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Bayesian Dynamic Linear Models for

Structural Health Monitoring

JAMES-A. GOULET
1

1Department of Civil, Geologic and Mining Engineering

POLYTECHNIQUE MONTREAL, CANADA

May 22, 2017

Abstract

In several countries, infrastructure is in poor condition and this situation

is bound to remain prevalent for the years to come. A promising solution for

mitigating the risks posed by ageing infrastructure is to have arrays of sensors

for performing, in real-time, structural health monitoring (SHM) across

populations of structures. This paper presents a Bayesian Dynamic Linear

Model (BDLM) framework for modeling the time-dependent responses of

structures and external effects by breaking it into components. The specific

contributions of this paper are to provide (1) a formulation for simultaneously

estimating the hidden states of structural responses as well as the external

effects it depends on, e.g. temperature and loading, (2) a state estimation

formulation that is robust toward the errors caused by numerical inaccuracies,

(3) an efficient way for learning the model parameters, and (4) a formulation

for handling non-uniform time steps.

Keywords: Structural Health Monitoring (SHM), Bayesian models, Dynamic Lineal

Models, Kalman Filter, Bridge, infrastructure

1 Introduction

In several countries, infrastructure is in poor condition and this situation is bound

to remain prevalent for the years to come. A promising solution for mitigating the

risk posed by ageing infrastructure is to have arrays of sensors deployed across

cities to monitor, in real-time, the condition of infrastructure. We now have the

technological capacity to measure and store the data for thousands of structures.

However, what is holding back SHM is that there is currently no generic and robust
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way to interpret the data collected by sensors. Many authors have approached

this challenge using probabilistic methods such as response surfaces [9], ARX [2],

ARMA [35], and Kalman-filter based methods [15,28]. Other have approached the

damage detection problem using pattern-recognition techniques [25] and Dynamic

Bayesian Networks [1]. Another active sub-field is dedicated to the design of

sensors systems themselves [4, 7, 10]. In their books, Yuen [31] and Farrar and

Worden [11] present several Bayesian methods applied to SHM applications.

A key challenge remaining for enabling large-scale applications of SHM is to

identify from time-series, the baseline response of structures without the effect

of external actions such as temperature and traffic. To succeed at this task, a

methodology must be able to operate seamlessly in conditions with frequent

outliers and missing data. This paper proposes a framework for modeling the

time-dependent responses of structures by breaking it into generic components,

each having its own specific mathematical formulation. This new framework is

a generalization of Bayesian Dynamic Linear Models (BDLM) for the field of

structural health monitoring (SHM).

BDLMs are issued from the field of applied statistics where it is extensively

used in business and finance applications [29, 30]. The theory behind BDLM

comes from the field of control where took place the development of the Kalman

filter for the control system of the Apollo mission [14]. In the field of Machine

Learning, BDLMs are commonly referred to as state-space models [18]. In civil

engineering, several examples of applications involving the Kalman filter with

structural dynamic models are published in the field of SHM, [5, 6, 8, 17, 20, 24,

27, 28]. A first attempt to employ a BDLM for Structural Health Monitoring was

presented by Solhjell [26]. Solhjell introduced many new concepts of BDLM to

the field of SHM, yet, several key aspects are missing for enabling the general

applications on civil structures.

This paper presents a framework employing Bayesian Dynamic Linear Models

which is capable of estimating hidden state variables using time-discrete monitoring

data of a structural response. Here, the term hidden refers to variables that are

indirectly observed and structural responses refers to the behaviour of a structure

such as its frequencies, displacement, strains, etc. Part of the contribution of

this paper is to regroup in a holistic framework, the theories found in the fields

of Machine learning [13, 18] and applied statistics [26, 29, 30]. This framework

enables the general application of BDLM for the specific challenges encountered

in SHM applications. The specific contributions of this paper are to provide:

1. a formulation for simultaneously estimating the hidden states of structural

responses as well as the external effects it depends on, e.g. temperature and

loading

2. a state estimation formulation that is robust toward the errors caused by
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numerical inaccuracies

3. an efficient way for learning the parameters of the model

4. a formulation for handling non-uniform time steps

Section 2 presents the general formulation of the BDLM as well as the generic

formulation for modelling each component involved in common SHM applications.

Section 3 presents the general formulation behind the Kalman filter and Smoother

that can be employed to estimate the hidden states of the model. This section also

introduces the U-D filter that solves the numerical accuracy issues of the Kalman

filter and smoother. Section 4 presents two Expectation Maximization formulation

for learning the model parameters. Finally, Section 5 presents a simulated example

showcasing the BDLM.

2 Bayesian Dynamic Linear Models

Bayesian Dynamic Linear Models (BDLM) are analogous to Hidden Markov

Models (HMM) excepted that the states are Gaussian random variables, and the

state transitions are defined by linear functions. The BDLM approach presented

here aims at directly modeling the responses of a structure without requiring

knowledge about its structural properties. Because it requires orders of magnitudes

less structure-specific knowledge than what is required for building traditional

finite element models, it is trivial to build a BDLM for any type of structure.

