POLYPUBLIE e |

PO'YtGChnique Montréal D'INGENIERIE

Titre:
Title:

Auteur:
Author:

Date:
Type:

Référence:
Citation:

POLYTECHNIQUE

A [
UNIVERSITE o

Low-Rate False Alarm Anomaly-Based Intrusion Detection System
with One-Class SVM

Fatemeh Farnia

2017
Mémoire ou these / Dissertation or Thesis

Farnia, F. (2017). Low-Rate False Alarm Anomaly-Based Intrusion Detection
System with One-Class SVM [Mémoire de maitrise, Ecole Polytechnique de

Montréal]. PolyPublie. https://publications.polymtl.ca/2666/

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie: . S
PolyPublie URL: https://publications.polymtl.ca/2666/

Directeurs de
recherche: Samuel Bassetto

Programme:

Advisors:

Maltrise recherche en génie industriel
Program:

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca/
https://publications.polymtl.ca/2666/
https://publications.polymtl.ca/2666/

UNIVERSITE DE MONTREAL

LOW-RATE FALSE ALARM ANOMALY-BASED INTRUSION DETECTION SYSTEM
WITH ONE-CLASS SVM

FATEMEH FARNIA
DEPARTEMENT DE MATHEMATIQUES ET DE GENIE INDUSTRIEL
ECOLE POLYTECHNIQUE DE MONTREAL

MEMOIRE PRESENTE EN VUE DE L’OBTENTION
DU DIPLOME DE MAITRISE ES SCIENCES APPLIQUEES
(GENIE INDUSTRIEL)

JUILLET 2017

(© Fatemeh Farnia, 2017.

UNIVERSITE DE MONTREAL

ECOLE POLYTECHNIQUE DE MONTREAL

Ce mémoire intitulé :

LOW-RATE FALSE ALARM ANOMALY-BASED INTRUSION DETECTION SYSTEM
WITH ONE-CLASS SVM

présenté par : FARNIA Fatemeh

en vue de 'obtention du diplome de : Maitrise és sciences appliquées

a été diiment accepté par le jury d’examen constitué de :

M. LANGLOIS Pierre, Ph. D., président
M. BASSETTO Samuel, Doctorat, membre et directeur de recherche
M. BRAULT Jean-Jules, Ph. D., membre

DEDICATION

1ii

To my family,
To my best friends. . .

iv

ACKNOWLEDGEMENTS

First, I am highly thankful for the great guidance and encouragement of Dr. Samuel Bassetto
over the last two years. Thank you so much for believing in me. Your support was essential

for my success here.
I would like to thank Dr. Pierre Langlois and Dr. Jean-Jules Brault for serving as my jury.

Of course, I would like to thank the Groupe Access company which provide me with the
real data. Specially Dr. Alireza Sadighian and Dr. Saeed Sarencheh who helped me for this

thesis.

RESUME

La détection d’anomalie est une tache consistant a repérer au sein d’un groupe de mod-
eles ceux qui s’écartent de maniere significative du comportement attendu ou souhaité. Ces
modeles, non conformes, sont appelés anomalies ou données aberrantes. La détection des
anomalies comporte diverses applications, telles que la détection des fraudes, la vidéosurveil-
lance, les soins de santé et la détection des intrusions. Généralement, la détection d’anomalies
vise a modéliser une fonction d’aide a la décision de maniére a ce qu’elle puisse distinguer
I’écart, significatif ou non, entre 'anomalie détectée et le comportement classique attendu.
La détection des intrusions est maintenant un sujet d’intérét pour le domaine de la sécu-
rité informatique. Les intrusions (ou anomalies) sont des activités malveillantes permettant
de pénétrer un ou plusieurs systemes afin d’en retirer des informations confidentielles. Par
conséquent, nous pouvons utiliser des méthodes de détection d’anomalie pour détecter les in-
trusions. Afin de pouvoir distinguer les intrusions des comportements classiques ou attendus
(modeles non liés a I'attaque), différents systémes de détection d’intrusion ont été dévelop-
pés. Ces derniers sont divisés en deux catégories: (1) les systémes basés sur 'anomalie et (2)
les systemes basés sur la signature. Pour ce qui est des systemes basés sur la signature, les
modeles des anomalies sont connus, alors que pour ce qui est des systemes de détection basés
sur I'anomalie, les modeles d’intrusions peuvent étre nouveaux. Autrement dit, les systemes
de détection d’intrusions basés sur I’'anomalie peuvent détecter de nouvelles anomalies ou des
attaques. Cependant, ces systemes produisent un taux élevé de fausses alertes. Plus précisé-
ment, ces systemes classent par erreur les modeles de non-attaque comme des anomalies, ce
qui entraine un taux élevé de fausses alarmes. Diminuer ce taux est I'un des principaux défis

dans les systemes de détection d’intrusion basés sur 'anomalie.

Il existe plusieurs techniques pour diminuer le taux de fausses alarmes dans les systemes
de détection basés sur I'anomalie, telles que les méthodes de classification d’une classe. Le
taux de faux positif montre le taux d’observations de non-attaque qui sont classées comme
aberrantes et le taux de faux négatif représente la fraction des valeurs aberrantes qui sont
détectées comme des non-attaques. Un systéeme de détection d’intrusion idéal a un taux
de faux positif nul et un taux de faux négatif nul. Nous proposons d’utiliser un algorithme
nommé une machine de vecteur de support de classe unique (SVM a une classe) pour détecter
des anomalies, en diminuant le taux de fausses alarmes (faux positif) avec le méme taux de

vrai positif.

Le SVM d’une classe est un algorithme de classification d’une classe, a savoir une extension

vi

non supervisée de SVM qui construit un modele basé sur une classe nommée classe cible.
Toute observation qui ne se trouve pas dans cette classe s’appelle un horsain. En pratique,
cette technique construit une classe pour les observations de cible ou non et une autre classe
pour 'origine, et elle tente de trouver un classificateur approprié pour séparer les deux classes.
Cette technique vise a calculer un hyperplan qui maximise la distance entre les points de
formation et 1'origine. Cet hyperplan (fonction de décision) peut étre utilisé pour distinguer
les observations non vues en tant que horsains ou non-attaques. Sur la base de la définition
de cet algorithme, toute observation qui tombe sur le mauvais coté de cette frontiere est un
dépassement et les autres observations sont classées comme des non-attaques. De plus, cet
algorithme profite d’un parametre important appelé v, qui peut étre défini par I'utilisateur

pour déterminer la fraction des valeurs aberrantes et des vecteurs de support.

Pour évaluer la méthode proposée, nous utilisons un jeu de données réel capturé a partir
des journaux du serveur contenant des indicateurs de bas niveau, tels que la charge de la
CPU, T'utilisation du processeur, etc., pour détecter les activités d’intrusion réelle. Nous
comparons trois scénarios différents: une SVM de classe unique, une SVM de classe unique
avec une étape de réduction de fausses alarmes et une SVM de classe unique avec une étape
de réduction de fausses alarmes qui est formée sans valeurs aberrantes. Nous avons utilisé
un métrique appelé F-measure pour comparer ces trois scénarios. La mesure F est le moyen
harmonique entre précision et rappel. La précision montre la fraction des attaques vraies sur
le nombre total d’observations détectées comme attaques, et le rappel représente la fraction
des attaques réelles détectées. Sur la base des résultats expérimentaux, la SVM d’une classe
avec le scénario de réduction de la fausse alarme a atteint une valeur élevée de F-0,963. Plus
précisément, la valeur de la mesure F a augmenté de 34,4 par rapport a la SVM seule et de
52,2 par rapport a la SVM d’une seule classe avec la réduction de la fausse alarme qui est
formée sans valeurs aberrantes. Nous observons que le deuxieme scénario a permis de réduire

le nombre de fausses alarmes.

Nous comparons également nos scénarios avec trois algorithmes de classification d’une classe:
densité de Parzen, mélange d’estimation de densité de Gaussiens et description de données
k-means. Les résultats de la description des données k-means et du mélange de Gaussians
sont comparables a ceux de la SVM d’une classe avec I’étape de réduction des fausses alarmes,
alors que la méthode de densité de Parzen présentait une faible valeur de mesure F de 0, 341.
En outre, nous avons testé ces trois scénarios sur un ensemble de données réel (Knowledge
Discovery Data Mining 99), sous-tendant encore l'efficacité de la méthode de réduction des

fausses alarmes proposée.

vii

ABSTRACT

Anomaly detection is a task of detecting patterns that significantly deviate from an expected
behavior. These nonconforming patterns are referred to as anomalies or outliers. Anomaly
detection has various applications, such as fraud detection, video surveillance, health care
and intrusion detection. Generally, anomaly detection aims to find a decision function such
that it can distinguish deviation from the expected behavior. The detection of intrusions is
now a topic of great interest in the computer security field. Intrusions (or anomalies) are
malicious activities and can penetrate systems and obtain confidential information. Con-
sequently, we can use anomaly detection methods to detect intrusions. For this reason,
intrusion detection systems have been introduced to distinguish intrusions from expected
behavior (non-attack patterns). Intrusion detection systems are divided into two categories:
anomaly-based and signature-based systems. In signature-based systems, the patterns of the
anomalies are known, whereas in anomaly-based detection systems, these patterns can be
novel. Anomaly-based intrusion detection systems can detect novel anomalies or attacks, al-
though these systems produce a high false alarm rate. Specifically, these systems mistakenly
classify non-attack patterns as anomalies, which leads to a high false alarm rate. Decreasing

this rate is one of the main challenges in anomaly-based intrusion detection systems.

There are multiple techniques to decrease the false alarm rate in anomaly-based detection
systems, such as one-class classification methods. The false positive rate shows the rate of
non-attack observations that are classified as outliers, and the false negative rate depicts the
fraction of outliers that are detected as non-attacks. An ideal intrusion detection system has
zero false positive rate and zero false negative rate. We propose to use an algorithm named
one-class support vector machine (one-class SVM) to detect anomalies, decreasing the false

alarm (false positive) rate with the same false negative rate.

One-class SVM is a one-class classification algorithm, namely, an unsupervised extension of
SVMs that constructs a model based on one class named the target class. Any observation
that is not in this class is called an outlier. In practice, this technique builds one class for
target or non-attack observations and another class for the origin, and it attempts to find
a proper one-class classifier to separate the two classes. This technique aims to compute a
hyperplane that maximizes the distance between the training points and the origin. This
hyperplane (decision function) can be used for distinguishing the unseen observations as
outliers or non-attacks. Based on the definition of this algorithm, any observation that falls

on the wrong side of this frontier is an outlier, and the other observations are classified as

viii

non-attacks. Moreover, this algorithm takes advantage of an important parameter called v,

which can be defined by the user to determine the fraction of outliers and support vectors.

To evaluate the proposed method, we use a real dataset captured from server logs containing
low-level indicators, such as CPU load, CPU usage, and so forth, to detect real intrusion
activities. We compare three different scenarios: a one-class SVM alone, a one-class SVM
with the false alarm reduction step, and a one-class SVM with the false alarm reduction step
that is trained without outliers. We use a metric called F-measure to compare these three
scenarios. F-measure is the harmonic mean between precision and recall. Precision shows
the fraction of true attacks on the total number of observations that are detected as attacks,
and recall depicts the fraction of detected real attacks. Based on the experimental results,
one-class SVM with the false alarm reduction step scenario achieved a high F-measure value
of 0.963. Specifically, the F-measure value increased 34.4 percent compared to the one-class
SVM alone and 52.2 percent compared to the one-class SVM with the false alarm reduction
step that is trained without outliers. We observe that the second scenario achieved a lower

number of false alarms.

We also compare our scenarios with three one-class classification algorithms: Parzen density
estimation, mixture of Gaussians density estimation and k-means data description. The
results of the one-class SVM with the false alarm reduction step is comparable to those
of the k-means data description, whereas the Parzen density method presented the lowest
F-measure value of 0.341. Furthermore, we test these three scenarios on one real dataset
(Knowledge Discovery Data Mining 99), again underlying the efficiency of the proposed false

alarm reduction method.

Finally, we investigate the sample size and dimensionality behavior in one-class SVM with
respect to F-measure, training time and FP reduction time on six artificial normally dis-
tributed datasets. According to the experimental results, for the same sample sizes, when
the dimensionality increases, the F-measure value decreases. Moreover, by increasing the

sample size and dimensionality, the training time and FP reduction time also increase.

X

TABLE OF CONTENTS

DEDICATION iii
ACKNOWLEDGEMENTS . . . s s s s iv
RESUME v
ABSTRACT . . vii
TABLE OF CONTENTS s s . ix
LIST OF TABLES s s s xii
LIST OF FIGURES s s s . xiii
LIST OF SYMBOLS AND ABBREVIATIONS XV
LIST OF APPENDICES s s xvi
CHAPTER 1 INTRODUCTION . . . s s s, 1
1.1 Research methodology 2

1.2 Performance analysis 2
1.3 Data . . . o 5
1.4 One-class classification 6

1.5 One-class vs two-class classification 7

1.6 What is an anomaly?o 8
1.7 Proposed solution 8
1.8 Formal definition of terms 9

1.9 Objective of the research oL 9
1.10 Thesis outline s 9
CHAPTER 2 CRITICAL LITERATURE REVIEW 11
2.1 State of the art in one-class classification 11
2.2 State of the art of false alarm reduction 14
2.3 Intrusion Detection Systems oL 16
2.3.1 Challenges of anomaly detection 16

2.3.2 Types of Anomalies 17

2.3.3 Output of Anomaly Detection 18

2.4 Support Vector Machineo 18
24.1 Kernels 20
2.4.2 Kernel exampleo o 23

2.5 Ome-class SVM 24
2.5.1 Algorithm 26
2.5.2 Optimization 29
2.5.3 Parameters 32
CHAPTER 3 FALSE ALARM REDUCTION METHOD 38
3.1 Proposed false alarm reduction method 38
3.2 Adjusting Parameter T 39
3.3 Toy Example 41
3.4 Comparison with other methods 45
CHAPTER 4 TEST e e 46
4.1 Real Dataset 46
4.2 Data Preprocessing 47
4.3 Model Selection 51
4.4 Visualization Methods L o 52
4.4.1 ROC Graph 52
4.4.2 Confusion Matrix Plot 53

4.5 Empirical Result 54
4.5.1 Scenario 1 e 54
4.5.2 Scenario 2 56
4.5.3 Scenario 3 58
4.5.4 Comparison of the three scenarios 62

4.6 Empirical results on other algorithms 00 66
4.7 Empirical result on KDD99 dataset 67
4.8 Impact of the sample size 68
4.9 Discussion of empirical result 69
CHAPTER 5 CONCLUSION e 70
5.1 Advancement of knowledgeo 70
5.2 Limits and constraints 71
5.3 Recommendations 72

REFERENCES

APPENDICES

xi

Table 1.1
Table 2.1
Table 2.2
Table 3.1
Table 3.2
Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table A.1
Table A.2
Table A.3
Table B.1
Table C.1

LIST OF TABLES

Confusion matrix example .

Experimental results for different values of parameter v .
Experimental results for different values of parameter ~ .
Euclidean distances on toy example .

Performance of one-class SVM on toy example .

Average performance of one-class SVM in 10 different runs
Performance of one-class SVM in three scenarios .
Comparison of one-class classification methods .
Experimental results of two scenarios on the KDD99 dataset .
Experimental results for various sample sizes .
Observations .

Kernel matrix .

Optimization table .

Selected parameters of one-class SVM in 10 different runs (robust scaling) .

Selected parameters of one-class SVM in 10 different runs (Lasso) .

xii

36

36
44
45
52
63
67
68
68
77
78
81
84
85

Figure 1.1
Figure 1.2
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7

Figure 2.8

Figure 2.9
Figure 2.10
Figure 2.11
Figure 2.12
Figure 2.13
Figure 2.14
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11

xiii

LIST OF FIGURES

The ROC curve 5
One example of a one-class classifier 7
Gaussian modelo 12
One example of contextual anomaly 17

2D toy example of binary classification(Possible separating hyperplanes) 19

2D toy example of binary classification (Maximum Margin classifier) . 19
2D toy example of binary classification (Soft Margin) 20
2D toy example of binary classification(Non-linear classifier) 21

3D toy example of binary classification(Non-linear classifier in input
space but linear classifier in feature space) 21
One-class SVM hyperplane without the introduction of kernels (left),
and one-class SVM hyperplane with the introduction of kernels (right) 26

A 2D toy example showing one-class SVM hyperplane 28
Scatter plot of spherical 2D toy example 32
Spherical 2D toy example with v = 0.05 and four different v values . 33
Spherical 2D toy example with v = 0.2 and four different v values . . 34
Spherical 2D toy example with v = 0.5 and four different v values . . 35
Scatter plot of banana-shaped 2D toy example with polynomial kernel 37
ROC score versus parameter T° 42
Scatterplot 42
Scatterplot with decision boundary with one-class SVM 43
Scatterplot with decision boundary after reducing false alarms 45
The histogram plot of all the features in the train file 48
Line plot for all the features 49
Basic ROC graph showing two classifiers 53
Basic confusion matrix plot 54
Project structure of one-class SVM (scenario 1) 55
Scatterplot with decision boundary (scenario 1) 56
AUC versus parameter T' (scenario 2) 58
Project structure of one-class SVM (scenario 2) 58
Scatterplot with decision boundary (scenario 2) 59
Project structure of the one-class SVM (scenario 3) 60

AUC versus parameter T' (scenario 3) 61

Figure 4.12
Figure 4.13

Figure 4.14

Figure 4.15

Figure 4.16
Figure 4.17

Scatterplot with decision boundary (scenario 3)
Confusion matrix plot for one-class SVM using the data without out-
liers (scenario 1)
Confusion matrix plot for one-class SVM using the data without out-
liers (scenario 2)
Confusion matrix plot for one-class SVM using the data without out-
liers (scenario 3)
ROC graph for one-class SVM (all three scenarios)
ROC curves for various one-class classification algorithms and three

SCENATIOS .+« v v o o e e

xXiv

64

64

65
65

AUC
BN
FN
FP
KDD99
KKT
NN
PCA
RBF
ROC
SOM
SMO
SRM
SV
SVDD
SVM
TN
TP

LIST OF SYMBOLS AND ABBREVIATIONS

Area Under the ROC Curve
Bayesian Network

False Negative

False Positive

Knowledge Discovery Data mining 99
Karush-Kuhn-Tucker

Neural Network

Principle Component Analysis
Radial Basis Function

Receiver Operating Characteristics
Self Organizing Map

Sequential Minimal Optimization
Structural Risk Minimization
Support Vectors

Support Vector Data Description
Support Vector Machine

True Negative

True Positive

XV

xvi

LIST OF APPENDICES

ANNEX A NUMERICAL EXAMPLE 77
ANNEX B EMPIRICAL RESULT OF ROBUST SCALING 83

ANNEX C EMPIRICAL RESULT OF LASSO REGRESSION AS FEATURE SE-
LECTION METHOD, 84

CHAPTER 1 INTRODUCTION

IBM recently conducted research on the cost of data breaches of 383 companies (Ponemon
and IBM, 2016), finding that the average cost of one breach increased from 3.79 to 4 million
dollars between 2015 and 2016. This cost increase is due to the change in the average cost
for each stolen record in these companies. In fact, each stolen record cost has increased
from $154 to $158 between these years. Data breaches occur when there is an attack on or
an intrusion into the systems, and they produce extra work for the network. Researchers
introduced the idea of intrusion detection systems with the ability to distinguish attacks from
non-attack observations to secure systems from intruders. Hence, detection systems tend to

minimize the increase of extra work as well as detecting deviations and anomaly patterns.

