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RESUME

L'objectifde ce memoire est d'introduire une methode qui sert a resoudre Ie probleme

inverse de conduction de chaleur en utilisant une frontiere mobile et en ayant recours a

la methode du gradient conjugue et des equations adjointes. Cette approche requiert la

derivation de trois equations, soit I'equation directe, 1'equation de sensibilite et

1'equation adjointe.

Dans 1'introduction, ce travail fait 1'expose d'etudes existantes sur Ie probleme direct

ainsi que sur Ie probleme inverse de conduction de chaleur. Le premier chapitre presente

la derivation des equations gouvemantes sans dimension.

Le deuxieme chapitre introduit en resume la methode d'optimisation qui est utilisee afin

de resoudre Ie probleme inverse de conduction de chaleur. L'application de la technique

d'optimisation nous donne une possibilite de resoudre facilement un tel probleme. La

methode d'optimisation par gradient conjugue nous apporte un algorithme de solution

pour 1c probleme presente. En introduisant la derivation du probleme de sensibilite et du

probleme adjoint, ce chapitre presente aussi une analyse de sensibilite et d'autres aspects
de cette solution.

Le troisieme chapitre presente 1'implementation numerique de cet algorithme de
solution.

Le quatrieme chapitre presente, a partir de cas differents, les resultats obtenus et les

discussions relatives au probleme direct ainsi qu'inverse de conduction de chaleur. Des

resultats raisonnables pour Ie probleme inverse de conduction de chaleur peuvent etre

obtenus en utilisant la methode introduite, et en depla^ant la frontiere avec une vitesse

imposee independamment de la temperature ou determinee comme une partie de la
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solution du probleme inverse. Les valeurs de la solution inverse sont proches des valeurs

reelles. En considerant des donnees comportant du bruit aleatoire, 1'ecart entre les

valeurs reelles et celles provenant de la solution inverse est devenu un pea plus grand.

Dans certains cas. De meilleurs resultats peuvent etre obtenus par 1'augmentation du

nombre d' iterations.

La conclusion et les recommandations pour les travaux de recherche a venir sont

presentes dans la conclusion.

Nous avons constate que 1'approche de resolution de ce probleme inverse de conduction

de chaleur est generalisable aux autres domaines d'ingenierie.
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ABSTRACT

This thesis introduces the method for solving an inverse heat conduction problem with a

moving boundary, by conjugate gradient method, with adjoint equation. This approach

requires the derivation of three sets of coupled equations, namely, direct equation,

sensitivity equation and adjoint equation.

The derivations of governing equations in dimensionless form are given in Chapter I.

The direct problem solution is the foundation of the inverse problem. The description
for the direct heat conduction problem is given in this chapter, as well as the inverse

heat conduction problem.

Chapter II concisely introduces the optimization method which are used in solving the
inverse heat conduction problem. The application of optimization techniques makes it

possible to solve the inverse problem easily. The technique of optimization by the
conjugate gradient method leads to a solution algorithm for the inverse problem of heat
conduction.

The sensitivity problem and adjoint problem are described respectively in this chapter.

The derivation of the sensitivity equation and adjoint equation are also provided.

Chapter III describes the numerical implementation of the algorithm of solution.

Chapter IV provides the results and discussions for the direct heat conduction and the

inverse heat conduction problem (IHCP) in different cases. The reasonable results of

inverse conduction problem can be obtained with the introduced method when the

boundary is moving with a velocity imposed independently from the temperature field
or determined as part of the solution of the inverse problem. The inverse solution value

is close to actual value. But when noisy data is considered, the discrepancy between the
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actual and inverse values become bigger. For some cases, better results can be obtained

by increasing the number of iterations.

The brief conclusion of research and recommendation for future work are given in the

conclusion.

It is found that the ideas for solving the inverse heat conduction may be extended to

much wider fields in practical engineering.



CONDENSE EN FRAN^AIS

L'analyse generate d'un probleme de conduction precede a partir de conditions limites

donnees a la cherche d'une solution pour une serie d'equations decrivant la physique
r^elle du transfert de chaleur. Elle requiert aussi une condition initiate si Ie probleme est
transitoire. EDe est connue comme Ie probleme standard et direct de transfert de

chaleur. Dans la plupart des situations pratiques, les conditions de frontiere restent

souvent inconnues en majorite, tandis que la valeur de la temperature interne est plus

pratique a mesurer, ou soit decrit optimalement dans Ie design. Dans ce cas, il est

n6cessaire d'avoir recours au concept du probleme inverse [1]. Le probleme inverse de
conduction de chaleur est defini comme la recherche de 1'evolution du flux de chaleur a

la surface, en se basant sur 1'evolution de temperatures mesurees a 1'interieur du corps
conducteur de chaleur.

L'approche inverse, au contraire de celle en direct, essaie de prevoir les conditions
thermiques de la frontiere a partir des donnees experimentales, surtout celles mesurees

ou obtenues dans Ie champ de temperature.

Le probleme de transfert inverse de chaleur devient de plus en plus important dans la

societe industrielle modeme. Presentement, beaucoup de domaines en haute technologie
rencontrent des problemes de transfert inverse de chaleur tel que la procedure de design
pour Ie chauffage, la congelation, Ie moulage et la fonte, la determination des

coefficients de transfert de chaleur, Ie domaine aerospatial, etc. A la suite du

developpement de la methode mathematique et de la technologie informatique, ce type
de probleme a retenu 1'attention, et il nous est maintenant possible, plus quejamais, de
resoudre les problemes de transfert inverse de chaleur.

L'histoire du probleme inverse de conduction de chaleur n'est pas aussi longue que celle
des autres problemes de conduction de chaleur. Ce n'est seulement depuis Ie dix-
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neuvieme siecle, que Ie probleme inverse de conduction de chaleur a suscite interet

croissant tant en theorie qu'en pratique sur la procedure de transfert de chaleur. Par

exemple, 1'etude de transfert transitoire de chaleur sur des phenomenes associes avec la

navette spatiale dans Ie domaine aeronautique, la recherche de proprietes des materiaux,

Ie controle d'une procedure de solidification, etc.

U existe certains facteurs qui excitent 1'interet des scientifiques et des ingenieurs pour
r6soudre ce type de probleme. Ces facteurs peuvent se resumer comme suit

1. A la suite du developpement de la science et de la technologie, beaucoup de
problemes inverses de conduction de chaleur ont etc rencontres. L'un des joyaux de
haute technologie, la navette spatiale et la fusee sont lancees pour des buts

differents. Afin d'augmenter la fiabilite de la navette et de la fusee. Ie champ de
temperature a la surface exterieure doit etre obtenu. Nous ne pouvons pas,
malheureusement, mesurer la temperature a surface exterieure du vehicule. Seule la

temperature a 1'interieur du vehicule peut etre mesuree. C'est la un probleme inverse

de conduction de chaleur. Nous rencontrons aussi des problemes inverses de
conduction de chaleur durant Ie diagnostic. Ie design, Ie contr61e dans les differents

systemes d'ingenierie.

2. Les methodes mathematiques necessaires ont ete rendues disponibles. La technique
d'optimisation, par exemple, a ete developpee au siecle dernier. Ces avancements

dans Ie domaine mathematique nous foumissent des idees afin de resoudre ce type
de probleme et d'avoir une solution raisonnable.

3. La revolution du calcul numerique au milieu du siecle dernier, suite a 1'avenement

d'ordinateurs modemes. II est possible maintenant de resoudre Ie probleme inverse
de conduction de chaleur.
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En conclusion, a la suite du developpement de la technologie, beaucoup de problemes

inverses sent apparus de plus en plus souvent dans Ie domaine d'ingenierie thermique.

Et il nous est impossible de les eviter. Nous devons determiner les etats du systeme et

les causes qui generent ces etats telles que les proprietes thermophysiques, etc. Le

developpement de methodes mathematiques et informatiques nous donnent la possibilite

d'avoir une solution remarquable pour les problemes inverses de conduction de chaleur.

Dans ce memoire, incluant 1'etude d'une frontiere en mouvement. Ie probleme inverse

de conduction de chaleur a une dimension a ete discute en details, a partir de la mesure

de temperature au milieu du domaine. Pour ce probleme, quand les valeurs discretes de

la courbe de flux q sent considerees, 1'optimisation des resultats requiert des etapes

temporelles plus petites. Tandis qu'une etape temporelle petite cause souvent

1'instabilite de la solution de ce probleme a 1'exception du cas de 1'emploi de

restrictions. Alors, un probleme inverse de conduction de chaleur est plus difficile a

resoudre numeriquement qu'un probleme direct. Dans ce memoire, il est presume que
1'information a priori concemant la forme de surface sera disponible. La vitesse doit etre

predecrite ou determinee par Ie gradient de temperature local. Un algorithme, qui

contient tant les equations de sensibilite que les equations adjointes, a ete presente.
Toutes les equations sont transformees dans un systeme de coordonnees sans dimension.

