decoupling procedure, each
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differential equation can then be solved analytically in the radial direction

after an orthogonal transformation.

5.2 Acoustic Wave Equation and Helmholtz Equation

The acoustic wave equation can be expressed in terms of the velocity

potential <I> is

a2^>

-3^ -c2V20-0 (5. 1)

Where c is the velocity of sound, which is the characteristic speed of

propagation wave in medium. The velocity potential is related to all other

acoustic parameters. For example, from the velocity potential 0, acoustic

pressure P and particle velocity u can be derived by the following equations

p=-p^--PT

and

M=V^>

(5. 2)

(5. 3)

where p is the density of the medium.

In cylindrical coordinates, the gradient of C> can be written as

_ ^ 9^(r, 0, z, t} , ^ ^{r, 0, z, t) , , 30(r, 0, z, f)VO = a
3r

+ a. ~r9e"'+a- ^

and the Laplacian operator can be written as

(5. 4)



^^^]_9_(^{r, 0, z, t)^^2(r, 0, z, t)^y^(r, 0, z, t)
r3r[' 3r j 

' 

r2 302 
' 

3z2
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(5. 5)

Substituting equation (5. 5) into equation (5. 1), the wave equation becomes

92^(r, 0, z, t)
3r2

-c'
^( ^{r, 0, z, t)} , 1 y^(r, 0, z, t) , 32^)(r, 0, z, ?)
r3 3r 302 3z2

=0

(5. 6)

Substituting equation (5. 4) into equation (5. 3), the particle velocity becomes

^ _ ^ 9^{r, 0, z, t) ^ ^ ^{r, 0, z, t) ^ ^ 3<I>(r, 0, z, r)
u = a + d

r36>
+ a.

3z
(5. 7)

If harmonic motion is assumed, (^(r, Q, z, t) can then be expressed

^{r, 0, z, t) = y{r, 0, z} e}wt (5. 8)

Substituting the above equation into equation (5. 6), we obtain

^^{r^)} + ±aM^z) ̂ 3VM^)^ ,^^^) , o7^[r "3r 'j+^ '302"/+ '3;2 "/+W^^^-0
(5. 9)

with

^^-^Me- (5. 10)

where ko is the wave number, which is expressed by the equation below

ky =0) 1c (5. 11)
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Equation (5. 9) is the three-dimensional Helmholtz equation in the

cylindrical coordinates.

The two-dimensional Helmholtz equation in a cylindrical coordinate

system can be obtained by the assumption as follows

^{r, 0, z, t)= y{r, 0) ej(M-ftz} (5. 12)

If only positive traveling waves are considered, where P is the propagation

constant in z-direction. Substituting this equation into equation (5. 6) yields

^^^^w^_^^73R' 3r j"r2 302 (5. 13)

with ^zf}=-<»^6VW^ (5. 14)

and 3^M,,, )_^^^,, _,., (5. 15)

The cut-off frequency is reached when p equal zero. The above equation

is the two-dimensional Helmholtz equation in cylindrical coordinates.

5.3 Nuinerical results

The application of CMoL to acoustic structures will be tested for infinitely

long circular waveguide and cylindrical cavity, the results are compared to

analyfcical solutions.
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5.3. 1 Circular cross-section waveguide

From Chapter Two, section 2. 3, for an acoustic waveguide in circular

cross-section, only Juk (kcr) is a physically acceptable solution in equation

(2. 24) since Yuk (kcr) becomes infinite at r = 0, and the solution to equation

(2.24) becomes

(p, =A, J^{k, r) (5. 16)

where k=0, l,2,...,Ne.

Since a rigid wall is located at r = b, the particle velocity in the r-direction

at r = b must equal zero. From equation (5. 7), we obtain

_ 30 rft^t
Ur- ^

or

dy
dr

- 0

(5. 17a)

(5. 17b)
r=<>

where y=[<p^, ^, ---, <jp^, --, y^\. Combining equation (5. 16) and equation

(5. 17b), we have

dJ^cr) ^ ^^^
r=b

(5. 18)

and uk is determined by equation (2. 23) in Chapter Two. If the nth root of

the equation (5. 18) is designated by ̂ mn, the allowed values (eigenvalues) of

kc are

^ = xfL (5. 19)
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The values of ̂mn for the first seven roots for n = 0, 1, 2, 3, 4, 5, 6 will be given in

Table 5. 1 with Ne =30, which shows a good agreement with the literature

[30]. There are infinite numbers of solutions %nm (n = 0, 1,2,... ... ), which are

satisfied for the equation (5. 18).

