
Titre:
Title:

High-Level Modelling of Optical Integrated Networks-Based Systems
with the Provision of a Low Latency Controller

Auteur:
Author:

Felipe Göhring de Magalhães

Date: 2017

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Göhring de Magalhães, F. (2017). High-Level Modelling of Optical Integrated
Networks-Based Systems with the Provision of a Low Latency Controller [Thèse de
doctorat, École Polytechnique de Montréal]. PolyPublie.
https://publications.polymtl.ca/2661/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/2661/

Directeurs de
recherche:

Advisors:
Gabriela Nicolescu, Fabiano Hessel, & Odile Liboiron-Ladouceur

Programme:
Program:

Génie informatique

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/2661/
https://publications.polymtl.ca/2661/

UNIVERSITÉ DE MONTRÉAL

HIGH-LEVEL MODELLING OF OPTICAL INTEGRATED NETWORKS-BASED
SYSTEMS WITH THE PROVISION OF A LOW LATENCY CONTROLLER

FELIPE GOHRING DE MAGALHÃES
DÉPARTEMENT DE GÉNIE INFORMATIQUE ET GÉNIE LOGICIEL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

THÈSE PRÉSENTÉE EN VUE DE L’OBTENTION
DU DIPLÔME DE PHILOSOPHIÆ DOCTOR

(GÉNIE INFORMATIQUE)
MAI 2017

c© Felipe Gohring de Magalhães, 2017.

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Cette thèse intitulée:

HIGH-LEVEL MODELLING OF OPTICAL INTEGRATED NETWORKS-BASED
SYSTEMS WITH THE PROVISION OF A LOW LATENCY CONTROLLER

présentée par: GOHRING DE MAGALHÃES Felipe
en vue de l’obtention du diplôme de: Philosophiæ Doctor
a été dûment acceptée par le jury d’examen constitué de:

Mme BOUCHENEB Hanifa, Doctorat, présidente
Mme NICOLESCU Gabriela, Doctorat, membre et directrice de recherche
M. HESSEL Fabiano, Ph.D., membre et codirecteur de recherche
Mme LIBOIRON-LADOUCEUR Odile, Ph.D., membre et codirectrice de recherche
M. BELTRAME Giovanni, Ph.D., membre
M. AZEVEDO Rodolfo, Ph.D., membre externe

iii

DEDICATORY

To my family, wife and friends.

iv

ACKNOWLEDGMENTS

First, I would like to thank my wife Val, for the support and friendship. Thanks for staying
awake in working late hours and drinking chimarrão with me, so we could stay awake. Thank
you for the period abroad in the cold Montreal, your presence made everything easier. Thank
you for everything.

A special thanks to my advisors, Professor Fabiano, Professor Gabriela and Professor Odile,
for the guidance and patience (specially the patience!). Without your instructions I would
never have gone this far.

Thanks to all the friends made along the way, in Brazil and Canada. The discussions brought
different views and enriched this project.

Finally, thanks to my family, which was always there, for the good and hard times.

v

RÉSUMÉ

La tendance du marché dans la conception des architectures multiprocesseurs de la prochaine
génération consiste à intégrer de plus en plus de cœurs dans la même puce. Cette concentra-
tion des cœurs dans la même puce exige l’amélioration des politiques d’intercommunication.
L’une des solutions proposées dans ce contexte consiste à utiliser les réseaux sur puce vu
qu’ils présentent une amélioration considérable en termes de la bande passante, l’évolutivité
et de l’extensibilité. Néanmoins, vu la croissance exponentielle en nombres de cœurs sur
puce, les interconnexions électriques dans les réseaux sur puce peuvent devenir un goulet
d’étranglement dans la performance du système. Par conséquent, des nouvelles techniques
et technologies doivent être adoptées pour remédier à ces problèmes.

Les réseaux optiques intégrés (OIN venant de l’anglais Optical Integrated Networks) sont
actuellement considérés comme l’un des paradigmes les plus prometteurs dans ce contexte.
Les OINs offrent une plus grande bande passante, une plus faible consommation d’énergie
et moins de latence lors de l’échange des données. Plusieurs travaux récents démontrent
la faisabilité des OIN avec les technologies de fabrication disponibles et compatibles avec
CMOS. Cependant, les concepteurs des OINs font face à plusieurs défis :

• Actuellement, les contrôleurs représentent le principal goulot d’étranglement de la com-
munication et présentent l’un des facteurs minimisant l’efficacité des OINs. Alors, la
proposition des nouvelles solutions de contrôle à faible latence est de plus en plus pri-
mordiale pour en tirer profit.

• Le manque d’outils de modélisation et de validation des OINs. La plupart des travaux
se concentrent sur la conception des dispositifs et l’amélioration des performances des
composants de base, tout en laissant le système sans assistance.

Dans ce contexte, afin de faciliter le déploiement de systèmes basés sur les OINs, cette thèse
se focalise sur les trois contributions majeures suivantes: (1) le développement d’un ensemble
de méthodes précises de modélisation qui va permettre par la suite de réaliser une plateforme
de simulation au niveau du système ; (2) la définition et le développement d’une approche
de contrôle efficace pour les systèmes basés sur les OINs; (3) l’évaluation de l’approche de
contrôle proposée.

vi

ABSTRACT

Design trends for next-generation Multi-Processor Systems point to the integration of a
large number of processing cores, requiring high-performance interconnects. One solution
being applied to improve the communication infrastructure in such systems is the usage of
Networks-on-Chip as they present considerable improvement in the bandwidth and scaleabil-
ity. Still as the number of integrated cores continues to increase and the system scales,
the metallic interconnects in Networks-on-Chip can become a performance bottleneck. As a
result, a new strategy must be adopted in order for those issues to be remedied.

Optical Integrated Networks (OINs) are currently considered to be one of the most promising
paradigm in this design context: they present higher bandwidth, lower power consumption
and lower latency to broadcast information. Also, the latest work demonstrates the feasibility
of OINs with their fabrication technologies being available and CMOS compatible.

However, OINs’ designers face several challenges:

• Currently, controllers represent the main communication bottleneck and are one of
the factors limiting the usage of OINs. Therefore, new controlling solutions with low
latency are required.

• Designers lack tools to model and validate OINs. Most research nowadays is focused
on designing devices and improving basic components performance, leaving system
unattended.

In this context, in order to ease the deployment of OIN-based systems, this PhD project
focuses on three main contributions: (1) the development of accurate system-level modelling
study to realize a system-level simulation platform; (2) the definition and development of an
efficient control approach for OIN-based systems, and; (3) the system-level evaluation of the
proposed control approach using the defined modelling.

vii

TABLE OF CONTENTS

DEDICATORY . iii

ACKNOWLEDGMENTS . iv

RÉSUMÉ . v

ABSTRACT . vi

TABLE OF CONTENTS . vii

LIST OF TABLES . x

LIST OF FIGURES . xi

LIST OF ACRONYMS AND ABBREVIATIONS . xiv

LIST OF ANNEXES . xvi

CHAPTER 1 INTRODUCTION . 1
1.1 Context and Motivations . 1
1.2 Objectives & Contributions . 3
1.3 Document Organization . 3

CHAPTER 2 BASIC CONCEPTS . 5
2.1 Basic Concepts Related to Optical Interconnects 5

2.1.1 Mach-Zehnder Interferometer . 8
2.1.2 Micro-Ring Resonator . 10
2.1.3 Optical Integrated Networks . 11

2.2 Control Unit . 15
2.2.1 Time Sharing . 15
2.2.2 Dynamically Paths Setting . 17
2.2.3 Wavelength Division . 18

2.3 High-level Modelling Strategies and Description Languages 18

CHAPTER 3 RELATED WORK . 22
3.1 Modelling, Simulation and Evaluation . 22

viii

3.1.1 Industrial Tools . 22
3.1.2 Academic Tools . 23

3.2 Controlling Schemes . 25

CHAPTER 4 METHODOLOGY . 31
4.1 Methodology Overview . 31
4.2 High-level Modelling . 33
4.3 Control Unit Design . 35
4.4 Validation Architectures . 41

4.4.1 Switches . 41
4.4.2 Topologies . 43

CHAPTER 5 CONTROL UNIT - THE LUCC . 45
5.1 Path Analyzer and LUT Creation - The PALC 48
5.2 Conflict Resolution Block - The CRB . 53
5.3 Dynamic Setup Block . 55
5.4 Discussion . 57

CHAPTER 6 CONTROL UNIT - THE HYCO . 59
6.1 Conflict Resolution Unit . 61
6.2 Bloom Filter . 63
6.3 Access Control Unit (ACU) . 68
6.4 Distributed Configuration Unit (DCU) . 68
6.5 Discussion . 70

6.5.1 HyCo and LUCC Comparison . 71

CHAPTER 7 SIMULATION PLATFORM - THE SF-SIM 72
7.1 Discussion . 76

CHAPTER 8 RESULTS . 78
8.1 LUCC Execution Results . 78

8.1.1 LUCC Simulation . 80
8.1.2 LUCC Prototyping in Xilinx FPGA 82
8.1.3 LUCC Prototyping in Altera FPGA 82

8.2 Co-Design of the Control Unit and the Optical Switch 83
8.3 Models Integration . 89
8.4 HyCo Execution Results . 94
8.5 HyCo Synthesis Reports . 96

ix

8.6 Controllers Comparison . 97

CHAPTER 9 CONCLUSION . 100
9.1 Final Remarks . 100
9.2 Future Work . 101

REFERENCES . 102

ANNEXES . 112

x

LIST OF TABLES

Table 3.1 Tools Comparison . 25
Table 3.2 Controlling solutions comparison . 29
Table 4.1 Adjacency matrix examples. The left matrix represents the SF 8×8

network, while the right matrix represents the Spidergon 8×8 network. 36
Table 5.1 LUT Growing Size. 55
Table 6.1 Bloom filter bit array initial state. 63
Table 6.2 Updated Bloom filter bit array with positions 12 and 6 marked to ’1’. 63
Table 6.3 Updated Bloom filter bit array with positions 1 and 10 marked to ’1’. 64
Table 6.4 Bloom filter bit array testing example for input = 225. 64
Table 6.5 Bloom filter bit array testing example for input = 161. 65
Table 8.1 Configuration parameters for the 2×2 switch. 91
Table 8.2 Simulation times for different topologies. 94
Table 8.3 Simulation accuracy comparison. 94
Table 8.4 Synthesis values for the Virtex V 330T Xilinx FPGA 96
Table 8.5 Synthesis values for the Stratix IV Altera FPGA 97
Table 8.6 Synthesis values for the 65nm STMicro Library 97
Table A.1 2x2 Switch Logic Table . 113

xi

LIST OF FIGURES

Figure 2.1 Waveguides Examples. 6
Figure 2.2 Insertion loss Overview. 7
Figure 2.3 Crosstalk example of a ring resonator. 8
Figure 2.4 Shift phase example. 9
Figure 2.5 Mach-Zehnder Interferometer. 9
Figure 2.6 2×2 MZI-based integrated switch. 10
Figure 2.7 Example of a filter using MR. 11
Figure 2.8 1x2 Basic switch using one MR. 12
Figure 2.9 SERDES block exemplification. 14
Figure 2.10 Organizational Example of OIN-based System. 14
Figure 2.11 Resource Sharing System Example. 16
Figure 2.12 System overview using a centralized time-sharing-based control unit. . 16
Figure 2.13 System Overview Using a Distributed Circuit-switching-based Control

Unit . 17
Figure 2.14 System Overview Using a Centralized frequency-division-based Control

Unit. 18
Figure 2.15 Design Abstraction Levels . 20
Figure 4.1 OIN-based system modelling iterative methodology. 33
Figure 4.2 Controller Design Overview. 35
Figure 4.3 Controller Design Overview. 36
Figure 4.4 LUT growing size exemplification. 38
Figure 4.5 Graph representation of a 2×2 MZI-based optical switch. 39
Figure 4.6 Graph representation of a 4×4 MZI-based Beneš optical switch. . . . 39
Figure 4.7 Internal architecture of a 4×4 MZI-based Spanke-Beneš optical switch. 40
Figure 4.8 Internal architecture of a 4×4 MZI-based strictly non-blocking optical

switch. 40
Figure 4.9 Internal architecture of an 8×8 Beneš network based on employing

several 2×2 and 4×4 optical switches 41
Figure 4.10 2×2 Validation Switch. 42
Figure 4.11 4×4 validation topologies. 42
Figure 4.12 5×5 Validation Switch. 43
Figure 4.13 8x8 SF Network . 44
Figure 5.1 LUCC design Overview . 46

xii

Figure 5.2 iSLIP throughput X iterations number. 47
Figure 5.3 LUCC decision flow chart. 48
Figure 5.4 8×8 Beneš topology numbered graph representation. 50
Figure 5.5 Graph view of 8×8 SF Network. 57
Figure 6.1 HyCo overview. 59
Figure 6.2 Hybrid Controller execution flow. 60
Figure 6.3 Conflict detection and Round-Robin execution flow. 62
Figure 6.4 Bloom filter block execution example. 67
Figure 6.5 Access control unit simplified execution exemplification. 69
Figure 6.6 DCU Distribution approach. 70
Figure 7.1 Simulation platform. 72
Figure 7.2 2×2 modelled switch. 73
Figure 7.3 2×2 MZI-based Switch simulation. 73
Figure 7.4 4×4 MZI-based Beneš switch. 74
Figure 7.5 4×4 MZI-based Switch simulation . 74
Figure 7.6 8×8 SF Network Simulation . 75
Figure 7.7 SF-Sim Configuration Window. 76
Figure 7.8 4×4 Example topology on DIA tool. 77
Figure 8.1 Traffic patterns exemplification. 79
Figure 8.2 LUCC Simulation for 4×4 Beneš topology. 81
Figure 8.3 LUCC Simulation for 8×8 SF topology. 81
Figure 8.4 LUCC Xilinx FPGA execution. 82
Figure 8.5 LUCC on Altera FPGA execution. 83
Figure 8.6 Microscopic picture of the 4×4 MZI-based switch. 84
Figure 8.7 Schematic of the lab setup for the opto-electrical co-design. 84
Figure 8.8 Measured 10 Gb/s PRBS31 signal switched by the 2×2 MZI switch. . 85
Figure 8.9 Lab-setup overview . 86
Figure 8.10 FPGA and Optical Switch Readings. 87
Figure 8.11 Complete System Lab Setup Overview. 88
Figure 8.12 Online Readings of Prototyped Optical Switch and FPGA Execution. 89
Figure 8.13 Extracted data from second set of lab experiments 90
Figure 8.14 4×4 Spanke-Beneš Simulation Scenarios. 91
Figure 8.15 4×4 Spanke-Beneš simulation. 92
Figure 8.16 System Simulation Setup. 93
Figure 8.17 System simulation output. 93
Figure 8.18 Hybrid Controller latency for different traffic patterns. 95

xiii

Figure 8.19 Latency comparison between controllers and state-of-the-art. 98
Figure A.1 2×2 Switch Block Overview. 113
Figure A.2 2×2 Switch Output Selection Logic 114
Figure A.3 Logical Block Of Described 2×2 MZI-based Switch 115
Figure A.4 SF-Sim GUI Configuration Window. 117
Figure A.5 SF-Sim GUI MZI Configuration Window. 118
Figure A.6 SF-Sim GUI DIA Configuration Window. 119
Figure A.7 SF-Sim GUI DIA Workbench. 120
Figure A.8 SF-Sim GUI DIA Workbench Presenting Connected Nodes. 120
Figure A.9 SF-Sim GUI DIA Workbench I/O Nodes Placement. 121
Figure A.10 SF-Sim GUI DIA Workbench I/O Nodes Colouring. 121
Figure A.11 SF-Sim Generated Files. 122

xiv

LIST OF ACRONYMS AND ABBREVIATIONS

ADL Architecture Description Language
CMOS Complementary Metal-Oxide-Semiconductor
CMP Chip Multiprocessor
CRB Conflict Resolution Block
DSB Dynamic Setup Block
eNOC Electrical Network-on-chip
FIFO First-in-first-out
FLB FPGA logical blocks
FSM Finite-state-machine
Gbps Gigabits per second
GUI Graphical User Interface
HDL Hardware Description Languages
HYCO Hybrid Controller
I/O Input-and-Output
IoT Internet of Things
IP Intelectual Property
LUCC LUT-based Centralized Controller
LUT Look-Up Table
MR Micro-ring Resonator
MZI Mach-Zehnder Interferometer
NI Network-Interface
OINs Optical Integrated Networks
ONOC Optical Network-on-Chip
P2P Point-to-Point
PICS Photonic Integrated Circuits
RR Round-Robin
RTL Register transfer level
SERDES Serializer/Deserializer
SF-Sim Straight-forward Simulator
SF StraightForward
SNR Signal-to-noise Ratio
SOI Silicon-on-Insulator
SPF Shortest Path First

xv

TDM Time Division Multiplexing
UML Unified Modelling Language
VHDL VHSIC Hardware Description Language
WBA Weight Based Arbiter
WDM Wavelength-division multiplexing
XUP Xilinx University Program

xvi

LIST OF ANNEXES

Annexe A IMPLEMENTATION DETAILS . 112

1

CHAPTER 1 INTRODUCTION

This chapter includes an overview of the motivations, objectives, and the proposed contri-
butions in the field of optical integrated networks modelling and controlling. The context
of optical networks and the research challenges that inspired this thesis are introduced and
deployed solutions to address the challenges are shortly commented. Lastly, the document
organization is presented.

1.1 Context and Motivations

Nowadays systems present a rising number of features, leading to a significant growth in
the applications’ design complexity. Mostly, these systems have their implementation based
on multiple processing elements integrated on the same die and running at a lower clock
frequency due to energy consumption constraints [1].

Since the introduction of Chip Multiprocessor (CMP), one of the design main concerns lies in
how the communication among internal components is performed. Bus-based systems present
a well-known solution with a reasonable bandwidth and great ease of implementation. As
the number of components rises, the complexity of bus design increases and their application
becomes challenging [2]. Moreover, the communication can become a bottleneck in the
system performance of traditional bus-based systems, which can compromise its operation
[3]. Aiming to solve this issue, Electrical Network-on-Chip (eNoC) is one of the most popular
solutions that have been proposed.

Systems based on eNoCs tend to provide better communication performance [4] when com-
pared to traditional bus-based systems. In this case, the communication management is
performed by routers that forward packets through the network. Each network node con-
sists of a router and a connected component which could be, for example, a processor or a
memory. Besides the gain in the communication capability, eNoCs usually present improved
energy reliability and efficiency as well as high re-usability [5]. However, as the number
of possible integrated cores on a single chip continues to increase, metallic interconnects in
eNoCs will become a bottleneck due to their high power consumption, limited bandwidth,
long latency and poor scaleability, leading ITRS [6] to point out the need for a new tech-
nology to overcome such restrictions. Another drawback of employing eNoCs is related to
their architectural organization. As eNoCs rely on point-to-point communication links, their
usage might be limited as the system scales, resulting in higher contention for long-distance

2

communications among cores and consequently performance degradation through imposing a
higher power consumption. In this design context, Optical Integrated Networks (OINs) and
the 3D die stacking1 are currently considered to be the two most promising new paradigms
[7–11].

OINs are already a reality for long-distance communications [12] and their usage for short-
distance communications, such as inter-chip communications, has already been proven to
be applicable [13, 14]. Recently, published work presented photonic architectures with low
power consumption, low insertion loss and low power penalty [15, 16]. These work bring
forward OINs as attractive candidates for high demanding communicating architectures.

Optical Network-on-chip (ONoC) emerges as a possible solution to overcome the aforemen-
tioned eNoCs issues as it presents a higher bandwidth when compared to common electrical
eNoCs implementations with low power consumption [17]. Also, another advantage of em-
ploying ONoCs lies on their own physical implementation. With eNoCs, communications are
usually local (Point-to-Point - P2P), reducing their design complexity but not allowing good
scaleability for shared resources. On the other hand, ONoCs present a potential support for
broadcasting messages, making them suitable for the new multiprocessors paradigms [18].

The performance and efficiency of such architectures are constrained by their controllers. The
control part has an important impact on the OIN overall performance and a better solution is
yet to be found [19]. Previous works demonstrated architectures with either long setup time or
that have become too complex, thus challenging practical deployment [20, 21]. Consequently,
while low latency controllers have been demonstrated [22, 23], further improvement in their
response time is still required to realize practical deployment of OINs. Further, most proposed
controllers are deeply attached to the network for which they are designed. Although this
fact may lead to an increase in the performance of the controller, this goes against the trend
for the next generation of communication systems, in which it is believed that each network
layer (application, control and physical) will be independent from each other [24, 25].

Designing a system based on OINs is a very complex task that need to be automated using
efficient tools. While the device level presents indeed a dense support in terms of automation
tools for the development of optical devices, this is not true for the system level. In fact, when
compared with high-level electrical design tools, system level support is nearly nonexistent
[6]. Acknowledging the importance of this aspect, it is important to highlight that it is not
possible to design an entire system with nowadays commercial tools, as it would be a complex

13D die stacking is an integrated circuit manufacturing technique in which two or more silicon wafers are
placed one over the other and interconnected vertically using through silicon via (TSVs) in such a way that
they behave as a single device. This technique is key in the OINs dissemination as it allows the integration
of a variety of technologies prototyped onto the same chip.

3

task and would need more advanced tools. So, a research gap is open for the development of
methods and tools to aid in the design of OIN-based systems.

Aforementioned issues raise two important questions to be addressed by researchers: (i)
how to better explore system-level design of OIN-based systems , and; (ii) how to control
OIN-based systems without adding prohibitive overhead to the system.

1.2 Objectives & Contributions

The main objectives of this thesis are:

1. Introducing an efficient solution to help designers better explore the design space for sys-
tems integrating optical networks by finding the most promising solutions. This is achieved
by providing a modelling strategy that is (i) complete, comprising all important characteris-
tics of such systems; (ii) flexible, so it can describe any type of system; (iii) accurate, so the
results extracted using it are close to real system implementations, and; (iv) not complex, so
the modelling of systems does not impose a prohibitive an overhead during their deployment.

2. Developing efficient control solutions for OINs. The definition of a general solution for
controlling OINs with a low-latency solution, that is flexible, in this way being able to deal
with most kinds of optical networks and has a low overhead in time, thus not adding many
extra clock cycles to compute requests and set dynamic configurations.

By fulfilling these objectives, we realize three main contributions:

1. The definition of accurate system-level modelling method enabling the development of
a system-level simulation platform;

2. The definition and development of efficient control approaches for OIN-based systems,
and;

3. The system-level evaluation of the proposed control approaches using the defined mod-
elling methods.

1.3 Document Organization

This document is organized as follows. Next chapter presents basic concepts about photonic
devices and networks as well as control techniques usually applied on such networks. Chapter
3 brings a state-of-the-art revision, positioning our approach with existing works. Chapter
4 gives first the global overview of the approach we defined for system-level design of OINs

4

and presents the proposed accurate system-level modelling methods. Following, Chapter 5
introduces the centralized control unit, employing Look-Up tables (LUT) in order to speed-
up the control unit. Chapter 6 presents the hybrid controller developed, which relies on a
centralized core and distributed units to reduce the control latency. Chapter 7 brings the
simulation platform developed using introduced description models. Following, chapter 8
presents obtained results for both deployed controllers, the simulator accuracy as well as the
models integration outcome. Finally, chapter 9 draws the conclusion of this document, along
with the possible future work in the field.

5

CHAPTER 2 BASIC CONCEPTS

This chapter presents general concepts about optical components and systems, their control
schemes as well as modelling techniques required to describe them. Section 2.1 covers topics
such as waveguides, insertion loss and optical filters, from integration with complementary
metal-oxide-semiconductor (CMOS) technology perspective. Section 2.2 discusses controlling
solutions for OIN-based systems. Finally, section 2.3 brings an introduction to modelling and
description concepts on the scope of multi-processed systems.

2.1 Basic Concepts Related to Optical Interconnects

Optical interconnects are well known for their capacity to transfer data with high transmission
rates. On the opposite of their electrical counterpart, optical interconnects use light over an
optical via to transmit information instead of wires. In order to take advantage of the
maturity of the CMOS manufacturing technology, Silicon is the material of choice in order
to deploy integrated optics [26]. One approach used is Silicon-on-Insulator (SOI). The SOI
substrate is made of a thin silicon top layer separated from the silicon substrate by a buried
oxide layer. The strong refractive index contrast between the core and the cladding material
of the waveguide allows the realization of very compact components [27]. Other approaches
are also possible, such as doped silica [28], silicon nitride [29] or silicon oxynitride on oxide
[30]. Also, it is possible to separate the manufacturing of the electrical and optical circuits.
In this case, the devices are made on different wafers, but still relying on the same materials
mentioned before and then later bonded. In this thesis, we employ SOI fabrication technology
as reference.

All optical devices are composed of some basic structures:

• A via is the path where the lights travel on, being the equivalent of wires in electrical
devices;

• An interface is used to input data on the via or read/receive data to/from the via,
and;

• Active and passive components are responsible for the control of the data flow on
the device working like a filter. Passive components are static, while active components
can be dynamic. Both types are detailed in Subsection 2.1.3.

6

An optical via is called a waveguide and is the path on which the light travels, usually with
a rectangular structure. Nowadays, designs are projected with a waveguide width greater or
equal to 450 nm and, as the size changes, different wavelengths might be transmitted on it.

Different wavelengths might be used at the same time on the same waveguide transmitting
data in parallel, provided that the waveguide supports these wavelengths. It is important to
highlight that simultaneous connections are one of the main advantages of optical intercon-
nections when compared to electrical-based ones.

As previously mentioned, waveguides are the paths on which light travels, and they should be
as straight as possible to allow better transmission quality. However, it is nearly impossible to
have a system composed exclusively by straight lines, being necessary to bend the waveguides
in order for the light to change its direction. This is a crucial design step, as light might be
completely lost in a very abrupt bend. Also, despite the fact that this may introduce a given
signal loss, waveguides might cross each other without causing a non-functional state of the
system, like it would in electrical crossing.

