
Titre:
Title:

Change impact analysis of multi-language and heterogeneously-
licensed software

Auteurs:
Authors:

Ferdaous Boughanmi

Date: 2010

Type: Rapport / Report

Référence:
Citation:

Boughanmi, F. (2010). Change impact analysis of multi-language and
heterogeneously-licensed software. (Rapport technique n° EPM-RT-2010-06).
https://publications.polymtl.ca/2655/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/2655/

Version: Version officielle de l'éditeur / Published version

Conditions d’utilisation:
Terms of Use: Tous droits réservés

Document publié chez l’éditeur officiel
Document issued by the official publisher

Institution: École Polytechnique de Montréal

Numéro de rapport:
Report number:

EPM-RT-2010-06

URL officiel:
Official URL:

Mention légale:
Legal notice:

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/2655/
https://publications.polymtl.ca/2655/

EPM–RT–2010-06

CHANGE IMPACT ANALYSIS OF MULTI-LANGUAGE
AND HETEROGENEOUSLY-LICENSED SOFTWARE

Ferdaous Boughanmi
Département de Génie informatique et génie logiciel

École Polytechnique de Montréal

Septembre 2010

EPM-RT-2010-06

Change Impact analysis of Multi-Language and
Heterogeneously-licensed Software

Ferdaous Boughanmi
Département de génie informatique et génie logiciel

École Polytechnique de Montréal

Septembre 2010

2010
Ferdaous Boughanmi
Tous droits réservés

Dépôt légal :
Bibliothèque nationale du Québec, 2010
Bibliothèque nationale du Canada, 2010

EPM-RT-2010-06
Change Impact analysis of Multi-Language and Heterogeneously-licensed Software
par : Ferdaous Boughanmi
Département de génie informatique et génie logiciel
École Polytechnique de Montréal

Toute reproduction de ce document à des fins d'étude personnelle ou de recherche est autorisée à
la condition que la citation ci-dessus y soit mentionnée.

Tout autre usage doit faire l'objet d'une autorisation écrite des auteurs. Les demandes peuvent
être adressées directement aux auteurs (consulter le bottin sur le site http://www.polymtl.ca/

) ou
par l'entremise de la Bibliothèque :

École Polytechnique de Montréal
Bibliothèque – Service de fourniture de documents
Case postale 6079, Succursale «Centre-Ville»
Montréal (Québec)
Canada H3C 3A7

Téléphone : (514) 340-4846
Télécopie : (514) 340-4026
Courrier électronique :

biblio.sfd@courriel.polymtl.ca

Ce rapport technique peut-être repéré par auteur et par titre dans le catalogue de la Bibliothèque :
http://www.polymtl.ca/biblio/catalogue.htm

http://www.polymtl.ca/biblio/catalogue.htm�

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Change Impact analysis of

Multi-Language and

Heterogeneously-licensed Software

by

Ferdaous Boughanmi

A proposal submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Département de génie informatique et génie logiciel

September 2010

http://www.polymtl.ca/
http://www.veneraarnaoudova.ca/
http://www.polymtl.ca/gigl/

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Abstract

Département de génie informatique et génie logiciel

Doctor of Philosophy

by Ferdaous Boughanmi

Today software systems are built with heterogeneous languages such as Java, C, C++,

XML, Perl or Python just to name a few. This introduces new challenges both for the

software analysis domain and program evolution as programmers must to cope with a

variety of programming paradigms and languages. We believe that there is the need of

global views supporting developers to effectively cope with complexity and to facilitate

program comprehension and analysis of such heterogeneous systems. Furthermore, the

heterogeneity of the systems is not limited to the language but also impacts the compo-

nents licensing. In fact, licensing is another type of heterogeneity introduced by the large

reuse of open source code. The heterogeneity of licenses also introduces challenges such

how to legally combine components in different programming languages and licenses in

the same system and how the change of the software can create a violation of licenses. In

this context, we would like to develop a re-engineering tool for analysing change impact

of heterogeneously licensed system considering multi-language environment. First, we

want to study change impact analysis in multi-language system in general and extend

it to support the issue of licenses.

http://www.polymtl.ca/
http://www.polymtl.ca/gigl/
http://www.veneraarnaoudova.ca/

Contents

Abstract i

List of Figures v

List of Tables vi

1 Introduction 1

1.1 Context . 2

1.1.1 Why we develop multi-language system and heterogeneously-licensed
software? . 2

1.1.2 Open Source Software . 3

1.1.2.1 Collective and derivative works 3

1.1.2.2 Types of Licenses . 4

1.1.2.3 GPL, BSD, Apache . 5

1.1.3 Organization of the report . 8

2 Problematic and research questions 10

2.1 Change impact analysis . 12

2.1.1 Dependencies extraction . 14

2.1.2 Representation of extracted data 14

2.2 Heterogeneity of the licenses and their constraints 15

2.3 Change impact on license compatibility analysis 17

3 State of the Art 18

3.1 Re-engineering of multi-language program 18

3.2 Licenses analysis . 22

4 Approach 25

4.1 RQ1: What is the change impact analysis on multi-language program? . . 25

4.1.1 Dependencies extraction . 25

4.1.2 Implementation of Change impact analysis tool 28

4.2 RQ2: What are the possible architectures of a heterogeneously licensed
system? . 28

4.3 RQ3: What is the impact of source code change on license compatibility? 30

5 On going work 33

ii

Contents iii

5.1 Possible architectures of a heterogeneously licensed system 33

5.1.1 Interaction between Java and C . 34

5.1.1.1 Calling C program From Java program 34

Linking . 34

Fork . 35

IPC . 36

5.1.1.2 Call Java from C program 36

Linking . 36

Fork . 37

IPC . 37

Plugins . 37

5.1.2 Open Source Licenses . 38

5.1.2.1 Modeling open source licenses 38

5.1.2.2 Modeling licenses compatibility 39

5.1.3 Software Architecture . 40

5.1.3.1 Definition . 40

5.1.3.2 Software architecture elements 40

5.1.4 Possible Architectures . 41

5.1.4.1 Example of possible architectures for program written
with Java and C . 41

5.1.4.2 Formalisation and definition 43

5.1.4.3 System expert . 45

5.2 Preliminary work for change impact analysis: Extraction of dependencies
and types of interconnection . 45

6 Conclusion and planning 48

6.1 Planning . 48

6.2 Conclusion . 49

7 Annexe: Interaction between Perl/C and Java/Perl 50

7.0.1 Interaction between Perl and C . 50

7.0.1.1 Calling C from Perl . 50

Linking . 50

Fork : system call . 56

SubClass . 57

7.0.1.2 IPC . 57

Plugin . 57

7.0.1.3 Calling Perl from C . 57

Linking . 57

Fork : Calling a Perl executable in C program 59

7.0.1.4 SubClass . 60

IPC . 60

Plugin . 60

7.0.2 Interaction between Java and Perl 61

7.0.2.1 Calling Java From Perl 61

Linking . 61

Fork . 61

Contents iv

IPC . 63

Plugin . 63

7.0.3 Calling Perl From Java . 63

Linking . 63

IPC . 64

Plugin . 65

Fork . 65

Bibliography 66

List of Figures

2.1 Example of Multi-language program using Java, Perl and C 11

2.2 ReSP wrapper generation flow . 13

3.1 The metamodel for licenses . 23

4.1 RQ1: Change impact analysis . 26

4.2 RQ2: The possible architectures of a heterogeneously licensed system . . . 29

4.3 RQ3: Change impact on the license compatibility 31

5.1 Example of heterogeneously licensed system 39

5.2 Architecture model . 41

5.3 PL(C∗) = C, PL(C1) = Java, L(C∗) = GPL 42

5.4 PL(C∗) = C, PL(C1) = Java, L(C∗) = GPL and I(C1, C
∗) = fork . . . 42

5.5 PL(C∗) = C, PL(C1) = Java, L(S) = GPLv3 43

5.6 MetaModel of the system . 43

7.1 Process to call C code in Perl program . 51

v

List of Tables

6.1 Planning of the project . 48

vi

Chapter 1

Introduction

During the software life cycle, about 52% of effort is spent on maintenance and 47% of

this effort is estimated to be devoted to program understanding [1]. What makes main-

tenance more challenging is the heterogeneity of programming languages and paradigms,

in fact large software application are composed of modules often coded with different

programming and specification languages. Maintainers thus face a variety of different

programming languages making program comprehension and software maintenance dif-

ficult and expensive.

We believe that there is a need for tools to support the analysis of large heterogeneous

systems. Indeed, Most re-engineering tools focus on extracting dependencies from a

single programming language, e.g., extracting the call graph from a C program but they

are hardly able to deal with two or more programming languages. Furthermore, they

do not handle multi-language programs as a single entity, because they do not manage

the interconnections between different parts of code written in different languages. For

example, the call graph is produced for each program written in one language indepen-

dently from the others.

Multi-language programs often have also heterogeneous licenses. Heterogeneous licensing

is the consequence of the availability of Open Source Software (OSS) and also proprietary

system with open APIs. Developing system by reusing existing components decreases

the cost of developing phase. Yet, it can introduce another type of problems: due to

the various rights and obligations of each license and the large number of licenses and

their different versions that can be conflicting, it is difficult to respect all obligations. In

addition, software engineers are not not well trained in the legal issues are faced with

a complex array of legal rights and obligations that they have difficulty to track and

1

Chapter 1. Introduction 2

understand.

In this context of heterogeneous programs, our goal is to develop a re-engineering tool for

analysing change impact in heterogeneously licensed and multi-language systems. First,

we want to study impact of the change in multi-language systems in general and extend

it to support the issue of licenses. We want to manage the evolution of the system by

providing the impact of change, for example architecture evolution like modification of

the interconnection between two modules or license evolution (update to a new version)

can introduce inter-license conflict. Also, we want to suggest possible architectures to

avoid legal conflict between licenses by using system expert.

1.1 Context

1.1.1 Why we develop multi-language system and heterogeneously-

licensed software?

- Programming Pearls, Communications of the ACM, Sept. 1985

”Scripting is almost always a more pleasant and productive alternative to using a systems

programming language. Scripting languages are not designed to do everything, however,

and there comes a time when you need to dig down to C/C++ for speed, fine-grained

data structures, type safety, and access to existing libraries. The ability of languages

such as Perl, Visual Basic, Python, and Tcl to integrate well with C accords them the

status of a serious development language, in contrast to awk and early versions of BA-

SIC, which were seldom used for production applications.”[2].

Other than the increasing productivity to develop multi-language systems, we distinguish

many other reasons:

• Efficiency:

for performance reason, a high level language (e.g, Java) may invoke code written

in low level language (e.g. C), for example to access to material layer.

• Suitability:

a programming language is characterized by a set of language features. These

features influence how the programming languages is used, which contexts it is best

used in, and for what purpose. For example, if we use Python to develop a software

Chapter 1. Introduction 3

and access to explicit implementation details, such as, memory management is

needed, then it will be more suitable to use a language that provides this features

(e.g, C).

• Reuse:

the availability of Open Source Software encourages software developers to reuse

them. Consequently, developers prefer to develop the glue code.

1.1.2 Open Source Software

Open source software (OSS) development has some typical characteristics, such the

widespread reuse of components and licenses. This widespread of various and different

licenses increases the difficulty to understand their constraints. Consequently, new re-

engineering tool must consider the licenses analysis. OSS development process outputs

have been studied to study many aspects of programs, for example in [3], they analyzed

a sample of around 400 projects from a popular OS project repository. Each project is

characterized by a number of attributes. According this study, the most used languages

were C, C++, Perl, and Java. Thus, we are interested to study these languages. Despite

the large number of OSS projects, developments effort have focused on a few large

projects such as Linux, Mozilla, and Apache. In [3], Capiluppi and al. confirmed that

few projects are capable of attracting a meaningful community of developers. The

majority of projects is made by few (in many cases one) person with a very slow pace of

evolution. We think that the analysis of licenses will be more useful in project with great

community and in constant evolution because the evolution of the systems increase the

threat of license violation and the large number of components and licenses increases

the constraints to respect inter-licenses compatibility. Hence, we will apply our study

to Fedora-12 (Linux distribution).

1.1.2.1 Collective and derivative works

Distinguishing between collective work and derivative work is fundamental for analysis

of legal issues of components based software system.

A collective work is:

A work in which a number of contributions, constitut- ing separate and independent

works in themselves, are as- sembled into a collective whole. (17 U.S.C. 101.)

Chapter 1. Introduction 4

And a derivative work is:

A work based upon one or more preexisting works, such as a translation or any other

form in which a work may be re- cast, transformed, or adapted. (17 U.S.C. 101.)

1.1.2.2 Types of Licenses

Licenses can be categorised into four categories:

1. Academic Licenses, ”so named because such licenses were originally created by

academic institutions to distribute their software to the public, allow the software to

be used for any purpose what so ever with no obligation on the part of the licensee to

distribute the source code of derivative works. The Berkeley Software Distribution

(BSD) license used by the University of California to distribute its software is the

archetypal academic license. Academic licenses create a public commons of free

software, and anyone can take such software for any purposeincluding for creating

proprietary collective and derivative workswithout having to add anything back to

that commons.” [4]

2. Reciprocal Licenses, ”Allow software to be used for any purpose whatsoever, but

they require the distributors of derivative works to distribute those works under

the same license, including the requirement that the source code of those deriva-

tive works be published. The GPL license, written by Richard Stallman and Eben

Moglen at the Free Software Foundation, is the archetypal reciprocal license. Any-

one who creates and distributes a derivative work of a work licensed under a re-

ciprocal license must, in turn, license that derivative work under the same license.