This section presents the general formulation of BDLM, the specificities of

components modeling, the formulation for exact state estimation, a graphical

representation for BDLMs and a procedure to handle non-uniform time steps.

2.1 BDLM formulation

In a BDLM, observations yt at a time t ∈ (1 : T ) are modelled by superposing

hidden states xt from several generic components as defined by the observation

model

yt = Ctxt + vt,







yt ∼ N (E[yt], cov[yt])

xt ∼ N (µt,Σt)

vt ∼ N (0,Rt)

(1)

where the observation matrix Ct indicates how each component from the hidden

state vector xt contribute to observations yt. The dynamic evolution of the hidden

states xt is described by the transition model

xt = Atxt−1 +wt,
{

wt ∼ N (0,Qt). (2)
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In Equations (1) and (2) respectively, vt denotes the Gaussian measurement errors

with mean 0 and covariance Rt, and wt denotes the Gaussian model errors with

mean 0 and covariance Qt. Note that when the model parameters are stationary,

the index t can be dropped for matrices A,C,R and Q in Equations (1) and (2).

The BDLM serves three main purposes. A first purpose is to decompose a

complex signal in its components by estimating the conditional probability of

hidden state variables xt, given all observations up to the current time step t,

p(xt|y1:t). In this paper, p(·|·) denotes a conditional probability. A second purpose

is to improve estimates of the structure behavior at a current time t, p(yt|y1:t),
by combining the all the information obtained from observations up to t. A third

purpose is to forecast the structure behavior at n time steps beyond the current time

t, given all the information obtained up to t, p(yt+n|y1:t).

2.2 BDLM components for SHM

The key aspect of Bayesian Dynamic Linear Models is to represent the behavior

of a system by superposing the effect of each of its hidden components. The term

hidden means that a component is not directly observed. Figure 1 presents an

example of raw structural responses recorded on a structure. In this illustrative

example, the raw structural response is made of the superposition of several hidden

components: (1) a local level (LL), (2) a cyclic temperature effect (S) and (3) an

autoregressive error term (AR) to account for missing physical phenomena in the

model. Subsections 2.2.1-2.2.4 present the formulation for modeling each common

generic component that are useful for SHM applications. Note that each component

is made of one or more hidden state variable. Here, the emphasis is put on the term

generic because a vast array of structural behavior can be modelled by assembling

combinations of the generic components presented in this section. The details

about the derivation of this formulation is described by West and Harisson [30].

2.2.1 Local Level and Local Trend Components

The local level is a basic component that is found in almost every BDLM. It

represents the evolution of the baseline response of the structure without the effect

of external solicitations such as traffic loading or temperature. Analogously, a local

level is employed to represent the average temperature and traffic loading. The

local level generic formulation is defined by

xLL = xLL, ALL = 1, CLL = 1, QLL = (σLL)2

where the parameter σLL characterizes the model error term. This component is

assumed to be locally constant, yet it can exhibit changes over time.
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Figure 1: Example of raw structural response that is decomposed in three hidden

components: (1) local level (LL), (2) cyclic temperature effect (S), and (3) an

autoregressive error term (AR) to account for missing physical phenomena in the

model.

Local trend components are suited for modeling a locally constant rate of

change in the local level. Local trends are typically employed to model a drift over

time in the response of structures. The generic formulation for the local trend is

xLT =

(
xLL

xLT

)

, ALT =

(
1 ∆t

0 1

)

, CLT =

(
1
0

)

, QLT = (σLT)2
(

∆t3

3
∆t2

2
∆t2

2
∆t

)

where ∆t is the time step size. In the transition matrix ALT, the first row adds to

the local level the change cause by the local trend. The second row represents the

locally constant trend. Analogously to the local level, over long periods, the local

trend component can exhibit variation in the rate of change. In CLT the 0 in the

second row indicates that only the local level contributes to the observation y. QLT

describes the effect of a variation in the rate of change, on the local level and local

trend. Zarchan and Musoff [34] present the formulation for the local acceleration

higher order model, and Mehrotra and Mahapatra [16] present the formulation for

the local jerk model.

2.2.2 Periodic Components

Periodic components such as the daily variation (p = 1 day) and seasonal variation

(p = 365 days) are described in their Fourier form by

xS =

(
xS1

xS2

)

, AS =

(
cosω sinω
− sinω cosω

)

, CS =

(
1
0

)

, QS =

(
(σS1)2 0

0 (σS2)2

)
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where ω = 2π·∆t
p

, ∆t is the time step length, and where xS1 corresponds to the

amplitude of the periodic component. As indicated by the observation matrix CS,

only the hidden state xS1 contributes to the observation yt. For SHM applications,

periodic components are suited to model daily and seasonal temperature variations

which are described by two separated components. Note that this periodic com-

ponent is not suited to model non-harmonic effects, for example such as those

identified by Yuen and Kuok [32].