Figure 2.1 shows the three main types of waveguides: (a): straight waveguide, transmitting
from one side to the other, exclusively; (b): crossing waveguides, where two inputs and two
outputs can coexist, and; (c): waveguide bending, changing the transmission direction.

Figure 2.1 Waveguides examples (a) straight waveguide, (b) crossing waveguides and (c)
waveguide bending.

When using optical components, one important aspect to be considered is the system in-
sertion loss, which directly affects the power required for an input to reach its output. So,
the higher the insertion loss, the higher is the power needed on the input. Each component
introduces a given loss on the input signal, represented in Figure 2.2.

7

Figure 2.2 Insertion loss overview.

Additionally, total optical loss can be expressed as the sum of internal losses, in decibels (dB)
1

LossTOTAL = Lossinput + Lossbending + Lossw + Lossoutput (2.1)

where Lossinput is the loss of the input signal when it couples into the waveguide, Lossbending
is the bending loss, Lossw is the waveguide loss, and Lossoutput is the loss of the output [31].

Another important effect to be studied and understood is the crosstalk. This happens when
part of the signal couples on different waveguides, and it is not desired to happen. Figure
2.3 presents an example of crosstalk in a ring resonator, where it is possible to see the signal
being transmitted from left to right, with the undesired fact that part of it is being coupled
on the ring and going to the output on the bottom. This kind of issue introduces noise on the
communication, which reduces the transmission quality and may jeopardize the reliability of
the output signal. This is a risky situation because, sometimes, so much noise is inserted on
the channel that is not possible to distinguish if the output signal is real data or only noise.

Most designs focus on reducing both the insertion loss and crosstalk in order to obtain a
more efficient architecture, with a better Signal-to-noise Ratio (SNR) [32]. SNR is a value
that compares the relation of a noise signal to the desired signal over a component. This
means that higher the ratio is, higher the transmitted signal quality is.

It is not possible to build an entire system relying solely on waveguides, as it would be nec-
essary to create dedicated links for all possible communication paths, which is not feasible.

1Decibel indicates the proportion of a physical quantity in relation to an entry point. In other words,
decibels express a power ratio, not an amount. The simple equation which defines a decibel is: A = 10 ∗
log10

P 2
P 1 (dB), where P1 is the power being measured, and P1 is the reference to which P2 is being compared.

The conversion from decibels measure back to power ratio is given by:P 2
P 1 = 10(A

10). For instance, the ratio
of 1 kW to 1W, in decibels is: GdB = 10 ∗ log10(1000

1) = 30 dB.

8

Figure 2.3 Crosstalk example of a ring resonator, showing a portion of the signal being
transmitted by the undesired waveguide.

This creates the need for more elaborated components, such as the Mach-Zehnder Inter-
ferometer and Micro-Ring Resonator. These components incorporate extra functionalities,
enabling the flow control in the network, working as network switches. Both components are
presented in detail hereafter.

2.1.1 Mach-Zehnder Interferometer

A Mach-Zehnder Interferometer (MZI) is a device used to control the amplitude of an optical
wave by dividing it in two, applying a given delay and then merging the two beans of light into
one again. The physical implementation of such functionality works as it follows: the inserted
wave is split in two, maintaining the same phase and amplitude for both resultant waves.
One wave is transmitted over a straight waveguide and keeps its phase and amplitude. The
second wave is somehow delayed, which inserts a phase change. Wave phase can be defined
as the position of a wave point in one specific time. When a phase change happens, it means
that the wave moved in time. Figure 2.4 illustrates this event, where two sinusoidal waves
are presented. As it is possible to see, one sinusoidal wave is slightly forward in the X axis,
which represents time. This can be defined as a phase change. By the time both waves are
merged, the two waves can interfere constructively or destructively at the output. Depending
on the interference, the introduced phase change affects the amplitude of the resultant wave
[33].

For the shift phase, two approaches might be used: one active and one passive (the concepts
of active and passive devices are covered in Subsection 2.1.3). Figure 2.5 presents the basic
structure of one MZI, where it is possible to see the presence of two parallel waveguides, one

9

A
m

p
lit

u
d
e

Time

Figure 2.4 Shift phase example, showing a sine wave changing its phase, thus moving in time.

with a delay portion and one as a straight line. In the image, it is possible to see an input
signal being split in two, so they can travel each on their own waveguide, being later merged
into one signal, on the output.

Figure 2.5 Mach-Zehnder Interferometer example structure.

For the delay that introduces the phase shift to be applied to the wave, we can use either an
active or a passive device, as previously mentioned. For the active device an electrical arm
is attached to the waveguide and a given current is applied to it. Depending on the applied
current a different phase shift is induced. For the passive counterpart the phase shift is fixed
at design time and may never change, being achieved by adding a series of waveguide bends
in order to change the phase.

In order to build a MZI-based switch, two inputs and two outputs are employed. The light is
split in the two arms of the input coupler of the interferometer, and they are later recombined
in the output coupler of the interferometer. The switching between the ports is achieved by an
electro-optic effect within the structure. Voltage, applied to the electrodes deposited on the
integrated MZI, alters the electric field distribution within the substrate, which consequently
changes its refractive index. By changing the effective refractive indices of one of the arms,
it is possible to generate the phase difference between the optical signals in two arms of MZI.
Based on the generated phase difference, the light switches from one output port to the other.

10

The following equations are used in order to determine the normalized power in each output
port, where ∆φ is the difference of two phase changes [34].

Pout1 = sin2(∆φ
2); (2.2)

Pout2 = cos2(∆φ
2); (2.3)

Figure 2.6 illustrates the 2×2 MZI-based integrated switch, where the input and output
ports, the splitters and the integrated electrodes are presented.

Figure 2.6 2×2 MZI-based integrated switch structure.

2.1.2 Micro-Ring Resonator

A Micro-ring Resonator (MR) is an optical filter applied to select a desired wavelength from
a given input and redirect it to an output [35]. On opposite to the presented MZI, MRs
are wavelength selective. The MRs work based on three principles: optical coupling, total
internal reflection, and constructive interference.

Total internal reflection is an effect in which the light travelling within a waveguide remains
in the waveguide. It happens when the light hits the boundary of the waveguide and does
not refract over the boundary. Constructive interference is when two waves interfere on each
other and the resultant wave is the sum of the two interfering waves. Optical coupling is the
effect of light travelling from one media to another. Particularly in MRs, it is the effect of
the light travelling from the waveguide to the ring and from the ring to the waveguide. Three
characteristics affect the optical coupling: the distance between the ring and the waveguide,
the length of the coupling region and the refractive indexes2 of the waveguide and the ring. To

2The refractive index of a component is a constant that indicates how much the light will bend, or refract,
in that medium. It is defined by n = c

v , where c is the speed of light, in vacuum and v is the phase velocity.
For instance, the refractive index of silicon is 3.42, meaning that light travels 3.42 times faster in a vacuum

11

optimize the coupling, usually the distance between the ring and the waveguide is narrowed.

Figure 2.7 shows the structure of a simple MR used as a filter. In the figure it is possible
to notice the presence of two waveguides and one ring between them. On the top waveguide,
there is one input signal that might be transmitted directly, leaving by the through port, or
it can be coupled into the ring and redirected to the drop port, on the lower waveguide.

Figure 2.7 Example of a filter using MR.

The decision if a wavelength is coupled or not into the ring is defined by some MR’s physical
characteristics, like the round trip length and the transmitted wavelength. For instance,
assuming wavelengths λ1 and λ2 are transmitted, if λ1 satisfies the resonant condition, such
as

neffL = mλ1, (2.4)

the wavelength λ1 is coupled. As a result, the wavelength λ1 will couple to the ring while
wavelength λ2 will not. Here, neff is the effective index of the input waveguide, L is the
length of the optical round trip length and m is the mode number.

Such a capacity to select a given wavelength to be coupled into the ring makes this kind of
structure useful on the communications domain, since this behaviour is the same presented
by a switch. The implications of this capacity are tremendous considering that MRs are very
cheap structures in terms of footprint and power consumption, which makes them a natural
solution for integrated optical communications.

2.1.3 Optical Integrated Networks

Optical integrated networks take advantage of the previously presented components to achieve
high bandwidth while maintaining low power consumption levels. It is possible to design

than it does in silicon.

12

basic-switch blocks using MZIs and/or MRs to route optical signals, and group these switches
to create a network. Several works were published showing this kind of structure and great
improvement on both throughput and bandwidth, with lower latency and power consumption
[36–40].

Figure 2.8 shows the structure of a basic MR-based switch used to select if an input (IN)
will either communicate with one output (OUT_0) or the other (OUT_1). This selection
is performed by using different wavelengths; when OUT_0 is to be reached, wavelength λ0

is used. On the other hand, when OUT_1 is to be reached, wavelength λ1 is used. It is
important to highlight that it is possible to use both wavelengths at the same time, thus
transmitting information in parallel.

Figure 2.8 1x2 Basic switch using one MR, showing the selection behaviour for two trans-
mitted wavelengths.

By simply replicating this structure, it is possible to design an entire OIN with no contention.
In fact, most of proposed architectures [36] rely on similar structures to the one presented in
Figure 2.8.

When defining an OIN architecture, the designer might choose between active components
and passive components, or decide for a combination of them. Summarizing, these compo-
nents differ only by the fact that passive components are static while active components are
not.

Passive components are reactive devices by definition, which have their behaviours defined
during design time. We can use a 1-input × 2-outputs MR as an example. In this case, during

13

design time, we define which wavelength(s) will be coupled into the micro-ring and follow a
different direction, and which will not, following directly to the default output. This kind
of device presents a low design complexity, with low footprint and low power consumption.
Still, for scenarios with dynamic characteristics, this type of structure might not be the most
suitable, as it would be mandatory to use as many devices as necessary to capture every
single configuration needed on the system.

On the other hand, active components are designed in such a way that its routing character-
istics may change during runtime, by adding an electrical control system to it. One example
of the behaviour of active devices might be given by using the same MR as before, but now
assuming it as an active component. Instead of a constant coupling in the same wavelength, it
is possible to change the effective index by applying a given current on the MR, thus selecting
another wavelength. As expected, active components are more area and power demanding,
as they have a more complex structure and make usage of power to change their behaviours.

Other components are also usually present when using OINs: signal converters, fast transcei-
vers and Serializer(s)/Deserializer(s) (SERDES). Signal converters are used, as the name
suggests, to convert signals between domains. The Intellectual Property (IP3) blocks, which
generate network traffic are usually digital. So, digital data must be converted to optical
signals to be inserted in the network and in the same way, the optical network output has to
be converted to digital signal to be processed by IPs. Still, when using OINs, the designer can
define whether the network will send messages bit-by-bit or word-by-word. In cases where
the sending is performed bit-by-bit, it is necessary to use a SERDES, a device applied to the
serialization and de-serialization of a message. On the sender side, this device receives a word
and returns it, bit-by-bit. On the receiver part, the SERDES receives a word, bit-by-bit and
returns it as one entire word. Figure 2.9 illustrates an example of a SERDES block. The
input message is an 8-bit word array. The figure represents the serialization, where each bit
is shown one after the other and lastly the deserialization, where all bits are grouped as an
8-bit word array again. Finally, fast transceivers are used to adjust the data rate injection
and reception, as the IP blocks operating frequency might be different than the frequency
needed on the network.

3An IP block can be defined as any computational unit: a processor, a memory or a DSP, for example.
In this context, it represents any type of node connected to the network.

14

Figure 2.9 SERDES block exemplification showing an 8-bit word being serialized and later
deserialized.

Figure 2.10 shows an organizational example of a system using an OIN with the aforemen-
tioned components. In the figure, the internal structure of the OIN is not detailed, rather
highlighting only the connections with the IPs. The figure also illustrates the connections
among components.

Figure 2.10 Organizational example of OIN-based system illustrating the data flow, passing
by the IP, the SERDES, the transceiver, the signal converter and network switch.

15

2.2 Control Unit

When talking about OINs, the design of the controller of the system is as important as choos-
ing the right topology. Unlike eNoCs, optical networks do not rely on buffers to temporarily
store data at every switch. If that were the case, it would be necessary to convert all data to
digital signals and then re-convert back to the optical signals, leading to high and undesired
costs. Thus, the controller algorithm is usually based on one of the following techniques:

• Time sharing, where time windows are set for each IP to transmit its information.
On each time window, a set of IPs is granted to send their data, while the others are
stalled until the time window ends;

• Dynamically paths setting, which presents a behaviour similar to the one found in
circuit-switching eNoCs. The path is defined at the beginning of the transmission. In
this context, the controller should compute all the input requests and choose all paths,
either by assigning wavelengths on passive-based networks or by tuning the components
of active-based networks, and;

• Wavelength division, uses the parallel communication capabilities of optical devices
to transmit separate signals. This technique divides the total available bandwidth into
a series of non-overlapping sub-bands, assigning a different wavelength for each trans-
mitting IP. Usually this technique is employed for passive networks, but not exclusively.

2.2.1 Time Sharing

There are cases where the topologies are built using components that have exclusive access,
i.e., allows a single transmission at a time. When this happens, the control unit must manage
the requests and granting in a manner that no request waits forever. Figure 2.11 presents a
scenario composed of seven communicating blocks that share a single communication medium
and a centralized controller. In this case, it is possible to notice conflicting situations that
may occur when more than one communicating block tries to access the shared media at the
same time.

To prevent this kind of situation, a common approach is to use a time sharing/division
multiplexing (TDM) algorithm [41], which divides the time into several recurrent windows
(slots), being one for each IP. The time slots might have the same duration depending on the
priority attributed to the IPs. Also, the amount of information transmitted over the media
on each slot may either be the same for all the IPs or vary according to their priorities.

16

Figure 2.11 Resource sharing system example, where one simple bus is shared between dif-
ferent communicating IPs. The controller (left box), receives requests and grants access to
one IP at a time.

The simplest implementation for this kind of situation is based on the Round-Robin Algo-
rithm [42]. It implements a first-in-first-out (FIFO) queue, which stores in each position a
single IP ID. For every new time slice, the ID found on the next output of the FIFO has
its access granted. This kind of control imposes a fair time overhead on the system, being
usually deployed on a single, centralized control unit, being more suitable for a lower design
complexity, such as low radix systems.

Figure 2.12 shows an organizational example of using an OIN with a centralized control unit.
In the figure both the control and network are integrated as one black box.

Figure 2.12 System overview using a centralized Time-sharing-based control unit.

17

2.2.2 Dynamically Paths Setting

Another possibility when controlling OINs concerns a circuit-switching (CS) technique. It is
a suitable technique used in dynamic network configurations, where an electrical layer has
access to all network nodes and configures those needed for each communication to perform
correctly. The main appeal of the circuit switching is its utilization on the 3D stacked
integrated-on-chip systems, in which each layer of the chip holds one parcel of the entire
architecture [43].

In circuit-switching, each optical network node is directly connected to one electrical net-
work node. The latter is then physically placed above/under the optical node, using intra-
connections such as Through-Silicon Vias (TSVs) [44, 45] to share information between each
other. The IPs are connected to electrical nodes and requests travel along all the electrical
path, thus closing their way from the origin until their destination. By the time the path is
closed, the message starts to be sent through the optical path.

Figure 2.13 shows an overview of the stacked networks and their connections. In the figure,
the network nodes are illustrated as blocks, where each block is a network router. Figure
2.13(a) presents the top system view. Figure 2.13(b) shows a lateral systems view, where it
is possible to see the connections between the electrical and optical nodes. Figure 2.13(c)
illustrates the optical network layer. Finally, figure 2.13.(d) indicates the electrical layer
showing the IPs connected to the routers.

Figure 2.13 System overview using a distributed circuit-switching-based control unit; (a)
presents the upper view of the system, where the optical layer is placed above the electrical
layer; (b) shows the system view from the side. The layers connections are presented as
arrows, and communicating nodes as rectangles; (c) illustrates the optical layer, its switches
and connections; (d) presents the electrical layer, its switches, IPs and connections.

In this approach, the tuning time can impose a high overhead. Even though, it remains very

18

interesting for systems where large messages are exploited. This occurs since the high cost
to close the path can then be compensated by the gain to transmit the message.

2.2.3 Wavelength Division

The last technique applied to control units for OINs is the Wavelength Division Multiplexing
(WDM) [46]. This technique is very similar to the TDM. However, instead of using different
time slices, WDM employs different wavelengths. When using WDM, the available bandwidth
of the channel is divided into sub-channels. For each sub-channel a given wavelength is
attributed [47].

Figure 2.14 depicts an example of the usage of a WDM-based controller interacting with four
requesting IPs which requires access to the network simultaneously. For each one of them,
the controller attributes one different wavelength (λ). This way, the four IPs can transmit
data in parallel.

Figure 2.14 System overview using a centralized wavelength-division-based control unit.

This technique allows wavelengths overlapping to be used for two different scenarios: (i)
different IPs requesting access simultaneously, as presented in Figure 2.14, and; (ii) for the
cases when only one IP is requesting access and all wavelengths are free. In both cases,
the controller might attribute more than one wavelength to the same IP, so its transmission
might occur in a parallel stream.

2.3 High-level Modelling Strategies and Description Languages

Large system developers usually struggle to precisely identify all aspects that comprise their
design, such as the number of components4 and proper abstraction implementation. In

4in this context, a component can vary between a logical port and a processing unit.

19

current digital systems, such as multiprocessor embedded systems, it is possible to find from
hundreds to thousands different components working together, communicating with each
other and depending on each other’s responses.

Therefore, for a designer to effectively capture and manage all these aspects, higher abstrac-
tion levels are mandatory. In this way, a model might be defined as a simplified vision of
anything real and, in order to decrease the system design complexity, different models are
used. For instance, a computation system can be defined as a set of digital ports, as a series
of logical transactions or as a single I/O block.

Diverse challenges arise when modelling current systems. Among those, we highlight model
complexity, simulation runtimes and analysis complexity, model abstraction, complex inter-
dependencies, and parallel components.

The Unified Modelling Language (UML) [48, 49] is a general-purpose modelling language
designed to be used as a standard description modelling language. It relies on visual blocks
to describe all system architectural contents: transactions, components, timing, data flow,
etc. Most visual high-level modelling tools use the standardized patterns (UML blocks and
their connections) adopted in UML.

In the case of the Petri nets [50], directed graphs are used to model distributed systems,
and the system is described as a series of places, transitions and directed arcs. Each place
represent a component or logic block. All these places are connected by arcs. For the flow
in the net, transitions are used, which represent the movement from one place to the other,
passing through transitions. The system flow of a Petri net always follows the same behaviour,
where one arc moves towards another passing by one transition.

Another model type is the Kahn Network [51], in which sequential processes communicate
through FIFOs. Its main characteristic is the synchronization imposed by the FIFOs, which
makes this kind of model suitable for distributed, communicating systems.

Besides specific models, different languages are defined for specifications as well. Although
their usage is not restricted to one specific functionality, their focus is usually well defined.
Architecture Description Languages (ADL) [52] are designed to describe and represent system
architectures. ADLs might be used to describe both software and hardware. For software,
ADLs cover features such as processes and threads. For hardware description, ADL describes
components, such as processors, devices and buses. Also, the connection between the com-
ponents is described in ADL. For instance, a processor can be described in ADL as a simple
device that receives requests and returns a value.

One example of ADL is the Architecture Analysis and Design Language (AADL) [53] also

20

known as Avionics Architecture Description Language. It is largely used in the modelling of
real time embedded systems, to describe either hardware or software components.

Hardware Description Languages (HDL) focus on describing the characteristics of hardware
components. It is possible to describe logical ports, components such as processors and
memories and even systems. The main appeal of HDLs lies in the fact that they hold a close
relation to the physical layer. Still, it is possible to use HDLs in a way that such physi-
cal aspects are abstracted and only the behaviour is captured. This makes HDLs powerful
description languages to be used when designing systems. By using these languages, at-
tributes like time, components concurrent execution and connecting signals can be modelled.
The most common languages in this group are VHDL [54] and Verilog [55]. Programming
languages are a different group of specification languages, where the focus is on software
deployment. Usually, they act as an interface between the hardware and the user. Common
examples of this group are C++ [56] and Java [57].

Throughout the years, the modelling abstraction level has been upgraded and the introduc-
tion of digital designs has led to the need for reducing design complexity by increasing the
system-level view. Figure 2.15 presents the evolution of the abstraction level used on the
deployment of digital systems. Starting from the transistor - the fundamental design unit
- the abstraction level started to rise. First, a digital system was represented as a set of
logical ports, then registers, and finally as hardware and software models. In the figure, four
rows are presented: the timeline, the device abstraction, the modelling level and the system
overview.

Figure 2.15 Design Abstraction Levels

It is possible to see that the level of modelling method cope with the complexity of the state-
of-the-art systems. As new functionalities are added to systems, the modelling strategy has
to be updated as well. At first, systems were simpler than nowadays, which made it possible

21

to describe them one transistor at a time. Later, systems evolved from groups of transistors
to big sets of logical ports, which lead to the utilization of Register transfer level (RTL)
languages. Nowadays, systems incorporate different elements, as hardware components and
software logic. For designers to capture all different aspects involved in the description of such
systems, higher-level modelling strategies are adopted. The concepts of high-level modelling,
like ADLs and UML are employed for these systems. In the next systems’ generation, not
only different elements will be present, but also different technologies, where systems will
be heterogeneous. Future systems will be composed of digital hardware, such as processors;
magnetic components, as magnetic RAMs; logic models, as software; optical components,
such as OINs. This makes mandatory the update of current design methods. The update
may be achieved by the definition of new modelling languages, where such aspects can be
described. Another possibility is the re-utilization of nowadays modelling languages, by
employing them in different contexts. While developing new languages for the description
of future systems would make them perfectly suited to the context, the re-utilization is
appealing, as it takes advantage of mature approaches.

22

CHAPTER 3 RELATED WORK

This chapter summarizes the most important related works in the field of OINs modelling
and simulation as well as controllers for OIN-based systems. Section 3.1 introduces a set of
tools and methods to simulate, model and evaluate optical systems. Their description will
be divided into two sub-sections: one presenting a discussion about industrial tools and one
focusing on academic tools. Moreover, Section 3.2 presents a discussion of state-of-the-art
controlling solutions for OIN-based systems, where recent and relevant publications on the
field are discussed and their methods are explained.

3.1 Modelling, Simulation and Evaluation

The design of optical devices is a complex task, requiring different variables to be consid-
ered. Optical devices are sensitive to dynamic variations, such as temperature and even a
small deviation can change the device behaviour, making it mandatory to capture all those
small peculiarities. This way, different approaches and tools were made available by either
industrial or academic research. These tools can focus on the entire design flow or specific
aspects, such as power loss. In this chapter we will focus on tools considering the design from
a system-level perspective.

3.1.1 Industrial Tools

Facilitating the employment of optical devices, several companies provide tools and method-
ologies for engineers to use. Those tools usually cover the entire design flow, from the very
beginning, when each device is modelled and the integration of developed devices. These kind
of tools depends on numerical methods and solvers to compute all variables that compose
the system, which are usually complex and processing demanding.

One example of industrial state-of-the-art company is Lumerical Tools [58], which provides
an environment for the deployment of optical devices, from the initial level till the integration
level. It has four applications that might be run solo or in an integrated way, following a
design plan. Designers can start their device from scratch using MODE, adopted to model
the device and make initial verification, like group index. The second application in the
design flow is FDTD, which is a 3D Maxwell solver that analyzes the light interactions on
different wavelengths scales. Following, Lumerical presents INTERCONNECT, a photonic
integrated circuit design environment that enables the design, simulation and analysis of

23

photonic integrated circuits. INTERCONNECT is able to perform analysis either on the
frequency domain or in the time domain. Last of four Lumerical Tools is the DEVICE Tool
which is used to integrate photonic and CMOS devices.

VPIPhotonics provides a set of tools for the design of Photonics devices with the difference
that most of their tools focus on long-distance communication systems. The provided tool for
Photonic Devices design and optimization is the VPIcomponentMaker Photonic Circuits [59],
a tool with a focus on photonic integrated circuits (PICs), electric circuits, and optoelectronic
devices.

Optiwave [60] is a design suit for the deployment of photonic devices. It offers a great list
of applications to ease the project of such systems, making it possible to even integrate their
tools with available electrical tools, like Matlab [61]. Optiwave also provides SPICE tools for
integration with CMOS devices.

Some other tools might be cited as well, like OptSim [62] and Optilux [63], which also
provide support for the development of Optical Devices. These tools present features such
as numerical solvers for the analysis of physical aspects of modelled devices.

Aforementioned tools are accurate and provide feedback, relying on precise models to repre-
sent the system. By using them, designers can entrust that obtained results are very close to
the fabricated devices. However, as implemented models depend on complicated equations
and analytical models, their computation time is large, jeopardizing their effectiveness for
large systems, limiting their usage to small systems. Although it is important to acknowledge
the high complexity to attain the level of accuracy of such tools, the fact that they do not
contemplate the entire system design puts at risk the time-to-market.

3.1.2 Academic Tools

In order to support system-level design, initial tools were made available by academy. These
tools are meant for academic purposes and are firstly focused on proving new methods and
theories. Also, such tools are usually designed for one specific purpose, like analyzing crosstalk
[64, 65], thus not allowing an entire system deployment. In this way, with very specific
purposes are not covered in this review.

Among system-level tools, it is possible to split them in two groups: extensions on already
existing simulations tools and the ones implemented from scratch.

PhoenixSim [66] is an example of a simulator extension. It is built based on the
OMNeT++ [67] framework, a well-known network simulation platform that allows users to
extend its functionalities. PhoenixSim may be used for designing and analyzing the per-

24

formance of photonic interconnection networks, generating reports for propagation delay,
insertion loss, extinction ratio, spectral resonant profiles, area occupation, and energy dissi-
pation.

GRAPHITE [68] is a distributed simulator for multi-core systems. The focus of this tool is
to reduce the simulation time, by splitting the computation overhead among different CPUs
in a network, thus giving a fast feedback on different validation scenarios.

An accurate and promising tool was introduced by [69], named DSENT. This tool presents
models to simultaneously simulate electrical and optical devices and providing different re-
ports, such as area usage and power consumption. The developed models are precise and rely
on information extracted from physical libraries for different technologies, such as 45 nm, 32
nm, 22 nm, 14 nm and 11 nm.