Reciprocal licenses, like academic licenses, contribute software into a public com-

mons of free software, but they mandate that derivative work also be placed in that

same commons.” [4]

3. Standards Licenses, ”are designed primarily for ensuring that industry standard

software and documentation be available to all for implementation of standard

products. These licenses sometimes require that any differences from the indus-

try standard be published as a reference implementation so that the standard may

evolve if necessary.” [4]

4. Content Licenses, ”ensure that copyrightable subject matter other than software,

such as music, art, film, literary works, and the like, be available to all for any pur-

pose whatsoever. These licenses are discussed more fully on the Creative Commons

website at www.creativecommons.org . While the Creative Commons goals are

www.creativecommons.org

Chapter 1. Introduction 5

not directly related to software freedom, there are many similarities of objective. A

few of the software licenses discussed in this book, in particular the Academic Free

License (AFL) and the Open Software License (OSL), are appropriate for use with

content as well as software, as will be explained in due course.” [4]

1.1.2.3 GPL, BSD, Apache

We now present the most used licenses [5]: GPL, BSD, and Apache, which we will use

in our project to provide the possibles architectures of heterogeneously licensed system.

1. BSD: Academic License

Contrary to the GPL License, BSD allows anyone to redistribute the work or any

derivative work without any source, if such is the desired path. So BSD do not

cause incompatibility problem : the caller of program under BSD license can use

any license.

2. GPL: Reciprocal License

GNU Public License, it is very common license for open source packages. GPL is

known for having strict reuse constraints. So it is important to focus on incom-

patibility issues involving GPL license.

GPL is reciprocal license because any software that reuses code licensed under

GPL should be licensed under the same version of the GPL. Here the GPL say it:

”You must cause any work that you distribute or publish, that in whole or in part

contains or is derived from the Program or any part thereof, to be licensed as

a whole at no charge to all third parties under the terms of this license.”(GPL,

Section2) They are strong conditions on how a caller can use GPL package.

They are strong conditions on how a caller can use GPL package. The GPL

requires to analyse the software based not upon how it is linked but upon how it is

distributed. ”These requirement apply to the modified work as whole. if identifiable

sections of that work are not derived from the Program, and can be reasonably

considered independent and separate works in themselves, then this license, and its

terms, do not apply to those sections when you distribute them as separate works.

But when you distribute the same sections as part of a whole which is a work based

on the Program, the distribution of the must be whole on the terms of this License,

Chapter 1. Introduction 6

whose permissions for other licenses extend to the entire whole, and thus to each

and every part regardless of who wrote it”. (GPL section 2)

According to the first sentences, the GPL is applied to ”modified work as whole”.

A modified work is derivative work (17 U.S.C). There is no hint that linking makes

a difference. The second sentences refers to portions of the work that are not de-

rived from the program (have their own copyright owners and their own license). A

work must be independent and separate works are linked in some way to the GPL

program. Such works remain ”independent and separate works,” at least ”When

you distribute them as separate works,” and the GPL cannot possibly apply to

them without their copyright owner’s consent.

In the GPL, we must analyse the software on how it is distributed. We converted

linking limitations to the interconnection type:

• if the caller uses via fork/exec then the caller can have any license.

• if the caller uses called components as a plugin then the caller can have any

license.

• if the caller uses linking as types of connexion so it must be licenses under

the same version of GPL.

The program licensed under academic open source licenses can be incorporated

into GPL-licensed software but the converse is not true.

The are some licenses are not compatible at all with GPL, we will limit these list

to the different version of the concerned licenses (BSD, Apache):

• Apache License, version 1.1

This is a permissive non-copyleft free software license. It has a few require-

ments that render it incompatible with the GNU GPL, such as strong prohi-

bitions on the use of Apache-related names.

• Apache License, version 1.0

This is a simple, permissive non-copyleft free software license with an adver-

tising clause. This creates practical problems like those of the original BSD

license, including incompatibility with the GNU GPL.

And the compatible version of our chosen licenses (BSD, Apache) are:

Chapter 1. Introduction 7

• Apache License, version 2.0

This is a free software license, compatible with version 3 of the GPL. This li-

cense is not compatible with GPL version 2, because it has some requirements

that are not in the older version.

• Modified BSD license

This is the original BSD license, modified by removal of the advertising clause.

It is a simple, permissive non-copyleft free software license, compatible with

the GNU GPL. If we want a simple, permissive non-copyleft free software

license, the modified BSD license is a reasonable choice.

Case of plugin [6]: The legality depends on how the program invokes its plug-

ins. For instance, if the program uses only simple fork and exec to invoke and

communicate with plug-ins, then the plug-ins are separate programs, so the license

of the plug-in makes no requirements about the main program. If the program

dynamically links plug-ins, and they make function calls to each other and share

data structures, we believe they form a single program, which must be treated

as an extension of both the main program and the plug-ins. To use the GPL-

covered plug-ins, the main program must be released under the GPL or a GPL-

compatible free software license, and that the terms of the GPL must be followed

when the main program is distributed for use with these plug-ins. If the program

dynamically links plug-ins, but the communication between them is limited to

invoking the main function of the plug-in with some options and waiting for it

to return, that is a borderline case. Using shared memory to communicate with

complex data structures is pretty much equivalent to dynamic linking.

3. Apache License, version 2.0: Academic license

The Apache License is a free software license authored by the Apache Software

Foundation (ASF). The Apache License requires preservation of the copyright

notice and disclaimer, but it is not a copyleft license, it allows use of the source

code for the development of proprietary software as well as free and open source

software [7][8].

All software produced by the ASF or any of its projects or subjects is licensed

according to the terms of the Apache License. Some non-ASF software is licensed

using the Apache License as well. As of July 2009, over 5,000 non-ASF projects

located at SourceForge.net are available under the terms of the Apache License. In

a blog post from May 2008 [9], Google mentioned that 25% of the 100,000 projects

then hosted on Google Code were using the Apache License.

Chapter 1. Introduction 8

Like any free software license, the Apache License allows the user of the software the

freedom to use the software for any purpose, to distribute it, to modify it, and to dis-

tribute modified versions of the software, under the terms of the license. The Apache

License, like BSD licenses, does not require modified versions of the software to be dis-

tributed using the same license (in contrast to copyleft licenses). In every licensed file,

any original copyright, patent, trademark, and attribution notices in redistributed code

must be preserved (excluding notices that do not pertain to any part of the derivative

works); and, in every licensed file changed, a notification must be added stating that

changes have been made to that file [7][8].

1.1.3 Organization of the report

Chapter 1. Introduction: We begin by introducing the context of our project and

what lead us to work on multi-language and heterogeneously licensed system. And we

expressed the directions that interest us: Change impact analysis on technical aspect

and extending it to legal aspect. And the second section, we explain the factors that

encourages software engineers to develop a multi-language system. and we present the

open source software and the related concept that we need. Finally, we present the plan

of our proposal.

Chapter 2. Problematic and research questions: Then, in Chapter 2, we shall

establish a list of goals and research questions and the flow between sub questions. Two

directions will be distinguished in this chapter: How we can analyse the change impact

in multi-language program and extending it to deal with heterogeneously licensed sys-

tems. We will details the challenge to answer each questions and the difficulties that we

face.

Chapter 3. State of the art: This chapter is devoted to present the related work

in the domain of re-engineering of multi-language system and heterogeneously licensed

system. We presented two types of work: that relevant in the domain and that influ-

enced our choice and approach.

Chapter 4. Approach: In chapter 4, we pose our approach to resolve our research

questions. We will stress on dependencies extraction and type of interconnection that

are necessary for change impact analysis and studying licenses and also formalisation

of system representation that helps us to develop a system expert that will answer the

Chapter 1. Introduction 9

questions about the possible architectures.

Chapter 5. On Going Work: In the context of our project, we initiated two on

going work. The first we want to answer on the research question: What is possible

architectures that can be obtained by combining components written in C/Java/Perl

and having different licenses that can be Modified BSD, Apache, or GPL. To answer

this question, we investigated the interconnection types between the languages: Java, C,

Perl and we formalised the representation of system including licenses that will permit

to us to develop a tool using system expert. Second, we preparing a preliminary work

for change impact analysis of heterogeneously licensed system. We explained how we

want to extend the work of German and al. [10]. German and al. proposed a method

to understand licensing compatibility issues in software packages but they identify the

dependencies types manually. So we want to extend their work by automating the

identification of some type of dependencies.

Chapter 6. Conclusion and Planning: We will resume our goal and the flow of

the our approach to answer our research goal. And we will present our planning and the

conference that we will aim during the thesis.

Chapter 7. Annexe: In the chapter on going work, we are supposed to present

the possible interconnections between the languages Java, C, Perl but we presented

just Java/C. So, we present the interconnection between Perl/C and Perl/Java in the

annexe.

Chapter 2

Problematic and research

questions

Most software are built by combining several components and they reuse existent code

in diverse language. The advent of free/open source software (FOSS) has amplified

this activity by providing software components that are ready for reuse. Consequently,

there is a widespread of heterogeneously-licensed systems combined with multi-language

aspect of their components. So this poses new challenges in two directions: the multi-

language handle and licenses issue. The heterogeneity of licenses introduces threat of

incompatibility of licenses that depends on the architecture of the system and how the

components are interconnected and multi-language aspect introduces difficulty to anal-

yse systems as whole such extracting the dependencies. So, such environment increases

the complexity of maintenance activity [1]. For example, to modify (delete, change,

add) a given method in a module, we must verify if this modification introduces errors

in another module that uses this method directly or indirectly and if it violates a term

of licences.

Example of multi-language program:

This is an example of multi-language program written in Perl, Java and C. It permits

to display the temperature or the humidity rate depending if the user choose ”temp” or

”hum”. The principal program asks the user to type ”temp” or ”hum”. After that, a

Java program, meteo.java, is invoked via system call. This program uses native meth-

ods printTemp() and printHum(), to display the temperature and the rate of humidity.

These native methods are implemented in C and have the respective signatures: JNI-

EXPORT void JNICALL Java meteo printTemp (JNIEnv *, jobject) and JNIEXPORT

10

Chapter 2. Problematic and research questions 11

Figure 2.1: Example of Multi-language program using Java, Perl and C

void JNICALL Java meteo printHum(JNIEnv *, jobject).

Suppose that we modify the implementation of the native method Java meteo printTemp

(JNIEnv *, jobject) by adding a new parameter corresponding to the unit of measure of

the temperature. We must know the updates that we have to apply after this modifica-

tion, to let the program works with the new version of the method Java meteo printTemp

(JNIEnv *, jobject, jint).

The developer of such program wants to know what is the impact of a modification

before accomplishing it, because it can introduce errors that are difficult to resolve.

Among the problems faced by developers during software maintenance is when a new

Chapter 2. Problematic and research questions 12

version of a component is available, they can’t decide if they can update this component

without affecting the functioning of the system. To manage the version of system com-

ponents, we need the dependencies but the extraction of dependencies of the components

is not easy because the dependencies can be complex. So the propagation of the update

effect is not well mastered.

The goal of our work is the creation of a model to analyse a change impact of multi-

language systems and to develop a tool that supports this model. Also, this model will

help us to deal with heterogeneously-licensed systems because it will include data about

components, their dependencies, and we want to study the impact of modification on

the license compatibility using the result of previous steps.

We begin by presenting the challenge for multi-language system in general after we

present the questions in the special case of heterogeneously-licensed software and how

the first challenges help us to analyse this type of system.

2.1 Change impact analysis

Question 1 : How we can analyse the impact of modification of an entity (method, file,...)

in multi-language system?

Change impact analysis provides the potential consequences of a change, or estimated

what needs to be modified to accomplish a change [11]. Our challenge is to define

a strategies to detect the effect of changes in a multi-language system. The change

impact analysis permits to simplify the evaluation of change request and helps to detect

incoherence, for example, when two communicating modules that exchange data and we

modified the format of output data of the module that sends the data, thus the format

became incompatible with the format of the input data requested by the modules that

receive this data. Change impact analysis is more difficult in the case of heterogeneous

system due to the complexity of dependencies between languages.

We present a case of heterogeneous system to illustrate the difficulties induced by this

type of software:

Beltrame et al. presented ReSP in [12], a hardware simulation platform targeted to

Multi-Processor Systems-On-Chip; the platform is based on the integration of Python

and SystemC allowing effortless integration of external IPs and custom components.

They use Python because it augments ReSP with the observability of the internal struc-

ture of SystemC components using the reflective capabilities. The use of Python enables

Chapter 2. Problematic and research questions 13

Figure 2.2: ReSP wrapper generation flow

a fine grained control over simulation and over the internal status of the component mod-

ules. The potentialities offered by the integration of Python and SystemC are exploited,

during simulation, to query, examine, and possibly modify the internal status of the

hardware models.

ReSP provides a wrapper for the Python scripting language around the SystemC kernel.