One main type of intrusion detection system is anomaly based, which aims to distinguish novel
anomalies from non-attack patterns. However, current anomaly-based intrusion detection
systems suffer from a high false alarm rate. According to a report by Damballa & Ponemon,
who surveyed 630 I'T departments, the average annual cost of addressing alarms is 1.27 million
dollars (Ponemon and Damballa, 2015). In IT departments, experts spend time evaluating
all the alarms detected by intrusion detection systems, although most of these alarms are not
true intrusions. Clearly, by decreasing the false alarm rate, we will consequently decrease the
undesired costs of addressing false alarms. Therefore, we propose a method to be used as an

effective way to decrease this rate in the provided data.

The general question under consideration in this thesis is how to construct a single anomaly-
based intrusion detection system that can detect novel anomalous behavior and decrease the
rate of false alarms. Specifically, is it possible to use detected outliers for decreasing this

rate.

1.1 Research methodology

Anomaly-based intrusion detection systems can detect novel attacks, but they produce a high
false alarm rate. Considering this challenge of current anomaly-based intrusion detection
systems, we investigate the idea of reducing false alarms in this research. In the literature
review, it is possible to observe that the research in this domain is ongoing. For instance,
Landress (2016) recently utilized a combination of machine learning techniques to decrease
the false alarm rate. In addition, Xiao and Li (2008) took advantage of an outlier detection
algorithm for this purpose. However, in most cases, the anomaly detection problem has been
addressed using algorithms that are designed for one-class classification problems, such as
one-class SVM, support vector data description (SVDD) and k-means. We select one-class
SVM for detecting anomalies, and we also used this algorithm for the problem of high false
alarm rates. In greater detail, we propose a false alarm reduction step based on outliers and

support vectors (SVs) detected by this algorithm.

We compare our model with two scenarios to show that the proposed method can achieve
better performance than these scenarios. Specifically, the proposed method is compared to
a one-class SVM without the false alarm reduction step and to a one-class SVM trained
based on training points without outliers. Moreover, we investigate the accuracy of other
one-class classification methods, such as Parzen density estimation, mixture of Gaussians and
k-means data description, on the given data. All the details regarding the indicators to test

our proposed method are provided in the next section.

We also test our model on one toy example described in chapter 3 and on the KDD99 dataset

explained in chapter 4.

1.2 Performance analysis

This section starts by introducing eight evaluation metrics: true positive, false positive, false
negative, true negative, precision, recall, receiver operating characteristic (ROC) score, and

F-measure. Next, we provide one example to better illustrate these metrics.

Terms including true positive (TP), true negative (TN), false positive (FP) and false negative
(FN), as well as their combinations, are popular approaches for denoting the performance
of classification techniques. If a true and predicted class of the observation is positive, then
it is called a TP. If a negative instance is classified as positive, then it is named a FP. If a
negative observation is classified as negative, then it is counted as a TN. Finally, if a positive

value is classified as negative, then it is called a FN.

In the anomaly detection domain, FP shows the false alarm rate, and FN shows the attacks
that are not detected by the anomaly detection system. Consequently, TP shows the rate
of detecting attacks, and TN shows the rate of accepted non-attack observations (Mokarian
et al., 2013).

Recall, also known as sensitivity or TP rate, describes the detected percentage of positive
instances, as shown in equation 1.1. If the recall value is equal to one, it means that the

algorithm detected all the positive, or attack, instances (Ting, 2011).

P (1.1)
recavl = TP+FN .

Precision depicts how successful the algorithm is in detecting real positive observations, as
shown in equation 1.2. Specifically, by using precision, it is possible to calculate the extent to
which the positive values are actually TPs. A lower FP rate clearly corresponds to a higher

precision value (Ting, 2011).

TP

—_— 1.2
TP+ FP (1.2)

precision =

F-measure is also a method for model evaluation that calculates the weighted harmonic
mean of recall and precision, as presented in equation 1.3. In greater detail, F-measure is a
compromise between precision and recall. If the value is close to one, it indicates that the
classifier is proper to use, whereas if the F-measure value is close to zero, it means that the
classifier has failed in detecting the outliers, detecting non-attack observations or both. In
addition, the value of F-measure is high whenever precision and recall are high. In other

words, if the rate of FN or FP decreases, then the F-measure rate increases.

2
F— = 1.3
measire 1/precision + 1/recall (1)

ROC score or area under the ROC curve (AUC) is a scalar value that shows the performance
of a classifier (Fawcett, 2006). In fact, this value shows the area under the ROC curve. AUC
is a portion of a unit square that has a value between 0 and 1, and it is possible to compute

the AUC using the following equation:

raeys | (1= a)(1+)

AUC = 5 5

where 9, yo are equal to (F Prate, T Prate). Note that this equation is for discrete classifiers

where we only have one value of FP rate versus one value of TP rate.

The ROC curve is a 2D plot that shows the TP rate on the Y axis versus the FP rate on
the X axis, and they are plotted in a unit square called ROC space (cf. Figure 1.1). TP
rate is the fraction of TPs among the total number of positive examples, and FP rate is the
fraction of FPs among the total number of negative examples. This curve is used to show
the performance of a binary or one-class classifier. One example of this graph is presented at
the end of this section; however, more details about the ROC graph are discussed in section
4.4.1.

Now, suppose that we trained a one-class classifier and that we calculated its confusion
matrix, as shown in Table 1.1. In the confusion matrix, the non-diagonal values of the
matrix depict the misclassified observations, and the diagonal values represent the number

of instances that are correctly classified.

Table 1.1 Confusion matrix example

Assigned label True class ‘
Attack Non-attack
Attack 8 2
Non-attack 4 20

According to table 1.1, we can compute recall (TP rate), precision, F-measure and FP rate

as follows:

_ TP _ 8 _
recall = TPiFN — 543 = 0.8

‘o TP 8 _
precision = zprrp = o7 = 0.667

_ 2 _ 2 _
I —measure = 1/precision+1/recall ~ 1.25+1.499 ~— 0.728

FP rate = £F = -1 = 0.167

Figure 1.1 shows the ROC curve for this classifier. The pair (FP rate, TP rate) are illustrated
by point (0.167,0.8), and we can plot the ROC curve. Moreover, the yellow part depicts the
area under this ROC curve, and we can use the point x5, y, = (0.167,0.8) to calculate one
single value for this curve. Thus, we can compare different classifiers based on this single
value, i.e., based on the AUC. Note that this classifier is discrete; thus, we only have three
points for each curve. Based on these values, we can compute the AUC value for this

numerical example as follows:

AUC = 22 4 (o)) (016T:08) | 0883618 — () 0668 4 0,749 = 0.816

1.0

0.167,0.8)

True Positive Rate

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 1.1 The ROC curve

1.3 Data

In this thesis, the inputs, observations, patterns, examples and instances are described as
vectors of d dimensions, x; = (z; 1, ..., ¥; 4), where x;eX is a non-empty set and XeR". Here,
the boldface letters indicate a one d-dimensional vector. Each of these inputs is assigned a
label shown by y;e{—1,1} as outputs. Moreover, the number of components of each vector

depicts the number of features since each observation has some characteristics.

The provided real data consist of rows depicting examples and columns showing features.
These features are low-level indicators captured from server log files, such as CPU usage,
CPU load and so forth. These data are in two files: one containing non-attack observations
and one capturing non-attack and attack observations. These two datasets are provided by
the Groupe Access company, and they were captured from server log files. We have started a
project with the title of "A machine learning method for anomaly-based intrusion detection
system". We aimed to construct a system that can detect attacks with the contribution of
reducing the false alarm rate. Thus, the main perspective of this research is on reducing
this rate based on one-class SVM algorithm. Groupe Access was founded in 1993, and it
provides information technology and hardware services, such as data protection and recovery,
infrastructure core network design and management, and monitoring and customizing private,

public, and hybrid clouds.

We combined these two datasets into a single dataset, leading to a dataset with a large

sample size (number of observations) of non-attack observations and a small sample size of
attack observations. Whenever there are no examples of one of the classes or there are few
examples of them, the use of one-class classification methods is suggested (Tax, 2001). Hence,
our problem is a one-class classification, and we want to find a one-class classifier that can
separate these non-attack observations from attack patterns with minimum error. A one-
class classifier or frontier is a decision function that decides the label of each observation.

Note that a good one-class classifier is one with a small fraction in both FN and FP rates.

Note that in the domain of anomaly detection, a label of 1 indicates attack observations and
a label of -1 depicts non-attack instances. Although the meanings of the labels are opposite
in one-class classification, we can still use this algorithm for the anomaly detection problem.
However, we have to reverse all the class labels to be consistent with the anomaly detection

domain and to have a meaningful value for the performance metrics presented in section 1.2.

1.4 One-class classification

In binary classification, we have examples of two classes, and we want to separate them from
each other using a classifier. However, in one-class classification, only the instances of one
class are well sampled (Tax, 2001). In fact, the observations of another class called outlier are
either absent or are not a good representative of its underlying distribution. Consequently,
we need to find a description for this one class called the target class. Moreover, the classifier
should be established such that only the target instances are accepted, and all the test
observations belonging to the outlier class should be rejected. In greater detail, in solving
one-class classification problems, it is assumed that the target class is sampled well and
that the other class is not sampled well or does not exist. For example, in the fault detection
domain, the information about the system being in a normal state is easily provided, whereas
creating the faulty situations are quite costly or even impossible. In these types of examples,

the target class is well sampled, but the outlier class could be anything.

For solving one-class classification problems, we want to minimize two errors, i.e., FN and
FP. We define the number of FNs as type I error €; and the number of FPs as type II error
err (we use these terms interchangeably). Thus, the classifier should be calculated such that
it minimizes both ¢; and e;;. Note that if there is no example of the outlier class, then
minimizing the FN rate leads to a classifier that labels all the observations in the training
set as targets. Therefore, we need to use patterns of the non-target class to find the best
trade-off between minimizing these two errors. Non-target observations are the patterns that
we know should be rejected by the one-class classifier. The existence of these patterns can be

used to find a tighter boundary that can generalize better. Consequently, these observations

should fall outside the one-class classifier known as the outlier class (Tax, 2001).

1.5 One-class vs two-class classification

In two-class or binary classification, the classifier is supported from both sides, whereas in one-
class classification, the classifier is supported only from one side. Additionally, in two-class
classification, the objective is to find a smooth classifier. However, in one-class classification,
not only do we look for a smooth classifier but we also look for a closed boundary around
the data, i.e., a boundary in all directions of the data. Thus, the problem of one-class
classification is more difficult than two-class classification, and this problem requires more
data points to specify the boundary around the data (Tax, 2001; Khan and Madden, 2014).

The challenges of the conventional classification problems, such as estimating the classifi-
cation error, the curse of dimensionality, measuring the complexity of the classifier, and
generalizing the calculated model, become more prominent in one-class classification prob-

lems.

One example of a one-class classifier is presented in figure 1.2. The red line shows one possible
binary classifier, and the green circle is one possible one-class classifier. Any point that falls
inside this green line is a target pattern, and any point that falls outside this green line is

considered to be an outlier or non-target pattern.

T
eee Class 1
7L e®e Class 2|/
One-class classifier

6 L] |

S af] |
sl Qutliers |
21 l B

Binary classifier
1+ 4
0 L
o] 1 2 3 4 5 6 7 8

Figure 1.2 One example of a one-class classifier

1.6 What is an anomaly?

Anomalies or outliers are observations in the data that do not conform with the expected
behavior. Figure 1.2 shows a simple example of anomalies in red points in 2D dataset. In
fact, there is one safe area (green circle) in this figure and any point that falls outside this
safe area is considered as anomaly. In this figure, we can visually detect the outliers since
they are not located in this safe area. However, there are cases where it is not visually
possible to detect and we need machines to detect them. Besides, in general, outliers have

low probability of occurrence.

1.7 Proposed solution

There are multiple ways to construct anomaly-based intrusion detection systems, such as
using machine learning techniques and data-mining-based approaches. The choice of a proper
algorithm for these types of problems highly depends on the data. As explained in section
1.3, we have a small sample size (number of training observations) of attack examples and
a large sample size of non-attack patterns to train our model; thus, we face a one-class
classification problem. Several methods are available to solve these types of problems, such as
density estimation, boundary estimation and reconstruction techniques, which are discussed

in greater detail in section 2.1.

In this thesis, we use a boundary algorithm known as one-class SVM to detect anomalies and
simultaneously decrease the false alarm rate. One-class SVM is an algorithm for estimating a
function that can be used to detect attack patterns. Moreover, in this algorithm, the fraction
of detected anomalies or outliers can be defined by the user. There is ongoing, state-of-the-
art research using this algorithm in anomaly-based intrusion detection, either by combining
this technique with other machine learning techniques such as deep learning (M.Erfani et al.,
2016) or by enhancing the algorithm itself (Yin et al., 2014). These articles suggest that this
is a promising method for detecting anomalies. Based on the advantages of this algorithm
and the provided data characteristics, we propose using this algorithm to detect anomalies

and also using these anomalies and SVs to reduce the FP rate.

Again, as explained in section 1.3, only a few attack examples are provided for training.
Therefore, this is a one-class classification problem, and we can solve these types of problems

with algorithms such as one-class SVM.

1.8 Formal definition of terms

As Scholkopf and Smola explained in their book (Schélkopf and Smola, 2002), outliers are
data instances that fall on the wrong side of the hyperplane. Note that when using one-class
classification algorithms such as one-class SVM in the anomaly detection domain, the terms
anomalies and attacks are the same as outliers. Thus, we can conclude that all of these terms
are the observations that lie on the wrong side of the hyperplane. Moreover, if we have some
observations with the attack label, we can use them in model selection. Attack examples
should be rejected by the trained one-class classifier (Tax, 2001). Moreover, non-attack
observations are the patterns that fall inside the decision boundary. Therefore, non-attack
observations are members of the target class, and attack observations are members of the
outlier class. One-class SVM can calculate a hyperplane named decision function, one-class
classifier or frontier that can separate target instances from outlier patterns. Hence, if one
observation falls on the correct side of the classifier, then it is classified as a non-attack or

target, and if it is rejected by the frontier, then it is classified as an attack or non-target.

1.9 Objective of the research

This research has one main objective: reducing the false alarm rate in anomaly-based in-
trusion detection systems. There is a contribution of using SVs and outliers based on the

one-class SVM algorithm to decrease this rate.

1.10 Thesis outline

This thesis is organized as follows:

e In the second chapter, the state of the art in one-class classification and false alarm
reduction are introduced. Moreover, brief explanations of intrusion detection systems,
SVM and one-class SVM are presented.

e The third chapter discusses the proposed false alarm reduction technique.

e The fourth chapter starts with the data description, data pretreatment and continues
with the implementation of one-class SVM in three different scenarios and comparing
them. Then, a section is presented that discusses the experimental result based on
three one-class classification algorithms. Next, there is a summary of the result of
the proposed method on the KDD99 dataset. Finally, the impacts of sample size and

dimensionality are discussed.

10

e The final chapter presents the conclusions, limitations and future work for this research.

11

CHAPTER 2 CRITICAL LITERATURE REVIEW

This chapter begins with the state of the art in false alarm reduction, followed by a description

of intrusion detection systems, SVM and one-class SVM.

2.1 State of the art in one-class classification

In general, one-class classification methods can be categorized based on three important
aspects: the availability of the training examples, the algorithms and the domain in which

they have been applied.

a) Availability of training examples is divided to two parts: target examples and unlabeled
data are available, target examples and some undersampled non-target observations or arti-

ficial outliers are available.

Note that in one-class classification problems, labeled data are difficult to capture, whereas
unlabeled data are readily available (Khan and Madden, 2014).

One-class SVM and SVDD use both target and outlier examples to train their models. Tax
(2001) used artificial outliers to find an enclosed boundary that encompasses all the positive
examples as the members of the target class. He proposed an algorithm called SVDD that
aims to calculate a closed boundary around a target data set, i.e., a hypersphere. The sphere
is shown by its center a and radius R, and it wants to locate all the training patterns located
in the sphere. Specifically, it aims to calculate a hypersphere function with minimum volume
around the target class. Similar to all algorithms based on SVs, this algorithm uses slack
variables to have a more flexible classifier. Hence, we want to minimize the volume of the
hypersphere (R?) and the sum of the distances to the & from the objects z;, leading to the

following minimization problem:

€(R,a,§) = R*+C>_¢&, (2.1)
with the following constraints:

l2; — al| < R* 4+ &¢& > 0. (2.2)

It is possible to monitor the tradeoff between errors and the volume of the decision boundary

through a user-defined parameter C'.

12

b) The one-class classification algorithms are divided to three categories: Density, boundary

and Reconstruction methods.

The most straightforward solutions are density algorithms, such as Gaussian models, mizture
of Gaussians (MoG) and Parzen density, with making the assumption of a Gaussian-like
distribution. Since these algorithms compute a complete description of the training points,
they require a large number of such points. Therefore, these algorithms are a good choice
when the sample size is sufficient and when the assumed distribution is correct. Figure 2.1
presents an example of a Gaussian model, where the yellow areas show the region in which

the non-target observations should fall.

x 107"

target region

MNon-target region

D 1 1
-2000 -1000 a 1000 2000 3000 4000

Figure 2.1 Gaussian model

Making the assumption of the Gaussian model requires that the data should be unimodal
and convex. This strong imposition leads to strong assumptions, and in most cases, the
data do not follow this distribution (Tax, 2001). Consequently, a more flexible version was
introduced, known as MoG (Duda et al., 1973). This model requires more training patterns
compared to Gaussian models since it is linear combinations of individual Gaussian models,
as shown in equation 2.3. In fact, we assume that each feature has a unique Gaussian model.

Furthermore, more data are needed for this method compared to a single Gaussian model.

> a;Py(x; p, Z (2.3)

J

pMoG
NMOG’

In equation 2.3, Nysoq stands for the number of Gaussians, and «; are the mixing coefficients.

pj and >, are the mean and covariance for the jth Gaussian. These values can be measured

13

using the expectation maximization algorithm (Bishop, 1995). Parzen density estimation is
an extension of MoG, and they are a mixture of Gaussians and other kernels centered on
each of the training points (Parzen, 1962). This estimator assumes an equal value for all the

coefficients; thus, it has sensitivity to scaling of the data.

pp(X) = ;ZPN(O«"; i, hI) (2.4)

where h stands for the width of the kernel, and it is optimized through the maximum likeli-
hood. In fact, h is the only parameter that should be optimized; therefore, the computation
time for this algorithm is almost zero. Moreover, the covariance matrix is shown by Y, = hl

in equation 2.4.