La procedure de discretisation pour Ie controle implicite de volume, basee sur Ie schema

power-law de Patankar [48], est exposee en details.

La technique d'optimisation de la methode du gradient conjugue est appliquee a

resoudre ce probleme inverse. Elle comporte trois equations, c'est-a-dire I'equation
directe, 1'equation de sensibilite, 1'equation adjointe.

L'introduction expose un resume sur Ie probleme inverse de conduction de chaleur et les

developpements les plus recents de ce probleme.
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Le premier chapitre presente les equations gouvemantes.

Le deuxieme chapitre presente la methode d'optimisation, qui est utilise dans les

travaux de ce memoire dans Ie but de resoudre Ie probleme inverse de conduction de

chaleur.

Le troisieme chapitre decrit 1'implementation numerique et presente 1'algorithme de
solution.

Le quatrieme chapitre presente les solutions selon des conditions differentes a la

frontiere, et aussi les resultats obtenus et les discussions pertinentes.

La conclusion et les recommandations pour les travaux de recherche a venir sont

presentes dans la conclusion.
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INTRODUCTION

The usual analysis of a conduction problem proceeds from the given boundary
conditions to seek a solution to the set of governing equations describing the actual
physics of heat transfer. It also requires an initial condition, if the process is transient.
This is known as a standard, direct heat transfer problem. In many practical situations,
boundary conditions are often the major unknowns, while internal temperature values
are either more conveniently measured, or are optimally prescribed by design. In such
cases, it is necessary to rely on the inverse problem concept[l]. The inverse heat

conduction problem is defined as follows: The fflCP is the estimation of the surface

heat flux history given one or more measured temperature histories inside a heat-
conducting body.

The inverse approach, in contrast with the direct one, seeks to predict the thermal

boundary conditions from the experimental data, namely measured temperatures
obtained within the temperature field.

The inverse heat transfer problem has become more and more important in the modem
Industry society. Now lots of fields in high technology encounter inverse heat transfer

problems, such as heating and cooling, casting and melting process design,
determination of convective heat transfer coefficients, the field of aerospace and so on.
With the development of mathematical methods and the computer technology, this kind
of problems has been paid attention to, and it is now possible for us to solve inverse
heat transfer problems.

The history of the inverse heat transfer problem is not as long as that of other heat
transfer problems. Only since the nineteenth century, has the inverse heat transfer

problem received an increasing interest in the theory and applications of heat transfer

processes. For example, the study of transient heat transfer phenomena associated with



re-entry aircraft in aerospace field[2, 3,4], the research of the properties of materials in

material field [5, 6,7], the control of solidification processes [8, 9, 10, 11, 12, 13, 14] and so
on.

There are several kinds of facts [15] which have led scientists and engineers to give
much more effort to solve this kind of problems. The facts are as follows below:

1. With the development of science and technology, lots of inverse heat transfer

problem are encountered. One of the milestones of high technology, the shuttle and

rocket are launched for different purposes. In order to improve the reliability of shuttle
and rocket, the temperature field of outer surface of vehicle must be obtained. We can

not, however, measure the temperature of the outer surface of the vehicle. Only the
temperature in the vehicle can be measured. This is an inverse heat transfer problem.
We also encounter inverse problem in diagnostic, design and control in the various
system in practical engineering.

2. The necessary mathematical methods were available. The optimization method, for
instance, has been developed in last century. These achievements in mathematical

methods provide the ideas for solving this kind of problem and make the solution of ill-
posed problems reasonable.

3. The revolution of calculation in the middle of the last century, provided the
invention of the computer as a powerful calculation tool. This great invention makes it

possible to solve the inverse heat transfer problem. This is because the process of
solving inverse heat transfer problem requires complicated analysis and tremendous
calculations.

In conclusion, with the development of technology, so many inverse problems are
arising in practical thermal engineering, that it is simply impossible to avoid them. We



have to determine the state of systems, the causes leading to these states, such as

thermophysical properties and so on. But the development of mathematical methods and

computational tools make it possible to obtain meaningful solutions to the inverse heat
transfer problems.

0.1 Literature review

The first attempt to solve an inverse heat transfer problem was related to the

determination of historical climate and thermal conductivity of earth's ground layer.
Stefan obtained an infinite series solution to inverse heat conduction in 1890[1]. This

result is the first exact solution of a one-dimensional inverse heat transfer problem. One

of the earliest papers on the inverse heat conduction problem (IHCP) was published by
Stolz[16] in 1960. It addressed calculation of heat transfer rates during quenching of
bodies of simple finite shapes. Stolz claimed use of his method as early as June 1957.
For semi-infinite geometries Mirsepassi[17] maintained that he had used the same

technique both numerically and graphically [18] for several years prior to 1960. A

Russian paper by Shumakov[19] on the MCP was translated in 1957. The space
program, starting about 1956, gave considerable impetus to the study of the inverse heat

conduction problem. The applications therein were related to nose cones of missiles and

probes, to rocket nozzles, and other devices. Beck also initiated his work on the IHCP

about that time and developed the basic concepts [20,21,22,23,24,25,26] that permitted
much smaller time steps than the Stolz method. Others whose work had application to
the space program included Blackwell [27,28], Mulholland[29, 30, 31, 32], and Williams

and Curry[33]. Another research area that extensively required solutions of the MCP

was the testing of nuclear reactor components. Many of the computer programs in
current use in the United States appear to be based on the method described in a 1970

paper [24]. Other applications reported for the MCP included:

1) Periodic heating in combustion chambers of internal combustion engines



2) Solidification of glass

3) Indirect calorimetry for laboratory use

4) Transient boiling curve studies

There have been extremely varied approaches to the inverse heat conduction problem.
These have included the use of Duhamel's theorem (or convolution integral) which is
restricted to linear problems. Numerical procedures such as finite differences and finite

elements have also been employed due to their inherent ability to treat nonlinear
problems. Exact solution techniques were proposed by Burggraf[34] and Khan[35],
Langford[36], and others; such techniques have limited use for realistic problems, but
they can give considerable insight into the MCP. Some techniques used Laplace
transforms and were also limited to linear cases.

The mCP is one of many mathematically "ill-posed" problems. This means that the

inherent errors, however small, of internal measured data may result in an unrealistic

and unstable prediction of boundary condition, making the solution extremely sensitive
to measurement errors. Such problems are typical of inverse solutions. There are a

number of procedures that have been advanced for the solution of ill-posed problems in
general. One of these was developed by Tikhonov and Arsenin in 1963[37]. Tikhonov

introduced what he called the regularization method to reduce the sensitivity of ill-
posed problems to measurement errors. A modification of this method is presented
herein for more efficient solution of the MCP. Numerous other general procedures for
ill-posed problems have been proposed including a technique, well known to

geophysicists, called the Backus-Gilbert technique [38, 39, 40]. The mathematical

techniques for solving sets of ill-conditioned algebraic equations called single-value
decomposition techniques can also be used for the IHCP.

For the one-dimensional MCP when discrete values of the q curve are estimated,

maximizing the amount of information implies small time steps. But the small time



steps frequently cause instabilities in the solution of EHCP unless restrictions are

employed. Hence, the inverse heat transfer problem is much harder to solve analytically
than the direct problem.

In this project, a one-dimensional IHCP with moving-boundary is discussed in detail, as

might be found, from temperature measurements in the middle of media. In this project,
it is assumed that a priori information about the form of the interface is available. The

velocity might be prescribed or determined from the local temperature gradient. A
solution algorithm is presented, which involves both a sensitivity equation and an
adjoint equation. All the equations are transfonned in dimensionless coordinate. The

implicit control volume discretization procedure, based on power-law scheme of
Patankar[48], is exposed in details.

The optimization technique of the conjugate gradient method, is applied to solve this

inverse problem, which consists of a set of three equations, i.e. direct equation,
sensitivity equation and adjoint equation.

0.2 Outline of thesis

This thesis is devoted to the Simulation of Inverse Conduction with a Moving
Boundary.

One of the main motivations for this research lies in the belief that inverse heat transfer

problem are of prime importance in a wide range of applications. For example,
advanced technologies in medicine, aeronautics and microelectronics.

In order to facilitate the reading of the rest of this thesis, we present here a brief
description of contents of the following chapters.



In Chapter I, the governing equations are presented.

The optimization method used in this thesis to solve the inverse heat transfer problem is
introduced in detail in Chapter II.

The sensitivity equation and adjoint equation are also introduced and derived in this
chapter

Chapter HI describes numerical implementation and gives the algorithm of solution.

The chapter W provides the solutions for different boundary conditions .The results and
discussions are given in this chapter.

The brief conclusion and recommendation for the future research are given in the
conclusion.