In the following, Ne is set to 30. Figure 5. 1 shows the discretization along

6-direction. There are 30 lines in the whole circle. The size of matrix [P]e is

30 x 30. The elements of [P]e are listed in equation (2. 17). An orthogonal

matrix [T] is used for the orthogonal transformation of [P]e. Based on

equations (2.21) and (2.22), the elements of matrix [T] are constructed. After

orthogonal transformation, the eigenvalues {Xk} are obtained. From these

eigenvalues {Xk}, the order of Bessel functions Uk in equation (2. 23) can then

be shown in Figure 5. 2. We find that the values of uk are symmetrical to k =

15. Thus, there are only 16 different values in the total 30 values, uk is the

same as uso-k.

The values %mn are obtained by a root searching method based on equation

(5. 18). An example is used to illustrate the root searching as shown in Figure

5.3, where k equals to 1.

The x-coordinate is the ^nm = Xufai variable and the y-coordinate is the value

of a function dependent on %mn, where the function is based on

equation(5. 18). The zero-crossing points in the curve of Figure 5. 3 from left

to right correspond to the solutions ^mn, where m=Uk, n= 0, 1, 2, ... .

Once %mn are known, each decoupled function (pk can be expanded with its

respective base functions (pm n,
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00

(pk(r, z)=^AmnJm(%miir/b)[BiimeXp(-J(kz)mnZ)+CmneXp(J(kz)mnZ)] , m = Uk
n=0

(5. 20)

where Bmn is related to the forward wave, and Cnm is related to the reverse

wave. Each base function corresponds to a propagation ^mn mode with its

respective (kz)mn. Based on initial conditions, the coefficients Amn, Bmn and

Cmn can be obtained. The base function is given by

<Pn,n=-f^^rlb} (5. 21)

The propagation constant (kz)mn for a specified %nm mode can be expressed

as

(^)L=^2-(^^)2 (5. 23)
where ky is the wave number ky =(y/c, m = uk, kis from 1 to 30.

From equation (5. 23), the cut-off frequency for each Pmn mode can be

derived

(^L^=c^/(2^) (5. 24)

where c is the velocity of sound.

Four groups of base functions (pmn have been shown in Figs.5. 4, 5.5, 5.6

and 5. 7, where k = 1, 8, 15 and 30, and n = 0, 1, 2, 3, 4, 5 and 6. Each group

corresponds to its respective decoupled function (pk. From these figures, we

observe that the first order derivative of each base functions cpmn is equal to

zero at r = b (1m), as the boundary condition requires.
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Table 5-1 List of^mn

1(29)
2(28)
3(27)
4(26)
5(25)
6(24)
7(23)
8(22)
9(21)
10(20)
11(19)
12(18)
13(17)
14(16)

15
30

m=Uk

0. 9982
1.9854
2.9509
3. 8840
4.7746
5.6129
6.3897
7.0965
7.7255
8.2699
8.7237
9.0819
9.3406
9.4970
9.4593

0

0

1.8389
3.0372
4. 1457
5. 1892
6. 1693
7. 0823
7.9218
8. 6813
9.3544
9.9351
10.4179
10.7984
11.0727
11. 2385
11. 2939

0

1

5. 3289
6.6867
7.9521
9. 1371
10.2431
11. 2669
12. 2035
13.0471
13.7920
14.4327
14.9642
15.3822
15.6833
15. 8650
15.9257
3. 8317

2

8.5337
9. 9490
11. 2794
12.5287
13. 6953
14.7749
15.7618
16.6502
17.4388
18. 1074
18.6659
19. 1048
19.4209
19. 6116
19.6753
7. 0156

3

11.7033
13. 1494
14. 5173
15. 8059
17.0111
18. 1273
19. 1480
20.0668
20. 8733
21.5739
22. 1512
22.6050
22. 9317
23. 1288
23. 1946
10. 1735

4

14.8609
16.3262
17.7188
19.0343
20. 2667
21.4093
22.4547
23. 3961
24.2267
24. 9406
25.5324
25. 9975
26.3324
26.5344
26.6018
13. 3237

5

18. 0128
19.4913
20. 9016
22.2368
23.4895
24. 6520
25.7165
26.6755
27. 5219
28. 2494
28. 8527
29.3268
29.6682
29. 8742
29. 9430
16.4706