2.2.3 Autoregressive Components

The autoregressive component is suited to capture the dependence of the model

errors between time steps. The dependence between model errors typically arises

from missing physical phenomena in the BDLM. Although the AR components

may contain several terms, the most common AR component includes only one

term (AR(1)) so that

xAR = xAR, AAR = φAR, CAR = 1, QAR = (σAR)2

This component exhibits two main regimes depending on the value of φAR [22]. For

0 < φAR < 1, the AR component is a stationary process with a fixed variance given

by

(σAR,0)2 =
(σAR)2

1− (φAR)2
.

For φAR ≥ 1, the AR component is a non-stationary process with no fixed value

mean and variance. The special case where φAR = 1 corresponds to a random walk.

For most SHM applications, 0 < φAR < 1.

2.2.4 Regression Components

Regression components are employed to describe the dependencies between the

state variables associated with different observations. In the context of SHM,

regression components are employed to describe the dependencies between the

response of a structure and the hidden state variables associated with temperature

and traffic loading observations. Unlike other components previously presented,

regression components are not defined by block component matrices. Instead, a

regression component adds off-diagonal terms on the global observation matrix

C. The relationship between the observation i and state variable j is taken into

account by defining [C]ij = φi|j,R where φi|j,R ∈ R is a regression coefficient.

2.3 Graphical Representation

Pearl [21] introduced graphical models, also known as Bayesian networks, as a

general representation for the joint probability of random variables. Graphical

6



Goulet, J. (2017). Bayesian dynamic linear models for structural health monitoring.

Structural Control and Health Monitoring. https://doi.org/10.1002/stc.2035.

models combine the theory of probabilities with the theory of graphs. An example

of trivial BDLM including only a local level is presented by a graphical model

in Figure 2 where the graph in b) is a shorthand notation for the graph in a). In

these graphical models, circles represent random variables; links correspond to

causal relations; double-line links in the graph (b) are a shorthand notation for links

between time steps in the graph (a). Color-filled nodes correspond to observed

variables; white-filled nodes correspond to unobserved/hidden variables.

xtxt−1 xt+1

ytyt−1 yt+1

(a)

xt

yt

(b)

Figure 2: Graphical models describing (a) the expanded, (b) the compact graphical

model representation of a trivial example of BDLM including only a local level

component.

2.4 Non-uniform time steps

One challenge that arises while working with real data is that the time steps when

data is recorded can be non-uniformly spaced. In order to accommodate non-

uniform time steps, a reference time step ∆tref must be defined. All parameter

values in the parameter set P will be estimated for this reference time step. Param-

eter values for time steps that have a length ∆t different than the reference value

will have to be adapted.

For parameters associated with additive modeling error terms, i.e. model error

standard deviations in Q, it is proposed to scale σ proportionally to the ratio

between the current time step and the reference time step so that

σ∆t = σ∆t,ref ∆t

∆tref
.

For the model transition matrix A, the components associated with AS and AAR

also need to be adapted. For AS, the time step ∆t must be modified in the angular

frequency term ω. AAR contains the autoregressive coefficients that are recursively

multiplied with the hidden state at each time step. To account for time step changes,

autoregressive coefficients φAR are elevated to the power of the ratio between the

current time step and the reference time step

φAR,∆t =
(
φAR,∆t,ref

) ∆t

∆tref .
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When a local trend component is employed, ∆t should be adapted in ALT. Note

that the parameters in the observation matrix C and the measurement noise matrix

R remain unchanged when the length of a time step is modified.

3 BDLM State Estimation: Kalman and U-D Fil-

ters/smoother

For a time series where t = 1 : T , the most common algorithms for estimating the

hidden state variables are the Kalman filter (KF) and Kalman smoother (KS). The

Kalman filter is suited for the online (i.e. in real-time) estimation of p(xt|y1:t), the

hidden states at a time t given available observations y1:t.

The Kalman filter algorithm is commonly divided into the prediction and

measurement steps.

Prediction step

p(xt|y1:t−1) =

∫

N (xt|Atxt−1,Qt)N (xt−1|µt−1,Σt−1)dxt−1

= N (xt|µt|t−1,Σt|t−1)

µt|t−1 , Atµt−1

Σt|t−1 , AtΣt−1A
⊺
t +Qt

(3)

Measurement step

p(xt|y1:t) = N (xt|µt,Σt)

µt = µt|t−1 +Ktrt Posterior expected value

Σt = (I−KtCt)Σt|t−1 Posterior covariance

rt , yt − ŷt Innovation vector

ŷt , E[yt|y1:t−1] = Ctµt|t−1 Prediction observations vector

Kt , Σt|t−1C
⊺
tS

−1
t Kalman gain matrix

St , CtΣt|t−1C
⊺
t +Rt Innovation covariance matrix

(4)

The Kalman gain Kt represents the ratio between the prior covariance defined

by the dynamic model and the measurement error covariance. If the variance of

the prior knowledge is small (large) and the variance of the measurement errors

large (small), the Kalman gain tends to one (zero). In the case of the posterior

expected value, the Kalman gain is employed to weight the information coming

from the prior µt|t−1 and the information coming from the observations, through

the innovation vector rt.
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The Kalman smoother is suited for offline estimation of the state at any time t

given the entire time series y1:T . The Kalman smoother is initialized with the last

step of the Kalman filter (µT |T ,ΣT |T ) and it propagates the information obtained

for time steps t : T , on the state estimates for all previous time steps 1 : t− 1. The