CHAPTER I

MATHEMATICAL FORMULATION

1. 1 Governing equation and dimensionless variables

For solving the inverse problem, the thermal behavior of the real system (physical
model) should be described by a mathematical model. The mathematical model may be
described either by partial differential equations or ordinary differential equations. For
the solution of the mathematical model, two kinds of approximation are implied. One is
the simplification in the physical model of the real system. The other one is the
approximation which is related to the method of solution.

In this thesis, the accuracy and stability of the solution obtained by the conjugate
gradient are discussed in detail.

Let us consider the inverse heat conduction problem sketched in Fig. 1.1
y

H

q(t)
TmO)

T=0

V(t)

x=L(t) X

Figure 1. 1 Geometry and boundary conditions

In the definition of the problem, the domain is a rectangular cavity with top and bottom
faces insulated. The problem is one-dimensional without any y-dependency. Therefore



the flux imposed on the boundary at x=0 or x= L is of the form q(t) and the

temperature field can only be T(x, t).

The main purpose in this thesis is to determine the unsteady flux q(t) at x = 0 over the

time interval 0^t<t^, from temperature measurements Tm, taken at the sensor

position, which is at the middle point of the domain.

In order to simplify equations and gain more universality, the fflCP may be expressed
in a convenient non-dimensional form by introducing the definitions:

* _ -i -^or*=
AT

Qr^LAT-

x
x =-

L

'-^

(1. 1)

where T ~ temperature

Qre/ ~ reference flux value

L -length

a ~ thermal diffusivity

k ~ conductivity

All properties are evaluated at Tg . Omitting superscripts from now on, the temperature

field within the cavity satisfies the unsteady dimensionless heat equation:



9-^T
3t (1. 2)

This is the dimensionless governing equation of the direct problem.

1.2 Direct problem and inverse problem

1.2.1 Direct problem

The direct techniques are the first stage of solution procedures for the inverse heat

problem. We have had many mature methods to solve direct problems. Partial
differential equations describing the physical phenomena of heat conduction can be

solved using a variety of methods, including exact and numerical procedures. The exact

methods include the classical methods of separation of variables and Laplace
transforms. One is based on an integral formulation of the mathematical model and the

other on a differential form of the model. In general, the equations describing heat

conduction are nonlinear. The solution of a nonlinear heat conduction problem requires

an approach that discretizes the partial differential equations. Two methods for solving
the nonlinear heat conduction equation are the finite difference and finite element ( FE )
methods. In this thesis, the finite difference method is used in which conservation of

energy is applied directly to finite control volumes; it is called the finite control volume

procedure.

If the boundary conditions are completely given, we are dealing with a direct problem.

For the situation discussed here, we have the following boundary conditions.

T(L, t)=0 at x=L (1. 3)
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3T(0,Q
k"'^^"'/ =q(t) at ^=0

3x

y(0= b(t)
^T
^

a-t x= L

(1. 4)

(1. 5)

where, b(t) is known if velocity is given.

For the initial condition, a constant temperature is assumed, namely

T=0 at t=0 (1. 6)

According to these conditions, the solution of the governing equation , i.e , the

temperature distribution T(x, t) in the domain 0<x<L during the interval

0<t<:t^^ can be detennined.

1.2.2 Inverse Problem

During the past two decades, the special case of estimating a surface condition from

interior measurements has come to be known as the inverse heat conduction problem.

There are numerous other inverse problems in transient conduction and diffusion [1].

Although the fonnulation and solution of this problem were presented over a century
ago, its development has rapidly grown only during the last twenty years, due to a

combination of the advent of high technologies, new mathematical achievements and

modem computational facilities.

The inverse heat conduction problem is much more difficult to solve analytically than
the direct problem. But in the direct problem many experimental impediments may arise
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in measuring or producing given boundary conditions. The physical situation at the

surface may be unsuitable for attaching a sensor, or the accuracy measurement may be
seriously impaired by the presence of the sensor. Although it is often difficult to

measure the temperature history of the heated surface of a solid, it is easier to measure

accurately the temperature history at an interior location or at an insulated surface of the

body. Thus, there is a choice between relatively inaccurate measurements or a difficult

analytical problem. An accurate and tractable inverse problem solution would thus

minimize both disadvantages at once [1].

Most research until now was, however, devoted to the basic one-dimensional inverse

heat conduction problem, to understand the ill-posed nature of the problem, and to

devise solution methods that would ensure stability, even at the expense of a slight loss
of accuracy

An overall and systematical review of the IHCP is provided in the book of Beck et

al. [l] and Alifanov, which present the solution techniques falling into two main

categories, namely, the sequential function specification method, pioneered by Beck,
and the function estimation method, developed by Alifanov, Tikhonov, and other

reseachers in Russia. The former method relies on the concept of future times to achieve

stability. The latter is based on error optimization over the whole time domain, by a
descent method of some sort, conjugate gradient or otherwise.

Suppose from now on that a temperature sensor is located in the middle of the field.

The measurements at the sensor are available, and there is no information about

temperature and flux at the fixed boundary( x=0 over 0<t<: t^ ).

Our purpose is to recover q(t) at ̂  = 0 from the temperature measurements to satisfy

equation (1. 2) and the boundary equations during the period 0<t< t^,,.
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This is a 1-D inverse heat conduction problem. Nomially, there are two methods for

solving this kind of inverse problem. One is space marching method and the other one is

conjugate gradient method. In fact, when used in conjunction with an appropriate
mollification technique, the space marching technique is very fast to provide a
regularized albeit distored solution, while the iterative conjugate gradient technique
proves to be slow, but robust and more available. Here, we will focus the conjugate
gradient method.
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CHAPTER II

OPTIMIZATION METHOD

2. 1 Optimization approach

In order to solve the inverse problem of heat transfer, various techniques have been
proposed, e. g., the space marching, the perfect matching, the digital filtering, the future
time stepping, etc. A review of these techniques was given in the book of Beck.

Blackwell and St. Clair Jr. These different techniques may be broadly classified into
two categories, namely, the sequential method and the whole time domain method.

While the first method was proposed by Beck in the U.S., the second one was actively
promoted by Tikhonov in the U. R. S. S. A recent comparative study of these two

methods by Beck indicated that while the former is fast, the latter is robust, and a hybird
method might be a success.

In the following paragraphs, we will give the steps of a method of solution to the

inverse conduction problem for the case where no a priori information is available of

the unknown boundary heat Hux.

The proposed method treats the inverse problem from an optimization point of
view[42]. To solve the inverse conduction problem, let us consider conjugate gradient
methods(CGM).

A very desirable feature of conjugate direction methods is that only function and
gradient values of the objective function are required for their implementation.
Consequently conjugate direction methods may be used to estimate a minimizer Xs of

a non-quadratic as well as a quadratic objective function / without having to compute

the second partial derivatives of / . Convergence will not in general be obtained in a
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finite number of iterations if / is not quadratic, and the number of iterations required
to attain a given accuracy depends upon the initial estimate X° of Xf [43].

Because the conjugate gradient method has been used extensively to solve many kinds
of inverse problems [44, 45, 46, 47], including MCP, as well as problems of parameters
determination and shape identification, it is very meaningful to discuss how a solution is
constmcted via this algorithm.

The conjugate gradient method will be used exclusively in solving one dimensional
IHCP in this thesis. The results will demonstrate the sequential recovery of unknown
heat flux with different frequency components. The lower frequency components will
be recovered in a few iterations at first, while high frequency components are recovered
later. The random noise data are introduced to simulate the influence of the

measurement error on the recovered flux. It will be shown that satisfactory results with

noisy data can be obtained by stopping the iteration process after an optimal number of
steps.

2.2 Application of optimization method

The technique of optimization by the conjugate gradient method requires us to solve a
sensitivity problem and an adjoint problem.

The conjugate gradient method has some principal advantages, which are as follows
below:

(1) The speed of convergence is faster in solving unconstrained optimal
problems (quadratic convergence),

(2) The performance about the uniqueness of the optimum in the considered domain iIS
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better.

(3) This optimal method is relatively simple and it is easy to calculate.

With the optimization concept, the inverse conduction problem described above

may be transformed into the following minimization problem.

Given the thermal physical properties, initial condition and a set of temperature

measurements T,, at R^, find the boundary heat flux q{t) on 5' (^-=0) that

minimizes the objective functional^].

E=^\T-Tj2
fn

=L(T-T... \T-T..
m|* -' m

^}[T-T. ]d, (2. 1)

where, E is the square error between the predicted temperature T, (

corresponding to q ) and the desired temperature ^. The initial system is at an

initial temperature T, . At t>0, the boundary of the surface S is subjected to a

flux q

According to Eq. (2. 1), it is understood that there will be one sensor. If several sensors

are considered, the functional becomes the sum of individual contributions like Eq. (2. 1)
at each location.

The minimization problem above consists of constructing a sequence
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q\q\q3, -, qk, qk +\-

Such that

Ek+'< Ek

This can be done by the conjugate gradient method which gives

q^=qk -\-ak-pk

where, qK is the value of minimizing the object function, ak is the step size and

pk is the conjugate search direction.