6

21. 1616
22.6498
24.0733
25.4234
26.6921
27. 8704
28. 9500
29. 9231
30.7823
31.5210
32. 1336
32. 6152
32.9619
33. 1712
33. 2411
19.6159

5

4

3

2

1

f °

Root searching

^s

10 15 20 25 30
X,(k.1,|i,=0.9982)

Figure 5. 3 Root searching
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5. 3. 1 Resonant frequencies of cylindrical cavity

For a cylindrical cavity as shown in Figure 5. 8, the analysis solution begins

0

r=b 6

d

Figure5. 8 Coordinate system for a cylindrical cavity

with the wave equation (5. 9).

i_s_^Mr^)} ̂ 3VM^) ̂  aM^z)^ ̂ ^^^ , o~rTr[r 
' 

3r 'j+7^ '302 '+ ' 

3z2 
"/+/:° ^^=( (5. 9)

writing y(r, 0, z) in the form

llf{r, 0^}=F{r}G{0}H{z) (5. 25)

substituting this expression into equation (5. 9) and separating the variables

yields three ordinary differential equations of the forms

rf^(z)
A2

dlG{6}
d92

+^2^(z)=0

+m2G(0)=0

L^)^-^-°

(5. 26)

(5. 27)

(5. 28)
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according the boundary conditions in the z-direction

dH[z}\
dz.

=0 (5. 27)
z=o,L

the solution to equation (5. 26) is

H^ = A^ cos

^=T

nn
s| --

L
n=0, 1, 2, .. (5. 28)

(5. 29)

No definite boundary conditions are specified for the 9 direction. However,

there is a periodicity requirement such that

G(e=Q)=G(e=27f} (5. 30)

This results in a solution for equation (5. 27) of the form

G{0)=AgCOs(m0)+BgSm(m0) (5. 31)

arranging equation (5.28) yields

^d^l^dFfd^^^)F^O , ^ ^=k2 -k^ (5. 32)
dr2 dr

This equation is Bessel's equation of order m. Its solution is given by

F(r}=A^^r)+B^(rjr) (5. 33)

Br must be zero since Ym(iir) is unbounded at r= 0. Thus equation (5. 33)

becomes

F(r)=A, J^r) (5. 34)

Atr = b, a rigid wall located. That is to say, the particle velocity in the r

direction at r = b must equal zero. From equation (5. 34)

_ dF{r)
r=b dr

m

=I^J^W-^^W=Q (5. 35)
r=b

Table 5. 1 gives several values of resonant frequencies of modes (m, r|, n) for

which the above equation (5. 35) is satisfied, where m, T|, n are three integers

with respect to 9, r, z, respectively.
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Table 5-2 Values of Resonant frequencies (Hz) when b = 5 inch d=0. 5 inch

Miio

M210

Moio

Msio

Mo20

Moso

Mo40

Mo50

Mo60

784

1301

1633

1708

2989

4335

5677

7018

8358

In order to get the resonant frequencies by CMoL, the discretization of the

z-variable in three-dimensional Helmholtz equation(5. 9) is also required.

Since rigid walls are located at z=0, L (L is the length of the cavity), the

lateral boundary conditions for Pz is "N-N" case, so we have

-1 1 0

1 -2 1

M.= (5. 36)

1 -2 I
1 -1

from Chapter Two, a transformation matrix [T, ] can be found to diagonalize

the matrix [?], as [^ ]' [P\ [^ ] = diag[S, ] = [<?J, and [r, ]' = [^ ]-', where
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[^L=
z Jmn

and

n=l

2 , _(m-0. 5)(n-l)^-
^cosv" ".;;. "".. ">I

[^], =-4sin; C-ik
21V.

(m, n= 1,2,3,.. , NJ (5. 37a)

(i=l, 2,3,.. , Nz) (5. 37b)

The matrices [p]g, [Tg] and [2]^ can be found in Chapter Two. After appl}dng

the Kronecker product, the solution of the three-dimension Helmholtz

equation is obtained as shown in (2. 56), Bki must be zero since the region of

solution contains the origin r = 0. That is

%=A/AM (5. 38)

According to the acoustic boundary conditions at the circumference ofr=b,

where b is the radius of the cylindrical cavity, the numerical results are

obtained and shown in Figure 5. 9 with Ne = 16 and Nz = 20. The values of

the markers are from the analytical solution, and are shown in Table 5. 1.