In boundary methods, we want to estimate a closed boundary around the data points, i.e.,
a decision boundary. Since we only look for this boundary, the number of training examples
required for training the model is less than that for density methods (Tax, 2001). Note that
boundary techniques are sensitive to the scaling of features since they use distances to define
the boundary. Algorithms such as k-centers, one-class SVM and SVDD are in this category.
k-centers employs k small balls around the training patterns with the same radius value, and
the centers of the balls are on the training patterns (Ypma and Duin, 1998). This algorithm

aims to optimize the radius and centers to have all these patterns in the ball.

Reconstruction methods use the information provided in the data and then assumes one
generation process for it. k-means is a construction method that assumes that the data are

clustered and can be demonstrated by some clusters (Bishop, 1995).

c¢) the application domains of one-class classification algorithms are divided to two categories,

anomaly detection and other applications.

Anomaly detection is one of the main applications where the algorithms to solve one-class

classifications problems are used.

Li et al. (2003) presented an improved version of the algorithm proposed by Schélkopf et al.
(2001) for the purpose of anomaly detection. They proposed considering all the observations
close to the origin as outliers. In this case, the origin will not be considered as the only

member of the second class as in the Scholkopf et al. (2001) algorithm.

Zhang et al. (2015) adopted a one-class SVM for training an anomaly detection system. They
focused on the unavailability of the attack patterns in a network-based intrusion detection
system. Moreover, they compared their proposed method with NN and C-SVM, finding that

the one-class SVM technique has comparable performance in terms of F-measure, recall and

14

precision.

Other applications include handwritten detection (Scholkopf et al., 2001), (Tax, 2001); ma-
chine fault detection (Shin et al., 2005) ,(hassan et al., 2015); bioinformatics (Yousef et al.,

2008); and text classification, among others.

2.2 State of the art of false alarm reduction

False alarm reduction is divided into two categories: approaches that reduce this rate in the
detection phase, and alert processing techniques, which identify the patterns of false alarms
after the detection phase. In this thesis, we aim to decrease the false alarm rate at the

detection phase, so the focus here is on the articles which are related to similar issues.

Xiao and Li (2008) took advantage of frequent pattern-based outlier detection to reduce the
false alarm rate. Moreover, they used weights for the data features in order to control the
effect of these features on the reduction of false alarms. Precisely, these weights, or scores,
demonstrate the abnormality of false alarms. Higher scores were given when the instances
have a more frequent pattern. The main advantage of their technique is that it is an online
method, and can learn from new false alarms and report the scores to the intrusion detection
expert. They tested their method on two different data sets consisting of different types of

alerts, and found a reduction in false alarms for two of them.

Om and Kundu (2012) combined the k-means and k-nearest neighbors and the naive Bayes
classifier in order to build an anomaly detection system and reduce the false alarm rate. The
proposed method makes use of a feature selection algorithm to discover the principal features
and eliminate the irrelevant ones from the given data. In addition, it can also detect the type
of intrusion. The k-means algorithm was employed to separate the data into normal and
anomaly clusters, while the K-nearest neighbors algorithm and naive Bayes classifier play
the training model role, based on the labeled observations. They suggested that through this
combination of clustering and classification, it is possible to reduce the false alarm rate of

the intrusion detection system.

Juma et al. (2014) suggested combining X-mean clustering and a random forest classifier to
tackle anomaly detection and minimize the false-alarm rate. In the first step, the anomaly
and normal observations are divided into two clusters via the X-mean clustering algorithm.
Then, these labeled observations are re-classified into the proper classes by the random forest
method. Through this combination they achieved a decrease in the false alarm rate, with

high detection rate.

15

Narsingyani and Kale (2015) used a Genetic Algorithm for an anomaly-based intrusion de-
tection system in order to reduce the rate of false alarms. First, a set of classification rules is
created, and then, based on these rules, a new unseen observation is classified to its proper
class. With this technique they achieved a lower false alarm rate using Knowledge Discovery
and Data Mining Cup 99(KDD99) database. This database consists of normal and attack

observations, where the attacks demonstrate multiple types.

Landress (2016) employed several machine learning techniques to decrease the false alarm
rate. The method begins with feature selection using decision tree, continues with unsu-
pervised K-means for clustering the data into different categories, and finally reduces false
alarms using Self Organizing Map(SOM). SOM maps the feature space to a two-dimensional
topological map to find neighbors in the grid. They used K-means in an unsupervised set-
ting, demonstrating a substantial reduction of false alarms with this combination of machine
learning techniques. They tested their method on KDD99 dataset. In average, they achieved

96.8 percent accuracy for three clusters.

Li et al. (2016) looked at the problem of false alarms using a multiple-view method, looking
at the data in both source and destination feature sets. They introduced a semi-supervised
method to solve the anomaly detection problem and simultaneously reduce false alarm rate
of network-based intrusion detection systems. Specifically, they divided the data into two
views, the destination feature set and source feature set. Comparing their method with
several similar methods, they found that their approach results in greatly reducing the false

alarm rate.

Goeschel (2016) proposed a false alarm reduction method based on SVM, naive Bayes clas-
sifier and decision tree. Their approach is consisted of three steps in order to achieve low
false alarm rate in detecting novel attacks. At the first step, SVM makes decision whether
an observation is normal or attack, based on the new attribute added to the dataset. At the
second step, each attack observation is checked by decision tree algorithm to verify whether
they are novel or not. At the third step, the type of the attack is determined through a voting
procedure by decision tree and naive Bayes. They proved their hybrid model decreases the
false alarm rate (1.57 percent) without any impact on the detection based on the KDD99

dataset.

Some of these aforementioned techniques may have one or more main drawbacks, including
human dependency, large computation time and the need for using attack patterns to build
the model. Human dependency is when there is a need for human interaction in the detection
phase. For instance, Xiao and Li (2008) use little human interactions for their method. large

computation time is due to high number of features. The need for using attack patterns to

16

build the model is a shortage in the case of not knowing their pattern in the training phase.

2.3 Intrusion Detection Systems

Intrusions are malicious activities that invade security systems. Intrusion detection is used
to identify intrusions in a system. The main assumption in this context is that the intrusion
results an abnormal system behavior (such as higher CPU load, higher memory usage and
increase in fan speed). Hence, the intrusion pattern is entirely different from the pattern of
non-attack instances. The recent increase in new types of intrusive attacks has necessitated
the need to build intrusion detection systems based on machine learning methods. Such
machine learning methods are able to devote broad attention to detect malicious behavior

(Omar et al., 2013), and they are used in many intrusion detection systems.

From the information source’s point of view, intrusion detection systems are categorized into
two sections, host-based and network-based systems (Devarakonda et al., 2012). Host-based
intrusion detection systems gather data from system logs and audit records, whereas network-
based intrusion detection systems collect data from internet packets (Anderson, 1980). An-
other categorization of intrusion detection systems from the detection point of view is misuse
detection and anomaly detection. Misuse, or signature-based, detection has the ability to
detect known intrusions with a low rate of false alarms. This form of intrusion detection
systems is used when the types of the attacks are known. However, misuse detection fails
to detect novel intrusions (Mukkamala et al., 2002), which can be detected by anomaly de-
tection systems. Anomaly detection has many disadvantages, such as complexity and a high
false alarm rate. Anomalies or outliers are patterns that are different from expected behav-
ior. There are numerous reasons for anomalies, such as credit card fraud, cyber-intrusion,

breakdown of a system, military surveillance, etc.

In the field of the anomaly detection, several crucial aspects of anomalies have been identified,
including the challenges of anomaly detection, types of anomalies, and the output of anomaly

detection. These are described in the following sections.

2.3.1 Challenges of anomaly detection

There are three main types of challenges involved with anomaly detection (Chandola et al.,
2009). First, anomalies can take various patterns in different domains. Patterns are regulari-
ties in the data (Bishop, 2006). For instance, in the medical domain the significant difference
between anomalous and normal patterns can be small, whereas in industrial domain they can

be extremely large. Second, the anomalies may change over time, which demands the updat-

17

ing of anomaly-based intrusion detection system in order to achieve consistent performance.
Third, in several cases, distinguishing between patterns of normal and abnormal behavior is

not possible, since they may have the same overall pattern.

2.3.2 Types of Anomalies

In this section, we only discuss two types of anomalies, as follows (Chandola et al., 2009):

Point anomalies are the simplest and most common type of anomalies found in anomaly
detection processes. If an independent point can be identified as an anomaly compared to
the normal data points, it is called a point anomaly. In the domain of intrusion detection,

we encounter point anomalies. Figure 1.2 shows one example of this type of anomaly.

Contextual anomalies are instances that are anomalous in a specific context but not con-
sidered anomalies in other contexts. Each data instance can be defined using Contextual
attribute and Behavioral attribute. A contextual attribute defines the context of the in-
stances, and a behavioral attribute depicts the non-contextual aspects of the instances. This
kind of anomaly is frequently found in time-series and spatial data. Figure 2.2 depicts one
contextual anomaly in a precipitation time series data. As you can see in time T2 there is
an anomaly. A behavior that is not expected at this time, however, this behavior in time T1

is expected. Hence, this behavior is tolerated in T1 and it is an anomaly in time T2.

120

110

100

[0

Value

S0

70

50
Jan Mmarch May July Sept Nowv Jan March May July

Time

Figure 2.2 One example of contextual anomaly

18

2.3.3 Output of Anomaly Detection

The output of anomaly detection can be presented in two different manners: scores and labels
(Chandola et al., 2009). The score technique allocates a weight to each data observation,
depending on the degree to which it is considered anomalous. Labels are categories assigned
to observations, either normal or anomalous. Labels typically take the form of binary classes

(anomaly or normal).

2.4 Support Vector Machine

SVM was designed by (Vapnik, 1998) and based on Structural Risk Minimization(SRM),
which orders machine learning techniques according to their complexity (Vapnik and Sterin,
1977). SVM converts data to higher-dimensional space via non-linear mapping, in order to
compute the optimal separating hyperplane as the proper decision boundary. In short, SVMs
can be used for binary or multi-class classification tasks to discover the decision boundary
between classes. The SVM algorithm is based on four important concepts: separating hy-

perplanes, the maximum margin classifier, the soft margin and the kernel function (Noble,

2006).

The separating line is the line that separates the 2D area into two different sub-areas, whereas
the separating hyperplane is a plane that separates the 3D space into two. If we can find one
separating line or hyperplane between two classes, then we can find many more of them, as
shown in figure 2.3. In this figure, the orange and navy points are the examples of two different
classes, and the dashed green lines are three possible separating lines that can separate these
classes. Among these possible classifiers, there is only one unique maxzimum margin classifier,
which has a maximum distance to the observations. Considering the distance of each point
to the various separating hyperplanes in the space called a margin, the principal aim of
this metric is to choose the hyperplane with the maximum margin. Figure 2.4 shows the
maximum margin classifier by a solid green line. The points that are pointed out by red
circles are SVs, i.e. the points that are located exactly on the margin (Scholkopf and Smola,

2002). More profound explanation of these observations is provided in section 2.5.

In most cases, it is impossible to find a line that can cleanly separate the data into classes,
so a soft margin is introduced. The soft margin allows some points to violate the selected
hyperplane. In fact, the word soft is chosen for these margins since they are flexible and allow
some training points to be located on the wrong side of the hyperplane or on the margin, as
illustrated in figure 2.5. Obviously, it would be unbearable to let plenty of mis-classifications

in this method. Therefore, the soft margin uses a parameter called C' to control how many

8 T T~ T T T T T T
\\\ \\\ . eooe Classl
7L o . : e®e Class2
e s 1 o| — - Separating lines
sl © R i "
~ ~]
- ~ \\ ' [o]
5| ~ - \\ : e
® ~ \'~
e - el)
2 4r S] s o
RN ! s o
~ " ~
3 | - \\ 1 ~ -
~ 1 ~
L) S ~ o
2 - \'\ \\
- o~ ~
] - S
1l ! S S
1 ~ \\
- L] ~ ~
(o] | 1 | |] | 'l |
(o] 1 2 3 4 5 (53 7
x1
Figure 2.3 2D toy example of binary classification(Possible separating hyperplanes)

Figure 2.4 2D toy example of binary classification (Maximum Margin classifier)

eoo
eoe

Class1l
Class2
Support WVectors

19

mis-classifications are allowed and how far from the hyperplane they are permitted to be. C

is a variable which depicts the rate of mis-classifications or the percentage of violation, and

can be determined through cross-validation. If this tuning parameter has a large value, the

20

size of the margin is large and vice-versa.

8 . . .
- N eoe Classl
N
4 N > e®e Class2 4
N
~ . o | OO0 Support Vectors
- ~
&l N i
N
N
~
.
5L 4
&2 ar 1
3 ,
-
2L ,
- ~.
~
1k S A
“
-
o
o 1 B8

Figure 2.5 2D toy example of binary classification (Soft Margin)

Finding a linear separator for data in low-dimensional space can sometimes be an impossible
task. Figure 2.6 shows another toy example of binary classification where there is no way to
find a linear classifier for separating two classes. Hence, the projection technique on a higher
dimension is employed. In this projection, a hyperplane is found and then projected back in
the initial state as shown in figure 2.7. In this figure, it is possible to observe that by adding

one dimension to inputs, we can separate two classes by a hyperplane.

Again, observations are presented in vectors, and the main idea behind SVM is to classify non-
linear problems using the similarity between vectors. One of the simplest ways to calculate
the similarity between two vectors is the dot product or inner product. Note that in most
cases calculating dot product between two vectors in higher dimensions is computationally
intensive. For this reason, kernels are introduced to be able to calculate the similarity of
two vectors without explicitly computing potentially infinite-dimensions. Generally, there

are many kernels such as RBF, polynomial, linear and hyperbolic tangent.

2.4.1 Kernels

Kernels are employed to demonstrate the similarities between two observations in higher

dimensions (Hastie et al., 2013). Note that any machine learning algorithm that can be

21

8 . : : : ; : ;
eoeoe Classl
7L o e®e Class2 i
P 1 Classifier
6| o |
5 |1]
D at 1
3 .
2 o -
=)
1f o |
o
0 L 1 L L L 1 L
o 1 2 3 4 5 6 7 8
x1

Figure 2.6 2D toy example of binary classification(Non-linear classifier)

X3

Decision Boundary X2 o] -1 -1
©0@ Class 1
o®e Class 2

Figure 2.7 3D toy example of binary classification(Non-linear classifier in input space but
linear classifier in feature space)

written in dot products can employ kernels. Thus, we can also use kernels in the SVM

algorithm. The equation of the kernel function is as follows:

22

K (1, 2;) = ®(,).D(a;). (2.5)

¢ : X — H is the mapping function, z; and z; are in input space X, and ®(z;) and ®(z;)
are the vectors mapped into feature space ‘H where the dot products are computed, and it

can be replaced by the kernel function.

The kernel was proposed by Vapnik (1998), and it is a replacement of the dot product between
two vectors. According to equation 2.5, we can compute the dot product of two vectors
without directly computing the nonlinear mapping. Specifically, the kernel function can
provide us the value of the dot product between two vectors in feature space without exactly
calculating this feature space. Note that the dot product between two vectors ®(xz;).®(x;) is
a scalar value, and it is always possible to replace the dot product with the kernel; therefore,
the output of the kernel is also a scalar value. The idea of replacing ®(x;).®(z;) by a kernel
function is called the kernel trick (Tax, 2001). When two classes are not linearly separable, we
can take advantage of the kernel by mapping the data to feature space and linearly separating
them. In the following sections, we explain the linear kernel, polynomial kernel and RBF
kernel. Again, the reason for why we use kernels rather than the regular feature mapping is

that they are less computationally intensive.

Linear Kernel

By taking the inner product function 2.5 into account and transforming it into the function
2.6, a linear kernel will be created. This linear function is another form of the support vector

classifier.

p
K(<xzawk>) = injxkja (2-6)
j=1
where p is the number of training examples.

Polynomial Kernel

The polynomial kernel is as follows:

K({aae)) = (14X aiga)’ 27

where d is a positive integer value that depicts the degree of the polynomial kernel function.

23

The polynomial kernel leads to a more flexible decision boundary compared to the linear
kernel. If the value of d is equal to one, then this means that we produce the same function
of the support vector classifier or linear kernel, whereas if d is greater than one, the data
project onto higher dimensions. In the case of applying the polynomial kernel to three

dimensions and bringing it back to two dimensions, the hyperplane changes into a circle.

In the case of a polynomial of degree 2 or quadratic kernel, the function 2.7 changes into the

following;:

K((zna) = (143 2y’ (2.8)

J=1

Moreover, in the case of the cubic kernel, the function 2.7 changes into the following:

K((wna) = 1+ gan)? (2.9

j=1
Radial Basis Function Kernel

Radial basis function (RBF) is a symmetric p-dimensional kernel on some special centroids

and obeys the following function:

P
K ({5, 2x)) = exp(—7 > _(xij — xx)?), (2.10)
7=1

where v is the kernel parameter with a positive value. If v has a large value, then it shows
that only observations near each other are considered to be similar. However, if v has a
small value, then the observations located far from each other are considered to be similar.
In other words, the v parameter indicates how far training examples can have an impact on
the determination of the test point’s label (Hastie et al., 2013).

2.4.2 Kernel example

To better understand the kernel trick, we provide one numerical example. Consider that
we have two vectors s = [2,4] and v = [3,6] and that we want to project them to six
dimensions with the mapping function of ®(sy,ss) = (1,51, 52, 52, 52, 51591/2) and calculate
the dot product. In this case, these new vectors of ®(s) = [1,2,4,4,16,8v/2] and ®(u) =
[1,3,6,9,36,181/2] are created. Then, the dot product of these two vectors is as follows:

24

O(s).P(u) =1+ 1x3+1x64+1x9+...+8/2x36+8/2x18/2=13025 (2.11)

However, rather than using 2.11, we can use a kernel with the following equation:

K(s,u) = (su+1)* = ([2,4].[3,6] + 1) = (2 x 3+2x6+4 x3+4 x6+1)* = 3025 (2.12)

In equation 2.11 we have 36 multiplications and 35 summations, whereas in 2.12 there are
5 multiplications and 4 summations. It is clear that equation 2.12 is less computationally
intensive compared to equation 2.11. For this reason, we use kernels rather than actually

projecting the data to higher dimensions.

The empirical results demonstrate that in most of the training phases, the choice of ker-
nel influences the accuracy and the number of mis-classifications. It is possible to justify
its influence through the following example. For instance, to find a proper classifier for
some datasets, the polynomial kernel may fail to calculate the proper separating hyperplane,
whereas the RBF kernel can find this hyperplane in higher dimensions. Generally, choosing
the proper kernel is primarily achieved through trial and error via cross-validation among a

set of standard kernel functions.

It should be emphasized that the kernel is the replacement of the mapping function. Precisely,
we replace mapping function with the kernel to avoid intensive computation. As such, there

is no order in employing mapping function and kernel.