Some other tools used as bases for the design of system simulators are Booksim [70] and
NoCSim [71], both projected to validate eNoCs but, thanks to similarity between approaches,
can be extended to validate ONoCs as well.

The main issue with these tools is that they are still deeply attached to a component view,
making their usage difficult for dynamic scenarios, with applications running and real-time
changes occurring. Also, most tools are designed to exploit one specific design constraint,
such as power loss, thus leaving the support for all other aspects unattended. While their
focus was on solving one specific metric, it is important to highlight that all the design
context must be covered.

In this work, the Straight-forward Simulator (SF-Sim) is introduced. The fundamental dif-
ference of the aforementioned tools and the SF-Sim lies on the fact that the proposed tool
gives engineers an accurate feedback, maintaining obtained results close to the ones obtained
in real systems. At the same time, the SF-Sim enables the design flexibility of a system-
level perspective. Designers have the opportunity to create systems from scratch by using
pre-defined components in a library or by adding new ones using the developed methodology.

Table 3.1 presents the comparison between previous tools and the one proposed in our project,
emphasizing the following points:

• Model Style: description model provided by the tool. Might be textual, graphical,
etc;

• Level: abstraction level of the tool;

• Accuracy: the given accuracy, such as: cycle, physical, events, etc. For instance, if
the tools run at a clock-base, it is defined as cycle accurate and if it runs as series of

25

events, such as application transactions, it is defined as events;

• Goal: focus of the tool. If a tool lets users design an entire system, but is meant for
devices only, the design goal will be defined as Device;

• Status: if the tool development and user support is either active or inactive;

• Licence: the type of licence required for users to have access to the tool, and;

• Flexibility: the flexibility to describe models using the tool, from a system-level per-
spective. In other words, the degree of easiness to describe a system, using available
modelling strategy. This comparison is performed based on the functionalities pre-
sented by the tools as well as in hands-on experience. For instance, some tools present
a deep support to evaluate preloaded optical networks. Still, if needed, the designer
cannot add new topologies or systems, thus diminishing the flexibility of the tool.

Table 3.1 Tools Comparison
INDUSTRIAL TOOLS

Name Model Style Level Accuracy Goal Status Licence Flexibility
MODE Graphic & Text Device Physical Component Active Proprietary Low
FDTD Graphic & Text Device Physical Component Active Proprietary Low

Interconnect Graphic & Text Device Physical System Active Proprietary Low
DEVICE Graphic & Text Device Physical System Active Proprietary Low

VPI Graphic Device Physical Component Active Proprietary Low
OptiWave Graphic Device Physical Component Active Proprietary Low

OptSim Text Device Physical System Active Proprietary Low
OptiLux Text Device Physical System Inactive Open Source Low

ACADEMIC TOOLS
PhoenixSim Graphic & Text Device Physical System Inactive GPL1 Medium

Omnet Text System Cycle System Active GPL Low
Graphite Graphic & Text Device Physical System Active Open Source Medium
BookSim Text System Events System Inactive Open Source Medium
NoCSim Text System Events System Inactive Open Source Medium
DSENT Text System Device Physical Active Open Source Low
SF-Sim Graphic & Text System Cycle System Active GPL High

1 - General Public License (GPL).

3.2 Controlling Schemes

Most state-of-the-art works opt for designing a network controller that is suited for a specific
topology or type of architecture, thus optimizing at most its performance. This way, most
of proposed controllers are presented along a specific topology or router structure.

26

In [72], the authors present the design of a 5x5 MR-based router, which uses a mixed active-
passive design approach. It is designed to passively route the optical signal travelling in
one direction and actively route the optical signal making a turn. The authors claim that
this router is designed in such a way that it is scalable to be used as a basic block for large
networks. The control unit used for the proposed router is a circuit-switched-based one,
where XY algorithm is applied on the electrical layer and closes the paths for the optical
layer. The main drawback of this approach lies in the fact that circuit-switching techniques
are time demanding and as the network’s size grows their response time might get prohibitive.

In [73], a new architecture for photonic networks-on-chip is presented, along with its control-
ling scheme. The overall power consumption of the system is claimed to be reduced by using
a dynamic resources provisioning. Each electrical router, on the electrical layer, is connected
to a processor with private L1/L2 caches, and routers and processors are located above the
corresponding optical switches. The electrical router and the optical switch communicate
through TSVs1 and optical/electrical signal converters on the control die. Each electrical
router contains four I/O interfaces. The controlling layer works along with the Network In-
terface (NI). The NI role is to activate/deactivate laser sources in order to save power, after
the controller triggers the beginning/end of transmissions. Once again, the technique used
to define either if an IP will have access to the network or not is by using circuit-switching.
Also, to guarantee message delivery, a given time is used before turning the laser source off,
where the time is defined according to the number of hops the message will pass by and is
dynamically calculated by the controller. The latency of such method was calculated to be
around 3.5ns in an 8×8 network where resonators and peripherals run at 5GHz. The ar-
chitecture was validated on a simulator built over Simics/GEMS framework [74]. The main
comment that might be addressed for the solution proposed by the authors is that the usage
of circuit-switching for path allocation is very expensive in resource allocation and, even for
a fairly small network size (eight IP nodes), the control latency is high (for a 5GHz frequency
operation, the period is equal 0.2 ns, meaning that it takes around 17 clock cycles for every
request to be computed).

The work presented in [75] brings the design of an ONoC which is an extension of previous
works, like the λ-Router [76], but reducing resource utilization. The technique used by the
authors to reduce the resources utilization is similar to clustering, where the switches are
grouped in small blocks, thus dividing the network in small versions of itself. The number of
used resources in which a message may pass is reduced because as it goes in one direction all
nodes in previous directions will never be visited. The control unit is based on wavelength

1Through-Silicon Vias are vertical structures used to connect different layers of a 3D on-chip system.

27

routing, where each I/O is assigned to one specific wavelength and might communicate at
any time, without arbitration. Although this kind of structure solves any kind of contention,
the overhead imposed by this solution is high, as for every I/O port, ’n’ buffers must be used,
being n = number of IPs. Still, each I/O requires a specific wavelength, which is difficult to
implement from an optical perspective. This is due to physical limitations, which curb the
number of possible wavelengths to be used. This way, in a system with a big number of I/Os,
not enough wavelengths would be available.

Authors of [47] introduce a routing technique based on wavelength selection integrated with
spatial routing. The main contribution authors claim is that classic circuit-switching tech-
niques are too time and resources demanding and based on that they present an extension
of such methods. Their technique is based on the unused spectrum that exists between the
resonances of a broadband ring switch by interleaving additional wavelength channels in the
unused spectral space. That way, instead of having simple wavelength selection a wavelength
division multiplexing (WDM) selection is used, where each group is an isolate case. The
Circuit-switching technique is used along WDM and each router is composed of a junction
of a receiver bank and a modulator bank. The design was tested with the electrical layer
running at a frequency of 2.5GHz. The results for timing improvement of the introduced
technique shows a reduced latency. Still, even for small messages passing (100-kbit messages,
for instance), using a 100Gbps (gigabits per second) transmission rate, the checked latency
reported is around 100 ns, which is high, taking into account the fact that this controller is
fully tailored for the architecture it is designed for. Consequently, it is not possible to apply
it to different network topologies.

An electrical-optical mixed approach is brought by [77], where a butterfly-based topology is
introduced and each node is composed of an optical switch and an electrical switch. Optical
switches are composed of MRs and are in charge of transmitting data on a circuit-switching
fashioned way, while electrical switches are in charge of closing the path by using package-
switching techniques. The main contribution of this solution is the fact that, after a set of
trials, if the control unit is not able to close the optical path, the message will be transmitted
using the electrical layer directly. As for the other cases where circuit-switching is used, the
tuning time necessary to close the optical path is the main issue.

An asynchronous and variable-length packet switching is presented in [78]. This technique
uses a two layered approach to dynamically set the message path over the network. Every
IP is attributed to one exclusive label, which corresponds with each output fiber, for sending
out switch fabric reconfiguration. While the message travels over the optical path, when it
comes across a new network node, the message gets delayed while its label is computed by

28

the electrical node. Based on the message location over the network and the labels checking,
the switch is reconfigured to direct the message to the correct output. The main drawback
of this technique is that, depending on the delay time imposed by the control layer, the gain
in using the optical path might be spoiled. Also, the delay necessary for this technique to be
applied imposes modifications on the network layer. This diminishes the contribution, as it
is not always possible and desirable to modify the network layer.

A multi-cast scheduling control solution is proposed in [79], which focus on input-queued
switches based on the Weight Based Arbiter (WBA). The technique used by the authors
is based on time sharing and aged-based weight calculations. The goal of this design is in
achieving a time slot of around 51 ns for a payload data rate of 40 Gbps. The algorithm
works by attributing weights to all the input cells at the beginning of every time slot and, in
cases of equality on weights, the controller randomly chooses one of the conflicting choices.
Results show a latency of around 20 ns for a 64×64 network. The main issue with this
approach lies in the fact that it is suited for only one kind of network, as it was designed for
the network the authors presented. This way, this technique would have to be extended, or
adapted, in order to be employed in different networks.

Finally, in [80] the authors presented a controlling solution for contention handling based
on optical-buffering, by introducing a three-stage buffering method. This method uses elec-
tronically controlled wavelength routing switches in combination with optical delay lines to
temporarily store data [81–83]. The control unit works as follows. An optical threshold func-
tion which is driven by a message packet controls a wavelength routing switch, so that as this
packet arrives, the next one is delayed for one packet period. Similarly, the routing of the fol-
lowing packet is determined by the presence of the first two packets. An optical arbiter that
drives a wavelength routing switch is employed to decide whether packet contention takes
place. The wavelength routing switch is operated by wavelength conversion in combination
with a de-multiplexer. The optical-buffer-based scheme was tested on an experimental setup
composed only by a laser and a modulator, which injected packets on a data rate of 2.5 Gbps.
Although this technique is very promising, as it deals with optical signals directly, it still is
at an early stage of deployment, not being suitable for short-mid term designs.

As explained above, most of related works present a network controller that is suited for
a specific topology or type of architecture, which is said to optimize at most their perfor-
mance. However, the topology-constrained controllers diminishes their contribution, as their
employment is hard-limited by the very one topology they are built for. Further, this fact
goes against the trend for the next generation of communication systems, in which it is be-
lieved that each network layer (application, control and physical) will be independent from

29

each other [24][25]. Also, a good number of works use circuit-switching techniques only, thus
adding a control latency that could shatter completely the benefits of using an OIN-based
system besides adding extra power consumption for each electrical node added to the control
layer.

Table 3.2 Controlling solutions comparison

Reference Topology-Constrained Algorithm Strategy Latency Scalable
[72] Hard Yes CS Distributed High Yes
[73] Yes CS Distributed High Yes
[75] Hard Yes WDM Distributed Low Yes
[47] No CS & WDM Distributed High Yes
[77] No CS Distributed High Yes
[78] Yes WDM Distributed Low Yes
[79] Hard Yes TDM Centralized Low No
[80] Hard Yes WDM Distributed Low Yes

Proposed 1 No TDM 1 Centralized Low No
Proposed 2 No TDM 1 Hybrid Low Yes

1 - The implemented multiplexing control block is TDM-based, not using strict time slots. Still, the
multiplexing block might be replaced without affecting the general controller behaviour.

This thesis presents two solutions in order to control OINs. The first solution relies on fast
access memories to store pre-calculated routes in order to speed-up the network routing.
The second solution, relies on an hybrid approach, where both a centralized control core
and distributed configuration units are employed. Compared with the previously presented
contributions, this work stands out thanks to the fact that our control units are suitable for a
large variety of network topologies: the topologies based on tunable switches or the ones that
only need arbitration. Topologies that just need arbitration are the ones where no network
configuration is needed, such as the one based on wavelenght routing. For such cases, the
controller works as an arbiter, avoiding destination conflicts. Topologies based on tunable
switches are the ones where each network node has to be configured so different paths are
correctly arranged. Moreover, as opposed to the controllers based solely on circuit-switching,
the proposed controllers latency does not affect the overall system performance. Still, for the
devices where multiple frequencies are allowed, designers can slightly modify the controller
so it comports WDM routing.

Table 3.2 presents the comparison between presented controlling schemes and the ones pro-
posed by this work, emphasizing the following points:

• Topology-Constrained: this property specifies if the control unit is somehow con-

30

strained by the controlled topology or if it has a generic behaviour. Three different
categories are going to be used: (1) hard-yes, for the cases deeply constrained; (2) yes,
for cases directly related to the topology, but somehow being applicable to others, and;
(3) no, for the cases where the control might be used with none or small modifications
for any topology;

• Routing Algorithm: the algorithm used by the controller in the network;

• Strategy: specify if the control is centralized, distributed or abstract;

• Latency: the time overhead due to the controller. An estimation based on the pre-
sented data and routing techniques is made. This information is normalized and simply
presented as LOW or HIGH. The threshold from HIGH to LOW is a composition of
different aspects of presented results for each work. For instance, a controller that
shows a routing capability of 5 ns, but executes with a clock frequency of 10 GHz, thus
taking 100 clock cycles to execute is considered HIGH. At the same time, a controller
that takes the same 5 ns to perform routing, but executes with a clock frequency of 1
GHz, thus taking five clock cycles is considered LOW;

• Scalable: indicating the capacity to employ the approach in systems with a rising
number of network nodes without risking its physical implementation.

31

CHAPTER 4 METHODOLOGY

This Chapter illustrates the defined methodology as well as the proposed approach for OIN-
based systems modelling. Section 4.1 presents an overview of the defined methodology fol-
lowed by Section 4.2, which illustrates the considered modelling strategy. In Section 4.3, the
approach used to model the controlling solution is shown and, finally, Section 4.4 introduces
the validation platform.

4.1 Methodology Overview

The methodology follows a step-by-step approach. First, basic characteristics, such as trans-
mission delay, are modelled and validated, and then, new characteristics, such as power
dissipation, are added and validated. The final goal is a simulation platform composed of
two types of components: (1) OIN’s devices models parameterized using fabrication results
and (2) OIN controllers.

Figure 4.1 presents the development methodology as a series of iterative steps. The main
steps of the defined methodology are described as it follows.

Constraints Analyses and Proposed Design Solutions

In the first step, optical integrated networks are analyzed while looking for the main con-
straints involved in their design and usage. Constraints such as the controlling aspects of
OINs and the latency they impose are evaluated. Considering design constraints, aspects
like OINs physical charachteristcs and their impact on the system behaviour are analyzed.
Available approaches to surpass these constraints are studied and possible solutions evalu-
ated. Subsequently, the controlling solution (algorithm, target platform, etc.) and modelling
strategy for OIN-based systems are defined.

Models Definition and Refinement

Following, the controller as well as the components that compose an OIN-based system are
modelled. The model definition and refinement step are divided in two main stages.

• Controller modelling: the model of the control unit is generated and later has its
performance evaluated. To do so, firstly, we define the controller main blocks, defining
aspects such as routing algorithms. Later, the design is simulated under different traffic

32

patterns and its latency is verified. Following, it is prototyped on an FPGA and later
integrated with optical switches, lasers and photo-detectors in an optical lab in order
to verify its behaviour under realistic (i.e., not simulated) scenarios.

• Systems components modelling: different devices are modelled. These devices in-
clude switches, routers, and links which are used to build a complete network. Also,
besides networks and their components, blocks such as traffic injectors and traffic ana-
lyzers are defined in order to evaluate the network. Most of the existing works available
in literature employ analytical methods for devices modelling [84], as analytical models
for basic components are already available and are well proven [69]. However, these
models are used to describe simple components and devices, thus leaving the system
level unattended. It is a very complex task to model an entire system relying on avail-
able models, as it is hard to capture every aspect of the system. Models to enable the
definition of entire systems, such as for optical switches and routers and ultimately at
the network level are developed.

Models Integration

Considering the second step, both models for the controller and the system, are integrated in
order to enable the deployment of an entire OIN-based system, composed of network nodes,
traffic injectors and a control unit. At this stage, it is possible to execute realistic scenarios
and obtain initial feedback, like the network latency.

Models Extension

Next, we extend the developed models, where both models for the controller and OIN com-
ponents are improved. Once again, this step is done in parallel:

• Controller: the scaleability and frequency execution of the controller are mainly ad-
dressed in this step. Different aspects of the controller design are taken into account,
so the controller blocks could be improved. To do so, the reports of synthesis tools for
both ASIC and FPGA technologies are used.

• System component models: addition of different aspects to modelled components,
presented in Section 4.2, such as insertion and transmission losses. To do so, extracted
values from lab measurements are employed to create estimation constants, which are
used in the models to obtain accurate results.

33

Final Integration - Simulation Platform

Finally, aforementioned models are deployed using VHDL (VHSIC Hardware Description
Language) hardware description language and grouped in a simulation platform. This plat-
form gives designers the flexibility to use, add or modify components and then validate them.

Figure 4.1 OIN-based system modelling iterative methodology.

Section 4.4 introduces the devices and topologies to be used to validate the controller pre-
sented in Section 4.3 as well as the model illustrated in Section 4.2.

4.2 High-level Modelling

In order to implement the required devices and components, a high-level modelling approach
is performed to capture their different aspects. Models are divided into four main categories:
vias, devices, networks and controllers. Each category can be used as a standalone model
or along the others, as they have category affinities with each other.

A waveguide W is defined as a function of 〈TW ,LW ,PW〉 with each parameter standing for:

• TW : transmission delay in pico-seconds. In other words, it is the time it takes for the
light to travel from the input port to the output port;

• LW : insertion loss, and;

• PW : stores the power penalty for each travelling wavelength on the waveguide.

34

Each modelled device, such as an optical switch, is expressed as a function with five param-
eters. This way, an optical device C is defined as an n-uple 〈NC, TC,LC,PC,RC〉, where:

• NC: number of inputs and outputs. For instance, a 4×4 switch has NC = 4;

• TC: is the transmission delay or the time it takes for an optical signal to travel from
an input to an output port. As there are more than one input and/or output, and
the variation for each pair of I/O is small at a system-level perspective, the attributed
value is an average of all I/Os;

• LC: stands for the insertion loss. For the same reason as above, the value used here is
an average;

• PC: holds the average power penalty of the component, and;

• RC: is used for the components that behave as a switch or router. It represents the
routing information of the component, which maps an input to an output.

This way, an OIN Υ can be defined as an n-uple 〈N , Co, ωj,J ,O〉, where:

• N : is the number of inputs and outputs in the network. For instance, an 8×8 network
has N = 8;

• O: number of components in the system;

• Co: is a list which comprises the optical components used to route light over the network;

• J : is the number of waveguides in the system;

• ωj: is a list of waveguides used to connect the internal network components.

Finally, in order to model a control unit, a function of four parameters is used, in which a
controller κ can be defined as an n-uple 〈Nκ,S,D,Ai〉, where:

• Nκ: is the number of communicating nodes using the network. For instance, in a system
composed of four communicating processors, one DSP and one shared memory, Nκ =
6;

• S: defines the routing algorithm used to compute the messages path;

• D: holds the delay, in clock cycles, imposed by the processing time of the routing
algorithm and network tuning, and;

• Ai: is a memory array composed of i elements used to store information related to the
control like allocation tables for the dynamic network tuning.

35

4.3 Control Unit Design

The performance and efficiency of OIN-based architectures can be constrained by their con-
trollers. Long setup time of circuit-switching techniques makes them not efficient for OINs,
while the physical design and implementation of TDM and WDM techniques for OINs can be-
come complex in practice. At the same time, controllers have been successfully demonstrated
[22], thus showing the approach to be potentially used.

The design of the controller is based on independent blocks, which are graphically illustrated
in Figure 4.2, in which it is possible to see four main blocks:

• the matrix definition: defines the network connections;

• the paths creation: holds the routing information of the controlled network. This block
is used mainly to reduce computation time, thus reducing control latency;

• the conflicts resolution block: is responsible for detecting destination conflicts and solv-
ing them by using a given algorithm, and;

• the real-time calculations: is a block responsible for on-line calculations, like path
attribution and memory addresses reading.

Figure 4.2 Controller design overview presenting the four main blocks of the modelled con-
troller.

We start by defining the adjacency matrix for all the I/O ports in the network. It is also
possible to consider methods to reduce/simplify the matrix [85], thus reducing the controller
overhead. In particular, such reduction methods can be used to remove the redundant and/or
unused network nodes in the matrix when not all the network nodes are connected to each

36

other (depending on the topology). Figure 4.3 presents two 8×8 network topologies, the SF
and the Spidergon. While the SF topology has a direct connection path for all the I/Os, the
Spidergon does not, as presented in the figure.

Figure 4.3 Controller design overview presenting the four main blocks of the modelled con-
troller.

Table 4.1 indicates the adjacency matricesM for the two 8×8 networks presented in Figure
4.3. In the matrices, each paired index i,j represents a communication from input i to output
j, such that:

∀ij ∈M, ifMi ⇐⇒ Mj ⇒Mij = 1, (4.1)

resulting in the adjacency matrixM.

Table 4.1 Adjacency matrix examples. The left matrix represents the SF 8×8 network, while
the right matrix represents the Spidergon 8×8 network.

Node A B C D E F G H
A 1 1 1 1 1 1 1 1
B 1 1 1 1 1 1 1 1
C 1 1 1 1 1 1 1 1
D 1 1 1 1 1 1 1 1
E 1 1 1 1 1 1 1 1
F 1 1 1 1 1 1 1 1
G 1 1 1 1 1 1 1 1
H 1 1 1 1 1 1 1 1

Node A B C D E F G H
A 0 1 0 1 0 0 0 1
B 1 0 1 0 0 0 1 0
C 0 1 0 1 0 1 0 0
D 1 0 0 0 1 1 0 0
E 0 0 1 1 0 0 0 1
F 0 0 1 1 0 0 1 0
G 0 1 0 0 0 1 0 1
H 1 0 0 0 1 0 1 0

After defining the adjacency matrix, the second step is to compute all the input requests
as fast as possible, as a high-latency controller impacts the efficiency of the entire network.

37

In order to minimize the controller overhead, we target one clock cycle latency, resulting
in a latency within nanoseconds. Algorithm 1 describes the logic for the conflicts resolu-
tion and dynamic setup, determining the best available path for each input request. In
the algorithm, one can notice different possible scenarios, such as when several input re-
quests are received and conflicts are found. Summarizing, the algorithm works by check-
ing all the input requests (while i < numberOfInputs) and looking for conflicts for each
one of them (checkConflicts(i)). When no conflict is found and the target is not busy
(noOpenComm(i)), the requesting node is granted access. If a conflict is found (conflict()),
the controller checks to see if the next node in the Round-Robin queue1 is the request-
ing node (roundRobinControl()), and if so, it grants the access. For the cases where the
round robin queue is used, a new requesting node is set as the next one in the Round-
Robin queue (roundRobinSpin()). Lastly, the controller defines the network configuration
(pathDefinition()) by accessing the LUT. The concept of LUT will be covered later in this
thesis.

Algorithm 1 Conflicts Resolution and Granting Control

while i < numberOfInputs do
checkConflicts(i);
if requestReceived(i) and noOpenComm(i) then

if destIsAvail() and noDestConf() then
acknowledge(i)← 1;
writeEnable(i)← 1;

else if destIsAvail() and conflict() then
if roundRobinControl() then

acknowledge(i)← 1;
writeEnable(i)← 1;

end if
roundRobinSpin();

end if
else if endOfCommunication(i) then

acknowledge(i)← 0;
writeEnable(i)← 0;
endOfComm(i)← 1;

else
endOfComm(i)← 0;

end if
end while
pathDefinition();

Finally, the last step for the controller is to configure the path that the message should take
1The Round-Robin queue size is equal to the number of inputs of the network, avoiding queue overflow.

The RR control works as classic Round-Robin implementation, where the queue works as a First-in-first-
out queue. This way, all requesting inputs are guaranteed to be granted at some point in time, avoiding
starvation.

38

from the source to the destination node. For every input request, more than one optical
path might be selected, generating a huge number of path possibilities for the controller
to compute. Figure 4.4 illustrates this situation. In the 2×2 switch, six different message
patterns may be found: (i) A → D; (ii) B → C, and; (iii) A → D and B → C; (iv) A →
C; (v) B→ D, and; (vi) A→ C and B→ D. In the second scenario for the 4×4 switch, not
only different message patterns are found, but also each pattern may follow different paths
to reach its destination. For instance, for the message path A → H, the message may pass
through nodes 1, 2, 5, 8, 21 and 24. Alternatively, it may use nodes 1, 4, 17, 20, 23 and 24
to reach the same destination.

A

B

C

D

1 2

3 4

A

B

C

D

E

F

G

H

1 2

3 4

5 6

7 8

13 14

15 16

9 10

11 12

17 18

19 20

21 22

23 24

Figure 4.4 LUT growing size exemplification.

One possible approach to address this issue is to use a shortest path first (SPF) algorithm, like
the Dijkstra algorithm [86]. The SPF algorithm looks for the minimal distance between the
source and the destination in a network. The distance between the source and destination
is considered as the number of network nodes the message should pass by. It works by
considering the value of each edge that connects any two nodes, and then looking for the
minimal sum of those edge values between the source and the destination. The edge weight
can be defined as any measure inside the network context. For example, the distance between
nodes or the power consumption. It depends on the routing technique objective and is defined
by the designer. If power consumption is to be considered, each edge might express the power
dissipated between each nodes pair, for instance. As it would be very complex to calculate
a new path for every new input request, a pre-calculated path allocation lookup table is
generated and stored in memory (i.e., static memory) by implementing the SPF algorithm
and running it during the design time.

Another possibility, besides the usage of an SPF algorithm, is the employment of distributed

39

configuration units. Learning from circuit-switching-based techniques, it is possible to deploy
a similar approach, which is scalable and maintains low latency. By keeping all other blocks
centralized and distributing only the configuration units, it is possible to reduce the block
complexity, accelerating its execution time and thus not compromising the system latency.
This is achieved by reducing the distributed blocks complexity, thus speeding up its execution
time.