Kalman smoother formulation follows

p(xt|y1:T ) = N (xT |µt|T ,Σt|T )

µt|T = µt|t + Jt(µt+1|T − µt+1|t) Posterior expected value

Σt|T = Σt|t + Jt(Σt+1|T −Σt+1|t)J
⊺
t Posterior covariance

Jt , Σt|tA
⊺
t+1Σ

−1
t+1|t Backward Kalman gain matrix

(5)

Although the Kalman filter/smoother formulations presented in Equations (3) to

(5) are the most widespread, it is also known to suffer from numerical instability

issues [14], especially when:

1. The covariance is rapidly reduced in the measurement step, such as when

extremely accurate measurements are used or when data is used after a long

period where data was missing.

2. There is a large difference between the variance of several state variables

contributing to the same observation.

For SHM applications, these cases are common and cause numerical instability

issues. The U-D filter proposed by Bierman and Thornton [3] solves this issue by

factorizing the covariance matrix using the Cholesky decomposition so that

Σt = UtDtU
⊺
t .

Besides being numerically more stable, the U-D filter computes the same quanti-

ties, i.e. p(xt|y1:t) and has the same physical interpretation as the Kalman filter.

Moreover it also has a comparable computational efficiency [14]. Because the

formulation of the U-D filter is more involved than the one from the Kalman filter,

the reader is invited to refer to specialized literature such as [14] and [23] for the

complete formulation.

4 BDLM Parameter Estimation: EM Algorithm

A key aspect of BDLM is the estimation of model parameters for each component.

One way of estimating parameters is to use an Expectation Maximisation (EM)

algorithm.
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E–step: Log-likelihood estimation using the Kalman smoother

The E in E-step stands for expectation. The estimation of model parameters

requires the definition of a performance metric for the model. The conventional

performance metric is the log-likelihood of observations. The log-likelihood of an

observation is the logarithm of the prior probability of this observation at a time t,

given our state estimate at time t− 1. Based on the hypothesis that all observations

are independent, the log-likelihood is defined as

ln p(y1:T ) =
∑T

t=1 ln
(
N (yt|Ctµt|t−1,St)

)

(6)

where for the purpose of numerical accuracy, the product of the probabilities

N (yt|Ctµt|t−1,St) is transformed as the sum of the log of probabilities. In the

E-step, the log-likelihood is computed based on the state estimates p(xt|y1:t−1)
obtained using a filtering algorithm.

M–step: Gradient Ascent

The M in M-step stands for maximization. The goal of the maximization step is

to identify parameter values that maximize the log-likelihood estimated during a

training period.

In this paper, two approaches are presented for the M-step, each having their

strength and weaknesses. The first maximization scheme evaluates the derivative of

the log-likelihood (see Eq.(6)) with respect to each matrix (Aold,Cold,Qold,Rold)

and sets it to zero to identify the new matrices (Anew,Cnew,Qnew,Rnew) that are

maximizing the log-likelihood. Ghahramani and Hinton [13] have derived the

analytical formulation resulting from the maximization operation so that

Cnew =

(
T∑

t=1

ytµ
⊺
t

)(
T∑

t=1

Σt

)−1

Rnew =
1

T

T∑

t=1

(yty
⊺
t −Cnew

µty
⊺
t )

Anew =

(
T∑

t=2

Σt,t−1

)(
T∑

t=2

Σt−1

)−1

Qnew =
1

T − 1

(
T∑

t=2

Σt −Anew

T∑

t=2

Σ
⊺
t,t−1

)

Σt,t−1 = (I−KtCt)(AtΣt−1).

(7)

10
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In addition to the model matrices, the initial hidden state can be updated following

µ
new
1 = µ1

Σnew
1 = Σ1 − µ1µ

⊺
1.

(8)

Note that in Equations 7 & 8, µt and Σt are estimated using a smoothing algorithm.

The maximization operations presented in Equation (7) modifies simultaneously

all terms in updated matrices (Anew,Cnew,Qnew,Rnew). It is thus necessary to

replace specific terms that are not unknown parameters by the initial values in

(Aold,Cold,Qold,Rold). Optimizing simultaneously all the model matrices in order

to maximize the log-likelihood has the upside to be fast and computationally

efficient. However, this approach is also known for getting trapped in local maxima

[19]. Because matrices A,C,Q,R are typically sparse, modifying simultaneously

all the terms in these matrices can lead to undesirable local maxima.

A second approach that can overcome this limitation is to perform the maxi-

mization with a parameter-wise approach instead of matrix-wise one. This maxi-

mization scheme employs a Newton-Raphson approach [12] where the first and

second derivative of the log-likelihood (see Eq.(6)) with respect to each parameter

θi enables to find new optimized parameter values so that

θnew
i = θold

i −

∂ ln p(y1:T )
∂θi

∂2 ln p(y1:T )
∂2θi

.