2.5 Omne-class SVM

Consider that we have some observations with probability distribution P and that we want
to estimate a subset S of the input space. This estimation is in a way that the probability
of a data point drawn from distribution P not in the subset S is controlled by a parameter
called ve(0,1). v is an important user-defined parameter that shows the upper bound of
the fraction of outliers as well as the lower bound of the fraction of SVs. To perform this
estimation, we need to find a function f that returns a positive value for S and a negative
value for its complement S. To calculate this function, Scholkopf et al. (2001) proposed an
algorithm called one-class SVM. Specifically, they developed an algorithm that can calculate

a function f with a value of +1 for most of the data points in a "small" area and a value of

25

-1 for a fraction of data points that are not located in this small area (cf. figure 1.2). This
process is possible through two steps: mapping the data to a new feature space with kernels

and calculating one optimal hyperplane with the maximum distance from the origin.

Again, in binary classification, if the observations are not linearly separable, then we can
take advantage of projecting data to higher dimensions and subsequently separate them by
a hyperplane. Note that mapping training examples to higher dimensions is the first step of
this algorithm. Thus, we have to map data to higher dimensions. Since mapping data to
higher dimensions is computationally intensive, we can use the idea of the kernel as explained
in section 2.4. This indicates that employing the kernel is mandatory in the one-class SVM

implementation since this is the first step of this algorithm.

One-class SVM is an extension of SVMs to the case of unlabeled data and can resolve outlier
detection problems (Scholkopf et al., 2001). In fact, outlier detection is one of the tasks for
which this algorithm can be applied. For this purpose, we need to control the fraction of
outliers via parameter v. Note that outlier detection is also known as one-class classification,
as mentioned in (Tax, 2001). Recall that in this type of classification problem, only the
patterns of one class are well defined. According to Tax’s definition, the points in this class
are named target objects, and any points that are not in this class are considered to be

outliers.

Scholkopf et al. (2001) designed an algorithm to estimate function f such that its output
has positive values for the majority of the data points. In other words, this algorithm seeks
a decision boundary with the maximum distance between most of the data points and the
origin, as shown in figure 2.8. In this figure, the right plot shows one possible separating line
as a one-class classifier before the introduction of kernels, and any point that falls beyond
this line has an output of -1. The left plot shows one possible separating hyperplane after the
introduction of kernels, leading to a small area with an output of 1 for target observations and
an output of -1 for non-target or outlier observations. Note that in the binary classification
setting, we refer to the points either on the wrong side of the hyperplane or on the margin as
margin errors (note that the good side is the side that the observation of one specific class
should be located in its true side). However, in one-class classification, these margin errors

are known as outliers (Scholkopf et al., 2001).

This algorithm detects non-target observations based on this one class, and any observation
that deviates from the target observations is considered to be an outlier. The algorithm
chooses a hyperplane as a decision boundary that distinguishes a small section of the data
points from a large section of data points. This small part of the data is marked as outliers,

and the large part is considered to be the safe area. In right plot of figure 2.8, the majority

26

of the training observations are placed inside the calculated decision boundary, and there are

some outliers between the decision boundary and the origin.

Outlicrs .
L= [} Outlicrs

o Q o ©
\Y:'l \ y=1

Origin L Origin

Y

Figure 2.8 One-class SVM hyperplane without the introduction of kernels (left), and one-class
SVM hyperplane with the introduction of kernels (right)

In the following section we present one-class SVM algorithm. Moreover, there is one numerical

example in appendix A that we explain how the outliers are detected.

2.5.1 Algorithm

Consider {z1,...,z;}eX as the training data, where leN is the number of observations and

XeRY shows some nonempty set.

Recall that we want to find a function that takes a value of +1 for a small area that has
the majority of the training examples and a value of -1 for any point not in this small area.
For this purpose, we need to map the training points to higher dimensions via a kernel and
calculate the hyperplane that separates them from the origin with the maximum distance.

The hyperplane can be written as follows:

{zeX|(w,x) — p =0}, weX, peR, (2.13)

where w is a vector orthogonal to the hyperplane and p is the offset.

As mentioned in section 2.4.1, ® : X — H is a feature map from the input to feature space,

and the kernel function is as follows:

27

k(i y;) = (®(2:).2(y;))- (2.14)

The distance between the origin and the hyperplane is shown by £, (|| w || is the magnitude
or norm 2 of vector w), and maximizing this distance is equal to minimizing w Note that
small values of || w || indicate a large separation distance from the origin. Moreover, we
need to allow some observations to fall beyond the hyperplane, leading to a smooth decision
function. Therefore, to find a decision boundary that maximizes the distance between the
origin and the majority of the data points, we need to solve the following primal objective

function:

P RS
MiNw g™~ ~ P+ ; & (2.15)
Subject to: w®(x;) > p—&, & >0. (2.16)

Here, £ = {&,...,&,} is a vector of slack variables that allow for mis-classification. The value
of &; illustrates the location of each ith observation with respect to the hyperplane. The closer
its value is to zero, the better is the classification result. If & = 0, then the ith observation
is on the right side of the decision boundary, and if £ > 0, then the ith observation is on
the wrong side of the hyperplane. ve(0, 1] is the outlier rate or the regularization parameter
that is an upper bound on the fraction of outliers and also a lower bound on the fraction of
SVs. Nonzero & are penalized via equation 2.15, and we can control them by the value of
parameter v. Large values of v lead to a higher upper bound for the fraction of outliers and
to a greater possibility of having mis-classifications. Conversely, small values of v lead to a
smaller upper bound and to a lower possibility of having mis-classifications. Hence, the first
part of this primal objective function is to minimize ; error, the second part is to minimize

g7 error, and the fraction of % acts as a regularization parameter.

To better understand the aim of this algorithm, consider the 2D toy example in figure 2.9,
where the orange points are the target objects and the navy point is the only outlier. Again,
we call it an outlier or non-target pattern since it is on the wrong side of the decision function.
Here, the hyperplane is shown by a green line that separates all the target points from the
origin except the outlier. The slack variable for this point is larger than zero (& > 0). The

distance between the outlier and the frontier is equal to ”57”

Recall that the observations that impact the computed classifier are those that lie exactly

on the margin, i.e., SVs. Thus, the training examples on the correct side of the one-class

28

oo Target class
T e®e OCOutlier J

X2
A

Figure 2.9 A 2D toy example showing one-class SVM hyperplane

classifier do not affect the calculated separating hyperplane (the observations with & = 0).

If w and p are able to solve the quadratic problem, then the following decision function is

obtained:
f(x) = sgn(w.®(z) — p). (2.17)

The function 2.17 acts as a decision boundary, is a sign function that returns a positive value
for majority of the data points, and it can be controlled by parameter v. In fact, a test

example x* is assigned a class based on the output of f(z*).

The primal objective function formulated in 2.15 can be changed to dual form to have simpler
constraints and also to have the dot product form. In fact, in learning with kernels, we need
to have dot products in our optimization formula; therefore, we transform the function from
primal to dual (Schélkopf and Smola, 2002). This transformation from primal to dual is

possible through Lagrange multipliers «, 5 > 0 and a Lagrangian, as follows:

!

L(“’?fapaaaﬂ) = ”‘NH2+I/1ZZ§1_p

l = (2.18)

=Y (W (z) —p+&)— > Bk
i=1

i=1

Equation 2.18 is a quadratic programming problem. Note that the Lagrange multipliers are

29

the coefficients of the kernel expansion in this algorithm. To compute the minimum of the
Lagrangian L, it is necessary to take the derivative with respect to w and p and then set it

to zero, yielding the following:

w=> a;®(z;) (2.19)

i

1 1
- - _ B3 < E’ = 1.)

In equation 2.19, all data points with «; > 0 are SVs. Again, SVs are the points that lie
either on the margin or on the wrong side of the hyperplane, and they are the points that
support the classifier. Any other points are considered as irrelevant. Using equation 2.19,

the decision function 2.17 changes to the following kernel expansion:
f(x) = sgn(Zozik:(xi,x) - p). (2.21)

By substituting 2.19 and 2.20 and using kernel equation 2.14 in Lagrangian L, the dual

problem is obtained as in equation 2.22.

1
mina§ Z OéiOéjK(Xi, X])
”1 . (2.22)
subject to: 0 < a; < i Zai =1.
v i—1

Thus, the value of parameter p can be calculated as follows:

p= Zaik(xj,xi). (2.23)

J

To conclude this section, note that this optimization problem is a convex optimization, and

it yields an optimal solution.

2.5.2 Optimization

To compute dual coefficients, we can take advantage of quadratic programming. Scholkopf

implemented their algorithm via sequential minimal optimization (SMO), which divides the

30

optimization of equation 2.22 into the smallest optimization tasks. It is possible to solve
these optimization tasks analytically, meaning that there is no need to perform quadratic
optimization tasks in the inner loop of this algorithm. It is not possible to perform optimiza-
tion on individual variables without violating the constraints of this optimization function.

Hence, the optimization is performed on pairs of variables rather than on one variable.

Elementary optimization step. Imagine that we want to optimize over oy and ay without
any changes in the other variables. In this case, equation 2.22 changes to the following (X ;
is shorthand for K(x;,x;)):

1 2 2
minal’(mg Z CkiOéjKl'J + Z aiCi + C, (224)

ij=1 i=1
where C' = Zéj:?) a0 K; ; and C; = 23»:3 a; K j, with the following constraints:

1 2
OSOél,OCQ < 772052':A7 (225)
vl i
with A = 1 — ! a;. After substituting and taking the derivative with respect to as and

setting it to zero, we obtain the following function for calculating the a, parameter:

A(Ky1 — Ki2) +C1 — Cy
K+ Koo — 2K '

ay = (2.26)

Through calculating as, the value for a; can be computed using the following equation:

= A — Q9. (227)

After each step for calculating as (equation 2.26) and oy (equation 2.27), we update variable
p.
If we rewrite equation 2.26 in terms of the outputs of the kernel extension, then we can better

understand how the parameters are updated. Considering af and o as the previous values

for the Lagrange parameters, we obtain the output of the kernel expansion as follows:

Oi = KM'O{T + KQiOé; —+ CZ', (228)

as the corresponding outputs for each training example. By eliminating C; in function 2.28,

we obtain the following equation for calculating as:

31

*

N 01— O
Qs = Qv .
? 2 Ky + Ko — 2K

(2.29)

Note that this elementary optimization step can be performed on every pair of these La-

grangian parameters.

Initialization of the algorithm. We initialize the value of a; to % for a random v fraction

of training points. Additionally, we initialize the parameter p to max{O; : i€[l], o; > 0}.

Optimization algorithm. For the optimization, we select a variable in two possible ways,
as follows. In this optimization algorithm, SV,; stands for the indices of variables with

0< ;< % When the optimization terminates, this set shows the indices of SVs.

1. All the training points are checked until we find one observation that violates the Karush-
Kuhn-Tucker (KKT) conditions (2.31). Once we choose «;, we are able to select a; according

to the following:

J = argmazyesy,,||0; — O, (2.30)

2. This is the same as 1; however, scanning is only performed on components of the SV,;

set.

In the implementation of this optimization algorithm, checking 1 is followed by checking 2
until we find no KKT violators in the SV,,;, set. After this process, the control returns to
checking 1 until no KKT violators are found. At this state, we can terminate the optimization.
Any indices in the SV,,;, set show the index of a training point that has a strong influence on

the decision boundary.

It is necessary to consider KKT conditions (Bertsekas, 1999) when solving quadratic pro-
gramming problems. These conditions are constraints on Lagrange multipliers, as shown in

the following equations:

(O; —p).a; >0
(2.31)
(p— oi).(yll —) > 0.

After calculating the optimal values for parameters «;, we can update the value of p (equation
2.23); finally, we are able to compute the decision function for all the test examples (equation

2.21). It should be emphasized that some of the presented equations are used for outlier

32

computation as explained step by step in appendix A.

2.5.3 Parameters

In general, one-class classification methods have two types of parameters, called free and
magic parameters. A free parameter is a parameter that is optimized automatically in the
algorithm, whereas a magic or hyper-parameter is a user-defined parameter. In the one-class
SVM algorithm, we have [number of free parameters called «; (dual coefficient), and they
are optimized through the optimization algorithm explained in section 2.5.2. Recall that [is
the number of training observations; therefore, the total number of free parameters for this
algorithm is [. Moreover, we have one magic parameter called v that specifies the fraction of

rejected observations by the decision boundary.

If we choose the RBF kernel as the similarity function between observations, we need to
adjust the v parameter. We assume that both v and the « parameter have an impact on
the calculated decision boundary (Scholkopf et al., 2001). We investigated the influences
of v and v on the 2D spherical-shaped toy example. The spherical toy example has 200
observations, in which ten observations are non-target and the remaining observations are
target observations. The scatter plot of this toy example is plotted in 2.10. We can observe
that the non-target observations (red points) are distributed around the target observations

(green points).

12 T
=® s Target
e ® e NMNon-target
10 | =
-
8 - =
-
-
& - e o-.: : - - = b
- 2 ®e oo - -
- - ™ - - -
al - ’ - ce® o ®Sae Se B
-ee ..i - ae g : - ®* ae -
- * .t =- -® -2 - -
- " ‘ .:‘ 2 -
2r gne,_ "8 e .- -3 °s]
- S ®,° eee .8. - e : °3
- - - o " -
O - - 3 3.: o. i
- -
—2 L
2 3 4 5 [7 a8

Figure 2.10 Scatter plot of spherical 2D toy example

33

Figure 2.11 presents four different plots with four different : v = [0.1], v = [0.5], v = [1] and
~ = [5]. Note that in all of these plots, the value of v is equal to 0.05. Here, the red line is the
calculated frontier, and the algorithm considers five percent of the training observations to
fall outside of the decision boundary. Larger v values lead to a tighter classifier, as shown in
plots of v = 5 since only the observations that are close to each other are considered similar.
Therefore, with increasing 7, the number of SVs increases. Moreover, having large v values
may lead to a higher FP rate (Scholkopf et al., 2001).

Gamma:0.1v:0.05 Gamma:0.5 v:0.05

Figure 2.11 Spherical 2D toy example with v = 0.05 and four different ~ values

34

Figure 2.12 shows four different plots with a fixed value of v = 0.20 and the same v values
as in figure 2.11, allowing the one-class SVM algorithm to consider some observations as

non-target examples with an upper bound of 20 percent.

Gamma:0.1v:0.2 Gamma:0.5 v:0.2

Gamma:1 v:0.2

Figure 2.12 Spherical 2D toy example with v = 0.2 and four different v values

35

Figure 2.13 presents four different plots with a fixed value of ¥ = 0.5 and the same ~ values
as in figure 2.11, allowing the one-class SVM algorithm to consider some observations as

non-target examples with an upper bound of 50 percent.

Gamma:0.1v:0.5 Gamma:0.5v:0.5

Gamma:l v:0.5 Gamma:5 v:0.5

Figure 2.13 Spherical 2D toy example with v = 0.5 and four different v values

36

After closely examining the 12 different plots presented in figures 2.11, 2.12 and 2.13, we can
conclude that small values of v are better classifiers since they are not overfitted. Moreover,
large values of ¥ may lead to an incorrect one-class classifier. This result is because parameter
v shows a lower bound of the fraction of SVs, and by increasing this value, a larger fraction of
training patterns should be considered as SVs. Meanwhile, for the task of outlier detection,
the value of parameter v should be considered small. Thus, we tend to choose small values
for parameter v (Scholkopf et al., 2001). However, the best possible values for these two
parameters can be calculated through K-fold cross-validation. This technique is a model
selection method, and it divides the data into K segments, each time using K-1 sections
to train and one section for validation. This process of training and validating should be
performed K times for each model, leading to K average values. After calculating these

average values, we choose the lowest value as the best model.

Table 2.1 summarizes the fraction of SVs, fraction of outliers and training time for different
possible values of parameter v (re{0.05,0.1,0.2,0.5}). Accordingly, table 2.2 summarizes the

fraction of SVs, fraction of outliers and training time for different possible values of parameter
v (7€{0.1,0.5,1,5}).

Table 2.1 Experimental results for different values of parameter v

v Training time (s) fraction of SVs fraction of Outliers

0.05 0.0011 0.16 0.09
0.1 0.0027 0.16 0.11
0.2 0.0028 0.22 0.18
0.5 0.0044 0.52 0.5

Table 2.2 Experimental results for different values of parameter

v Training time (s) fraction of SVs fraction of Outliers

0.1 0.0012 0.22 0.2
0.5 0.0029 0.22 0.18
1 0.0037 0.25 0.18
) 0.0085 0.53 0.31

According to the experimental results shown in tables 2.1 and 2.2, we can conclude that
by increasing the values of parameters v and v, the computation time also increases. This
increase in computation time is due to the increase in the number of SVs. Since parameter v is

the lower bound of the fraction of SVs, the number of SVs increases to satisfy this constraint.

37

In his paper, Scholkopf (Scholkopf et al., 2001) only used the RBF kernel without mentioning
the polynomial kernel. However, we investigate the result of the polynomial kernel on this

toy example. If we choose the polynomial kernel, we need to evaluate different values for the
degree of the kernel (d = 2,5, 10, 20).

Degree:2 v:0.2

Degree:5 v:0.2

10

Degree:10 v:0.2

Degree:20 v:0.2
- T

°
8t °

L o8
6 ° '%{g: °e °

2N

s 3 5208

X1
IS

Figure 2.14 Scatter plot of banana-shaped 2D toy example with polynomial kernel

Figure 2.14 suggests that the polynomial kernel fails to detect a proper one-class classifier.
As explained in Tax (2001), when the data are not centered around the origin, the values
of the vector’s components become large when applying polynomial kernels, leading to very
small angles between vectors. Consequently, the patterns with large norm values suppress
the remainder of the patterns. Meanwhile, Tax suggested that even if we transform the data
to zero mean and unit variance, we will end up again having a frontier influenced by the large
norms. Hence, we are not able to use this kernel for one-class SVM because it fails to detect
the proper decision function. Thus, in the remainder of this thesis, we only employ the RBF

kernel for this algorithm.

In this chapter, we presented the state of the art in one-class classification algorithms and in
false alarm reduction methods. Then, we explained intrusion detection systems. Afterwards,
we discussed SVM and one-class SVM algorithm.

38

CHAPTER 3 FALSE ALARM REDUCTION METHOD

This chapter discusses the proposed false alarm reduction method.

3.1 Proposed false alarm reduction method

Our problem is to decrease the false alarm rate in the anomaly-based intrusion detection
system. We propose using one-class SVM to detect outliers and SVs, and we use these
two sets of observations to decrease the false alarm rate with the same FN rate. Recall
that outliers are the observations that fall outside the decision boundary, and SVs are the
observations that support the decision boundary (Schélkopf and Smola, 2002). Note that
these two sets of observations are not the same, and there are some observations that belong
to both sets. In fact, we use the one-class SVM algorithm to solve a one-class classification
problem, and we suggest using the output of this algorithm to decrease the false alarm rate.
As mentioned in section 2.5, this algorithm wants to estimate a function f that is positive
on S and negative on the complement S. Recall that S is a subset of training observations
such that the probability that a test observation drawn from P (the underlying distribution

of data is P) not in the subset S is bounded by regularization parameter v.