For the routing block(s), we represent the network as a graph. The OIN architecture in
our work consists of several optical switches integrated to form the network. As a result,
the graph representation starts from MZI-based optical switches, for example. Figure 4.5
presents the graph abstraction of a 2×2 MZI-based optical switch, where inputs and outputs
are represented as a graph node and connections are represented as edges.

Figure 4.5 Graph representation of a 2×2 MZI-based optical switch.

Employing several 2×2 switching blocks, it is possible to form a 4×4 optical switch, shown in
Figure 4.6. As can be seen, six 2×2 optical switches are interconnected, forming an optical
switch with four inputs and four outputs. The presented topology is the non-blocking 4×4
Beneš topology. Non-blocking topologies are designed in such a way that for any combination
of input outputs, a route is possible.

Figure 4.6 Graph representation of a 4×4 MZI-based Beneš optical switch.

Another possible 4×4 optical switch based on the 2×2 switching blocks is the 4×4 Spanke-
Beneš topology. On opposite to the presented 4×4 Beneš switch, the Spanke-Beneš is a

40

blocking structure, which means that not all input-output combinations are possible simul-
taneously. Figure 4.7 illustrates the internal organization of the 4×4 Spanke-Beneš switch,
where the five internal 2×2 switching blocks and their connections are shown.

Figure 4.7 Internal architecture of a 4×4 MZI-based Spanke-Beneš optical switch.

Besides non-blocking and blocking topologies, a third possibility is the strictly non-blocking
topology. While non-blocking topologies have possible routes for any inputs-outputs combi-
nations, they sometimes require the re-routing of already open paths. Strictly non-blocking
topologies present routes for any input-output combination without the need for re-routing.
Figure 4.8 presents a 4×4 strictly non-blocking topology, 16 2×2 switching blocks and their
connections.

Figure 4.8 Internal architecture of a 4×4 MZI-based strictly non-blocking optical switch.

At this point, the resulting graph is already complex to compute during runtime, as not
only the number of possible source-target path combinations is already big but the inter-
nal switch organization might change. Therefore, the possible hardware implementation,

41

although feasible, would be costly.

Employing the 2×2 and 4×4 optical switches and connecting them accordingly, one can
construct different OINs. Figure 4.9 shows the graph representation of one possible OIN
topology, the 8×8 Beneš network, in which eight 2×2 and two 4×4 optical switches are
employed. As can be seen, the complexity increases with the addition of extra nodes and
I/O ports, justifying the choice for a pre-computed path lookup table. The path allocation
lookup tables have to be generated for every new topology. This is due to the fact that for
different topologies various possible paths can be found. It is worth mentioning that this
computation can be performed once and it is off-line, reducing the final design complexity.

Figure 4.9 Internal architecture of an 8×8 Beneš network based on employing several 2×2
and 4×4 optical switches.

4.4 Validation Architectures

To validate the developed models and controllers, we described the basic network compo-
nents, like MR-based and MZI-based switches and entire networks, in VHDL. The results are
evaluated by comparing results extracted from fabricated devices with simulation results.

4.4.1 Switches

Firstly, optical-based switches are described based on the modelling strategy introduced in
Section 4.2, with internal behaviours based on MZIs and MRs blocks. The timing and
functional characteristics of such devices are considered, where values such as the network
transmission rate and dissipated power are obtained from simulations.

42

To do so, basic building blocks are defined and then replicated to build bigger systems. Figure
4.10 presents the architectural structure of a 2×2 switch. This device routes two inputs to
two different outputs and might be designed as active or passive. This is the building block
and different topologies are built using this block. Also, this is the starting validation point,
where all models are employed for the first time.

Figure 4.10 2×2 validation switch block, based on MZIs and MRs.

Figure 4.11 shows the second validation system, based on 4×4 switches. Figure 4.11.(a)
presents a 4x4 Beneš switch, while Figure 4.11.(b) illustrates a 4x4 Spanke-Beneš switch. We
selected these blocks thanks to the fact that they are already widely employed and have a
rich gamma of results available in literature. Further, prototyped devices such as the ones
presented are available for in-lab validations, enhancing obtained results.

(a) 4x4 MZI-Based Beneš Switch (b) 4x4 MZI-Based Spanke-Beneš
Switch

Figure 4.11 4×4 validation topologies.

Figure 4.12 shows a 5×5 MR-based strictly non-blocking switch [87]. The figure illustrates the
router internal organization where it is possible to see the 16 micro-ring resonators (MRs), six
waveguides, and two waveguide terminators. The MRs in the switching fabric are identical,
and have the same on-state and off-state resonance wavelengths.

43

Figure 4.12 5×5 MR-based strictly non-blocking switch [87].

All network topologies used in this thesis are based on the introduced switching blocks. The
topologies are illustrated using the switches abstracted view or nodes representation view.

4.4.2 Topologies

Different network topologies are described. Network topologies such as the 8×8 Beneš (eight
I/O ports and 20 switches) network [88], a strictly non-blocking 32×32 topology (32 I/O ports
and 1024 switches) [89] and a MR-based mesh topology [90] are used in order to measure the
models accuracy in different scenarios.

In addition to describing already known topologies, we propose a new topology, called
StraightForward (SF), is used for comparison. The SF topology is presented in Figure 4.13.
This network is defined to be simple, with no waveguide crossings between blocks. Still in
the same Figure, it is possible to see, once again, that only basic 4×4 switch blocks are
used. When compared to the 8×8 Beneš, the 8×8 SF presents a better path availability, as
presented in Section 5.1, which means that more parallel communications can be performed.
Also, for any configure path in the network, the number of nodes will be the same.

44

Figure 4.13 8x8 SF Network

At this point, it is important to highlight that the majority of the validation architectures are
based on MZIs, but are not limited to them. This is due the fact that prototyped MZI-based
switches are available, thus making them more suitable for models validation. Nevertheless,
topologies based on MRs are also used and have their published results used [87][65].

45

CHAPTER 5 CONTROL UNIT - THE LUCC

In OIN based systems, the employment of optical technology provides a fast communica-
tion path. From a network perspective, where the network is composed of a control layer
(responsible for the access control and network configuration) and a transmission layer, the
controller is the slowest component. Due to this fact, its latency determines the latency of
the entire system. So, further speed-up in OINs can be achieved through the improvement
of the controller. Therefore, to take advantages of the OIN characteristics, it is important to
find new solutions enabling the acceleration of the control unit in OIN based systems.

Centralized controllers have been successfully demonstrated [22], thus making this solution
newsworthy to be exploited. We propose a new control unit which relies in pre-calculated
routes stored on fast access memories, such as Look-up Tables (LUTs). The routes are
generated by the Shortest Path First algorithm, so the smallest number of hops can be used.
As the control unit uses Look-up Tables (LUT), the developed controller is named LUCC
(LUT-based Centralized Controller).

The design of LUCC consists of four different parts: the adjacency matrix definition, the
conflict resolution, the path configuration, and the runtime calculation (i.e., dynamic setup).
The matrix definition is a technique used to describe all the network connections, facilitating
applying different methods for possible simplifications (e.g., the matrix reduction method
[85]). The conflict resolution is responsible for detecting same-destination conflicts (i.e., when
several IPs simultaneously request to communicate with the same IP core), and solving them
using a given algorithm. The path configurations is a memory block used to store static
data accessed by the controller during the runtime, which can be built using the output
from the matrix definition. This memory is used mainly to reduce computation time, thus
reducing the overall control latency. The runtime calculations is a block responsible for real-
time calculations (e.g., computations related to path assignments and readings of memory
addresses). Figure 5.1 illustrates the designed controller overview. The matrix definition
and the path configuration are performed at design time and result in the LUT which holds
the network paths, while the conflict resolution and real-time calculations are performed at
runtime.

To minimize the time overhead, the iSLIP algorithm [91] is used as an inspiration for the
LUCC. This algorithm has been proven to work efficiently for small to medium size networks
and it works with ’n’ iterations, where each iteration can be divided into three steps:

46

Figure 5.1 LUCC design overview.

• Request: all requesting input ports signal their intention to have access to the network,
which are stored in virtual queues, one for each port;

• Grant: each output port that has received a request must determine which input ports
may be granted to send. For the situations where only one input port is requesting
access, this step is straightforward. For the cases where two or more requests are
targeting the same output, a Round-Robin (RR) algorithm is used to decide which will
have access granted, and;

• Accept: the input ports consider all grant messages and choose from them in a Round-
Robin fashion. When selecting, the input notifies the targeted output that the access
is granted and only after receiving the accept signal it can move to the next request.

The iSLIP runs through multiple iterations. As a result, the matches number of input-to-
output is improved and studies showed that running the iSLIP beyond four iterations does
not yield significantly greater matches [91]. Figure 5.2 illustrates the relation between the
number of iterations and the obtained network throughput under different traffic patterns.
The network throughput does not increase after two iterations [92].

Similarly, the implemented control core relies on three steps with the difference that the
LUCC does not perform recursive iterations nor utilizes virtual queues on the input ports1.

1As the LUCC works in a request-based approach, there is no need for virtual queues in the input. This
way, each requesting input port signals its desire to access the network using one bit (e.g., request signal)
and the LUCC signals the input port may start transmitting using an acknowledge signal (e.g., ack signal).

47

Figure 5.2 iSLIP throughput X iterations number [92].

The reason for that is to reduce the complexity of the implemented core focusing on a fast and
efficient conflict solution. A possible drawback in removing such features from the original
iSLIP implementation lies in the fact that the recursive iterations are designed to improve
throughput. This way, for some specific scenarios, the LUCC throughput might be inferior
when being compared with the original iSLIP implementation.

Figure 5.3 presents the decision chart of the controller, where the LUCC execution flow is
depicted into single decision steps. Mostly, the overall behaviour of the conflicts resolution
block and the path attribution are illustrated. The flow chart represents all steps taken by
the LUCC within one clock cycle. The one clock cycle latency is obtained by the combination
of the fast access LUT and the optimized conflicts resolution blocks, presented hereafter. The
execution flow works as follows. The controller expects a request, and by the time it receives
one it checks if the targeted destination is available (not busy, in the middle of another
transmission or somehow not able to receive a message). Next, the LUCC checks if there is
no destination conflicts: if a conflict is found, the round robin algorithm determines which
requesting node should have its access granted. Following, the LUT is accessed in order for
the network to be configured and the granting signal is sent to the requesting node. Finally,
the LUCC waits for the signal to point the end of communication, sent by the transmitting

48

port and by the time it receives the signal, the connection is closed.

Figure 5.3 LUCC decision flow chart.

5.1 Path Analyzer and LUT Creation - The PALC

Besides developing the LUCC, a path analyzer and a table generator framework were imple-
mented. This tool was created to ease the early stage evaluation of topologies, even before
their modelling. To use the tool, the designer must describe the topology as a graph, i.e.
Figure 5.4, and use this graph as the entry point. Starting from the topology graph, all
possible communication combinations and all possible paths are generated. The worst, best

49

and average cases are also analyzed. The best cases stand for those cases where all requests
of an input set are satisfied. Average cases are for those cases where a portion of the request
combinations are satisfied, while the worst cases are for the worst obtained routing for one
input set. Finally, the tool generates the memory array used by the controller, which stores
the pre-calculated paths.

Listing 5.1 presents the textual entry for the tool, where the Graph view of the 8×8 Beneš
network, illustrated in Figure 5.4, is described and three distinct groups are found:

1. The number of connections in the network are the number of connections, related to
the internal graph nodes and their connections and not the system nodes, like IPs;

2. The network nodes connections, where the internal nodes and their weighted edges
are shown. The connections are presented in trios - origin, destination and weight of
each connection. As it is possible to see in Figure 5.4, each node is assigned with an
ID. These IDs are used as index to represent the origin node and destination node,
for each connected pair. The weight of each connection can represent different aspects
of the connection: the distance between nodes or the consumed power to communi-
cate between connected nodes. For example, the power consumption for the BAR
and CROSS-BAR states of the MZI have different values. The weight can represent
these consumption in such a way as the tool takes into account these variations when
performing its computation, and;

3. The I/O mapping, where the input and output network points, i.e. the IPs, are mapped
to one specific node in the topology. For instance, in Figure 5.4, one IP is mapped to
input network node 57 and output network node 74. This means that, this specific IP
will insert its data into the network through node 57, and any other IP which targets
it will address their messages to node 74.

Although this file was generated manually, some third-party tool might be used, like [93], in
order to accelerate the description.

50

Figure 5.4 8×8 Beneš topology numbered graph representation.

Listing 5.1 8×8 Beneš Network description as a graph
1 −−Number o f Connections
2 112
3 −−Nodes Connections
4 1 2 1 1 4 1 3 2 1 3 4 1 5 6 1 5 8 1 7 6 1 7 8 1 9 10 1 9 12 1
5 11 10 1 11 12 1 13 14 1 13 16 1 15 14 1 15 16 1 17 18 1 17 20 1 19 18 1 19 20 1
6 21 22 1 21 24 1 23 22 1 23 24 1 2 5 1 4 17 1 6 9 1 8 21 1 14 7 1 16 19 1
7 18 11 1 20 23 1 10 65 1 12 73 1 22 67 1 24 75 1 25 26 1 25 28 1 27 26 1 27 28 1
8 29 30 1 29 32 1 31 30 1 31 32 1 33 34 1 33 36 1 35 34 1 35 36 1 37 38 1 37 40 1
9 39 38 1 39 40 1 41 42 1 41 44 1 43 42 1 43 44 1 45 46 1 45 48 1 47 46 1 47 48 1

10 26 29 1 28 41 1 30 33 1 32 45 1 38 31 1 40 43 1 42 35 1 44 47 1 34 69 1 36 77 1
11 46 71 1 48 79 1 49 50 1 49 52 1 51 50 1 51 52 1 50 1 1 52 25 1 53 54 1 53 56 1
12 55 54 1 55 56 1 54 3 1 56 27 1 57 58 1 57 60 1 59 58 1 59 60 1 58 13 1 60 37 1
13 61 62 1 61 64 1 63 62 1 63 64 1 62 15 1 64 39 1 65 66 1 65 68 1 67 66 1 67 68 1
14 69 70 1 69 72 1 71 70 1 71 72 1 73 74 1 73 76 1 75 74 1 75 76 1 77 78 1 77 80 1
15 79 78 1 79 80 1
16 −−I /O Mapping
17 49 66
18 51 68
19 53 70
20 55 72
21 57 74
22 59 76
23 61 78
24 63 80

The implemented SPF algorithm is Dijkstra [86] and the tool output, after processing the
given topology and analyzing the data patterns is presented in Listing 5.2. The performed
analysis is analytical, and does not consider traffic patterns and wavelength division. It is
important to highlight that provided information is an early stage evaluation of topologies,
obtained from the analytical analysis of possible paths in the network, considering only the

51

network routes and contention. In summary, the following information is provided:

• # RUNS: presents the number of different combinations used to feed the network.
For example, the connection between the first network input and the second network
output is one combination. The connection between the first network input and the
second network output at the same time as the connection between the third network
input and the fourth network output is another combination;

• # DIFFERENT INPUTS USED: shows the number of I/O ports in the analyzed
network;

• # ROUTING CASES: presents the percentage of successful routing for a given
number of inputs. So, for example, line 14 shows that, on average, when two distinct
inputs are trying to reach two different outputs, the topology is able to provide a path
at 90.39% of the time. For the remaining 9.61% of cases, it is not possible to have both
connections in parallel. Another example is in line 20, where eight inputs are trying to
reach eight outputs (all-to-all). In this case, in average the Beneš topology is able to
provide a path to satisfy the eight requesting inputs at the same time at 55.39% of the
time. This category is subdivided in three extra categories:

– BEST CASES: as the name suggests, shows the best cases for all groups of
inputs number, one-by-one;

– AVERAGES: presents the mean of the success rate for closing connections in
parallel, for all inputs number, and;

– WORST CASES: presents the worst cases obtained by the given topology for
all the inputs.

• LAST WORST CASE: is the last worst case mapping configuration checked, and;

• LAST RUN: is the last tried mapping configuration.

52

Listing 5.2 8×8 Beneš summary
1 693838 RUNS − 8 DIFFERENT INPUTS USED
2 ∗ BEST CASES NODES ROUTING:
3 ∗∗ 1 INPUT(S) − 1 ROUTED (100 .00 %)
4 ∗∗ 2 INPUT(S) − 2 ROUTED (100 .00 %)
5 ∗∗ 3 INPUT(S) − 3 ROUTED (100 .00 %)
6 ∗∗ 4 INPUT(S) − 4 ROUTED (100 .00 %)
7 ∗∗ 5 INPUT(S) − 5 ROUTED (100 .00 %)
8 ∗∗ 6 INPUT(S) − 6 ROUTED (100 .00 %)
9 ∗∗ 7 INPUT(S) − 7 ROUTED (100 .00 %)

10 ∗∗ 8 INPUT(S) − 8 ROUTED (100 .00 %)
11 ∗ AVERAGES NODES ROUTING:
12 ∗∗ 1 INPUT(S) − 1 .00 ROUTED (100 .00 %)
13 ∗∗ 2 INPUT(S) − 1 .81 ROUTED (9 0 . 3 9 %)
14 ∗∗ 3 INPUT(S) − 2 .70 ROUTED (8 9 . 9 4 %)
15 ∗∗ 4 INPUT(S) − 2 .39 ROUTED (5 9 . 6 9 %)
16 ∗∗ 5 INPUT(S) − 4 .80 ROUTED (9 5 . 9 2 %)
17 ∗∗ 6 INPUT(S) − 3 .44 ROUTED (5 7 . 2 6 %)
18 ∗∗ 7 INPUT(S) − 6 .89 ROUTED (9 8 . 4 4 %)
19 ∗∗ 8 INPUT(S) − 4 .48 ROUTED (5 5 . 9 6 %)
20 ∗ WORST CASES NODES ROUTING:
21 ∗∗ 1 INPUT(S) − 1 ROUTED (100 .00 %)
22 ∗∗ 2 INPUT(S) − 1 ROUTED (5 0 . 0 0 %)
23 ∗∗ 3 INPUT(S) − 2 ROUTED (6 6 . 6 7 %)
24 ∗∗ 4 INPUT(S) − 2 ROUTED (5 0 . 0 0 %)
25 ∗∗ 5 INPUT(S) − 3 ROUTED (6 0 . 0 0 %)
26 ∗∗ 6 INPUT(S) − 3 ROUTED (5 0 . 0 0 %)
27 ∗∗ 7 INPUT(S) − 4 ROUTED (5 7 . 1 4 %)
28 ∗∗ 8 INPUT(S) − 4 ROUTED (5 0 . 0 0 %)
29 ∗ LAST WORST CASE RUN NODES:
30 | | 0 −> 7 | | 1 −> 6 | | 2 −> 5 | | 3 −> 4 | | 4 −> 3 | | 5 −> 2 | | 6 −> 1 | | 7 −> 0 | |
31 ∗ LAST RUN TRIAL NODES:
32 | | 0 −> 7 | | 1 −> 6 | | 2 −> 5 | | 3 −> 4 | | 4 −> 3 | | 5 −> 2 | | 6 −> 1 | | 7 −> 0 | |

As it is possible to see, the provided summary helps designers obtain an initial feedback
on a given network topology, even before its deployment, without any need for describing,
simulating or testing it, but simply by analytically evaluating it. For comparison matters
of practical employment of the tool, the same procedure used to analyze the 8×8 Beneš
Network was performed for the 8×8 SF Network, which was modelled as a graph, its textual
description was inserted into the analyzing tool and its summary was collected. The Listing
5.3 illustrates the obtained information, which shows that the 8×8 SF Topology presents
a better path availability than the 8×8 Beneš Topology, as both average and worst-case
scenarios presented a higher parallel path availability. This is thanks to the fact that the
SF topology presents more internal connections, when compared to Beneš. As presented in
figures 5.4 and 5.5, the Beneš is composed of two 4×4 switches and eight 2×2 switches, while
the SF is composed of five 4×4 switches.

53

Listing 5.3 8×8 SF Summary
1 −−SUMMARY−−
2 693838 RUNS − 8 DIFFERENT INPUTS USED
3 ∗ BEST CASES NODES ROUTING:
4 ∗∗ 1 INPUT(S) − 1 ROUTED (100 .00 %)
5 ∗∗ 2 INPUT(S) − 2 ROUTED (100 .00 %)
6 ∗∗ 3 INPUT(S) − 3 ROUTED (100 .00 %)
7 ∗∗ 4 INPUT(S) − 4 ROUTED (100 .00 %)
8 ∗∗ 5 INPUT(S) − 5 ROUTED (100 .00 %)
9 ∗∗ 6 INPUT(S) − 6 ROUTED (100 .00 %)

10 ∗∗ 7 INPUT(S) − 7 ROUTED (100 .00 %)
11 ∗∗ 8 INPUT(S) − 8 ROUTED (100 .00 %)
12 ∗ AVERAGES NODES ROUTING:
13 ∗∗ 1 INPUT(S) − 1 .00 ROUTED (100 .00 %)
14 ∗∗ 2 INPUT(S) − 2 .00 ROUTED (100 .00 %)
15 ∗∗ 3 INPUT(S) − 2 .24 ROUTED (7 4 . 6 1 %)
16 ∗∗ 4 INPUT(S) − 2 .48 ROUTED (6 2 . 1 1 %)
17 ∗∗ 5 INPUT(S) − 4 .03 ROUTED (8 0 . 5 8 %)
18 ∗∗ 6 INPUT(S) − 6 .00 ROUTED (100 .00 %)
19 ∗∗ 7 INPUT(S) − 7 .00 ROUTED (100 .00 %)
20 ∗∗ 8 INPUT(S) − 8 .00 ROUTED (100 .00 %)
21 ∗ WORST CASES NODES ROUTING:
22 ∗∗ 1 INPUT(S) − 1 ROUTED (100 .00 %)
23 ∗∗ 2 INPUT(S) − 2 ROUTED (100 .00 %)
24 ∗∗ 3 INPUT(S) − 2 ROUTED (6 6 . 6 7 %)
25 ∗∗ 4 INPUT(S) − 2 ROUTED (5 0 . 0 0 %)
26 ∗∗ 5 INPUT(S) − 3 ROUTED (6 0 . 0 0 %)
27 ∗∗ 6 INPUT(S) − 4 ROUTED (6 6 . 6 7 %)
28 ∗∗ 7 INPUT(S) − 4 ROUTED (5 7 . 1 4 %)
29 ∗∗ 8 INPUT(S) − 4 ROUTED (5 0 . 0 0 %)
30 ∗ LAST WORST CASE RUN NODES:
31 | | 0 −> 3 | | 1 −> 2 | | 2 −> 1 | | 3 −> 0 | | 4 −> 7 | | 5 −> 6 | | 6 −> 5 | | 7 −> 4 | |
32 ∗ LAST RUN TRIAL NODES:
33 | | 0 −> 7 | | 1 −> 6 | | 2 −> 5 | | 3 −> 4 | | 4 −> 3 | | 5 −> 2 | | 6 −> 1 | | 7 −> 0 | |

Besides analyzing the topologies, the proposed tool also generates the memory arrays to
be used by the LUCC. The created memory array is a static table structure and, after
its creation, it will never be changed by the LUCC. This way, even though its generation
processing time and complexity is costly (it is a NP-complete problem [94]) the benefits of
having this structure during the runtime pays off the effort. This is thanks to the fact that the
time it takes to access the memory array is smaller than the time it would take to calculate
the entire route for every request.

5.2 Conflict Resolution Block - The CRB

The conflict resolution block (CRB) is a piece of hardware responsible for detecting and
solving conflicting points in the targeted IPs, where a conflicting point is defined as any
situation in which two or more inputs are requesting the same output. It works by analyzing

54

all LUCC’s received requests and comparing them among each other to check for disputes.

The CRB works in two steps: first, it analyzes all requests, looking for a conflict, and; second,
if a conflict is found, a Round-Robin algorithm is applied to define which IP will have its
accessed granted. Algorithm 2 presents the logical behaviour of the CRB block, showing the
pseudo-code extracted from the implemented design.

Algorithm 2 CRB Logic Implementation

i← Nκ . number of I/Os in the network

j ← Nκ . number of I/Os in the network

for all i do
for all j do

if conflict(i) = 0 then
if req(j) 6= req(i) then

conflict(i)← 0
else if req(j) = req(i) then

conflict(i)← 1
end if

end if
end for

end for
for all i do

if conflict(i) = 1 then
for all j do

while roundDone 6= 1 do
if RoundRobinChooser() = j then

roundDone← 1
granted(j)← i

else
roundDone← 0

end if
end while

end for
end if

end for

The conflict resolution block works by analyzing all input and output pairs and then finding
the ones where two or more inputs are requesting the same output. This block might work
either for the cases where the receiver accepts only one incoming message at a time or when
all possible wavelengths are being used, thus not leaving any wavelength available for the
new request.

Following, the Round-Robin (RR) algorithm implements a first-in-first-out (FIFO) queue to

55

decide which port will have its access granted when a conflicting situation is found. As the
RR uses a FIFO for each input, each request is treated individually as one particular process,
which is triggered by the conflict bit. Lastly, the control algorithm implements the LUCC,
by processing the received requests, where each request port has its own running process.

5.3 Dynamic Setup Block

The Dynamic Setup Block (DSB) is implemented to alleviate the design physical implemen-
tation complexity, as only the usage of the CRB and the LUT would imply a prohibitive
resource usage to efficiently apply the LUCC. If only the CRB and LUT blocks were used,
a big (physically unbearable) chip area would be needed, as the memory array would get
bigger as the number of paths combinations rise. Table 5.1 presents the LUT size for an
I/O number up to 10, where it is possible to see that, even for a small number of I/Os, the
LUT size gets big. The number of combinations is the same no matter what is the network
topology. This is thanks to the fact that the number of combinations is only related to the
input-output combinations. What changes accordingly to the topology is the LUT informa-
tion, which holds the specific paths for each input-output combination. Also, the reduction
method introduced later is also topology dependent, as the network organization reflects in
the degree of possible LUT optimization.

Table 5.1 LUT Growing Size.

