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RÉSUMÉ

Les récents changements dans les systèmes de puissance ouvrent une frontière de défis et
d’avantages potentiels pour tous les participants tout au long du réseau. Le paradigme du
réseau intelligent aide à soutenir de meilleures décisions, à améliorer l’efficacité et en général
à disposer d’un approvisionnement énergétique plus fiable, économique et durable. Cela
accorde une importance particulière à l’intérêt croissant pour la participation des utilisateurs
finaux grâce aux programmes de réponse à la demande.

Dans ce sens, la recherche présentée dans cette thèse contribue au développement et à la
pénétration des programmes de réponse à la demande. Ces approches ont été conçues du
point de vue de l’utilisateur, qui veut satisfaire sa demande à un coût raisonnable, mais
compte tenu des variables du système de puissance telles que la réduction et le coût des pics.
Pour atteindre cet équilibre, ce projet de recherche combine plusieurs éléments du monde
réel et d’autres idées nouvelles afin de faire l’évolution du réseau intelligent.

L’une des principales contributions de cette thèse est l’utilisation et l’estimation des profils
de capacité. Ce concept est présent dans tout le document et est particulièrement important
dans les deux premières contributions. Tous les deux traitent de la détermination d’un profil
de capacité adéquat. Les profils de capacité sont déterminés à l’avance et représentent les
besoins énergétiques futurs des utilisateurs finaux dans un contexte de réponse à la demande.

Dans le premier cas, la méthodologie se concentre sur les appareils de chauffage et de re-
froidissement. Le profil de capacité fonctionne en combinaison avec un contrôleur d’admission
existant pour guider l’opération de température du bâtiment. Dans cette contribution, le
profil de capacité est estimé en utilisant une approche d’ajustement de données et un clas-
sificateur «multiclass ».

Dans le second cas, le cadre est conçu pour représenter des caractéristiques spécifiques d’une
demande stochastique. Cette demande est générée par l’agrégation des charges basées sur
l’activité dont la consommation est déclenchée par le comportement de l’utilisateur. Ici, les
profils de capacité sont déterminés en fonction de l’information disponible. Tout d’abord, une
approche heuristique est préconisée lorsque peu d ’informations sont connues sur les modèles
de consommation des utilisateurs. Deuxièmement, une optimisation en deux étapes lorsque
nous pouvons obtenir les scénarios de demande. Un élément important de cette contribution
est l’inclusion d’une tarification flexible du temps et du niveau d’utilisation.

Cette politique de prix permet à l’utilisateur de déterminer le profil de capacité et ses tarifs
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correspondants à partir d’un ensemble d’options fournies par le réseau. Ces tarifs person-
nalisés sont alignés sur le comportement normal de l’utilisateur et finalement orienter un
processus d’apprentissage pour optimiser la consommation.

La troisième contribution regroupe plusieurs utilisateurs, différents programmes de réponse
à la demande et diverses ressources partagées pour planifier la consommation, le déplace-
ment de charge et la réduction de la charge pointe. Cette approche prend des informations
telles que les profils de demande et les préférences des utilisateurs directement à partir des
unités de logement afin de résoudre un problème d’optimisation biobjectif pour compenser
la satisfaction totale des utilisateurs et le coût total de la consommation d’énergie. Cette
contribution comprend une structure de coût fixe similaire à celle de la deuxième contribution
pour encourager le transfert de charge.

Enfin, des expériences sont rapportées dans chaque contribution pour valider la performance
de l’approche proposée. Ces résultats comprennent des éléments comme l’analyse de sensi-
bilité, les comparaisons de référence et les fonctionnalités du monde réel afin de clarifier les
points forts, les limites et les projets de recherche à venir.
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ABSTRACT

The recent changes to power systems have opened up a frontier of challenges and potential
benefits for all the participants. The smart grid paradigm helps to support better decisions,
to improve efficiency, and to provide a more reliable, economic, and sustainable energy supply.
This is particularly important given the growing interest in user participation via demand-
response programs.

The research presented in this thesis contributes to the development and penetration of
demand-response programs. These approaches have been developed from the user perspec-
tive, taking into account elements of the power system such as peak reduction and cost. This
research combines elements from the real world and novel ideas to balance conflicting goals
and move forward in the evolution of the grid.

One of the main contributions is the use and estimation of capacity profiles. The idea behind
setting a capacity profile is to establish a compromise between the expected demand and the
level of service perceived by the user. The capacity profiles are determined in advance and
account for the users’ future energy requirements in a demand-response context.

In the first contribution (Chapter 4) the methodology focuses on heating and cooling devices.
The capacity profile works in combination with an existing admission controller to guide the
control of the building temperature. In this case the capacity profile is estimated by a data-
fitting approach and a multiclass classifier.

In the second contribution (Chapter 5), the framework is based on specific features of a
stochastic demand. This demand is generated by the aggregation of activity-based loads
that are triggered by the user behavior. Here, the capacity profiles are determined as a
function of the available information. First, we use a heuristic approach when we have
limited information about the consumption patterns. Second, we use two-stage optimization
when we have the demand scenarios. One highlight of this contribution is the inclusion of
a flexible time-and-level-of-use pricing. This pricing policy allows the user to determine the
capacity profile and its corresponding tariffs from a set of options provided by the grid. These
customized tariffs are aligned with the normal user behavior and eventually guide a learning
process to optimize the consumption.

The third contribution (Chapter 6) aggregates several users, different demand response pro-
grams, and various shared resources to plan the consumption, load shifting, and peak re-
duction. This approach takes information such as the demand profiles and user preferences
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directly from the housing units. It solves a biobjective optimization problem to find a trade-
off between the total user satisfaction and the total cost of the energy consumption. This
contribution includes a fixed cost structure similar to that of the second contribution to
encourage load shifting.

Finally, experiments are reported in each contribution to validate the performance of the
proposed approaches. We provide sensitivity analysis, benchmark comparisons, and a dis-
cussion of real-world features to help clarify the strengths, limitations, and possibilities for
future research.
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CHAPTER 1 INTRODUCTION

1.1 Context

Energy, and specifically electricity, is a key resource for the current and future development of
society. New technologies have facilitated many daily tasks thanks to a continuous, reliable,
and secure supply of power.

The electricity business has some special characteristics that distinguish it from other indus-
trial sectors. Electrical generation occurs in real time, so utilities and operators have to follow
demand, satisfying customer needs while ensuring system stability. This can be a challenge
during load peaks and congestion periods. Increasing the number of generators with a low
marginal cost, such as base-load or load-following power plants, can lead to high investment
and idle resources during off-peak hours. When the projected demand is close to or greater
than the maximum power capacity, operators/utilities use peaking power plants (which have
a high marginal cost) or import power from other nodes in the interconnected system, trying
to avoid a supply–demand imbalance that could lead to system failure.

Given these conditions, consumers are important in grid decisions since reducing demand is
an option when the marginal cost is too high or no more power is available. Currently some
utilities and independent system operators (ISOs) offer programs to promote the use of more
efficient appliances and buildings in an effort to reduce total consumption; other suppliers
manage peaks by load shedding to ensure system stability, leading to lost sales and customer
dissatisfaction. A third possibility is to encourage consumers’ active participation through
demand response (DR) programs. DR is defined as changes in consumers’ normal electrical
usage profile in response to incentives designed to induce lower loads.

The flexibility that DR brings to the system can go beyond peak control. In general terms,
DR seeks to reduce the variability over time of the generation carried out by utilities. Thus,
it facilitates the integration of distributed intermittent renewable resources such as wind
and solar. These resources account for part of the total demand and therefore affect the
supply–demand balance.

Currently, DR programs target residential, commercial, and industrial users. According to
FERC (2012), these programs can be classified into two main groups: programs that offer
load reduction contracts between suppliers and customers, and pricing programs to encourage
customers to shift their larger loads to off-peak periods.

Traditionally, most of the DR potential has come from industrial customers since they repre-
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sent a large consumption for a small number of participants. This facilitates the coordination
of resources and increases the impact of the DR measures. The task is more challenging for
the residential and commercial sectors, where the average individual consumption is low.
However, these sectors combined represent 60% to 70% of the total worldwide consumption
(EIA, 2016).

Intuitively, allowing utilities to take direct control of the customer appliances/loads would
ensure system reliability and cost efficiency. However, this strategy may neglect user prefer-
ences and/or lead to a complex coordination problem. Allowing consumers to manage their
own consumption seems a feasible way to avoid these difficulties. However, this autonomy
must be aligned with the utility’s interests and system stability.

Such a strategy can be considered thanks to the evolution of traditional power systems into
smart grids (SG). SGs support communication among all the entities connected to the grid.
Additionally, the development of tools to handle and analyze the data will support better
decisions for the grid and the users. In this scenario, DR can achieve its full potential.

SG end-users have, besides a two-way information flow with the grid, other resources at their
disposal. Smart appliances are able to gather data and to respond to the central controller,
storage units, and distributed generation. They can help to satisfy energy requirements and
even give users the ability to trade their own generation. A housing unit with these features
is commonly referred to as a smart home, or more generally as a smart building.

1.2 Definition of the Problem

In this paradigm the users face new challenges and require new decision-support approaches
to achieve their goals of unlimited available power at the lowest possible cost. These goals
conflict, so we must find a trade-off. Current DR programs try to link the price variations (or
incentives) with the users’ priorities. A high priority might justify a high price in the current
time frame, and low priorities could be delayed if a pre-agreed incentive were offered. The
price variations usually reflect issues such as congestion and generation efficiency, allowing
the users to indirectly consider the state of the grid in their decisions. In this situation, users
can manage their own consumption profiles, balancing costs with the need for power.

Another way to trade-off users and grid requirements is through the implementation of ca-
pacity profiles. A capacity profile establishes a power limit over a defined period of time,
providing the users with the energy requirements to perform their normal activities while
encouraging peak reduction through load shifting and/or differential tariffs. These normal
activities can vary depending on the user, the type of load or appliance, and the time of day.
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The idea behind setting a capacity profile is to establish a compromise between the expected
demand and the level of service perceived by the user. A low profile will decrease user
satisfaction, and a high profile will not contribute to the grid priorities. A profile that
provides a balance is key for the expansion of DR programs.

The estimation of a capacity profile is related to the type of load or appliance that is gener-
ating the demand. Two categories cover many of the types of loads present in the residential
and commercial sectors. First, thermal loads, such as space heaters and air conditioners, op-
erate continuously and are triggered by factors such as the external temperature. In Canada,
space heaters account for around 60% of a building’s energy consumption (StatCan, 2013).
Second, activity loads directly relate to the activities being carried out by the users, either
at home or at the office. This consumption basically maps the user behavior.

There are different ways to actively participate in DR. Giving control to a single user may
have benefits for that person, but it will not make a noticeable difference to the utility’s per-
formance. Therefore, it is necessary to aggregate multiple users and to introduce electricity
generation and energy storage. The aggregation, commonly known as a microgrid, consol-
idates the load profiles of all the users, and introduces enough DR potential to contribute
to the grid performance. In this thesis the microgrid is represented by a smart building
composed of several housing units, an array of solar panels, and a battery.

This higher level requires a plan that ensures demand satisfaction for each user, the best
utilization of the available resources, and active participation in DR programs.

1.3 Objectives

The general objective is to provide a set of approaches to enhance DR participation in the
residential and commercial sectors, ensuring user satisfaction while taking into account the
grid performance. This objective is divided into three specific objectives corresponding to
each of the contributions of this research:

• Develop a method to determine capacity profiles for space heating and cooling that
considers the continuous and predictable operation of this type of load.

• Develop a method to determine capacity profiles for activity-based loads that considers
the variability of the user behavior.

• Build a planning tool that satisfies the individual energy demands and coordinates the
resources to provide DR at an aggregated level.
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This is a bottom-up approach. The first two objectives deal with local decisions at the
user level. In both cases the user determines the capacity profile as a function of comfort
and cost. The third objective focuses on a building-aggregated level that considers multiple
users. These decisions are made by a central planning module that takes into account the
user preferences and the building’s solar panels and storage.
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CHAPTER 2 LITERATURE REVIEW

This chapter presents the most relevant literature. We first discuss articles that directly
contribute to the management and optimization of the consumption on the demand side.
We then present work related to load estimation and load forecasting; these are valuable
tools that guide decision-making and help determine the transition between lower and higher
levels in the grid. We next explore the models that characterize and include user behavior in
the grid decisions, before discussing models that focus on the planning and operation of an
aggregated level. We end with a discussion of the most common DR programs available and
related work. Researchers in this field use a range of operations research, machine learning,
and control approaches.

2.1 Demand-side Management

Various techniques have been used to manage the load on the user side. The user preferences
are typically hard constraints, and the objective is to optimize the energy consumption or
the peak reduction.

Esther and Kumar (2016) present a comprehensive survey of optimization-based approaches.
They compare the system granularity, the type of demand (deterministic or stochastic), and
the time scale.

Nguyen and Aiello (2013) discuss the importance of a consumption-aware user. This survey
includes potential energy savings, activities with higher potential impact, and the availability
of information and automation in the building. Soares et al. (2014) characterize the control-
lable demand and its potential savings for users participating in an energy management
system.

A DSM strategy for a load shifting problem is presented by Logenthiran et al. (2012), using an
evolutionary algorithm to minimize the difference between the proposed consumption profile
and the actual observed load. It includes a set of controllable appliances for residential,
commercial, and industrial users. Costanzo et al. (2012) propose an architecture based on
optimal control that includes a high level to communicate with the grid through price signals;
an intermediate level to obtain an optimal plan based on real and forecast information for a
larger horizon; and a low level to respond to variations and to close the loop, feeding back
to the upper levels. Simulation results are presented for the low and intermediate levels.

Lujano-Rojas et al. (2012) propose an optimal strategy for managing load based on forecasting
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electricity prices, energy demand, and the use of electric vehicles (EVs). They start with an
algorithm to determine the possible demand curve of a given appliance or EV and then solve
a maximization problem driven by the difference between the value perceived by the user
and the cost of power. They include two scenarios: the first determines the best time to use
the EV and the second introduces a specific time frame for the use of the EV.

Load scheduling is an effective way to manage consumption. Moon and Lee (2016) present a
mixed integer nonlinear model to determine the operation time and the power consumption
level of each device, maximizing the difference between a utility and a cost function.

Chen et al. (2012) use stochastic and robust optimization approaches to determine the optimal
schedule for a set of appliances. They minimize the expected electricity payment at the end
of the day, taking into account some financial risks associated with price uncertainties. Both
methods give a better cost performance than a flat price strategy. The robust method has
better computational efficiency but fewer cost benefits than the stochastic approach.

Rastegar et al. (2016) propose an approach that considers priorities for the operation of the
appliances. These priorities are considered in a mixed integer program that minimizes the
cost for the user in a day-ahead context.

To give more flexibility to balanced generation, electric water heaters (EWH) may be con-
sidered a DR resource. Diao et al. (2012) model residential EWH under several control
strategies: centralized control to provide balanced service and two decentralized approaches.
The first switches off the EWHs when the local bus frequency drops below a threshold, and
the second reduces the temperature of the EWHs proportionally to compensate for frequency
variations.

Fernandes et al. (2014) propose a method with dynamic load priority that allows the smart
home to participate in DR events. An optimization algorithm minimizes the impact of the
curtailments.

2.1.1 Role of Capacity Profile

Fixing the power limit is common in DSM approaches. This encourages load shifting and
demand shaping, and it guarantees a peak-control policy. This idea is explored in this
thesis through the concept of a capacity profile. A capacity profile is a pre-established
consumption limit that varies over time. This limit represents a trade-off between the users’
power requirements and the grid’s demand management priorities. An effective capacity
profile will provide the users with sufficient power while avoiding unwanted peaks of demand.

In some cases a higher-level entity (utility, operator, aggregator) imposes this capacity limit.
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Margellos and Oren (2016) present a framework where a DR aggregator defines a capacity
constraint and the user minimizes costs by solving a stochastic program. They also explore
increasing the capacity levels, provide bidding curves, and analyze price sensitivity.

The approach introduced by Caprino et al. (2014) allows the activation of one load at a time.
The peak of consumption is bounded by the load with the largest power requirement. Rahim
et al. (2016) define the DSM problem as a knapsack problem with preset capacities; they
evaluate the performance of several heuristic-based controllers. Ogunjuyigbe et al. (2017)
present a variation of the capacity limit through the inclusion of a predefined budget and a
user-expenditure and satisfaction ratio; the users seek to maximize their satisfaction.