Python inherently supports reflection, and allows access to SystemC variables and ar-

bitrary function calls to SystemC. The Simulation Controller is a set of Python classes

that translate commands coming from the user into SystemC function calls, controlling

the simulation behaviour. The novelty introduced by ReSP lies in the Python wrapper

generation for SystemC and TLM components. ReSP deals with this step automatically,

by generating the Python wrapper right after parsing the component C++ header file.

The generation flow is shown in Figure 2.2.

During a discussion with G. Beltrame, he affirmed that the main difficulty to manage

such heterogeneous system is the managing of the tools used, for example: there is new

version of a tool and he wants to update this tool but he can’t be sure that he can

recompile without errors and even if he can compile, then there a risk that the system

will not work well like before the update. Specially, the problem arises with the tools

to generate the wrapper. For, example Boost.Python 1.42 is not compatible with py++

2.4.3. We think this difficulty is due to the missing of the tools that manage dependen-

cies of heterogeneous system.

Change impact analysis could help to reduce the risk of change in a system. To do this

analysis, we need to extract dependencies into suitable model to study the propagation

of the change is necessary. This extracted data must be exploited to answer questions

like: when we rename a function, what is the modules affected by this change? Or, when

we want to update a library, is new version is compatible with the rest of the system?

Chapter 2. Problematic and research questions 14

2.1.1 Dependencies extraction

Question 2 : How we can extract effectively the dependencies in Multi-language system?

Dependencies extraction is a difficult task because there are many different programming

languages, we can have files and or modules consisting of several languages. We see that

it is difficult and perhaps impossible to provide parser suitable for all types of files. For

example, suppose we have a parser to extract the dependencies between Java and C.

This parser can only analyse a program written with these two languages, we can not

for example use it to extract the dependencies in a program written in Perl and C. So

it is difficult to have a generalized parser that can analyse any multi-language program.

Re-take the example of the figure 2.2, A system call in Perl program is like that:

system("command");

But, in Java the system call is done using the class Runtime:

Runtime rt = Runtime.getRuntime();

rt.exec("command");

Our goal is to study the possibility of generalization of the data extractor by targeting

a particular paradigm or language and the type of data to extract. As software became

more and more large, it is better to have a flexible parsers that give us the ability to

control the data extracted and the file that we want to analyse and permits us to exclude

details to lighten the extraction of data. How can we make an efficient and accurate

analysis to extract the dependencies data?

2.1.2 Representation of extracted data

Question 3 : How we model the dependencies in a multi-language?

To automate the analysis of multi-languages system, we must be collect and process

data from different sources. Only a system with a global view allows a correct analysis.

So the key of multi-languages analysis is a common model that supports the concepts

of various programming languages [13] or several models that are linked logically. We

believe that an effective analysis requires that we do not do this analysis on each compo-

nent independently, but take into account data on interconnections that are overlapped

Chapter 2. Problematic and research questions 15

between two pieces of code that must be logically connected in our model or linked

models. However, such a model that supports the interconnection between different

languages is not an easy task because the inter-language communication methods differ

from one couple of language to another. Let’s take the example of figure 2.1:

the system call made within the Perl program takes a string as a parameter, static anal-

ysis may not be effective because the command can not be resolved efficiently.

Our challenge is to design a model to represent dependencies in a multi-language system.

This model will describe the entities in the program and their interconnections type. This

model will serves to analyse the impact of change in a component-based program and

will be extended to be used to analyse the heterogeneously licensed software.

2.2 Heterogeneity of the licenses and their constraints

The heterogeneity of components-based system does not only concerns the heterogeneity

of the languages used to develop each component, but also the licenses of these compo-

nents. This heterogeneity of licenses can introduce threats of legal violation of the terms

of licenses. Software licenses are constraint that must be respected in the development

of the software. Moreover, legal constraints impose certain architectural styles (black

box, white box...) and connectors (linking, fork/exec...) between modules [14]. We want

to focus our research on systems that includes components with different licenses.

Question 4 : What is the type of problem and constraint that can be introduced by the

heterogeneity of licenses?

The Intellectual property(IP) are expressed in terms of the licenses, rights, and obliga-

tions. They include: the right to use, distribute, sublicense, interoperation of the system

with specific IP regimes. This IP can have conflicts with other licenses’obligations. So,

the combination of different licenses in a single system is not simple because each license

introduces constraints on the way of use (distribution, copy,...) that can be incompatible

and also how we can reuse a program by integrating it to another system or modifying

it. We have to know the IP to be able to identify the possible legal combinations of

licenses in one system.

For example, when programmers want to develop a system S under a license L that reuses

an open-source component C, they must verify whether they respect the restrictions of

the grant given by the license of C. In fact, a component can be reused to create from it

Chapter 2. Problematic and research questions 16

a derivative work mainly by using white-box form that permits to use one or more files

of C, either in the original or modified form. It can be also used as part of collective

work that is usually realized via black box form for example by calling components as

executables. But determining whether a work is derivative or collective work for a black

box reuse is difficult because it depends on the nature of the use and the interconnection

type.

Consider the following scenario: suppose we want to distribute a system S under a

proprietary license P and one of the component Ci of S is licensed under the terms of

GPL2. C is interconnected to S via black-box linking, so S is a derivative work of C.

GPL2 imposes that all derivative work S made from component under GPL2 must be

also licensed under GPL2. In contrast, if we modify the interconnection type, and that

black box forking is used instead of black-box linking, then, according to the FSF, S

is not a derivative work of C. In this case GPL2 gives grant to distribute S under a

proprietary license [14][4]. This example show us how can the interconnections type be

a constraint to respect the IP and it depends on the licenses used and their versions and

it is complicate to verify this respect of the IP of a large software.

Question 5 : What are the possible architectures of a heterogeneously licensed system?

To combine conflicting licenses, developers must adapt and modify their technical so-

lutions and architectures to remove this conflict. As we explained before, the suitable

connectors must be chosen to integrate a component to a system in order to ensure the

compatibility of licenses. So the license of a component affects the requirements, the

architectures and the potential uses of a component-based application[14]. The licenses

mismatch is a complex problem for which software engineers have a limited knowledge

and many software organizations are warned about the incorporation of the open source

component in existent system [15][16][17][18]. That’s why, it is interesting for developer

to have a tool that gives the possibles solutions to integrate a component legally. We

would like to present possible architectures that can be obtained by combining compo-

nents written in C/Java/Perl and having different licenses. Thus we want to make the

developers aware that certain modification may violate licensing constraints.

Question 6: How can we identify a legal violation in system with heterogeneous licenses?

Suppose that we have a component based system. And the components are possibly

written in various language and licensed under different licenses. How can we proceed

to identify if there is a legal violations. We know that licenses introduce a constraint

on the interconnection type. Here we have a need to the question 2: the dependencies

Chapter 2. Problematic and research questions 17

extraction and we have to identify in addition the type of the interconnection. Having

the dependencies and the type of interconnections between the modules and the licenses

of this modules and licenses of the final system and all the terms of the licenses. We

must be able to know if the system respects all the terms of this licenses else we identify

the violations and what are the possibles alternatives to remove this violation (question

5).

2.3 Change impact on license compatibility analysis

Question 7: What is the impact of modification on the license compatibility

When we perform a modification on software components, it can affects the legality of

the system by causing licenses violations. For example, when a component is updated

to a new version, the new version can have a different license than the old one, this

licenses can be incompatible with the licenses in the system. Another example, we will

reuse the example in the figure 2.1, suppose that the Java program meteo is licensed

under GPL and the Perl program is licensed under Modified BSD and the Perl program

call the Java one by system call. If we modify the type of interconnection to dynamic

linking using JPL::Class to load meteo class, the GPL license is violated because the

Perl and the Java program is considered derivative work of the Java program, so the

Java program must be licensed under GPL.

Chapter 3

State of the Art

In this section, we present the main existing work in the field of re-engineering of multi-

language program and the licenses mismatch problem.

3.1 Re-engineering of multi-language program

Several authors addressed issues related to multi-languages software applications. Early

works such as the one of Linos [19] found that programmers organize their implemen-

tation, integration, and maintenance activity based on specific programming paradigms

which justifies the additional complexity like type matching perceived when integrating

components developed with different languages. The imperative and procedural lan-

guage programmers focus on procedures; in contrast the object-oriented programmers,

tend to focus on objects. Hence, the objective of Linos is to provide a tool that facil-

itates understanding, re-engineering, implementation and integration of multi-language

programs. For this reason, he investigated the dependencies between programs written

in different paradigms. His approach is based on the classification and formalization

of the program components and their dependencies. He proposed a taxonomy of the

different types of dependencies according to the paradigm of programming languages

and a dependencies formalization.

• In procedural and imperative language: The author call the components and their

relationships Procedural Program Dependencies (PPDs). A PPD can be presented

as PPD = < X,Y,R > Where X and Y can be data elements and data types

or sub-programs and R depicts a relationship between X and Y. For example,

the triplet <Variable, Type, is-defined-as> presented the is-defined as relationship

between variables and data-types.

18

Chapter 3. State of the Art 19

• In the functional language: The components and their relationships are called

Functional Program Dependencies (FPDs). A FDP can be presented as FDP =

< X,Y,R > where X and Y can be atoms , expressions or lists and they are linked

with the relationship R. For example, the triplet <Constant, List, is-included-in

> presents the is-included-in relationship between constants and lists.

• In Object-Oriented language: The components and their relationships are called

Object-Oriented Program Dependencies(OOPDs). OOPDs = < X,Y,R >, enti-

ties X and Y can be data-objects, class-types or methods and R represents a rela-

tionship between X and Y. For example, the triplet <Class, Method, implements>

defines the implements relationship between Classes and Methods

• In Logic language: Logic Program Dependencies include logic programs elements

such as facts, rules, and data-arguments and their relationships. Example of LPD

= < Fact,Rule, uses > which presents the uses relationship between facts and

rules.

In his framework, Linos considered also programs developed with more than one pro-

gramming paradigm which are defined as multi-paradigmatic programming style. In a

similar way, control and dataflow dependencies are called MuLti-paradigmatic Program

Dependencies (MLPD) and they are defined between elements developed with different

paradigms. For example, the tuple MLPD = < Class :: Method, Function, calls > in-

dicates that class-methods calls user defined functions. An instance of this dependency

is < Shape :: draw,Printlabel, calls > showing that the draw method of the class shape

can calls a user-defined function called PrintLabel.

Panos defined a general representation of dependencies that are suitable to each type

of language (functional, Object-Oriented, logic) and also to MuLti-paradigmatic Pro-

gram. So we are interested by this model because it is simple and suitable for all the

paradigms and we want to reuse it by representing the dependencies as a tuple. Panos

team developed the Polycare tool to implement his approach. Polycare is a tool that

automates the extraction and visualization of multi-language dependencies. It allows

the visualization of dependencies with several types of graphic abstraction such as the

traditional hierarchical display of control flow (call graph) and a graphical representa-

tion called the colonnade, which consists of separate columns in which different entities

of the program are displayed. The relationships between the entities are represented via

the connecting lines between the corresponding columns. Polycare handles the intercon-

nections between languages such as C, C++, Lisp and Prolog. However, he considered

the languages in isolation in an integrated environment, in our work we want to take

Chapter 3. State of the Art 20

into account data on interconnections that are overlapped between the two languages.

Recently, Linos presented a paper [20] to support the process of dependency compre-

hension and management in a multi-language systems. The research focus is specifically

MLPD (MuLti-paradigmatic Program Dependencies) that appears in the interaction

between the languages C, C++, and Java. In this context, he developed the MT (Multi-

Language Tool) tool. MT facilitates the process of detection, storing and managing

MLPDs found in programs written with a combination of C, C++ and Java. MT’s

GUI is based on a simple display format that uses circles, where each circle is associ-

ated with a programming language. The size of the circle corresponds to the number

of lines of code. The model is animated with a gravity animation: circles attract and

overlap in function to their dependencies, and also provides a zoom function. It also

allows access to source code via View button-Source-Code. This tool is implemented

using a lexical analysis based on the keywords of the call functions of another language

other than the host language (caller). Moise [?] suggested that the analysis of such

heterogeneous systems should rely on accurate tools like parsers as lexical analyzer may

not produce accurate enough information. We think that the GUI of this tool is just

suitable to have a global idea about the program and facilitate the comprehension but

it is not suitable to express change impact propagation. We agree with Moise point of

view that the lexical analysis is not precise and the syntactic one is better and we will

investigate if we can combine the two method. For example, we can use lexical analy-

sis for simple code patterns and for sophisticated code patterns we use syntactic analysis.

Finally, Linos et al [21] presented a tool to detect, recover, and display metrics of multi-

language programs at intermediate code level. More precisely, the tool supports code

written using Microsoft .Net Visual Studio. The idea is that the complexity of analysis

at intermediate level is lower than if each language must be handled separately. In-

deed, in a such as approach there is no need of specific parsers for each programming

language. We are interested by this work because it treats particular type of multi-

language program that have an intermediate language. Recently, Moise et al. proposed

an approach that extracts facts of languages in a program, based on syntactic analysis

of the source code [22–24]. Facts are then grouped into a common fact schema that is

exploited to extract the inter-language dependencies. The approach was implemented

in a tool named Clare, a plugin for Eclipse, which also includes a visualization feature.

Clare supports Java, C/C++, and Perl. Moise focused more on comprehension and

visualization of multi-language program. Although, we are interested on change impact

analysis but the dependencies extraction is needed, so his work can helps us in this step.