Because this approach only optimizes the parameters of interest instead of entire

matrices, it provides an additional tool in case the matrix-wise maximization is

trapped in a local maximum.

The general procedure is to repeat the E and M steps recursively until the

change in log-likelihood between iterations is below an admissible threshold. The

main limitation of the EM algorithm is that it is only guaranteed to converge to

a local maximum. This is an issue because the log-likelihood function is usually

non-convex, which leads to several local maxima. One mitigation strategy is to

use random initial parameter values to search for the region containing the global

maximum.

5 Illustrative Example

An illustrative example showcases: (1) the construction of a BDLM, (2) model

parameter estimation, (3) the separation of raw observations in generic components,

and (4) the effect of missing data and outliers.

11



Goulet, J. (2017). Bayesian dynamic linear models for structural health monitoring.

Structural Control and Health Monitoring. https://doi.org/10.1002/stc.2035.

5.1 Simulated data

For the purpose of this example, simulated data is generated for representing a

typical SHM application. The behavior of structures is often affected by tem-

perature changes as well as traffic loading. Temperature variation is affected

by a daily and a seasonal cycle. Traffic variation is affected by the daily traf-

fic pattern. The structure’s behavior that is simulated here is the first resonant

frequency. All datasets are modelled for discrete time steps at intervals of 30

min (i.e. ∆t = 1
48

days/observations) for a total duration of two years so that

t = 1, 2, · · · , T ; T = 2× 365× 48. Figure 3 presents the simulated observations

generated for this example. The detailed procedure employed to generate simulated
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Figure 3: Simulated data for the illustrative example. The left graphs represent the

entire two years dataset and the right graphs represent only the first three days.

observations is detailed below. Note that the superscript nomenclature follows: (T)
temperature, (P) traffic pattern, (L) traffic load, and (B) frequencies. Also, following

the nomenclature presented in Section 2.2: (LL) local level, (S) cyclic component,

(AR) autoregressive component, and (R) regression component.

Temperature – yTt

The simulated temperature observations yTt are obtained by superposing; the aver-

age temperature, daily (p = 1 day) and seasonal (p = 365 day) sinusoidal cycles,
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an autoregressive (AR(1)) process, and measurement errors so that

yTt = x
T,LL
t + x

T1,S1
t + x

T2,S1
t + x

T,AR
t + vTt (9)

where each component is defined following

x
T,LL
t = 12 oC (average temperature)

x
T1,S1
t = 4 sin

(
2π
1

(
t
48

+ 8
24

))
(daily cycle)

x
T2,S1
t = 9 sin

(
2π
365

(
t
48

+ 8
12

· 365
))

(seasonal cycle)

x
T,AR
t = 0.995

︸ ︷︷ ︸

φT,AR

·xT,ARt−1 + w
T,AR
t , w

T,AR
t ∼ N (0, 0.1

︸︷︷︸

σT,AR

2) (AR(1) process)

vTt ∼ N (0, 0.1
︸︷︷︸

σT

2) (measurement error)

(10)

Traffic pattern – yPt

The traffic pattern describes the normalized traffic intensity. It is employed as a

regression variable for defining the traffic load. The traffic pattern observations yPt
are considered to be exacts and are defined following

yPt = xPt = h
((

t
48

−
⌊

t
48

⌋)
· 24
)

(11)

where ⌊·⌋ denotes the floor operator (i.e. round to the lowest integer), and h(·) is

the normalized daily traffic intensity presented in Figure 4.
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Figure 4: Syntetic data for daily traffic intensity
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Load – yL
t

The load applied on the bridge is defined by superposing the average traffic load,

the traffic intensity, which is a constant, time the traffic pattern, an autoregressive

process, and observation errors, so that

yLt = x
L,LL
t + x

L|P,R
t + x

L,AR
t + vLt (12)

where each component is defined following

x
L,LL
t = 3 kT (average traffic load)

x
L|P,R
t = 1.1

︸︷︷︸

φL|P,R

· xPt (traffic intensity regression)

x
L,AR
t = 0.995

︸ ︷︷ ︸

φL,AR

·xL,ARt−1 + w
L,AR
t , w

L,AR
t ∼ N (0, 0.025

︸ ︷︷ ︸

σL,AR

2) (AR(1) process)

vLt ∼ N (0, 0.01
︸︷︷︸

σL

2) (measurement error)

(13)