I/O Table Entries
2 6
3 16
4 106
5 778
6 6598
7 63838
8 693838
9 8361358
10 110557438

Consequently, a practical implementation relying only on the LUT is not feasible. The DSB
works as a real-time calculation unit on the LUCC. Acknowledging the fast access time of
LUTs and the ease of their usage, a reduced version of the final LUT is created, as a LITE
version. The LITE-LUT stores only small portions of the network info, such as the most
critical paths or the paths of one of the basic 4×4 switches used as construction blocks and
the DSB performs the remaining calculations necessary to choose the ideal path. The path

56

allocation generation process is presented in the Algorithm 3.

Algorithm 3 LUT Generation and Reduction

inputsCombinations();
for all inputs do

spf_algorithm(); . executes the SPF algorithm for each combination set

end for
allocOptmization(); . exclude duplicated table entries / realloc values

while allocSize ≥ threshold do2

allocReduction();
end while

Considering Figure 5.5 as an example, which presents the SF topology, it is possible to see
one of the LITE-LUT’s reduction approaches. In the original LUT size for this network, all
possible combinations and paths were calculated and stored, resulting in a LUT’s size to be
equal to 693838 table entries, as eight I/Os are used. The network is composed of five 4×4
identical switches. This makes it possible to generate the LUT for only one of the switches
and then replicate the information for all remaining 4×4 switches. Thus, on the LITE-LUT
version only the paths for one 4×4 switch is stored, and the complete path is calculated on
the fly, as a composition of the information for one 4×4 switch by the DSB. In this case, the
LUT size dropped from 693838 to 106 table entries.

Different topologies lead to different reduction effectiveness. For instance, aforementioned
8×8 SF topology, the LUT size dropped from 693838 to 106 table entries. This is thanks
to the fact that the SF topology is composed of similar 4×4, making it possible to reduce
at most the LUT, resulting in a small LITE-LUT. The 8×8 Beneš network has a different
internal organization, being composed of two 4×4 switches and eight 2×2, leading to a bigger
LITE-LUT. This way, for the 8×8 Beneš network, not only the 106 entries for the 4×4 switch
is needed, but also the information of the 2×2 switches. This results in a LITE-LUT size of
154 entries.

The DSB works using the information stored in the LITE-LUT. For example, using the
8×8 SF network from Figure 5.5 and assuming that the LITE-LUT stores the path for one
4×4 switch, used in the 8×8 construction. The DSB receives the request for a given path

2In this context, a threshold size might be defined as any limitation, or constraint, on the final memory
size. For example, memory utilization on FPGAs can be defined as the upper threshold size. Using the 4×4
Beneš switch and the 2×2 switching block it is possible to make a comparison. While the LUT synthesis
for a given FPGA for the 2×2 switching block results in nine flip-flops, the same process for the 4×4 Beneš
results in 27 flip-flops. It is important to highlight that the synthesis process performs optimizations, thus
the original LUT size is not directly related to the number of used flip-flops.

57

Figure 5.5 Graph view of 8×8 SF Network.

and analyzes the information regarding the 4×4 switch. Following, it checks the next 4×4
switch in the path, until the destination is reached. In the figure, it is possible to notice
the procedure using any input as an example. Assuming input A wants to communicate
with output A. The DSB checks that input A is connected to the 4×4 switch S1. Using the
LITE-LUT information a given route will be processed. Analyzing the route, the DSB checks
that the next 4×4 switch is the S2. Once again, the LITE-LUT is accessed and the route for
this portion is processed. By the time the DSB realizes the end of the path, the entire route
is attributed to the input A to output A communication.

5.4 Discussion

The LUCC alleviates the control latency impact in OIN-based systems. The use of lookup
tables containing pre-calculated routes reduces the time spent for network routing. Also, the
Round Robin and conflicts detection blocks are implemented in a way to avoid adding extra
processing overhead. On the other hand, the dynamic setup block adds extra resource utiliza-

58

tion overhead, as extra hardware blocks are used. Due to the extra hardware overhead, the
power consumption is increased. Also, as a centralized core is used, the controller scaleability
can be an issue. Further, as the number of network I/Os rises, the LUT size grows as well.
As a result, the LUCC is suited for small-sized networks. Even so, as presented in Chapter
8, it has unmatched latency time.

The LUCC main advantages are:

• Small overhead to detect and solve conflicts;

• Low latency to receive requests and determine network route, and;

• Using a SPF algorithm ensures that, for any requests combination, the best possible
route will be used.

The LUCC main drawbacks are:

• Low scaleability as a result of using a centralized core, and;

• Larger memory utilization, used to store the LUT with the pre-calculated routes. Even
though reduction methods were introduced to lower the memory utilization, the LITE-
LUT is still translated into memory blocks, which requires a large area to be deployed.

59

CHAPTER 6 CONTROL UNIT - THE HYCO

This chapter introduces the Hybrid Controller (HyCo), a new controller defined to cope with
the scaleability issue presented by the LUCC controller. Leveraging the scaleability of circuit-
switched techniques and the full control provided by centralized cores, the HyCo employs both
approaches to fully exploit OINs capabilities. Moreover, the HyCo takes advantage of the
introduced pre-calculated routes to expedite the network configuration and lower the latency.
A Bloom filter [95] is employed for the controller to self-optimize itself by learning and storing
critical information about the network during the system execution.

Figure 6.1 presents an overview of the HyCo organization. The execution flow followed by
requests are represented in the figure with arrows, which show the interaction between blocks.

The main blocks of the HyCo architecture are presented hereafter and each one of the blocks
will be explained in the following subsections.

• Bloom filter: used to check if the desired route is available;

• Round-Robin: employed for the cases where a route is not available or a conflict is
found. It is placed in the conflict resolution unit (CRU);

• Control unit: receives access requests and triggers the network configuration. It is
the access control unit (ACU), and;

• Configuration units: are the distributed nodes that configure the optical switches,
named distributed configuration units (DCU).

Figure 6.1 HyCo overview. The conflict resolution unit (CRU), the access control unit (ACU)
and the distributed configuration units (DCU) are illustrated. The bloom filter functions and
array are represented in the top.

60

Figure 6.2 presents the HyCo execution flow, where it is possible to see the steps executed
by the controller, from the moment it receives a request until the request is granted and then
the end of the communication. The flowchart represents all steps taken by the HyCo when
processing requests. The HyCo expects a request, and by the time it receives one it checks
if the targeted destination is available. Next, the HyCo checks if there is no destination
conflicts: if a conflict is found, the round robin algorithm determines which requesting node
should have its access granted. Following, the HyCo verifies if the requested route was
already tried, by checking the Bloom filter. Later, the DCUs are triggered in order for the
network to be configured and by the time the network is configured the granting signal is
sent to the requesting node. Finally, the HyCo waits for the signal to point the end of the
communication, and by the time it receives it, the connection is closed.

Figure 6.2 HyCo execution flow.

61

6.1 Conflict Resolution Unit

The Conflict Resolution Unit (CRU) is a hardware block responsible for detecting conflicts
in targeted IPs. A conflict is defined as any situation in which two or more source IPs are
targeting the same destination IP at the same time.

The CRU works as follows: firstly, it analyzes all the requests, looking for a conflict. Secondly,
if a conflict is found, a Round-Robin (RR) algorithm is applied to define which IP will have
its accessed granted. To detect a conflict, a matrix method is used: for every new request,
all the source-target pairs are mapped to a matrix R of requests, and then each column j is
checked for any possible conflicts. For instance, the matrix for a 3×3 optical switch, where
all the inputs are requesting to communicate with the output two (〈0→ 2, 1→ 2, 2→ 2〉) is:

R =

0 0 1
0 0 1
0 0 1

 .

Considering the same switch, but in a different scenario such that 〈0→ 2, 1→ 0, 2→ 1〉, the
request matrix changes to:

R =

0 0 1
1 0 0
0 1 0

 .
The matrices are created based on the IDs of the requesting input port and the requested
output port. For example, using the same switch as discussed above, R(i, j) =1 if the input
port i requests to access output port j in the switch, such that:

∀ij, if request(i) = j ⇒ Rij = 1. (6.1)

As the matrix can be accessed directly (i.e., the hardware implementation is a register), no
extra processing is needed, thus accelerating the conflict detection.

Once the matrix is generated, all the columns of the matrix (each column is associated with
an output port) are verified to find any possible conflicts, where a conflict is defined as any
situation in which two or more inputs are requesting the same output. This can be defined
as:

∀j ∈ R, ¬XOR(j) ∧OR(j) =⇒ conflict(j) = 1. (6.2)

62

Taking matrix R as an example, such that:

R =

1 0 0
0 0 1
0 0 1

 ,

a conflict is configured for inputs one and two, as both of them are targeting output two.
Using equation 6.2 for column two we have:

¬(0 XOR 1 XOR 1)∧ (0 OR 1 OR 1) =⇒ ¬(0)∧ (1) =⇒ (1)∧ (1) =⇒ conflict(2) = 1.

When a conflict is found, FIFO queue is implemented based on the RR algorithm to decide
which port will be granted access. Since the RR algorithm uses a FIFO for each input, each
request is treated individually as one particular process that is triggered by the conflict flag
controlled by the matrix method.

Figure 6.3 illustrates the conflict detection block execution flow on a waveform graph. In
the figure, it is possible to see two different input ports requesting (req(0) and req(1)) access
to the same output port (target(0) and target(1)): output 2. This situation sets the conflict
bit on the output 2 (conflict(2)) which triggers the Round-Robin algorithm. Further, it is
possible to see that for each new conflict, the RR picks a different port to be granted, avoiding
starvation. When a port requests access to the network it is expected that at some point it
will have its access granted, even when conflicts are found. When a port is never granted
access, it is called starvation.

Figure 6.3 Conflict detection and Round-Robin execution flow.

63

6.2 Bloom Filter

A Bloom filter [95] essentially consists of a bit vector of length m. In order to insert a new
entry in the Bloom filter, different hash functions1 are used. Each function returns a given
value, which is used as index. The returned indexes are then used to access the Bloom bit
vector and set these positions to ’1’. To test if an item is in the filter, again the filter is fed
with the same hash functions. This time, the filter is checked to see if any of the bits of these
positions are not ’1’. If any bit is not ’1’, it means that the item is definitely not in the set.
Otherwise, it is probably in the set.

For example, assuming a Bloom filter with m = 16 and two hash functions, such that: h1(x)
takes the lower bits of the input data and h2(x) takes the higher bits of the input data. Two
scenarios show the process to update the bloom filter bit array. First, the Bloom filter bit
array should be initialized and all the positions should be marked to ’0’, as presented next.

Table 6.1 Bloom filter bit array initial state.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

In the first scenario, the input set is equal to 108. This way:

input = 108d→ 01101100b

h1(x) = 1100b→ 12d

h2(x) = 0110b→ 6d

By applying the hash functions, it is possible to use the resultant values as indexes to update
the Bloom filter bit array:

Table 6.2 Updated Bloom filter bit array with positions 12 and 6 marked to ’1’.

0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
1A hash function h(x) is a mathematical expression that returns one number based on an implemented

equation. In the current context, the hash functions receive as input the targets set and then apply different
mixing mechanisms on it, in such a way that each set results in different values. For example, assuming a
hash function h(x) that shifts all input bits to the left and targets = 32, such that 〈0→ 2 and 1→ 3〉. First,
the targets array is converted from integer to binary, such that targets = 1110. Next, the hash function h(x)
is used, so all the bits are shifted left: h(x) = 1101. Finally, the resulting bit array is converted back to
integer: 1101 → 13. This way, the Bloom filter array will have its bit in position 13 set to ’1’.

64

In the second scenario, the input set is equal to 161, so:

input = 161d→ 10100001b

h1(x) = 0001b→ 1d

h2(x) = 1010b→ 10d

using the result of the hash functions, the Bloom filter bit array is updated again:

Table 6.3 Updated Bloom filter bit array with positions 1 and 10 marked to ’1’.

0 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0

To check if a value is in the Bloom filter array, the same hash functions should be used.
Applying obtained indexes, the Bloom filter bit array is tested: if any position has a zero,
then the value is not in the array. If all checked positions have ones, then probably the value
is in the bit array.

For example, an input set that equals to 225 gives:

input = 225d→ 11100001b

h1(x) = 0001b→ 1d

h2(x) = 1110b→ 14d

Table 6.4 Bloom filter bit array testing example for input = 225.

0 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0

In the position 14 the bit is ’0’, which indicates that this input was not fed to the Bloom
filter. Now, testing an input which equals to 161 gives:

input = 161d→ 10100001b

h1(x) = 0001b→ 1d

h2(x) = 1010b→ 10d

65

Table 6.5 Bloom filter bit array testing example for input = 161.

0 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0

In this case, both tested positions have ’1’ which indicates that the input set was probably
fed to the Bloom filter.

The Bloom filter is employed in the context of the HyCo in order to avoid unnecessary
path searching. By storing in the Bloom filter the information of tried paths which were
unsuccessful to route all requesting inputs, the HyCo is able to avoid trying the same path
again in the future. For example, using the 4×4 MZI-based Spanke-Beneš optical switch: if
the requesting inputs are targeting destinations 0123, such that 〈0→ 3, 1→ 2, 2→ 3, 3→ 0〉,
not all the paths would be available, as would cause contention. In this case, the input set
0123 would be used to update the Bloom filter, using the same procedure as introduced
above. In the future, when the same 0123 set is tried again, the HyCo does not try to route
it, as regarding in the information stored in the Bloom filter, it will know that this route is
not possible. In this way, it is possible to speed up the routing decisions, as unsuccessfull
routes will never be tried again. As the information of which routes are not possible can be
added during run-time, the HyCo self-optimizes itself, through learning from previous tries.

The HyCo Bloom filter block works as follows:

1. The block receives the destinations (targets) array and applies different hash functions
on them;

2. Using the obtained indexes from the hash functions, the Bloom filter is tested on the
resulting positions. Two possible cases can happen:

• All tested positions have ’1’. This means that desired routes were already tried
and were not available. In this case, the RR algorithm is used and one of the
requesting ports is chosen to be stalled. The new set, without the stalled port is
used as input of the Bloom filter block, starting the process from the beginning,
and;

• At least one of the tested bits in the Bloom filter is equal to ’0’. This means that
this input set either was not tried before or it was tried and successfully routed.
In both cases, this indicates that the controller should try to route this input set,
which triggers the network distributed configuration units.

3. If all the nodes are successfully routed, the Bloom filter takes no action. For the cases
where any input is not satisfied within a specific time, configured by the user, the Bloom

66

filter is updated. This is achieved by using the hash functions and using the obtained
indexes to mark the corresponding bits in the Bloom filter array to ’1’. This way, next
time the same set is tried again, the Bloom filter will indicate that the desired routes
are not possible2.

The Bloom filter block allows three configurations. STATIC configuration calculates all the
possible routes at design time (off-line) and store only the filter. In this case, the Bloom
Filter would only be accessed, as there would be no need for further additions. For the
cases where the calculation of all possible routes is not possible (due to a large number
of combinations, for instance), the Bloom filter can be fed during runtime. In this case,
LIMITED configuration is established where a stopping point can be defined, indicating that
no extra additions will be admitted to the filter, for the cases where it is known that after
some point no extra combinations will be found. Finally, DYNAMIC configuration is used
in cases where there is no limit to add new combinations to the filter.

The number of hash functions and the size of the Bloom filter bit array are determined
based on the size of the network. As the number of I/O nodes rises, the number of hash
functions and the size of the bit array have to be enlarged as well. The number of hash
functions varies from four functions up to 16 hash functions, while the bit array size can be
configured between a size of 16 and 256 bits. One important aspect to be taken into account
when deciding the number of hash functions and the bit array size is their impact on the
number of false positives. A small bit vector enlarge the possibility of false positives being
found. On the other hand, too big bit array would lead to unnecessary usage of memory.
This way, the choice of the bit array size is a trade off between false positives and memory
utilization. This decision can be performed relying on analytical methods, which usually
leads to the minimization of false positives at the cost of high memory utilization. In order
to avoid unnecessary memory utilization, it was chosen to perform this tunning based on the
knowledge of the network, where each network has its Bloom filter parameters configured
accordingly.

In order to illustrate the basic functionality of the Bloom filter, Figure 6.4 illustrates an
execution example. Three scenarios are presented:

1. A request (req) is made targeting a given set of output ports (targets = 3210, such that
2Bloom filters can produce false positives, which are situations where two or more different inputs result

in the same indexes, after applying the hash functions. This might lead to a situation where one input set
is not routed and the other set, which generates the same indexes is routed. Due to this fact, it was chosen
to feed the filter with unsatisfied routes. This way, for the cases where a false positive is found, this will not
compromise the HyCo functionalities, as the only thing that will happen is for the HyCo to try to close the
route, as if it was not tried unsuccessfully before.

67

〈0→ 0, 1→ 1, 2→ 2, 3→ 3〉). Firstly, the Bloom filter is tested (bloom check = ’1’) to
check if the input set was already tried. If it was not, the HyCo tries to configure the
network in order to satisfy all the requests. If this scenario is sucessfull, then by the
time the network is already configured, the ACU sends the confirmation signal (ack =
’1’). As all the requests are satisfied, the Bloom filter is not updated (bloom set = ’0’);

2. Different ports are targeted (targets = 1203, such that 〈0 → 3, 1 → 0, 2 → 2, 3 → 1〉).
Once again, the first performed action is to check the Bloom filter (bloom check = ’1’)
and as this input set was not already tried the HyCo tries to configure the network in
order to satisfy all requests. In this case, not all the inputs could be satisfied, as the
network did not provide paths to route all inputs. In this case, hash functions are used
in the input set (1203) and the resulting bit(s) in the Bloom filter marked to ’1’, and;

3. A pre-tried set is used as a request group (targets = 1203). In this case, checking the
Bloom filter (bloom check = ’1’) returns positive, pointing out that this set was already
tried and the network was not able to route all the requests. Thus, one of the requesting
ports is stalled (targets = 120X, where X indicates that this input is not requesting
access), to be granted later. The network is then configured for the three remaining
ports.

Figure 6.4 Bloom filter block execution example for three scenarios.

The main gain on using a Bloom filter lies in the fact that, as the system runs, previously
received requests can be treated faster as the information regarding whether a route is possible
or not is stored in the filter. This enables the system to be self-optimized, as its knowledge
over the controlled network will improve over time, thus lowering its control latency.

68

6.3 Access Control Unit (ACU)

The Access Control Unit (ACU) is responsible for the access control to the network. It holds
the states of the connected IPs, such that the availability and busy status. When a request
arrives, the ACU checks the conflicts, the status of both destination IP and filter to make
a decision. If all states are found to be as expected, the ACU triggers the configuration of
the network switches. By the time it receives the confirmation pointing that the network is
configured, an acknowledge signal is sent to the requesting IP.

Furthermore, the request computation runs in parallel, and each possible request port is
considered as one running process. Thus, it is possible for the HyCo to receive requests,
solve conflicts and grant access to the network within a short time.

Figure 6.5 presents an example of the ACU execution. For a better visualization, not all
the involved signals in the process are presented. Also, each point mentioned in the text is
highlighted in the figure with an ID, such as A.1, for instance. In the figure, it is possible to
check the ACU block behaviour when a request arrives. Different scenarios are presented:

1. Output port three is targeted. The ACU checks for a conflict on the targeted port
(conflict(3)), represented by the point 1.A in the figure. As a conflict is found, the
ACU expects the RR (nextOnRR, point 1.B in the figure) to signal that it is the turn of
the requesting port to have its access granted. After the RR confirmation, the network
distributed configuration units are triggered, in order for the paths to be configured.
After receiving the confirmation that the route is closed (routeClosed, point 1.C in the
figure), the acknowledge signal is sent (point 1.D in the figure);

2. Port one is targeted. As no conflict is found (point 2.A in the figure) the network
distributed configuration units can be triggered. As soon as the path is closed (point
2.B in the figure), the acknowledge signal can be easily granted (point 2.C), and;

3. Port three is once again targeted, and again a conflict is found (point 3.A in the figure).
This time, as the port is not the next one in the RR queue (point 3.B in the figure), it
is stalled until the granted port targeting the output three ends its communication.

6.4 Distributed Configuration Unit (DCU)

Using the LUTs decreases the computation time, as the routing information can be stored
in fast access memories, replacing computation time for storage. Nevertheless, their usage

69

Figure 6.5 Access control unit simplified execution exemplification for one input with three
scenarios.

increases the physical memory utilization as the number of path combinations rises to a point
at which it becomes prohibitive. The DCU was conceived to reduce the memory utilization.

Since practical implementation relying only on LUTs is hard to achieve for large scale net-
works, the DCU works as a small, replicable, configuration unit. Similar to the technique
introduced in Section 5.3, a reduced version of the final LUT is created, the same LITE ver-
sion. The LITE-LUT stores only small portions of the network info, such as the most used
paths or the paths for one portion of the network. This small portion is then distributed.
For example, Figure 6.6.(a) presents a hypothetical network, where a read-only database is
connected with four nodes (A, B, C and D). In this case, the paths for nodes A, B, C and
D to read from the database can be stored in the LITE-LUT, as they would happen more
frequently. Any other communication combination, such as A to B or C to A, for example,
would have to be defined during the system execution. In Figure 6.6.(b), if the LUT stores
the information of all the possible paths for a 4×4 switch, the LITE-LUT could store only
the info of one 2×2. Using the LITE-LUT information, it is replicated in order to have the
entire path for the 4×4 switch.

The main drawback when using DCU lies in the fact that not all the possible routes are pre-
calculated and stored. This fact leads to an overhead in time for the network configuration,
as the routes need to be calculated during the system execution. Indeed, opposed to the
LUCC, the HyCo does not take only one clock cycle. A more detailed discussion related
to this aspect will be presented in Chapter Chapter 8. The latency associated with the

70

Figure 6.6 DCU Distribution approach.

network configuration is defined by the size of the network, where the larger the number of
the network nodes, the higher the latency is. For instance, while the LUCC takes one clock
cycle to configure the 4×4 Beneš, the HyCo can take up to three clock cycles. Still, as it will
be discussed in Chapter 8, the HyCo presents one of the lowest latency among state-of-the-art
works, being overpassed only by the LUCC, with the advantage of a better scaleability.

It is important to highlight that, even-though MZI-based switches were used for example
architectures, the HyCo is not anyhow limited to them. HyCo blocks would remain the
same, no matter what kind of topology or technology it is controlling. The only thing that
changes accordingly with the network is the information stored in the LITE-LUTs and DCUs.
As a result, the HyCo can be effectively employed in the networks using MZI-based switches
and in those employing Microresonator (MR)-based switches.

6.5 Discussion

The HyCo incorporates the benefits of both centralized and distributed cores to control the
network. The main gain in using the distribution approach allied to a centralized core lies in
the fact that most of the processing is performed in the central core, allowing the distributed
units to be as simple as possible, speeding up its execution and reducing the time required
to configure the entire network. Indeed, as presented in Section 8.5, the DCU time overhead
is significantly small (nanoseconds), so it does not impose excessive latency on the OIN
execution. The deployed matrix method accelerates the conflict detection and the Bloom
filter enables self-optimizing feature. Nevertheless, using a Bloom filter adds an overhead in
memory, as it uses a bit array. Different bit array sizes lead to different impacts on memory.
The matrix method also increases the memory utilization, as hardware registers are used to
store the input-output pairs. As the network I/Os number gets larger, the matrix sizes in
the matrix method grows accordingly. Further, despites the fact that not only a centralized

71

core is used, still its usage will limit the scaleability of the approach at some point.

The HyCo main advantages are:

• Acceleration of conflicts detection using a matrix method;

• Improved scaleability for a system based in a central controller;

• Self-optimization characteristics using a Bloom filter, reducing the controller latency
over time, and;

• Compared with the classic circuit-switching distributed approach, the introduced HyCo
distributed configuration units have reduced latency, thanks to their simplification,
leading to a scalable low latency solution.

The HyCo main drawback is:

• Larger memory utilization is required, due to using the Bloom filter bit array and for
the matrix method registers.

6.5.1 HyCo and LUCC Comparison

Thanks to the fact that the HyCo was conceived based on the LUCC cons and pros, both
controllers have similarities and differences. The two controllers rely on centralized cores
for the conflicts solving and Round Robin implementation. Nevertheless, while the LUCC
implements a point-to-point conflicts checking, the HyCo utilizes a matrix method. Further,
the LUCC have all the network routes stored in fast access memories, accessed by a centralized
network configuration block during run time. Likewise, the HyCo uses pre-calculated routes,
but they are stored in distributed units. Lastly, the HyCo implements a Bloom filter, which
enables the self-optimization of the controller.

The HyCo is able to extend the LUCC scaleability as the need for the controller to have
access to all the network nodes is droped. Instead, the HyCo central core is connected to IP
nodes and input network nodes only, where the network input nodes are the ones connected
directly to IPs. The remaining network nodes are configured by the distributed units. This
hybrid approach enabled the HyCo to be used in larger network topologies, when compared
to the LUCC. Indeed, while the LUCC is suited for low radix networks, such as 8×8 and
16×16 topologies, the HyCo can be employed in bigger topologies, like 64×64 and 128×128
topologies.

72

CHAPTER 7 SIMULATION PLATFORM - THE SF-SIM

Based on the defined components, presented in Section 4.4, and using the description models,
presented in Section 4.2, a simulation platform was developed. This simulation platform is
built over a components library, which is composed of switches and network topologies. The
simulation platform is depicted in Figure 7.1, where it is possible to see the steps required
for a simulation. The simulation platform is named Straight-forward Simulator (SF-Sim).

Figure 7.1 Simulation platform.

The SF-Sim consists of a library of components described in hardware description language
(VHDL) [54], integrated within a user interface and runs using ModelSim simulation engine
[96]. VHDL is used as it has the closest relationship to the hardware layer, which makes
it a powerful language to capture desired devices characteristics. Also, the use of VHDL
allows to prototype developed designs in FPGA technology, so the models can be further
verified. Nevertheless, the models can be employed to describe the components in different
programming languages, thus the ModelSim engine will not be required. The specific aspects
regarding the implementation can be found in Annex A.