Its true optimum solution will strongly depend on the ill-posedness of problem
as well as the initial guess of its solution.

When a priori information is available such that q (t) can be expressed in terms of a set

of basic functions {/", / = 1,2,. . -, A^ }, the problem is that of the minimization in a finite

N-dimensional function space. The gradient of E(q ) can be determined in a rather

straightforward manner. When no a priori information is available on q (t), one has to

deal with a completely unknown function, i.e., with an optimization problem in an
infinite dimensional function space. Then, the minimizing an object function E{q )

requires the solutions of the adjoint problem and the sensitivity problem described in
the following chapters.

To minimize E, it is necessary to determine its gradient in the infinite -

dimensional space of q , if we do not possess any a priori information about
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this unknown function.

One step of the algorithm [48], in particular, is rightly devoted to the computation of
gradient. When some a priori information is assumed for the flux, such as a linear

combination of n known functions, then the minimization of objective function is done

over all possible coefficients of the combination. In this case, the parameter space over
which minimization occurs is n-dimensional, and the gradient of E is nothing but the

usual gradient in R". When no a priori information is available on q(t), minimization

must be implemented over an infinite-dimensional function space. In this case, the

gradient of £ and step size a can be obtained from solution of the adjoint and
sensitivity problems.

2.3 Equation of sensitivity

To achieve the solutions, we have to define the sensitivity temperature. The definition

of sensitivity temperature T is that T is the directional derivative of T at ̂  in the
direction Ag i.e.

r=lim/^+£A^)-/^)
£^0 (2. 2)

According to the definition of the temperature sensitivity T , we can take the directional
derivative of the governing equation:

W=VT
St (2. 1)

then we obtain:

3r
3r

=v2r (2. 3)
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and also satisfy:

the initial condition: T =0

consisting with Eq. (1. 4), then

the boundary condition: ̂ -|^o= A?(r)
Sx

(2. 4)

(2. 5)

the adiabatic conditions on the horizontal walls and r =0 at .c=L.

According to the definition of sensitivity temperature T , we know that the sensitivity
. problem, with Aqas driving force, is linear just like the direct problem, and governed
by the exact same equation.

2.4 Adjoint equation

When minimization occurs over an infinite-dimensional space, there is no simple way
to determine the gradient of functional E from its definition. It may be found instead
from the solution of a set of adjoint equations. Although the method to obtain the latter

is well known for inverse heat conduction problems, it has been only very recently
developed for inverse natural convection problems.

Now, the derivation of the adjoint equation is shown in detail:

Suppose that a sensor is put in the middle of the field considered.

Set T(x, y, t) = T(x, y, t, g ), }f q ^-q (real value), then we get T-T^^O (error) at
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the sensor position. This leads us to the definition of the error in a more formal way.

According to the definition:

E(q)=^][T-Tjdt (2. 6)

On the other hand, from the definition of Eq( 2. 1), we readily deduce

D^E{q)^ \(T-T^)fdt at r=r, (2. 7)

which can be written as

D^E(q)= J J(T-Tjrj^-7^) ^J/=0
(=0 .S'

(2. 8)

where, S is the solution domain, considered for the minimization of the function.

The constraint is

 

'v¥
St (2. 9a)

or: ^-v2 f=0
St (2. 9b)

E is minimum when Eq. (2. 8) is satisfied, or, equivalently, when



where, T is an unknown multiplier

So,

On the C contour, it follows from Eq. (1. 3 ), Eq. (1. 4) and Eq. (1. 5),

20

J f(T-TJTS^-^). dSdt+] fT \^-^2f[-dSdt=0
o 's 'o 's

(2. 10)

Butweknow, TV27'=7:V2 F+V (TVT-rVT) (2. 11)

J f(T-TJTS(r-rn, )-dSdt+
0 S

^T ^J J T-^-f-^lT-^ (rvr-r. vr) dsdt=o
0 S 3? (2. 12)

With the divergence theorem, Eq. (2. 12) may be recast as

J [(T-Tjf8^-^^. dSdt+] J T^-f. \y2 T dSdt+
0 S 0 S 3r

JJ(-^, f^,,0 (2. 13)

r = 0 where T is known (2. 14)



We require T to satisfy the same conditions as T , with

So, Eq. (2. 13) becomes

/r r " 5F
f ̂ T-TJTS(r-r^-dSdt+ J J TU-T-^1T dSdt +
0 .S' 0 .S' 9t
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r- = 0 where r- is known
Qn 8n

(2. 15)

ST
^- = -A^ on Ca (active boundary)
5n

(2. 16)

QT
Sn

=0 on C a (2. 17)

J J Tt^qdldt=Q (2. 18)

But,

ffr ^"
8t

d r ^, QT

0 .S'

'TfdSdt-] [f^-dSdt-
dti ^ J St0 Ml .S' 0 .S'

J J F. nTTdldt
0 C

(2. 19)

Due to the fact that F = 0 on the moving boundary C, the third integral on the right-
hand side vanishes,



We get

]f^f^-T. f\, -]f^,(r^377
3t

We require
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(2. 20)

T=0 at t=t. (2. 21)

It is the initial condition for T Eq. (2. 18) is then

rr r. 3TJ S[~~^~^T+(T-T^S(r-^)}f-dSdt+
0 5

3?

JLfA^A=o (2.22)

We now require that

^+v2T=(r-rj5(F-.j (2. 23)

This is the adjoint equation.

The gradient of E, VE is related to the directional derivative of E, D^E(q), by the
formal relationship:

D^, E(q) = J^ JV£A^ ^Jr

Cu
(2. 24)
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On the other hand, we have just shown that

D^E(q) = J ^qdldt (2. 25)
r=0 Ca

We therefore have

V£-TI^ (2. 26)

i.e. the gradient of the object function is equal to the adjoint temperature on the surface
s.

Hence, E is minimum if V£ = F on active boundary where

^-+v2 r=(r-rj<$(7-7») (2.27)

2.5 Minimization algorithm

It is clear by now that the minimization procedure that will lead to a solution for the

inverse heat conduction problem involves the solution of three coupled equations with
their own initial and boundary conditions. One has therefore to solve the direct.

sensitivity, and adjoint problems at every step of the sequence of approximations for the
minimizer.

The sensitivity and adjoint problems developed in the previous sections provide
the necessary information for solving the infinite dimensional optimization
problem by the conjugate gradient method.
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The equations may be solved by any appropriate method. A first-order implicit, control-
volume approach based on the power-law scheme of Patankar was used here to perform
the discretization. The discrete equations were then solved by alternating line and
column sweeps by the Thomas algorithm at each time step. More details are provided in
Ref. [49].

For the adjoint equations, we first make the change of variable T =f -f and start

solving them for T>0 with the initial condition at the physical time t=t In other
words, via this transformation, the adjoint problem is solved as an initial value problem
in T with positive diffusivity coefficient, which ensures numerical stability.

The main steps of this minimization technique are the following:

[1] Give initial conditions and choose initial guess ^o . Set iteration
counter k =0.

[2] Solve the direct problem with qk to obtain Tk

[3] Calculate the error between the given data and the

calculated temperature field, i.e. Tk -T^ at sensor's position.

[4] Solve the adjoint problem backward in time to obtain F*

[5] Calculate the gradient ^Ek =Tk(0, t).

[6] Calculate the search direction pk for Aq k .

If k=0, pk =-VEk;

otherwise pk =-VEk +rkpk ~1
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r(V£t-V£t-l)V£t;
with rk =

Uv£"'12

[7] Solve the sensitivity equation with Aq = pk to obtain fk at the sensor

position.

[8] Calculate the step size a for A^ =akpk.

a' =-
^Ek, pk)
\fk ^, t)

'=+!_"* , ^. k_k[9] VpdateqK +l =qlc+akp

[10] Set k=k+l, go back to step 2, repeat until convergence criterion

Ek <e is satisfied.

[11] Output the results.
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CHAPTER III

NUMERICAL IMPLEMENTATION

Focusing attention on the field values at the grid points, we have replaced the
continuous information contained in the exact solution of the differential equation with
discrete values. It is this systematic discretization of space and of the dependent
variables that makes it possible to replace the governing differential equations with
simple algebraic equations which can be solved with relative ease [48].

For a given differential equation, the required discretization equations can be derived in
many ways. For example, Taylor-Series Formulation, Variational Formulation, Method

of weighted Residuals, Control-Volume Formulation and so on. We shall adopt the
control volume approach in this thesis.

The most attractive feature of the control-volume formulation is that the resulting
solution would imply that the integral conservation of quantities such as mass,
momentum, and energy is exactly satisfied over any group of control volumes and, of

course, over the whole calculation domain. This characteristic exists for any number of
grid points, not just in a limiting sense when the number of grid points becomes large.
Thus, even the coarse-grid solution exhibits exact integral flux balances.