Frequencies – yBt

Frequency observations are simulated by superposing the baseline level of 1Hz,

the effect of traffic loading on the frequency, the effect of temperature on frequency,

an autoregressive component, and observation errors. Frequency observations are

defined by

yBt = x
B,LL
t + x

B|L,R
t + x

B|T,R
t + x

B,AR
t + vBt (14)

where each component is defined following

x
B,LL
t = 1Hz (average frequency)

x
B|L,R
t = 0.05

︸︷︷︸

φB|L,R

(x
L|P,R
t + x

L,AR
t ) (traffic load regression)

x
B|T,R
t = 0.0029

︸ ︷︷ ︸

φB|T,R

(
x
T1,S1
t + x

T2,S1
t + x

T,AR
t

)
(temperature regression)

x
B,AR
t = 0.995

︸ ︷︷ ︸

φB,AR

·xB,ARt−1 + w
B,AR
t , w

B,AR
t ∼ N (0, 0.0005

︸ ︷︷ ︸

σB,AR

2) (AR(1) process)

vBt ∼ N (0, 0.0025
︸ ︷︷ ︸

σB

2) (measurement error)

(15)
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5.2 BDLM construction

The BMLM takes the form expressed in Equations 1 and 2 where the global

matrices defining the model are

yt = [yBt , y
T
t , y

L
t , y

P
t ]

⊺

xt = [xB
t ,x

T
t ,x

L
t , x

P
t ]

⊺

At = block diag (AB
t ,A

T
t ,A

L
t , A

P
t )

Ct = block diag (CB
t ,C

T
t ,C

L
t , C

P
t )

Rt = block diag (RB
t , R

T
t , R

L
t , R

P
t )

Qt = block diag (QB
t ,Q

T
t ,Q

L
t , Q

P
t )

where each component of these model matrices is defined below. Complete matri-

ces are presented in Appendix A. Model parameters to be estimated are regrouped

in the set

P = {φB|L,R, φB|T,R, φB|P,R, φL|P,R
︸ ︷︷ ︸

regression coefficients

, φB,AR, φT,AR, φL,AR

︸ ︷︷ ︸

autocorr. coefficients

, σB,AR, σL,AR, σT,AR

︸ ︷︷ ︸√
autocorr. variance

}.

Note that all local level standard deviations, σB,LL = σL,LL = σT,LL ≡ 0 because the

structure behavior, the temperature and the load are stationary.

Temperature – yTt

There are four components involved in the temperature model: (1) a local level,

(2-3) two periodic signals with a period of one day (ωT1 = 2π
48

) and 365 days

(ωT2 = 2π
365·48), (4) an autoregressive process. The vector of hidden state variables

for the temperature is

xT
t = [ xT,LLt

︸︷︷︸

local level

, x
T1,S1
t , x

T1,S2
t

︸ ︷︷ ︸

cycle, p=1 day

, x
T2,S1
t , x

T2,S2
t

︸ ︷︷ ︸

cycle, p=365 day

, x
T,AR
t
︸︷︷︸

AR process

]

where the ordering of each component remains the same for other matrices CT
t , A

T
t

and QT
t . The observation matrix is defined following

CT
t = [1, 1, 0, 1, 0, 1]

where the zeros indicate that components x
T1,S2
t and x

T2,S2
t do not contribute to the

temperature observations. The measurement noise variance is RT
t = (σT)

2. The

transition matrix is

AT
t = block diag

(

1,

[
cosωT1 sinωT1

− sinωT1 cosωT1

]

,

[
cosωT2 sinωT2

− sinωT2 cosωT2

]

, φT,AR

)

.
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The model error covariance is

QT
t = block diag

(
0, 0, 0, (σT,AR)2

)
.

Traffic pattern – yPt

The traffic pattern observations yPt are exact so that the transition model AP
t should

bear no weight during the estimation. This is acheived by using an observation

variance tending to zero and a model error variance tending to infinity. With these

values, the Kalman gain tends to one, so that all the weight is put on the observation

rather than on the model. This strategy is employed so that the other components in

the BDLM can directly be modelled as a function of the traffic pattern observations.

Matrices defining the traffic pattern component are

xP
t = xPt = yPt , A

P
t = 1, RP

t → 0, QT
t → ∞

Traffic load – yLt

There are two independent components involved in the traffic load: (1) a local

level and (2) an autoregressive process. There is also one dependent component, a

regression component linking the traffic pattern to the traffic load. The vector of

state variables for the traffic load is

xL
t = [ xL,LLt

︸︷︷︸

local level

, x
L,AR
t
︸︷︷︸

AR process

]

where the ordering of each component remains the same for other matrices CL
t , A

L
t

and QL
t . The observation matrix is CL

t = [1, 1], the measurement noise variance

is RL
t = (σL)

2, the transition matrix is AL
t = block diag (1, φL,AR) and the model

error covariance is QL
t = block diag (0, (σL,AR)2). The dependent component is

taken into account by introducing a regression coefficient in the global observation

matrix

[Ct]3,11 = φL|P,R.

This includes the effect of the traffic pattern in the traffic load observation. Note

that the position (3, 11) in the global observation matrix is defined by the ordering

chosen for state variables.