First, we need to calculate a binary function f (decision function) based on the one-class
SVM algorithm with a proper value for parameter v and a proper kernel. We can use K-fold
cross-validation to tune these two hyper-parameters. Recall that parameter v is the upper
bound for the fraction of outliers, and its value should be greater than zero. For example,
if we consider » = 0.1, then up to 10 percent of the training points can be assumed to be

outliers.

We define the set of SVs as Sgupportvectors, and we also define the training examples with
label -1 (not in the subset S) as outlier observations, which we call Sousiers. We suggest
removing the outliers from the set of SVs, leading to a new set called Sg,fesvs. This set is
the SVs that are not located outside the decision boundary, i.e., the observations that are
not rejected by the classifier. Furthermore, if we use the calculated decision function f on
the unseen observations (test examples), we ultimately have some observations with a value
of -1 and some with a value of 1. We define the test examples with a label class of -1 as
S ProbableAttack, and we call them probable attacks. In other words, probable attacks are the

unseen observations that fall outside the decision boundary.

We suggest comparing the Sgqfesvs set with the S ProbableAttack Set based on their similarity.

39

This comparison is based on the Euclidean distance between two vectors, and the Euclidean
distance (cf. equation 3.1) is used for evaluating the similarity between two vectors. However,
the similarity between two vectors should be determined through the proper threshold, and
we can use a K-fold cross-validation on the training examples for this purpose. We denote
this threshold as 7. An observation in the Sp,opabieartact S€t Will be considered similar with
another observation in the Sg,fesvs set if it has a Euclidean distance that is less than this
calculated threshold. Hence, if an observation has a value that is less than this threshold,

then we remove this observation from the S p,opabicAttack Set-

d= |z —yl= > |z -yl (3.1)
i=1

Precisely, after having determined three sets of Ssupportvectorss Souttiers ANA S propableAttack and

having tuned the threshold parameter, the false alarm reduction method is as follows:

e We subtract the set of Souuicr from SsupportVectors, leading to a subset of SVs with label
1, and we denote this new set as Ssqfesvs. In fact, with this subtraction of sets, we

have only the positive SVs that have an impact on the calculated decision function.

e We compare all observations in S pyepapicAttact USing the set of Sg, fesvs With the calcu-
lated value of T'. If an observation in the Sp,opapicartack Set has a Euclidean distance

value that is smaller than the threshold, then we remove that observation from this set.

e Any observation that remains in the S pyopapieattack Set is copied in the S gsqcr set, leading

to a set of real attacks.

Hence, S auqcr contains observations with the attack label. Specifically, if we remove similar
observations of safe SVs from probable attacks, then the remaining points are considered to

be real attacks.

To conclude, the trick that we have performed is that we used SVs with a positive output to
decrease the false alarm rate. In this case, any unseen observations that are near these SVs

and placed outside the decision boundary are assumed to be non-attack observations.

3.2 Adjusting Parameter T

As explained in the previous section, we have to choose a proper value for parameter T

since it is the threshold of how similar two vectors are considered to be. Having large values

40

for this parameter leads to changing the result, and it may violate the TP rate since even
non-similar vectors will be considered the same. Consequently, we tend to choose smaller
values for this parameter. However, if we choose very small values showing that two vectors
have exactly the same component values, then we may ultimately have no modification in
the false alarm rate. Hence, the choice of the value for this parameter can be addressed
similarly to a hyper-parameter. For this purpose, we use a K-fold cross-validation technique
to adjust parameter T', and the choice of the value for this parameter is based on the value
of the ROC score. We employ the K-fold cross-validation (explained in section 4.3) method
to ensure that the value that we choose for this parameter can generalize perfectly to unseen
observations. As thoroughly explained in section 1.2, the AUC value is used for comparing
classifier outputs. Thus, the best model is the one with the highest average AUC value. Note
that we may have multiple possible values for parameter T" with the highest average AUC.
In these situations, for simplicity, we assume that the best choice is the lowest value of these

possible choices.

Thus, the following hypotheses should be verified:

e HOa: Large values of parameter 7" violate the TP rate

e HOb: The transformation methods (cf. explained in section 4.1) of training patterns

have an impact on the possible values for parameter 7.

e HOc: Among the possible values for parameter T', the one with the highest AUC value

is the best choice.

Assumption HOa suggests that we should not use large values for parameter T since we
ultimately decrease the rate of detecting real attacks (TP rate). Moreover, HOa is rejected if
the data is not scaled. However, since we select the best value for this parameter based on
the average ROC score, the selected value will not be large, leading to violating the TP rate
as stated in HOa.

Assumption HOb has an influence on the choice of the upper bound value for parameter T'. If
we use feature scaling to [0, 1], then the calculated Euclidean distance values will be smaller
compared to feature scaling to [0, 10] since the norm values of the vector are smaller. Thus, it
is suggested that we use smaller values as an upper bound for this parameter. However, if we
use the robust scalar method for scaling, then the possible Euclidean distance values become
larger values. In this case, it is suggested to use a larger value as the upper bound for this

parameter. Furthermore, hypothesis HOc is always true since AUC shows the performance

41

of the classifier, and we want to choose the best value for parameter T" such that it does not

impact the final result.

Note that the proper value for this parameter is highly related to the preprocessing method.

3.3 Toy Example

To better describe the proposed method, consider one artificial data set with 50 training
examples, in which 20 percent of them are attack (non-target) observations and the remainder
are non-attack (target) observations. In this example, each observation is shown by a vector
of two components. Furthermore, consider ye{—1,1} showing the possible class labels of
these observations. Note that in one-class SVM, we only use the inputs of observations,
and the outputs are used in model selection, i.e., adjusting the values of hyper-parameters.
Additionally, imagine that we have 10 test examples to evaluate the classifier using the

proposed false alarm reduction method.

For convenience, suppose that we calculate the optimal value of hyper-parameter v = 0.2,
and also consider that we employ the RBF kernel with v = 0.01. Furthermore, assume that
we use no scaling method. Having determined the value of two hyper-parameters, we can
determine the value of parameter T using the 5-fold cross-validation technique. For this
purpose, we test different values for parameter 7', starting from 0.1 to 3 with a step value of
0.1. Figure 3.1 shows the calculated ROC score values versus the possible values of parameter
T'. We select the best value for parameter T' based on the highest ROC score. Consequently,
we choose the value 0.1 as the best value for parameter 7. Note that this choice is based
on the average ROC score, and we have the highest ROC score with a value of 0.974 for the
selected threshold. As shown in the figure, the calculated ROC score becomes smaller for
larger values of parameter T'. This result suggests that assumption HOa is valid. Moreover,
since we use no scaling on the training examples, we use an upper bound with a value of 3

based on assumption HOb.

Figure 3.2 shows the scatterplot of the training examples, where the green points are the
target patterns and the red points are non-target instances. Our objective is to find a
classifier that places the positive examples in an enclosed area with the maximum distance

to the origin and places the negative examples outside this enclosed area.

Suppose that we train the model with proper v and ~ values. The computed value of the

intercept is —4.18, and the coefficients of the decision boundary are as follows:
[1,1,0.656,1,1,1,0.624,1,1,1,0.72]

Note that the number of SVs is equal to the number of coefficients. In fact, among these 50

42

1.0 |- —
®* ® ® ® ® ®

ROC score

0.7 - 5
* & s o

0.6 | e o o |

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Threshold Values

Figure 3.1 ROC score versus parameter T’

1z

e e Target
e* e MNon-target
10 | .
-
8 - i
-
[- -
x2 - - - -
- - -
- =
al - - o - ® - - 1
- -
- -
- -
=L - i
-* ° -~ - -
- - - - - -
ol ® ® . * . i
- -

Y .

2 3 a 5 6 7 S

Figure 3.2 Scatterplot

observations that we use for training, only 11 of them are used for calculating the one-class

classifier (cf. equation 2.21), and the remaining observations are irrelevant.

Once the model is trained and the set of SVs is calculated, we can calculate the set of outliers.
Any training observation that has a negative output based on equation 2.21 is considered to
be an outlier. Based on this toy example, the one-class SVM algorithm produces a set of SVs
that support the decision function. Among these SVs, nine of them are outliers since they
fall outside the computed classifier. In other words, these nine observations are rejected by

the decision function.

Figure 3.3 shows the decision boundary on this toy example. The red line is the decision
boundary, the green points are positive patterns, the SVs are training patterns with red

circles around them, and the white points are the unseen observations that are classified as

43

attacks, i.e., non-target examples.

Gamma:0.05 v:0.2
®

Figure 3.3 Scatterplot with decision boundary with one-class SVM

If we compute the outputs based on this computed classifier, we obtain a set of observations
that are classified as non-target examples (Sousier). Moreover, if we classify all the testing
examples using this classifier, then there will be some observations classified as attacks. We
assign them to the set denoted as S p,opapicattack- After tuning the proper value for parameter

T to the value of 0.1, the proposed false alarm reduction method is as follows:

1. In this step, we need to subtract the Sounicr = {4,7,12,15,24,25,32, 37,42} set from
the Ssupportvectors = {7, 11,12, 15, 24,25, 31,32, 37, 39, 42, 49} set, yielding the Ssafesys =
{31,49} set. Note that these numbers are the indices of the vectors.

2. We test the trained model on the unseen observations to calculate the S propabicAttack

set.

3. We compute the Euclidean distance between each of these patterns in the S propapic Attack
set and the patterns in the Sg,fesvs set based on equation 3.1. If an observation in
the Sprobabieattack S€t i near an observation in the Ssafesvs set, then we can change
its label from attack to non-attack. In other words, if the Euclidean distance between
two observations is less than the calculated threshold, then we consider it to be a
non-attack, leading to reducing the false alarm rate. Table 3.1 shows the calculated
Euclidean distance values. Since there are seven probable attack patterns and two
safe SV observations, 14 different Euclidean distance values are computed. Only the

observation with a Euclidean distance value of 0.099 is lower than 0.1, and we can

44

change its class label from attack to non-attack. In figure 3.4, we can observe that two
observations are members of the Sg,fe.svs set and that there is one observation close
to one of these points, marked by a black diamond point. This unseen observation
is outside the enclosed decision boundary; however, it is close (based on Euclidean
distance) to one of the patterns in the Sg,resvs set. Thus, we can remove it from the
S Provavieattact Set. Therefore, one false alarm is detected by this method and classified

as a non-attack.

4. Any observation that remains in S propapicattack Will be copied in S agack-

Table 3.1 Euclidean distances on toy example

Safe SVs Probable attacks ED modified
[4.51 7.83] [3136.4] 1.987 No
[5.4 0.02] [3.136.4] 6.772 No
[4.51 7.83] [2.41.29] 6.872 No
[5.40.02] [2.41.29] 3.258 No
[4.51 7.83] [8.055.51] 4.232 No
[5.4 0.02] [8.05 5.51] 6.096 No
[4.51 7.83] [8.12 7.86] 3.61 No
[5.4 0.02] [8.12 7.86] 8.298 No
[4.51 7.83] [7.540.17] 8.238 No
[5.4 0.02] [7.54 0.17] 2.145 No
[4.51 7.83] [6.827.] 2.455 No
[5.40.02] (6.827.] 7.123 No
[4.51 7.83] [5.49 0.06] 7.832 No
[5.4 0.02] [5.49 0.06] 0.099 Yes
[4.51 7.83] [7.53.49] 5.27 No
[5.4 0.02] [7.5 3.49] 4.056 No

Table 3.2 summarizes all the performance metrics, and it is possible to observe that there is
an increase in terms of the F-measure and ROC score value in the one-class SVM algorithm.
This toy example suggests that it is possible to decrease this rate with the help of SVs,

outliers and similarity between vectors based on Euclidean distance.

45

Gamma:0.05 v:0.2
®

Figure 3.4 Scatterplot with decision boundary after reducing false alarms

Table 3.2 Performance of one-class SVM on toy example

Method F-measure ROC Score FN FP
One-class SVM 0.769 0.7 0 3
One-class SVM with FA reduction phase 0.833 0.8 0 2

3.4 Comparison with other methods

Our proposed approach has two advantages compared to other methods, namely, low com-

putational time and minimal human dependency.

We use feature selection in the preprocessing phase of the data, as explained in section 4.2.
When one algorithm uses fewer features, it has a lower training time compared to using all

the features in model training (suggested in section 4.8).

Moreover, our method is not human dependent in the false alarm reduction phase, which
means that the system automatically reduces this rate without human interaction. However,
when evaluating anomalies or attacks detected by an intrusion detection system, there needs

to be some human interaction for any attack observation.

46

CHAPTER 4 TEST

This chapter starts with a detailed explanation of the data and data preprocessing step
and continues with how we test our proposed technique for reducing false alarms. For the
testing phase, three different scenarios and three different one-class classification algorithms
are investigated. Next, the results from testing the proposed method on the KDD99 database
are briefly explained. Finally, we discuss the impact of sample size and dimensionality versus

training time, FP reduction time and F-measure metric on artificial datasets.

4.1 Real Dataset

The data provided by Groupe Access are captured from hardware indicators every 30 seconds,
and we refer to these data as the real dataset. The columns of these data are called attributes
or features, and the rows of the data are called instances or observations. The data are in two
different files: one file that consists of only non-attack observations and one file that contains
attack observations in addition to non-attack patterns. We combined these two files, resulting
in one file with a large amount of non-attack observations and a small amount of attack
patterns. Then, we use 80% of the data for training, named train file, and the remainder
of the data for testing, called test file. In general, in the domain of anomaly detection, the
number of non-attack patterns is considerably higher than that of attack observations. In
the provided data, the number of non-attack observations is 30295, whereas the number of
attack observations is only 65. Note that the data are randomized before being divided to

be able to make the assumption that the data are identically distributed.

The train file is used for parameter estimation and training the model; the test file is utilized
for the testing phase. In this method, no labels are used in the training phase since this
algorithm is unsupervised. However, we employ attack patterns for the model selection

phase.

The given data have 9 different features captured from server logs. These features are hard-
ware indicators, including nw__ in, nw__ out, CPU fan, CPU temp, CPU voltage, CPU usage,

CPU load, available memory and free memory.

Feature nw__ in shows the number of input packets going to the server, and feature nw__ out
depicts the number of output packets coming from the server. Fan is the cooling device on
the computer systems, where the feature CPU fan shows the speed (how fast it is operating).

CPU temp is the temperature of the CPU. CPU voltage is the amount of power that one

47

CPU consumes. CPU usage shows the fraction of CPU that is used for processing. When
this value is high, there is a high usage of resources. Accordingly, we can conclude that
attackers may be misusing resources to obtain some information. CPU load indicates the
rate of processes that are waiting to be processed by the CPU. Free memory depicts the
unused memory by the system, whereas available memory shows both the unused and cached

memory.

Before choosing a method to train the model and initiate the detection phase, it is recom-
mended that several techniques be applied to obtain an initial possible understanding of the
data distribution and their correlations. In some cases, plotting the data results in an enor-
mous amount of information and shows the relationships among the features. For example,
one way to understand the distribution of the data is through a histogram, which groups the
given data into ranges and plots them as bars. The taller the bar is, the more data instances
that exist in that range, and this plot depicts the quantity of data instances in different
ranges or groups. Through the histogram, we can determine whether the data have a normal

distribution.

Figure 4.1 presents the histogram plot for all the features. As shown in this figure, there is
no sign of a normal distribution in these plots since the bars depict no bell curve. In fact,
the normal distribution should have more examples around the mean of the data, whereas in

this plot, we do not observe such behavior.

The behavior of the features is shown via the line plot in figure 4.2, which shows the values
of all the features. Here, the vertical lines show the values of each feature, and the horizontal
line shows the number of observations. In this plot, only three features (nw__ out, CPU usage
and CPU load) show peaks at the time of attack (shown by the result subplot).

4.2 Data Preprocessing

Data preprocessing, or data pretreatment, has a substantial impact on the results of anomaly
detection methods, such as computation time, increasing accuracy and lowering the false
alarm rate. Generally, preprocessing consists of four phases: data creation, feature construc-
tion, feature selection and feature transformation (J.Davis and J.Clark, 2011). Data creation
consists of finding the appropriate label or class for the observations. The construction of new
discriminate features from primary attributes is feature construction. Feature selection is the
process of omitting irrelevant or non-significant features from the data and responding to the
curse of dimensionality problem in high-dimensional databases. Feature transformation is

the process of manipulating the values of features. In this thesis, our concern is on the last

48

35000 ‘ ‘ nw_out ‘ ‘ 30000 _CPU Voltage ‘ 20000 ‘ CPuTemp ‘
30000 25000
15000
. 25000 - 20000 15
£ 20000 1g g
g g 15000} {9 10000}
& 15000 1g L0000 g
['sy ['sy I 1=
10000 50001
5000 5000
0 0 0
00 02 04 06 08 10 1z 14 0990 0995 1.000 1005 1010 1015 1.020 30 31 32 33 34 35 36 37
le7
9000 ‘ _CPUFan ‘ ‘ CPU Load ‘ 30000 ‘ ‘ CPU Usage ‘ ’
8000 25000
7000
> 6000 > 20000 > 20000
£ 5000 c
g 18 15000
Z 4000 ?T
& 3000 & 10000 & 10000
2000 5000
1000
0 0 . . .
4200 4250 4300 4350 4400 44 2 3 4 5 6 7 0 5 10 15 20 25 30 35 40
18000 ‘ _Memory available . 30000 ‘ Memory Free . 35000 . w_In ‘
16000
14000
>, 12000
2 10000
:5’ 8000
£ 6000
4000
2000
0 0 0 . . .
24 2 ,) 2 3. X 3)) . 5 2 . X 3) 0.5 1.0 15 2.0

1e7.

Figure 4.1 The histogram plot of all the features in the train file

two phases of data preprocessing. We describe two different data transformation methods:

feature scaling and robust scaling.

Feature scaling is a normalization technique that aims to transform all the data values to
a special range. Normalization techniques are included in the data transformation category
because they modify the feature values. Due to the presence of different scales and ranges
for each feature in the real data, it is recommended that scaled and preprocessed feature
values be extracted to prevent the large numerical values from dominating the performance

(J.Davis and J.Clark, 2011).

T — Tmin
2k —
Tmaz — Lmin

(4.1)

where x,,;, shows the minimum value and z,,,, depicts the maximum value of each feature.
Using function 4.1, it is possible to transform the values of the features into the range of
[0, 1].

Robust scaling starts by removing the median and continues by re-scaling the data to the

interquantile range. This range shows the range between the first and third quartiles of the

49

le7

c
0
1
4
[0}
1]
Io]
o]
§ & :
8 & — CPULoad]
5 1 | ‘]
0
3 ‘ ‘
5 { — CPU Usage
||| ||| |l N T m | A
1e9
41— Memory available L
{ja ' ' .. - - . | T]
160
gE: — Memory free "L\r
'
00l — Result :
05} I
‘1% 0‘ 0\ 0\ 0\ 0\ 0
¢ #° & o A
Observations

Figure 4.2 Line plot for all the features

data. Specifically, it calculates the difference between the third and first quartiles. This data

transformation method is robust to outliers.