3. 1 Discretization of the equations

For studying the inverse problem, the direct problem of heat conduction has to be

discussed first and several cases are studied. The governing equation(1. 2) is to be
solved at the grid points of the mesh shown in Fig. 3.1
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(1. 2)

(UMAX)

(ij)

(1'1) i (IMAXJ)

Figure 3. 1 : Grid System of the Problem

x
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There are various numerical techniques to perform discretization. Among these

techniques, the finite difference approach is the most straightforward. But, some

finite difference methods consume much time to calculate and produce wiggle
solutions. Considering the governing equations and the boundary conditions, it is

necessary for us to choose the appropriate numerical approach to solve these

governing equations.

In the finite-difference approach, the domain is discretized so that th dependent
variables are considered only at discrete points. For more universality, the two-

dimensional grid system which is shown in Figure 3. 1 are discussed in this chapter,

Derivatives are approximated by differences, resulting in an algebraic representation of

the partial differential equation(PDE). The nature of the resulting system of algebraic
equations depends on the character of the problem posed by the original PDE.

A finite - difference method based on a control volume formation was used to

obtain the numerical solution. The discretized equations were derived using a power-
law interpolation scheme[49]for the spatial discretization and a standard first-order

backward difference approximation for time derivatives. The discrete equations are then

solved by alternating line and column sweeps by the Thomas algorithm at each time
step.

The control volume of two-dimensional problem is shown in Figure 3.2, The control
volume method is based on the integration ofEq. (l .2) over the control volume.

For any grid point P in the system, Eq. (1. 2) has the discretized form

ai'Tr = a 1^1.: +awTw +a^ +a,T, +b (3. 1)

where a^y , ai;, a^, a^, a,, and b are coefficients varying with the position of the node.
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In the latter, P represents the current point under discussion. E, W, N, S, the

neighbors of P at the east, west, north and the south, respectively and e, w, n, s
are the mid points of the control volume interface, as we now show

w

N

Cx

cy

Figure 3.2 Control volume for internal node

For the convenience of the derivation, the definitions stated below are employed.

J--s
Ŝx (3. 2)

J =-QT-J'=~^ (3. 3)

Then Eq. (l .2) becomes the following below:

ST ^ 9J, , 6J,
:-+^+-^=o
St 9x 8y (34)

Integrating the equation above, we can obtain easily with the divergence theorem
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Tp-T^
A? AxAy + J^y - J^Ay + J^Ax - 7,Ax = 0 (3. 5)

where

_{T, -T,)
Je=~ -Ax (3. 6)

ST, -T^/", = -
Ax (3. 7)

_(^-7.)
/"=-'v (3. 8)

_(2p-^)
/-=-'"A/ (3. 9)

Substituting Eqs. (3. 6-3.9) in Eq. (3. 5) and rean-anging the terms gives:

Tp ~TOP AxAv- ̂ ~T^Y + (T" -T^Ay _ (^ -Tp)AX
A? ' Ax Ax Ay

^-T, )Ax^
Ay

which can be stated in compact form as:

(3. 10)

OpTp =a^ +a^T^ + a^T^ +a, r, +b (3. 2)

A^Ay , ^, /Axwhere Op = ^^pL + 2(-':r- + '=^-)
A? ~Ay Ax'

.

^.
aE=-T-=aW

Ax
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Ax

Ay
ai^=^~=as

b = T^Ay
A?

are the finite difference coefficients.

For one-dimensional situations, T^ = T, = T^ and we have

A2x
OB =
T~^

a^=l=a^

'OAZ.

b=lp^x
At

3.2 Algorithm of solution

The organization chart of solution summarizes the process of the numerical

solution of the direct problem equation. This algorithm is equally used in

sensitivity problem and adjoint problem.
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Initial
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Boundary

Calculate the
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Flow Chart of Solution

Sweep TDMA in I
Sweep TDMA in J

For T
Iteration for the

Temperature

Convergence
No

Calculate the

Ariinint T

Sweep TDMA in I
Sweep TDMA in J

For T

Iteration for Whole
ystem Equation

Convergence

Calculate the

^pnciti^ihf fTI

Sweep TDMA in I
Sweep TDMA in J

For r

Convergence

Convergence

No

No

Next Time Step



33

CHAPTER IV

RESULTS AND DISCUSSIONS

This chapter gives the solutions of direct and inverse problems for different conditions.
The discussions for the two kinds of problems are provided.

4. 1 Direct heat conduction problem

The solution of the direct problem is at the heart of the inverse problem solution
procedure. Hence, direct conduction is discussed at first and some preliminary results
will be obtained. Then, the solutions of the inverse problem are provided in the next
section.

The figures given below are for 12 cases, (from Direct Solution CaseA^o. l to Direct

Solution Case No.9_2). The different cases covered are given as follows below.

Initial condition (at t= 0.0)

L=LO=I

T=TO=O

The boundary conditions correspond to incoming heat Huxes in the domain, like in a
situation where one would seek to induce melting of a substance.

q = q(t) = -l, -f,-sin(<u0 (at .c = 0)

T=0 (atx=L)
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The moving boundary velocity might be either prescribed as a constant or oscillating

function (first and third cases) as proportional to the local flux normal to the boundary,

(second case) as would occur in a melting problem.

y=t-LO
y=-^l

dx'

V = sm(<m)

^.=1.0

In all the cases discussed in this chapter, the graph of temperature as a function of time

is given at .c = 0 and the graph of isotherms is provided at t= 1.0.

Figure 4 1 DirectSolution for Case 1 q=-l, V=1

0.8

0.7

0.6

0.5

t- 0.4

0.3

0.2

0.1

0.0

Figure 4. 2: Direct Solution for Case 2 q=-t, V=1
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0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.

Figure 4 3a: Direct Solution for Case 3-1 q=-sin(w
w=1 , V=1

0.5

0.4

0.3

0 .2

. 0.1

0.0

-0.1

.0.2

-0.3

F ig u re 4 3b : D irect S olution fo r C ase 3-2 q =-sin (w t)
V = 1 w = 1 0

^ 0.,

Figure 4. 4: DirectSolution for Case 4 q=-1, V=-dT/dxlx=L
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0.7

O.G
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0.3

0.2

0.1

0.0

Figure 4. 5: Direct Solution for Case 5 q=-t, V=-dT/dxlx=L

0.6

0.5

0.4

Figure 4. 6a: Direct Solution for Case 6-1 a=-sin
V=-dT/dxtx=L, w=1

0.4

0.3

0.2

I- 0.1

0.0

-0.1

-0 .2

^. ° °. 2 0. 4 ^ C. 6 0.8 1
Figure 4. 6b: Direct Solution for Case 6-2 a=-sin
V=-dT/dxlx=L, w=1 0
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I- 0.6

Figure 4. 7: DirectSolution for Case 7 q=-1, V=-sin(wt), w=1

0.7

0.6

0.5

t- 0.4

0.3

0.2

0.1

0.0

0.2 0.6 1.0

Figure 4. 8: Direct Solution for Case 8 q=-t, V=sin(wt), w=1

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.4
t

Figure 4 9 a: D irect S olution for Case 9-1 q=-sin(wt)
V=sin(wt), w=1
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/

Figure 4. 9b: Direct Solution for Case 9-2 q=-sin(w-| *t)
V=sin(w2*t), w-|=10, wg=1
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0. 7 0. 6 0. 5 0.4 0. 3 0.2 0.1

0.2
0.0

0.7 0.6 0.5 0.4 0.3 0.2

0.0

Figure 4. 10: Isotherm Case 3-1 At tf for q=-sin(wt)
V=1, W=1

0.5 >

1.0

Rgure 4. 11: D'rect<Solution for Case 3-1
q^sin(wt), V=1, w=1
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0.0802.14 0.140. 120.100.080.06 0.04 0.02

0. 02

0. 00

2

---0. 5 >.

Figure 4. 12: Isotherm for Case 3-2 At tf for q=-sin(wt)
V=1, w=10

Figure 4. 13:3-D Temperature Field for Case 3-2
q=-sin(wt), V=1, W=10

> 0.5
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0. 6 0. 5 0.4 . 3 0.2 0.1

Figure 4. 14: Isotherm Case 9-1 At tf for q=-sin(wi*t)
V=sin(w2*t), w-|=1, wg=1

0.0

Figure 4. 15: Direct Solution for Case 9-1 q=-sin(w-|*t)
V=sin(w2*t), w-|=1, wg=1
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Figure 4. 16: Isotherm Case 9-2 At t, for q=-sin(w, *t)
V=sin(w;*t), w,=10, W2=1
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Figure 4. 17: 3-D Temperature Field for Case 9-2 q=-sin(w, *t)
V=sin(w;*t), w,=10, Wg=1
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From Direct Solution Case No. 1 to Direct Solution Case No.9 _ 2, we can conclude that

1. The temperature at x = 0 increases with time in all the different cases considered.

2. If the flux is periodic, the temperature is also varying (increasing and decreasing)
with the same frequency, which is normal, since the equations are linear.