The simulation results for the resonant frequencies by using 3D CMoL are

784, 1275, 1632, 1708 Hz for Miio, M2io, Moio, Msio, respectively. The relative

difference is less than 2%.
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Figure 5. 9 Resonant frequencies ofMiio, M2io, Moio, Msio modes by 3D

cylindrical MoL and by SVD technique (r = b= 5 inch, d = 0. 5 inch)
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If we are only interested in modes (0, n), i. e., the acoustic field is

independent of the variable 9, the 2D CMoL can be used to get the resonant

frequencies. Following the procedures described in Section 2.4, Chapter Two,

the simulation results are obtained shown in Figure 5. 10, for MOID, Mo2o, Moso,

Mo4o, Mo50, MOGO with the frequency ascending in order. The agreements

comparing with the analytical results are perfect.

3.5
0 0 v

2.5

I
§ 2

-M

s
01

$1.5
0

0.5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
frequency(Hz)

Figure 5. 10 Resonant frequencies ofMoio, Mo20, Moao, Mo40, Mow, Moeo modes

by 2D cylindrical MoL and by SVD technique (r= b = 5 inch, d = 0. 5 inch)
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5.4 Conclusion

The method of lines (MoL) has been extended to apply to acoustic

waveguide structures in cylindrical coordinates. The Helmholtz equations

(both 2D and 3D) are derived in details from acoustic wave equation. For an

infinite long cylindrical waveguide, the cylindrical 2D method of lines (2D

MoL) is used to analyze the propagation characteristics. As to an acoustic

resonator, the cylindrical 2D and 3D method of lines (JVtoL) is utilized to

obtain the resonance frequencies. In comparison with other solutions, good

agreements have been found.



76

CHAPTER 6

DISPERSION CHARACTERISTICS OF ACOUSTIC PERIODIC

DISK-LOADED WAVEGUIDE STRUCTURE

The analysis of periodic structures proceeds similarly to the analysis of

resonant structures described in Chapter Five. The disk-loaded waveguide

structure will be divided into two regions. After applying the boundary

conditions, results expected are obtained, which will be compared with the

experimental results.

6. 1 Introduction

Construction of traffic noise barriers (sound walls) has been mostly used to

mitigate vehicle noise for residents next to high-density highways. Effective

noise barriers can reduce noise levels by 10 to 15 decibels, cutting the

loudness of traffic noise in half. For a noise barrier to work, it must be high

enough and long enough to block the view of a road. However, because of the

structural and aesthetic reasons, they are usually limited to 25 feet in

height. Therefore, the study of the acoustic model to lessen the low-

frequency noise diffracting from the top of highway barriers becomes very

important.

A type of acoustical waveguide low-pass filters, topping noise barriers, has

first been used for many years as an effective way, both environmentally and

economically, of reducing low frequency noise. This is accomplished by

reducing the phase velocity of the sound transmitted through the waveguide

filter, thus introducing a phase lag of 180 degree with respect to the
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diffracted low frequency noise. As a result, destructive interference takes

place on the receiver side behind the barrier, insuring better low frequency

noise control than with a conventional barrier. However, the efficiency of

these filters is limited to a narrow frequency band for normally incident

plane waves. The first device, made of a series of identical rectangular

cavities, has been extensively studied [31-34].

Recently, an experimental and theoretical study, conducted by Lahlou et

aZ. [35], has shown that the performance of the device depends on the angle

of incidence of the sound wave, dropping considerably for large incidence

angles. However, it appears that this waveguide filter might still offer good

performance if it is assured that the acoustic waves enter the device under

normal incidence. In order to eliminate this shortcoming of the rectangular

waveguide filter, this chapter presents a study of a cylindrical waveguide

filter, which is a periodic disk-loaded cylindrical waveguide structure, by

using CMoL. For the cylindrical structure, all direction sound waves

entering the device can be assumed to be at normal incidence.

As part of this study, experimental results are compared with the

theoretical predictions. The limitations of both the theoretical values and the

experimental procedure are given, in order to assess the agreement between

them..