Li et al. (2016) determine the optimal allocation of capacities using a queueing strategy.
The service provider determines the capacity to assign to each user from a set of renew-
able resources and demand requests. In a similar way, Doorman (2005) explores capacity
subscription where the users compete for limited power resources.

These works utilize capacity profiles intended to contribute to the grid performance. Al-
though some user preferences are considered, the users do not make decisions about their
power and energy requirements. How to determine a capacity limit that provides benefits for
both grid and user is an open question.

2.2 Load Forecasting

DSM approaches normally use capacity limits that were previously computed. The perfor-
mance of a capacity profile is directly related to the demand and the expected level of user
satisfaction. In this section we explore tools used to estimate the power consumption. This
is a key step for both consumers and utilities. The users can guide their DSM modules, and
the utilities can gather valuable information about the global performance of the system.

Relevant publications can be found in the load-estimation literature. Swan and Ugursal
(2009) give the general structure of this type of problem. Their comprehensive review classi-
fies the estimation or forecasting approach depending on the level of aggregation of the input
data. These can be bottom-up models, which extrapolate the behavior of a large system
based on its components, or top-down models, which make top-level decisions and share the
output among all the subsystems.

Suganthi and Samuel (2012) review the most frequently used methods for forecasting. They
consider classical time series, other statistical approaches, and sophisticated machine-learning
tools. Many of these methods have been used to estimate energy demand.

Jain et al. (2014) use support vector regression to forecast consumption in residential build-
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ings. They evaluate the impact of the time (daily, hourly, 10min) and space (building, floor,
unit) granularity inside a multifamily unit. The best coefficient of variation is achieved in
the combination (hourly, floor). The approach was applied to an empirical data set from a
real building.

Al-Wakeel et al. (2017) estimate load via a k-means-based approach in a scenario with in-
complete information from past consumption. Massana et al. (2015) consider buildings with
daily or seasonal patterns and present a short-term forecasting method for aggregated loads.

A comparison of artificial neural networks and the auto-regressive integrated moving average
is presented by Ahmed et al. (2014), showing the effect on the scheduling of storage devices.

Mohajeryami et al. (2017) highlight the importance of accurate estimation for exploiting DR
potential. Specifically, they present an error analysis for different load estimation tools that
are used in real-world operations.

The above articles have something in common: the forecast load is a continuous value. If the
prediction output belongs to a discrete set of classes or categories, the estimation problem
can be defined as a classification problem. Such problems are common in the context of power
systems but less common for estimating future loads. Zareipour et al. (2011a) forecast prices
that are above or below a specified set of thresholds, and Zareipour et al. (2011b) forecast the
severity of wind power ramp events. Both approaches are based on support vector machines.

2.2.1 Bottom-up User-Oriented Load Estimation Models

DSM approaches generally consider user requirements such as preferred time windows, earliest
and latest starting times of the appliances, and user comfort. It is assumed that the user
behavior will match the optimal consumption plan. Some work focuses on understanding and
characterizing the behavior of the users in residential and commercial buildings. This leads
to a more realistic representation of a consumption profile. Typically, this profile is obtained
from the aggregation of the individual loads generated by the activities that the users carry
out regularly.

Richardson et al. (2010) present a model that determines consumption profiles based on
the aggregation of individual loads, the number of people in the housing unit, and their
activity profiles. In a similar way, Collin et al. (2014) use a Markov-chain Monte–Carlo
model to compute the activity profiles and estimate realistic load profiles for a wide variety
of housing units. A highlight of this work is the software Desimax that generates activity
and consumption profiles based on information from government databases.
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Subbiah et al. (2013) perform logistic and Poisson regression to estimate energy demand
in a large aggregated population. They model the correlational and consistency elements
of the shared activities of multiple inhabitants in a household. Similarly, Munkhammar
et al. (2014) estimate consumption profiles for single and multiple housing units by fitting
probability density distributions over a historical set.

All these estimation tools provide the decision-maker with information about electricity con-
sumption over time. This idea can be extended to determine the capacity profile that will
account for this expected demand while providing DR and ensuring the user’s minimum
power requirements.

2.3 Aggregation

Typically, when we talk about aggregating end-users into a single entity in the presence of
storage and/or distributed generation, we refer to a microgrid. Parhizi et al. (2015) present a
comprehensive review of microgrids, including investment, operation, generation technologies,
communication requirements, and grid-support capabilities.

Some works focus specifically on the planning and control of the system. Parisio et al. (2014)
control the operation of a microgrid in a realistic scenario. They use a model predictive
control strategy to schedule the generators, storage devices, and controllable loads, while
compensating for the uncertainties in the dynamics of the system.

Kriett and Salani (2012) introduce a similar approach, focusing on models for combined
heat and power generation in the presence of thermal and electrical loads and storage units.
Mhanna et al. (2016) aggregate different types of appliances and distributed energy systems
to schedule loads for large populations. Palma-Behnke et al. (2013) perform an economic
comparison of a rolling-horizon approach and the standard unit commitment for microgrids.

Mixed integer programs have been used to determine how to integrate the microgrids into
the distribution system. Mesari and Krajcar (2015) and AlSkaif et al. (2017) encourage the
use of the batteries of EVs and the available renewable resources by minimizing the use of
conventional resources. Their goal is to ensure a high level of self-consumption.

Chabaud et al. (2015) assess several configurations of a grid-connected microgrid, considering
a two-way flow of power and its impact on the grid. Detroja (2016) considers the generation
and consumption sides and the balance between the two in a real-time scenario for the optimal
operation of an autonomous microgrid.
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2.3.1 Multiobjective Approaches

As mentioned previously, the user perspective is typically represented by elements such as
preference constraints and/or costs that approximate the level of satisfaction while minimiz-
ing the total operational cost. Multiobjective optimization can enhance the user’s participa-
tion in the decision process. It finds a trade-off between conflicting objectives such as cost
and comfort.

When objectives conflict there is no solution that optimizes them simultaneously. To improve
one of the objectives we need to worsen one or more of the others. The best solution is said
to be nondominated, Pareto efficient, or Pareto optimal (Ehrgott, 2006). Marler and Arora
(2004) provide a comprehensive review of methods for finding Pareto-efficient solutions. They
present approaches that include the user preferences in the decision-making and that represent
and approximate the Pareto front (the set of Pareto-efficient solutions).

For power systems and SGs, multiobjective optimization has been used in various ways.
Sometimes the decision makers are interested in finding a good representation of the Pareto
front. Yang and Wang (2012) use particle swarm optimization and weighted aggregation to
approximate the Pareto front for energy cost and environmental comfort.

The ε-constraint method is often used to approximate Pareto fronts. Zhang et al. (2012) use
this approach to balance the total cost and the energy obtained from distributed generators
in isolated sites, and Hosseinnezhad et al. (2016) and Aghaei and Alizadeh (2013) use it to
minimize both pollutant emission and operating cost.

Sometimes the decision-maker looks for a single efficient solution. Cao et al. (2017) and
Korkas et al. (2016) use a weighted-sum approach to reduce the conflicting objectives to a
single objective. The former authors balance the minimization of load curtailment, operating
cost, and pollutant emission. The latter authors deal with the energy costs and thermal
comfort.

Finally, Choobineh and Mohagheghi (2016) implement a lexicographic goal programming
method to minimize the operational costs, the emissions produced, and the asset deterioration
resulting from exposure to extreme temperatures.

Typically, aggregation approaches explore the technical and operational aspects of the system,
whereas multiobjective methods explore the trade-off decisions in an aggregated system. A
more comprehensive approach would integrate the operational aspects and the conflicting
objectives with the impact on the individual users of the system.
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2.4 DR Programs

In smart buildings the interaction with the utility is driven by DR programs. Such programs
are a trending topic, and their presence is increasing (about 9.2% of U.S. peak demand
(FERC, 2012)), but the idea of planning the demand of electric systems was introduced
several decades ago. An initial and still valid classification of load-shape goals was presented
by Gellings (1985). These include direct shedding to avoid peaks, load shifting from peak to
off-peak periods, and other strategic decisions such as conservation or growth.

The DR concept was introduced to target these goals. Although some strategies have been
used in electricity supply management for decades, DR combines them, adds new possibili-
ties, and takes the planning to the next level, introducing technological issues and the active
participation of customers in the decision-making process. It changes the unidirectional infor-
mation flow into two-way communication and aims to ensure system reliability and company
profitability. According to Walawalkar et al. (2010), a large reduction in the marginal cost
of production may be achieved through a small reduction in demand.

DR strategies can be classified into two main groups (FERC, 2012). First, incentive-based
programs respond to critical peaks by a reduction contract between power suppliers and
customers. Such contracts allow the utility to reduce the supply of electricity for a given
period. The utility may be able to remotely shut off user loads at short notice. The cus-
tomers may commit to a prespecified reduction, earning compensation and facing penalties
if the reduction is not achieved. Other programs provide incentives for voluntary reductions
without penalties. Most of these programs are oriented to industrial and commercial busi-
nesses. However, a smart building aggregates enough residential/commercial load to have a
potential impact on the load-shaping.

Second, time-based rate (TBR) programs encourage customers to move larger loads to off-
peak periods (load shifting). These programs are based on historical information or on real-
time data. The pricing policies range from a basic time-frame structure to a more complex
but accurate system. The most common policies are time of use (TOU), critical peak pricing
(CPP), and real-time pricing (RTP). TOU programs have different prices for on-peak and
off-peak periods. CPP programs add real-time pricing during extreme system peaks where
the traditional peak/off-peak structure is not enough; usually the critical-peak price is much
higher than a normal peak price. Finally, RTP programs link the hourly prices to hourly
changes in the day-of (real-time) or day-ahead cost of generation. In this thesis we explore the
combination of TOU with the previously introduced capacity profile. There are two sets of
tariffs, one for consumption below the limit and one for consumption that exceeds the limit.
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The time and level of use (TLOU) pricing keeps the original structure of time-dependent
prices but allows a more flexible pricing strategy for users and utilities.

Pricing policies that consider power-peak-related penalties are currently offered to large in-
dustrial customers. In Quebec, the rate L provides a tariff for the energy consumption and
a tariff for the peak demand (Hydro-Quebec, 2017). For the residential sector, the national
service in Italy offers contracts with a maximum constant power limit; no consumption above
that limit is allowed (SEN, 2017).

The best policy for the supplier depends on its demand curve and the integration of SG
elements to facilitate communication. Muratori and Rizzoni (2016) and Vardakas et al.
(2015) assess various pricing policies to explore the effect on user participation and grid
performance. A pricing policy that considers user behavior facilitates the integration of the
user into the SG decisions. The price setting problem is presented by Afsar et al. (2016);
they use a bilevel optimization approach to find a trade-off between the revenue obtained by
the energy provider and the user dissatisfaction. The use of declining block rates is explored
by Hasib et al. (2015) to achieve a balance between user comfort and electricity cost. They
present a microeconomic analysis of this function, and the method is used for bidirectional
energy trading.

Walawalkar et al. (2010) and Cappers et al. (2010) give surveys of DR performance and
resources. Walawalkar et al. (2010) include a classification based on the activating event,
such as emergency and economic programs. Emergency programs seek resources to cope with
congestion and to avoid system outages. Economic programs help to balance the market and
the electricity price, and ancillary service programs offer frequency regulation and operating
reserves.

Trading structures have been changing in recent decades from a vertical integrated ap-
proach to an open multi-player structure. These new schemes seek more efficient perfor-
mance throughout the supply chain, reducing unnecessary costs and investments and intro-
ducing competition. This has led to new opportunities for DR programs. Initially, util-
ities/generators offered DR programs in a direct bilateral agreement with consumers, but
the new market rules have changed this. Third-party entities have started to offer DR pro-
grams, buying load reduction capability and selling it to the load-serving entity (utility/ISO).
Market-based DR programs have given consumers the ability to bid for specific load reduc-
tion or an ancillary service. These conditions bring benefits in terms of market performance,
increased options for customers, and reduced price volatility.
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CHAPTER 3 THESIS ORGANIZATION

Several factors link the contributions of this thesis. Some of them establish connections
between the articles, and others highlight the differences and open a frontier of future ex-
tensions. The user perspective is at the core of this research, and it is a component of all
the contributions. The user perspective is considered through three main elements: demand
satisfaction or quality of service, total cost, and capacity profile. The capacity profile is used
to keep track of the grid requirements while considering the user preferences.

The first contribution (Chapter 4) focuses on the estimation of capacity profiles for the
operation of space heaters and cooling systems for smart buildings. This approach works with
an existing admission-control module that manages the loads in real time. The admission
controller achieves a shaving effect on the demand curve by using a user-defined capacity
limit. We seek a capacity profile that ensures user comfort and is able to provide peak
control. We capture specific features of this type of load: continuous operation over time
and relative independence of most of the user’s activities. We do not consider energy cost in
the decision process since this type of demand was considered highly inelastic from the user
perspective.

The second contribution (Chapter 5) also concerns the estimation of capacity profiles, this
time considering activity-based loads. This type of load is strongly influenced by user behav-
ior, so we used a stochastic optimization model. The users buy or book capacity in advance,
aiming to satisfy their energy requirements while minimizing the total cost. One of the main
features of this contribution is the integration of a flexible cost structure that works together
with the capacity profile. This scheme meets the user’s needs and results in an economical
option for many of the user’s potential decisions. Demand satisfaction is always guaranteed.

The third contribution (Chapter 6) introduces the multiple-user context. This contribution
determines the operational plan for a multi-unit smart building, taking into account the
individual demands and willingness to shift load, and the presence of shared solar panels
and shared storage. The user preferences are included in the willingness to shift and are
traded-off (with cost) through a biobjective optimization problem solved via compromised
programming. The model considers a cost structure similar to that of the second contribu-
tion, with tariffs and capacity limits that are preset by the utility or grid operator. This
collaborative approach ensures the demand satisfaction that the user considers essential and
provides peak reduction, through the combination of battery, local generation, shifted load,
and pricing policy. Finally, Chapter 7 provides concluding remarks.
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CHAPTER 4 ARTICLE 1: POWER CAPACITY PROFILE ESTIMATION
FOR BUILDING HEATING AND COOLING IN DEMAND-SIDE

MANAGEMENT

Authors: Juan A. Gomez, Miguel F. Anjos.
Published: Applied Energy, Volume 191, 2017

Abstract

This paper presents a new methodology for the estimation of power capacity profiles for
smart buildings. The capacity profile can be used within a demand-side management system
in order to guide the building temperature operation. It provides a trade-off between the
quality of service perceived by the end user and the requirements from the grid in a demand-
response context. We use a data-fitting approach and a multiclass classifier to compute the
required profile to run a set of electric heating and cooling units via an admission control
module. Simulation results validate the performance of the proposed methodology under
various conditions, and we compare our approach with neural networks in a real-world-based
scenario.

Keywords

Smart buildings, power demand, residential load sector, least squares, parameter estimation,
classification.

4.1 Introduction

In the context of power systems, reducing peaks and the fluctuation of consumption brings
stability to the system and benefits to the players in the power supply network. In this
respect, demand-response (DR) programs and demand-side management (DSM) systems
encourage and facilitate the participation of the end users in the grid decisions. This par-
ticipation is increasing with the development and implementation of smart buildings. DR
programs have mostly been oriented to large consumers, but smart buildings can exploit the
DR potential in residential and commercial buildings as well. These represent around 70%
of the total energy demand in the United States (EIA, 2016). In Canada, space heating is
responsible for more than 60% of the total residential energy consumption, due to the cold
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climate (StatCan, 2013). Across the country, electric baseboards account for 27% of heating
equipment, reaching 66% in the province of Quebec. On the other hand, the province of On-
tario is typically a summer-peaking region due to the high temperatures during that season
and the high penetration of air-conditioning systems (IESO, 2015; NRCan, 2011).