He used syntactic analysis that is precise method, and in our work we want to combine

Chapter 3. State of the Art 21

this method with string based recognition.

The rest of work will be cited because of the originality of the studied system. A similar

approach to Moise approach was presented by Kullbach and al. [1]. The key idea is

to translate the source code of different languages into a general structure. The work

of Kullbach and al. work was applied to the software of the company Aachener und

Informatik Müchen System. This system is composed of several source files coded with

various languages, plus a database definition and Job Control Languages (JCL): a script-

ing language used on IBM mainframe operating systems to instruct the system on how

to run a batch job or start a subsystem. The system has the particularity of the connec-

tions between the source files that are made via JCL. So to identify the dependencies,

the authors need to identify JCL files specifying interconnections. The authors also

highlighted the problem of database migration that imposes to modify all files that are

linked to the database. In this work, the EER/GRAL approach to graph based concep-

tual modelling is used. EER/GRAL is based on TGraphs (very general class of graphs).

The EER is extended entity relationship dialect and the GRAL is constraint language.

We cited the work of Kullbach because he handled a different case of multi-language

system where the interconnections between different files and modules by the JCL, but

we are not interested in this type of interconnection.

Distributed system permits heterogeneity of the system used in each component. The

components can be written in different languages (Java, Cobol, C++, etc.). We will as

an example of a work performed on distributed the one of Deruelle et al. [25]. They

investigated the analysis of distributed multi-language software applications. They pro-

posed a formal model called Source Code Structural Model (SCSM) based on UML.

SCSM models components and their interconnections. JavaCC was used to develop a

parser what generates an XML (eXtensible Markup Language) representation of the

SCSM diagram. This diagram is used to implement two modules one supporting the

management of changes and a profiling module. The change management module prop-

agates the effect of changes by revisiting and modifying relevant nodes of the SCSM

diagram. The profiling module measures the contribution of a component to the overall

software performance.

Hassan [26] was interested in Web application architectures that are generally multi-

language. His goal was to develop a tool that assists developers in understanding the

structure of their web application. For that he used a three-step approach:

Chapter 3. State of the Art 22

• Extracting facts from source code of a program using a set of extractors: he has

developed five types of extractors: HTML extractor, script server extractor and

Access DB extractor. These extractors are managed by a script that determines

the type of a file and then invoke the corresponding extractor.

• Abstraction and fusion of multi-language facts.

• Generating the diagram of the architecture.

This work is focused on extracting the architecture of a multi-language Web application

not the dependencies between different components. We will use a similar approach to

determine the type of the file but we want to combine with this approach island grammar

technique to distinguish different language in the same file.

3.2 Licenses analysis

The majority of the effort in research target technical problem of the software devel-

opment and re-engineering and a little attention is directed to the legal complexity

[10]. When the developers combine several components with different licenses to create

program, the possibility of having licenses mismatch increases. In addition, software

engineers have limited knowledge of legal issues.

We will present the earliest work on licenses analysis that also influenced our project.

German et al. [14] models a license as a set of grants, each of which has a set of con-

joined conditions necessary for the grant to be given. The compatibility of licenses is

analysed by examining pairs of licenses. They considered five types of interconnection

(linking, fork, subclass, IPC, plugin) and they developed a model that describes the

interconnection of the components. They identified twelve patterns for avoiding licenses

mismatches, found in a large group of OSS projects. They used their models to document

integration patterns that are commonly used to solve the license mismatch problem in

practice. In our work, we use license model of German in [14] and we consider the same

interconnections types to analyse the compatibility of licenses, because it simplifies the

process of analysis and distinguishing between derivative and collective work.

German et al. [10] proposed a method to help the understanding licensing issues that can

arise from changing, combining, and re-distributing packages in open distribution. They

carried a large empirical study aimed at analyzing licensing issues in the entire Linux-

based Fedora-12 operating system. They considered constraints imposed by open source

Chapter 3. State of the Art 23

Figure 3.1: The metamodel for licenses

licenses and rely on it to mine inconsistencies between licenses declared in the packages

and source code licenses and incompatibilities due to the dependencies between packages

and libraries having different licenses. They identified the license and dependencies of

all files using RPM package descriptions but the identification of dependencies types is

done manually. We want to extend this work by decreasing the effort of the manual

identification of interconnection type.

Alspuagh et al. [27] performed parametrization analysis based on semantic parametriza-

tion of nine OSS licenses. From this analysis and patterns identified and the models

established by German, they derived the meta-model for licenses shown in figure 3.1.

Their license model extends German’s to address semantic connections between obliga-

tions and rights. They developed a tool that supports intellectual property requirements

management. The main advantage of this tool is the ability to model software systems

at different architecture levels and to analyze license interactions across the different

architecture level.

Tuunanen et al. [28] proposed a comprehensive approach for supporting software license

analysis. Their approach is implemented in tool called ASLA that identifies licenses from

source code, uses compiling information by using GCC and also ar (an archive tool) and

Id (a linker) to determines if two components are connected together to find violations

of licenses constraints. The license identification is achieved by using license templates

given as regular expressions. Simple open source license such as BSD and MIT are often

included at the beginning of each source code file. But this exact matching does not

work very well with real source code file because of many reasons, e.g., comments and

Chapter 3. State of the Art 24

various kinds of white space characters prevent exact matching and many programmers

modify the predefined text and there are different published versions of licenses.

Both Tuunanen [28] and Alspaugh [27] has evaluated their approach on small applica-

tions composed of few components. In the other hand, German and al. [10] deal with

large Linux distributions containing more than 10,000 binary applications and hundreds

of thousands of source code files (Fedora-12). We will also extend the work of German

and al. [10] like we mentioned before to automatise the identification of interconnection

types and then to analyse change impact.

Chapter 4

Approach

Many previous work studied the impact of changes on technical characteristics, in our

work we want to support program evolution via change impact analysis of heteroge-

neous systems and we want also to know the impact of change on the legality of the

system. Also, we would like to recommend possible architectures that can be obtained

by combining components written in C/Java/Perl and having different licenses that can

be Modified BSD, Apache, GPL.

In this chapter, we describe the steps to follow to answer our research questions.

4.1 RQ1: What is the change impact analysis on multi-

language program?

Our first research question: How we can analyse the impact of modification of an entity

(method, file...) in multi-language system? We follow two directions to answer: the

extraction of dependencies and the implementation engine that will give us the change

impacts. In the next two sub-section, we present our approach to resolve these question

see Figure 4.1. The input of change impact analysis is the source code of the software

that we want to analyse and the change specification and the output will be a graph

that represent the impact. This graph can be the entities that are dependent on or use

the element(method, variables...) changed and must be updated if we apply the change.

4.1.1 Dependencies extraction

1. First, we must identify the existing language of the source code. This task can be

done with a file navigator. The file navigator will reach all files in the software and

25

Chapter 4. Approach 26

Figure 4.1: RQ1: Change impact analysis

try to identify the language of each file using the extension of the file if it can’t

identify the languages then we will attribute unknown status. The input of the

file navigator will be a list of languages and their associated file extensions and

the output will be the list of all files in the system, their languages and associated

extractor. We denote LG the set of existing languages in the source code. To take

on to account files with mixed language, we think that we will use analyser based

on island grammar [29][26].

2. Then, we list and classify manually the types of interconnection between different

languages. In this step, we want to classify the interconnection types like linking,

exec/fork,... For each lgi ∈ LG and lgj ∈ LG, we will do a literature review to

find how the language lgi can call the language lgj .

Chapter 4. Approach 27

3. Specify a common data model or linked data models that supports the concepts

of multiple programming languages and models dependencies.

4. Having the possible interconnection between different language, we will investigate

the possibility of generalizing the method of extraction of certain types of depen-

dencies for pairs of different programming languages, for example, it is possible

that we found call executable file performed by similar instructions in several lan-

guages so we can extract it by the same analyser. For this step, we will reuse the

result of the previous step: the possible type of interconnection, we will analyse

the similarity between these types of interconnection, and classify the similar one

together in order to try in the next step to assign to them the same pattern.

5. We want to abstract the code that define formally the link between language. The

abstraction will be based on code patterns. These patterns distinguish clearly each

type of interconnection. Each pattern has typical properties and elements which

indicate it. These patterns will be used to recognize dependency in the source code.

The design of a meta model is needed to support the representation of dependencies

between the set of languages LG identified at the first step. The meta-model must

support the representation of dependencies of all the types of interconnections that

can be used in LG. We suggest the meta-model PADL [30]. PADL (Pattern and

Abstract-level Description Language) is a meta-model that describes the models of

program source code using AOL [31], C++ and Java (including AspectJ) analyzers.

This model supports programs written in AOL, C++, Java, we want to study the

possibility of generating a PADL meta-model for a multi-languages program. This

model will be used also to find the propagation of the impact. The propagation

of impact represent the set entities that are affected directly or indirectly by the

change.

6. We need also to extract the architecture of the system. To perform it, we will

choose a convenient tool that use an efficient model. The meta-model PADL can

be used also to represent the system architecture.

7. Finally, having meta-model that supports dependencies and and the interconnec-

tion patterns, we have to search and choose an existing String based recognition

tool to recognize the code corresponding to the interconnection. The input of

these tool is the pattern of interconnection formatted in the format requested by

the tool and the source code. Perhaps, this tool can not be sufficient and precise

to recognize all the type of interconnection, as alternative we will use a syntactic

analyser for the corresponding programming language.

Chapter 4. Approach 28

4.1.2 Implementation of Change impact analysis tool

The goal of this step is to develop a tool which will give us the impact of a change. The

input of this tool will be the change pattern and the repository of dependencies data

extracted at the first step and system architectures extracted in the previous step.

We want to specify the change that can be done on a program. So we will have a list of

predefined class of change types and their specifications. And we want to associate to

each change type an impact pattern to predict the types of consequences formally. For

example: when we rename a method: the pattern is renaming method, then we have to

search all sites which call the method and replace the old name of the method by the

new one.

4.2 RQ2: What are the possible architectures of a hetero-

geneously licensed system?

Heterogeneous software can combine components with different licenses. Their com-

patibility depends on their licenses and the interconnections types used as a glue. We

would like to present possible architectures that can be obtained by combining compo-

nents written in C/Java/Perl and having different licenses that can be Modified BSD,

Apache, GPL.

In our research we plan to apply the following steps, see Figure 4.2:

1. Identification of the different modes of interconnection between programs written

in C (procedural), Java (OO), Perl (script). This step is expanded in the Figure

4.1 (see box 2) if the languages concerned exists in the source code studied at the

first question.

2. Identification of grants for each license: Modified BSD, Apache, GPL. Establishing

inter-license compatibility rules, i.e, under which conditions can the two licenses

be used together. Normally we must read the terms of different licenses and try to

interpret and extract their constraints using the grants and the conditions. The

licenses interpretation is not evident task. Specially in the case of bare license

(simple license without doing a contract between the licensor and the licensee),

there is no ready framework for license language interpretation like when the GPL

does not even demand acceptance of terms of the license, can a licensor assume

that licensees have agreed to all of those terms? The courts around the world,

don’t agree on what constitutes a derivative work of software. Even if we suppose

that the licensee accepted the terms of the license, what about terms in license that

Chapter 4. Approach 29

Figure 4.2: RQ2: The possible architectures of a heterogeneously licensed system

Chapter 4. Approach 30

are inconsistent with the definitions of art in copyright law, such as derivative work

[4]? So, we will not use directly the licenses terms but we will do a literature review

of document produced by the experts in this domain to retrieve the constraints of

each license.

After, retrieving information about inter-licenses grants and limitations, we want

to express them formally by using a meta-model of licenses description.

3. A system is a set of components written in various languages and with various

licenses. The variables of the system are languages, licenses, interconnections, and

their types. We want to choose and fix the values of these variables and the rest

of unspecified variables their values will be suggested by our tool us output. We

notice that this problem can be expressed by IF THEN productions rules. So, a

system expert could be a good technique to develop a tool which gets as input a

Fact Base (FB) where all information about the system are stored and the Rule

Base (RB) that based on possible interconnections between the languages (step

1 of RQ2) and the constraints and licenses compatibility (step 2 of RQ2). the

rules can be expressed as a propositional calculus or logic (also called sentential

calculus) that is a formal system in which formulas of a formal language may

be interpreted as representing propositions (zero-order logic) or predicate logic in

which formulas contain variables which can be quantified (first-order logic). In

our case the zero-order logic is sufficient because we do not need a quantifiers

for variables, so the propositional calculus will be used to express rules. Then

the Inference Engine(IE) makes inferences by deciding which rules are satisfied

by facts, prioritizing the satisfied rules, and executing the rule with the highest

priority. In our case, the rules determines the interconnection between components,

their languages, the licenses and their constraints.

4.3 RQ3: What is the impact of source code change on

license compatibility?

Going back to our goal of investigating the impact of a component modification, our

other goal is to make the developer aware that certain modification may violate licensing

constraints. When we perform a modification on some software components, we argue

that such modification can affect the legality of the system by causing licenses violations.