6.2 Solution of Helinholtz equation

The structure is shown in Figure 6. 1. Since discontinuity occurs along the

z-direction, the discretization of the z-variable is required. It is subdivided

into two uniform regions (Region I and Region II). We suppose only modes
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(0, n) propagate in this structure. Because the initial plane mode, noted (0, 0),

generates superior modes (0,n) after crossing the discontinuities. Hence the

Helmholtz equation is now written in the following form

^^3^(r, z)^3V(r, z)
r3rl' 3r +" ^"/+^V(r, z)=0 (6. 1)

According to Floquet's theorem,

y{r, z+L)=y{r, z)e~JftL (6. 2)

where P is the propagation constant in the z-direction and L is the period

length. The discretization lines for a periodic structure are shown in Figure

6. 1.

one period region II

v 2a 2b

r-

^1 ¥z ^-i ̂ ^,

Figure 6. 1 Discretization lines for a periodic cylindrical structure

For Region I, according to the periodic boundary condition, the matrix

[P]', is given by
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[p}',=

-2 1 ... ... ... e]PL
1 -2 1 ... ... ...

1 -2 1

?-  ... ... ... 1 -2

(6. 3)

following the procedure described in Chapter Two, the solution of region I is

now written as

^=A, Jofcr) (6. 4)

and r/=[T]/^/ (6. 5)

with [TL=^ ,
J'"sk

5,'=-4sm2^]
2n(k-l}-pL

w=^^

(6. 6)

(6. 7)

(6. 8)

(6. 9)

where m, k =1, 2, ---, N,

For region II, since rigid walls are located at two lateral sides, the particle

velocities in the z-direction must equal zero. The lateral boundary conditions

belong to N-N case. So the finite difference operator [p]" is expressed as
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-1 1

1 -2 1 ... ... ...

[p]"- '" '" "' "' "" '".. (6. 10)

1 -2 1

1 -1

an orthogonal matrix [r]// can be found in Chapter two to diagonalize the

matrix [p]". The solution in this uniform region is as follows,

^ =B, J^r)+C,Y^r) (6. 11)

and y"=[T]"p" (6. 12)

^-^;n>.
with [T^= (6. 13)

^"=-4sin^^] (6. 14)
te/)2=^2+5- (6-15)

where m, n, k=l, 2, ---, N .

6. 3 Eigenvalue equation of inhoinogeneous waveguide

After the Helmholtz equations are solved in each uniform region, we need

to match the fields at the interfaces between the uniform regions in order to

solve the whole structure. The acoustic pressure and particle velocity at

interface are obtained from y . For the continuity condition r = a, we have
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y/ = iff

[T]! kfc^)] [AJ- [r]// k(z^)] [5J+ [r]// [Vofca )] [Cj
(6. 16)

^77-13^

(6. 17)

M/[-^^fc. )][Aj=[rr[-^J, fc/. )][5j+[r]//[-^y, fc/a)][cJ

From the boundary condition at r = b, we get

3r//l
3r

=0
r=b (6. 18)

[T}"[-^J^'b)] [B^ [T]n [-^'Y^'b)] [Cj=0

In equations (6. 16), (6. 17), and (6. 18), [r]/ and [T]" are Nz by Nz matrices,

[Aj, [5j and [cj are Nz xl matrices, [j^a)], [j^a)] and [Y^'a)];
[-xlJ ^a)], [-^J^a)]and l-xl'Y^'a)] areNzbyNz diagonal matrices.

We can re-write equations (6. 16), (6. 17), and (6. 18) as a matrix form in the

following,

[T][j^[a}} -[r]//kfc/. )] -[T]//[Fote;a)]

[T]'[-^J^a)] [F]"kj, fc/. )] [TY^'Y^a)]

[o] k^fc^)] ky. te^)]

B,.

c,

-[0]

(3W, x3Wj (3Af. xl)

(6. 19)



If

M'kfa")] -M"k(y."")] -[r]"[r. (y;'a)]

^], [T]I[-^J^la)] [T]"^'J^a)] [TY^'Y^a)]
[o] k^fc7 ^)] k^te7 ^)]

(3AF, x3W,)
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(6. 20)

the nontrivial solution of equation (6. 19) requires that the deterininant of

the inatrix [z] is zero,

det{[z]}=0 (6. 21)

The propagation constant P in the z-direction can be obtained by solving

the above equation. Due to the presence of poles, SVD technique is again

used. Thus, the determinant calculation is equivalent to finding all the local

minimum points of the lowest singular values of [Z] along the frequency axis.

Once the propagation constant P is obtained, we can obtain the phase delay

of the sound signal through the periodic structures or waveguides. For

comparison, we can also get the phase delay of the sound signal through free

space for the same geometrical length as that of the periodic structures.