Several authors have published DSM-related results. Normally their research motivation is
oriented to load management, user behavior, cost performance, and curve shaping. Imposing
a capacity constraint is a common idea among these approaches. Costanzo et al. (2012)
propose a multilayer architecture that provides a scheme for online operation and load control
given a maximum consumption level. In the stochastic DSM program in Margellos and Oren
(2016), a DR aggregator imposes a capacity constraint. Bidding curves and price analyses are
reported in order to guide end-users about increasing capacity. Rahim et al. (2016) evaluate
the performance of several heuristic-based controllers. They define the load management
as a knapsack problem with preset power capacities for each time slot. In a similar way,
Caprino et al. (2014) assumes a consumption limit that allows the activation of only one load
at a time. Li et al. (2016) look for an optimal allocation of capacities based on a queueing
strategy. The service provider determines the capacity to assign to each user from a set of
renewable resources.

The idea of capacity subscription is explored in Doorman (2005), where the individual con-
sumer’s demand is limited in a competitive market. On the other hand, the heuristic algo-
rithm proposed in Logenthiran et al. (2012) aims to minimize the error between the actual
power curve and the objective load curve by moving the shiftable loads. In this case the
objective load curve can be seen as a soft constraint capacity profile.

A variation of the capacity limit is presented in Ogunjuyigbe et al. (2017), where each indi-
vidual user has a predefined budget to maximize his/her satisfaction.

All the approaches mentioned represent the capacity as a given parameter, and some of them
recognize the importance of using a forecasting tool to determine its value. Estimating the
user consumption is a key step in the decision-making process for users and for higher levels
in the power system. Relevant publications can be found in the load-forecasting literature.
Suganthi and Samuel (2012) give a comprehensive review of forecasting methods from classical
time series to more sophisticated machine learning tools.

Load estimation methods are classified depending on the level of aggregation of the input
data: they can be bottom-up or top-down (Swan and Ugursal, 2009). Bottom-up models
extrapolate the behavior of a larger system based on its inner elements. Top-down models
make decisions from a global perspective and share them among all the subsystems.
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Notation

h ∈ {1, 2, . . . , H} Set of time frames in horizon.
t ∈ {1, 2, . . . , S} Set of time steps in time frame h (same for every h).
i ∈ {1, 2, . . . , I} Set of loads.
Nh Number of requests received in time frame h.
Pi Power level of load i (kW).
Ch Power capacity in time frame h (kW).

ri,t

 1 if a request is created by load i in time step t
0 otherwise

xi,t

 1 if request from i is accepted in time step t
0 otherwise

QoSh Quality of service in time frame h.
Q̂oSh Quality of service of the prediction model in time frame h.
T Temperature (°C).
T eh External temperature in time frame h (°C).
P Power levels of the loads in each scenario.
Ω Discrete set of capacities.
ω ∈ Ω Capacity class.

Within these two categories different approaches have been used to estimate the energy
demand. Ahmed et al. (2014) compare artificial neural networks and the auto regressive
integrated moving average, showing the effect on the scheduling of storage devices. Jain et al.
(2014) use support vector regression to evaluate the impact of the time and space granularity
inside a multi-family unit. Al-Wakeel et al. (2017) use a k-means-based load estimation
method to compute future load profiles using complete and incomplete past information.

Logistic and Poisson regression are used in Subbiah et al. (2013) to estimate energy demand
in a large aggregated population. In a similar way, Massana et al. (2015) presents a short-
term forecasting method for aggregated loads, specifically in buildings with daily or seasonal
patterns of consumption. Mohajeryami et al. (2017) present an error analysis for different load
estimation methods that are used in real-world operations. They highlight the importance
of an accurate estimation for exploiting the DR potential.

On the other hand, when the prediction output belongs to a discrete set of categories the
estimation can be defined as a classification problem. Some related energy problems are
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treated in this way: price forecasting in Zareipour et al. (2011a) and wind power ramp
events in Zareipour et al. (2011b).

This paper proposes an approach for the estimation of a power capacity profile that works in
combination with the admission controller (AC) module presented in Costanzo et al. (2012).
This profile is used to ensure enough power to meet the demand for the next planning horizon
(e.g., the next day in a day-ahead DR market). This novel approach takes advantage of the
structure derived from the estimation problem to compute capacity profiles efficiently and
reliably. Estimating the capacity that will be necessary allows us to define a relationship
between the total expected demand and the level of service the user desires while providing
DR. In this scenario the user will book a variable maximum power capacity per time frame
over the planning horizon, ensuring a pre-established level of service. This approach could
also include external factors such as peak control and pricing policies. The motivation is
that a defined power budget limits the consumption and encourages load shifting. It also
facilitates the integration of differential pricing for both energy and power.

This paper is structured as follows. We describe the proposed methodology in Section 4.2.
We give simulation results for the real-world-based scenario in Section 4.3, and Section 4.4
presents our conclusions.

4.2 Power Capacity Profile

Figure 4.1 shows the application of the AC module presented in Costanzo et al. (2012). The
online algorithm in the AC has four stages.

Figure 4.1 Admission controller.

First, the space heaters and the air conditioners create requests ri,t when the room temper-
ature is out (or going out) of the thermal comfort zone. Second, the algorithm sorts all the
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requests from the highest to the lowest priority value; the priority value is the normalized
difference between the temperature in the room and the external temperature. Third, the
AC accepts the highest priority requests until the given capacity Ch is consumed; the other
requests are rejected. Finally, it sends the signal xi,t back to each smart load i either to run
(if accepted) or to stand by for the next time step (if rejected).

Figure 4.2 presents a basic example of the AC operation. A smart house with two rooms,
R1 and R2, is simulated over a horizon of 5 time frames. Each time frame has 10 time steps
where the smart loads can send requests. Typically, a time frame would be equivalent to an
hour in a realistic scenario. There is a 1.5 kW space heater in each room, and the external
temperature is 5°C (Figure 4.2(a)).

We can see the peak reduction obtained by the AC in Figure 4.2(b); the end-user agrees
to have a preset power capacity (dashed red line), which constrains the consumption to at
most 1.5 kW. The peak of consumption, for this example 3 kW, would be attained when the
two space heaters are being used at the same time step. Figures 4.2(c) and 4.2(d) show the
internal temperature in each room within a certain comfort zone. In a similar way, we can see
the time steps where the heaters are working in Figures 4.2(e) and 4.2(f). For more details
about the AC algorithm and the heat transfer equations we refer the reader to Costanzo
et al. (2012).
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Figure 4.2 Example of results from admission controller.

In the previous example the capacity profile suffices to keep the average internal temperatures
(21.8, 22.2)°C in the comfort zone [20− 24]°C. In the event that the temperature in a room
goes out of the comfort zone during a time step, the space heater will increase its priority
value, and the AC will accept the request in the next time step. The capacity profile also
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achieves a peak shaving effect. However, alternating the use of the heaters might not be
enough to ensure a comfortable internal temperature if the external temperature is extremely
low; a higher capacity profile might be required. This decision becomes more complex if we
increase the number of space heaters and if they have different power requirements.

We introduce the quality of service (QoS) index to quantify the impact of a given capacity
on the whole system. The general idea of QoS is that the user should be willing to pay more
if a higher level of service is desired. This decision-making by the user is especially important
under time-of-use pricing conditions because the customer can profit from the cheaper time
frames by reshaping the load curve while ensuring the desired QoS.

In a smart building it is possible to compute the QoS from the information provided by
thermostats and smart loads connected to the AC. In the spirit of Cluwen (2014), we define
the QoS for each time frame h as follows:

QoSh =


I∑

i=1

S∑
t=1

xi,t

Nh
×100% Nh > 0

100% Nh = 0,

(4.1)

where Nh = ∑I
i=1

∑S
t=1 ri,t.

The accepted requests have to satisfy

I∑
i=1

xi,tPi ≤ Ch ∀t ∈ {1, 2, . . . , S}. (4.2)

Equation (4.2) indicates that the AC accepts requests until the capacity limit is reached.
In the framework of this article we assume that both air-conditioning units and electric
baseboard heaters have a constant level of consumption (Kuzlu et al., 2012). Let Ch ∈ Ω,
where Ω is a set of capacities that can work in combination with the AC and the set of loads.
In other words, we do not want a capacity to operate a fractional number of loads in the
time step t. Given that Ω is a discrete set we can define the classification problem

Φ(T eh , QoSh) = Ch (4.3)

that determines Ch ∈ Ω for a given external temperature T eh and theQoSh defined by the user.
We solve this classification problem using a three-step approach: selection of the training set
from historical data, function fitting, and final classification. We illustrate the steps in this
section with a group of space heaters; Section 4.3 includes experimental results for both types
of loads.
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4.2.1 Sampling From Historical Data

The real data is obtained from the smart energy management system, which records the
accepted requests, the rejections, and the evolution of the QoS over time. We simulate this
historical data to understand the system dynamics and to implement a prediction model.
The simulation conditions are:

• The set of heaters is composed of four identical units of 1.5 kW of consumption.

• The heat transfer is computed using the specific heat and Fourier’s law formulations
implemented in Costanzo et al. (2012) (see Section 4.3 for more details).

• The external temperature corresponds to the complete year 2013 (8760 hours) in the
Montreal area (Climate, 2016).

• The comfort intervals for the internal temperatures are taken from the ISO 7730 stan-
dard analyzed in Olesen and Parsons (2002). For an office category B the intervals are
[20− 24]°C and [23− 26]°C for heating and cooling respectively.

• Ch is randomly chosen from Ω = [1.5, 3.0, 4.5, 6.0] based on the interval of temperature;
the highest capacities are not necessary during the warmer days (for example, with
T eh = 19°C every value in Ω will return a QoSh near 100%, affecting the quality of the
data training set and the estimation).
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Figure 4.3 Histogram of hourly external temperatures in Montreal, Canada for 2013.

Figure 4.3 shows the frequency of the external temperature intervals in the historical data;
this is clearly an imbalanced set. This imbalance is generated by the similar weather in Spring
and Fall. The temperatures between 0 and 20°C would have a significantly higher weight
in a fitting process. We use random under-sampling (Chawla, 2005) in order to match the
number of points in the minority group from the temperatures below the comfort interval.
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Figure 4.4 shows the hourly QoS results for the balanced set. We can identify several char-
acteristics of the system behavior:

• As the temperature increases the QoS converges to higher values; with fewer requests
the selection of a capacity level is a less sensitive issue.

• The selection of the capacity level has a big impact on the QoS in lower temperature
conditions.

• The QoS seems to behave asymptotically for higher and lower temperatures.
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Figure 4.4 Graph of QoS vs. temperature for the sampled historical data.

4.2.2 Data Fitting

Once we have identified these features in the data set we can solve an optimization problem
for the capacity estimation. We fit the sigmoid function

Q̂oSh = β1

1 + eβ2T e
h

+ β3Ch + β4, (4.4)

where Q̂oSh is the quality of service from the prediction model at time frame h.

Additionally, we will compare two different optimality criteria: the least squares value (LSV)
and the least absolute value (LAV). Typically, the LSV gives more weight to distant points
while the LAV is resistant to outliers (Dielman, 1986).

The optimization problems are:

min
β1,β2,β3,β4

H∑
h=1

(QoSh − Q̂oSh)2 (4.5)
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min
β1,β2,β3,β4

H∑
h=1
| QoSh − Q̂oSh | (4.6)

Figure 4.5 shows the results for a least-squares fitting of a sigmoid function.
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Figure 4.5 Fitted sigmoid function.

Once we have solved the optimization problem (4.5) or (4.6) we can use (4.4) to compute the
expected required capacity for the desired QoS.

4.2.3 Motivation for Using a Sigmoid Function

The selection of a sigmoid function has both a graphical justification and an interesting
background. We provide intuition into why it works for the heating case; the cooling case
is similar. This analysis applies to any external temperature regardless of the time frame
where it occurs; therefore we omit the subscript h and use N in the place of Nh to increase
readability.

We make the following assumptions:

• If T e′
< T̂ e then N(T e′) > N(T̂ e) for any temperatures T e′ and T̂ e.

• C ∈ [Cmin,∞) where Cmin = max(Pi).

• Each load generates at most one request per time step, and therefore the maximum
number of requests per step equals I.

• There exists a temperature T̃ e at which all the heaters generate requests at every time
step, and therefore N(T̃ e) = I × S.
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Considering the worst-case scenario for any time frame in Equations (4.1) and (4.2), we have:

QoS(T̃ e, Cmin) =

I∑
i=1

S∑
t=1

xi,t

I × S
(4.7)

I∑
i=1

xi,tPi ≤ Cmin ∀t ∈ {1, 2, . . . , S} (4.8)

Equation (4.8) allows us to accept at least one request at every time step. Therefore, the
total number of accepted requests satisfies:

S∑
t=1

I∑
i=1

xi,t ≥ S. (4.9)

After substituting (4.9) into (4.7) we can obtain a minimum QoS:

QoS(T̃ e, Cmin) ≥ 1
I

(4.10)

We can see similar behavior for scenarios with temperature Ṫ e > T̃ e and N(Ṫ e) < N(T̃ e).
Let F be the minimum number of time steps where requests are received. Since each load i
will request at most once per time step, we have:

F =
⌈
N(Ṫ e)
I

⌉
= N(Ṫ e)

I
+ α, 1 > α ≥ 0. (4.11)

The variable F also becomes the minimum number of accepted requests due to the Cmin in
Equation (4.8). By substituting (4.11) into (4.1) we obtain:

QoS(Ṫ e, Cmin) =

I∑
i=1

S∑
t=1

xi,t

N(Ṫ e)
≥ F

(F − α)I . (4.12)

When α = 0 we get the same condition as in Equation (4.10).

A sigmoid function helps to represent the asymptotic extremes and monotonic behavior of the
QoS. In the first case, we see how the QoS is bounded below in Equations (4.10) and (4.12),
and it is bounded above by definition (QoS ≤ 100). In the second case, the temperature
and requests are inversely proportional (if T e′

< T̂ e then N(T e′) > N(T̂ e)), so QoS(T e) is
monotonically increasing. Using a linear function would capture the monotonic condition
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but not the asymptotic extremes.

For cooling systems we would change the first assumption to T e
′
> T̂ e, giving N(T e′) >

N(T̂ e). This leads to a similar monotonically decreasing sigmoid function over the interval
of external temperature where cooling is required.

4.2.4 Classification

As stated previously, we have a discrete set of capacities that are suitable for the performance
of the system. We solve for Ch in (4.4) in order to compute the continuous signal Ĉh. Finally,
we use the multiclass classifier

Ch = arg min
ω∈Ω
| Ĉh − ω | (4.13)

to find the required capacity.

Figure 4.6 shows the effect of the classifier; it assigns areas to each of the capacities based
on the midpoints for each pair of sigmoid curves from Figure 4.5.
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Figure 4.6 Classification areas.

4.3 Experimental Results

In the previous section we introduced the methodology with an example for a given set of
homogeneous space heaters. In this section we carry out several experiments to assess and
validate the performance of the proposed methodology under different conditions.

It is important to ensure coherence in the thermal system when defining the set of loads. The
loads must keep the temperature in the comfort range during the warmest and coldest time
frames in the data sets. This design step must include the specific features of the building
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such as size, surfaces in contact with external temperatures, wall insulation materials, and
thermal load inside the room. A poorly balanced thermal system could lead to a QoS of
100% with temperatures far from the comfort zone.

At the end of each time step, we compute the temperature in the rooms using the same
thermal equations as in Costanzo et al. (2012):

dQtot

dT room
= mroomCroom, (4.14)

dQexch

dt
= −Kwall

A

χ
(T e − T room), (4.15)

Qtot = Qexch + ηPi, (4.16)

where Kwall = 4.8 × 10−4 kW/m · °C is the average thermal conductivity of the wall, and
η = 100% is the efficiency of the loads. We choose a room size of 60m3, which corresponds
to an air mass of mroom = 72 kg with a specific heat capacity Croom = 1.0 kJ/Kg· °C.
The surface area in contact with the external temperature is A = 12m2 with a thickness of
χ = 0.2m. This remains constant for all the experiments.

For a more realistic scenario both types of loads are managed by the AC; the space heaters
and the air conditioners will create requests when the temperature in each room is moving
out of the comfort zone.

The experiments include:

• Sets P with homogeneous and heterogeneous power Pi values.

• Three different types of Ω sets: computed from all possible combinations of values in
P ; computed from some of the combinations in P ; and given by an external entity.

• Two fitted functions.

• Two optimality criteria: LAV and LSV.

• Comparison with two neural networks (NNs) with different topologies.