Frequency – yBt

There are two independent components involved in the frequency: (1) a local level

and (2) an autoregressive process. There are also five dependent components: (3-8)

the five regression components respectively describe the dependency between the
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frequency and temperature or traffic components. The vector of state variables for

the frequency is

xB
t = [ xB,LLt

︸︷︷︸

local level

, x
B,AR
t
︸︷︷︸

AR process

]

where the ordering of each component remains the same for other matrices CB
t , A

B
t

and QB
t . The observation matrix is CB

t = [1, 1], the transition matrix is AB
t =

block diag (1, φB,AR) model error covariance is QT
t = block diag (0, (σB,AR)2). The

dependent components are taken into account by introducing regression coefficients

in the global observation matrix where,

[Ct]1,11 = φB|P,R, [Ct]1,10 = φB|L,R, [Ct]1,4 = [Ct]1,6 = [Ct]1,8 = φB|T,R

so that the effect of temperature and traffic pattern is included in the frequency

observation. The measurement noise variance is assumed to be known RB
t = (σB)

2.

In practice, methods such as the one proposed by Yuen and Kuok [33] can be

employed for estimating this parameters.

Graphical model representation

The BDLM defined in Section 5.2 can be represented by a graphical model as de-

scribed in Section 2.3. Figure 5 presents one time-slice from the Dynamic Bayesian

Network (i.e. graphical model) describing the BDLM. This figure regroups all

components presented above in Section 5.2.

5.3 Computational efficiency

It takes approximately 0.0008 second to run one time-slice of the U-D filter on

a laptop computer, and it takes approximately 15 seconds to process one year

worth of data (for a sampling period of 30 minutes). For the same configuration, it

takes approximately 0.0005 second per time slice with the standard Kalman filter

presented in Section 3. Only the U-D filter formulation is employed in this paper

because, even if the Kalman filter is faster, it leads to several numerical inaccuracies

invalidating the final results. However, note that both the U-D and Kalman filters

are estimating the exact same quantities and have the same physical interpretation.

With either the U-D of the Kalman filter, a single off-the-shelf computer would be

able to process in real-time, the data from thousands of sensors which would be

positioned across a population of structures.

5.4 Model parameter estimation

A training period of six months is employed to learn model parameters P . This

duration is chosen because it displays the full amplitude of the seasonal temperature
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yBtx
B,AR
tx

B,LL
t

yLtx
L,AR
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L,LL
tyPt

yTtx
T,AR
tx

T,LL
tx

T1,S1
t

x
T1,S2
t

x
T2,S1
t

x
T2,S2
t

φB,AR
σB,AR

φB|L,R φB|P,R φB|T,R

φL,AR
σL,AR φL|P,R σL

σB

φT,AR
σT,AR σT

Unknown parameters

Figure 5: Graphical model (i.e. Dynamic Bayesian network) representing the

causal dependencies between each component of the model. Circles represent

random variables; links correspond to causal relations; double-line links are a

shorthand notation for links between time steps. Nodes without a border represent

deterministic parameters; color-filled nodes correspond to observed variables;

white-filled nodes correspond to unobserved/hidden variables.

(January-June). Note that without the effect of seasonal temperature, a shorter

training period could be selected. The initial state x0 is described by a broad (i.e.

non-informative) prior where each component has a mean of [µ0]i = 0, ∀i and a

covariance [Σ0]ii = 106, ∀i, [Σ0]ij = 0, ∀i 6= j.

In order to establish a reference, the matrix-wise EM algorithm is first employed

while starting from the true parameter values. In this configuration, the EM

algorithm converges to parameter values that are negligibly close to the true values.

The log-likelihood of this set of reference parameters is −3434. Note that although

the initial state x0 can be identified at the same time as other unknown parameters, it

has been chosen to keep them as a broad prior in order to illustrate how information

about the hidden states is gained during the training period.

In a second step, a realistic scenario is tested where 10 sets of initial parameter

values are generated from a Gaussian distribution centred on true parameter values

and with a coefficient of variation of 1. The EM algorithm is employed iteratively

(≈ 7 sec./evaluation) either until reaching 500 evaluations, or when the difference in

the likelihood between two consecutive time steps is below 10−5. Note that during

the initial perturbation and optimization steps, parameter values are constrained

to their feasible domain: R+ for variances (σ2), (0, 1) for the AR coefficients φAR,
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and R for the regression coefficients φi|j.
Figure 6a presents the evolution of the log-likelihood for the starting point

having led to the highest log-likelihood (-3379) and the estimated parameter values

P∗ = {0.0501, 0.0030, 0.0539, 1.0780, 0.9964, 0.9934, 0.9935, 0.0005, 0.0100, 0.0994}.

Figure 6b presents the evolution of the relative error in the parameter values. The

absolute relative difference between the true parameter values and P∗ is at most

2.8% with a mean of 0.25%. In order to be representative of real situations where

the true values remain unknown, all the following results are calculated using the

parameter values P∗ instead of the true values.
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Figure 6: a) Evolution of the log-likelihood with the number of EM iterations for

the best starting point that has led to the model parameter P∗. b) Evolution of

the relative error between true and parameter values. The right most values in (b)

represent the relative discrepancy between the true parameter values and P∗.

5.4.1 Model components separation

The BDLM is employed to separate the observed signal into its hidden components.