The development of the SF-Sim was achieved in two main steps: first, the devices were
modelled using the modelling methodology presented in Chapter 4 and, in the second stage,
they were described using VHDL. We explain the main concepts of SF-Sim using simple and
illustrative networks/switches.

The first example is a 2×2 MZI-based switch, illustrated in Figure 7.2. This device is used
to build all other system components. This block was simulated to verify the expected
behaviour, using the ModelSim Simulation Tool.

Figure 7.3 presents the simulation output showing the internal signals and the correct be-
haviour and timing. In this example, the internal delay is configured to be TC = 4, so while

73

Figure 7.2 2×2 modelled switch block.

the signal tb_we is high, the correspondent output will receive the inserted data from the
input, after 4 ps. Each delay value is configurable, thus any positive time can be used. This
delay may be modeled using equations specific to the devices (e.g. MZIs and MRs). The
imposed delay is a composition of different physical aspects of fabricated switches, such as
waveguide lengths and ring radius. For the validation of the models and results comparison,
the delay values were obtained from a collaboration project with McGill University, which
helped us to exploit prototyped designs. As presented in Section 8.2, different experiments
were performed, which allowed the extraction of precise reference values.

Figure 7.3 2×2 MZI-based switch simulation.

Following, the same steps were applied to the description of a 4×4 MZI-based Beneš switch.
The 4×4 Beneš switch is a structure which simply replicates basic 2×2 switches with the
addition of channels to interconnect them. Figure 7.4 shows an overview of the designed 4×4
MZI-based Beneš switch, where it is possible to see the 2×2 switches and the I/O pins.

Subsequently, the 4×4 Beneš switch was simulated to verify its correctness. In this example,
the transmission delays of connecting waveguides, which connect the internal 2×2 switches are
neglected. In order for the waveguides delay to be taken into account, the waveguide models
introduced in Section 4.2 should be used. Figure 7.5 presents the simulation output showing
the expected timing of the internal signals. Once again, the internal delay is configured
to be TC = 4 ps, so while the signal we is high, the correspondent output will receive the

74

Figure 7.4 4×4 MZI-based Beneš switch block.

correspondent data after 12 ps1. Still, the following messages addressing is configured: In0→
Out3; In1 → Out2; In2 → Out1, and; In3 → Out0. In the figure, four scenarios highlighting
the serial transmission. Taking the top scenario as an example, it is possible to see four
signals: we(0), input(0), output(3) and sending(3). In the input side, while we(0) is ’1’, data
is inserted in the switch, represented by signal input(0). In the receiver side, the inserted
data is received after the given delay, and is represented by signal output(3). As can be seen,
the same inserted data is received in the output, after the configured transmission delay.

Figure 7.5 4×4 MZI-based switch simulation.

Lastly, two different 8×8 topologies are presented. The first network topology described is an
8×8 Beneš Network, as introduced in Figure 4.9. Finally, the 8×8 SF Network, introduced
in Figure 4.13, is described. Both network illustrations were omitted as their final logical
designs are too complex.

1It takes 12 ps as the message should travel through three 2×2 switches before reaching the output. Given
TC = 4 ps, 4 ps + 4 ps + 4 ps = 12 ps.

75

As both topologies rely on the same basic blocks and on the same internal logic to connect
those blocks, only the simulation results of one of them will be indicated. This way, Figure
7.6 shows the simulation output for an 8×8 SF Network, where different arriving times can
be seen2. The unequal arriving times are due to the different paths messages have to travel
from the input until they reach the output. As a different number of switches might be
crossed by each message and each one of the switches imposes a given delay, the total delay
for each message might change. In the figure, two arriving times are highlighted, output(0)
receiving the inserted data at input(0) and output(1) receiving the inserted data at input(1).

Figure 7.6 8×8 SF network simulation.

Besides the VHDL implementation of the models, a Graphical User Interface (GUI) was also
developed. The main goal of this GUI is to ease the deployment of larger systems, as the
textual description of such systems would turn into a difficult task. Through the GUI, the
user can configure different aspects that comprise the simulation platform, as presented in
Figure 7.7: blocks delay (execution time), laser input power, switches (2×2 blocks) trans-
mission and insertion losses and delay, as well as the option to open a third party tool to
graphically describe the system. In this case, the DIA tool [97] is used, as it is an open source
diagramming tool, suitable for the description task.

After configuring all the aspects of the system, the DIA tool can be employed to visually
describe the system. Figure 7.8 illustrates the SF-Sim component library already made
available on the DIA tool. These components were modelled and later added to the DIA

2Arriving time corresponds to the clock cycle the first sent bit arrives at the targeted output

76

(a) SF-Sim Traffic Config-
uration Window.

(b) SF-Sim MZIs Config-
uration Window.

(c) SF-Sim MRs Configu-
ration Window.

Figure 7.7 SF-Sim Configuration Window.

library. As an example, a small system described in the tool is presented, a hypothetical
blocking 4×4 MR-based switch. On the left-hand-side of the Figure, the available components
to be used to build the network are presented, and on the right-hand-side the example
topology is illustrated: four I/O nodes (each coloured one is one I/O node, where each colour
corresponds to one index. This way, two nodes have the same colour, one representing the
node input and the other indicates the node output), 12 MRs and their connections. The
available components in the tool are the ones presented as building blocks in this thesis:
2×2 blocks (MR and MZI), 4×4 blocks (Beneš and Spanke-Beneš) as well as a strictly non-
blocking 8×8 topology.

7.1 Discussion

The SF-Sim was conceived in order to ease the deployment of OIN-based systems and to sim-
plify the generation of introduced controlling solutions. Its usage enables early evaluation of
OINs as well generates the VHDL files which are necessary to use the low latency controllers.
From the simulations, it is possible to obtain results in terms of dissipated power and network
traffic. Also, by using the DIA tool, the description of the topologies is facilitated, as it is
possible to describe different topologies graphically. Further, designers can add new optical
components using the models introduced in Section 4.2 and enrich the available library of
components. Besides that, all files needed for the controllers VHDL files to be created are
automatically generated by the tool. This way, all topology related controllers configurations

77

Figure 7.8 4×4 Example MR-based topology on DIA tool.

are made available: the LUT/LITE-LUT; the matrix for the conflicts resolution units; the
distributed configuration units information, among others.

The SF-Sim main advantages are:

• Acceleration of the description of topologies, by using a GUI;

• Including a library of fast and accurate components to be used in the OINs description;

• Automated generation of controllers VHDL files, and;

• Simplified way to obtain results regarding the OIN from a system level perspective.

The SF-Sim main drawback is:

• Larger simulation time due the utilization of VHDL when compared to higher level
description languages.

78

CHAPTER 8 RESULTS

This chapter presents the evaluation of the proposed approaches. Section 8.1 shows the LUCC
evaluation, where its latency is measured within the context of its deployment: low radix
network systems. Later, in Section 8.2 the opto-electrical co-design of the controller model
in a prototyped system is presented. Section 8.3 presents the evaluation of the simulation
models, by comparing the simulation output with the measured values from real devices, such
as the 4×4 MZI-based switch introduced in Section 8.2, or using values extracted from referred
publications. Also, the average simulation time for illustrated cases is presented. Next,
Section 8.4 presents results obtained from applying HyCo, where its self-optimization feature
is shown along with the HyCo latency and in Section 8.5 synthesis reports are presented.
Finally, in Section 8.6, deployed controllers are compared with state-of-the-art controllers to
verify their low latency.

8.1 LUCC Execution Results

To validate LUCC, different traffic patterns, such as complement and all-to-all are considered
to assess LUCC’s performance under various request conditions. The complement traffic
pattern is used to verify the largest paths in the network. Largest paths refer to the paths
in which the transmitted message passes through the largest number of network nodes. All-
to-all traffic pattern comprises all possible communication combinations in the network, as
the IPs present in the system request access to all nodes, one by one. For these validations,
the traffic load is not taken into account, as the aspects involved in the conflict resolution
and network configuration are not directly affected by that. The focus is on determining the
LUCC response time for different request configurations and patterns. Figure 8.1 depicts
employed traffic patterns. In the figure, the IPs zero and seven (IP 0 and IP 7) are used as
an example, where it is possible to see the targets each pattern employs. For the all-to-all
traffic pattern, IP 0 requests access to all the nodes in the network, one at a time, while in
the complement, IP 0 requests access to the other extreme of the network (IP 7), and IP 7
request access to its other extreme, the IP 0. Both simulations and FPGA-based prototyping
were performed.

An effort is made to verify the one clock cycle latency of the LUCC under different scenarios,
as well as exploring the correct network configuration. We first perform simulations and
then the same scenarios were applied on FPGA prototypes. For both cases (simulation and
prototyping), a list of signals is employed to illustrate the results, presented as arrays of

79

Figure 8.1 Traffic patterns exemplification.

values organized in a little-endian fashion. As a result, the rightmost and leftmost values
of the array hold the information of IP 0 and IP 7, respectively. The most important used
signals are:

• target: it holds the target for each requesting port. If the value for a position equals -1,
it means that the IP at that position is not requesting access to the network. Otherwise,
it shows the desired destination. For instance, the array target = 0 -1 -1 -1 -1 -1 3 -1
indicates that the IP 7, whose position in the array is on the leftmost, is targeting IP
0 and IP 1 is targeting IP 3. Also, the other IPs are not requesting any access;

• request: it is used by the IPs to signal their intention to access the network, where
1 shows a request for access and 0 means idle (i.e., no request). For instance, the
array request = 00000001 indicates that the IP 0, whose position in the array is at the
rightmost, is requesting access to the network, while all the other IPs are idle, and;

• ack: it is used by the LUCC to signal IPs when the access is granted, where 1 means
that the access is permitted and 0 means that it is not. For instance, the array ack =
10010000 shows that the IP 7 and IP 4 are permitted to access the network, while all
the others are not.

80

8.1.1 LUCC Simulation

The simulation results show the fast response time of LUCC. The latency is given by the
frequency execution of the platform, as the control unit is able to solve requests in one clock
cycle. Figure 8.2 illustrates one cycle response time of LUCC. In this example, two scenarios
are presented.

In the first scenario, marked with yellow boxes, four simultaneous input requests (request =
1111) are generated (target = 0123, such that 〈0→ 3, 1→ 2, 2→ 1, 3→ 0〉) and their access
is granted after one clock cycle (in the figure, request signals are set to 1 and one clock cycle
later ack signals are set to 1). The yellow arrow shows the period it takes for the LUCC to
acknowledge the access.

In the second communication scenario, marked with red boxes, four simultaneous input
requests are again generated (target = 2022, such that 〈0→ 2, 1→ 2, 2→ 0, 3→ 2〉). Note
that more than one input is targeting the output 2, and hence a conflict occurs. It is possible
to see the resolution of the conflicted request at a time, and even for the cases in which a
conflict is found, the controller latency is not affected for computing the requests. First,
among the conflicting request ports, IP 0 is granted access (i.e., ack = ***1). Next, IP 1
has its access granted (i.e., ack = **1*), and finally IP 3 is granted access (i.e., ack = 1***).
In this situation, the receiver side takes two clock cycles to set its connection, thus blocking
its port. This fact delays the granting response time of LUCC, as the destination is blocked
until the receiver side computes the end of the transmission. This can be noticed in the figure
by considering trans_end and end_ack signals. The simulation results indicate the fast
response time of LUCC whose latency is constrained by the frequency of the platform, in
which the control unit is able to solve requests in one clock cycle.

81

Figure 8.2 LUCC simulation diagram running at 500 MHz for a 4×4 Beneš topology, which
shows: input requests (request), LUCC grants (acknowledge), destination outputs (target),
LUCC requests for destination outputs (out request), end of transmissions (end), acknowl-
edges for transmissions ending (end ack) and the bits to set up the MZI switches (path setup).
In each array of bits, one bit corresponds to an I/O. Thus, the size of the array is given by
the number of I/Os.

Figure 8.3 illustrates one cycle response time of LUCC when controlling the 8×8 SF topology.
Once again two scenarios are presented.

In the first scenario, marked with red boxes, eight simultaneous input requests (request =
11111111) are generated (target = 76543210, such that 〈0 → 0, 1 → 1, 2 → 2, 3 → 3, 4 →
4, 5 → 5, 6 → 6, 7 → 7〉) and their access is granted after one clock cycle, as there is no
conflict. The red arrow shows the period it takes for the LUCC to acknowledge the access.

In the second communication scenario, marked with yellow boxes, four simultaneous input
requests are again generated (target = 76543217, such that 〈0→ 7, 1→ 1, 2→ 2, 3→ 3, 4→
4, 5 → 5, 6 → 6, 7 → 7〉). Note that more than one input is targeting the output 7, and
hence a conflict occurs. It is possible to see the resolution of the conflicted request at a time,
and even for the cases in which a conflict is found, the controller latency is not affected for
computing the requests.

Figure 8.3 LUCC Simulation for 8×8 SF topology.

82

8.1.2 LUCC Prototyping in Xilinx FPGA

LUCC was synthesized for a Xilinx FPGA [98], the Xilinx II-Pro, from the Xilinx University
Program (XUP). The signal readings were performed using the Chipscope Pro Analyzer, also
from Xilinx. The 4×4 Beneš topology is employed and the input-output configuration, for
the presented example is 0123, such that 〈0→ 3, 1→ 2, 2→ 1, 3→ 0〉. Figure 8.4 shows four
ports requesting (RX_*) access and receiving a granting (ACK_*) one clock cycle after.
Also, in the figure, the end of communication signals (TAIL_* and TAIL_ACK_*) are
presented, illustrating the protocol used at the end of a transmission. The LUCC latency is
based on the deployed technology, as it is able to compute the requests in one clock cycle.
Thus, for this specific scenario, the FPGA execution frequency was configured to 50 MHz,
which gives a period of 20 ns. As a result, for this FPGA the LUCC latency is 20 ns.

Figure 8.4 LUCC Xilinx FPGA execution with an operation frequency set to 50 MHz. High-
lighted boxes show the request and granting moments, within one clock cycle.

8.1.3 LUCC Prototyping in Altera FPGA

After validating the LUCC by simulating and prototyping on Xilinx FPGA, the design was
once again prototyped, but this time on an Altera’s FPGA [99], with the signal readings
being performed with Altera’s SignalTap Logic Analyzer Tool [100]. For this step, not only
the LUCC was prototyped, but fast transceivers as well, configured for an injection rate of
8 Gbps. In this scenario, the LUCC receives requests from input blocks. Once the access
is granted, the input blocks insert traffic into the transceivers. The transceivers output is

83

connected to I/O pins in the FPGA. In order to emulate the transmitted traffic, virtual
links were used to connect these I/O pins. The FPGA used in this case was the Stratix
IV 330T, configured to an execution frequency of 100 MHz, with a period equals 10 ns.
Figure 8.5 presents the readings, where it is possible to see the request, ack, tail and tail_ack
signals, with the same functionalities as explained in the previous section. Moreover, three
more signal groups are presented: Gen_DATA_*, TX_DATA_* and RX_DATA_*. These
signals correspond to the traffic generated in the inputs (Gen_DATA), the fast transceivers
input (RX_DATA) and the fast transceivers output (TX_DATA). The main goal of this step
is to show the LUCC interacting with IPs, in this case the traffic injectors.

Figure 8.5 LUCC on Altera FPGA execution with an operation frequency set to 100 MHz.

8.2 Co-Design of the Control Unit and the Optical Switch

This section discusses the joint design (also known as co-design) of the LUCC and a fabricated
optical switch. Different aspects are involved when co-designing OIN-based systems. The
multiprocessor systems are mainly composed of digital components, such as processors and
memories, while OINs work in the optical domain, mostly running at a light-based basis.
Therefore, the opto-electrical co-design must consider the integration of different domains
while maintaining the desired performance and full functionality of the system.

The LUCC was integrated with a fabricated switch to verify its behaviour in a realistic and
dynamic scenario. The integrated Silicon Photonic (SiP) switch used is a 4×4 optical switch
distributed on a Spanke-Beneš topology with five integrated 2×2 MZIs directly controlled by
LUCC. Carrier injection tuning method was employed to bias one arm of the MZI for high-
speed and efficient switching [23]. The SiP chip was fabricated by the IME foundry and the
measured VπL and switching time are 0.18 V mm and 6 ns, respectively. This integration took
place in the Photonics System Group at McGill University. Figure 8.6 presents a microscope
picture of the aforementioned switch.

84

Figure 8.6 Microscopic picture of the 4×4 MZI-based switch.

The lab setup is illustrated in Figure 8.7. The figure presents all the blocks used during the
opto-electrical co-design, such as: the driving circuit used as an interface between FPGA
and the optical switch; the conversion equipment employed to convert digital to optical and
optical to digital; signal amplifiers; optical switch, and; digital blocks (controller, traffic
generators, etc.).

Figure 8.7 Schematic of the lab setup for the opto-electrical co-design. INSET: amplifier
circuit used as a drive between FPGA and the optical switch. CW: continuous wave; PC:
polarization controller; EDFA: erbium doped fibre amplifier; PD: Photodetector; DCA: dig-
ital communication analyzer [101]

.

Before measuring the integration outcome, the switch was solely appraised. The reason to
do so is to have reference values to be used as comparison after the integration process. The
switch values are used in the simulation models introduced in Chapter 7. Firstly, the MZI-

85

based 2×2 switch was measured. For this purpose, PRBS31 traffic pattern1 was injected
into one of the inputs of the switch. Following, the switch was analyzed for both bar and
cross states, and different aspects measured, such as its switching time and power loss.
Figure 8.8 illustrates the PRBS31 packages travelling through the switch. On the top of the
figure we show the BAR state configuration and on the bottom we show the CROSS state
configuration. In the Figure 8.8.A, it is possible to see the global picture of the execution,
where the packages are travelling one after the other. Next, in Figure 8.8.B, the rising and
fall times of each package are indicated. Finally, in Figure 8.8.C, the eye diagram of the
measured switch. From the experiments, it was possible to extract the information needed
by the simulation models as well as to define the comparison scenario to be used later, when
all the components are integrated.

Figure 8.8 Measured 10 Gb/s PRBS31 signal switched by the 2×2 MZI switch. The top row
shows the signal for the bar state and the bottom row for the cross state. The inset picture
shows the schematic of the 2×2 balanced MZI switch element. The bar and cross states are
IN1-OUT1 and IN1-OUT2, respectively [101].

For the opto-electrical co-design, the 4×4 switch was controlled by the LUCC running on the
Altera Stratix IV FPGA. Besides the LUCC design, the FPGA was added with a requests
generation block. The FPGA was configured to execute at 100 MHz, with a period of 10
ns. Due to the experimental driving circuit, used to configure the MZIs, the switching time
was set to 5 s. The lab-setup overview is illustrated in Figure 8.9, where the main blocks are
presented. In the figure, it is possible to see that for this experiment only inputs A and B
and the outputs F and G are used.

Figure 8.10 presents the extracted results, where the FPGA readings are shown as well. The
1PRBS31 is a pseudo-random binary sequence that is difficult to predict and exhibits statistical behaviour

similar to a truly random sequence.

86

Figure 8.9 Lab-setup overview.

execution of the following configurations are presented: (i) input A targeting output F twice,
so it is possible to see the switching ON and OFF, and (ii) inputs A and B targeting output
F, which results in a conflict. The figure illustrates the FPGA readings for each scenario,
where it is possible to see the requests, acks, tail, tail acks, MZIs configuration and target
signals. Tail and tail acks signals are used in the protocol to close the connection. The
protocol works in a handshake fashion, where the requesting port signals it will finish its
connection (setting tail signal to ’1’) and then receiving a confirmation from the LUCC (tail
ack signal equals ’1’). As the figure illustrates, the LUCC computes requests within one
clock cycle, even when a conflict is configured, as in the last scenario. In order to identify if a
conflict is configured, the signals LinkReq, TX1 and TX2 should be verified. The conflict is
illustrated when both TX1 and TX2 are requesting access simultaneously (LinkReq=0011)
while targeting the same destination, RX2. For this co-design step, the request generator
send requests to the controller, which configures the network and grant access. One external
equipment then injects traffic into the network with a 10 Gbps injection rate. As can be seen
from the figure, the traffic payload (illustrated as light power) dynamically changes when
different requesting nodes are granted access. From these experiments, it was possible to
verify the interfaces needs and to observe the correct switch behaviour when dynamically
controlled by the FPGA.

87

(a) FPGA timing diagram for all scenarios

(b) Switch measurements for all scenarios

Figure 8.10 FPGA and Optical switch readings.

In order to further explore the opto-electrical co-design, we realized a second set of exper-
iments. Figure 8.11 gives an overview of the system setup, where it is possible to see the
considered connections. Three possible communication scenarios could be configured for this
setup: (i) input A targeting output F, (ii) input B targeting output F and (iii) input D
targeting output F. Also, this setup contains all the components needed in a system, not re-
lying on any extra device. Traffic injectors and traffic analyzers were deployed on the FPGA.
The execution flow is illustrated in the figure: the traffic injector requests access and by the
time it is granted, it starts to send data. On the receiver side, the data is collected and then
analyzed for potential transmission errors.

88

Figure 8.11 Complete system lab setup overview.

In the first set of measurements, only inputs A and B were used. Figure 8.12 presents
obtained results for this configuration. Figures 8.12.(a) and 8.12.(b) illustrate the traffic
generated on the FPGA travelling through the switches. Also, the request signal and the
exact moment of the beginning of the transmission are presented, showing one clock cycle
latency. Figure 8.12.(c) brings the traffic injector and analyzer, where a bit error count is
used to show the number of miss transmitted bits. From the figure, it is possible to see that
37402251 bits were inserted in the network and properly read on the receiver and seven bit
were not successfully read.

Finally, Figure 8.13 presents a setup with three inputs enabled. Three different scenarios
are illustrated: (a) only input A is requesting access, targeting output F ; (b) inputs A and
B are both targeting output F, and; (c) all three inputs request access simultaneously, all
targeting output F. For each scenario, it is possible to see the payload readings in the output
F. For the conflicting cases, the figure shows the sequential transmission, where each input
waits the grant signal to be transmitted.

The initial measurements and the co-design of the controller with the switch enabled the
models to be verified and validated. Also, extracted data was integrated into the SF-Sim to
enable its high accuracy, as presented in Section 8.3. Further, the performed opto-electrical
co-design shows a promising advance to the silicon photonic technology on system-level de-
sign, pushing the boundaries for the technology integration one step ahead.

89

Figure 8.12 Online readings of prototyped optical switch and FPGA execution.

8.3 Models Integration

The models introduced in Section 4.2 are used to describe optical switches and OINs. Also,the
controllers developed in the context of this thesis, the HyCo and the LUCC are used to control
the described networks. In order to do so, the integration of the control models and optical
models is performed. This integration allows the verification of accuracy and correctness of
all the models. Data extracted from real devices is available, as presented in Section 8.2,
which makes it possible to improve the models in order to reduce the error rate of obtained
results when using them. The models integration lead to the SF-Sim, presented in Chapter
7.

The simulation models accuracy was validated in four steps:

1. MZI and MR based switches were modelled with focus on their behaviour;

2. These models had their results compared with the analytical values and the models
were updated accordingly;

3. Aspects such as insertion loss were added to the models. This enabled us to measure
the power budget of the designed system, under different traffics, and;

4. The models were expanded to the network level so entire systems could be evaluated.

In order to present an overview of the simulation, two different scenarios are presented, both

90

Figure 8.13 Extracted data from lab experiments in McGill Laboratories.

of them using a 4×4 Spanke-Beneš topology. Figure 8.14 presents the schematic of the
scenarios considered as an example, where it is possible to see the 4×4 switch organization
and the message path for each scenario. In Figure 8.14.(a) the first communication scenario is
illustrated: all switches are configured as bar state. This way, input 0 heads towards output
0, input 1 heads towards output 1, input 2 heads towards output 2 and input 3 heads towards
output 3. In the second scenario, presented in Figure 8.14.(b) all switches are configured to
cross-state, so: input 0 heads towards output 3, input 1 heads towards output 1, input 2
heads towards output 2 and input 3 heads towards output 0. These two scenarios are used as
they present an opposite behaviour, when compared with each other. While in one scenario,
all switches are configured to bar state, thus not having any communication crossing the
switch, in the other scenario all switches are configured to crossbar state, which leads to
messages crossing the switch.

An optical network is composed of a large number of components, which are translated as

91

(a) All switches configured to bar state. (b) All switches configured to cross-state.

Figure 8.14 4×4 Spanke-Beneš Simulation Scenarios.

simulation signals. To show all involved signals in the simulation of an OIN would require an
unbearable big figure. This way, for the sake of a better explanation, we use a small system,
using a small number of signals. Table 8.1 shows the configuration parameters used for the
2×2 switch. The transmission losses for cross and bar states are the same, normalized as
Transmission loss.

Table 8.1 Configuration parameters for the 2×2 switch.

Parameter Value
Transmission
delay 100 ps

Transmission
loss 2 dB

Coupling loss 10 dB
Laser input
power 1 mW

Figure 8.15 presents the I/O signals of the 4×4 switch, where it is possible to see the following
signals: sim_clk, ip_in, ip_out, switch_configuration and power_out. The sim_clk signal
is used to ease the results visualization, where each period is configured to 100 ps. In the
figure, the left side presents the first scenario, where it is possible to see the delay for the
messages to go from one input to the targeted output as well as the output optical power
for each output. Taking the communication from input 0 to output 0 as example, the time
it takes for the data to go from the input to the output is highlighted in the figure, 200
ps. Also, by checking the power_out(0) signal, the estimated optical power in the output is
presented: 0.0398107 mW. This output considers the power losses for all the switches in the
message path and the coupling loss. Given the value of 0.04 mW obtained by prototyping
in Section 8.2, we conclude that the error rate of the tool is less than 1%. The right side of

92

the figure presents the second scenario, with all the switches configured as cross-states. The
same evaluation might be performed for this case. In the figure, it is possible to check the
output power for all the communication inputs, as well as the transmission delay for each
case. For instance, the output power of input 1 can be seen in output 1. In this case, the
estimated output power is 0.0398107 mW.