The experiments are carried out in two stages. In the training stage we reproduce the
approach presented in Section 4.2 in order to determine the classification areas. Then in the
test stage we use the classification areas to estimate the capacity profiles for given levels of
the QoS. When the profiles have been computed, we run a simulation to verify the actual
QoS performance.
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In Sections 4.3.1 and 4.3.2 we illustrate the methodology on a three-load instance: an apart-
ment with three rooms. In Section 4.3.3 we report results for an instance with 50 loads to
demonstrate the scalability of our methodology.

4.3.1 Training for Three-Load Instance

We required two training sets: one for heaters and one for air conditioners. Each training
set is defined over the corresponding interval of temperature (T eh ≤ 20°C for heaters and
T eh ≥ 26°C for air conditioners) and randomly chosen as in Subsection 4.2.1. The historical
sets are simulated using the hourly temperature in Montreal for the year 2013 (8760 data
points).

As mentioned before, we will compare this methodology with two other approaches. In the
first case, we use the polynomial function

Q̂oSh = β1 + β2Ch + β3T
e
h + β4T

e
hCh (4.17)

in the fitting step. A priori the sigmoid function gives a better representation of the historical
set due to its monotonically increasing behavior and the asymptotic extremes. The function
in Equation (4.17) captures only the monotonic condition. To fit each function we solve a
nonlinear optimization problem using the BFGS method; it finds a solution in a few seconds.

We use NNs, which are widely used in many different types of problems, as a second bench-
mark. For classification problems the NN typically has the same number of neurons in the
output layer as the number of classes. The NN computes the probability that each input
belongs to each class, and it chooses the class with maximum probability. We implemented
two NNs with A = 1 and B = 2 hidden layers (5 neurons each), cross entropy as a perfor-
mance measure in the learning process, and a validation subset of 30% of the points. The
training time of the NNs varies between 10 and 20 seconds using scaled conjugate gradient
backpropagation.

Finally, the total confusion or missclassification index measures the performance of each
approach. It indicates the percentage of the total set of data that was incorrectly classified.

Tables 4.1 and 4.2 show the training results for the different scenarios and approaches. Sce-
narios 1–7 and 8–14 correspond to heating and cooling respectively. In scenarios 1–3 and
8–10 the loads are homogeneous and the Ω set corresponds to all possible combinations of
the loads. In scenarios 4–6 and 11–13, both homogeneous and heterogeneous loads are tested
with a Ω set that was defined separately from the loads. Finally, scenarios 7 and 14 contain
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a heterogeneous set of loads and all possible combinations in Ω.

Table 4.1 Confusion (%) in training stage for the heating scenarios

Scenario P Ω PLAV PLSV SLAV SLSQ NNA NNB

1 [1.5, 1.5, 1.5] [1.5, 3.0, 4.5] 28.31 33.92 12.54 13.12 11.25 10.15
2 [2.0, 2.0, 2.0] [2.0, 4.0, 6.0] 18.94 20.38 13.48 11.70 15.76 10.10
3 [2.5, 2.5, 2.5] [2.5, 5.0, 7.5] 20.58 25.00 20.92 17.95 15.70 10.88
4 [1.5, 1.5, 1.5] [2.5, 4.0, 6.0] 32.04 28.50 10.01 14.47 16.2 14.25
5 [2.0, 2.0, 2.0] [2.5, 4.0, 6.0] 25.67 22.01 12.54 14.47 17.56 14.25
6 [2.5, 2.0, 1.5] [2.5, 4.0, 6.0] 21.46 20.21 7.01 10.51 6.75 7.25
7 [2.5, 2.0, 1.5] [2.5, 3.5, 4.0, 4.5, 6.0] 45.63 49.21 34.96 45.38 27.69 25.01

Table 4.2 Confusion (%) in training stage for the cooling scenarios

Scenario P Ω PLAV PLSV SLAV SLSV NNA NNB

8 [0.5, 0.5, 0.5] [0.5, 1.0, 1.5] 30.15 33.23 12.26 12.73 16.11 17.16
9 [1.0, 1.0, 1.0] [1.0, 2.0, 3.0] 18.28 19.33 10.63 9.33 19.42 8.35
10 [1.5, 1.5, 1.5] [1.5, 3.0, 4.5] 23.40 25.75 21.61 18.00 13.54 13.13
11 [0.5, 0.5, 0.5] [1.5, 2.0, 3.0] 31.32 36.23 12.69 19.42 9.57 9.14
12 [1.0, 1.0, 1.0] [1.5, 2.0, 3.0] 22.08 22.44 13.96 13.74 5.36 12.40
13 [1.5, 1.0, 0.5] [1.5, 2.0, 3.0] 22.18 24.24 8.03 11.17 22.71 13.19
14 [1.5, 1.0, 0.5] [1.5, 2.0, 2.5, 3.0] 46.53 46.84 39.19 44.61 26.84 23.38

In general, we observe a better performance in the sigmoid fitting (SLAV and SLSV) than
in the polynomial cases (PLAV and PLSV). There is no clear difference in terms of the
fitting criterion. The sigmoid function seems to be competitive with both NNs in the first
six scenarios of each table.

As stated before, the sigmoid function provides a better representation of the structure of
the problem. Figure 4.7 shows the classification areas obtained by fitting the sigmoid and
polynomial functions for scenario 2. For a QoS of 90%, we see that the polynomial function
gives a transition between areas either before or after the sigmoid function. If it is before,
T ∈ (−18,−8)°C, we will obtain a worse QoS and lower temperatures in the rooms. If is
after, T ∈ (2, 8)°C, we will have extra capacity that is not required. This lower utilization
of the capacity becomes more important if the user is paying in advance for a resource that
will not be used.

On the other hand, scenarios 7 and 14 are significantly different: the NNs have considerably
better performance than any other approach. Looking deeper into the characteristics of these
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Figure 4.7 Comparison of sigmoid and polynomial areas for scenario 2.

scenarios we see a special condition: several values in Ω can generate the same QoS at the
same temperature. We may have the same performance in scenario 7 for ω = 4 and ω = 4.5
if the three heaters send requests at the same time. In the first case, the AC will accept
P1 and P3 and leave P2 for the next time step. In the second case the order of acceptance
changes but the QoS is the same. Figure 4.8 shows the training set for this scenario; we can
see how C = 4 is distributed over its adjacent classes.
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Figure 4.8 Training data for scenario 7 (heating).

Although the NNs have a better training performance, they might minimize the confusion
value by eliminating one of the classes. LetWω be the set of points that belong to class ω, and
letW 1

ω andW 0
ω be the subsets of points correctly and incorrectly classified respectively. Let Γ

be the total number of misclassified points. The approach presented in this article separates
any two contiguous sets following the fitted function, and therefore W 1

1 + W 0
1 =| W1 |,
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W 1
2 +W 0

2 =| W2 |, and W 0
1 +W 0

2 = Γ.
If we assume that the NN eliminates class 2 we have W̄ 1

1 =| W1 |, W̄ 0
2 =| W2 |, and

W 1
2 + W 0

2 =| W2 |= Γ̄. We can conclude that eliminating one class improves the confusion
(i.e., Γ̄ < Γ) if W 1

2 < W 0
1 .

At this point we can see the advantage of exploiting the features of the problem. In the
approach presented in this paper the fitted function acts as a constraint that represents the
structure of the data sets. On the other hand, the flexibility of the NNs allows a lower mis-
classification, but we see in Subsection 4.3.2 that this has an unexpected impact on the QoS.

4.3.2 Results for Three-Load Instance

The experiments use data for a period of two years (2014 and 2015) for the Montreal area
(17520 data points). The user sets a QoS of 90%. Figures 4.9–4.14 show the results for
scenarios 2 and 7 (heating) and scenario 14 (cooling). These box plots contain the minimum
value, maximum value, and interquartile range for the hourly QoS and the hourly average
temperature in the three rooms for each of the methods compared.

For scenario 2 (Figures 4.9 and 4.10) we see that the sigmoid and NN cases perform slightly
better than the polynomial function. Although the QoS and the temperature do not vary
significantly, the use of the resource differs: the polynomial function reports around 60% of
utilization of capacity while the other four methods achieve a utilization between 70% and
75%. This effect was previously observed in Figure 4.7. Scenarios 1, 3 to 6, and 8 to 13 have
similar results.
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Figure 4.9 QoS test results for scenario 2 (heating).
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Figure 4.10 Average room temperature test results for scenario 2 (heating).

In the case of scenarios 7 and 14 we observe a special situation: although the training
results for the NNs are better we have a worse QoS (Figures 4.11 and 4.13) and temperature
management (Figures 4.12 and 4.14). We previously saw in Figure 4.8 that the areas for
classes 3.5, 4, and 4.5 are not clearly defined. We also saw that different capacities can result
in a similar QoS at the same temperature due to the load shifting. Nevertheless, eliminating
one of the classes can have negative effects on the final output; in this case the NNs tend to
eliminate class 4.5 in order to minimize the confusion value. Although C = 4.5 and C = 4.0
can accept two out of the three loads if all of them arrive at the same time, the situation
changes when the loads arrive at different times. For example, C = 4.5 will satisfy any of the
combinations of two loads arriving simultaneously: [2.0, 2.5], [1.5, 2.5], and [1.5, 2.0], whereas
C = 4.0 will not accept [2.0, 2.5]. It is therefore preferable not to eliminate a class because
of the dynamics in the system.
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Figure 4.11 QoS test results for scenario 7 (heating).
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Figure 4.12 Average room temperature test results for scenario 7 (heating).
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Figure 4.13 QoS test results for scenario 14 (cooling).
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Figure 4.14 Average room temperature test results for scenario 14 (cooling).
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4.3.3 Results for Fifty-Load Instance

To demonstrate the scalability of the proposed methodology, we present results for an instance
with 50 space heaters. This instance represents an apartment building with three different
types of heaters P = [1.5, 2.0, 2.5] with respectively 20, 15, and 15 loads of each type.
We consider the scenario in which the building operator chooses Ω = [25.0, 45.0, 70.0, 90.5].
Figures 4.15–4.17 give a summary of the results.
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Figure 4.15 Classification areas.
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Figure 4.16 Capacity as function of external temperature.

Figure 4.15 shows that the classification areas have the expected sigmoid shape. Figure 4.16
shows that as the external temperature increases, the capacity required decreases. Finally,
Figure 4.17 shows that the average QoS and the average room temperature remain in the
comfort zone.
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Figure 4.17 Average QoS and average room temperature.

An important feature of this novel approach is that the QoS aggregates all the requests from
the loads. Therefore, regardless of the size of the population, it maintains the asymptotic
and monotonic increasing behavior explained previously.

4.4 Conclusions

Understanding the requirements of residential consumption is key to facilitating increased
participation in DR programs. The methodology proposed in this paper computes a power
capacity profile that meets the user’s expectations and at the same time provides information
to residential power management systems. The use of the AC and the implementation of the
QoS index allow us to aggregate a set of loads, simplifying the decision-making process.

The approach we have presented takes advantage of the inner structure of the defined prob-
lem, ensuring a good representation of the historical data and a reliable tool for future es-
timation. The shaving effect can be achieved, controlling the peak consumption, respecting
the QoS, and ensuring a better utilization of the power capacity available.

The proposed method computes capacity profiles for a specific comfort zone with a defined
set of loads. For different configurations of the building and/or different boundary conditions,
the user can easily compute the new classification areas for different scenarios and intervals
of comfort. The quality of the historical data and coherence in the thermal system when
defining the set of loads are key to the applicability of this method.

Future work will explore the applicability of the proposed methodology to more complex
systems with different types of buildings and loads and also take into account the user
behavior.
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Finally, the approach presented is computationally efficient, it utilizes data that is normally
available in the smart building context, and it performs well for heating and cooling, offering
better performance than NNs in a real-world-based scenario.
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Abstract

This paper proposes a framework to determine day-ahead capacity profiles that account for
the stochastic demand generated by user behavior in smart buildings. The user selects a
level of capacity per time frame in the context of flexible time-and-level-of-use pricing. We
generate the consumption scenarios by aggregating historical data. We also present two
approaches to determine the required capacity given the demand. In the first approach, we
solve a two-stage optimization model under the assumption that the start time probability
distributions of the loads are known. In the second approach, we use a greedy-type algorithm
that analyzes a set of previous consumption profiles to estimate future capacity requirements.
We report experiments to validate the proposed approaches.

Keywords

Smart buildings, power demand, residential load sector, user behavior, activity-based loads,
stochastic optimization.

5.1 Notation

Sets
t ∈ T Set of time frames in horizon.
m ∈ M Set of loads.
i ∈ I Set of scenarios.
j ∈ J Set of intervals of the cost step function for the lower tariff.
q ∈ Q Set of intervals of the cost step function for the higher tariff.
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Scenario Generation
Pm Power consumption of load m (kW).
Lm Duration of load m (h).
Xm Start/arrival time frame of load m.
ρ Significance threshold for the scenario elimination.

Optimization Parameters
K0
t TOU tariff in time frame t (¢/kWh).

KL
jt Lower tariff in interval j in time frame t (¢/kWh).

KH
qt Higher tariff in interval q in time frame t (¢/kWh).

KF
t Booking cost in time frame t (¢/kWh).

CL
jt Capacity lower bound in interval j in time frame t for the lower tariff (kW).

CH
qt Capacity lower bound in interval q in time frame t for the higher tariff (kW).

Prit Probability of scenario i in time frame t.
Dit Demand for scenario i in time frame t.

Optimization Variables
xLijt Electricity consumption at lower tariff in scenario i, time frame t, and interval

j (kWh).
xHiqt Electricity consumption at higher tariff in scenario i, time frame t, and interval

q (kWh).
cjt Booked capacity in time frame t and interval j (kW).
c̄qt Auxiliary variable to identify the higher tariff interval q in time frame t.

φjt

 1 Capacity in time frame t belongs to interval j for the lower tariff
0 Otherwise

δqt

 1 Capacity in time frame t belongs to interval q for the higher tariff
0 Otherwise

Heuristic
N Number of days in Γ.
Γ ∈ RN×|T | Historical load consumption.
S Number of time segments.
S̄(n) Number of time segments in iteration n.
α Number of iterations with a constant S̄(n).
β Stopping criterion.
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5.2 Introduction

The increasing development of smart grids (SG) creates potential benefits and challenges
for utilities, consumers, and society in general. An SG allows information flow among all
the participants (Parhizi et al., 2015), supporting better decisions that ensure the stability,
reliability, and economic viability of the system.

In this context, the consumers (end-users) become decision-makers and can contribute to
the grid performance. This user participation is achieved through demand response (DR)
programs (FERC, 2012), which are designed to encourage consumers to change their con-
sumption preferences in a way that is beneficial for the grid, normally in exchange for com-
pensation.

DR programs include incentive-based programs, where the consumer commits to reducing
consumption over a determined period of time under prespecified conditions.

In pricing DR programs, the utility offers a variable tariff, expecting that the user will react by
shifting load to cheaper periods. If the users do not shift they pay more to meet their energy
requirements. These pricing policies normally reflect the aggregated peak of demand and
therefore the utility’s generation costs. They are mostly oriented to customers in residential
and commercial sectors and have particular potential in smart buildings (Siano, 2014), where
the end-users can seek to benefit while meeting the grid requirements.

The residential and commercial sectors have a specific set of characteristics that must be
taken into account. First, the demand is driven by a large number of end-users with low
individual consumption. Second, the consumption is triggered by the user behavior, which
may be (highly) stochastic.

There are various models that consider user behavior. Some approaches seek to predict the
future user consumption based on historical data. The review presented by Swan and Ugursal
(2009) contains some of the most common bottom-up approaches to load forecasting. The
model presented in Richardson et al. (2010) determines consumption profiles based on the
aggregation of individual loads, the number of people in the housing unit, and their activity
profiles. In a similar way, Collin et al. (2014) uses a Markov-chain Monte-Carlo model to
compute the activity profiles in order to estimate realistic load profiles for a wide variety of
housing units. The approach presented in Subbiah et al. (2013) uses logistic and Poisson
regression to model the correlational and consistency elements of the shared activities of
multiple inhabitants in a household.

The characterization framework in Soares et al. (2014) analyzes the controllable demand and
its potential savings for users participating in an energy management system. Similarly, the
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approach in Munkhammar et al. (2014) estimates consumption profiles by fitting probability
density distributions over a historical set for single and multiple housing units.