For example, when a component is updated to a new version, the new version can have

a different license than the old one, this license can be incompatible with the license of

the system. If we modify how a component connect to another component can introduce

a violations, for example we have a system S licensed under Modified BSD that calls a

Chapter 4. Approach 31

Figure 4.3: RQ3: Change impact on the license compatibility

Chapter 4. Approach 32

component C∗ licensed under GPL via black-box linking and we modified the system by

changing this interconnection to white box linking this is a violation of the GPL license

because the system in this case will be a derivative work of C∗ and must be licensed

under the same version of GPL of C∗.

To answer this question (RQ3), we will combine the two previous work by using results

from RQ1 about components and the interconnections between them and from RQ2

about the licenses of the system components. We must extend the model established at

RQ1 by adding the support of licenses representation. Then, the licenses of components

in the system must be extracted in to the repository. We will reuse the identification

of grants for each license in RQ2. Indeed, having the structure of the actual system

(licenses, interconnection, language) and the component (license, language) that we

would like to change or add will allow us to reason about the possible violations of

licensing. If there is a violation we would like to suggest the possible legal architectures

to eliminate this violation, this can performed by using RQ2.

Chapter 5

On going work

We presented our goal and the related research questions. We showed how we will resolve

these research questions. In this chapter, we present on going work. We begin our work

around the problematic of the constraints introduced by licenses heterogeneity in the

system. In the first section, we will approach RQ2: What are the possible architectures

of a heterogeneously licensed system? In the second section, we will present the work of

Daniel et al. [10] that proposes a method to understand licensing compatibility issues in

software packages, and we will show how we want to extend this work by decreasing the

manual effort to identify interconnection types. This work will be a preliminary work

to answer the research RQ3 about the change impact on license compatibility.

5.1 Possible architectures of a heterogeneously licensed

system

We would like to present possible architectures that can be obtained by combining com-

ponents written in C/Java/Perl and having different licenses that can be Modified BSD,

Apache, or GPL. The first step to reach this goal is investigating the interconnection

types between the languages: Java, C, Perl. That’s why, we did a literature review to

find almost types of interconnection that will presented in the next section and in the ap-

pendix 7. Then, we identified the grants for each license: Modified BSD, Apache, GPL

presented in the introduction 1. And we established the inter-License compatibility

rules,i.e, under which conditions can the two licenses be used together. As we proposed

in our approach we will use system expert to develop a tool that gives us the possibles

architectures of a heterogeneously licensed system. So, we will formalize the interconnec-

tion between components, the license of component and, the language of each component

that will permit to represent facts base, and we will formalize inter-license compatibility

33

On going work 34

and possible interconnections between different languages to represent rules base. So

this formalization will provide the input of system expert.

In the next section, we will present almost of interconnections between Perl, Java, and C.

Suppose that a system S call a component C, we considered four types of interconnection

proposed by German and al. in [14]:

• Linking: Calling functions or methods in C using dynamic or static linking.

• Fork: Stand alone execution via fork or exec system calls. C is executed in a

separate space from S. The communication between the rest of S and C might be

done via pipes, sockets or files.

• IPC: C is built as server or server. Other parts of S use C via well-defined process

intercommunication protocol, such as CORBA and COM.

• Plugins: S extends the functionality of C using C’s plugin-architectures.

In the second step, we will present the formalization the interconnection between com-

ponents, the license of component, the language of each component, the inter-license

compatibility, and possible interconnections.

5.1.1 Interaction between Java and C

5.1.1.1 Calling C program From Java program

Linking We must follow these steps to call a C program from Java [24]:

• Create a Java file that declares a class with one or many native method

• Compile the Java file to create a .class file.

• Use the generator javah with the option -jni to create a header file to use in the

C program.

• Create a C file which implements the native methods.

• Compile the C file to create the library of dynamic link to export the native

method.

• Execute the Java program.

Example of a Java file that declares a native method:

On going work 35

Public class test {

static {s.loadLibrary("Test");}

public int iValue;

public Test() {}

public double compute (Vector v, float f){}

public native void print(String msg);{}

public static void main(String[] args) {

Test t = new Test();

t.print("Hello from C!");

}

}

Test class contains the native method print. This class load dynamically the library that

provides the implementation of the method print in C. When, we execute the generator

javah with the option -jni to the file Test(.class), we obtain the file test.h that contains

the declaration of the function corresponding to the native method print :

void JNICALL Java_Test_print(JNIEnv *, jobject, jstring);

The name of the method which correspond to the native method consist of : ’Java’, ’ ’,

and the name of the native in Java (for example, print). Also, its signature consists

of three arguments : the first is requested by the JNI to access to its functions. The

third is jstring which corresponds to Java argument of the native method print that has

String type.

Fork If we want to call external programs (executable program) in a Java application,

we can use system call by creating Runtime Object and attaching it to a system process

[32].

Example:

import java.io.*;

public class Main {

public static void main(String args[]) {

try {

Runtime rt = Runtime.getRuntime();

Process pr = rt.exec("c:\\helloworld.exe");

BufferedReader input = new BufferedReader

On going work 36

(new InputStreamReader(pr.getInputStream()));

String line=null;

while((line=input.readLine()) != null) {

System.out.println(line);

}

int exitVal = pr.waitFor();

System.out.println("Exited with error code "+exitVal);

} catch(Exception e) {

System.out.println(e.toString());

e.printStackTrace();

}

}

}

Method waitFor() will make the current thread to wait until the external program finish

and return the exit value to the waited thread.

IPC C can use Signals, Pipes, Messaging Queue, Semaphores, Shared memory, Socket.

Java can use Signals, Semaphore, Pipes, Shared Memory, Domain Socket, RPC (re-

moting), Socket (UDP or TCP). So Java Program can call C program using Signals,

Semaphores,Pipes, shared memory, Socket.

5.1.1.2 Call Java from C program

Linking A C function can create, update and access to Java objects. There are two

methods to access a Java program from a C program. The first method is a Java method

is implemented in C et and the C method call back the Java object. The second method

is to embed the Java Virtual Machine (JVM) [33]. In the two case, it is the JNI API

that supports the communication [24].

We reuse the same example of Test class. We modify the C function Java Test print

which implements the native method print to access to iValue and compute, the mem-

bers of Java class.

The corresponding code is :

JNIEXPORT void JNICALL Java_Test_print(JNIEnv *env, jobject obj,

On going work 37

jstring s)

{

jclass cls = (*env)->GetObjectClass(env, obj);

jmethodID mid = (*env)->GetMethodID(env, cls, "compute",

"(Ljava/util/Vector;F)D");

....

(*env)->CallDoubleMethod(env, obj, mid, v, 1.Of);

jfieldID fid = (*env)->(env, cls, "iValue", "I");

int i = (*env)->GetInField(env, obj, fid);

...

}

The Java class is retrieved using the JNI function GetObjectClass. We will use Get-

MethodID with the name of Java class and its signature. To find the wanted method,

JNI search in the symbol table using the name of the method. The method is invo-

cated using the JNI method Call<T>Method , where T denotes the type returned by

the method. The value of the field iValue is accessible via the method GetFieldID and

respectively the JNI function GetIntField [24].

Fork To execute a Java program or to call an executable from C, it is possible to use

the ”system” function:

CPP / C++ / C Code:

int result;

//Execute command.

result = system(Java_program);

”your command” is the name of the command / filename that we want to execute.

IPC C can use Signals, Pipes, Messaging Queue, Semaphores, Shared memory, Socket.

And, Java can use Signals, Semaphore, Pipes, Shared Memory, Domain Socket, RPC

(remoting), and Socket (UDP or TCP). So, C program can call Java program using

Signals, Semaphores, Pipes, Shared Memory, Socket.

Plugins It is possible to write plugins with Java for C program. For example, collectd

software [34], it is a daemon that collects system performance statistics periodically and

On going work 38

provides mechanisms to store the values in a variety of ways. It is written in C language

and It has Java plugin to it. The Java plugin embeds a Java virtual machine (JVM) into

collectd and exposes the application programming interface (API) to Java programs.

5.1.2 Open Source Licenses

We define a component-based software application(S) as a work composed of one or more

software components (Ci) functioning together. Each component has its own copyright

owner (who can be the end user or the integrator putting S together) and its own li-

cense (L(Ci)). Similarly, S can have its own license L(S) [14]. A software system S can

be modeled as dependency graph with each component (Ci) as a node and the edge

presents interconnection between components. The interconnection can be through as

we mentioned before : linking, fork, subclass, IPC, and plugin, for the example see the

figure 5.1.

To determine if there a violation, who connect to who is not important, for example C3

that licensed under BSD-3 calls dynamically C2 that licensed under GPLv2, normally

it is not permitted but when all this component belong to final system S we don’t care

of the inter-relation between components as separate system. But what matters is the

type of interconnections indicated in the outgoing arrow and the license of destination

components. In our example, we are interested to:

−→ exec call to BSD-3

−→ Dynamic linking to GPLv2

−→ exec call to BSD-4

We are not also interested to the license of C4 that is GPLv2+ because there is no

incoming link to it. So, the final license of the system must be GPLv2 or any later

because there a dynamic link to GPLv2 licensed component.

5.1.2.1 Modeling open source licenses

An open source license provides its licensee with grant to one or more of the exclusive

rights owned by the copyright owner of the component. Each grant is granted provided

On going work 39

Figure 5.1: Example of heterogeneously licensed system

a set of conditions are satisfied, all these conditions must be satisfied [5].

To model and open source licenses, we will reuse the model in the work of Daniel

M.German and al. [14], a license is set of grants. ”The conditions for each grant to right

r (Gr) can be represented as a set of m conjuncts should be satisfied for the licensor to

receive such grant: Gr(L) = p1∧ ...∧pm. If one of the conjunct p1...pm are not respected

so the grant of the licenses is not given. So, we have to identify and interpret grant that

exist in licenses and there conjuncts.” [14]

5.1.2.2 Modeling licenses compatibility

To formalize also the compatibility of licenses also using the work of German and al.

[14]: ”Each of the rights needed for S will require a grant to one or more specific rights

from each of C1 ...Cn . Each grant imposes a set of conditions, which are modeled as

conjuncts. If the union of all these conjuncts is not satisfiable, then I cannot acquire the

desired rights and might not be able to create S or license it to anybody. We say that,

for a given grant g, L(C) is not compatible with L(S) if at least one of the conjuncts of g

from L(C) is not satisfiable under L(S). We denote this relationship as g (compatible)

and g (not compatible): if under grant g, L(A) is compatible with L(B) then A g B.

By extension the use of C in S is compatible under use u (denoted C u S) iff the use

u is permitted by a grant g of L(C), and L(C) g L(S).”

On going work 40

5.1.3 Software Architecture

Actually, we will use a simple model [35] to represent the system architecture.

5.1.3.1 Definition

They are many definitions for software architectures, One of the earliest is proposed by

Perry and Wolf(1992): ”a set of architectural elements that have a particular form” they

propose three types of elements: processing, data and connecting. Connecting elements

distinguish one architecture from another. The form of the architecture is given by

enumerating the properties and relationships of the different elements[35]. And one the

newest definition is offered by Bass, Clements and Kazman(1998) offer the following

definition: ”Software architecture is the structure of the structures of the system, which

comprise software components, the externally visible properties of these components, and

the relationships among them”.

5.1.3.2 Software architecture elements

A software architecture is comprised of elements [35]:

• Components:

Components are the basic building blocks and the active, computational entities

in the system. Components accomplish tasks through internal computation and

external communication.

• Connectors:

Connectors define the interaction between components an describe the rules that

govern those interaction.

• Interfaces:

A components defines an interface through which a connector links one components

with another.

• Configuration:

A configuration (called topology also) is a connected graph of components and

connectors that describes architectural structure

On going work 41

Figure 5.2: Architecture model

5.1.4 Possible Architectures

In this section, we suppose that we have a system S: a component-based software. S

is composed by one or many components Ci, i ≥ 1. And C∗ is the program that we

want to add (to use in) the system S. C∗ is connected to S necessarily with at least one

component of S. We must analyse the connections of S and C∗ one by one. We suppose

that C∗ is connected to S just once because in the case of many interconnections, the

handle of all interconnections is equivalent to the handle of the sum of interconnections

(one by one), see figure 5.2.

5.1.4.1 Example of possible architectures for program written with Java

and C

We want to show how we can found possible architectures manually for a special case

of program written with Java and C and we will consider these licenses: Modified BSD,

GPL, Apache. First, we will present some notation and we will describe the system

characteristics. Second, we will show how intuitively we can find the possible architec-

tures. From this manual method we will deduce will present the system that respect

the constraints. In the next section, we will explain how we can automate this process

using system expert. Notation:

PL(C) denote the programming language of the component C and L(C) is the license of

the component C.

We suppose that we have a system S and and the component that has to be added to S

is C∗ and PL(C∗) = C L(C∗) = GPL. It will be connected to the component C1 and

PL(C1) = Java

On going work 42

Figure 5.3: PL(C∗) = C, PL(C1) = Java, L(C∗) = GPL

Figure 5.4: PL(C∗) = C, PL(C1) = Java, L(C∗) = GPL and I(C1, C
∗) = fork

Knowing that the Java can be connected to a C program with the following type of in-

terconnection : linking, fork, IPC, we want to know what is possible license of S L(S) =?

and the interconnection type between C1 and C∗. The answer of these question will be

a set of a couple (L(S), I(C1, C
∗))

If the interconnection type is linking or IPC, so S is considered as derivative work of

C∗, then necessarily L(S) must have the same license as L(C∗) with the same version,

so L(S) = GPL and the solution is (L(S) = GPL, I(C1, C
∗) = linking, IPC) see figure

5.3. In this case, we can also another sub case that can be added to the same figure, to

have a compact presentation, when we have L(S) = GPL, we know that is possible to

connect to it any component which has a GPL compatible license, in our case is GPL

itself and Modified BSD.