The isotherms for CaseNo. 3_l, CaseA^o. 3_2, CaseNo. 9_l and Case No. 9 2 are

presented in Pig. 4. 10, Fig. 4. 12, Fig. 4. 14 andFig. 4. 16.

From the graphs, the temperature is uniform in the Y direction. Thus, the solution varies

only in the X direction as expected ( A One-Dimensional problem is considered); and
the temperature is decreasing with distance from x=0 because the heat flux source is
located at x=0.

Also 3-D representations are provided for the temperature in the CaseNo. 3 1.

Case A^o. 3 _ 2, Case No.9 _ 1 and Case No.9 2

In this section, the figures above Fig. 4. 1 - Fig.4. 17 prove that we can get satisfactory
results in different kinds of situations. Hence, the direct problem code is adaptable to the
situations considered here and valid for the cases considered, and the performance of
convergence is good.
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4.2 Inverse heat conduction problem

We now discuss the inverse solution for the cases under study presented earlier. The
IHCP under consideration is depicted in Fig. 4. 18 - Pig. 4. 99.
(l)CaseJVo.l

For this situation (From Fig.4. 18 to Fig. 4.24), the flux is constant and the velocity is
also a prescribed constant.

q=q(t)=-\

y= i.o

Inverse Solution
Direct Solution

Figure 4. 18: Heat Flux Vs Time for Case 1
q=-1, V=1

Figure 4. 19: Inverse Solution of Heat Flux
for Case 1 q=-1, V=1 and Sigma=0. 001

Figure 4. 20: Inverse'Solution of Heat Flux
for Case 1 q=-l,V=1 and Sigama=0.04
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Direct Solution
Inverse Solution

Direct Solution

Inverse Solution

Figure 4. 21: Interface Position Vs Time for
Case 1 q=-1, V=1

Figure 4.22: Contrast Between Direct Solution and Inverse
Solution of Temperature for Case1 q=-1, V=1 at t=tf

0.8

0.4

02

0.0
0.5 ^

1

x

1.0

Figure 4.23: 3-D Inverse Solution for Case 1 q=-1, V=1

I 10 12 14 16 18

Iteration

Figure 4. 24: Error Evolution for Case 1 q=-1, V=1
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According to Fig. 4. 18, the original flux can be recovered. At the beginning, the inverse

solution is very close to the direct solution (real value), but near the end at /,, the

discrepancy is increasing. Especially, the discrepancy is maximal at t= I because the

flux (^) ̂  0 at /= 1 but the adjoint temperature is always equal to zero.

The recovered interface position is perfect, because it is independent of the flux and

temperature. It is shown in Fig.4.21.

From Fig. 4. 19 to Fig. 4.24 (Except Fig.4.21), we can get some conclusion from the
results.

a. The inverse temperature is recovered well at /, except in the vicinity of the point

x=0.

b. When the number of iterations is less than 3, the error is very big. But when the

number of iteration is greater than 4, the error is very small.

c. when noisy data is considered, the simulations for a standard deviation o- == 0. 001 is

better than for a deviation o- = 0. 04

(2) Case No.l

For this case (From Fig. 4. 25 to Fig. 4. 31), the flux is linear in time and the velocity

remains prescribed at the same constant value.

q = q{t) = -t

V =1.0

Direct Solution
Inverse Solution

-01

-06

-0.8

-10

Figure 4. 25: Heat Flux Vs Time for Case 2 q=-t, V=1
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0.0

-0.2

-0.4

-0.6

Figure 4. 26: Inverse Solution of Heat Flux for
case 2 q=-tV=1, Sigma=0. 001

Figure 4. 27: Inverse Solution of Heat Flux for Case 2 q=-t
V=1, Sigma=0.04

Direct Solution
Inverse Solution

Figure 4.28: Interface Position Vs Time for Case 2
q=-t, V=1

Direct Solution
Inverse Solution

Figure 4. 29: Contrast Between Direct Solution and Inverse Solution o1
Temperature for Case 2 q=-t, V=1 at t=t,
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Figure 4.30: 3-D In^ferse Solution for Case 2
q=-t, V=1

0246 10 12 14 16 18

Iteration

Figure 4. 31: Error Evolution for Case 2 q=-t, V=1

The results as a whole are similar to those for the CaseTVo. l. The noisy data influence

(for a = 0. 001 and cr = 0. 04) on the recovered flux is the same as (2) Case No. 2.

(3) Case No.3_\

For this case (From Fig.4. 32 to Fig.4. 38), the flux is periodic and the velocity is constant

as follows.

q = q(t) == -sin(<y^r) (<y = 1)

r= i.o

Direct Solution
Inverse Solution

Figure 4. 32: Heat Flux Vs Time for Case 3-1
q=-sin(w*PI*t), V=1, w=1
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Figure 4. 33: Inverse Solution of Heat Flux for Case 3-1
q=-sin(w*PI*t), V=1, w=1, Sigma=0. 001

Figure 4 34: Inverse Solution of Heat Flux for Case 3-1
q=-sin(w*PI*t), V=1, w=1, Sigma=0. 04

Direct Solution
Inverse Solution

Direct Solution
Inverse Solution

<£

05

t

Figure 4.35: Interface Position Vs Time for Case 3-1
q=-sin(w*PI*t), V=1, w=1

Figure 4. 36: Contrast Between Direct Solution and
Inverse Solution of Temperature for Case 3-1
q=-sin(w*PI*t), V=1, w=1
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Iteration

Figure 4. 38: Error Evolution for Case 3-1
q-sin(w*PI*t), V=1, w=1

Rgure 4.37: 3-D Inverse Solution for Case 3-1
q^sin(w*PI*t), V=1, w=1

The inverse flux is once again very well recovered, the temperature is also very close to

the real value. Because at /= 1. 0 where q is also equal to zero, the adjoint temperature

is equal to zero, the inverse flux value is close to the real value near / = 1. 0.

Fig.4.33 and Fig.4.34 give the heat flux for the noisy temperature data at the different

standard deviation. These show the obvious influence of the different cr levels.

From Fig. 4.38, it is once more clear that the error is almost zero when the iteration

number is greater than 4 or so.

(4) Case No.3_l

For this situation (From Fig.4. 39 to Fig.4.45), the flux is periodic like before, but at a

higher frequency,

q =q(t)=-sm(co^t) (a>=\0)

r= i.o
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0.5

Direct Solution '
Inverse Solution

Figure 4.39: Heat Flux Vs Time Case 3-2 q=-sin(w*PI*t)
V=1, w=10, lteration=19

0.5

Direct Solution r
Inverse Solution

Figure 4. 40: Heat Flux Vs Time for Case 3-2 q=-sin(w*PI*t)
V=1, w=10 and lteration=40

^
s °
s

Direct Solution
Inverse Solution

0.5

Time

Figure 4.41: Heat Flux Vs Time for Case 3-2 q=-sin(w*PI*t)
V=1, w=10 and lteration=100
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Direct Solution

Inverse Solution

Direct Solution

. Inverse Solution

0
Q.

I

0.5

t

Figure 4.42: Interface Position Vs Time for Case 3-2
q=-sin(w*PI*t), V=1, w=10

Figure 4.43: Contrast Between Direct Solution and Inverse
Solution of Temperature for Case 3-2 q=-sin(w*PI*t)
V=1, w=10
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Figure 4.44: 3-D Inverse Solution for Case 3-2
q=-sin(w*PI*t), V=1, w=10

2 4 6 S 1012 14 16 18

Iteration

Figure 4.45: Error Evolution for Case 3-2
q=-sin(w*PI*t), V=1, w=10
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For the higher frequency, the inverse solution is not like the one at lower frequency, for

example Case No.3 -1 . From Fig.4. 39, we can find that the greater discrepancy is found
at the end of the time interval. And the inverse value is not accurate when approaching

t=1.0. According to Fig.4.39, Fig.4.40 and Fig.4.41, the influence of the number of
iteration is found to be very important. The best solution corresponds to 100 iterations.

The worst one is for 19 iterations. So, we should increase the number of iterations when

the inverse flux is of high frequency.

From Fig.4.45, we can find that the error is bigger than in the lower frequency situation.