The importance of a consumption-aware user is discussed in Nguyen and Aiello (2013). This
survey includes elements such as potential energy savings, activities with higher potential
impact, and the availability of information and automation in the building.

There are various strategies for integrating the end-users into the grid decisions. In demand-
side management approaches, e.g., Fernandes et al. (2014), Chen et al. (2012), and Gomez
and Anjos (2017a), the user preferences are typically hard constraints and are met while
optimizing the energy consumption or peak reduction. In other cases there is a negotiation
process. Multi-objective optimization is used in Korkas et al. (2016) to balance the energy
costs and thermal comfort. The user behavior is considered during the process of setting
prices in Afsar et al. (2016). In this case a bilevel optimization approach is used to find a
trade-off between the revenue obtained by the energy provider and the user dissatisfaction.

Different pricing policies are assessed in Muratori and Rizzoni (2016) and Vardakas et al.
(2015) to explore the effect on user participation and grid performance. A pricing policy that
considers user behavior facilitates the user’s integration into the SG decisions.

In this article we propose a framework to determine day-ahead capacity profiles that account
for the stochastic demand generated by the user behavior. This goes beyond a forecasting
approach, since it determines how to respond to the expected demand (i.e., the forecast) in
an optimal way that minimizes the cost for the users, ensures their satisfaction, and considers
the grid requirements. In this framework the user books a level of capacity per time frame
in the context of flexible time-and-level-of-use (TLOU) pricing. This pricing policy is an
extension of that presented in Gomez and Anjos (2017b).

We generate the consumption scenarios by aggregating the individual historical data for each
activity load. We also present two approaches to determine when to book power and how
much to book to satisfy the demand. First, we propose a two-stage optimization model that
minimizes the cost. Second, we propose a heuristic algorithm that uses a set of previous
consumption profiles to estimate future capacity requirements.

The use of capacity profiles gives savings for the users and provides the grid with more
information about the operation of the system. One of the main features of this work is that
the users do not manage their consumption to follow a fixed cost profile; instead, the utility
adjusts the costs to the user preferences while considering the grid requirements.

This article is structured as follows: the proposed approaches are described in Section 5.3,
the experimental results and analysis are presented in Section 5.4, and the conclusion is given
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in Section 5.5.

5.3 Proposed Framework

Our framework is based on the concept of a capacity profile. A capacity profile allows us
to establish a trade-off between user energy requirements and peak-oriented grid decisions.
Our framework estimates capacity profiles considering the user behavior and a dynamic cost
scheme. The consumer books a maximum level of consumption per time frame, providing
the grid with information in advance and receiving energy below that level at a discounted
price. The utility uses this information for planning purposes and is able to charge a higher
price if the user exceeds the specified level.

A challenge of this type of decision-making is the proper representation of user behavior.
The appropriate capacity depends on the demand. We represent the demand as a stochastic
parameter derived by aggregating consumption over all the user’s activities. Since this in-
formation is not always available, we propose a comprehensive framework that supports the
decision-making. Figure 5.1 shows the framework representation, finishing with a simulation
and cost validation stage.

Figure 5.1 Framework to determine capacity profiles for activity-based loads
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5.3.1 Flexible TLOU Cost Structure

Time of use (TOU) pricing is widely implemented for the residential sector. Under TOU the
price depends on the time of day. Figure 5.2 shows the time windows for off-peak, mid-peak,
and on-peak tariffs specified by the Independent Electricity System Operator of Ontario
(Canada).

0:00 7:00 11:00 17:00 19:00 24:00

Off On Mid On Off

Figure 5.2 Ontario IESO TOU periods in winter.

We use a cost structure that includes another dimension: the price depends on the level of
consumption in each time frame. For a specified power limit, consumption up to this limit
is charged at a lower tariff, and consumption above this limit is charged at a higher tariff.
This time-and-level-of-use pricing was implemented in Gomez and Anjos (2017b), where the
tariffs and capacity limits were set by the utility or the grid operator. In the approach
presented in this article, the tariff depends on the capacity level booked by the user in each
time frame. The utility provides a set of tariffs and capacities from which the consumer can
choose. Figure 5.3 shows the possibilities for the lower tariff; this step function has | J |
segments, and the TOU tariff is represented by the parameter K0

t . Note that all the possible
tariffs are ≤ K0

t . Selecting c2
t > c1

t allows a cheaper tariff KL2
t < KL1

t . The higher tariff for
consumption above the limit is represented by the function in Figure 5.4. This step function
has | Q | segments, and the possible tariffs are ≥ K0

t . In this case booking a lower capacity
implies a cheaper tariff.

KL1
t

KL2
t

K0
t

Capacity

Ta
riff

c1
tCL

jt CL
j+1t c

2
t

Figure 5.3 Lower energy tariff as a step function of the booked capacity.

Additionally, we introduce a booking fee KF
t per power unit that is paid in advance by the

user. Determining the capacity is thus a nontrivial decision. Booking a higher capacity c2
t
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Figure 5.4 Tariff for consumption above limit as a step function of the booked capacity.

will give a cheaper KL2
t and a more expensive KH2

t as well as a higher booking cost KF
t c

2.

5.3.2 Scenario Generation

We assume that the start of each load follows a normal distribution. The duration and the
level of consumption of each appliance are deterministic parameters.

The aggregation of individual loads can result in numerous scenarios since each time t has∑|M |
m=1

(
|M |
m

)
possible consumption levels obtained from the possible arrivals of the loads.

Including zero consumption, we have for each time frame∑|M |m=1

(
|M |
m

)
+1 = ∑|M |

m=0

(
|M |
m

)
= 2|M |

possible consumption levels.

The arrival distribution of each load m is discretized over | T | time frames, and the proba-
bility that load m starts in time frame t is denoted Pr(Xmt = 1).

We also need to consider the load durations, so we define the probability that load m is active
in time frame t as:

Pr(X̃mt = 1) =
t∑

t−Lm

Pr(Xmt = 1),

which is the accumulated probability over the duration of the load. Finally, we compute the
probability that scenario i occurs in time frame t as

Prit =
∏
m∈i

Pr(X̃mt = 1)
∏
m/∈i

(1− Pr(X̃mt = 1)),

where we aggregate the loadsm of scenario i. Depending on the parameters of the distribution
and the load durations, some of the scenarios can have near-zero probabilities. We remove the
scenarios with a probability < ρ, where ρ is a significance threshold defined by the decision-
maker. The more concentrated the loads are over a set of time frames, the more scenarios can
be discarded from this set. Thus, each time frame t can have a different number of scenarios
(i.e., I(t)).
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5.3.3 Two-Stage Stochastic Optimization Model

We estimate the capacity by solving a two-stage optimization problem (Birge and Louveaux,
2011). In the first stage the user determines the capacity required per time frame. The
second stage takes into account the cost of meeting the demand and the costs associated
with the decision. The objective function (5.1) includes the booking cost, the expected cost
of consumption at the lower tariff, and the expected cost of consumption at the higher tariff.

min
∑
t∈T

∑
j∈J

KF
t cjt +

∑
t∈T

∑
j∈J

∑
i∈I(t)

PritK
L
jtx

L
ijt

+
∑
t∈T

∑
q∈Q

∑
i∈I(t)

PritK
H
qtx

H
iqt

(5.1)

subject to∑
j∈J

φjt = 1 ∀t ∈ T (5.2)

∑
q∈Q

δqt = 1 ∀t ∈ T (5.3)

φjtC
L
jt ≤ cjt ≤ φjtC

L
j+1t ∀j ∈ J | j <| J | −1, t ∈ T (5.4)

δqtC
H
qt ≤ c̄qt ≤ δqtC

H
q+1t ∀q ∈ Q | q <| Q | −1, t ∈ T (5.5)∑

j∈J
cjt −

∑
q∈Q

c̄qt = 0 ∀t ∈ T (5.6)

xLijt ≤ cjt ∀i ∈ I(t), j ∈ J, t ∈ T (5.7)∑
j∈J

xLijt +
∑
q∈Q

xHiqt ≥ Dit ∀i ∈ I(t), t ∈ T (5.8)

xLijt, x
H
iqt, cjt, c̄qt ≥ 0, ∀i ∈ I(t), j ∈ J, q ∈ Q, t ∈ T (5.9)

φjt, δqt ∈ {0, 1} ∀j ∈ J, q ∈ Q, t ∈ T (5.10)

Constraints (5.2) and (5.3) ensure that the booked capacity belongs to one of the intervals
of the step functions for both tariffs. Constraints (5.4) and (5.5) set the lower and upper
bounds for each interval of the step functions. We introduce the auxiliary variable c̄qt for the
capacity in the higher-tariff step cost function. Constraint (5.6) establishes the relationship
between the capacity and the auxiliary variable.
Constraints (5.7) and (5.8) impose the lower-tariff consumption and the demand satisfaction,
respectively, for each scenario. Finally, constraints (5.9) and (5.10) are the nonnegativity and
binary constraints.

In the model the capacity requirements are computed by time frame; in a more realistic
scenario the grid operator could assign capacity profiles over a longer horizon of consumption.
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In the context of TOU we can identify several time windows (groups of time frames) with
the same price (for example, off-peak, mid-peak, and on-peak tariffs). Given a set Ω of time
windows, we could enforce the same capacity for the time frames in the same time window
by adding constraint (5.11):

cjt = cjt′ ∀j ∈ J, t, t′ ∈ τω | t 6= t′, ω ∈ Ω (5.11)

where τω ⊂ T is a subset of time frames. This modification to the original model will be
explored in Section 5.4.

5.3.4 Heuristic Approach

Figure 5.5 shows two possible realizations of the capacity (dashed red line) required to operate
two loads in some time frame. Booking the complete area will be costly if the total booking
cost is greater than the savings associated with the cheaper tariff.

The approach presented in this section reduces the area under the dashed red line by using
information about which time frames are more likely to receive loads. This consumption
information is contained in the matrix Γ ∈ RN×|T | for a set of N previous days. We use the
data in Γ to split the horizon into several segments S and then to allocate a capacity ct to
each time frame.

kW kW

t t
(a) (b)

Figure 5.5 Capacity profile area reduction.

First, we identify several contiguous submatrices in Γ by clustering time frames based on
proximity and consumption. Each submatrix contains either only time frames with no con-
sumption (columns of zeros) or columns with some consumption over the historical set.
Equation (5.12) shows Γ for three days and six time frames; we can identify four segments:
columns 1, 2–3, 4–5, and 6.

Γ =


0 0 λ 0 0 0
0 ε 0 0 0 λ

0 0 η 0 0 0

 (5.12)

After this identification we discard the time frames where loads are not expected based on
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the historical data.

Second, we compute the capacity profile by assigning the average consumption for each time
frame. We must decide the size of N before determining the capacity profile. Too few
days (rows) in Γ could result in insufficient information. On the other hand, increasing
the number of days may not add significant information or could introduce rare events that
do not represent typical user behavior. Experimentally we observe that as the number of
days increases, the number of segments stabilizes because of the finite horizon. We continue
including days and identifying segments until we have added β days without changing the
number of segments. Algorithm 1 presents this process in detail.

Algorithm 1 Capacity profile for activity-based loads

Initialization

• n = 0 Iteration number (i.e., days added)
• α = 0 Number of iterations with the same number of segments

Obtain number of segments
while α < β do

n← n+ 1
Add a row to Γ
Compute S̄(n) by identifying the number of intervals in Γ

if S̄(n) = S̄(n− 1) then
α = α + 1

else
α = 0

end if
end while
N ← n
S ← S̄(n)

Compute profile
ct ← (∑N

n=1 Γn,t)/N ∀ t ∈ T

Algorithm termination

We prove that Algorithm 1 terminates by proving the existence of an upper bound for S̄(n)
and monotonically decreasing behavior after this maximum value has been reached.

Let znt be a parameter indicating whether or not column t of matrix Γ at iteration n is an
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all-zero column:

znt =
{ 1 If column t is zero

0 Otherwise

We can determine the number of segments via:

S̄(n) = y(n) + 1

where y(n) is the number of transitions between zero and nonzero columns, and S̄(n) is an
integer value in the interval [0, | T |]:

y(n) =
|T |−1∑
t=1

(znt − znt+1)2.

Lemma 1. There exists Smax such that S̄(n) ≤ Smax for a given horizon | T |.

Proof. The maximum value for each pair (znt −znt+1)2 = 1, so ymax ≤ | T | −1 and Smax ≤ | T |.
Therefore, Smax exists.

Lemma 2. After S̄(n) reaches Smax, S̄(n) is monotonically decreasing.

Proof. We know that the number of rows in Γ increases at each iteration, so

zn+1
t ≥ znt , ∀ n = 1 . . . N, ∀ t ∈ T.

If zn+1
t = znt ∀ t ∈ T , then y(n+ 1) = y(n) and S̄(n+ 1) = S̄(n).

If there exists t such that zn+1
t > znt , then there exists a pair (znt − znt+1)2 = 0, y(n + 1) ≤

y(n)− 1, and S̄(n+ 1) ≤ S̄(n)− 1.

Theorem 1. Algorithm 1 terminates.

Proof. Because y ≥ 0 and S ≥ 0, by lemma 2 the algorithm must terminate.

5.4 Experimental Results

5.4.1 Stochastic Optimization

We explore changing the number of loads, the standard deviation of the arrivals, and the
concentration of the average arrival time (i.e., how close the arrivals are to each other). The
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first impacts the number of scenarios and the aggregated consumption level; the second and
third affect the congestion over a time window. We denote the instances with Φ|M |σx̄ where
| M | = {3, 5, 10}, σ = {0.5, 2, 4}, and x̄ = {1: low, 2: medium, 3: high} concentrations of
the arrival of the loads over similar time frames. Figure 5.6 shows the values for x̄.

5 10 15 20

x̄

1

2

3

Off On Mid On Off 

| M | = 3

5 10 15 20

x̄

1

2

3

| M | = 5

Time frame

5 10 15 20

x̄

1

2

3

| M | = 10

Figure 5.6 Concentration of load arrivals.

We observe that the activities become closer as x̄ increases. They cluster in the mid-peak
frames for | M | = 3, in the on-peak frames for | M | = 5, and spread over the evening for
|M | = 10.

Figure 5.7 shows the resulting expected consumption profiles. These are computed with
the information from Figure 5.6, combined with each value in σ and taking into account the
duration of the loads. The consumption peaks are typically generated when the concentration
x̄ is high and σ is low. In these cases the higher tariff of the TLOU accounts for the additional
costs that the grid incurs to maintain the balance between supply and demand.

Table 5.1 shows the total cost and accumulated capacity ctot over the horizon, obtained by
solving the problem for all combinations of the parameters previously introduced as well as
both versions of the model presented in Section 5.3.3: Model 1: equations (5.1)–(5.10) and
Model 2: equations (5.1)–(5.11).

We observe that none of the parameters or models has clear behavior with respect to the
total capacity. A higher |M | (i.e., higher total demand) does not always lead to the booking
of more capacity. This counterintuitive behavior is repeated for σ, x̄, and both versions of
the model. At this point we need to consider the interaction of the parameters to understand
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Figure 5.7 Expected consumption profiles.

how the optimization is working, since they determine the shape of the expected demand
curve. Figures 5.8 and 5.9 give examples.

We change σ in Figures 5.8(a) and 5.8(b) while keeping the other parameters constant. For
σ = 0.5 we obtain ctot = 13.3. A higher σ = 1.0 flattens the expected demand curve, resulting
in a lower ctot = 12.2. Similarly, we change σ in Figures 5.8(c) and 5.8(d), this time with
x̄ = 3. In this case we end up with a higher cmax for σ = 1.0. Although the demand curve
is flattened, it is still high enough to make it economical to buy capacity in advance, due to
the proximity of the different loads over time. We can see this clearly at t = 13, where the
expected demand changes from 0.1 in 5.8(c) to 1.1 in 5.8(d).

The selection of the negotiation frequency is represented in model 1 (each time frame) and
model 2 (each time window). Figure 5.9 shows an example of this.

Figures 5.9(a) and 5.9(b) show the results of the model variations for the same instance. The
hourly negotiation in 5.9(a) gives a higher ctot than does the window negotiation from 5.9(b).
The dispersed expected demand makes it inefficient to buy capacity for a full time window.