Here, we define the phase lag as the difference of phase delays between the

sound wave propagating in free air and one traveling through the periodic

waveguide. The phase lag is expressed as below

. A*=2^-/iL, =^L. -^,
^ ca,r

(6. 22)

where f and Cair are the sound frequency and the sound speed in free space,

and Lg is the length of the periodic waveguide.



83

6.4 Experimental arrangement diagram

In order to validate our method, a periodic structure as shown in Figure

6. 2 has been machined. There are four periods in total, where the diameter

of the cylindrical waveguide is 10 inches and the length of one period is 0.5

inch. The outer diameter of inserted disk is 10 inches as that of the

cylindrical waveguide and the inner diameter of the open part of the disk is

1 inch.

Experimental measurement of the periodic structure has been performed

on a 1/8 scale model in an anechoic chamber. The test configuration is shown

in Figure 6. 2. Here, a loudspeaker, which is about 2 meters away from the

periodic structure, is used as a source of white noise. As illustrated in Figure

6. 2, two microphones as loads of sound are placed in the front of the

loudspeaker with an identical distance. Sound can propagate through the

periodic cylindrical waveguide to reach one microphone, or it can directly

reach the other microphone in free space. These two microphones were

chosen with a diameter small enough not to disturb either the field radiating

out of the slit (exit of the periodic waveguide) or the field diffracted by the

wedge above the periodic waveguide. Acoustic wave propagates through the

periodic structure with a much lower speed than it travels in free space.

Thus, there is a phase lag between the two microphones. ]V[oreover, there are

passbands and stopbands created by the periodic structure. Related

processing instruments are also shown in Figure 6. 2. Data are sampled from

two microphones and are then processed by FFT. Finally phase delays of the

two microphones and phase lag between them are obtained.
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Amplifier
Mcintosh lOOw

Anechoic chamber

2m

loudspeaker
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Graphic Equalizer
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DN27A 2 Channel Microphone
power Supply

B&K 2610

Random Noise

Generator
B&K 1405

2 Channel FFT
Analyser

Spectral Dynamics
SD-375 II

Plotter HP 7470A

Figure 6. 2 Block diagram of the measurement system
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6.5 Experiinental and theoretical Results

By using 2D CMoL method, the propagation characteristics of the periodic

structure described in Section 6. 4 are obtained and then compared with the

above experimental data. Parametric analysis is also performed to illustrate

the variation of phase delay with the change of geometrical parameters of

the periodic structure.

6.5. 1 Comparison between numerical and experiment results

Based on the method described above, the theoretical values of phase lags

between the two microphones in Figure 6. 2 have been obtained. As listed in

Table 6-1, there are total six passbands alternatively separated by stopbands

for the frequencies below 8kHz.

Table 6-1 Frequency range for passbands below 8kHz

Number of passband

PB-I

PB-II

PB-III

pB-r^

PB-V

PB-VI

Frequency range (Hz)

0-430

1630-2040

2990-3515

4340-4970

5680-6420

7018-7858
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Figure 6. 3 shows the theoretical values of the phase lag for the whole

frequency band below 8kHz. Note that the phase lag in the frequency range

out of the passbands listed in Table 6-1, for the periodic structure, linearly

increases with the increase of frequency as illustrated in Figure 6. 3, because

in the frequency range of the stopbands, the wave does not propagate, power

is reflected back to the input of the structure, the phase delay Rd equals zero

or TT as mentioned in Chapter 4.
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frequency(Hz)
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Figure 6. 3 Phase lag for a periodic structure with four periods
by using 2D CMoL
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Figures 6. 4a, 6. 4b, 6. 4c, 6. 4d and 6. 4e show the phase lags in the

frequency ranges of five passbands PB-I, PB-II, PB-III, PB-TV and PB-V,

respectively. The phase lag of passband PB-VI is not analyzed here, because

the signal to noise (S/N) ratio is low for the experiment data.

The first passband is called PB-I listed in Table 6-1, where the frequency of

interest varies from DC to 430 Hz. The phase lag of the corresponding

frequency points in PB-I is shown in Figure 6. 4a, where the solid curve

represents the numerical results from 2D CMoL, while the dash-dotted

curve with the symbol "V stands for the measurement results. As expected,

there is one passband occurring in the frequency range from DC to 430 Hz.