(5) Case NoA

For this case (From Fig.4.46 to Fig.4. 52), the heat flux is constant and the velocity is

found from the local temperature gradient as follows below

q=q(. t)=-\.Q

v-
d̂x .c=l

Direct Solution
Inverse Solution

0.5

(

Figure 4.46: Heat Flux Vs Time for Case 4, q=-1
V=-dT/dx|x=L
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Figure 4. 47: Inverse Solution of Heat Flux for
Case 4 q=-1 V=-dT/dx[x=L, Sigma=0.001

Figure 4.48 : Inverse Solution of Heat Flux for Case 4, q=-1
V=-dT/dx|x=L, Sigma=0. 04
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I 0.6
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Direct Solution
Inverse Solution

0. 30

0. 25
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0. 16
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0. 05

Direct Solution
Inverse Solution

Figure 4.49: Interface Position Vs Time for Case 4
q=-1, V=-dT/dx|x=L

Figure 4.50: Contrast Between Direct Solution and
Inverse Solution of Temperature for Case 4 a=-1
V=-dT/dx|x=L
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Figure 4. 51:
V=-dT/dx|x=

3-D Inverse Solution for Case 4 q=-1
L

Iteration

Figure 4. 52: Error Evolution for Case 4 q=-1
V=-dT/dx|x=L

The general observations are that .

a. The recovered flux value is more similar to the actual value than that in Case No. 1

The fluxes for the smaller noise level o- (0.001) is closer to the actual value than that

for the higher noise level o- = 0.04.

b. The discrepancy between the temperature in the inverse solution and reality is less
than that in Case No. 1

(6) Case No.5

For this case (From Fig.4. 53 to Fig.4. 59), the boundary flux increases linearly with time

and the velocity is proportional to the temperature gradient as in the previous case.

q = q(t) = -/

V=-dT-
dx J=l

Direct Solution
Inverse Solution

Figure 4. 53: Heat Flux Vs Time for Case 5
q=-t,V=-dT/dx|x=L
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Figure 4. 54: Inverse Solutioii of Heat Flux for
Case 5 q=-t, V=-dT/dx|x=L, Sigma=0. 001

Figure 4. 55: Inverse Solution of Heat Flux for
Case 5 q=-t, V=-dT/dx|x=L, Sigma=0.04

Direct Solution
Inverse Solution

Direct Solution

Inverse Solution

0.5

t

Figure 4. 56 Interface Position Vs Time Case 5 q=-t
V=-dT/dx|x=L

0. 0 0. 1 0. 2 0. 3 0.4 0. 5 0. 6 0.7

x

Figure 4.57 Contrast Between Direct Solution
and Inverse Solution of Temperature for
Case 5 q=-t, V=-dT/dx|x=L
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Figure 4. 58:3-D Inverse Solution for Case 5 q=-t
V=-cTT/dx|x=L
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Iteration

Figure 4.59: Error Evolution for Case 5 q=-t, V=-dT/dx|x=L

Comparison with Case No. 2 reveals that the recovered value for flux, the inverse

temperature, the error and the inverse flux (the noise is considered) is much closer to the

real values. The discrepancy between the inverse solution and the actual solution for

heat flux is also reduced.

(7) Case No. 6_\

For this case (From Fig.4. 60 to Fig.4. 66), the heat flux is oscillating

q = q(jt) = -sin(<y^r) (co = 1) and the velosity is given by

v=-^.
dx

Direct Solution
Inverse Solution

Figure 4.60: Heat Flux Vs Time for Case 6-1
q=-sin(w*PI*t),V=-dT/dx|x=L, w=1
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Figure 4. 61: Inverse Solution of Heat Flux for
Case 6-1q=-sin(w*PI*t), V=-dT/dx|x=L, w=1, Sigma=0.001

0.5

(

Figure 4. 62: Inverse Solution of Heat Flux for
Case 6-1 q=-sin(w*PI*t), V=-dT/dx|x=L, w=1 Sigma=0. 04

Direct Solution
Inverse Solution

Direct Solution
Inverse Solution

0.5

t

Figure 4.63: Interface Position Vs Time for Case 6-1
q=-sin(w*PI*t) V=-dT/dx|x=L, w=1

Figure 4.64: Contrast Between Direct Solution and Inverse
Solution of Temperature for Case 6-1 q=-sin(w*PI*t)
V=-dT/dx|x=L, w=1



Figure 4. 65:3-D Inverse Solution for Case 6-1
q=-sin(w*PI*t), V=-dT/dxlx=L, w=1

57

8 10

Iteration

Figure 4.66: Error Evolution for Case 6-1 q=-sin(w*PI*t
V=-dT/dxlx=L, w=1

The inverse flux solution is almost perfect. (Pig. 4. 60) The error(in Fig. 4. 66) is smaller

than that in Case No.3_l. When the iteration number is greater than 2, the error

becomes very small. From Fig.4.61 and Fig.4.62, the influence of noise on the recovered

heat flux is shown.

(8) Case A^o.6_2

For this situation (From Pig.4. 67 to Fig.4.71), q = q(t) = -sin(fiwy) (o) = 10) and

v=-dr-\
dx c==l

Direct Solution t
Inverse Solution

Figure 4.67: Heat Flux Vs Time for Case 6-2
q=-sin(w*PI*t), V=-dT/dxlx=L, w=10
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Direct Solution
Inverse Solution
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Direct Solution
Inverse Solution

0.5

t

Figure 4.68: Interface Position Vs Time for Case 6-2
q=-sin(w*PI*t), V=-dT/dx|x=L, w=10

Figure 4.69: Contrast Between Direct Solution and
Inverse Solution of Temperature for Case 6-2
q=-sin(w*PI*t), V=-dT/dx|x=L, w=10

0.5 >-

Figure 4.70: 3-D Inverse Solution for Case 6-2
q=-sin(w*PI*t), V=-dT/dx|x=L, w=10

0 2 4 6 8 1012 14 1618

Iteration

Figure 4. 71: Error Evolution for Case 6-2
q=-sin(w*PI*t), V=-dT/dx|x=L, w=10
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The inverse flux is recovered and shown in Fig.4. 67. The discrepancy in the present case

is smaller than that in Case No.3_2 and the number of iterations required is just 19.

There is no need to go to 40, 100 or more to get satisfactory results. The discrepancy

between the inverse and direct temperatures and the error for the inverse solution is also

less than that in Case No.3 2

(9) Case No.1

For this situation (From Fig.4.72 to Fig.4.78), a constant flux q = q{t} = -1 .0 is

prescribed. The velocity of the boundary is imposed as time-varying, according to

V = sin(<yr)

Direct Solution
Inverse Solution

0.6

t

Figure 4.72: Heat Flux Vs Time for Case 7 q=-1
V=sin(wt), w=1

t t
Figure 4.73: Inverse Solution of Heat Flux for Case 7 Figure4.74: inverse Solution of Heat Flux for Case 7
q="1, V=sm(wt), w=1,-Sigm-a=0. 001 ~ "" q=-1, V=sin(wt), w=1, Sigma=0. 04
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Direct Solution

Inverse Solution

Direct Solution

Inverse Solution

g 1.2

t

Figure 4.75: Interface Position Vs Time for Case 7
q=-1, V=sin(wt), w=1

Figure 4.76: Contrast Between Direct Solution and
Inverse Solution of Temperature for Case 7 q=-1
V=sin(wt), w=1

' 0.5 >.

Figure 4.77: 3-D Inverse Solution for Case 7 q=-1
V=sin(wt), w=1

Iteration

Figure 4.78: Error Evolution for Case 7 q=-1
V=sin(wt), w=1
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The conclusion this time is that the discrepancies between the inverse and'direct

problem solution for heat flux and temperature are smaller than in Case No. 1. The

inverse heat flux (the effect of noise is considered) are shown in Fig. 4. 73 and Fig. 4. 74.

The smaller cr level appears to cause smaller influence on the inverse heat flux.

(10) Case TVo.8

For this situation (From Fig.4.79 to Fig.4.85), q = q(t) = -/ (linear flux) with

V = sin(fi^)

Direct Solution
Inverse Solution

Figure 4.79: Heat Flux Vs Time for Case 8 q=-t
V=sin(wt), w=1

Figure 4. 80: Inverse Solution of Heat Flux for
Case 8 q=-t, V=-sin(wt), w=1 Sigma=0. 001

°f
Figure 4. 81: Inverse Solution of Heat Flux for
Case 8 q=-t, V=sin(wt), w=1, Sigma=0.04
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^

Direct Solution

. Inverse Solution

0.5

t

0.8

0.7

O.B

0.5

0.4

0.3

0.2

0.1

0.0

Inverse Solution
Col 1 vs Col 3

Figure 4.83: Contrast Between Direct Solution and
Figure 4.82: Interface Position Vs Time Case 8 q=-t Inverse Solution of Temperature for Case 8 q=-t
V=sin(wt), w=1 V=sin(wt), w=1

. 0.5 .».

Figure 4.84: 3-D Inverse Solution for Case 8
q=-t, V=sin(wt), w=1

i 10 12

Iteration

Figure 4.85: Error Evolution for Case 8 q=-t
V=sin(wt), w=1



63

The various solutions for the inverse heat flux (shown in Fig.4.79), temperature(shown

in Fig.4. 83) and error(shown in Fig.4. 85) are similar to Case No.#2, but the

corresponding discrepancy level is much smaller, for noisy as well as for non-noisy

temperature data.