We observe opposite behavior in Figures 5.9(c) and 5.9(d). In this case, the way the expected
demand curve fits the defined time windows will give a higher ctot by negotiating at every
time window.

Note that we are analyzing the conditions where the user chooses to buy more or less capacity,
and we are not comparing the costs directly since the models are different. In every case,
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Table 5.1 Total cost (¢) and total capacity (kWh) for the instances

|M |= 3 |M |= 5 |M |= 10
Instance Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

Cost ctot Cost ctot Cost ctot Cost ctot Cost ctot Cost ctot

Φ|M |0.5,1 142.7 12.3 147.5 5.0 158.6 13.6 164.3 5.0 217.8 23.8 242.3 3.0
Φ|M |1.0,1 147.0 11.5 149.0 5.0 159.4 11.5 161.7 5.0 226.3 21.5 240.5 3.0
Φ|M |2.0,1 149.6 7.5 149.8 5.0 161.6 7.5 161.8 5.0 232.5 16.0 236.8 8.0
Φ|M |0.5,2 171.2 12.3 186.5 5.0 181.6 13.3 193.9 23.0 271.8 22.7 276.6 20.0
Φ|M |1.0,2 172.1 11.5 179.8 5.0 184.9 12.2 190.2 23.0 267.5 21.3 268.6 20.0
Φ|M |2.0,2 169.0 7.5 170.5 0.0 188.2 10.5 189.4 14.0 255.2 16.5 256.1 11.0
Φ|M |0.5,3 141.8 15.3 149.7 24.0 190.0 19.4 207.6 16.0 237.3 23.0 254.7 14.2
Φ|M |1.0,3 147.4 14.8 151.6 24.0 193.3 20.8 204.0 16.0 223.7 24.0 236.9 12.0
Φ|M |2.0,3 161.7 14.5 162.7 12.0 194.8 16.5 199.4 16.0 212.2 24.5 220.2 12.0

5 10 15 20(a)

2

4

6

8

k
W

 

|5|,0.5,2 - Model 1

Off On Mid On Off 

5 10 15 20(b)

2

4

6

8

k
W

 

|5|,1.0,2 - Model 1

5 10 15 20(c)

2

4

6

8

k
W

 

|5|,0.5,3 - Model 1

5 10 15 20(d)

Hours

2

4

6

8

k
W

 

|5|,1.0,3 - Model 1

Capacity Expected Demand

Figure 5.8 Example of effect of σ and x̄ on ctot.

hourly booking is cheaper than booking for a complete window. The latter can be interpreted
as a trade-off between simplicity for the utility and savings for the user.
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Figure 5.9 Example of the effect of negotiation frequency.

Necessary condition for booking capacity

In Figures 5.8 and 5.9 we see that some time frames with an expected demand greater than
zero do not have any capacity booked, even in an hourly negotiation policy.

We can compare the objective function (5.1) for a single time frame where it was better not
to book instead of booking c (for simplicity we do not include the cost intervals from the
step functions):

KF0 +
∑
i∈I

PriDiK
0 <

KF c+
∑
i∈I

Pri[xLi KL(c) + xHi K
H(c)]

(5.13)

Because Di = xLi + xHi , we can reorganize equation (5.13) as

∑
i∈I

Pri[xLi [K0 −KL(c)] + xHi [K0 −KH(c)]] < KF c, (5.14)

where we find a clear relationship: the net expected savings must be less than the fixed cost
from booking capacity c. The net expected savings are the savings from the lower tariff and
the extra cost of consumption at the higher tariff. The optimization seeks a c that violates
the condition in equation (5.14). If such a c does not exist, it is optimal to retain the TOU
pricing K0.
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Because equation (5.14) depends strongly on the tariffs, and the tariffs vary depending on
the TOU, we observe different behavior for different time frames. We can see this situation
in Figure 5.8(b), where the user buys capacity at t = 8, an on-peak period, and not at t = 13,
a mid-peak period, despite the similar expected demands.

5.4.2 Simulation

In this section we implement a 180-day simulation corresponding to the period of the TOU
winter tariff in Ontario. We generate each day’s consumption randomly given the normal
distributions from all the instances introduced in Section 5.4.1. We compare the total cost
of the complete simulation for four different approaches: no booking of capacity, booking
capacity based on the heuristic approach, and booking it based on our two optimization
models.

In the first case, the user pays the TOU tariff originally offered by the utility. In the second
case, the user determines the capacity profile with the heuristic value and accepts the KL

t

and KH
t corresponding to the capacity value. Note that the heuristic does not take into

account the cost. Finally, the two models determine both the capacity and the tariffs at the
beginning of the simulation as optimal policies.

Figure 5.10 compares the costs of the 27 instances. The optimal hourly negotiation has the
best performance for all the instances. As mentioned previously, time-window negotiation
represents a trade-off between grid management and potential user savings, giving optimal
values that are between the optimal hourly negotiation values and those of the no-booking
policy for all the instances. Finally, in both models the average costs are similar to those in
Table 5.1. In general terms the user achieves savings of up to 16% by using model 1 rather
than TOU only.

The heuristic approach works well in some cases, occasionally reaching values similar to those
of model 2. The heuristic is useful in situations where insufficient information is available:
it provides suboptimal solutions until the optimization model is ready (i.e., the distributions
are known). It could also be helpful for transitions where the user behavior changes and the
previous optimal solution is no longer appropriate.

We also observe that the heuristic has poor performance for some instances. These instances
have the property that the optimal values for both models are close to the no-booking policy.
In these cases, the optimization models either return a low capacity or the savings are not
significant because of the shape of the expected demand curve, and the heuristic is not able
to determine if booking is a good policy.
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Figure 5.10 Average cost per day for the instances (σ, x̄).

In general, the approaches perform better when it makes sense to buy capacity in advance.
They could be used in combination with demand-side management to support a learning
process (optimal consumption) and eventually give more benefits to the user.

5.5 Conclusion

We have proposed a new framework that allows end-users to profit from a novel flexible
TLOU tariff in a DR context.

The framework starts with the generation of consumption scenarios by aggregating historical
data. We have presented two approaches to help the user determine the required capacity
given the demand. The first approach solves a two-stage optimization model under the
assumption that the start time probability distributions of the loads are known. The second
approach uses a greedy-type algorithm that analyzes a set of previous consumption profiles
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to estimate future capacity requirements.

The use of capacity profiles contributes to the expansion of DR in the residential and com-
mercial sectors, allowing consumers to take advantage of lower prices and providing utilities
with a tool that helps to compensate for the extra cost of matching generation and demand
in congestion periods.

We have provided several scenarios and instances to validate the ideas underlying our ap-
proaches. An important aspect of this work is that we consider the user perspective, ensuring
satisfaction and obtaining benefits in all the instances. The user does not change his/her
preferences and always satisfies his/her energy requirements. The experimental results pro-
vide insight into how consumers can modify their expected demand curves to gain greater
benefits.

Acknowledgments

This research was supported by the Canada Research Chair on Discrete Nonlinear Optimiza-
tion in Engineering and by the NSERC Energy Storage Technology Network.



53

CHAPTER 6 ARTICLE 3: COLLABORATIVE DEMAND-RESPONSE
PLANNER FOR SMART BUILDINGS
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Abstract

This work presents a collaborative scheme for the end-users in a smart building with multiple
housing units. This approach determines a day-ahead operational plan that provides demand-
response services by taking into account the amount of energy consumed per household,
the use of storage and solar panels, and the amount of shifted load. We use a biobjective
optimization model to trade off total user satisfaction versus total cost of energy consumption.
The optimization works in combination with a novel cost structure based on time and level
of use that encourages load shifting and benefits the participants. Experimental results and
a sensitivity analysis validate the performance of the proposed approach and help to clarify
its strengths, its limits, and the requirements for ensuring the desired outcome.

Keywords

Smart Buildings, Demand-Response, Residential Load, Biobjective Optimization, Compro-
mise Programming.

6.1 Notation

Sets:
i ∈ I : Energy levels
j ∈ J : Users
t ∈ T : Time frames

Parameters:
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Djt : Energy demand of user j in time frame t
Kit : Cost per energy unit bought from the grid in level i in time frame t
CL : Available capacity in the lower level
CH
j : Available capacity in the higher level for user j

B : Cost of charging the battery per energy unit
Smax : Capacity of the battery
Γ : Battery efficiency
Z : Number of cycles allowed in the battery
Pt : Incentive paid by the grid per energy unit in a demand-response call in time

frame t
DRt : Energy consumption reduction requested by the grid in time frame t
Gmax
t : Available energy from solar panels in time frame t

F : Cost per energy unit obtained from the solar panels
Yj : Total backlogged demand over the horizon accepted by user j
Ŷj : Max backlogged demand at the end of the horizon for user j
Ψmax
sol : Max percentage of total demand satisfied by solar panels

Ψmin
sol : Min percentage of total demand satisfied by solar panels

Ψmax
bat : Max percentage of total demand satisfied by the battery

Ψmin
bat : Min percentage of total demand satisfied by the battery

Variables:
xijt : Energy bought from the grid in level i by user j in time frame t
yjt : Accumulated unmet demand at the end of period t for user j
socjt : Individual state of charge for user j at the end of time frame t
s+
jt : Energy charged in the battery in time frame t by user j
s−jt : Energy discharged from the battery in time frame t by user j
rjt : Amount of demand-response service provided by user j in time frame t
gjt : Consumed energy from solar panels for user j in time frame t

αt :

 1 Battery charges during time frame t
0 Battery discharges during time frame t

zt :

 1 Battery changes from charging to discharging or vice versa
0 Otherwise

φt :

 1 The building agrees to provide demand response in time frame t
0 Otherwise
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6.2 Introduction

The implementation of smart buildings introduces two major challenges for consumer plan-
ning. First, consumers desire to meet their energy requirements keeping a high level of
satisfaction at a minimum cost. These objectives can rarely be attained simultaneously. Sec-
ond, the energy supplier (system operator, utility, etc.) is required to meet user demand
while ensuring system stability. It is often difficult to satisfy these requirements during peak
consumption times.

The end-users play an important role in the mission of balancing generation and demand.
This participation is driven mainly by a) demand response (DR), defined as changes in
consumers’ usage in response to incentives designed by the energy supplier to induce lower
consumption (FERC, 2012), and b) smart grids, which support communication and decision-
making by both users and generators. These technologies also allow the integration of new
resources, such as distributed generators, solar panels, and storage units, that increase the
complexity of the system but may offer benefits to all the participants.

The residential and commercial sectors represent a major part of the total consumer demand
(EIA, 2016). The aggregated DR potential in these sectors could be important in the current
and future operation of the grid, but it is difficult to exploit due to the large number of users.
An entity capable of coordinating the DR programs of this group of consumers could profit
from economies of scale. The approach presented in this article aims to support and facilitate
this coordination process.

Previous work referred to this aggregated system in the presence of storage and/or distributed
generation as a microgrid. The comprehensive review presented in Parhizi et al. (2015) intro-
duces various aspects of microgrids, including operation, investment, generation technologies,
communications requirements, and grid-support and islanding capabilities.

Some works focus specifically on the planning and control of the system. The approach in
Parisio et al. (2014) controls the operation of a microgrid in a realistic scenario. It schedules
generators, storage devices, and controllable loads, and it compensates for the uncertainties
in the dynamics of the system through a model predictive control strategy.

A similar idea is explored in Kriett and Salani (2012), including models for combined heat
and power generation, in the presence of thermal and electrical loads and storage units. An
economic comparison of a rolling-horizon approach and the standard unit commitment for
microgrids is presented in Palma-Behnke et al. (2013).

The algorithm presented in Mhanna et al. (2016) schedules loads for large populations. It
aggregates different types of appliances and distributed energy systems.
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Some other studies consider the integration of the microgrids into the distribution system.
The mixed integer programs in Mesari and Krajcar (2015) and AlSkaif et al. (2017) mini-
mize the use of conventional generation resources in order to encourage the use of the bat-
teries of electric vehicles and the available renewable resources, ensuring a high level of
self-consumption. The approach presented in Chabaud et al. (2015) assesses several config-
urations of a grid-connected microgrid, considering a two-way flow of power and its impact
on the grid. An autonomous microgrid optimal operation approach is presented in Detroja
(2016), considering the generation and consumption sides and the balance between the two
in a real-time scenario. A function based on declining block rates achieves a balance between
user comfort and electricity cost in Hasib et al. (2015). It presents a microeconomic analysis
of this function, and the method is used for bidirectional energy trading.

All the approaches mentioned previously minimize the total operational cost. Some of them
take into account elements such as user comfort and preferences via constraints and/or costs
that approximate the level of satisfaction. This way of dealing with conflicting objectives is
one among several options in multiobjective optimization (Ehrgott, 2006). When objectives
conflict, such as cost and comfort in our case, there is usually no solution that optimizes them
simultaneously. To improve one of the objectives we may have to worsen one or more of the
others. When this is the case, the solution is said to be Pareto efficient, Pareto optimal, or
nondominated.

A comprehensive review of methods to find Pareto efficient solutions can be found in Marler
and Arora (2004). It presents approaches that include the user preferences in the decision-
making and that represent and approximate the Pareto front (the set of Pareto efficient
solutions).

Multiobjective optimization has been explored in the smart grid context. Particle swarm
optimization and weighted aggregation are used in Yang and Wang (2012) to approximate
the Pareto front for energy cost and environment comfort. The Pareto front is approximated
using the ε-constraint method in Zhang et al. (2012), balancing the total cost and the energy
obtained from distributed generators in isolated sites, and in Hosseinnezhad et al. (2016) and
Aghaei and Alizadeh (2013) minimizing both pollutant emission and operating cost.

The weighted-sum approach is used to balance the minimization of load curtailment, operat-
ing cost, and pollutant emission in Cao et al. (2017), and energy costs and thermal comfort
in Korkas et al. (2016).

Finally, lexicographic goal programming is used in Choobineh and Mohagheghi (2016) to
minimize the operational costs, the emissions produced, and the asset deterioration resulting
from exposure to excess temperatures.
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This paper proposes a novel framework to determine an operational plan for a smart building
with multiple housing units. The framework considers grid requirements and balances cost
and satisfaction for the end-users. We use biobjective optimization to find efficient trade-offs
between the two conflicting objectives without estimating the Pareto front. This is combined
with production planning concepts and models to achieve a realistic representation for the
smart grid context. In this scenario the consumers may actively participate, choosing when
to shift load. In combination with a shared storage unit and a set of solar panels available
in the smart building, this option allows the participants to profit from the pricing policies
and incentives while providing DR.
This paper is structured as follows. The proposed approach is described in Section 6.3, the
experimental results and sensitivity analysis are presented in Section 6.4, and the conclusion
is given in Section 6.5.

6.3 Proposed Optimization Approach

Figure 6.1 shows the general operation of the smart building. The planning module receives
day-ahead information from all the households and resources: user preferences, forecasts of
energy demand and solar radiation, battery state of charge, and scheduled DR requests from
the grid. It is important to highlight that the battery and a set of solar panels are managed
by the building, and they are resources that are shared among all the housing units. Once all
the information has been gathered, the planner solves a biobjective optimization problem for
the building, finding a trade-off between the total cost and the shifted load. The shifted load
represents the level of dissatisfaction perceived by the user; each user submits preferences
indicating when and by how much he/she is prepared to delay or reduce consumption.

Figure 6.1 Smart building operation.
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After solving the optimization problem, we obtain individual plans that specify for each time
frame t the amount of energy to be drawn from the grid, the allocation of the energy obtained
from the solar panels, the use of the battery, and the shifted load for each user j.

One of the main features of this approach is that it finds a balance between the two objectives
while providing DR services. We include two of the most common types of DR: incentive-
based programs and pricing programs (Siano, 2014). For the incentive-based program the
optimization model decides whether or not the building answers a DR call. In the case of
a positive answer, the building commits to lowering consumption by using the battery or
allocating capacity reductions to some customers, who shift load accordingly. Finally, it
reports to each household its share of the DR provided and the benefit obtained. The pricing
program encourages peak reduction through the combination of different prices.