Although feature scaling is sensitive to outliers, we investigated its influence on one-class

SVM. For this purpose, we proposed the following two approaches:

20

e We remove non-target examples from the training set and use the remaining examples
for rescaling. Consequently, min and max values are drawn from target patterns, leading
to not placing much importance on non-target examples. We define this approach as

feature scaling without the non-target patterns.

e We remove non-target and outlier patterns from the training set and use the remainder
for scaling the data. We define this approach as feature scaling without non-target and

outlier patterns.

Moreover, we employ robust scaling, which is not sensitive to outliers. The results show that
feature scaling achieves better accuracy and F-measure values compared to the robust scalar.
All the results of the robust scalar are provided in appendix B. Consequently, we use feature

scaling to [0, 1] as the chosen feature transformation method in the remainder of this thesis.

Therefore, to preprocess the real data, we applied the following two steps:

e Feature selection: Feature selection or variable selection is a crucial preprocessing step
in machine learning modeling, with the aim of removing redundant and irrelevant fea-
tures from the data. Consequently, the predictive model becomes simpler and more
efficient. Regularization or penalization methods such as Lasso regression (Tibshirani,
1996) have been shown to be effective for this purpose since they choose the most
relevant set of features, and they are computationally efficient. Lasso regression is a
frequently used technique that selects a subset of more important features. In greater
detail, it forces the irrelevant features to have a coefficient of zero. Another method to
perform feature selection is visually selecting features. Hence, according to figure 4.2,
we select the most important features, leading to three features. This decision is based
on the high variation in these three features during the time of attack. Additionally,
we use Lasso penalization, leading to two features (CPU voltage and CPU load). The
result of this feature selection leads to lower F-measure rate, as presented in appendix

C.

e Data transformation: To prepare the data for training, it is necessary to scale the data.
For this purpose, scaling the values in the range of [0, 1] is employed to manipulate
the data. The one-class SVM and given data led us to implement the pretreatment of
the data since with great differences in the ranges of feature values, non-pretreatment
results in a high number of false alarms. In fact, having some features with values that
are greater than those of other feature leads these features to dominate the remaining

features.

51

4.3 Model Selection

In general, in model selection between classifiers, the selected classifier should be flexible
enough to depict the data well, and it should be simple enough to avoid overfitting, i.e.,
having a low training error and high generalization error (Tax, 2001). Moreover, the pri-
mary objective in model fitting is to find a model that can generalize well on the unseen

observations.

Recall that one-class SVM has a user-defined parameter called v. Thus, we need to tune this
magic parameter before training the model. Moreover, we need to choose a proper kernel. If
we choose the RBF kernel, then we need to tune another parameter called ~. Consequently,
when we use the RBF kernel, we need to tune both ~ and v. Thus, the model selection
in this case is to choose a proper value for v to control the number of outliers and SVs,
as well as tuning the kernel parameter. To tune these parameters, we use K-fold cross-
validation. First, we select 20 percent of the training patterns for the testing phase (unseen
observations). Then, we perform 5-Fold cross-validation on the remaining 80 percent to tune
the hyper-parameters. In more detail, we divide the data into 5 sections, and then we use 4
sections to train and one section as the validation set. This process should be performed 5
times. Once the test is performed (the average error on the validation set is calculated), the
validation set is reinserted into the training database, and another part is used for validation.
Once the five steps are executed, the total average error is obtained from the average errors
obtained at each step. Based on this average error, we can obtain the best values for these

magic parameters. Here, we use the F-measure metric as the error.

In the case of the RBF kernel, we test different possibilities of the parameter values on the

real data, as follows:

e v (0.001,0.002,0.,...,0.02)

e 7 values between 0.05 and 0.95 with a step of 0.1

Based on these various possible values, we have 200 possible pairs of values for these two
hyper-parameters. Recall that when applying one-class SVM for the purpose of anomaly
detection, we tend to choose small values for parameter v (Scholkopf et al., 2001). In fact,
in outlier detection, we always consider the number of outliers to be considerably smaller
than the number of non-attack observations. Since we randomize the data, we perform the
model selection procedure 10 times to obtain consistent values for the parameters. Table 4.1
summarizes the average F-measure, average FN, average FP, average AUC, the best value

for parameter v and the chosen value for parameter v for each of the 10 runs. Based on this

52

result, we select a value of 0.004 for parameter v and a value of 0.15 for parameter . This

selection is based on the majority of this combination.

Table 4.1 Average performance of one-class SVM in 10 different runs

AvgF-measure | avgFN | avgFP | avgAUC | v ¥
Run # 1 0.669 2 8 0.913 0.003 | 0.25
Run # 2 0.674 0 11 0.97 0.004 | 0.15
Run # 3 0.703 0 11 0.99 0.004 | 0.15
Run # 4 0.672 2 8 0.913 0.003 | 0.15
Run # 5 0.663 0 11 0.97 0.004 | 0.15
Run # 6 0.671 0 12 0.98 0.004 | 0.15
Run # 7 0.659 0 12 0.97 0.004 | 0.15
Run # 8 0.659 0 12 0.97 0.004 | 0.05
Run # 9 0.676 0 12 0.96 0.004 | 0.25
Run # 10 0.639 1 12 0.961 0.004 | 0.05

According to section 2.5.3, we saw that small values for parameter v and ~ result in better
classifiers (smooth and enclosed). This behavior suggests that large values for these param-
eters have a greater FP and FN rates. On the other hand, parameter v shows the fraction
of outliers (65 patterns) with respect to target examples (30295 patterns). Based on these

reasons, we only investigated small values for these two parameters.

4.4 Visualization Methods

This section presents brief explanations of the ROC graph and confusion matrix plot.

4.4.1 ROC Graph

The ROC graph is a method to present the performance level of various classification methods
(Fawcett, 2006). It is used to denote the trade-off between FP rate and TP rate on ROC
space. The curve is two-dimensional and constructed based on the FP rate and TP rate to

demonstrate the relative trade-off between them.

Figure 4.3 shows the basic ROC graph with two different classifiers. Point A illustrates

perfect classification with a TP rate of one and a FP rate of zero. Point B, with a TP rate of

93

0.8 and FP rate of 0.4, exhibits a lower accuracy. Typically, if one point is located northwest
of another point in the graph, we can conclude that the classifier performed better compared
to a point closer to the y = x line. The diagonal line y = z shows a random guess where the
algorithm produces a negative result in half of the cases, and in the other half of the cases,

it produces a positive result.

1_:h Jﬂ
-
-
-
B -
LR — - e
-
-
-
aa -
= oous — e
E -
= &
= .
=]
S — -
an -
= -
Po= -
-
-
LR — -
-
-
-
-
1]
| | | |
1] L% .4 L LV E 1.0

False positive rate

Figure 4.3 Basic ROC graph showing two classifiers

Note that the classifier that we trained in this thesis is a discrete classifier, i.e., it only
produces label for each observation. In this case, we can only have points in the ROC graph.
However, it is possible to draw a line from the origin to these points and a line from these
points to the (1,1) point in the ROC space. Therefore, we can have a solid line for each
of the classifiers. This will enable us to also compute the AUC value and compare various

classifiers.

4.4.2 Confusion Matrix Plot

The confusion matrix plot is a technique for demonstrating the performance of the classifi-

cation method, as shown in figure 4.4.

In the basic confusion matrix plot, the non-diagonal values of the matrix depict the mis-
classified observations, and the diagonal values represent the number of instances that are
classified correctly. In addition, the number of misclassified and the number of successfully
classified instances are depicted by color, as shown by the ruler on the right side of the figure.
If the non-diagonal instances of the confusion matrix are white, then we can conclude that

the algorithm failed in its classification. However, if the diagonal instances are dark blue,

o4

Confusion matrix

560

480

400

True label

320

240

160

80

Predicted label

Figure 4.4 Basic confusion matrix plot

then it demonstrates that the model was successful in the classification.

4.5 Empirical Result

Three different scenarios based on one-class SVM were tested, showing the higher performance
of the proposed method in decreasing the false alarm rate. The first is a scenario that only
uses a one-class SVM to detect anomalies. The second scenario shows the proposed false
alarm reduction method. The third scenario has the same steps of scenario 2 but without
outliers. According to the experimental results, the second approach achieved the same ¢;
compared to the two other scenarios, but with a considerably lower amount of ;7. The

details of these scenarios are described in the following sections.

4.5.1 Scenario 1

In scenario 1, a one-class SVM is tested for anomaly detection. For preprocessing data, we
use feature scaling without non-target patterns to remove the impact of them on the results.
Additionally, we employ the calculated parameters from section 4.3 to train the model, and
we use the test observations to evaluate how well the model can generalize on the unseen
observations. Figure 4.5 shows the steps of scenario 1. The name and the method or function

used for each step are shown in this figure. For instance, feature selection is one step that is

performed visually.

Raw
train
data

Raw
test

data —

Principle
features

1 Feature

reduction

2 Feature

Scaled data

Scaling

3

Training

One-class SWVIM

Model

T

Swm.onecasssvia

Principle
features

1 Feature
reduction

2 Feature

4 artack

Scaling

Detection

Figure 4.5 Project structure of one-class SVM (scenario 1)

——» Afttacks

The following steps were executed to implement this scenario:

1. Feature reduction: visually

2. Data transformation: feature scaling without non-target patterns

95

3. Training the model and calculating the frontier: one-class SVM with selected parame-

ters (v = 0.004 and v = 0.05)

4. Detecting attacks: in this step, the test file, which contains the attack observations,

was used for the classification, and any observation that falls outside the calculated

frontier is classified as an attack. The remainder of the unseen observations that are

accepted by the classifier are classified as non-attacks.

Figure 4.6 presents the 2D calculated decision boundary using one-class SVM on three dif-

ferent plots. Since this is a 2D representation of the real decision boundary, we can only

show 2 features in each subplot, leading to three different plots. In all of these subplots,

the frontier is the same, but the scatter points are varied. It is possible to observe that the

points outside the orange circle are outlier observations or anomalies, and the points inside

the circle are the target instances. Note that the scatterplot is a 2D representation rather

than real dimensions. Meanwhile, the plotted decision boundary itself is constructed using

all the features of the training data. This fact justifies why there are some target points

outside of the circle in all these subplots.

e® e MNon-attack train observations
+ + + MNon-attack test observations
®@®@ Support Vectors

ocoo Real attacks

—_— 2D representation of higher-dimensional decision boundary

nw out

—0.5 0.0 0.5 1.0 1.5 2.0 2.5
CPU Load

2.5
2.0
1.5

nw out

0.5
0.0

—0.5

—0.5 0.0 0.5 1.0 1.5 2.0 2.5
CPU Usage

2.5
2.0
1.5
1.0
0.5
0.0
—0.5

CPU Load

—0.5 0.0 0.5 1.0 1.5 2.0 2.5
CPU Usage

Figure 4.6 Scatterplot with decision boundary (scenario 1)

4.5.2 Scenario 2

o6

In this scenario, we investigate the influence of the false alarm reduction method. For the

preprocessing phase, we use feature scaling without non-target patterns. For training the
model, we employ one-class SVM, and finally, we add the false alarm reduction phase to
evaluate its influence on e; and ¢;;. With the help of outliers and SVs, it is possible to

decrease the amount of false alarms such that they have no impact on the detection of true

o7

alarms. In this phase, probable attacks were detected by testing the test file, but for deciding
whether they are real attacks, we compared them with SVs minus non-target observations
known as safe SVs (cf. section 3.1). If one probable attack has the same pattern as one safe
SV, then we can conclude that it is a false alarm. Consequently, only those patterns that
are not the same as any safe SV pattern and any non-attack pattern are reported as true

attacks. Hence, this scenario is implemented as follows:

1. Feature selection: visually
2. Data transformation: feature scaling to [0, 1] without non-target patterns

3. Training the model and calculating the frontier: one-class SVM with selected parame-
ters (v = 0.004 and v = 0.05)

4. Tuning parameter 7" with 5-fold cross-validation: we choose the best value for this
parameter by training the model with different possible values (7" = {0.01, 1} with step
0.01) based on the AUC value (0.9615). For these real data, there are multiple best
choices, and based on the assumption, we choose the smallest possible value. Figure

4.7 depicts the relation between AUC and parameter T

5. Detecting probable attacks: in this step, the test file, which contains the attack observa-
tions, is used for the classification, and any observation that falls outside the calculated

frontier is classified as a probable attack.

6. Reduction of false alarms and detection of attacks: calculating safe SVs set, comparing
the probable attacks with safe SVs based on Euclidean distance, and concluding real
attacks.

Figure 4.8 presents the steps of the proposed scenario.

Figure 4.9 shows the scatterplot with decision boundary for scenario 2. The black diamonds

are the detected false positive observations.

1.00

0.98

0.96

0.94

ROC score

0.90

0.88

0.86

train
data

test
data

o8

0.92

0.0

4.5.3 Scenario 3

T T T
(eSS sessESsEEsTEsdeeiE s iISdEEsTEsdEeiI eI sdEsdadsdaeiEesEsdEsddsaaesa s dea S aua A g a e .
[sdsnssaasan sl
0.2 0.4 0.6 1.0
Threshold Values
Figure 4.7 AUC versus parameter T' (scenario 2)
Principle
1 features 2 scaled data Model
Feature Feature Training
reduction Scaling = One-class SVM T
T v
s o e
Detecting the
Outliers outliers
h
1 Principle | 2 Scaled test
Attacks
Feature features Feature data Detecting Artack
. - —»
reduction Scaling probable » Detection
attacks Probable
attacks

Figure 4.8 Project structure of one-class SVM (scenario 2)

In scenario 3, we assume that 1 percent of the observations are outliers. These outliers are
detected by one-class SVM (v = 0.01 and v = 0.15). We transform the feature values based

on training data without non-attack and outlier patterns. Once the outliers are detected,

29

— 2D representation of higher-dimensional decision boundary
e®e Non-attack train observations

++ 4+ MNon-attack test observations

@®@ Support Vectors

ooo Probable attacks
9@ Detected False Positive

2.5
2.0
1.5

nw out

0.5
0.0

—0.5

—0.5 0.0 0.5 1.0 1.5 2.0 2.5
CPU Load

2.5
2.0
1.5

nw out

0.5
0.0
—0.5

—0.5 0.0 Q.5 1.0 1.5 2.0 2.5
CPU Usage

2.5
2.0
1.5
1.0

CPU Load

0.5
0.0
—0.5

—0.5 0.0 0.5 1.0 1.5 2.0 2.5
CPU Usage

Figure 4.9 Scatterplot with decision boundary (scenario 2)

we can remove them from the training set. In fact, this scenario is proposed to evaluate
the effect of removing outliers on the overall performance. Hence, the following hypothesis
should be verified:

e HOd: Removing outliers from the training observations leads to lower F-measure values

(increasing e;p).

Figure 4.10 presents the different steps of the third scenario.

60

Raw

) Principle 4 4 Removing
train |1 3 i Outliers
Feature features Feature scaled data Trainin Model Detection the outliers
dera € —» f outli — - >
—* reduction Scaling — One-class WM o outliers from the
training set

Training patterns

without outliers
A

5Training one-
class SWM

Hew e
& 7
Detecting

1 Principle |2
Raw Feature P Feature | Detecting Attacks
test ducti features i ccaled test probable o
—» reduction Scaling caled tes attacks Probable attacl
data data
attacks

Figure 4.10 Project structure of the one-class SVM (scenario 3)

. Feature selection: visually
. Data transformation: feature scaling to [0, 1] without non-target and outlier patterns

. Training the model and calculating the frontier: one-class SVM with selected parame-
ters (v = 0.01 and v = 0.15)

. Detect and Remove outliers: we remove outliers based on the calculated frontier

. Tuning parameter T": we choose the best value for this parameter by training the model
with different possible values as in scenario 2 and selecting the best value for parameter
T based on the AUC (0.885). Figure 4.11 depicts the relation between the AUC and

parameter 7.

. Training the model and calculating the frontier: one-class SVM with selected parame-
ters (v = 0.003 and v = 0.05)

. Detecting probable attacks: in this step, the test file, which contains the attack observa-
tions, is used for the classification, and any observation that falls outside the calculated

frontier is classified as a probable attack.

. Reduction of false alarms and detection of attacks: calculating safe SVs set, testing
unseen observations on the trained model, and finding probable attacks, comparing

these probable attacks with safe SVs, and concluding real attacks.

61

1.0
0.9 | E
lsss}
L
@ L]
E 0.8 .. B
3
< Cas
e
0.7 | .-]
o
[ssae)
l[aa®]
[aa)
O T T L T L LT
0.6 | E
0.0 0.2 0.4 0.6 0.8 1.0

Threshold Values

Figure 4.11 AUC versus parameter 1" (scenario 3)

Note that in this scenario, the values of the hyper-parameters are tuned again since we remove
outliers with the upper bound of 1 percent. Based on figure 4.12, which shows the scatterplot
with the decision boundary, we can observe that the decision boundary has changed for all
three subplots. The non-attack area becomes smaller compared with the subplots in figure
4.6. This change is acceptable since this scenario has a different set of training patterns
compared to the two other scenarios, which is why the safe zone has diminished, i.e., the
zone where non-attack patterns should be located. Hence, through a change in the feature

variances, the resulting decision function is modified.

62

= 2D representation of higher-dimensional decision boundary
e®e MNon-attack train observations

++ 4+ MNon-attack test observations

@®@ Support Vectors

ooo Probable attacks
@@ Detected False Positive

5

a

s 3
3
I

E 2

1

0

—1

CPU Load

5

a

- 3
o
I

E 2

1

(0]

—1

5

4

E 3
—

= 2
(=

(] 1

0]

—1

CPU Usage

Figure 4.12 Scatterplot with decision boundary (scenario 3)

4.5.4 Comparison of the three scenarios

According to the results presented in the previous sections, the most promising scenario is the
second one. Table 4.2 summarizes the performance comparison among the three proposed
scenarios. The value of recall is constant since the number of misclassified true attacks
remains the same in all three scenarios. This constant number of detected true attacks shows

that adding the false alarm reduction does not affect ;. The result also reveals the influence

63

of reducing the false alarms via the metrics of AUC, precision and F-measure. The highest
performance is obtained through the second scenario, with a value of 0.963 for the F-measure
metric. This shows a 0.344 better performance in terms of F-measure compared to scenario
1 and 0.522 better compared to scenario 3. In addition, scenario 1 exhibits higher F-measure
performance compared to scenario 3. This result suggests that removing outliers deteriorates
err- Note that in both scenario 2 and scenario 3, we use the false alarm reduction step;
however, in scenario 3 we remove the outliers with the upper bound of 1 percent. Moreover,

this result verifies assumption HOd.

Table 4.2 Performance of one-class SVM in three scenarios

Scenario | AUC | Precision | Recall | F-measure | avg computation time (s)
Scenario 1 | 0.999 | 0.448 1 0.619 0.306
Scenario 2 | 0.999 | 0.928 1 0.963 0.336
Scenario 3 | 0.997 | 0.867 1 0.441 0.58

The computation time for the training of 28488 (80 percent) training patterns is 0.274 sec-
onds, and the computation time for the prediction of 6079 (20 percent) test patterns is
0.032 seconds. Hence, the computation time for scenario 1 is 0.306 seconds. Moreover, the
computation time for the false alarm reduction phase is 0.03 seconds. Therefore, the total
computation time for scenario 2 is 0.336 seconds. The computation time for scenario 3 is
0.274 + 0.306 = 0.58 (the computation time here is in the average of 25 runs).