The filtered signals y1:T along with selected hidden components are presented in

Figures 7-9 where all left graphs present the entire dataset (2 years) and the right

graphs present the last two weeks. Note that x
T1,S2
t and x

T2,S2
t are not presented

because they do not directly contribute to the filtered signal yT
1:T . The load pattern

regressor yP
1:T is also omitted because it consists of exact quantities. The narrow

±σ interval around the mean values in Figures 7-9 show that the BDLM is able to

separate the raw datasets representing structural responses and external effects into

its components. On these figures, we can see how in approximately five months,

the BDLM has gone from a broad prior for the hidden state to precise estimations

of the true states.
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Figure 7: Illustration of the model component separation and filtered predictions

for the structural response. All left graphs present the entire dataset (2 years) and

the right graphs present the last two weeks
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Figure 8: Illustration of the model component separation and filtered predictions

for the temperature. All left graphs present the entire dataset (2 years) and the right

graphs present the last two weeks.
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Figure 9: Illustration of the model component separation and filtered predictions

for the traffic load. All left graphs present the entire dataset (2 years) and the right

graphs present the last two weeks.
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Note that temperature and traffic loads are decomposed into their respective

components not because they are themselves interesting, but because the frequency

response depends on these components.

5.4.2 Handling of missing data and outliers

This section presents how the BDLM is handling two common situations in SHM

without requiring any modifications or special treatement. It first shows how the

BDLM can fill the gap when structural responses and external effects data are

missing. Figure 10 presents the filtered signal for the last two weeks of the dataset

where seven days of data are missing. The filtered signal is only marginally affected

by missing data through an augmentation of the uncertainty in the AR process.

Because φB,AR < 1, when data is missing, the AR process tends to its zero-mean

stationary state. When data is made available again, the estimation quickly returns

to an accurate and precise estimation of the true hidden state.
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Figure 10: Example of results in the presence of missing data for the structural

responses.

Figure 11 presents the effect of having outliers corrupting the measured struc-

tural responses. In practical situations, outliers having unreasonable values are easy

to identify and remove using thresholds. Outliers that are in a gray-zone where

they are at the same time unlikely, yet possible are the most problematic. BDLM is

capable of handling those outliers in a seamless manner because filtering combines
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Figure 11: Example of results in the presence of outliers for the structural responses.

In (c), outliers are indicated by a circle.
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observations with a transition model. In this case, outliers introduce biases in the

estimation of the AR process. Yet, the estimates of the local level representing the

baseline behavior of the structure remains unaffected by the presence of outliers.

6 Conclusion

This paper presents a framework for building, learning and estimating Bayesian

Dynamic Linear Models (BDLM). Specifically, the contributions of this paper

enable creating models of external effect and structural responses by superposing

generic components, i.e. baseline response, periodic cycles, autoregressive com-

ponents and regression components. The framework proposed offers robustness

to numerical errors, outliers and missing data. The EM calibration strategy has

been shown to enable the quick estimation of unknown parameters. Moreover, it is

compatible with non-uniform time steps which are common in practice.

Note that although the method proposed in this paper is able to handle multiple

structural responses simultaneously, in practice this would require special consider-

ations regarding the definition of the model error covariance matrix. The study of

this special case is beyond the scope of this paper.

The BDLM has the potential to enable a widespread application of SHM

because (i) with minimal effort, it can be adapted to any type of structures, (ii)

it can process in real-time, on a single desktop computer, the data acquired on

thousands of structures and learn the model parameters. The BDLM presented

in this paper is the first necessary step toward more advanced methods that will

perform real-time autonomous anomaly detection.
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Appendix A

The complete vector of state variables (xt), the model transition matrix (At), the

model observation matrix (Ct), the model observation error covariance matrix

(Rt) and, the model model error covariance matrix (Qt) are presented below

xt = [xB,LLt , x
B,AR
t , x

T,LL
t , x

T1,S1
t , x

T1,S2
t , x

T2,S1
t , x

T2,S2
t , x

T,AR
t , x

T,LL
t , x

L,AR
t , xPt ]

⊺

At =





















1 0 0 0 0 0 0 0 0 0 0
0 φB,AR 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 cosωT1 sinωT1 0 0 0 0 0 0
0 0 0 − sinωT1 cosωT1 0 0 0 0 0 0
0 0 0 0 0 cosωT2 sinωT2 0 0 0 0
0 0 0 0 0 − sinωT2 cosωT2 0 0 0 0
0 0 0 0 0 0 0 φT,AR 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 φL,AR 0
0 0 0 0 0 0 0 0 0 0 1





















Ct =







1 1 0 φB|T,R 0 φB|T,R 0 φB|T,R 0 φB|L,R φB|P,R

0 0 1 1 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 1 1 φL|P,R

0 0 0 0 0 0 0 0 0 0 1







Rt =







(σB)
2 0 0 0

0 (σT)
2 0 0

0 0 (σL)
2 0

0 0 0 → 0







Qt = block diag
(
0, (σB,AR)2, 0, 0, 0, 0, 0, (σT,AR)2, 0, (σL,AR)2,→ ∞

)
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