We propose a time and level of use (TLOU) pricing structure in which the price varies time-
wise and level-wise. This is an extension of the time of use (TOU) pricing that is widely
used. The TLOU pricing is represented by the parameter Kit. In each time frame t, each
user can consume up to capacity i, paying price Kit. Beyond this threshold the user will
pay the next price, Ki+1,t. We consider two pricing levels for each time frame, a lower price
and a higher price, but in general several levels can be used. This pricing structure works in
combination with the DR requests from the grid and the willingness to shift load. Its effect
is strengthened via the use of the storage unit and solar panels. The costs associated with
these two resources represent the amortization of the corresponding investments.

6.3.1 Similarity to the Lot-Sizing Problem

In a general way, determining the consumption plan under these conditions resembles a
classical manufacturing problem: the lot sizing (LS) problem. LS determines the lot sizes
that minimize the operational cost of a production process over a multiperiod horizon (Pochet
and Wolsey, 2006). We must determine the amount of energy to consume in each time frame.
Each user has maximum consumptions CL and CH

j and is willing to shift load according to
the preference parameters Yj and Ŷj. This is similar to capacitated LS with backlogging
(Pochet and Wolsey, 2006), where the objective is to minimize the sum of the production,
storage, and backlogging costs. We assess the cost of shifting load (backlogging) by solving
a biobjective optimization problem via compromise programming.
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6.3.2 Compromise Programming

As mentioned in Section 6.2, there are different ways to solve a multiobjective optimization
problem. All of them seek a trade-off between the conflicting objectives. This is normally
represented in the criterion space, which is an image of the feasible set of the optimization
problem in terms of the objective functions. Figure 6.2 shows the Pareto front (dashed red
line), the feasible region (gray area), and the two objectives to be minimized (f1 and f2).

f1 : Shifted load

f 2
:C

os
t

. (ũ1, ũ2)

. (f1(x′), f2(x′))

. (û1, û2)

Figure 6.2 Generic description of criterion space.

The ideal or utopia point (ũ1, ũ2) is a point where all the objectives achieve their individual
optima. Since the objectives conflict, the utopia point is infeasible. Therefore, we want to
find a point on the Pareto front that is a fair approximation of the utopia point. Compromise
programming finds a Pareto-efficient solution x′ that minimizes the Euclidean distance with
respect to the utopia point (Marler and Arora, 2004). We use compromise programming since
we can directly obtain an efficient solution that represents the policy adopted by the building.
The optimization model can easily be adapted to other approaches such as e-constraint and
normal boundary intersection, if a representation of the Pareto front is required; for example,
if the policy changes over time.

We are dealing with objectives with different units and different orders of magnitude, so it
is necessary to normalize their values. We use the nadir point (û1, û2) and the utopia point
for the normalization, since they provide tight upper and lower bounds (dotted lines) on the
nondominated solution set.

We follow these steps to find the compromise solution. First, we solve the optimization
problem for each of the individual objectives to compute ũ1 and ũ2. We then use the optimal
solutions to compute û1 and û2. Finally we solve a mixed binary quadratic optimization
problem to find the closest feasible point to the utopia point. This approach allows us to
find a trade-off between the two objectives without approximating the complete Pareto front.
Moreover, the objective function remains convex, so the full problem can be solved efficiently
by off-the-shelf solvers.
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6.3.3 Optimization Model

The objective function in equation (6.1) minimizes the squared distance to the utopia point.
Equations (6.2) and (6.3) account for the shifted load and the total cost respectively. Equa-
tion (6.3) includes the cost of the energy bought from the grid, the cost of using the battery
and solar panels, and the incentive paid to the end-users for the DR requests.

min
f

(
f1 − ũ1

û1 − ũ1

)2

+
(
f2 − ũ2

û2 − ũ2

)2

(6.1)

f1 =
∑
j∈J

∑
t∈T

yjt (6.2)

f2 =
∑
i∈I

∑
j∈J

∑
t∈T

Kitxijt +
∑
j∈J

∑
t∈T

Bs+
jt

+
∑
j∈J

∑
t∈T

Fgjt −
∑
j∈J

∑
t∈T

Ltrjt
(6.3)

Next, we introduce the constraints. Constraints (6.4) and (6.5) account for the shifting
preferences. In (6.4) we enforce the maximum accumulated shifted load for each user j
throughout the time horizon. Through (6.5) each user is able to specify the maximum
acceptable unmet demand at the end of the horizon. In other words, a user can be flexible
about when the demand is satisfied but strict about having it met by the end of the day.

∑
t∈T

yjt ≤ Yj ∀ j ∈ J (6.4)

yjn ≤ Ŷj ∀ j ∈ J (6.5)

The maximum amount of energy that can be drawn from the grid is shown in constraints
(6.6) and (6.7).

x1jt ≤ CL ∀ j ∈ J, ∀ t ∈ T (6.6)

x2jt ≤ CH
j ∀ j ∈ J, ∀ t ∈ T (6.7)

The parameter CL is defined by the grid and is given to all the users to ensure a minimal
operation. On the other hand, CH

j depends on each user and represents a large constant
from the optimization point of view; we will revisit this definition in Section 6.4.1.
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Constraints (6.8) and (6.9) limit the capacity of the solar panels and the battery respectively
(battery expressed as a percentage of Smax).

∑
j∈J

gjt ≤ Gmax
t ∀ t ∈ T (6.8)

∑
j∈J

socjt ≤ 1 ∀ t ∈ T (6.9)

The flow conservation is represented in a similar way to that of LS. Constraint (6.10) ensures
that the inflows and outflows are balanced at every time step. It differs from LS in that it
accounts for the efficiency Γ of the battery, which depends on the actual flow of energy and
not on the state of charge.

∑
i∈I

xijt + gjt + yjt + Γs−jt

= yjt−1 +Djt + s+
jt ∀ j ∈ J, ∀ t ∈ T

(6.10)

A common feature of LS is the presence of Wagner–Whitin costs. This cost structure favors
production at the time of the demand. The use of storage or the backlogging of orders is
penalized; this is traditionally the ideal scenario in manufacturing processes. Wagner–Whitin
costs normally simplify the modeling stages in LS because they discard solutions that are
suboptimal and do not make sense in a realistic scenario. We use TLOU pricing rather than
Wagner–Whitin costs; an analysis of our cost scheme is presented in Section 6.4. Moreover,
we penalize backlogging through the biobjective approach without a specific monetary cost.
We include constraint (6.11) to avoid charging the battery with backlogged load; it describes
the physical energy flow toward the battery.

gjt +
∑
i∈I

xijt − s+
jt ≥ 0 ∀ j ∈ J, ∀ t ∈ T (6.11)

Constraints (6.12)–(6.15) model the operation of the battery. Note that although the model
registers every user transaction involving the battery (s+

jt, s
−
jt), the cycles are constrained for

the whole battery (i.e., the aggregated behavior of the |J | users determines the battery use).

socjt = socjt−1 +
s+
jt − s−jt
Smax

∀ j ∈ J, ∀ t ∈ T (6.12)

Smax(αt − 1) ≤
∑
j∈J

(s+
jt − s−jt) ≤ Smaxαt ∀ t ∈ T (6.13)
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− αt + αt−1 ≤ zt ∀ t ∈ T (6.14)

∑
t∈T

zt ≤ Z (6.15)

Constraint (6.12) updates the individual state of charge of each user. This value represents
the amount of energy in the shared battery available to the user at every time step. Constraint
(6.13) records the events when the battery (as a whole) charges or discharges. Constraints
(6.14) and (6.15) limit the number of cycles. Note that these constraints do not differentiate
between full and partial cycles. The parameter Z is a policy adopted by the building, and the
optimization model will determine the type of cycle as a function of the cost and satisfaction.
Section 6.4.4 shows how increasing Z affects the final number and type of cycles.

Solving a biobjective problem for the building does not mean that each user will profit in a
similar way from the shared resources. Constraints (6.16) and (6.17) ensure a proportional
use of the shared resources with respect to the total demand of each user.

Ψmin
sol

∑
t∈T

Djt ≤
∑
t∈T

gjt ≤ Ψmax
sol

∑
t∈T

Djt ∀ j ∈ J (6.16)

Ψmin
bat

∑
t∈T

Djt ≤
∑
t∈T

socjt × Smax ≤ Ψmax
bat

∑
t∈T

Djt ∀ j ∈ J (6.17)

Since ∑t∈T gjt ≤
∑
t∈T Djt (i.e., a housing unit cannot use more solar energy than its total

demand), Ψmax
sol ≤ 1. An important assumption for the performance of the planning module

is that the aggregated demand is always greater than the potential solar generation. This
is justified by the building configuration: there are multiple housing units and limited space
for roof-mounted panels. If we discarded this assumption, the optimization model could be
adapted to absorb the excess solar generation into the battery or to sell it to the energy
provider.

The parameter Ψmax
bat has a different interpretation. The variable socjt tells us the level of

energy in the battery for each user j and time frame t. For example, if the user charges
1 kWh at t = 1 and keeps it in the battery until t = 10, then socj1, socj2, . . . , socj10 =1 kWh
/Smax. The summation over these periods will be 10 kWh of occupied battery, regardless of
the total demand. In this sense Ψmax

bat can be > 1 but still represent fairness as a function of
total demand (a user with larger demand can charge the battery with more energy or keep
the battery busy for longer). The selection of the upper limits Ψmax

bat and Ψmax
sol must consider

historical demand profiles and capacities to ensure proper utilization of the resources while
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encouraging their fair allocation.

For the lower bounds Ψmin
bat and Ψmin

sol it is necessary to ensure feasibility, so they should satisfy

Ψmin
bat

∑
j∈J

∑
t∈T

Djt ≤ Smax × |T |

and
Ψmin
sol

∑
j∈J

∑
t∈T

Djt ≤
∑
t∈T

Gmax
t .

We discuss the fair allocation of resources in Section 6.4.5.

Constraints (6.18) and (6.19) account for the building response in the case of a DR request:

∑
j∈J

rjt = DRtφt ∀ t ∈ T (6.18)

x1jt + x2jt ≤ (CL + CH
j )(1− φt) +Djtφt − rjt ∀ j ∈ J,∀ t ∈ T (6.19)

If the building agrees to provide DR, each user j will limit his/her consumption to the
forecast demand. Additionally, the willing participants contribute rjt units to the grid’s load
reduction requirement.

Constraint (6.19) allows the users to reduce their consumption below CL. If Djt − rjt ≤ CL

the consumption will stay within the capacity available at a lower tariff. If CH
j + CL ≥

Djt − rjt ≥ CL the user will consume CL units at the lower tariff and the additional energy
at the higher tariff.

Finally, constraints (6.20) and (6.21) are the nonnegativity and binary constraints:

x, y, soc, s+, s−, g, r, λ ≥ 0 (6.20)

αt, zt, φt ∈ {0, 1}, ∀ t ∈ T (6.21)

6.3.4 Performance Measures

We use the peak reduction (PR) index and the battery use (BU) as measures of performance:

PR =
1−

max
t∈T

∑
i∈I

∑
j∈J

xijt

max
t∈T

∑
j∈J

Djt

× 100% (6.22)
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BU =

∑
t∈T

∑
j∈J

socjt

|T |
× 100% (6.23)

Although these performance measures are not included in the optimization model, they are
important assessments of the operation of the building, and they are reported for all our
experiments. These measures could also be used to select efficient solutions in the case where
we approximate the Pareto front.

6.4 Experimental Results

We carried out various tests to assess the impact of different conditions on the final results. In
Section 6.4.1 we present a base instance (identified with ∗) to illustrate the results obtained
with this approach. In subsequent sections we present the results of our sensitivity analysis.
In Section 6.4.2 we explore how the peak reduction is affected by the parameters Kit, CL, and
CH
j . In Section 6.4.3 we change the end-user willingness to shift load to see the evolution of

the Pareto front and to estimate the expected consumer benefit of participating in this type
of collaborative scheme. In Section 6.4.4 we analyze the relationship between the aggregated
scheme and the operation of the battery and its cycles. Finally, in Section 6.4.5 we explore
several options for the fair allocation of resources.

6.4.1 Base Instance

This instance, which has realistic parameters, includes the following conditions:

• The demand profiles Djt are obtained from Desimax (Collin et al., 2014). Ten profiles
(|J | = 10) were chosen for four-person households and were adjusted to the Canadian
context, where heating represents around 60% of demand in winter (StatCan, 2013).
The daily average energy consumption is 32.5 kWh.

• The battery capacity is Smax = 15 kWh, with a power capacity of 15 kW. The effi-
ciency is Γ = 90%, and the number of cycles is Z = 2. This battery is similar to
the pole-mounted battery from eCamion in the context of the NSERC Energy Storage
Technology Network. It is designed to facilitate the integration of energy management
systems.

• There is a solar panel array of 75m2 with an average daily generation of 34.8 kWh,
computed with an average solar radiation in winter of 3.45 kWh/m2/day and a capacity
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factor of 13.5% (NRE, 2016). The parameter Gmax
t is accordingly defined with a peak

generation of 4 kWh.

• While Yj varies from user to user, Ŷj = 0 ∀j ∈ J . The planning horizon has 24 time
frames: T = {1, . . . , 24}.

• The on-peak periods are t ∈ {8, 9, 10, 11, 17, 18, 19}, the mid-peak periods are t ∈
{12, . . . , 16}, and the off-peak periods are t ∈ {1, . . . , 7, 20, . . . , 24}.

• There are six periods in which the building can meet a DR request of 10 kWh.

• The lower capacity CL = 1.5 kW and

CH
j = max

t∈T
(0, Djt − CL), ∀ j ∈ J. (6.24)

This allows each user to consume up to the reported peak demand in any time frame.
The initial values yj0, socj0, and α0 are 0.

Figure 6.3 shows the results for the base instance, obtained by solving the optimization
model. Figure 6.3(a) shows that the consumption from the grid differs considerably from the
original demand curve. A peak reduction of 13.9% (t = 18 on the blue curve versus t = 20
on the yellow curve) is achieved by a combination of solar resources, battery, and willingness
to shift load. The battery is fully charged at t = 7 and t = 16, which are the time frames
preceding the on-peak time frames. This generates a BU of 47.1%.
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Figure 6.3 Results for the building in the base instance.
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Figure 6.3(b) shows that the users willing to backlog demand make their contribution during
the congested periods and consume their requirement by the end of the day. Additionally
the building chooses to respond to 4 of 6 DR calls. We can see the reduction of 10 kW in
time frames 9, 10, 18, and 19, between the blue (total demand) and the yellow (total from
grid) curves in Figure 6.3(a).

6.4.2 Cost Structure

The cost structure defined by Kit, B, and F determines some of the decisions made by the
model. First, the cost F derived from the amortization of the solar panels should be lower
than any price we can obtain from the grid. This renewable resource will be utilized first,
leaving a net demand curve to be met by using the grid, storage, and load shifting.

As mentioned previously, Kit, CL, and CH
j are set by the building operator. Each time frame

t belongs to one of three classes: on-peak, mid-peak, or off-peak. For each class the user pays
either the lower or the higher cost, depending on the level of consumption. Figure 6.4 shows
a basic representation of the TLOU pricing policy.

Higher

Lower

Off-PeakMid-PeakOn-Peak

Koff
L Kmid

L Kon
L

Koff
H Kmid

H Kon
H

Figure 6.4 Energy cost structure.

We know that Koff
H > Koff

L , Kmid
H > Kmid

L , Kon
H > Kon

L , Kon
L > Kmid

L > Koff
L , and Kon

H >

Kmid
H > Koff

H . In this section we establish some rules to determine how those costs can help
to achieve the desired effect in the results. This analysis also includes the battery cost B,
which we assume is obtained from cost amortization, and the willingness of the users to shift
load.

Equations (6.25) and (6.26) show two possible cost structures for a cheaper and a more
expensive period (off-peak and on-peak). The following reasoning can be extended to the
other combinations: off-peak and mid-peak, and mid-peak and on-peak.

Koff
L +B < Kon

L < Koff
H +B < Kon

H (6.25)
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Koff
L +B < Koff

H +B < Kon
L < Kon

H (6.26)

A cost structure based on equation (6.25) will encourage consumption of energy from the
lower capacities before going to the higher level. On the other hand, a cost structure based
on equation (6.26) will encourage using all the off-peak resources before moving to more
expensive time frames.