Else if the interconnection type is fork so S can be licensed under any license compatible

with GPL in our case is GPL itself and Modified BSD see figure 5.4. There is sub case,

when the L(S) = GPL and the type of interconnection is linking or IPC or Fork, we can

have L(C∗) = ApacheV.2 but in he condition that L(S) is exactly the GPLv2.0 because

only Apache V.2 and GPLv3 are compatible see figure 5.5.

On going work 43

Figure 5.5: PL(C∗) = C, PL(C1) = Java, L(S) = GPLv3

Figure 5.6: MetaModel of the system

5.1.4.2 Formalisation and definition

In the figure 5.1.4.2, we present the meta-model of the system. The system is composed

of several subsystem and a subsystem C1 can be connected to another subsystem C2 to

have another subsystem. And the atomic subsystem is component.

The whole system S is denoted:

On going work 44

S = Ci ∪ Sj

such as Ck such as k ∈ {1..n} and n > 1 denote a component

Sj = ∪Ck denote a subsystem.

SS : the set of the components

CON = {linking, fork \ exec, IPC,P lugin} : the set of possible interconnections

License: ∪C −→ L

Sj −→ L(Sj)

Interconnection: SSXSS −→ CON

Si, Sj −→ I(Si, Sj)

We define the license of components and in general sub system like that:

License: SS −→ ∪C

Si −→ L(Si)

Compatibility of licenses:

Compatibility : LxL −→ {0, 1}

L1, L2 −→ CP (L1, L2) = 1 if L1 and L2 are compatible else 0

Example of question:

What is the possible interconnection type if you want to add C∗ to S knowing that C∗

has a license L∗ and written with Language LG∗ and it will be connected to C1 that is

written with language LG1 and the system S has a license L. Answer:

We suppose that we don’t want change the licenses of S and C1.

If L∗ and L are not compatible so I(C∗, S) = ∅

If L∗ and L are compatible so I(C∗, S) =?

On going work 45

We must verify The conditions of the license L∗ for the grant of doing a derivative or

collective work Gr(L) = p1 ∧ ...∧ pm, These conditions must be satisfied, we can deduce

the good value of I(C∗, S).

This example of question are made manually to show the intuition behind this analysis

and how it lead us to think that expert system are suitable to develop a tool to automate

this process: The use of propositional calculus to find the answer, the use of facts to

describe the system.

5.1.4.3 System expert

The next step is to develop a tool in order to automate the process of listing the possible

architectures. As we proposed in our approach, we suggest to use a system expert. The

formalisation done in the previous step will be used to define the fact base and we have

to add the rules that permit to inference engine to produce new facts until having the

answer.

5.2 Preliminary work for change impact analysis: Extrac-

tion of dependencies and types of interconnection

German and al. [10] propose a method to understand licensing compatibility issues in

software packages, and reports an empirical study aimed at auditing licensing issues in

binary packages of the Fedora-12 GNU \ Linux distribution. Their objective is is to

understand how the licenses declared in the packages are consistent with those of the

source code files. And to audit the licensing information of Fedora-12, highlighting cases

of incompatibilities between dependant packages. They followed this steps to accomplish

their goal:

• They identified the licenses and the dependencies of all files using package de-

scriptions: They extracted information from package management system of a

GNU/Linux distribution. In this context, For each source packages, they ex-

tracted .spec file which is parsed to extract dependencies information and declared

license. Then they used Ninka license identification tool to classify their licenses

[36]. Ninka uses sentences-based approach to detect the presence and identify open

source licenses in the header comments of source code file.

• Then, they combine the dependency graph of a binary package with the declared

licenses of its dependencies.

On going work 46

We notice that the identification of dependencies types is done manually. We would like

to decrease this effort by adding a functionality that helps to determine a maximum of

interconnection type. We begin with the simplest interconnection and we will iterate

after with the rest of dependencies types. We want to adopt an iterative method each

step will identify a type of interconnection and in the next iteration we apply the anal-

ysis in the rest of unidentified interconnections. We notice that identifying system call

between different files is the simplest one, so we can begin by identifying this type of

interconnections by using String based recognition. In the next iteration, we see that

Fedora-12 contains a lot of C files, so identifying linking interconnection is can be simple

if we use the GCC.

The detailed steps are:

• Identification of fork interconnection:

We are inspired from the work of Martin Pinzger and al. [37]. In this work, the

authors present an approach that uses source code structures as patterns and in-

troduced an iterative and interactive architecture recovery approach built upon

such lower-level patterns extracted from source code.

Steps:

– Pattern identification: Find key information(patterns) which enables the de-

scription of interconnection properties of a type of interconnection that we

want to extract.

– Use pattern definition language which facilitate regular expressions and source

code structures. There are several tool for string-based source code analy-

sis(Perl, grep,..) but they do’t support structures, that’s why the authors

developed a new tool named ESpart to allow pattern specification in XML.

In our case, we can use grep to identify system call in C language since the

pattern of system call in C language is simple.

• Identification of linking interconnection:

1. Identification of the program modules: sources files and their types. We got

the Fedora-12 binary. It is composed by 1,475 source code packages. In order

to identify all the files in this packages, we wrote a shell script which tours

recursively the folders and decompress recursively also the archives to take

On going work 47

in to account all depth of compression(more than one level). But the great

number of packages make the control of it difficult so we decided to begin

our work with some packages. We must choose the relevant packages that we

will study by doing a simple grep to see what is the packages that have many

interconnections.

2. In order to identify linking dependencies of each file, we will use GCC to iden-

tify the dependencies of each file which can be compiled by GCC. We tested

GCC under.cpp test files by executing this command : gcc − MMD ∗ .cpp

The option -MMD is like -MD option except mention only user header files,

not system header files. And MD option is equivalent to -M -MF file, except

that -E is not implied.

– The -MF option : The driver determines file based on whether an -o

option is given. If it is, the driver uses its argument but with a suffix of

.d, otherwise it take the basename of the input file and applies a .d suffix.

– And -M option output a rule suitable for make describing the depen-

dencies of the main source file. The preprocessor outputs one make rule

containing the object file name for that source file, a colon, and the names

of all the included files, including those coming from -include or -imacros

command line options. And -MF permit to specify a file to write the

dependencies to.

It produces information about source code dependencies by generating .d files

that contains information such as:

main.o: main.cpp setVector.h listTabou.h gammaMoins.h gammaPlus.h Teta.h

We must execute this command to all cpp and c files in the codes sources of

Fedora-12: tour all the folder in Fedora-12 and execute this command to all

cpp and c files in each folder. The output of this command is a . d file for

each c or cpp file.

3. After, we have to parse all this .d files to extract the dependencies that will

be exploited to constitute the dependency graph of the program in terms

linking.

Chapter 6

Conclusion and planning

6.1 Planning

The table 6.1 describe the planning of our project and the conference in which we want

to present our results.

W09 S09 W10 S10 F10 W11 S11 F11 W12 S12 F12 Publications

RP and courses x x x x

RQ1 x x x x WCRE

RQ2 x x x ICSE/TSE

RQ3 x x x x x x ICSM/JSME

Writing x x

Defense x

Table 6.1: Planning of the project

Key: F: Fall, W: Winter, S: Summer

RQ1: How we analyse change impact on multi-language program?

RQ2: What are the possible architectures of heterogeneously licensed system?

RQ3: What is the impact of source code change on license compatibility?

WCRE: Working Conference on Reverse Engineering.

ICSE: International Conference on Software Engineering.

TSE: Transactions on Software Engineering.

JSME: Journal of Software Maintenance and Evolution: Research and Practice.

ICSM: International Conference on Software Maintenance.

48

Chapter 6. Conclusion and planning 49

6.2 Conclusion

To increase the productivity of developers during software development process, the

software engineeres tend to reuse existing programs. The availability of Open Source

Software (OSS) and proprietary system with open APIs amplified this activity of reusing

programs. The reused programs can have different licenses and written with different

programming language. Consequently, we are facing heterogeneous programs: Multi-

language and heterogeneous licenses. Such heterogeneous program are difficult to anal-

yse. In this context, we propose change impact analysis of multi-language programs and

extend then to assess legal impact. Also, we want to suggest the possible architectures

of a program when we combine different languages and licenses that can be conflicting.

In this research proposal, we proposed an approach to reach our goal and a planning

that we will guide us to achieve our goal.

Chapter 7

Annexe: Interaction between

Perl/C and Java/Perl

7.0.1 Interaction between Perl and C

7.0.1.1 Calling C from Perl

Linking If you want to use C source code (or a C library) from Perl, you need to

create a library that can be either dynamically loaded or statically linked into your perl

executable (Dynamic loading is usually preferred, to minimize the number of different

perl executables sitting around being different.). The glue code usually contains two

files: a module file in Perl with .pm extension and a c file. To create the glue code there

are two principal method. The first method is generating the library from .xs file using

XSubpp tool or generating the library from Interface file(.i) using SWIG see Figure 7.1

:

1. Using XS

You create the library by creating an XS file (.xs) containing a series of wrapper

subroutines. The wrapper subroutines are not Perl subroutines, however; they are

in the XS language, and we call such a subroutine an XSUB, for ”eXternal SUB-

routine”. An XSUB can wrap a C function from an external library, a C function

elsewhere in the XS file, or naked C code in the XSUB itself. You then use the

xsubpp utility bundled with Perl to take the XS file and translate it into C code

that can be compiled into a library that Perl will understand. But we can directly

write the C code and linking it into your Perl executable. However, this would be

tedious, especially if you need to write glue for multiple C functions, or if you’re

not familiar with the Perl stack discipline and other arcana. XS lets you write

50

Chapter 6. Conclusion and planning 51

Figure 7.1: Process to call C code in Perl program

a concise description of what should be done by the glue, and the XS compiler

xsubpp handles the rest.

We can also automate all the process by generating the xs file with h2xs. h2xs

understands C header files (but not C++) and converts all constants and function

prototypes to a meta language called XS. But a function declaration may still

be too complex for scripting purposes, so this approach expects you to twiddle

with the .xs file produced by h2xs and take the necessary steps to simplify the

interface. Of course, the hand conversion is unnecessary if the interface is already

simple enough.

Assuming your operating system supports dynamic linking, the end result will be

a Perl module that behaves like any other module written in 100% pure Perl, but

runs compiled C code under the hood. It does this by pulling arguments from Perl’s

argument stack, converting the Perl values to the formats expected by a particular

C function (specified through an XSUB declaration), calling the C function, and

finally transferring the return values of the C function back to Perl. These return

values may be passed back to Perl either by putting them on the Perl stack or by

modifying the arguments supplied from the Perl side.

[38]

An XS file begins with any C code you want to include, which will often be nothing

more than a set of #include directives. After a MODULE keyword, the remainder

of the file should be in the XS ”language”, a combination of XS directives and

Chapter 6. Conclusion and planning 52

XSUB definitions. We’ll see an example of an entire XS file soon, but in the mean-

time here is a simple XSUB definition that allows a Perl program to access a C

library function called sin(3). The XSUB specifies the return type (a double length

floating-point number), the function name and argument list (with one argument

dubbed x), and the type of the argument (another double):

double

sin(x)

...

double x

Each section of an XSUB starts with a keyword followed by a colon, such as INIT:

or CLEANUP:. However, the first two lines of an XSUB always contain the same

data: a description of the return type and the name of the function and its param-

eters. Whatever immediately follows these is considered to be an INPUT: section

unless explicitly marked with another keyword.

The xsubpp program also needs to know how to convert from Perl’s data types to

C’s data types. Often it can guess, but with user-defined types you may need to

help it out by specifying the conversion in a typemap file. The default conversions

are stored in PATH-TO-PERLLIB/ExtUtils/typemap. The typemap is split into

three sections. The first section, labeled TYPEMAP, tells the compiler which of

the code fragments in the following two sections should be used to map between

C types and Perl values. The second section, INPUT, contains C code specifying

how Perl values should be converted to C types. The third section, OUTPUT,

contains C code specifying how to translate C types into Perl values.

The Mytest.xs file contains the XSUBs that tell Perl how to pass data to the com-

piled C routines. Initially, Mytest.xs will look something like this:

#include "EXTERN.h"

#include "perl.h"

#include "XSUB.h"

MODULE = Mytest PACKAGE = Mytest

Let’s edit the XS file by adding this to the end of the file:

Chapter 6. Conclusion and planning 53

void

hello()

CODE:

printf(" Hello, world! ");

2. Using SWIG

The SWIG system automatically generates simple XSUBs. SWIG (Simplified

Wrapper and Interface Generator) is a freely available tool that integrates Perl,

Python, Tcl, and other scripting languages with programs written in C, C++,

and Objective-C [39]. SWIG, a tool designed to integrate C code with a variety

of scripting languages including Perl, Python, and Tcl.