Figure 8.15 4×4 Spanke-Beneš simulation scenarios. On the left, all switches are configured
to bar state. On the right, all switches are configured to the cross-state. The clk_in signal
can be used as a reference point, with a period configured to 100 ps.

After simulating and validating the network models, all presented models were integrated
into one single simulation platform. Figure 8.16 shows one example of a validation platform
setup, where it is possible to see the presence of I/O nodes interacting with the control node
and with the optical path. The 4×4 Spanke-Beneš topology is used, but this time integrated
with traffic injectors and traffic analyzers. In this system, input nodes send requests to the
control core, that process the requisitions and configure the network. By the time the network
is already configured, and acknowledge signal is sent to requesting nodes, which triggers the
communications start.

Figure 8.17 presents the simulation output of the controlled 4×4 switch. In the figure, the
switches I/Os, the controller request and ack signals, the switch configuration signals, the
inputs targets and the power outcome are presented. The four inputs are requesting access
simultaneously (tb_req = 1111). After one clock cycle, two of them have their access granted
(inputs one and three - tb_ack = 1010), as it would not be possible to route all the inputs at
the same time. After the messages are sent (ip_in), and the end of communication is treated
by the controller, the two remaining inputs are granted access (inputs zero and two - tb_ack
= 0101).

93

Figure 8.16 System Simulation Setup.

Figure 8.17 System simulation output.

The time required for each network topology is presented in Table 8.2. The considered
topologies are: 4×4 Spanke-Beneš topology, 8×8 PILOSS topology [16], 16×16 topology,
32×32 strictly non-blocking topology [89] and 64×64 topology. The number of atomic units
(AUs), or switching blocks, is an important factor for the simulator speed. This is explained
by the fact that each AU counts as one network node and one control node/table entry.
Another important factor in the simulator speed depends on the controller behaviour. The
control unit initializes all the network nodes before enabling the network to be accessed,
meaning that as the number of network nodes rises, the time it takes for the controller to
initialize all nodes rises along. These facts explain why the simulation of the 32×32 SNB
Topology is the one that takes the longest time. This topology counts with the largest number
of switching blocks, which results in the same number of distributed units, for the controller.
This way, when the simulation is eerformed, more simulated components should be taken
into account. The executed simulations were configured with a word size of 16 bits and each
package composed of 10 messages. IPs frequencies were normalized for all thee scenarios and
were executed with a frequency of 100 MHz.

94

Table 8.2 Simulation times for different topologies.

Network Topology #AU Co-Simulation Time (s)
4×4 Spanke-Beneš 5 ≈ 0.190
8×8 Ring Topology 8 ≈ 0.220

8×8 SF 20 ≈ 0.317
8×8 PILOSS Topology 64 ≈ 0.514

16×16 Topology 48 ≈ 0.498
64×64 Topology 384 ≈ 1.103

32×32 SNB Topology 1024 ≈ 21

Table 8.3 illustrates the simulator accuracy by comparing the results obtained with the
proposed simulator and the results obtained in our measurements and in the literature [16, 89].
The first two scenarios present the measurements of the in-house MZI switches, presented in
Section 8.2. The next two scenarios present the results for two different networks, found in
published literature. For these cases, the results are approximated. The simulator accuracy
is high, with a top error rate of 12 %. It is important to highlight that the reference values
are also passive to errors. For instance, the results obtained in [16] have 1 dB error rate
(13 %) in their published values. This way, for the 8×8 PILOSS topology for example, the
reference value may vary from 6.5 db to 8.5 dB. For our measurements, the error involved in
the reference values are due to the equipment employed in the experiments. The obtained
values were compared with the state-of-the-art tools and analytical methods and the reading
errors could be neglected.

Table 8.3 Simulation accuracy comparison.

Network Topology Reference Values Obtained Results Error Rate
2×2 MZI Switch1 ≈ 10.96 dB ≈ 10.97 dB ≈ 1%

4×4 Spanke-Beneš1 ≈ 13.97 dB ≈ 14 dB ≈ 1%
8×8 PILOSS Topology2 ≈ 7.5 dB ≈ 8.5 dB ≈ 12%
32×32 SNB Topology2 ≈ 15.8 dB ≈ 16.18 dB ≈ 2.5%

1 - Measurements performed in the frame of our project, at McGill Photonics Laboratory.
2 - Results extracted from the state-of-the-art publications. Both cases have approximated results (+- 1

dB).

8.4 HyCo Execution Results

As presented in Chapter 6, the HyCo is powered by a Bloom filter, used to dynamically reduce
the controller latency as it executes. The real impact of the filter and the controller on a
system was verified. To do so, the devices presented in Chapter 7 were employed and different

95

network topologies were deployed. Different traffic patterns, such as complement and all-to-
all, were used. Figure 8.18 presents the latency for the following network configurations: 4×4
Spanke-Beneš topology, 4×4 Beneš topology, 6×6 Fat-Tree topology, 8×8 Beneš topology
[88], 8×8 Ring topology, 8×8 PILOSS topology [16], 16×16 Beneš topology, 32×32 Beneš
topology, 32×32 strictly non-blocking topology [89] and 64×64 Beneš topology. In most cases
as the system runs, the HyCo starts to exhibit lower latency. This is thanks to the HyCo’s
self-optimizing, powered by the Bloom filter. As presented in the figure, after running for a
given time, which changes depending on the topology, the filter reaches it threshold value and
the latency remains the same. For the topologies that are strictly non-blocking, the Bloom
filter has no impact. This happens as there are no impossible routes, therefore the Bloom
filter is never used. In the figure, the results are presented as a curve that relates latency
to time. The latency illustrates the number of clock cycles needed by the HyCo to compute
each request. The time axis is presented as a normalized time. This is thanks to the fact
that each topology is simulated for a given amount of time, needed to reach the threshold
value for the Bloom filter. For example, the 4×4 Spanke-Beneš is simulated for 2 seconds,
while the 6×6 fat-tree topology is simulated for 5 seconds. The 4×4 Spanke-Beneš reaches its
threshold value at around 1,35 seconds of execution, which represents ≈ 80% of its execution
time. The 8×8 Beneš reaches its threshold value at around 4.8 seconds, which is nearly all
of its execution time. In order to ease the visualization of the results, the curves are drawn
following this normalization approach.

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

0.2 0.4 0.6 0.8 1.0

C
y
c
le

s

Normalized Execution Time

4x4 Spanke-Benes
4x4 Benes
8x8 Benes

16x16
32x32
64x64

8x8 Ring
6x6 Fat-Tree
8x8 PILLOS
32x32 SNB

Figure 8.18 Obtained latency of the Hybrid Controller for different topologies.

96

8.5 HyCo Synthesis Reports

The HyCo was synthesized for different topologies: 4×4 Spanke-Beneš topology, 4×4 Beneš
topology, 6×6 Fat-Tree topology, 8×8 Beneš topology, 8×8 Ring topology, 8×8 PILOSS
topology, 16×16 topology, 32×32 topology, 32×32 strictly non-blocking topology and 64×64
topology. The chosen topologies were picked to show the HyCo latency for different scenarios,
with various radix, switches count, and topological properties. It is important to highlight
that the HyCo is not limited to the presented topologies. The only requirement for using
HyCO in other topologies is the generation of the LITE LUT.

Table 8.4 presents the obtained results after the synthesis of the Virtex V 330T Xilinx FPGA.
We give the number of FPGA logical blocks (FLB2) for each block, the minimum delay, as
well as the number of distributed configuration units (DCUs). For the 64×64 topology,
composed of almost 400 network nodes, the HyCo is able to operate with a delay of 8.57
ns. As presented in subsection 8.4, it takes five clock cycles on average for all the requests
to be granted. More specifically, in the worst case, the HyCo can receive, process and grant
requests in up to 50 ns.

Table 8.4 Synthesis values for the Virtex V 330T Xilinx FPGA

Network Topology #FLBs Block Delay (ns) #DCUs
4x4 Spanke-Beneš 1443 3.57 5

4x4 Beneš 1615 3.391 6
6x6 Fat-Tree Topology 3037 3.38 54

8x8 Ring Topology 2370 4.15 8
8x8 Beneš 2556 4.12 20

8x8 PILOSS Topology 3625 4.29 64
16x16 Topology 5792 6.25 48
32x32 Topology 18199 7.57 120

32x32 SNB Topology 32948 7.54 1024
64x64 Topology 67918 8.57 384

Table 8.5 illustrates the obtained results for the Stratix IV FPGA from Altera. Altera and
Xilinx rely on different technologies and synthesis techniques, and hence different values are
found considering the same scenarios. Compared to the Virtex V, the results for the Stratix
IV FPGA indicate a slighter bigger area and an increased block delay.

The last executed synthesis is targeting ASIC technology. For that, the proposed flow for the
65 nm STMicro technology was employed. Table 8.6 illustrates the obtained results, organized
in three columns presenting the results: Cell Area: occupied chip area for the synthesized

2In literature, these blocks are called LUTs. As in this work the term LUT is already employed for a
different context, the FPGA LUT blocks are named FLB.

97

Table 8.5 Synthesis values for the Stratix IV Altera FPGA

Network Topology FLBs Block Delay (ns) DCUs
4x4 Spanke-Beneš 2325 3.91 5

4x4 Beneš 2573 3.7 6
6x6 Fat-Tree Topology 3945 4.01 54

8x8 Ring Topology 2931 4.76 8
8x8 Beneš 3556 4.75 20

8x8 PILOSS Topology 3981 5.01 64
16x16 Topology 6587 6.75 48
32x32 Topology 19273 7.97 120

32x32 SNB Topology 41958 8.63 1024
64x64 Topology 85837 9.77 384

block, in millimetres; Block Delay: the block signals propagation delay, which shows the
minimum clock period for the block, and; DCU: the number of distributed configuration
units for each topology. Obtained results indicate that, in the worst case, the maximum
delay is 3.3 ns. Also, it is possible to see that for a 64×64 topology, composed of almost 400
distributed elements, the chip area would not exceed 34×34 mm, including wiring.

Table 8.6 Synthesis values for the 65nm STMicro Library

Network Topology Chip Area (mm2) Block Delay (ns) DCUs
4x4 Spanke-Beneš 2.59× 2.59 1.05 5

4x4 Beneš 2.75× 2.75 1.04 6
6x6 Fat-Tree Topology 7.03× 7.03 1.7 54

8x8 Ring Topology 4.29× 4.29 1.5 8
8x8 Beneš 5.2× 5.2 1.1 20

8x8 PILOSS Topology 6.71× 6.71 1.2 64
16x16 Topology 9.3× 9.3 1.5 48
32x32 Topology 18× 18 2 120
64x64 Topology 34× 34 3.3 388

8.6 Controllers Comparison

The LUCC and the HyCo were compared with the state-of-the-art controllers. For a fair
comparison, the well-known 8×8 Beneš [88] topology was used. The 8×8 Beneš was selected
as it is a well-established topology which is composed of a fair number of switches and is
not strictly non-blocking, thus requiring the controllers to perform routing and deal with
conflicts. Also, based on the fabricated optical switch, the latency for each optical bit to pass
through the network was rounded to 210 ps. The comparison was performed by analyzing
the total time required for a message to be arbitrated and passes through the network, such
that: TotalT ime = CL + Nob ∗ TD, where CL stands for control latency, Nob stands for

98

the number of bits transmitted and TD stands for transmission delay. Still, four different
message sizes (128 B, 256 B, 512 B, and 1 Kb) were used. Figure 8.19 presents the latency
comparison between the HyCo and LUCC and the three state-of-the-art solutions [73, 78, 79].

Figure 8.19 shows that the LUCC and HyCo latency are smaller than the fastest state-of-art
solutions. The provided solution [78] was validated through FPGA prototyping, using the
Xilinx 1I000E FPGA, with similar latency to our solutions. Nevertheless, its usage imposes
modifications on the application network layer, which is not always possible, thus reducing its
applicability. The approach used in [79] uses the same time division technique as this work,
and obtained fairly similar results. However, the solution is suited for one specific topology,
jeopardizing its application to other cases. Finally, the solution presented in [73] claims to
use an operation frequency of 5 GHz, which is not realistic, and hence the validations were
under simulations only.

 0

 50

 100

 150

 200

128 256 512 1024

T
im

e
 (

n
s
)

Message Size

LUCC
HyCo

[73]
[78]
[79]

 25

 30

 35

 40

 45

 50

 50

 55

 60

 65

 70

 75

 100

 105

 110

 115

 120

 125

 130

 210

 215

 220

 225

 230

 235

 240

Figure 8.19 Latency comparison between controllers and state-of-the-art.

Based on the presented results, it is possible to see that both the LUCC and the HyCo
have good performances when processing requests and dealing with conflict situations for
OIN-based systems. Due to implementation characteristics, the LUCC is suited for small

99

networks, while the HyCo might be applied to bigger topologies. The HyCo’s Bloom filter
shown to reduce the controller latency until it reaches a threshold value. Also, the Bloom filter
exploitation enabled to improve scaleability for HyCo. Besides showing the lowest latency,
neither controller demands any changes to the network layer, coping with the tendency for
the next generation of high-bandwidth networks.

100

CHAPTER 9 CONCLUSION

This chapter summarizes the main contributions of this thesis and presents the future work.

9.1 Final Remarks

Optical Integrated Networks (OINs) are currently considered to be one of the most promising
paradigm in the multiprocessor systems design context: they present high bandwidth, low
power consumption and low latency to broadcast information. Still, their application may be
restricted by poor controlling solutions and lack of proper design tools to aid OINs design.

In this context, we proposed the following contributions:

1. The definition of accurate system-level modelling method enabling the development of
a system-level simulation platform.

2. The definition and development of efficient control approaches for OIN-based systems.

The second contribution of this work is the development of low latency controlling
solutions, as it follows:

• Low latency centralized controller - a low latency controller based on pre-calculated
routes technique for OIN-based systems. This technique enables the exploitation
of full capacity of the OIN. Also, this controller is not specific to a given network
opology, and;

• Hybrid Controller - based on both a centralized and distributed units, it may be
used in high radix count systems and yet present low latency. Further, as the
LUCC, the HyCo is not limited by the network it is controlling, being able to
employ it in a variety of systems.

3. The system-level evaluation of the proposed control approaches using the defined mod-
elling methods.

Introduced models were integrated into a simulation platform, where it is possible to
design and test OIN-based systems from a system-level perspective. The developed
controllers could be deeply evaluated under different scenarios. Their impact could
be measured for different technologies, such as MZIs and MRs. Lastly, in the context

101

of system-level evaluation, the opto-electrical co-design of OIN-based systems was per-
formed. Optical integrated networks are still in the initial development stage, and their
application is still limited.

9.2 Future Work

This project opens several new research directions:

1. Expand the developed models in order to incorporate new features. Current models
perform power and timing analysis. Expanded models can evaluate new aspects, such
as heat dissipation.

2. Extend the controller by adding spatial routing support. Proposing a new approach
for exploring routing in both space and time. Our approach considered only the time
domain.

3. Further evaluation of the HyCo distributed units. The DCUs are able to perform
routing based on pre-calculated routes, stored as LUTs. Still, the relationship between
DCU size and obtained latency is not explored yet. Synthesis techniques could be
employed to discover the best relationship, in order for the best configuration to be
found.

4. Expand the co-design based on a commercial system. Even though the performed co-
design proved the OIN-based system feasibility, a design deployed after real systems
would enrich the contribution. For instance, a system targeting the Internet of Things
(IoT) servers could be deployed, which would serve as a perfect test case for OIN-based
systems on one of the mainstream future systems.

102

REFERENCES

[1] W. Wolf, A.A. Jerraya and G. Martin. Multiprocessor System-on-Chip (MPSoC) Tech-
nology. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 27(10):1701–1713, Oct 2008.

[2] T. Le and M. Khalid. NoC prototyping on FPGAs: A case study using an image
processing benchmark. In 2009 IEEE International Conference on Electro/Information
Technology, pages 441–445, June 2009.

[3] C. Hilton and B. Nelson. PNoC: a flexible circuit-switched NoC for FPGA-based
systems. IEEE Proceedings in Computers and Digital Techniques, 153(3):181 – 188,
May 2006.

[4] S. Tota, M.R. Casu, M.R. Roch and M. Zamboni. A multiprocessor based packet-
switch: performance analysis of the communication infrastructure. In IEEE Workshop
on Signal Processing Systems Design and Implementation, 2005., pages 172 – 177, nov
2005.

[5] L. Benini and G. De Micheli. Powering networks on chips: energy-efficient and reliable
interconnect design for SoCs. In Proceedings of the 14th International Symposium on
Systems Synthesis, ISSS ’01, pages 33–38, New York, NY, USA, 2001. ACM.

[6] ITRS. International technology roadmap for semiconductors, http://www.itrs.net/ -
last access on 12/2016.

[7] W. C. Lo, Y. H. Chen, C. T. Ko and M. G. Kao. TSV and 3D wafer bonding technologies
for advanced stacking system and application at ITRI. In 2009 Symposium on VLSI
Technology, pages 70–71, June 2009.

[8] S. Le Beux, G. Nicolescu, G. Bois and P. Paulin. A system-level exploration flow
for optical network on chip (ONoC) in 3D MPSoC. In Proceedings of 2010 IEEE
International Symposium on Circuits and Systems (ISCAS), pages 3613–3616, May
2010.

[9] I. P. Kaminow. Optical Integrated Circuits: A Personal Perspective. Journal of Light-
wave Technology, 26(9):994–1004, May 2008.

[10] W. J. Dally. Future Directions for On-Chip Interconnection Networks.
http://www.ece.ucdavis.edu/ ocin06/talks/dally.pdf.

103

[11] Euronymous: 3D integration: a revolution in design. Real World Technologies. May
2007 .

[12] A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta and M. B. Ritter. Exploitation
of optical interconnects in future server architectures. IBM Journal of Research and
Development, 49(4.5):755–775, July 2005.

[13] D.A.B. Miller. Rationale and challenges for optical interconnects to electronic chips.
Proceedings of the IEEE, 88(6):728–749, June 2000.

[14] B. G. Lee, A. V. Rylyakov, W. M. J. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio,
D. M. Kuchta, M. H. Khater, T. Barwicz, C. Reinholm, E. Kiewra, S. M. Shank, C.
L. Schow and Y. A. Vlasov. Monolithic Silicon Integration of Scaled Photonic Switch
Fabrics, CMOS Logic, and Device Driver Circuits. Journal of Lightwave Technology,
32(4):743–751, Feb 2014.

[15] M. S. Hai, P. Liao, M. M. Shafiei, O. Liboiron-Ladouceur. MZI-based Non-blocking SOI
Switches. In Asia Communications and Photonics Conference 2014, page ATh3A.147.
Optical Society of America, 2014.

[16] K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S. Kim, S. Suda, M. Ohno, T.
Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki and H.
Kawashima. Ultra-compact 8x8 strictly-non-blocking Si-wire PILOSS switch. Opt.
Express, 22(4):3887–3894, Feb 2014.

[17] D.A.B. Miller. Why use optics for interconnects. In LEOS ’97 10th Annual Meeting.
Conference Proceedings., IEEE, Nov 1997.

[18] A.R. Mickelson. Silicon photonics for on-chip interconnections. In Custom Integrated
Circuits Conference (CICC), 2011 IEEE, pages 1–8, Sept 2011.

[19] A. Shacham, K. Bergman, and L.P. Carloni. Photonic networks-on-chip for future
generations of chip multiprocessors. Computers, IEEE Transactions on, 57(9):1246–
1260, Sept 2008.

[20] A. Biberman, B. G. Lee, N. Sherwood-Droz, M. Lipson and K. Bergman. Broadband
Operation of Nanophotonic Router for Silicon Photonic Networks-on-Chip. IEEE Pho-
tonics Technology Letters, 22(12):926–928, June 2010.

[21] Z. Li, M. Mohamed, X. Chen, H. Zhou, A. Mickelson, L. Shang and M. Vachharajani.
Iris: A Hybrid Nanophotonic Network Design for High-performance and Low-power
On-chip Communication. J. Emerg. Technol. Comput. Syst., 7(2):8:1–8:22, July 2011.

104

[22] F. Lou, M. Moayedi Pour Fard, P. Liao, M. S. Hai, R. Priti, Y. Huangfu, C. Qiu, Q.
Hao, Z. Wei and O. Liboiron-Ladouceur. Towards a centralized controller for silicon
photonic MZI-based interconnects. In 2015 IEEE Optical Interconnects Conference
(OI), pages 146–147, April 2015.

[23] Y. Xiong, F. G. de Magalhães, B. Radi, G. Nicolescu, F. Hessel and O. Liboiron-
Ladouceur. Towards a Fast Centralized Controller for Integrated Silicon Photonic
Multistage MZI-based Switches. In Optical Fiber Communication Conference, page
W1J.2. Optical Society of America, 2016.

[24] Huawei Technologies. White Paper - Huawei Observation to NFV. Technical Report
399662, 2014.

[25] Ericsson AB. Network Functions Virtualization and Software Management. Technical
Report Uen 284 23-3248, 2014.

[26] R. Orobtchouk. On Chip Optical Waveguide Interconnect: the Problem of the In/Out
Coupling, pages 263–290. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[27] W. Bogaerts, P. Dumon, D. Taillaert, V. Wiaux, S. Beckx, B. Luyssaert, J. Van Camp-
enhout, D. Van Thourhout and R. Baets. SOI nanophotonic waveguide structures
fabricated with deep UV lithography. Photonics and Nanostructures - Fundamentals
and Applications, 2(2):81 – 86, 2004.

[28] M. Kawachi. Recent progress in silica-based planar lightwave circuits on silicon. IEE
Proceedings - Optoelectronics, 143(5):257–262, Oct 1996.

[29] X. Meng, V. Depauw, G. Gomard, O. El Daif, C. Trompoukis, E. Drouard, C. Jamois,
A. Fave, F. Dross, I. Gordon and C. Seassal. Design, fabrication and optical charac-
terization of photonic crystal assisted thin film monocrystalline-silicon solar cells. Opt.
Express, 20(S4):A465–A475, Jul 2012.

[30] F. Ay and A. Aydinli. Comparative investigation of hydrogen bonding in silicon based
PECVD grown dielectrics for optical waveguides . Optical Materials, 26(1):33 – 46,
2004.

[31] I. O’Connor. Optical solutions for system-level interconnect. In Proceedings of the
2004 International Workshop on System Level Interconnect Prediction, SLIP ’04, pages
79–88, New York, NY, USA, 2004. ACM.

105

[32] R. Paschotta. Signal to noise ratio. Encyclopedia of Laser Physics and Technology, 1,
Oct 2008.

[33] P Hariharan. Basics of interferometry. Elsevier Academic Press, Amsterdam Boston,
2007.

[34] S. Kumar, S. Raghuwanshi and A. Kumar. Implementation of optical switches using
Mach–Zehnder interferometer. Optical Engineering, 52(9):097106–097106, 2013.

[35] M.K. Chin and S.T. Ho. Design and modeling of waveguide-coupled single-mode mi-
croring resonators. Lightwave Technology, Journal of, 16(8):1433–1446, Aug 1998.

[36] S. Le Beux, J. Trajkovic, I. O’Connor, G. Nicolescu, G. Bois and P. Paulin. Optical
Ring Network-on-Chip (ORNoC): Architecture and design methodology. In Design,
Automation Test in Europe Conference Exhibition (DATE), 2011, pages 1–6, March
2011.

[37] A. Shacham, B.G. Lee, A. Biberman, K. Bergman and L.P. Carloni. Photonic NoC for
DMA Communications in Chip Multiprocessors. In 15th Annual IEEE Symposium on
High-Performance Interconnects, 2007. HOTI 2007., pages 29–38, Aug 2007.

[38] S. Pasricha and S. Bahirat. OPAL: A multi-layer hybrid photonic NoC for 3D ICs. In
2011 16th Asia and South Pacific Design Automation Conference (ASP-DAC), pages
345–350, Jan 2011.

[39] S. Koohi, A. Shafaei and S. Hessabi. An Optical Wavelength Switching Architecture
for a High-Performance Low-Power Photonic NoC. In 2011 IEEE Workshops of Inter-
national Conference on Advanced Information Networking and Applications (WAINA),
pages 1–6, March 2011.

[40] Z. Li, A. Qouneh, M. Joshi, W. Zhang, X. Fu and T. Li. Aurora: A Cross-Layer
Solution for Thermally Resilient Photonic Network-on-Chip. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, PP(99):1–1, 2014.

[41] W.P. Boothroyd and E.M. Creamer. A time division multiplexing system. Transactions
of the American Institute of Electrical Engineers, 68(1):92–97, July 1949.

[42] A.C. Lantz and B. Mukherjee. Efficient and modified round-robin protocols for fiber
optic networks. In Communications, 1990. ICC ’90, Including Supercomm Technical
Sessions. SUPERCOMM/ICC ’90. Conference Record., IEEE International Conference
on, pages 1687–1691 vol.4, Apr 1990.

106

[43] J. Carson. The emergence of stacked 3D silicon and its impact on microelectronics sys-
tems integration. In Proceedings of the Eighth Annual IEEE International Conference
on Innovative Systems in Silicon, 1996, pages 1–8, Oct 1996.

[44] M.G. Smith and S. Emanuel. Methods of making thru-connections in semiconductor
wafers, September 26 1967. US Patent 3,343,256.

[45] S.J. Ben Yoo, B. Guan and R.P. Scott. Heterogeneous 2D/3D photonic integrated
microsystems. In Microsystems & Nanoengineering, volume 2, page 16030, 2016.

[46] C. White. Data communications and computer networks : a business user’s approach.
Thomson Course Technology, Boston, Mass, 2007.

[47] J. Chan and K. Bergman. Photonic interconnection network architectures using
wavelength-selective spatial routing for chip-scale communications. IEEE/OSA Journal
of Optical Communications and Networking, 4(3):189–201, March 2012.

[48] G. Booch. The unified modeling language user guide. Addison-Wesley, Upper Saddle
River, NJ, 2005.

[49] M. Elhaji, P. Boulet, A. Zitouni, S. Meftali, J. Dekeyser and R. Tourki. System Level
Modeling Methodology of NoC Design from UML-MARTE to VHDL. Des. Autom.
Embedded Syst., 16(4):161–187, November 2012.