The selection of the cost structure is key for the decision making in two specific circumstances:

1. The user shifts load from the on-peak to the future off-peak periods. In this case the
battery cost is not included (i.e., B = 0).

2. The user wants to charge the battery in the off-peak time frames to use the energy in the
later on-peak periods. Here the battery cost B > 0 is considered.

Table 6.1 reports the results for both cost structures. The parameter CL increases by 0.5 kWh
from one instance to the next.

Table 6.1 Comparison of cost structures and available capacities

Inst Kit CL f1 f2 PR BU

1 (6.25) 1.0 31.0 2973.9 −0.8 44.7
2∗ (6.25) 1.5 32.2 2750.4 13.9 47.1
3 (6.25) 2.0 33.7 2615.0 10.2 47.1
4 (6.25) 2.5 33.4 2535.3 −1.6 49.1
5 (6.26) 1.0 34.6 2703.4 −46.5 42.9
6 (6.26) 1.5 34.6 2605.6 −25.7 47.1
7 (6.26) 2.0 34.0 2543.3 −10.6 47.1
8 (6.26) 2.5 34.0 2499.8 −17.5 43.8

First, observe that the BU is similar in every case; it depends on the capacity of the battery
and the number of time frames where using the battery makes sense.

Observe also that the instances with equation (6.25) report a better PR. In fact, the peak
demand increases considerably for the instances with equation (6.26). In general terms,
equation (6.25) leads to a more homogeneous use of the available capacities, where energy is
first consumed in the lower levels regardless of the time of use.

Of the experiments with equation (6.25), instances 2∗ and 3 achieve better PR; the peak
slightly increases in instances 1 and 4. A low CL will be consumed quickly and the shiftable
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demand will accumulate in the higher level of the cheapest time frames. A large CL will
render the higher level useless and will accumulate the shiftable demand in the lower level
of the cheapest time frames. In both cases we basically move the peak from an expensive
period to a cheaper one. Figure 6.5 shows the peak reduction as a function of CL using the
costs in (6.25). We see that the PR is positive for only a small range of CL, approximately
1.1 to 2.4.
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Figure 6.5 Peak reduction as a function of CL.

It is important to recall that PR is not considered in the optimization problem, and our
approach achieves the PR as an additional effect. Nevertheless, our discussion can guide
future decisions about how to determine the capacity profiles.

6.4.3 Willingness to Participate

In this section we show how the end-user willingness to shift load affects the results. We
change the parameter Yj in each instance in Table 6.2. In instance 1 the users are more
willing to shift load, and in instance 5 the users prefer not to change their consumption
patterns.

Table 6.2 Results for different populations

Inst ũ1 ũ2 f1 f2 PR BU Φ
1 0.0 2632.1 51.0 2703.5 17.2 47.1 4/6
2∗ 0.0 2678.2 32.2 2750.4 13.9 47.1 4/6
3 0.0 2774.2 10.1 2816.4 14.6 46.8 4/6
4 0.0 2838.1 3.2 2854.4 16.4 49.7 3/6
5 0.0 2873.2 0.5 2876.0 13.7 46.5 2/6

The utopian value ũ1 remains the same while ũ2 increases as the willingness to shift load
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reduces. The compromise solution (f1, f2) becomes closer to the utopia point. The evolution
of the Pareto front is shown in Figure 6.6.
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Figure 6.6 Evolution of the Pareto front.

Y inst, F inst, and U inst represent the aggregated willingness, the compromise solution, and the
utopia point for each instance respectively. The BU has similar behavior to that in Section
6.4.2.

Although we achieve PR in all the instances, the behavior with respect to Yj is not clear: Yj
can generate a higher or lower PR depending on the selection of CL and the prices.

In the last column we introduce the ratio Φ, which is defined to be the total number of DR
calls accepted by the building divided by the potential DR requests. As the willingness to
shift load decreases the building responds to fewer DR requests.

Table 6.3 gives the individual cost per user and instance. Typically, the more willing the user
is to shift load the lower the total cost. In the last column we compute the total cost for a
scenario Ω without the collaborative approach. In this case there are no resources (storage,
solar panels, or DR incentives). The users meet their demands as they occur, paying the
same cost rates Kit.
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Table 6.3 Total cost per housing unit

User Inst1 Inst2 Inst3 Inst4 Inst5 Ω
1 177.4 179.9 181.3 183.1 183.1 211.6
2 328.6 341.7 352.3 363.9 357.8 446.5
3 278.0 286.6 308.3 282.7 284.0 453.9
4 301.4 305.6 309.8 315.4 323.0 412.8
5 203.6 206.6 210.0 213.0 213.0 251.3
6 384.9 383.3 427.2 422.5 433.6 529.4
7 216.1 216.7 218.2 223.4 223.1 276.2
8 270.8 271.8 251.8 288.3 296.4 357.4
9 238.0 248.4 247.7 248.0 248.0 278.8
10 304.8 309.9 310.0 314.2 314.0 369.0

One of the key assumptions of this work is that the parameters B and F , representing the
amortization costs of the battery and the solar panels, must be lower than the rates that
come from the grid or the building operator. Therefore, the collaboration allows the user to
take advantage of resources that would be more expensive to own individually. In general
terms, the more willing the user is to shift load, the lower the total cost will be. However, this
statement is not necessarily true. A willing user may not be asked to shift load; this depends
on the global benefit that the shifting provides to the community (because the model gives
priority to users that can shift load from on-peak periods).

6.4.4 Battery Cycles and Aggregation

One of the most common issues with storage units is the proper use of the resource to
minimize its degradation. Although in this paper we assume an amortization cost to take
this into account, we also included constraints to control the number of cycles. The results
for different values of Z are presented in Table 6.4.
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Table 6.4 Results for different maximum number of cycles

Inst u1 u2 f1 f2 PR BU z/Z

1 0.0 2708.6 35.1 2789.3 13.9 52.7 1/1
2∗ 0.0 2678.2 32.2 2750.4 13.9 47.1 2/2
3 0.0 2678.2 32.1 2750.4 13.9 47.1 3/3
4 0.0 2678.2 32.1 2750.4 13.9 47.1 3/6
5 0.0 2678.2 32.1 2750.4 13.9 47.1 3/12

We observe that the number of cycles is fairly stable at z = 3, giving the same compromise
solution regardless of the value of Z. What happens is that the number of cycles is determined
by the cost structure in combination with the user demand. There are only some periods
where it is sensible to use the battery: charge in the current (cheaper) frame to discharge in
a future (more expensive) one.

6.4.5 Allocation of Resources

In Section 6.3.3 we introduced the fair allocation of the shared resources with constraints
(6.16) and (6.17). In this section we assess the effect of this on the objective function. We
test three models (the original and two variations). In the first we do not include a fairness
constraint; in the second we include the original constraints (6.16) and (6.17); and in the
third we include constraints (6.27) and (6.28) instead:

∑
t∈T

gjt −
∑
t∈T

gj−1t = 0 ∀ j ∈ J | j > 1 (6.27)

∑
t∈T

socjt −
∑
t∈T

socj−1t = 0 ∀ j ∈ J | j > 1 (6.28)

Constraint (6.27) ensures that all the users obtain the same amount of energy from the
solar panels. In a similar way, constraint (6.28) ensures that all the users have the same
accumulated state of charge over the time horizon (i.e., the battery is equally utilized). We
report the results in Table 6.5. Model 1 gives the lowest cost but does not ensure a fair
distribution of the resources; model 3 gives the lowest shifted load.
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Table 6.5 Results for different fairness constraints

Variation f1 f2

1 34.7 2727.6
2∗ 32.2 2750.4
3 31.3 2774.7

Figure 6.7 presents more detailed results for each user. Figure 6.7(a) shows the solar alloca-
tion expressed as a percentage of the demand (∑t∈T gjt/

∑
t∈T Djt). Figure 6.7(b) shows the

battery allocation (∑t∈T socjt × Smax/
∑
t∈T Djt), and Figure 6.7(c) gives the shifted load as

a percentage of the total shiftable load (∑t∈T yjt/Yj).
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Figure 6.7 Comparison of allocation of resources per user. Solar and battery are expressed
as a percentage of the demand, and shifted load is expressed as a percentage of the total
shiftable load.

Model 1 (blue bars) varies considerably from user to user in Figures 6.7(a) and (b). Models
2 and 3 give similar variations among the users. In this particular case the set of realistic
demands Djt can have high variation, which makes it suboptimal to force the same utilization
for each user (as in model 3). Whether or not model 2 is better than model 3 also depends
on the selection of the parameters Ψmax

bat , Ψmax
sol , Ψmin

bat , and Ψmin
sol .

Finally, in Figure 6.7(c) we see a similar shifted load per user. Model 1 compensates for the
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lack of battery utilization of users 3, 5, and 8 by increasing their shifted load. This gives a
fairer allocation without a significant deterioration in the performance.

6.5 Conclusion

The approach presented in this work contributes to the planning and operation of smart
buildings. It has a structure similar to that of classic LS, but it supports decision-making
in the context of energy consumption for a multi-unit building. We address two conflicting
objectives, cost and comfort, via the compromise solution. The proposed approach balances
the two objectives while providing demand response to the grid. This is possible because of
the combination of the available resources (solar and storage), active user participation, and
a cost structure that provides incentives for load shifting and peak reduction.

We presented a detailed analysis of the effect of the different parameters on the compromise
solution. This analysis provides insights into the conditions needed to ensure the long-term
operation and economic viability of the approach for the building and the individual users.
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CHAPTER 7 CONCLUDING REMARKS

7.1 General Discussion

There is an an intuitive connection among the contributions although they have different
components. There are different approaches for different types of loads, and similar decisions
can be made at an aggregated level. The main features are listed in Table 7.1.

Table 7.1 Summary of the contributions

Article Demand satisfaction Cost Granularity Capacity profile
1 (Thermal) QoS defined by user not considered unit ← load QoS function
2 (Activity) 100% minimized unit ← load cost function
3 (Planning) Shifting limited by user traded-off building ← unit set by utility

The first two contributions have the same granularity, obtaining information from individual
loads and making decisions for a single housing unit. In both cases, the user determines the
capacity required. The main differences are the load types and the decision criteria. The
thermal loads could be treated as activity loads, assuming that the external temperature is
a stochastic parameter and that the user books capacity for a longer period (e.g., weekly
or monthly). In this scenario the first contribution could help to translate the external
temperature into capacity requirements, and the second contribution would handle these
requirements as activity loads that arrive depending on the external temperature.

The third contribution makes decisions at a higher level given the demand and shifting
preference information obtained from the lower levels. This module takes an initial demand
curve per housing unit, computes a Pareto-optimal solution for the building, and returns a
new demand curve (net demand) to each user. Conceptually, these new demand profiles can
be seen as limits imposed on the users (i.e., capacity profiles) that will guide the consumption
and operation of the individual loads at the housing-unit level. It will be necessary to
coordinate the decisions made at the household level and those made at the building level to
guarantee the correct operation and the expected user satisfaction. The adjustments include
a unified measure of level of service and the tariff setting (defined by the grid, the building,
or both). Some of these will be explored in Section 7.3.
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7.2 Limitations

In general terms, the continuous requirement for quality information is present throughout
this thesis. The data flow from appliances and other devices towards higher levels is a strong
condition that supports all the work presented here.

We discussed in Section 4.3 the importance of proper calibration between the QoS and the
interval of operation in each room. Although the QoS index allows us to aggregate several
thermal devices and their dynamics, it must represent the actual comfort experienced by
the users. Additionally, this method could be considered static since the training, fitting,
and classification process is carried out for only one home configuration. If a modification is
made to the smart home such as an improvement to the efficiency of the insulation, heaters
or air conditioners, the estimation process must be repeated. One of the main advantages
of using the QoS is that it facilitates scalability. For the fifty-heater instance, the approach
determines the required capacity profile in seconds. On the other hand, the QoS is a system
performance measure that may not be properly understood by the user. In this case, the
users must directly manage the desired temperature, and the system derives the desired QoS
from that information.

For the stochastic optimization in Chapter 5, there are two main challenges: time scale and
scenario elimination. The time-scale selection is important since the durations of appliance
use are continuous values ranging from minutes to hours. The combination of a large number
of loads leads to an exponential growth of the potential scenarios, so the elimination of non-
significant scenarios may have an impact on the optimal solution. It is necessary to find
an appropriate time scale and number of scenarios to provide sufficient information while
keeping the solution time under control. This will allow proper scalability.

Since cost was considered in Chapter 6 as one of the two objectives, this approach is applicable
only to jurisdictions where time-based pricing and/or incentive based DR programs exist.
Without these, the decision becomes trivial, since the use of the battery increases the total
cost, there are no shifting-related incentives, and the best approach is simply to absorb the
energy generated by the solar panels and to draw the net demand directly from the grid.
DR programs allow us to trade-off cost and demand satisfaction while contributing to peak
reduction. This effect was enhanced in Section 6.4 by the use of the solar panels and battery.
These two technologies are assumed to be mature enough to provide cost-effective solutions
that are competitive with the energy tariffs offered by the utility or grid operator.

With respect to scalability, the model can be solved for larger instances with the available
solvers. This introduces a more conceptual discussion about whether a full centralized plan-
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ning approach is a realistic strategy for larger populations.

In addition to the technical limitations, there is the challenge of successful implementation.
Social acceptance is one of the most important aspects in the evolution of SGs since the
paradigm shifting leads to new questions for users. Several barriers to implementation have
been identified for DR programs (Weck et al., 2017). In particular, the uncertainty related
to the global economic benefit for the users seems to affect the ability to attract partici-
pants. The reward may be insufficient to encourage DR. The flexible TLOU seeks to provide
users with appropriate energy prices. However, these prices must take grid performance into
account and ensure that the grid remains economically feasible.

The acceptance of solar generation and storage technologies can vary from strong opposition
to smooth integration (Upham et al., 2015). Sharing these resources among multiple users
can reduce both cost and other acceptance barriers such as space allocation and risk aversion.

7.3 Future Work

The most immediate future work concerns the integration of the user capacity estimation
and the building planning modules, and the price setting at the grid level given a population
of consumption-aware users. Figure 7.1 shows how these ideas would fit into this research
project. It shows each of the contributions of this thesis, with future projects shown in boxes
and denoted A, B and C. The current and future projects are connected by dashed red lines.

As mentioned previously, the second contribution in Chapter 5 ensures that the total user
demand is satisfied and allows savings via a flexible tariff structure. In some cases, the
characteristics of the user behavior (i.e., the expected demand) may not lead to any benefit
from the proposed tariff structure. The optimal solution is then to book zero capacity.

In project A the user could adapt some preferences so that the expected demand will grant
better savings. A scheduling module is required to guide users when the potential savings are
significant compared to the loss of satisfaction or comfort in a given period. The expected
demand would change from a consumption based on preferences to an optimized consumption.

In the third contribution the decisions are made at the building level and the information is
passed to the users. Project B accounts for this transition by using a scheduling module to
fit the appliance consumption to a consumption curve determined by the building planning
module.

Although the scheduler module could be the same for A and B, the goals are different. In the
case of A, the users want to improve their savings while in B, the users react to a condition
imposed from a dictator perspective.
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Figure 7.1 Current and future work on user-oriented DR for smart buildings

Finally, project C would consider at the grid level the decisions made locally in each building.
This specifically refers to the situation introduced in Section 6.4.2, where different config-
urations of TLOU with different capacities could lead to an increase in the peak demand.
From a grid perspective, setting the tariff structure and the capacity limit is key to ensuring
the performance of the system. At this level, it is necessary to consider multiple buildings,
stochastic demands, and in general an equilibrium between the utility profit and the effect
of the prices on the demand. This creates the potential need for intermediate aggregation
levels that facilitate the transition from a single building to a network-oriented perspective.

7.4 Conclusions

This thesis proposes a framework for facilitating and encouraging end-user participation in
DR programs. We considered different features while focusing on the user perspective. These
approaches explore the current characteristics of smart building operation and take a step
towards the integration of user-oriented tools.
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This framework addresses three conflicting goals: user satisfaction, user cost, and peak con-
trol. We prioritize demand satisfaction, but we provide a balance among the conflicting goals
through an appropriate combination of resources such as solar panels, battery, tariffs, and
the admission controller.

Enhanced user participation will contribute to the continued evolution of power systems,
increasing the flexibility, reliability, and stability of this key resource.
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