The confusion matrix plot is a technique for visualizing the misclassification and true clas-
sification rates. The confusion matrices plotted in figures 4.13 to 4.15 present the values of
FN, TP, TN and FP for all the three scenarios.

In figure 4.16, another technique for comparing different scenario performances, namely, ROC
graph, is presented. According to this figure, all three curves show the same TP rate, while
the red line representing scenario 2 demonstrates better performance in terms of FP rate.
This result suggests that the proposed second scenario with the false alarm reduction phase
is better in terms of FP rate than the two other scenarios. Recall that in this real dataset,
the number of non-attack observations is considerably higher compared to attack patterns;
hence, the differences between ROC score values are very small. Consequently, we assume
that there are only 400 non-attack observations. Based on this assumption, we can observe

that the differences become larger and consequently more visible.

According to plots 4.6, 4.9 and 4.12, we observe a relationship between two features CPU

load and CPU usage. One approach is to remove one of them and calculate the performance.

64

Confusion matrix One-class SWVM

5600

4800

16

4000

{3200

True label

- 2400

1l (o] 13 11600

4800

Predicted label

Figure 4.13 Confusion matrix plot for one-class SVM using the data without outliers (scenario

1)

Confusion matrix One-class SVM

5600

4800

4000

{3200

True label

12400

1L o 13 <1600

1800

Predicted label

Figure 4.14 Confusion matrix plot for one-class SVM using the data without outliers (scenario
2)

However, according to annex B, removing one of these features results in poor F-measure
value. Although we give more weights to almost same information, we gain a better result.
Hence, we keep both features to achieve a better value of F-measure. Moreover, in all of

these plots, although the decision boundary is close to the origin, it never passes the exact
point of (0,0).

True label

Confusion matrix One-class SWVM

5600

4800

33

4000

3200

12400

(0] 13 - 1600

1800

Predicted label

65

Figure 4.15 Confusion matrix plot for one-class SVM using the data without outliers (scenario

3)

True Positive Rate

1-0 _I T T T T —

-

p
-~
P
P -
-
0.8} L i
/I
-~
P -
-~
P -~
0.6 | - .
-
-~
-~
-
-~
P
0.4} e 4
P
-~
P
-
-~
-~
-~
0.2 1 7 B Scenario l
Pad Bl Scenario 2
-~
e EEl Scenario 3
-~
0_0 1 L 1 L
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 4.16 ROC graph for one-class SVM (all three scenarios)

66

These experiments are performed using the Ubuntu 14.04 64bit operating system running on a
system with an IntelCore™™i5C PU2.40G H z with 4GB RAM. Additionally, we use Python
2.7 scripting language to implement these algorithms. Moreover, for training one-class SVM,

we use a library called scikit-learn developed by Pedregosa et al. (2011).

4.6 Empirical results on other algorithms

In this section, we compare our proposed scenarios with three different one-class classification
algorithms on the real dataset. These algorithms are MoG density estimation, k-means data
description and Parzen density. To implement these algorithms, we use a toolbox in MATLAB

called dd__tools provided by Tax (2015).

Note that we use 5-fold cross-validation for all of these algorithms to tune their hyper-
parameters. In Parzen density estimation, the rate of outliers was tuned to 0; in MoG
density, the rate of outliers was tuned to a value of 0.001 with N,/¢ equal to 2; and in
k-means data description, the rate of outliers was tuned to 0 with a value of & = 3. Note
that we only adjust the magic parameters and the free parameters are adjusted automatically

by the algorithm.

Table 4.3 summarizes the different algorithms on the real dataset, suggesting that the second
scenario achieved a comparable result to k-means data description. The third best result
is for MoG density estimation with an F-measure value of 0.839. From all the methods,
Parzen density depicts the lowest value of F-measure (0.341). As suggested in Tax (2001)
thesis, Parzen density is a very weak algorithm since it does not have any magic parameter
to adjust, and if the data does not represent the characteristics of the data, it fails to find a

good classifier that can generalize well.

k-means shows the lowest training time comparing all the other methods. In general, all of
these methods have lower training time comparing one-class SVM scenarios because we make
assumptions regarding the data distribution. It should be noted that these three techniques

are implemented in Matlab, whereas the one-class scenarios are implemented in Python.

It should be emphasized that all of these methods are successful in detecting real attacks
since the value of FN is zero. Furthermore, there are almost 6000 observations in the test
set that only a small number of them are categorized mistakenly in outlier class. In other
words, although the F-measure value for Parzen density estimation is low, this does not show
that it completely fails. This result suggests that comparing other methods on this dataset
it resulted in the highest FP rate.

Figure 4.17 shows ROC curves for these three algorithms and three scenarios. The worst

67

Table 4.3 Comparison of one-class classification methods

Parzen | MoG | k-means | Scenario 1 | Scenario 2 | Scenario 3
F-measure 0.341 | 0.839 |1 0.619 0.963 0.441
FP 50 5 0 16 1 33
FN 0 0 0 0 0 0
avg training time (s) | 0.032 | 0.125 | 0.081 0.306 0.336 0.58

one-class classifier is Parzen density and the best frontier is scenario 2.

1o} |

0.8

o
o

True Positive Rate

o
'S

I Scenario 1
I Scenario 2 ||
Il Scenario 3
Parzen
Hl MoG
k-means

0.2

0.0

0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 4.17 ROC curves for various one-class classification algorithms and three scenarios

4.7 Empirical result on KDD99 dataset

KDD99 is a dataset obtained from TCP dump data by MIT Lincoln Labs in 1998. This
dataset consists of more than five million observations and 39 different features (Goeschel,
2016). The values of these features are either categorical or numerical. We use 30000 target

observations and 3502 outlier patterns. Based on the result of 5-fold cross-validation, we

68

compute the value of v = 0.05 and the value of v = 0.1. For the feature selection step, we
use the Lasso algorithm, leading to reducing the number of features to 6. The results of the
first and second scenarios (averaged in 25 runs) are reported in table 4.4, suggesting that the

proposed false alarm reduction step has reduced the FP rate (scenario 2).

Table 4.4 Experimental results of two scenarios on the KDD99 dataset

avgF-measure | avgAUC | avgFP | avgFN
Scenario 1 0.612 0.805 365 231
Scenario 2 0.679 0.818 212 231

4.8 Impact of the sample size

To demonstrate the impact of sample size and dimensionality versus F-measure, FP reduction
time and training time, we created six artificial datasets with various sizes (100, 500, and 1000
training patterns) and different dimensionalities (2D and 10D) that are normally distributed.
These artificial datasets have a mean of zero and variance of 10. Moreover, we consider five

outliers in all six of these datasets.

The experimental results in table 4.5 suggest that by increasing the number of observations,
both the training time and FP reduction time increase. This behavior is the same for increas-
ing the dimensionality. Moreover, having the same number of observations with increasing
dimensions decreases the F-measure value. This result occurs because if we increase dimen-
sions, more training points are needed to achieve a good decision boundary, as suggested in
Tax (2001). However, with the same dimensions, if we increase the sample size from 500 to
1000, the F-measure value decreases, but if we increase the sample size from 100 to 500, the

F-measure value decreases.

Table 4.5 Experimental results for various sample sizes

Sample size Dimensions Training time(s) F-measure FP reduction time(s) v
100 2 0.0007 0.657 0.0002 0.05
500 2 0.0011 0.682 0.0003 0.01
1000 2 0.0018 0.679 0.0005 0.005
100 10 0.0008 0.513 0.0005 0.05
500 10 0.0016 0.539 0.0007 0.01

1000 10 0.0025 0.405 0.0008 0.005

69

4.9 Discussion of empirical result

In this chapter, we discussed the test phase of our proposed method, and we compared it
to a one-class SVM alone and a one-class SVM trained without the outliers. Through this
comparison, we find that this method can decrease the false alarm rate. Under the same
conditions, scenario 2 exhibited the best performance compared to the two other scenarios.
Specifically, using the false alarm reduction method based on one-class SVM increases the
F-measure by 0.522 compared to scenario 3. In addition, scenario 2 achieved 0.344 better
performance in terms of F-measure compared to one-class SVM alone. This result suggests
that our proposed false alarm reduction method can be used with this algorithm to reduce

the FP rate and consequently results in better detection of true attacks.

Furthermore, we investigated the proposed method on the KDD99 dataset, which suggested
that by adding the proposed false alarm reduction step to one-class SVM, there is a decrease

in Err-

Finally, we suggested that by increasing the sample size and dimensionality, the training time
and FP reduction time increase. Additionally, based on the experimental results, with the

same sample sizes, the F-measure value decreases when the dimensionality increases.

Overall, based on the experiments on the real and KDD99 datasets, we can conclude that
the proposed false alarm reduction method is effective in reducing €;;. Moreover, one-class
SVM with this step can obtain an F-measure value comparable to those obtained using the

k-means data description and MoG density estimation methods.

70

CHAPTER 5 CONCLUSION

5.1 Advancement of knowledge

In the introduction, we addressed the problem of the high false alarm rate of anomaly-based
intrusion detection systems and proposed using the outlier detection capability of the one-
class SVM algorithm to solve this problem. We made a contribution using the outliers and
SVs to reduce the number of false alarms provided by this algorithm. In this algorithm,
the fraction of outliers can be adjusted by a user-defined parameter called v. We tend to
choose smaller values for this parameter for the task of outlier detection. In the proposed
false alarm reduction method, we first need to calculate the set of SVs and outliers. Second,
we remove outliers from the SV set, leading to a safe SV set. Third, we use the trained
model on unseen observations to obtain a set of probable attacks. Fourth, we compare all of
these probable attack observations with safe SV patterns based on Euclidean distance, and
we remove any observations from the probable attack set if they have a smaller Euclidean
distance value compared to parameter 7. Finally, we copy all the observations remaining in
the probable attack set as real attacks. This approach leads to a smaller value of FP rate.
Parameter T plays the role of a threshold in this proposed method, and it can be tuned by

K-fold cross-validation. We choose this value based on the ROC score metric.

In the process of training the one-class SVM algorithm, the RBF kernel was employed. More-
over, we selected features based on their variation in attack observations. In greater detail,
we used feature scaling to [0, 1] to transform the values of data. For scenarios 2 and 1, we
removed the non-target observations to avoid the negative influence of these observations on
feature scaling. Moreover, for scenario 3, we removed both outliers and non-target obser-
vations from the data prior to feature scaling. Then, we performed model selection using
K-fold cross-validation, leading to proper values to train our model based on the one-class
SVM algorithm.

We proposed three different scenarios, including one-class SVM alone, one-class SVM with
false alarm reduction step and one-class SVM trained without outliers. In the first scenario,
we implemented the one-class SVM. In the second scenario, we implemented one-class SVM,
and we reduced the number of false alarms using the proposed false alarm reduction step.
In the third scenario, before training the model, we removed the outliers from the training

data, and then we trained the model, followed by reducing false alarms.

We also investigated the results of three different one-class classification algorithms, namely,

71

Parzen density estimator, MoG density and k-means data description, for comparison with
our proposed scenarios. The results suggest that the second scenario, one-class SVM with
false alarm reduction step, achieved a better F-measure value compared to MoG density
estimation algorithm. The result obtained by k-means data description is 1 for F-measure
metric. Moreover, the other one-class classification algorithm, Parzen density estimation, the

lowest F-measure value comparing the other methods.

Subsequently, we investigated the experimental results of the three scenarios on the KDD99

dataset. The results again suggest that the proposed false alarm reduction method is effective.

Finally, we investigated the impact of sample size and dimensionality in one-class SVM,
and we suggest that increasing dimensions decreases the F-measure value. This is because
with higher dimensions, the sample size needed to model the one-class classifier becomes
considerably larger as suggested in Tax (2001). Moreover, with increasing dimensionality,

the training time and FP reduction time slightly increase.

5.2 Limits and constraints

The proposed method has the following limitations:

1. The provided data are real data obtained from servers, and we have a small amount
of attack observations to perform model selection. In the case of data with no attack

observations, the algorithm is not usable.

2. The proposed false alarm reduction method is based on SVs; therefore, we can only
add it to techniques that are based on SVs.

3. The possible values for parameter T" are related to the data transformation step, which
shows the dependency of these values on the chosen data transformation technique.
This means that we cannot provide a universal good value for this parameter; hence,
this parameter should be tuned. However, the proposed method will still be efficient if

we have a good value for this parameter.

4. The proposed method requires that we check all probable attacks with the calculated
outliers and SVs. This shows that even true alarms should be checked using this

technique, leading to having more computation time.

5. We have only tested the algorithm on numerical values. In the case of data with

categorical values, the code should be modified.

72

5.3 Recommendations

For some of the aforementioned constraints in the previous section, we have some recom-
mendations. For example, for limitation 1, we can create some artificial outliers as suggested
by Tax (2001), leading to simulated attack observations. In fact, he considers a box around
the data set that ensures all the training observations are in the box, and then he uniformly
distributed the data (box-shaped). It is also possible to use structural approaches to gen-
erate outlier observations that can show the good characteristics of the data. Additionally,
for limitation 3, one automatic approach is to calculate all the Euclidean distances and use

statistical metrics to produce a good set of possible values for parameter 7.

We observe that there is a relationship between two features in real data. One approach is to
employ independent component analysis, extracting the underlying components in the data.
These selected components are statistically independent and non-Gaussian. In this case, we
can explore the effect of independent features on the performance of the false alarm reduction
method.

It is possible to use an enhanced version of a one-class SVM such as the ETA version intro-
duced by Amer et al. (2013) to investigate the influence of this method. Moreover, we have
tested this method only in intrusion detection systems; however, we can evaluate its perfor-

mance in other applications, such as health care, credit fraud detection or video surveillance.

One future avenue for research could be learning the patterns dynamically and using this
to further reduce the false alarm rate. Consequently, we can build a real-time intrusion
detection method where it can collect new patterns as either non-attack or attack to train

the model in real-time and simultaneously detect real attacks.

73

REFERENCES

M. Amer, M. Goldstein, and S. Abdennadher, “Enhancing one-class support vector machines
for unsupervised anomaly detection,” in Proceedings of the ACM SIGKDD Workshop on
Outlier Detection and Description. ACM, 2013, pp. 8-15.

J. P. Anderson, “Computer security threat monitoring and surveillance,” James P. Anderson

Company, Fort Washington, Pennsylvania, Tech. Rep., 1980.

D. P. Bertsekas, Nonlinear programming. Athena scientific Belmont, 1999.

C. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

C. M. Bishop, Neural networks for pattern recognition. Oxford university press, 1995.

V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM computing
surveys (CSUR), vol. 41, no. 3, p. 15, 20009.

N. Devarakonda, Srinivasulu, V. Kumari, and A. Govardhan, “Intrusion detection system
using bayesian network and hidden markov model,” Procedia Technology, vol. 4, pp. 506-514,
2012.

R. O. Duda, P. E. Hart, D. G. Stork et al., Pattern classification. Wiley New York, 1973,

vol. 2.

T. Fawcett, “An introduction to roc analysis,” Pattern recognition letters, vol. 27, no. 8, pp.
861-874, 2006.

K. Goeschel, “Reducing false positives in intrusion detection systems using data-mining
techniques utilizing support vector machines, decision trees, and naive bayes for off-line
analysis,” in SoutheastCon, 2016. IEEE, 2016, pp. 1-6.

A. H. hassan, S. Lambert-lacroix, and F. Pasqualini, “Real-time fault detection in semicon-
ductor using one-class support vector machines,” International Journal of computer theory

and engineering, vol. 7, no. 3, p. 191, 2015.

T. Hastie, R. Tibshirani, G. James, and D. Witten, The Elements of Statistical Learning.
Springer, 2013, vol. 6.

J. J.Davis and A. J.Clark, “Data preprocessing of anomaly based network intrusion detec-

tion: A review,” Computer and Security, vol. 30, no. 6, pp. 353-375, 2011.

74

S. Juma, Z. Muda, and W. Yassin, “Reducing false alarm using hybrid intrusion detection
based on x-means clustering and random forest classification,” Journal of Theoretical €

Applied Information Technology, vol. 68, no. 2, 2014.

S. S. Khan and M. G. Madden, “One-class classification: taxonomy of study and review of

techniques,” The Knowledge Engineering Review, vol. 29, no. 03, pp. 345-374, 2014.

A. D. Landress, “A hybrid approach to reducing the false positive rate in unsupervised

machine learning intrusion detection,” in SoutheastCon, 2016. I1EEE, 2016, pp. 1-6.

K.-L. Li, H-K. Huang, S.-F. Tian, and W. Xu, “Improving one-class svm for anomaly
detection,” in Machine Learning and Cybernetics, 2003 International Conference on, vol. 5.
[EEE, 2003, pp. 3077-3081.

W. Li, W. Meng, X. Luo, and L. F. Kwok, “Mvpsys: Toward practical multi-view based
false alarm reduction system in network intrusion detection,” Computers & Security, vol. 60,

pp. 177-192, 2016.

S. M.Erfani, S. Rajasegarar, S. Karunasekera, and C. Leckie, “High-dimensional and large-
scale anomaly detection using a linear one-class svim with deep learning,” Pattern Recogni-
tion, vol. 58, pp. 121-134, 2016.

A. Mokarian, A. Faraahi, and A. G. Delavar, “False positives reduction techniques in intru-
sion detection systems-a review,” International Journal of Computer Science and Network
Security (IJCSNS), vol. 13, no. 10, p. 128, 2013.

S. Mukkamala, G. Janoski, and A. Sung, “Intrusion detection using neural networks and
support vector machines,” in Neural Networks, 2002. IJCNN’02. Proceedings of the 2002
International Joint Conference on, vol. 2. TEEE, 2002, pp. 1702-1707.

D. Narsingyani and O. Kale, “Optimizing false positive in anomaly based intrusion detection
using genetic algorithm,” in MOOCs, Innovation and Technology in Education (MITE),
2015 IEEFE 3rd International Conference on. 1EEE, 2015, pp. 72-77.

W. S. Noble, “What is a support vector machine?” Nature biotechnology, vol. 24, no. 12,
pp. 1565-1567, 2006.

H. Om and A. Kundu, “A hybrid system for reducing the false alarm rate of anomaly
intrusion detection system,” in Recent Advances in Information Technology (RAIT), 2012
1st International Conference on. TEEE, 2012, pp. 131-136.

75

S. Omar, A. Ngadi, and H. H.Jebur, “Machine learning techniques for anomaly detection:

An overview,” International journal of computer applications, vol. 79, no. 2, 2013.

E. Parzen, “On estimation of a probability density function and mode,” The annals of
mathematical statistics, vol. 33, no. 3, pp. 1065-1076, 1962.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 28252830, 2011.

Ponemon and Damballa, “The cost of malware containment,” 2015.
Ponemon and IBM, “2016 cost of data breach study: Global analysis,” 2016.