(11) Case No.9_\

For this case (From Fig.4. 86 to Fig. 4. 92), q =q(t)=-sin. (Q)7it) (<y = 1) and

V = sm(o)t). Both q and ̂  are sinusoidal functions of time.

Direct Solution

Inverse Solution

Figure 4. 86: Heat Flux Vs Time for Case 9-1
q=-sin(w*PI*t), V=sin(wt), w=1

(

Figure 4. 87: Inverse Solution of Heat Flux for
Case 9-1 q=-sin(w*PI*t), V=sin(wt), w=1
Siama=0. 001

Figure 4.88: Inverse Solution of Heat Flux for
Case 9-1q=-sin(w*PI*t), V=sin(wt), w=1
Sigma=0.04
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Direct Solution

Inverse Solution

Direct Solution

Inverse Solution

W 1.3

£

I
s

Figure 4. 90: Contrast Between Direct Solution and
FLgure.4;8^Jnterface/. positi0', 'vs Time case 9'1 inve rse So1utk)'nof~femperaturefo7caseTl'
q-sin(w*PI*t), V=sin(wt), w=1 q=-sin^w*PI':f)7v=sin(wtrw ~=T'

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.0

0.5 >.

1.0
0.5

0.0
1.0

Figure 4.91:3-D Inverse Solution Case 9-1
q=-sin(w*PI*t), V=sin(wt), w=1

0246 10 12 14 16 18

Figure 4.92: Error Evolution for Case 9-1
q=-sin(w*PI*t), V=sin(wt), w=1
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The inverse solution procedure works very well. The recovered heat flux is very close to

the actual value (shown in Fig.4. 86) and the temperature is also close to the real value.

(12) Case No.9 _1

For this case (From Fig.4.93 to Fig.4.99), we once more consider oscillating flux and

velocity, but the frequency is different. We take: q = q(t) = -sin((o, ^) (ft), =10)

and V = sm(i»^t) (<y; = 1)

Direct Solution f
Inverse Solution

Figure 4.93: Heat Flux Vs Time for Case 9-2
q=-sin(wi*PI*t),V=sin(W2t), wi=10, W2=1
lteration=19

0.0 0.5

- Direct Solution
Inverse Solution

t

Figure 4.94: Inverse Solution of Heat Flux for
Case 9-2 q=-sin(wi*PI*t), V=sin(W2t), w^ =10
W2=1, lteration=40

0- o

0.0 0.5

- Direct Solution
Inverse Solution

t

Figure 4.95: Inverse Solution of Heat Flux for
Case 9-2 q=-sin(wi*PI*t), V=sin(w2t), wi=10
W2=1, lteration=100



66

0

'S 1.3
5

^ 12
I

1.1

Direct Solution
Inverse Solution

0. 02

0. 00

-0. 02

-004

-0. 06

-0.08
Direct Solution
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Figure 4. 96: Interface Position Vs Time for Case 9-2
q=-sin(w1*PI*t), V=sin(w2t), w1=10, w2=1

Figure 4.97: Contrast Between Direct Solution and
Inverse Solution of Temperature for Case 9-2
q=-sin(w-|*PI*t), V=sin(W2t), w-|=10, W2=1

0.5 >.

Figure 4.98:3-D Inverse Solution for Case 9-2
q=-sin(w-|*PI*t), V=sin(w2t), w-) =10, W2=1
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0.9

0.6

0.7

0.6
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0.4

0.3
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10 12 14 16

Iteration

Figure4. 99: Error Evolution for Case 9-2
q=-sin(wi*PI*t), V=sin(w2t), w-|=10, W2=1
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For this kind of high frequency heat flux, we need much more iterations to get

satisfactory results. We can see these results in Fig.4. 93, Fig.4.94 and Fig.4.95. The

smaller discrepancy is found after a great deal of iterations. According to the Fig.4. 99,
we can see that it is impossible to get the good results at the smaller iteration numbers

because the error is very big.

Considering the CaseNo. 3_l, CaseAro. 3_2, CaseNo. 6_l, Case No. 6 2, Case

No. 9 _\ and Case No. 9 _1, it is expected that there may be an optimal number of

iterations leading to a reasonably accurate prediction of the unknown flux, before the

high frequency noise components are recovered and start to adversely affect the

solution. Experimentation with the number of iteration shows that a better solution is

obtained after three or four iterations, approximately.

From Case No. l to Case Afo. 9_2(total 12 cases), the 3_D graphs of temperature ~ (X,

Y) are provided, because it is easier to get a global representation of the temperature
field in a 3-D space graph.

The experimentations above show that the loss of accuracy and stability of the inverse

solution is essentially due to the loss of sensitivity of temperature at the sensor's

positions at high frequency. In fact, the samples mentioned above express that the

accuracy and stability of the inverse solution actually depend on frequency, sensor
position and the type of boundary condition.

To overcome the difficulty associated with high sensitivity, we should discuss the
possibility of improvement on the optimal method and numerical discretization.

The level of agreement between the predictions and the exact solution is a good
description of efficiency of the inverse problem solution method.
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CONCLUSION

This project summarizes our research on the inverse problem of conduction with a

moving boundary.

It concisely states the basic equations and basic steps for solving this kind of

problem by the adjoint equation approach in conjunction with the conjugate gradient
method.

By solving a series of direct problems in different situations, the benchmark solutions

for the IHCP with a moving boundary have been found and the preliminary results h ve
been obtained.

When solving an inverse conduction problem, it turns out very effective to approach the
inverse conduction problem as an optimization problem.

This approach consists of establishing a set of three equations, namely, the direct

equation, the sensitivity equation and adjoint equation. The method of solving an

inverse conduction problem by a system of adjoint equations is very efficient in

finding a boundary heat flux, for the design objective of obtaining a specified
temperature distribution within the domain. On the basis of this method, the

iteration process may be carried out automatically until the design criterion (

E <S ) is satisfied [4].

For the direct problem, this thesis considers 12 cases for numerical simulation. From

Fig. 4. 1 to Fig. 4. 17, the temperatures and isotherm curves have been provided. The
results shown in the Figures are reasonable.
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For the inverse problem, we study 12 situations. The results obtained allow us to draw

the conclusions below:

(1) This method can solve the inverse conduction problem and the results are reasonable

and correct.

(2) In the graphs for heat flux as a function of time (from Case No. 1 to Case No.9 _ 2),

the discrepancy between the actual and inverse value becomes larger with increasing
time. There are two reasons for these phenomena.

a. it is caused by the cumulative effect of errors.

b. If the flux (q) ̂  0 when f^ = 1.0, it is cause of the main part of the discrepancy. For

example, this can be seen in Fig. 4. 18, Fig. 4. 25 and so on. At each iteration step, the

new Hux estimate is proportional to adjoint temperature at t =1. 0. But in the cases

discussed here, the adjoint temperature is Zero at ^ =1.0 If the flux (^)=0 at

^ =1. 0, the discrepancy for the flux is naturally much smaller, see for examples

Fig.4. 32 and so on.

(3) There is a jump in the solution for q when time is approaching the final value

tf =1.0 if the flux (q) ̂ 0 at ?^ =1.0, for the reason mentioned above that the adjoint

temperature is Zero when time =1.0(^)

(4) In the CaseNo.3_2 and No.9_2, we can find that the results are better if the

number of iterations is increased according to Fig. 4. 39, Fig. 4. 40, Fig. 4.41, Fig. 4. 93,

Fig.4.94 and Fig.4.95. And according to the curve of error versus time, the error is

becoming smaller with increasing iterations.
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(5) Prom Case No.3 _ 1, Case No.3_ 2 , Case No.6 _ 1 , Case No.6 _ 2 , Case No.9 _ 1 and

C3iseNo. 9_2, the algorithm has the ability to predict the various frequency components

of a completely unknown heat flux in sequence, the lower frequency being recovered

first. If the inverse problem includes high frequency, extra iterations are needed to get
satisfactory results. Because the speed of convergence is frequency-dependent.

(6) For each case, the noise with the average value = 0 is considered. It has large

influence on the inverse heat flux. It is shown in Fig. 4. 19, Fig. 4. 20 and so on. In the

cases discussed in this thesis, cr = 0.001 always provides better solution than cr = 0.04

For example, Fig.4. 19 and Pig.4.20 clearly show the phenomenon.

In a word, this thesis briefly introduces the basic method and ideas for solving the

inverse problem of conduction.

As what is stated above, the precision and convergence are largely determined by

boundary conditions and the way of dividing grids and some parameters. Hence, for

solving IHCP more effectively, we expect to be able to do some improvement on

discretization formula and optimal method so as to avoid the complexity of high

sensitivity of IHCP to noise and obtain satisfactory convergent results with good
stability. That is also left for the future work.
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