SWIG is a specialized compiler that transforms ANSI C/C++ declarations into

scripting language extension wrappers. While somewhat similar to h2xs, SWIG

has a number of notable differences. First, SWIG is much less internals oriented

than XS. In other words, SWIG interfaces can usually be constructed without any

knowledge of Perl’s internal operation. Second, SWIG is designed to be extensible

and general purpose. Currently, wrappers can be generated for Perl, Python, Tcl,

and Guile [39].

suppose that you wanted to build a Perl interface to Thomas Boutell’s gd graphics

library. Since gd is a C library, images are normally created by writing C code

such as follows [39]:

#include "gd.h"

int main() {

gdImagePtr im;

FILE *out;

int blk,wht;

/* Create an image */

im=gdImageCreate(200,200);

/* Allocate some colors */

blk=gdImageColorAllocate(im,0,0,0);

wht=gdImageColorAllocate(im,255,255,255);

/* Draw a line */

gdImageLine(im,20,50,180,140,wht);

/* Output the image */

out=fopen("test.gif","wb");

gdImageGif(im,out);

fclose(out);

Chapter 6. Conclusion and planning 54

/* Clean up */

gdImageDestroy(im);

}

We How to write a similar code in Perl. Thus, the functionality of the gd must be

exposed to the Perl interpreter. This is provided by SWIG interface :

// File : gd.i

%module gd

%{

#include "gd.h"

%}

typedef gdImage *gdImagePtr;

gdImagePtr gdImageCreate(int sx, int sy);

void gdImageDestroy(gdImagePtr im);

void gdImageLine(gdImagePtr im,

int x1, int y1,

int x2, int y2,

int color);

int gdImageColorAllocate(gdImagePtr im,

int r, int g, int b);

void gdImageGif(gdImagePtr im, FILE *out);

// File I/O functions (explained shortly)

FILE *fopen(char *name, char *mode);

void fclose(FILE *);

In this file the function that we want to access from Perl are listed plus some SWIG

directives which are preceeded by ”%”. The ”%module”. The %, % block is used

to insert literal code into the output wrapper file. In this case, we simply include

the “gd.h” header file. Finally, a few file I/O functions also appear. While not

part of gd, these functions are needed to manufacture file handles used by several

gd functions.

To run SWIG, the following command is executed:

Chapter 6. Conclusion and planning 55

unix > swig -perl5 gd.i

It generate wrappers for Perl 5

This produces two files, gd wrap.c and gd.pm. The first file contains C wrapper

functions that appear similar to the output that would have been generated by

xsubpp. The .pm file contains supporting Perl code needed to load and use the

module.

To build the module, the wrapper file is compiled and linked into a shared library.

This process varies on every machine (consult the man pages), but the following

steps are performed on Linux:

unix > gcc -fpic -c gd_wrap.c \

-Dbool=char \

-I/usr/lib/perl5/i586-linux/5.004/CORE

unix > gcc -shared gd_wrap.o -lgd -o gd.so

At this point, the module is ready to use. For example, the earlier C program can

be directly translated into the following Perl script:

#!/usr/bin/perl

use gd;

Create an image

$im = gd::gdImageCreate(200,200);

Allocate some colors

$blk=gd::gdImageColorAllocate($im,0,0,0);

$wht=gd::gdImageColorAllocate($im,255,255,255);

Draw a line

gd::gdImageLine($im,20,50,180,140,$wht);

Output the image

$out=gd::fopen("test.gif","wb");

gd::gdImageGif($im,$out);

gd::fclose($out);

\# Clean up

gd::gdImageDestroy($im);

Chapter 6. Conclusion and planning 56

Fork : system call It is possible to do system call from Perl program as follow [40][?

]:

• Solution 1: system call

You can call any program from the command line using a system call. This is only

useful if you do not need to capture the output of the program.

#!/usr/bin/perl

use strict;

use warnings;

my $status = system("C_Prog.exe");

You’ll need to bitshift the return value by 8 (or divide by 256) to get the return

value of the program called:

#!/usr/bin/perl

use strict;

use warnings;

my $status = system("C_Prog");

if (($status >=8) != 0) {

die "Failed to run vi";

}

• Solution 2: qx call

If you need to capture the output of the program, use qx.

#!/usr/bin/perl

use strict;

use warnings;

my $info = qx(C_Prog);

print "C_Prog is: $info";

Or if the output has multiple lines (e.g. the output of the ”who” command can

consist of many lines of data):

#!/usr/bin/perl

use strict;

Chapter 6. Conclusion and planning 57

use warnings;

my @info = qx(Perl.exe);

foreach my $i (@info) {

int "$i is online";

}

You can also use backticks (‘) to achieve the same thing:

\#!/usr/bin/perl

use strict;

use warnings;

my @info = ‘Perl.exe‘;

foreach my \$i (@info) {

print "$i is online";

}

SubClass It is not possible to inherit C class in Perl program.

7.0.1.2 IPC

Perl can use following IPC techniques of communication : Signals, Files, Pipes,System

V IPC, Sockets.

C can use Signals, Pipes, Messaging Queue, Semaphores, Shared memory, Socket.

So Perl program can communicate with C program via Signals, Pipes, Sockets.

Plugin As we found a software XChatOSD [41] aimed on displaing XChat messages

and it is written in Perl and have Plugins written in C, it is possible to write C plugin

for Perl program.

7.0.1.3 Calling Perl from C

Linking Perl is itself written in C; the perl library is the collection of compiled C

programs that were used to create your perl executable(/usr/bin/perl or equivalent).

When you use Perl from C, your C program will–usually-allocate, ”run”, and deallocate

a PerlInterpreter object, which is defined by the Perl library.

Chapter 6. Conclusion and planning 58

• Calling a Perl subroutine from your C program

To call individual Perl subroutines, you can use any of the call * functions docu-

mented in perlcall. In this example we’ll use call argv [42][43].

That’s shown below, in a program we will call showtime.c [43].

#include <EXTERN.h>

#include <perl.h>

static PerlInterpreter *my_perl;

#include <EXTERN.h>

#include <perl.h>

static PerlInterpreter *my_perl;

int main(int argc, char **argv, char **env)

{

char *args[] = { NULL };

PERL_SYS_INIT3(&argc,&argv,&env);

my_perl = perl_alloc();

perl_construct(my_perl);

perl_parse(my_perl, NULL, argc, argv, NULL);

PL_exit_flags |= PERL_EXIT_DESTRUCT_END;

/*** skipping perl_run() ***/

call_argv("showtime", G_DISCARD | G_NOARGS, args);

perl_destruct(my_perl);

perl_free(my_perl);

PERL_SYS_TERM();

}

where showtime is a Perl subroutine that takes no arguments (that’s the G NOARGS)

and for which I’ll ignore the return value (that’s the G DISCARD). Those flags,

and others, are discussed in perlcall.

Chapter 6. Conclusion and planning 59

I’ll define the showtime subroutine in a file called showtime.pl:

print "I shan’t be printed.";

sub showtime {

print time;

}

Now compile and run:

% cc -o showtime showtime.c ‘perl -MExtUtils::Embed -e ccopts -e ldopts‘

% showtime showtime.pl

818284590

In this particular case we don’t have to call perl run, as we set the PL exit flag

PERL EXIT DESTRUCT END which executes END blocks in perl destruct.

If you want to pass arguments to the Perl subroutine, you can add strings to the

NULL-terminated args list passed to call argv. For other data types, or to examine

return values, you’ll need to manipulate the Perl stack.

Fork : Calling a Perl executable in C program

1. Adding a Perl Interpreter to the C program [44]: It is possible to execute a Perl

script by adding a Perl Interpreter to the C program:

A demonstration of embedding can be found in the file miniperlmain.c, included

with the Perl source code. Here’s a nonportable version of miniperlmain.c con-

taining the essentials of embedding:

#include <EXTERN.h> /* from the Perl distribution */

#include <perl.h> /* from the Perl distribution */

static PerlInterpreter *my_perl; /*** The Perl interpreter ***/

int main(int argc, char **argv, char **env)

{

Chapter 6. Conclusion and planning 60

my_perl = perl_alloc();

perl_construct(my_perl);

perl_parse(my_perl, NULL, argc, argv, (char **)NULL);

perl_run(my_perl);

perl_destruct(my_perl);

perl_free(my_perl);

}

When this is compiled with the command line above, you’ll be able to use interp

just like a regular Perl interpreter:

% interp -e "printf(’%x’, 3735928559)"

deadbeef

You can also execute Perl statements stored in a file by placing the filename in

argv[1] before calling perl run.

2. using system call [44]: You can use the ”system” function.

CPP / C++ / C Code:

//Execute command.

int result;

result = system(your_command);

”your command” is the name of the command / filename you wish to execute. we

can call a Perl executable file by :

result = system("d:\\test.exe");

7.0.1.4 SubClass

IPC Perl can use following IPC techniques of communication : Signals, Files, Pipes,System

V IPC, Sockets.

C can use Signals, Pipes, Messaging Queue, Semaphores, Shared memory, Socket.

So C program can communicate with Perl program via Signals, Pipes, Sockets.

Plugin

Chapter 6. Conclusion and planning 61

7.0.2 Interaction between Java and Perl

7.0.2.1 Calling Java From Perl

Linking

1. Java in Perl: Simple Constructors [45][46]

Use JPL::Class to load the class:

use JPL::Class "java::awt::Frame";

Invoke the constructor to create an instance of the class:

my $f = java::awt::Frame->new;

You’ve got a reference to a Java object in $f, a Perl scalar.

2. Constructors that take parameters [45][46]

If the constructor has parameters, look up the method signature with getmeth:

my $new = getmeth("new", [’java.lang.String’], []);

The first argument to getmeth is the name of the method. The second argument

is a reference to an array that contains a list of the argument types. The final

argument to getmeth is a reference to an array containing a single element with

the return type. Constructors always have a null (void) return type, even though

they return an instance of an object.

Invoke the method through the variable you created:

my $f = java::awt::Frame->$new("Frame Demo");

The getmeth function is not just for constructors. You can use it to look up method

signatures for any method that takes arguments.

Fork

• Solution 1: system call [40][?]

You can call any program like you would from the command line using a system

call. This is only useful if you do not need to capture the output of the program.

Chapter 6. Conclusion and planning 62

#!/usr/bin/perl

use strict;

use warnings;

my $status = system("JavaProgram.exe");

if (($status >=8) != 0) {

die "Failed to run vi";

}

You’ll need to bitshift the return value by 8 (or divide by 256) to get the return

value of the program called:

• Solution 2: qx call [40][?]

If you need to capture the output of the program, use qx.

#!/usr/bin/perl

use strict;

use warnings;

my $info = qx(JavaProgram.exe);

print "JavaProgram is: $info";

Or if the output has multiple lines (e.g. the output of the ”who” command can

consist of many lines of data):

#!/usr/bin/perl

use strict;

use warnings;

my @info = qx(JavaProgram.exe);

foreach my $i (@info) {

print "$i is online";

}

You can also use backticks (‘) to achieve the same thing [40][?]:

#!/usr/bin/perl

use strict;

use warnings;

my @info = ‘JavaProgram.exe‘;

foreach my $i (@info) {

print "$i is online";

}

Chapter 6. Conclusion and planning 63

IPC Perl can use following IPC techniques of communication : Signals, Files, Pipes,System

V IPC, Sockets.

Java can use Signals, Semaphore, Pipes, Shared Memory, Domain Socket, RPC(remoting),

Socket(UDP or TCP)

So Java can communicate with Perl program by using Signals, Pipes, Shared Memory,

Socket.

Plugin

7.0.3 Calling Perl From Java

Linking Well-supported by JPL, but it is a complicated process [46]:

• The JPL preprocessor parses the .jpl file and generates C code wrappers for Perl

methods. It also generates Java and Perl source files.

• The C compiler compiles the wrapper and links it to the libPerlInterpreter.so

shared library, producing a shared library for the wrapper.

• The Java compiler compiles the Java source file, which uses native methods to load

the wrapper.

• The wrapper connects the Java code to the Perl code in the Perl source file.

Fortunately, a generic Makefile.PL simplifies the process. This is a Perl script that

generates a Makefile.

You can put Perl methods in your .jpl file. Perl methods are declared perl and use

double curly braces to make life easier on the JPL preprocessor:

perl int perlMultiply(int a, int b) {{

my $result = $a * $b;

return $result;

}}

In your Java code, you can invoke Perl methods like a Java method. The native code

wrappers take care of running the Perl code:

public void invokePerlFunction() {

int x = 3;

Chapter 6. Conclusion and planning 64

int y = 6;

int retval = perlMultiply(x, y);

System.out.println(x + " * " + y + " = " + retval);

}

class MethodDemo :

class MethodDemo

class MethodDemo {

A Perl method to multiply two numbers and

return the result.

perl int perlMultiply(int a, int b) {{

my $result = $a * $b;

return $result;

}}

//A Java method to call the Perl function.

public void invokePerlFunction() {

int x = 3;

int y = 6;

int retval = perlMultiply(x, y);

System.out.println(x +" * "+ y +" = "+ retval);

}

public static void main(String[] args) {

MethodDemo demo = new MethodDemo();

demo.invokePerlFunction();

}

}

IPC Perl can use following IPC techniques of communication : Signals, Files, Pipes,System

V IPC, Sockets.

Java can use Signals, Semaphore, Pipes, Shared Memory, Domain Socket, RPC(remoting),

Socket(UDP or TCP)

So Java can communicate with Perl program by using Signals, Pipes, Shared Memory,

Socket.