However, the theoretical results deviate from the experimental ones. Such

deviation may due to diffraction and refraction of the sound wave, which

lead to small difference of phase delay between the sound wave propagating

in free air and one traveling through the periodic waveguide.

Figure 6. 4b shows the phase lag of the frequency points in the second

passband PB-II. As listed in Table 6. 1, the covered frequency is from 1630 to

2040 Hz. The solid curve represents the numerical results form 2D CMoL

and the dash-dotted curve with the symbol of "A" stands for the

measurement results. As expected, there is one passband occurring in

passband PB-II. An excellent agreement is achieved between theoretical and

experimental results in the middle ofpassband PB-II. The theoretical results

in the left transitional range between stopband and passband differ a lot

from the experimental ones.
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The covered frequency of third passband PB-III as listed in Table 6-1 is

from 2990 to 3515 Hz. The phase lag of the frequency points is shown in

Figure 6. 4c. The solid curve represents the numerical results form 2D CMoL.

The dash-dotted curve with the symbol of "D" stands for the measurement

results. As expected, there is one passband occurring in passband PB-III. An

excellent agreement is achieved between theoretical and experimental

results in the middle of passband PB-III. The theoretical results in the right

transitional range between stopband and passband differ a lot from the

experimental ones.
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Figure 6.4d shows the phase lag of the frequency points in passband PB-

IV. The frequency is from 4340 to 4970 Hz. The solid curve represents the

numerical results form 2D CMoL. The dash-dotted curve with the symbol of

V stands for the raeasurement results. As expected, there is one passband

occurred in passband PB-TV. However, there is big difference between

theoretical and experimental results in this passband. Comparing to

theoretical data, it seems that the experimental results enlarged the width

of the passband and shifted the centre of such a passband.
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Figure 6.4d Theoretical and experimental phase lag from 4340 to 4970 Hz
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The phase lag versus frequency in passband PB-V is displayed in Figure

6. 4e. The covered frequency is from 5680 to 6420 Hz. The solid curve

represents the numerical results form 2D CmoL, while the dash-dotted curve

with the symbol of "0" stands for the measurement results. As expected,

there is one passband occurred in passband PB-V. An good agreement is

achieved between theoretical and experimental results in the middle of

passband PB-V
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Figure 6.4e Theoretical and experimental phase lag from 5680 to 6420 Hz
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6.5.2 Parainetric analysis

In order to investigate the dependence of phase delay ft d on the

geometrical parameters, two special groups of numerical simulations have

been performed. Only one parameter varies in each group. In group one, the

inner diameter of inserted disks changes from 0. 5, 1 to 2 inches, while in

group two, the distance of one period varies from 1, 2 to 4 inches.

Figure 6.5 shows the phase delay ftd of the frequency points with variation

of the inner diameter of the inserted disks. The solid, dash-dotted and

dashed curves represent the periodic structures with the values of inner

diameter of inserted disks 0. 5, 1 and 2 inches, respectively. As shown in

Figure 6.5, the phase delay decreases with the increase of the inner diameter

of the inserted disks for such special cases.

The phase delay ft d versus to the frequency points with the variation of

the length of one period for the periodic structure is shown in Figure 6. 6. The

solid, dash-dotted and dashed curves represent the situations with the

length of one period 1, 2 and 4 inches, respectively. As shown in Figure 6. 6,

the phase delay increases with the increase of the length of one period for

such special case.
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6.7 Conclusion and discussion

In this chapter, by using 2D CMoL, dispersion characteristics have been

analyzed for a periodic acoustic waveguide. Good agreements have been

achieved between theoretical and experimental results in passbands PB-II,

PB-III and PB-V. For passbands in PB-I and PB-IV, there is difference

between the simulation results from 2D CM^oL and the measurement

results. Deviation appears in the transitional range from passband to

stopband between the phase lag from 2D CMoL and those from experimental

naeasureraents. Such deviation is near the frequency of the resonance where

instability occurs. It may come from the input and output places of the

periodic cylindrical waveguides. Different input and output structures

influence the width of the expected passband. Another reason is that there

are only four periods in the measurement structure; but we assume

sufficient number of periods in our theoretical analysis. Moreover, our

method is focused on passband, thus discrepancy may easily occur between

the theoretical and the experimental results in the transitional range

between the stopband and the passband.