B. Scholkopf and A. J. Smola, Learning with kernels: support vector machines, requlariza-

tion, optimization, and beyond. MIT press, 2002.

B. Scholkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson, “Estimating
the support of a high-dimensional distribution,” Neural computation, vol. 13, no. 7, pp.
1443-1471, 2001.

H. J. Shin, D.-H. Eom, and S.-S. Kim, “One-class support vector machines—an application
in machine fault detection and classification,” Computers € Industrial Engineering, vol. 48,

no. 2, pp. 395408, 2005.

D. M. J. Tax, “One-class classification,” Ph.D. dissertation, TU Delft, Delft University of
Technology, 2001.

D. Tax, “Ddtools, the data description toolbox for matlab,” June 2015, version 2.1.2.

R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal
Statistical Society. Series B (Methodological), pp. 267-288, 1996.

K. M. Ting, “Precision and recall,” in Encyclopedia of machine learning. Springer, 2011,

pp. 781-781.

V. Vapnik and A. Sterin, “On structural risk minimization or overall risk in a problem of

pattern recognition,” Automation and Remote Control, vol. 10, no. 3, pp. 1495-1503, 1977.

V. N. Vapnik, Statistical learning theory. Wiley New York, 1998, vol. 1.

76

F. Xiao and X. Li, “Using outlier detection to reduce false positives in intrusion detection,”
in Network and Parallel Computing, 2008. NPC' 2008. IFIP International Conference on.
[EEE, 2008, pp. 26-33.

S. Yin, X. Zhu, and C. Jing, “Fault detection based on a robust one class support vector

machine,” Neurocomputing, vol. 145, pp. 263-268, 2014.

M. Yousef, S. Jung, L. C. Showe, and M. K. Showe, “Learning from positive examples when
the negative class is undetermined-microrna gene identification,” Algorithms for Molecular
Biology, vol. 3, no. 1, p. 2, 2008.

A. Ypma and R. P. Duin, “Support objects for domain approximation.” ICANN, 1998.

M. Zhang, B. Xu, and J. Gong, “An anomaly detection model based on one-class svm to
detect network intrusions,” in 2015 11th International Conference on Mobile Ad-hoc and
Sensor Networks (MSN). IEEE, 2015, pp. 102-107.

77

ANNEXE A NUMERICAL EXAMPLE

In this annex, we discuss how exactly the outliers are calculated using one-class SVM. To do
so, we use one 2D toy example of ten observations (n = 10) such that 1 of them is an outlier
and the rest belongs to the target class. Table A.1 shows the values of these observations.
Note that all the equations provided in this appendix have been already explained in chapter

3, however, for convenience, we provide them again.

Table A.1 Observations

X1 X2 | Result
2 1 1

© 00 3 O T = W N =
DO
(@)
[\
S = = O W NN = O
1
O T S e S e e e G Y

N O W W N W ==

—
)

Here, the value of v is considered equal to 0.2. We assume that the RBF kernel is used with
~v = 0.05. As such, we can calculate the kernel matrix as depicted in table A.2. These values
are computed based on the equation A.1. For example K ((z1,73)) = exp(—yXi_;(z1; —
23;)?) = exp(—0.05 % ((2 — 1)* + (1 — 1)?)) = 0.951. p is the number of dimensions that in

here it is equal to 2.

P
K({x;,x)) = exp(VZ (wij — xkj) (A.1)
7=1

For outlier detection task based on one-class SVM algorithm, first, we need to train the model,
i.e. compute the one-class classifier. Then, we can use the calculated frontier for detection
of outliers in the training set. Recall that «a; is the dual coefficient of ith observation, and

K;; is the dot product between observation ¢ and observation j.

78

Table A.2 Kernel matrix

1 2 3 4 5 6 7 8 9 10
1 1 0.951 0.905 0.905 0.819 0.905 0.951 0.819 0.951
2 0 1 0 0 0 0 0 0 0 0
3 0951 O. 1. 0951 0779 0.779 0.779 0.819 0.951 0.905
4 0905 0. 0.951 1. 0.819 0905 0.67 0.779 0.905 0.779
5 0905 0. 0.779 0.819 1. 0905 0.819 0.951 0.607 0.779
6 0819 0. 0.779 0.905 0.905 1. 0.607 0.779 0.67 0.638
7 0905 0. 0779 0.67 0.819 0.607 1. 0951 0.607 0.951
8 0951 0. 0.819 0.779 0.951 0.779 0.951 1. 0.638 0.905
9 0819 0. 0951 0.905 0.607 0.67 0.607 0.638 1. 0.779
10 0951 0. 0.905 0.779 0.779 0.638 0.951 0.905 0.779 1.

Hence, we perform the following steps to initialize the algorithm:

1. we randomly initialize 20 percent of training points to the value of % = m = 0.5.
Suppose that we choose ap, = 0.5 and ay; = 0.5. Hence, at iteration 1 the values of

vector «v is as follows:

0,0.5,0,0,0,0,0.5,0,0,0]

2. we calculate the output vector based on the following equation:

Oi = KQiO[Q -+ K7i0é7 + CZ (AQ)

Moreover, C; is calculated by the equation C; = Zi;ﬁm aK;;. In equation A.2, the
values of vector C; are zero, since all the dual coefficients except 2 and 7 are zero. Now,
we can calculate the values of the output vector for all the observations, as follows:
O = Kyjag + Knjay +C1 = 0% 0.5+ 0.905% 0.5+ 0 =0.453

Oy = Kogtvg + Kqgay + Co = 1%x0.54+0%x0.5+0=0.5

O3 = Kozan + Krzar + C3 =0+ 0.5+ 0.779 %« 0.5+ 0 = 0.39

O, = Koyag + Kpyor +Cy = 0% 0.5+ 0.67%0.5+0=0.335

O5 = Kosan + Krsar + C5 = 0% 0.5+ 0.819% 0.5 + 0 = 0.449

Og = Kogrg + Krgar + Cs = 0% 0.5+ 0.607 x 0.5+ 0 = 0.303

O7 = Korao + K7z + C7; =005+ 1%x05+0=0.5

Og = Kogan + Krgar + Cs = 0% 0.5 4 0.951 %« 0.5+ 0 = 0.475

Og = Koy + Kqgary + Co = 0% 0.5+ 0.607 %« 0.5+ 0 = 0.39

79

010 = Kgloag + K71()Oé7 -+ ClO =0x0.54+0951%x0.54+0=0.475

3. we initialized p = max{0; : i€[l], a; > 0} = max(Oz,07) = 0.5.

Once the initialization of the algorithm is done, we can optimize the dual coefficients based

on the following steps:

1. we select the first pair of dual coefficients («;) based on KKT conditions:

(O; —p).a; >0 (A.3)
(p— Oi)'(;l C) > 0. (A4)

Based on the equations A.3 and A.4, we can find the observations that violate these

conditions, as follows:

(O1 —p).ag > 0= (0453 —0.5).0>0=0>0= False
(p—01).(55 —a1) >0=(0.5-0.453).(0.5 - 0) > 0=0.113 > 0 = True

(O — p)ay > 0= (0.5—0.5).0>0=0> 0= False
(p—02).(5 —az) >0=(0.5—0.5).(0.5-0.5) >0=0.113 > 0 = False

v
The rest of these calculation is presented in table A.3 at iteration 1. Among all the
observations that violate the KKT conditions, we choose the first observation.

2. we select second dual coefficient («;) for optimization based on the following equation:

J = argmazyesy,,||0; — O;]|. (A.5)

In equation A.5, SV, has the indexes of SV observations. In the first iteration, this
set is empty, thus, we choose the second dual coefficient based on its KKT output.
Consider that we choose observation 7. If this set is not empty, we need to choose the
one that has the maximum difference of its output to the members of SV,,; set based

on equation A.5.

3. we calculate A = o; + o = oy +ay =0+ 0.5 = 0.5.

80

4. we update the value of o based on following equation:

0, — 0;

(A.6)

_ *
Ajtemp = CY]' +

In equation A.6, o] is the previous a; value.
So, the new value of atenm, is calculated as follows:

ok 0,-07 0.453—0.5 _ 0.047 _
Qrtemp = Q7 + K11+K77—2K17'0'5 + THi—2:0905 — 0.5+ 519 = 0.253

Before updating the value of a7, we need to calculate L = max (0, (A—%)) = max(0,0) =

vl
0 and H = min(%, A) = min(0.5,0.5) = 0.5

vl

Now, we need to select the value of a; based on the following equation:
ar = min(max (L, Qriemp), H) = min(maz(0,0.253),0.5) = 0.253

5. we modify oy’s value (o = A —a; = A —ay = 0.5 —0.253 = 0.247).

6. we update parameter p = maxz{O; : i€[l],a; > 0} =0

7. we add all the observations with 0 < a; < V%, te{1,..,10} to SV, set.

Hence, observations 1 and 7 are added to SV, set, since their dual coefficient values

are between 0 and 0.5.

8. we update vector O based on equation:

Olz] = (Z aik(x:,x) — p>. (A7)

These steps should iterate until there is no observation that violates any KKT conditions.

Once the algorithm has calculated the dual coefficients and the value of intercept (p), we can
calculate the output of decision function for all the training points based on equation A.S.

This equation is the equation of the frontier.
Flx) = sgn(zaiuxi,x) - p). (A%)

In table A.3 , we summarized the optimization algorithm. The results of 13 iterations have
shown, however, we illustrated only the important variables such as Lagrangian parameter

«, the output of each iteration and the calculated outputs of KKT conditions (Cy, Cy).

0.7

Table A.3 — Optimization table

A% 1 2 3 4 5 6 7 8 9 10
Qiterl 0 0.5 0 0 0 0 0.5 0 0 0
Oiter1 0.453 0.5 0.39 0.335 | 0.409 | 0.303 0.5 0.475 | 0.303 | 0.475
C1-C2 F-T F-F F-T F-T F-T F-T F-F F-T F-T F-T
itera | 0.2471 0.5 0 0 0 0 0.253 0 0 0

Output | -0.024 0 -0.068 | -0.107 | -0.069 | -0.144 | -0.023 | -0.025 | -0.144 | -0.025
C1-C2 F-T F-F F-T F-T F-T F-T F-F F-T F-T F-T
Qiters 0 0.5 0 0 0 0.247 | 0.253 0 0 0
Oitera | -0.069 0 -0.111 | -0.107 | -0.07 -0.1 | -0.097 | -0.067 | -0.181 | -0.102
C1-C2 F-T F-F F-T F-T F-T F-T F-T F-T F-T F-T
Qiterd 0 0.452 0 0 0 0.247 | 0.301 0 0 0
Output | 0.475 | 0.452 | 0.427 | 0.425 0.47 0.43 0.451 | 0.479 | 0.348 | 0.444
C1-C2 F-F F-F F-T F-T F-F F-T F-T F-F F-T F-T
Qiters 0 0.452 0 0 0 0.123 | 0.301 0 0.124 0
Oiters 0.023 0 -0.004 | -0.027 | -0.019 | -0.063 | -0.001 | 0.009 | -0.063 | 0.009
C1-C2 FF FF F-T F-T F-T F-T F-T F-F F-T F-F
Qiter6 0 0.452 0 0 0 0.123 | 0.301 0 0.124 0
Output | 0.475 | 0.452 | 0.448 | 0.425 | 0.433 | 0.389 | 0.451 | 0.461 | 0.389 | 0.461
C1-C2 F-F F-F F-T F-T F-T F-T F-T F-F F-T F-F
Qitert 0 0.452 0 0 0 0.202 | 0.222 0 0.124 0
Output | 0.016 0 -0.004 | -0.008 | -0.012 | -0.032 | -0.032 | -0.004 | -0.058 | -0.015
C1-C2 F-F F-F F-T F-T F-T F-T F-T F-T F-T F-T
Qliters 0 0.452 0 0 0 0.202 | 0.222 0 0.124 0
Output | 0.468 | 0.452 | 0.448 | 0.444 0.44 0.42 0.42 0.448 | 0.394 | 0.437
C1-C2 F-F F-F F-T F-T F-T F-T F-T F-T F-T F-T
Qiter9 0 0.423 0 0 0 0.202 | 0.222 0 0.153 0
Output | 0.04 | -0.029 | 0.024 | 0.018 | 0.005 | -0.013 | -0.015 | 0.014 | -0.029 | 0.007
C1-C2 F-F F-T F-F F-F F-F F-T F-T F-F F-T F-F
Qiter10 0 0.423 0 0 0 0.202 | 0.222 0 0.153 0
Output | 0.492 | 0.423 | 0.476 0.47 0.457 | 0.439 | 0.437 | 0.466 | 0.423 | 0.459
C1-C2 F-F F-T F-F F-F F-F F-F F-T F-F F-T F-F
Qiterll 0 0.423 0 0 0 0.202 | 0.222 0 0.153 0
Output | 0.053 | -0.016 | 0.037 | 0.031 | 0.018 0 -0.002 | 0.027 | -0.016 | 0.02

Continued on next page

82

Table A.3 — Optimization table (continued and end)

\% 1 2 3 4 5 6 7 8 9 10
C1-C2 F-F F-T F-F F-F F-F F-F F-T F-F F-T F-F
Qiter12 0 0.423 0 0 0 0.202 | 0.222 0 0.153 0

Output | 0.492 | 0.423 | 0.476 0.47 | 0.457 | 0.439 | 0.437 | 0.466 | 0.423 | 0.459
C1-C2 F-F F-T F-F F-F F-F F-F F-T F-F F-T F-F
Qliter13 0 0.423 0 0 0 0.202 | 0.222 0 0.153 0

Output | 0.053 | -0.016 | 0.037 | 0.031 | 0.018 0 -0.002 | 0.027 | -0.016 | 0.02
C1-C2 F-F F-T F-F F-F F-F F-F F-T F-F F-T F-F

Based on table A.3, observations 2,6,7,9 are selected as SVs, i.e. observations that have
impact on determination of the output for each observations with dual coefficient greater

than zero.

The last row of this table depicts the output of decision function at iteration 13 for all of the
ten training observations. Now, we can classify all the training points based on the following

equation:

hz) = Target if f(x)>0 (A9)
Outlier if f(z) <0 .

Based on equation A.9, at iteration 13, observations 2, 7,9 are outliers and the rest are target

observations. Obviously, observations 6 and 8 are false alarms.

It should be noted that there are more iterations needed for this algorithm to have no
observations that violates the KKT conditions. Note that the main purpose of this example
is to show the exact steps of this algorithm based on the information provided in Scholkopf
et al. (2001). If we use LIBSVM, we end up with different dual coefficient values and different
intercept value but the same set of SV,,;, = 2,6,7,9.

83

ANNEXE B EMPIRICAL RESULT OF ROBUST SCALING

In this annex, we present the result of scaling data with robust scalar instead of feature scaling
to [0,1]. In this case, we scale all the training points without removing attack patterns.
Here, we used the same method of feature selection visually (3 features). Table B.1 shows
the selected values for hyper-parameters of one-class SVM algorithm. Based on the result,

we select v = 0.004 and v = 0.05 for training the model.

Table B.1 Selected parameters of one-class SVM in 10 different runs (robust scaling)

avgF-measure | avgFN | avgFP | avgAUC | v 0
Run # 1 0.106 8 76 0.686 0.002 | 0.25
Run # 2 0.101 9 62 0.648 0.001 | 0.05
Run # 3 0.114 9 53 0.649 0.001 | 0.15
Run # 4 0.115 8 70 0.686 0.004 | 0.05
Run # 5 0.116 7 72 0.696 0.004 | 0.05
Run # 6 0.124 7 66 0.696 0.004 | 0.15
Run # 7 0.097 8 76 0.676 0.002 | 0.05
Run # 8 0.098 8 76 0.667 0.001 | 0.05
Run # 9 0.128 7 72 0.715 0.004 | 0.05
Run # 10 0.119 7 72 0.706 0.005 | 0.05

According to table B.1, we can conclude that feature scaling to [0,1] is a better choice
comparing robust scalar (cf 4.1). F-measure values are much higher comparing feature scaling
method.

84

ANNEXE C EMPIRICAL RESULT OF LASSO REGRESSION AS
FEATURE SELECTION METHOD

In this annex, we explore the result of using Lasso regression as feature selection method.
With this technique, we end up choosing two features (CPU Voltage and CPU Usage) as
the selected features. Table C.1 depicts the result of 10 different runs on the real dataset
for model selection. Based on this empirical results, we can conclude that selecting features

visually has a better performance comparing Lasso regression.

Table C.1 Selected parameters of one-class SVM in 10 different runs (Lasso)

avgF-measure | avgFN | avgFP | avgAUC | v vy
Run # 1 0.186 11 4 0.567 0.001 | 0.25
Run # 2 0.158 11 4 0.567 0.001 | 0.05
Run # 3 0.133 11 5 0.548 0.001 | 0.15
Run # 4 0.117 11 5 0.557 0.001 | 0.05
Run # 5 0.155 11 4 0.557 0.001 | 0.05
Run # 6 0.157 11 4 0.567 0.001 | 0.15
Run # 7 0.17 11 5 0.558 0.001 | 0.05
Run # 8 0.153 11 4 0.558 0.001 | 0.05
Run # 9 0.124 11 5 0.548 0.001 | 0.05
Run # 10 0.172 11 4 0.567 0.001 | 0.05

	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS AND ABBREVIATIONS
	LIST OF APPENDICES
	1 INTRODUCTION
	1.1 Research methodology
	1.2 Performance analysis
	1.3 Data
	1.4 One-class classification
	1.5 One-class vs two-class classification
	1.6 What is an anomaly?
	1.7 Proposed solution
	1.8 Formal definition of terms
	1.9 Objective of the research
	1.10 Thesis outline

	2 CRITICAL LITERATURE REVIEW
	2.1 State of the art in one-class classification
	2.2 State of the art of false alarm reduction
	2.3 Intrusion Detection Systems
	2.3.1 Challenges of anomaly detection
	2.3.2 Types of Anomalies
	2.3.3 Output of Anomaly Detection

	2.4 Support Vector Machine
	2.4.1 Kernels
	2.4.2 Kernel example

	2.5 One-class SVM
	2.5.1 Algorithm
	2.5.2 Optimization
	2.5.3 Parameters

	3 FALSE ALARM REDUCTION METHOD
	3.1 Proposed false alarm reduction method
	3.2 Adjusting Parameter T
	3.3 Toy Example
	3.4 Comparison with other methods

	4 TEST
	4.1 Real Dataset
	4.2 Data Preprocessing
	4.3 Model Selection
	4.4 Visualization Methods
	4.4.1 ROC Graph
	4.4.2 Confusion Matrix Plot

	4.5 Empirical Result
	4.5.1 Scenario 1
	4.5.2 Scenario 2
	4.5.3 Scenario 3
	4.5.4 Comparison of the three scenarios

	4.6 Empirical results on other algorithms
	4.7 Empirical result on KDD99 dataset
	4.8 Impact of the sample size
	4.9 Discussion of empirical result

	5 CONCLUSION
	5.1 Advancement of knowledge
	5.2 Limits and constraints
	5.3 Recommendations

	REFERENCES
	APPENDICES