Chapter 6. Conclusion and planning 65

Plugin

Fork If we want to call externel programs(executable program) in a Java application,

we can use system call by creating Runtime Object and attaching it to system process

[47].

Example:

import java.io.*;

public class Main {

public static void main(String args[]) {

try {

Runtime rt = Runtime.getRuntime();

Process pr = rt.exec("PerlScript.pl");

BufferedReader input = new BufferedReader(new InputStreamReader(pr.getIn

String line=null;

while((line=input.readLine()) != null) {

System.out.println(line);

}

int exitVal = pr.waitFor();

System.out.println("Exited with error code "+exitVal);

} catch(Exception e) {

System.out.println(e.toString());

e.printStackTrace();

}

}

}

Method waitFor() will make the current thread to wait until the external program finish

and return the exit value to the waited thread.

Bibliography

[1] Bernt Kullbach, Andreas Winter, Peter Dahm, and Jürgen Ebert. Program com-

prehension in multi-language systems. In WCRE ’98: Proceedings of the Working

Conference on Reverse Engineering (WCRE’98), page 135, Washington, DC, USA,

1998. IEEE Computer Society. ISBN 0-8186-8967-6.

[2] Extending perl:a first course. Last access: 31 August 2010. URL

http://docstore.mik.ua/orelly/perl/advprog/ch18_01.htm.

[3] Andrea Capiluppi, Patricia Lago, and Maurizio Morisio. Characteristics of open

source projects. In CSMR ’03: Proceedings of the Seventh European Conference on

Software Maintenance and Reengineering, page 317, Washington, DC, USA, 2003.

IEEE Computer Society. ISBN 0-7695-1902-4.

[4] Lawrence Rosen. Open Source Licensing Software Freedom and Intellectual Property

Law. Prentice Hall, Juillet 2004. URL http://www.rosenlaw.com/oslbook.htm.

[5] Open source licenses by category. Last access: 31 August 2010. URL

http://www.opensource.org/licenses/category.

[6] Can i apply the gpl when writing a plug-in for a non-

free program? Last access: 31 August 2010. URL

http://www.gnu.org/licenses/gpl-faq.html#GPLPluginsInNF.

[7] Apache license. Last access: 31 August 2010, . URL

http://en.wikipedia.org/wiki/Apache_License.

[8] License. Last access: 31 August 2010, . URL http://www.apache.org/licenses/.

[9] Standing against license proliferation. Last access: 31 August 2010. URL

http://google-opensource.blogspot.com/2008/05/standing-against-license-proliferation

[10] Daniel M. German, Massimiliano Di Penta, and Julius Davies. Understanding

and auditing the licensing of open source software distributions. International

Conference on Program Comprehension, 0:84–93, 2010. ISSN 1063-6897. doi:

http://doi.ieeecomputersociety.org/10.1109/ICPC.2010.48.

66

http://docstore.mik.ua/orelly/perl/advprog/ch18_01.htm
http://www.rosenlaw.com/oslbook.htm
http://www.opensource.org/licenses/category
http://www.gnu.org/licenses/gpl-faq.html#GPLPluginsInNF
http://en.wikipedia.org/wiki/Apache_License
http://www.apache.org/licenses/
http://google-opensource.blogspot.com/2008/05/standing-against-license-proliferation.html

Bibliography 67

[11] Shawn A. Bohner. Software change impact analysis. 1996.

[12] Giovanni Beltrame, Luca Fossati, and Donatella Sciuto. Resp: a nonintrusive

transaction-level reflective mpsoc simulation platform for design space exploration.

Trans. Comp.-Aided Des. Integ. Cir. Sys., 28(12):1857–1869, 2009. ISSN 0278-0070.

doi: http://dx.doi.org/10.1109/TCAD.2009.2030268.

[13] Daniela Carneiro da Cruz. Methods and techniques to analyze multi-level code to

explore software components. PhD thesis, Universidade do minho, 2008.

[14] Daniel M. German and Ahmed E. Hassan. License integration patterns: Addressing

license mismatches in component-based development. In ICSE ’09: Proceedings of

the 31st International Conference on Software Engineering, pages 188–198, Wash-

ington, DC, USA, 2009. IEEE Computer Society. ISBN 978-1-4244-3453-4. doi:

http://dx.doi.org/10.1109/ICSE.2009.5070520.

[15] Klaas-Jan Stol and Muhammad Ali Babar. Challenges in using open source software

in product development: a review of the literature. In FLOSS ’10: Proceedings

of the 3rd International Workshop on Emerging Trends in Free/Libre/Open Source

Software Research and Development, pages 17–22, New York, NY, USA, 2010. ACM.

ISBN 978-1-60558-978-7. doi: http://doi.acm.org/10.1145/1833272.1833276.

[16] Mitch Bayersdorfer. Managing a project with open source components. inter-

actions, 14(6):33–34, 2007. ISSN 1072-5520. doi: http://doi.acm.org/10.1145/

1300655.1300677.

[17] R. C. Osterberg. Substantial Similarity in Copy-

right Law. Practising Law Institute, 2003. URL

http://openlibrary.org/books/OL3698208M/Substantial_similarity_in_copyright_law.

[18] Z. Obrenovic and D. Gasevic. Open source software: All you do is put it together.

Software, IEEE, 24(5):86–95, sep. 2007. ISSN 0740-7459. doi: 10.1109/MS.2007.

141.

[19] Panagiotis K. Linos. Polycare: a tool for re-engineering multi-language program

integrations. In ICECCS, pages 338–, 1995.

[20] Panagiotis K. Linos, Zhi hong Chen, Seth Berrier, and Brian O’Rourke. A tool for

understanding multi-language program dependencies. In IWPC ’03: Proceedings

of the 11th IEEE International Workshop on Program Comprehension, page 64,

Washington, DC, USA, 2003. IEEE Computer Society. ISBN 0-7695-1883-4.

[21] Panos Linos, Whitney Lucas, Sig Myers, and Ezekiel Maier. A metrics tool for multi-

language software. In SEA ’07: Proceedings of the 11th IASTED International

http://openlibrary.org/books/OL3698208M/Substantial_similarity_in_copyright_law

Bibliography 68

Conference on Software Engineering and Applications, pages 324–329, Anaheim,

CA, USA, 2007. ACTA Press. ISBN 978-0-88986-706-2.

[22] Daniel L. Moise and Kenny Wong. Extracting facts from perl code. In WCRE ’06:

Proceedings of the 13th Working Conference on Reverse Engineering, pages 243–

252, Washington, DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-2719-1.

doi: http://dx.doi.org/10.1109/WCRE.2006.28.

[23] Daniel L. Moise, Kenny Wong, H. James Hoover, and Daqing Hou. Reverse en-

gineering scripting language extensions. In ICPC ’06: Proceedings of the 14th

IEEE International Conference on Program Comprehension, pages 295–306, Wash-

ington, DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-2601-2. doi:

http://dx.doi.org/10.1109/ICPC.2006.42.

[24] Daniel L. Moise and Kenny Wong. Extracting and representing cross-language de-

pendencies in diverse software systems. In WCRE ’05: Proceedings of the 12th

Working Conference on Reverse Engineering, pages 209–218, Washington, DC,

USA, 2005. IEEE Computer Society. ISBN 0-7695-2474-5. doi: http://dx.doi.

org/10.1109/WCRE.2005.19.

[25] Laurent Deruelle and Henri Basson. An eclipse platform for analysis and manipu-

lation of distributed multi-language software. In CAINE, pages 100–105, 2008.

[26] Ahmed E. Hassan and Richard C. Holt. Architecture recovery of web applications.

In ICSE ’02: Proceedings of the 24th International Conference on Software Engi-

neering, pages 349–359, New York, NY, USA, 2002. ACM. ISBN 1-58113-472-X.

doi: http://doi.acm.org/10.1145/581339.581383.

[27] Thomas A. Alspaugh, Hazeline U. Asuncion, and Walt Scacchi. Intellectual prop-

erty rights requirements for heterogeneously-licensed systems. In RE ’09: Proceed-

ings of the 2009 17th IEEE International Requirements Engineering Conference,

RE, pages 24–33, Washington, DC, USA, 2009. IEEE Computer Society. ISBN

978-0-7695-3761-0. doi: http://dx.doi.org/10.1109/RE.2009.22.

[28] Timo Tuunanen, Jussi Koskinen, and Tommi Kärkkäinen. Automated software

license analysis. Automated Software Engg., 16(3-4):455–490, 2009. ISSN 0928-

8910. doi: http://dx.doi.org/10.1007/s10515-009-0054-z.

[29] Leon Moonen. Generating robust parsers using island grammars. Reverse En-

gineering, Working Conference on, 0:13, 2001. ISSN 1095-1350. doi: http:

//doi.ieeecomputersociety.org/10.1109/WCRE.2001.957806.

Bibliography 69

[30] Yann-Gaël Guéhéneuc. Ptidej: A flexible reverse engineer-

ing tool suite. In ICSM, pages 529–530. IEEE, 2007. URL

http://dblp.uni-trier.de/db/conf/icsm/icsm2007.html#Gueheneuc07.

[31] G. Antoniol, G. Casazza, M. Di Penta, and R. Fiutem. Object-oriented

design patterns recovery. Journal of Systems and Software, 59(2):181–196,

2001. ISSN 0164-1212. doi: DOI:10.1016/S0164-1212(01)00061-9. URL

http://www.sciencedirect.com/science/article/B6V0N-449TJ06-J/2/1194eca49fa9a9d8dbafd

[32] How to run command-line or execute external applica-

tion from java. Last access: 31 August 2010, . URL

http://www.linglom.com/2007/06/06/how-to-run-command-line-or-execute-external-applic

[33] Embed java code into your native apps. Last access: 31 August 2010. URL

http://www.javaworld.com/javaworld/jw-05-2001/jw-0511-legacy.html.

[34] Collectd. Last access: 31 August 2010. URL

http://collectd.org/features.shtml.

[35] Stephen H. Kaisler. Software Paradigms. John Wiley & Sons, 2005. ISBN

0471483478.

[36] Daniel M. German, Y. Manabe, and K. Inoue. A sentence-matching method for

automatic license identification of source code files. Under review, 2009. URL

http://turingmachine/~dmg/papers/.

[37] Martin Pinzger and Harald Gall. Pattern-supported architecture recovery. In IWPC

’02: Proceedings of the 10th International Workshop on Program Comprehension,

page 53, Washington, DC, USA, 2002. IEEE Computer Society. ISBN 0-7695-1495-

2.

[38] Extending perl (using c from perl). Last access: 31 August 2010, . URL

http://docstore.mik.ua/orelly/perl3/prog/.

[39] David M. Beazley, David Fletcher, Dominique Dumont, and Hewlett Packard. Perl

extension building with swig. In in O’Reilly Perl Conference 2.0, 1998.

[40] Perl programming documentation. Last access: 31 August 2010, . URL

http://perldoc.perl.org/functions/syscall.html.

[41] Xchatosd perl script / c plugin files. Last access: 31 August 2010, . URL

http://xchatosd.sourceforge.net/.

[42] John Moreland. Introduction to perl. Last access: 31 August 2010. URL

http://www.sdsc.edu/~moreland/courses/IntroPerl/docs/manual/pod/perlipc.html.

http://dblp.uni-trier.de/db/conf/icsm/icsm2007.html#Gueheneuc07
http://www.sciencedirect.com/science/article/B6V0N-449TJ06-J/2/1194eca49fa9a9d8dbafde4af2041130
http://www.linglom.com/2007/06/06/how-to-run-command-line-or-execute-external-application-from-java/
http://www.javaworld.com/javaworld/jw-05-2001/jw-0511-legacy.html
http://collectd.org/features.shtml
http://turingmachine/~dmg/papers/
http://docstore.mik.ua/orelly/perl3/prog/
http://perldoc.perl.org/functions/syscall.html
http://xchatosd.sourceforge.net/
http://www.sdsc.edu/~moreland/courses/IntroPerl/docs/manual/pod/perlipc.html

Bibliography 70

[43] Jon Orwant and Doug MacEachern. perlembed - how to em-

bed perl in your c program. Last access: 31 August 2010. URL

http://search.cpan.org/~jesse/perl-5.12.1/pod/perlembed.pod.

[44] Larry Wall. Programming Perl. O’Reilly & Associates, Inc., Sebastopol, CA, USA,

2000. ISBN 0596000278.

[45] Calling java from perl. Last access: 31 August 2010, . URL

http://perl.active-venture.com/jpl/docs/Tutorial.html.

[46] Tutorial - perl and java. Last access: 31 August 2010, . URL

http://sunsite.ualberta.ca/Documentation/Misc/perl-5.6.1/jpl/docs/Tutorial.html.

[47] Velocity reviews - java - execute perl in java(forum). Last access: 31 August 2010, .

URL http://www.velocityreviews.com/forums/t129578-execute-perl-in-java.html.

http://search.cpan.org/~jesse/perl-5.12.1/pod/perlembed.pod
http://perl.active-venture.com/jpl/docs/Tutorial.html
http://sunsite.ualberta.ca/Documentation/Misc/perl-5.6.1/jpl/docs/Tutorial.html
http://www.velocityreviews.com/forums/t129578-execute-perl-in-java.html

	EPM-RT-2010-06_Boughanmi