[50] M. Zhou. Modeling, simulation, and control of flexible manufacturing systems : a Petri
net approach. World Scientific, Singapore River Edge, NJ, 1999.

[51] J. L. Rosenfeld. Information processing 74 : proceedings of IFIP Congress 74. North-
Holland American Elsevier, Amsterdam New York, 1974.

[52] Robert Allen and David Garlan. A formal basis for architectural connection. ACM
Trans. Softw. Eng. Methodol., 6(3):213–249, July 1997.

[53] P.H. Feiler, D.P. Gluch, and J.J. Hudak. The Architecture Analysis & Design Lan-
guage (AADL): An Introduction. Technical Report CMU/SEI-2006-TN-011, Software
Engineering Institute, Carnegie Mellon University, 2006.

[54] Peter J. Ashenden. The Designer’s Guide to VHDL, Volume 3, Third Edition (Systems
on Silicon) (Systems on Silicon). Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 3 edition, 2008.

107

[55] S. Palnitkar. Verilog HDL: A Guide to Digital Design and Synthesis, Second Edition.
Prentice Hall Press, Upper Saddle River, NJ, USA, second edition, 2003.

[56] B. Stroustrup. The C++ Programming Language. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 3rd edition, 2000.

[57] J. Gosling, B. Joy, G.L. Steele Jr., G. Bracha and A. Buckley. The Java Language
Specification, Java SE 7 Edition. Addison-Wesley Professional, 1st edition, 2013.

[58] Lumerical tools - https://www.lumerical.com/tcad-products/ - last access on 03/2017.

[59] Vpicomponentmaker photonic circuits -
http://www.vpiphotonics.com/applications/photoniccircuits/ - last access on 03/2017.

[60] Optiwave: Design software for photonics - http://optiwave.com/ - last access on
03/2017.

[61] Matlab - http://www.mathworks.com/products/matlab/ - last access on 03/2017.

[62] Synopsys optical solutions: Optsim - http://optics.synopsys.com/rsoft/rsoft-system-
network-optsim.html - last access on 03/2017.

[63] Optilux: and open source of light - http://optilux.sourceforge.net/ - last access on
03/2017.

[64] Y. Xie, M. Nikdast, J. Xu, W. Zhang, Q. Li, X. Wu, Y. Ye, X. Wang and W. Liu.
Crosstalk noise and bit error rate analysis for optical network-on-chip. In Design Au-
tomation Conference (DAC), 2010 47th ACM/IEEE, pages 657–660, June 2010.

[65] Q. Shixiong, W. Kun, G. Huaxi, W. Kang and W. Xiaolu. Crosstalk analysis for
closed ring-based optical network-on-chip. In 2015 IEEE International Conference on
Communication Problem-Solving (ICCP), pages 331–333, Oct 2015.

[66] J. Chan, G. Hendry, A. Biberman, K. Bergman and L.P. Carloni. PhoenixSim: A
simulator for physical-layer analysis of chip-scale photonic interconnection networks.
In Design, Automation Test in Europe Conference Exhibition (DATE), 2010, pages
691–696, March 2010.

[67] György Pongor. OMNeT: Objective Modular Network Testbed. In MASCOTS ’93:
Proceedings of the International Workshop on Modeling, Analysis, and Simulation On
Computer and Telecommunication Systems, pages 323–326, San Diego, CA, USA, 1993.
The Society for Computer Simulation, International.

108

[68] J.E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio, J. Eastep,
and A. Agarwal. GRAPHITE: A distributed parallel simulator for multicores. In
2010 IEEE 16th International Symposium on High Performance Computer Architecture
(HPCA), pages 1–12, Jan 2010.

[69] C. Sun, C.H.O. Chen, G. Kurian, W. Lan, J. Miller, A. Agarwal, P. Li-Shiuan and
V. Stojanovic. DSENT - A Tool Connecting Emerging Photonics with Electronics for
Opto-Electronic Networks-on-Chip Modeling. In 2012 Sixth IEEE/ACM International
Symposium on Networks on Chip (NoCS), pages 201–210, May 2012.

[70] N. Jiang, D.U. Becker, G. Michelogiannakis, J. Balfour, B. Towles, D.E. Shaw, J. Kim
and W.J. Dally. A detailed and flexible cycle-accurate Network-on-Chip simulator. In
Performance Analysis of Systems and Software (ISPASS), 2013 IEEE International
Symposium on, pages 86–96, April 2013.

[71] P. Bhojwani, R. Mahapatra, J.K. Eun and T. Chen. A heuristic for peak power con-
strained design of network-on-chip (NoC) based multimode systems. In VLSI Design,
2005. 18th International Conference on, pages 124–129, Jan 2005.

[72] H. Jia, Y. Zhao, L. Zhang, Q. Chen, J. Ding, X. Fu and L. Yang. Five-Port Optical
Router Based on Microring Switches for Photonic Networks-on-Chip. IEEE Photonics
Technology Letters, 25(5):492–495, March 2013.

[73] Z. Li and T. Li. ESPN: A case for energy-star photonic on-chip network. In 2013 IEEE
International Symposium on Low Power Electronics and Design (ISLPED), pages 377–
382, Sept 2013.

[74] M. M. K. Martin, D.J. Sorin, B.M. Beckmann, M.R. Marty, M. Xu, A.R. Alameldeen,
K.E. Moore, M.D. Hill and D.A. Wood. Multifacet’s General Execution-driven Multi-
processor Simulator (GEMS) Toolset. SIGARCH Comput. Archit. News, 33(4):92–99,
November 2005.

[75] H.A. Khouzani, S. Koohi and S. Hessabi. Fully contention-free optical NoC based on
wavelenght routing. In 2012 16th CSI International Symposium on Computer Archi-
tecture and Digital Systems (CADS), pages 81–86, May 2012.

[76] M. Briere, B. Girodias, Y. Bouchebaba, G. Nicolescu, F. Mieyeville, F. Gaffiot and
I. O’Connor. System Level Assessment of an Optical NoC in an MPSoC Platform.
In Design, Automation Test in Europe Conference Exhibition, 2007. DATE ’07, pages
1–6, April 2007.

109

[77] J. Wang, B. Li, Q. Feng and W. Dou. A Highly Scalable Butterfly-Based Photonic
Network-on-Chip. In 2012 IEEE 12th International Conference on Computer and In-
formation Technology (CIT), pages 33–37, Oct 2012.

[78] H. Yang, V. Akella, C. N. Chuah and S. J. B. Yoo. Design of Novel Optical Router
Controller and Arbiter Capable of Asynchronous, Variable length Packet Switching.
In International Conference on Photonics in Switching, 2006. PS ’06., pages 1–3, Oct
2006.

[79] M. Shoaib. Selectively Weighted Multicast Scheduling Designs For Input-Queued
Switches. In 2007 IEEE International Symposium on Signal Processing and Infor-
mation Technology, pages 92–97, Dec 2007.

[80] Y. Liu, M. T. Hill, H. de Waardt, G. D. Khoe and H. J. S. Dorren. All-optical buffering
using laser neural networks. IEEE Photonics Technology Letters, 15(4):596–598, April
2003.

[81] D.K. Hunter, M.C. Chia and I. Andonovic. Buffering in optical packet switches. Journal
of Lightwave Technology, 16(12):2081–2094, Dec 1998.

[82] M. Renaud, C. Janz, P. Gambini and C. Guillemot. Transparent optical packet switch-
ing: The European ACTS KEOPS project approach. In IEEE Lasers and Electro-
Optics Society 1999 12th Annual Meeting, 1999.

[83] T. Sakamoto, K. Noguchi, R. Sato, A. Okada, Y. Sakai and M. Matsuoka. Variable
optical delay circuit using wavelength converters. Electronics Letters, 37(7):454–455,
Mar 2001.

[84] Mode from lumerical tools - https://www.lumerical.com/tcad-products/mode/ - last
access on 03/2017.

[85] S. Le Beux, I. O’Connor, G. Nicolescu, G. Bois and P. Paulin. Reduction Methods
for Adapting Optical Network on Chip Topologies to 3D Architectures. Microprocess.
Microsyst., 37(1):87–98, February 2013.

[86] N. Jasika, N. Alispahic, A. Elma, K. Ilvana, L. Elma and N. Nosovic. Dijkstra’s shortest
path algorithm serial and parallel execution performance analysis. In Proceedings of
the 35th International Convention MIPRO, May 2012.

[87] H. Gu, K. H. Mo, J. Xu and W. Zhang. A Low-power Low-cost Optical Router for
Optical Networks-on-Chip in Multiprocessor Systems-on-Chip. In 2009 IEEE Computer
Society Annual Symposium on VLSI, pages 19–24, May 2009.

110

[88] V.E. Beneš. On rearrangeable threestage connecting networks. pages 1481–1492. Bell
Syst. Tech. J., 1962.

[89] K. Tanizawa, K. Suzuki, S. Suda, H. Matsuura, K. Ikeda, S. Namiki and H. Kawashima.
Silicon photonic 32x32 strictly-non-blocking blade switch and its full path character-
ization. In 2016 21st OptoElectronics and Communications Conference (OECC) held
jointly with 2016 International Conference on Photonics in Switching (PS), pages 1–3,
July 2016.

[90] F. G. de Magalhães, F. Hessel, O. Liboiron-Ladouceur and G. Nicolescu. Cluster-based
architecture relying on Optical Integrated Networks with the provision of a low-latency
arbiter]. In 2016 29th Symposium on Integrated Circuits and Systems Design (SBCCI),
pages 1–6, Aug 2016.

[91] N. McKeown. The iSLIP scheduling algorithm for input-queued switches. IEEE/ACM
Transactions on Networking, 7(2):188–201, Apr 1999.

[92] Petros Mol, Todor Ristov, and Nikolaos Trogkanis. Throughput/Fairness Trade offs
for the iSLIP Scheduling Algorithm. 2009.

[93] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North and G. Woodhull. Graphviz
and dynagraph – static and dynamic graph drawing tools. In GRAPH DRAWING
SOFTWARE, pages 127–148. Springer-Verlag, 2003.

[94] J. Leeuwen. Handbook of theoretical computer science. Elsevier MIT Press, Amsterdam
New York Cambridge, Mass, 1994.

[95] B.H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable Errors. Commun.
ACM, 13(7):422–426, July 1970.

[96] Handbook of Digital Techniques for High-Speed Design. Pearson Education, 2007.

[97] DIA Diagram Editor - http://dia-installer.de/index.html.en - Last access on 12/2016.

[98] XILINX. http://www.xilinx.com - Last access on 12/2016, 2007.

[99] Altera Stratix IV - http://tinyurl.com/neqmmj3 - last access on 07/2016.

[100] Signaltap II Embedded Logic Analyzer - http://tinyurl.com/nhx69nj - last access on
07/2016.

111

[101] Y. Xiong, F. G. de Magalhães, G. Nicolescu, F. Hessel and O. Liboiron-Ladouceur. Co-
design of a Low-latency Centralized Controller for Silicon Photonic Multistage MZI-
based Switches. In Optical Fiber Communication Conference, page Th2A.37. Optical
Society of America, 2017.

112

ANNEXE A IMPLEMENTATION DETAILS

The details regarding the implementation optical models as well as the SF-Sim usage are
presented in this annex. Focusing in the 2×2 switching block, which is used to build all
topologies illustrated in this thesis, the aspects of its behaviour are illustrated. Further, the
steps taken for the SF-Sim to be exploited are presented, illustrating the entire description
and configuration flow.

2x2 Switch

The 2×2 switching blocks, introduced in Figure 7.2 are used to build the network topologies
in this thesis. Simplifying, the physical realization of optical switches involves waveguides and
transmitted beans of light. The switching aspects of such optical blocks take into account
their physical characteristics, as introduced in Section 2.1. Nevertheless, it is required a
lot of computational power for a simulator to handle all those aspects, as they are mostly
ruled by differential equations. In this context, the modelled optical devices use abstractions
in order to emulate the optical behaviour, while maintaining simplicity. VHDL is used as
description language, as it holds the closest relation to the hardware layer. Still, the same
approach introduced in this annex can be employed to describe the optical blocks using
different programming languages.

The implemented models take advantage of VHDL features in order to capture the emulated
optical behaviours. For example, in order to emulate the transmission delay of the optical
blocks, the synchronization characteristics provided by clocking signals in VHDL can be used.
This way, it is possible to define a clock configured with the desired transmission delay and
use it as transmission windows.

The described switches work by logically choosing the direction that inserted data must follow
by using the config and we signals and based on their combination, writing the input port on
the output port after a given delay. Table A.1 presents the logical used to select which input
will be directed to each output, where X’s mean the output is not being used. The following
signals are employed:

• config: holds the switching block configuration, where ’0’ represents BAR state and
’1’ represents CROSS-BAR state;

• we: enables the transmission of the designed port. It is a two-bit signal, where the bit

113

zero is used as write enable of input 0 and bit one is used as write enable of input 1;

• output: is the switch output, which receives the inserted data. It is a two-bit signal,
one bit for each output, and;

• input: the switch input. It is a two-bit signal: bit zero is the input 0 and bit one is
the input 1.

Table A.1 2x2 Switch Logic Table

config we(0) we(1) output(0) output(1)
0 0 0 X X
0 0 1 X input(1)
0 1 0 input(0) X
0 1 1 input(0) input(1)
1 0 0 X X
1 0 1 X input(0)
1 1 0 input(1) X
1 1 1 input(1) input(0)

Figure A.1 illustrates the overview of the 2×2 switching block and its control and I/O signals.
In the figure, it is possible to see the two inputs, the control bit (config), the write enable
bits (we(0) and we(1)) and the switch outputs.

Figure A.1 2×2 switch block overview.

Figure A.2 illustrates a finite state machine diagram (FSM) that shows the required steps the
switch selection mechanism should perform: (i) while we signal is low (two bits), the switch
is idle; (ii) if we gets high for any bit, the FSM moves for the next stage: pick the correct
output, and; (iii) while the we signal stays high, the switch keeps transmitting, where each
output receives its related input1.

1the following nomenclature is used: (wr01) means that output zero receives input one at the same time

114

idle

pick

pick
wr01

wr10

we = 00
we! = ∗1

we! = 1∗

we! = 00

we! = 00

config = 0

config = 1

config = 1

config = 0

we = 00

we = 00

Figure A.2 2×2 switch output selection logic

The Listing A.1 presents the 2×2 MZI-based switch instantiation (in VHDL), where the
signals used to interact with the MZI are shown. In this model, the following signals are
employed:

• reset: as this model is described as a digital block, this signal resets all involved signals
of the block;

• clk: used as the synchronization signal. Is configured based on the desired transmission
delay of the optical block;

• input: receives the incoming data;

• output: receives the inserted data from its paired input port;

• we: enables the transmission of the designed port;

• config: holds the switching block configuration, where ’0’ represents BAR state and ’1’
represents CROSS-BAR state;

that output one received inputs zero, and; (wr10) means that output one receives input one at the same
time that output zero receives input zero.

115

• sending: signalizes that the switch has data coming out. It is used when connecting
several switches, so they can synchronize the transmission;

• i_pwr: input optical power, and;

• o_pwr: output optical power, after the involved losses in the transmission.

Listing A.1 2×2 MZI-based Switch instantiation in VHDL
1 e n t i t y switch_2x2 i s
2 g e n e r i c (
3 power_count : s t r i n g := "ON"
4) ;
5 port (
6 r e s e t : in s td_log i c ;
7
8 i_we : in std_log ic_vector (1 downto 0) ;
9 c o n f i g : in s td_log i c ;

10 input : in s td_log ic_vector (1 downto 0) ;
11
12 o_we : out std_log ic_vector (1 downto 0) ;
13 output : out s td_log ic_vector (1 downto 0) ;
14
15 i_pwr : in SWITCH_POWER;
16 o_pwr : out SWITCH_POWER
17) ;
18 end switch_2x2 ;

Hereafter, having the internal switch logic defined, the design is translated into logical ports
(NORs, ANDs, ORs, Muxes, Flip-Flops, etc) so it can be simulated. Figure A.3 presents the
final 2×2 Switch internal organization and connections. All other components are built over
this basic block.

Figure A.3 Logical Block of Described 2×2 MZI-based Switch

116

VHDL Package

In order to ease the usage of the described models, a VHDL package file was created so basic
simulation configurations could be written directly to it, facilitating future deployments.
Listing A.2 presents the created package with types, constants and function definitions,
which are going to be used from this point on.

Listing A.2 Package with definitions in VHDL
1 package sim_pack i s
2 c o n s t a n t ATOMIC_UNITS: i n t e g e r := 5 ; −−number o f 2x2 b l o c k s
3 c o n s t a n t MZI_BAR_DELAY : time := 4 ps ; −−component t r a n s m i s s i o n delay (SIM)
4 c o n s t a n t MZI_CROSS_DELAY : time := 4 ps ; −−component t r a n s m i s s i o n delay (SIM)
5 c o n s t a n t MR_BAR_DELAY : time := 4 ps ; −−component t r a n s m i s s i o n delay (SIM)
6 c o n s t a n t MR_CROSS_DELAY : time := 4 ps ; −−component t r a n s m i s s i o n delay (SIM)
7 c o n s t a n t MZI_PERIOD: time := MZI_CROSS_DELAY/ 2 ; −−d e f i n e d p e r i o d f o r i n t e r n a l s w i tc h delay (Emu)
8 c o n s t a n t MR_PERIOD: time := MR_CROSS_DELAY/ 2 ; −−d e f i n e d p e r i o d f o r i n t e r n a l s w i tc h delay (Emu)
9 c o n s t a n t IP_PERIOD : time := 10 ns ; −−d e f i n e d p e r i o d f o r IP s i m u l a t i o n

10
11 −−FLIT DEFINITION
12 c o n s t a n t MESSAGE_SIZE: i n t e g e r := 1 6 ; −− f l i t s i z e , i n b i t s
13 subtype MESSAGE i s s t d _ l o g i c _ v e c t o r (MESSAGE_SIZE−1 downto 0) ; −−one f l i t
14
15 c o n s t a n t MESSAGE_PACKAGE: i n t e g e r := 1 0 ; −−package s i z e , i n f l i t s
16 type MESSAGE_ARRAY i s array (MESSAGE_PACKAGE−1 downto 0) o f MESSAGE; −−package array
17 type MESSAGES_INPUT i s array (NETWORK_IOS−1 downto 0) o f MESSAGE;
18
19 −−SERDES IN/OUT RATE
20 c o n s t a n t SERDES_RATE: time := (IP_PERIOD/MESSAGE_SIZE) − MZI_BAR_DELAY;
21
22 −−POWER DEFINITIONS (mW)
23 type POWER_MEASURE i s range 0 . 0 to 9 9 9 9 9 9 9 9 . 0 ; −−type d e f i n i t i o n
24 type NET_POWER i s array (NETWORK_IOS−1 downto 0) o f POWER_MEASURE; −−network power
25 c o n s t a n t MZI_INS_LOSS : POWER_MEASURE := 0 . 7 9 4 3 2 8 ; −−MZI i n s e r t i o n l o s s , i n %
26 c o n s t a n t MR_INS_LOSS : POWER_MEASURE := 0 . 7 9 4 3 2 8 ; −−MR i n s e r t i o n l o s s , i n %
27 c o n s t a n t MZI_BAR_LOSS : POWER_MEASURE := 0 . 7 9 4 3 2 8 ; −−MZI BAR t r a n s m i s s i o n i n s e r t i o n l o s s , i n %
28 c o n s t a n t MZI_CROSS_LOSS : POWER_MEASURE := 0 . 7 9 4 3 2 8 ; −−MZI CROSS t r a n s m i s s i o n i n s e r t i o n l o s s , i n %
29 c o n s t a n t MR_BAR_LOSS : POWER_MEASURE := 0 . 7 9 4 3 2 8 ; −−MR BAR t r a n s m i s s i o n i n s e r t i o n l o s s , i n %
30 c o n s t a n t MR_CROSS_LOSS : POWER_MEASURE := 0 . 7 9 4 3 2 8 ; −−MR CROSS t r a n s m i s s i o n i n s e r t i o n l o s s , i n %
31 c o n s t a n t LASER_INPUT_POWER : POWER_MEASURE := 1 5 . 0 ; −−power o f input l a s e r
32 end sim_pack ;

SF-Sim Design Flow

This section presents the design flow when using the SF-Sim to deploys a system. A 4×4
topology will be described.

First, the general simulation parameters should be configured, as presented in Figure A.4.

• Number of IOs: defines the number of IP nodes in the system. In the figure, four IPs
will be connected to the configured network.

• IPs Period: the IPs execution period, consequently frequency. In this case, 10 ns or
100 MHz.

• Flit Size: is the number of bits of each transmitted package. In the figure, each flit is
configured to have 16 bits.

117

• Message Size: is the number of transmitted packages. In this case, 10 flits are trans-
mitted. As each flit is configured with 16 bit, in total 160 bits are to be transmitted.

• Laser Input Power: defines the available laser power on each network input.

Figure A.4 SF-Sim GUI Configuration Window.

Next, the MZI and MR configuration is performed. Dynamic parameters should be config-
ured, as presented in Figure A.5.

• BAR Transmission Delay: defines the transmission delay, when in BAR state. Param-
eter in pico-seconds.

• CROSS Transmission Delay: defines the transmission delay, when in CROSS state.
Parameter also in pico-seconds.

• BAR Transmission Loss: is the transmission loss, when the switch is configured to
BAR state. The loss is defined in dB.

• CROSS Transmission Loss: is the transmission loss, when the switch is configured to
CROSS state. Again, the loss is defined in dB.

• Coupling Loss: defines the coupling loss for I/O switches. As the last two cases, the
loss is defined in dB.

118

Figure A.5 SF-Sim GUI MZI configuration window.

After configuring the simulation parameters, the user should describe the system. To do
so, the DIA tool is used. When the Create Graph button is triggered, the DIA interface
is called. The Figure A.6 presents the DIA tool main window. In the initial screen, it is
possible to see the available components in the left and the workbench in the right. To build
the system the user can use the drag-and-drop feature and simply connect desired network
nodes. The available components in the tool are the ones presented as building blocks in
this thesis: 2×2 blocks (MR and MZI), 4×4 blocks (Beneš and Spanke-Beneš) as well as a
strictly non-blocking 8×8 topology.

119

Figure A.6 SF-Sim GUI DIA configuration window.

Figure A.7 shows the workbench filled with 12 2×2 switches used to build the strictly non-
blocking 4×4 Beneš topology. At this point no connection neither IPs are placed, only the
network nodes.

120

Figure A.7 SF-Sim GUI DIA Workbench.

Next, it is possible to connect the placed nodes in the workbench. To do so, the available
arrows should be used and their direction respected. Figure A.8 illustrates the 12 2×2
switches connected to each other.

Figure A.8 SF-Sim GUI DIA Workbench Presenting Connected Nodes.

After, the I/O nodes should be placed and connected to their input and output switches.
Figure A.9 shows the I/O nodes with their respective switches.

121

Figure A.9 SF-Sim GUI DIA Workbench I/O Nodes Placement.

Finally, the I/O nodes should be coloured in order to the proper I/O mapping to be set.
Figure A.10 shows the coloured I/O nodes with their respective switches. In the figure,
coloured nodes in the left are input nodes and coloured nodes in the right are output nodes.

Figure A.10 SF-Sim GUI DIA Workbench I/O Nodes Colouring.

After all the system is described and configured, the user can trigger the Generate button.
This will generate all needed files to simulate the created system, besides the HyCo files to
control the same system. Figure A.11 presents the generated files. The following files are
presented: the HyCo VHDL files, used to control the described network. The simulation files,

122

such as the MZI/MR switching blocks and the Modelsim script, to trigger the simulation.
Further, the VHDL package, which holds all the configurations needed to simulate the system
is created as well. The traffic generator, used to inject data in simulated networks and finally,
the test bench files are created.

Figure A.11 SF-Sim Generated Files.

	DEDICATORY
	ACKNOWLEDGMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ACRONYMS AND ABBREVIATIONS
	LIST OF ANNEXES
	1 INTRODUCTION
	1.1 Context and Motivations
	1.2 Objectives & Contributions
	1.3 Document Organization

	2 BASIC CONCEPTS
	2.1 Basic Concepts Related to Optical Interconnects
	2.1.1 Mach-Zehnder Interferometer
	2.1.2 Micro-Ring Resonator
	2.1.3 Optical Integrated Networks

	2.2 Control Unit
	2.2.1 Time Sharing
	2.2.2 Dynamically Paths Setting
	2.2.3 Wavelength Division

	2.3 High-level Modelling Strategies and Description Languages

	3 RELATED WORK
	3.1 Modelling, Simulation and Evaluation
	3.1.1 Industrial Tools
	3.1.2 Academic Tools

	3.2 Controlling Schemes

	4 METHODOLOGY
	4.1 Methodology Overview
	4.2 High-level Modelling
	4.3 Control Unit Design
	4.4 Validation Architectures
	4.4.1 Switches
	4.4.2 Topologies

	5 CONTROL UNIT - THE LUCC
	5.1 Path Analyzer and LUT Creation - The PALC
	5.2 Conflict Resolution Block - The CRB
	5.3 Dynamic Setup Block
	5.4 Discussion

	6 CONTROL UNIT - THE HYCO
	6.1 Conflict Resolution Unit
	6.2 Bloom Filter
	6.3 Access Control Unit (ACU)
	6.4 Distributed Configuration Unit (DCU)
	6.5 Discussion
	6.5.1 HyCo and LUCC Comparison

	7 SIMULATION PLATFORM - THE SF-SIM
	7.1 Discussion

	8 RESULTS
	8.1 LUCC Execution Results
	8.1.1 LUCC Simulation
	8.1.2 LUCC Prototyping in Xilinx FPGA
	8.1.3 LUCC Prototyping in Altera FPGA

	8.2 Co-Design of the Control Unit and the Optical Switch
	8.3 Models Integration
	8.4 HyCo Execution Results
	8.5 HyCo Synthesis Reports
	8.6 Controllers Comparison

	9 CONCLUSION
	9.1 Final Remarks
	9.2 Future Work

	REFERENCES
	ANNEXES