In order to illustrate the variation of phase lag with the change of

geometrical parameters of the periodic structure, parametric analysis is also

performed. For such special case, we find that the phase delay decreases

with the increase of the inner diameter of the opening part of the disks, and

that the phase delay increases with the increase of the length of one period.

It should be noted that the thickness of disk has not been included in our

analysis. Accurate analysis need include the impact of the thickness of disk.
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Moreover, the theoretical data are valid on the assumption that there are lot

of periods. In experimental measurement, only four periods have been used,

due to the limitation of our resource. Furthermore, the phase lag obtained by

measurement including the discontinuity effect at the input and output

positions of the periodic acoustic structure while the theoretical method only

calculates the phase delay of four periods.
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CHAPTER 7

CONCLUSIONS

7. 1 Conclusions

In this thesis, a comprehensive numerical study of cylindrical cavities and

periodic disk-loaded cylindrical waveguide for both microwave and acoustic

applications have been presented by using 2D and 3D ]V[ethod of Lines

(MoL).

Procedures of the Method of Lines in cylindrical coordinates have been

described in detail. Microwave and acoustic cylindrical resonators have been

analyzed by using both 2D and 3D CMoL. Excellent agreements have been

achieved between theoretical results from CMoL and those from analytical

expressions.

As to periodic cylindrical structures, due to axial symmetry of the periodic

structure, and due to the axial symmetry of wave propagating, only 2D

CMoL has been used to analyze the dispersion characteristics of the periodic

disk-loaded waveguides. Here, the acoustic source is a plane wave coming

from a loudspeaker, and the electromagnetic source is TEM wave travelling

from a coaxial connector. The passbands for both microwave and acoustic

cases occur as expected. There is a slight difference between theoretical and

experimental phase lags. Such deviation partly arises from the nuinerical

error as implementing 2D CMOL to analyze the periodic structure. Another

conies from the impact of input and output discontinuity. Finally, nonaxial

modes may exist if the structures do not have strictly axial symmetry or if
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the source propagating causes the component of wave field depends on the

angular variable.

7.2 Reconunendations for future work

To continue the work in this thesis, firstly, the analysis of periodic disk-

loaded cylindrical waveguide structures in microwave engineering can be

extended to hybrid mode analysis by using 3D CMoL.

Secondly, in acoustic engineering, the cross-section of the structure may

not have axial symmetry. Under this circumstance, the discretization of the

9-variable is required. It is needed to implement 3D CMoL to analyze such

kind of periodic structures. More research is required in the optimization of

the disk position and the ratio of open versus closed part of the disk in order

to introduce a phase lag close to "n" without creating a large impedance

misniatch. The latter may reduce acoustic energy associated with low

frequency noise propagating through the waveguides.

Finally, the semi-analytical MoL can be utilized to analyze acoustic mode

existing in some piezoelectric substrates with a periodic grating.

These three topics are the recommended as the future work.
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APPENDDCA

MEASUREMENT RESULTS OF THE PERIODIC

ACOUSTIC STRUCTURE

The measurement results obtained from the FFT analyser SD-375 II in

Figure 6.2 are displayed in Figures A. l to A. 7.

Figures A. l and A. 2 show the existing phase lag (unit in degree) and the

relative sound level difference (expressed in decibels) between the noise at

microphones 1 and 2 in free-field condition, where the periodic disk-loaded

structure is not inserted.

The relative sound level and the phase difference between the microphones

with the periodic disk-loaded structure are illustrated in Figures A. 3, A.4

and A. 5, corresponding to the frequency from 0 to 3. 2 kHz, from 3. 2 to 6.4

kHz and from 6.4 to 9.6 kHz, respectively.

Experimental measurement for the whole frequency range from 0 to 12.8

kHz has also been performed. The relative phase difference and the sound

level with the periodic disk-loaded structure of the whole frequency range

are displayed in Figure A. 6 and A. 7, respectively.

These measurement results are compared with the numerical prediction by

using 2D CM:oL in Chapter Six.
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APPENDK B

EXPERIMENTAL ARRANGEMENT OF THE PERIODIC

ACOUSTIC STRUCTURE
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Random noise generator
B&K 1405

Graphic equalizer
Klark technick DN27A

2 channel microphone
power supply B&K 2610

j 2 channel FFT analyser
; spectral dynamics SD-375 II

Amplifier Mcintosh lOOw /'

Plotter HP 7470A

Figure B. 3 The laboratory instruments used for experiments
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